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Chapter 1

Introduction

Populations of individuals may often be divided into subgroups. Examining a sample of
measurements to discern and describe subgroups of individuals, even when there is no ob-
servable variable that readily indexes into which subgroup an individual properly belongs,
is sometimes referred to as “unsupervised clustering” in the thesis, and in fact mixture
models may be generally thought of as comprising the subset of clustering methods known
as model-based clustering.

Most of the density functions that are usually considered in common statistical models,
are unimodal, that is, they have at most one peak. However, often we want to be able to
represent densities with multiple modes. A common way to do this is to create a mixture
model. A finite mixture model is a convex combination of two or more probability density
functions. Mixture models have been used in many applications in statistical analysis and
machine learning such as modeling, clustering, classification and latent class and survival
analysis. Consequently, finite mixture models are a powerful and flexible tool for modeling
complex data. We refer to Chapter 2, Section 2.1 for an overview of mixture models.

Finite mixtures give a flexible way to model a wide variety of random observations
(see, e.g.,McLachlan and Peel [2000]). Finite mixture models may be used in situations
beyond those for which clustering of individuals is of interest. For one thing, finite mixture
models give descriptions of entire subgroups (called components), rather than assignments
of individuals to those subgroups. Indeed, even the subgroups may not necessarily be of
interest; sometimes finite mixture models merely provide a means for adequately describ-
ing a particular distribution, such as the distribution of residuals in a linear regression
model where outliers are present. Much of the theory of these models involves the as-
sumption that the subgroups are distributed according to a particular parametric shape
and quite often this parametric family is univariate or multivariate normal.

Mixture models are of parametric or semi/non-parametric form. Parametric ap-
proaches impose a structure on the data and limits the capacity in fitting multidimensional
data (see Section 2.1.2), whereas non-parametric methods infer the underlying structure
from the data itself. There is a growing literature on nonparametric identification of fi-
nite mixtures. Univariate mixtures are generally not identified nonparametrically unless
adding some restrictions (Bordes et al. [2006d|, Hunter et al. [2007]). Models and algo-
rithms for nonparametric estimation of finite multivariate mixtures have been proposed,



where it is usually assumed that coordinates are independent conditional on the sub-
population from which each observation is drawn. These approaches has appeared in a
growing body of literature on non- and semiparametric multivariate mixture models with
the earlier proposals of Hettmansperger and Thomas [2000], Hall and Zhou [2003], Elmore
et al. [2004], Hall et al. [2005], Allman et al. [2009]. The nonparametric multivariate mix-
tures which have computational procedures akin to the Expectation-Maximization (EM)
algorithm (Dempster et al. [1977]) are applicable more generally (Benaglia et al. [2009a),
Levine et al. [2011]). Several authors have addressed this conditionally i.i.d. (independent
and identically distributed) finite mixture model and proposed extensions to semi- and
non-parametric mixtures preserving the identifiability property (Section 2.1.3).

As well as providing a framework for building more complex probability distributions,
mixture models can also be used to cluster data. In many applications, the parameters
of mixture models are determined by maximum likelihood (Section 2.2.1). A general
technique for finding maximum likelihood estimators in latent variable models is the EM
algorithm. The association of EM algorithms with mixture models has a long history.
We therefore reserve Section 2.2 to introduce the EM algorithm (Dempster et al. [1977]).
The EM algorithm can be treated as a special case of the MM algorithm whose general
principle behind was first enunciated by Ortega and Rheinboldt [1970]. However, in the
EM algorithm conditional expectations are usually involved, while in the MM algorithm
convexity and inequalities are the main focus, and it is easier to understand and apply in
most cases (Section 2.2.3). There are many EM algorithms that have been proposed to
estimate the parameters of parametric and semi- /non-parametric mixture models (Bordes
et al. [2007], Benaglia et al. [2009a|, Levine et al. [2011], Chauveau et al. [2015|, Shen
et al. [2016]).

The conditional independence assumption for nonparametric multivariate finite mix-
ture models is the subject of an increasing number of theoretical and algorithmic devel-
opments in the statistical literature. In these models the dependence comes only from the
mixture (Section 2.2.7). However, there are more and more real data which have depen-
dence within the structure; for instance an example of breast cancer dataset introduced
in Section 3.1. In such data the existing nonparametric multivariate mixture models do
not work and then they need extensions. For instance, Zhu and Hunter [2015] propose
an extension of nonparametric multivariate finite mixture models using ideas based on
independent components analysis (ICA). Our first contribution in this work consists, in
Chapter 3, to relax this assumption and allowing for independent multivariate blocks
of coordinates, conditional on the subpopulation from which each observation is drawn.
Otherwise the density functions of these blocks are completely multivariate and nonpara-
metric. Hence this nonparametric finite mixture model with multivariate blocks is more
flexible and useful (Section 3.1). We then propose an EM-like algorithm, called mvnpEM,
extended from the npEM algorithm proposed by Benaglia et al. [2009a] for this model, and
derive some strategies for selecting the bandwidth matrix involved in the nonparametric
estimation step of the algorithm. We evaluate also in Chapter 3 the performance of this
algorithm through several numerical simulations and experiment a real dataset of reason-
ably large dimension on this new model and algorithm to illustrate its potential from the
model based, unsupervised clustering perspective.

The question about the convergence of the sequence of parameter estimates generated



by an EM algorithm have been studied (Wu [1983]). Redner and Walker [1984] show
that EM has linear rate of convergence. Jordan and Xu [1995] mentioned convergence
properties of the EM Algorithm for Gaussian Mixtures. Each EM iteration can only
improve the likelihood, guaranteeing convergence to a local maximum. Our mvnpEM as
EM-like npEM algorithm, successes in practice but has not any definite theoretical proofs
of consistency. In Chapter 4, we extend the idea of establishing an algorithm satisfying
a descent property with respect to a log-likelihood objective function and proving that
the algorithm converges to a minimizer of such an objective function suggested in Levine
et al. [2011] and Shen et al. [2016] to smooth our multivariate model and define an
alternative algorithm, namely mvnpMSL. The detailed introduction of the smoothed model
and mvnpMSL algorithm is addressed together with the performance in implementation
on the same simulated examples and real data of Chapter 3. This smoothed model and
its algorithm own the monotony property and display the similar results in empirical
experiments.

In the framework of multiple testing, the p-values under Hy are uniformly distributed
on [0, 1] while the distribution of the p-values associated to H; is unknown. The idea to
mix parametric and nonparametric estimates is not new (Olkin and Spiegelman [1987|,
Efron et al. [1996], Priebe and Marchette [2000], Di Marzio and Taylor [2004]). Paramet-
ric models have been used with Beta distribution for the p-values (Allison et al. [2002],
Liao et al. [2004]) or Gaussian distribution of the probit transformation of the p-values
(McLachlan et al. |2006]). Hoti and Holmstrém [2004| has a new idea in using nonpara-
metric estimate for the unknown distribution in the mixture model of p-values. Robin
et al. [2005| proposed a procedure where the unknown part is estimated with a weighted
kernel function. Bordes et al. [2006b] consider a two-component mixture model where
one component distribution is known while the mixing proportion and the other compo-
nent distribution are unknown in the environment of relaxing the assumption that the
unknown distribution belongs to a parametric family. Following the line of Levine et al.
[2011], Nguyen and Matias [2014] constructed an iterative estimator sequence of the un-
known density that relies on the maximization of a smoothed likelihood. In the context
of having more and more data from multiple testing (genomics, microarrays analysis,
neuro-imaging,...) we found a very few references (Chi et al. [2008]-the first one) asso-
ciated to the FDR control with multivariate p-values. In Chapter 5, our motivation is to
design multivariate mixture models adapted to the distribution of multivariate p-values
from hypothesis tests. A constrained version of the npEM algorithm from Benaglia et al.
[2009a] succeed in the very simple examples with 2 components in term of comparing with
univariate FDR control but does not for m > 3-component mixtures. We thus propose
an alternative constrained version of our algorithm from Chapter 3 and study its poten-
tial performance in Chapter 5. Once again, our mixture models and algorithms can be
evaluated effectively through a high dimensional real dataset.

Finally, we present the discussions together with potential perspectives of our models
and algorithms in the last Chapter.






Chapter 2

Mixture models and EM algorithms

In this chapter, we present an overview of the finite mixture models and the EM algorithms
to estimate the parameters of these models.

2.1 Mixture models

Finite mixture models have gained a popularity in many fields of sciences and are be-
ing increasingly exploited as a convenient tool because of their flexibility. In statistics,
mixture models have a long history which goes back to over a century ago. Beginning
with the idea about the possibility of resolving the normal distribution into several other
normal distributions in Quetelet [1846] and with the classic paper of Pearson [1894| on his
moments based fitting of a mixture of two univariate normal components. The moment
of a mixture is convex combination of the moments of the component densities. Pearson’s
approach is generally thought of as the starting point of the analysis of mixtures. The
contribution of Charlier [1906] was made in the early part of the 20th century to improve
this method of moments. After 30 years, Charlier and Wicksell [1923] continued to extend
this method to the mixture of bivariate normal distributions. Cohen [1967| approached
to the case of equal variances where the estimates depend uniquely on the negative root
of a cubic equation. Bhattacharya [1967| and Roeder [1994] proposed methods based on
graphical procedures to determine the number of components which is also a very sig-
nificant issue in mixture model. The most popular mixture model is the one consisting
of Gaussian components (see McLachlan et al. [1999], Pearson [1894]). A heavy-tailed
alternative to Gaussian mixtures is to use mixtures of ¢-distributions in McLachlan and
Peel [2000|. Since the appearance of the monograph of McLachlan and Basford [1988]
on finite mixtures, the literature has expanded enormously. We refer to McLachlan and
Peel [2000] for a comprehensive survey on the history and applications of finite mixture
models. Other helpful resources on the theory, applications and developments in the field
are Lindsay et al. [1983], Lindsay [1995], Krishnan and McLachlan [1997], Bohning et al.
[1998], Frithwirth-Schnatter [2006], Schlattmann [2009]

The most general model for mixtures is as follows: suppose the vectors X,..., X,
are a simple random sample from a finite mixture of m > 1 arbitrary distributions. The
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density of each X; may be written
go(x;) = Z)\jfj<wi): (2.1)
j=1

where ; € R", and \; denotes the proportion (weight) of component j in the population;

m
the A;’s are thus positive and Z)\j = 1. The f;’s are the component densities, drawn
j=1
from some family of density functions F absolutely continuous with respect to Lebesgue
measure. We write @ = (A, f) for the parameter vector.

2.1.1 The label switching problem

For any permutation v of 1,--- ,m define the corresponding permutation of the parameter
vector 6 by

v(0) = v\ f) = (M), Aoem)s (For), -+ 5 fumy))-

Given a mixture model with m components, there are m! symmetric modes of the distribu-
tion with respect to the permutation of the component labels. If we have no information
that distinguishes between the components of the mixture, the distribution gg is the same
for all permutation of 6. This symmetric property can cause problems when we try to
estimate quantities which relate to individual components of the mixture. For example,
assume a m = 2—components mixture has the distribution of the population is

go(x) = MN (1, 1) (@) + Ao N (2, 1) (),

where @ = (A1, A9, 1, f12) is the parameter vector. Based on a sample from this population,

suppose that the estimate of 8 be 0= (%, %, 2,3) then the distribution of population can
be . )

go(z) = gN(2,1)(x) + ZN (3, 1)(x)
or

o(z) = SN (3 1)(@) + ZN (2 1)(@)

Then we can not identify the components or we can not specify which estimate value
corresponds to each sub-population. It means that (A1, 1) and (Ao, p2) are exchangeable.
In mixture model this is called label switching. Label switching problem is crucial in some
computational issues.

2.1.2 Parametric mixture models

Model (2.1) is not identifiable if no restrictions are placed on F, where “identifiable” means
that go has a unique representation of the form (2.1) and also that we do not consider
that “label-switching”. The most common restriction in the mixture literature is to assume
that the family F is parametric, i.e., that any f € F is completely specified by a finite-
dimensional parameter or the component densities f;(x;) are specified as f;(x;;&;), where
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&; is the vector of unknown parameters in the postulated form for the jth component
density in the mixture. The mixture density gg(x;) can then be written as

go(mi) = Y A fi(®i;&))- (2.2)
j=1
The vector
0=(N\,...; A, &) (2.3)

contains all the unknown parameters in the mixture model and £ is the vector containing
all the parameters in &1, ..., &, of the component densities fi, ..., fi., respectively.

To demonstrate the notation above for defining a parametric mixture, we consider a
mixture of univariate normal and Gaussian components with the means p; and the vari-
ances 0]2-. For this model, the mixture density of the measurement X; can be represented
as

go(xi) = Z A fi(@; g, o), (2.4)

where

1
fi(@s; iy, 0) = ———e
(i g, 05) /—2ﬂ_gj
In this case, the vector @ of unknown parameters is given by

0 = ()\17 ] )\ma (,ula Ul)a ) (/Lma Um))

2

- are the

where gy, ..., pt, are the distinct elements of the component means, and 0%, ...,0
distinct elements of the component variances.

The most used and studied parametric mixture model is the Gaussian mixture, where
f; is the density of a (univariate or multidimensional) Gaussian distribution with mean
(vector) p; and variance (matrix) ;. Such models are called the Gaussian mixtures and
are the most used and studied parametric mixture models, such as in Lee and McLachlan
[2013], Dempster et al. [1977], etc.

The Old Faithful is a simple example of a dataset to which mixture models may be
applied. In this dataset, measurements give time in minutes between eruptions of the Old
Faithful geyser in Yellowstone National Park, USA. This sample was depicted in Figure 2.1
as a mixture of two univariate Gaussian distributions. These data are available in the
datasets package in R (R Core Team [2016]);

Section 2.1.3 presents various ways of relaxing this parametric assumption while pre-
serving an identifiability property. In the recent literature, finite mixtures of non-normal
distributions have been considered as alternatives to the traditional Gaussian mixture,
see, e.g., Lee and McLachlan [2013] which provides a comprehensive overview. These
non-normal mixtures are mostly proposed to model heavy-tailed or skewed normal distri-
butions, but are not appropriate for, e.g., non-elliptical clusters.
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Figure 2.1 — The Old Faithful dataset is suggestive of a two-component mixture of Gaus-
sian functions.

2.1.3 Recent extensions to Semi- and non-parametric mixtures

In this work, the term “nonparametric” will always mean that no assumptions are made
about the form of the f;’s, even though the weights X are scalar parameters. Note that
other authors as, e.g., Lindsay [1995|, speak of “nonparametric mixture modeling” in a
different sense: The family F is fully specified up to a finite-dimensional parameter, but
the mixing distribution, rather than having a finite support of known cardinality m like
here, is assumed to be completely unspecified.

As said above, nonparametric mixture models are not identifiable if no restrictions are
placed on the family F to which the f;’s belong. The classical definition of identifiability
requires that any two different values @ # 6’ correspond to two different distributions
ge and ggr. Weaker notions of identifiability can be considered, and in the particular
case of mixtures, the fact that there always exists m! permutations of the labels in 8 =
(A, ooy Ams f1, - -+, fm) that result in the same distribution gg is one of those. Sometimes,
the essentially nonparametric density functions in F may be partially specified by scalar
parameters, a case often called semi-parametric. For instance, in the univariate (r = 1)
case, Bordes et al. [2006d| and Hunter et al. [2007| proved that when f;(z) = f(x — u;)
for some density f(-) that is symmetric about zero, the mixture (2.1) admits a unique
representation whenever m < 3, except in very special cases. In the multivariate situation,
Benaglia et al. [2009a] and recently Chauveau et al. [2015] propose some semiparametric
mixture models as well.

In the multivariate situation, the common restriction placed on F in a number of
recent theoretical and algorithmic developments in the statistical literature is that each
joint density f;(-) is equal to the product of its marginal densities. In other words,
the coordinates of the X; vector are independent, conditional on the subpopulation or
component (f; through f,,) from which X; is drawn. Therefore, model (2.1) becomes

go(@i) = > N [ finlwan): (2.5)
k=1

j=1
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This conditional independence assumption has been introduced by Hall and Zhou [2003],
who established that when m = 2, identifiability of parameters generally follows in r > 3
dimensions. This result has been extended by Hall et al. [2005] and finally, Allman et al.
[2009] established the identifiability for model (2.5) if r > 3, regardless of m.

Several authors addressed the problem of estimating the parameters of these semi- or
non-parametric mixture models. In the univariate case, Bordes et al. [2006d| and Hunter
et al. [2007] both proposed estimators based on a minimum contrast approach, a method
very difficult to extend beyond m = 2 components, since the key idea is based on the
possibility for m = 2 to invert the mixture representation, expressing the cumulative
density function (c.d.f.) F' of the unknown f in terms of A and the c.d.f. Gg of gg. For the
multivariate model (2.5), Hall et al. [2005] gave estimators based on an inversion of the
mixture, that applies only in the case when m = 2 and r = 3, due to analytical difficulties
appearing beyond this case.

Recently, Hall and Zhou [2003] looked at r-variate data drawn from a mixture of two
distributions, each having independent nonparametric components, and proved that under
mild regularity assumptions their model is identifiable for » > 3. The non-identifiability
for r < 2 requires to restrain the class of pdf F. For example, for r = 1, restraining F
to the location-shifted symmetric pdf, we obtain the following semiparametric mixture
model:

ge(z) = Z%f(w —p), TER, 0=(Ap,f), (2.6)

where the Ais, the p/s and f € G = {even pdf on R} are unknown. Hence the model
parameter is

0 = (¢7 f) = ((/\j’uj)jil,“-,muf) €O =3 x ]:,

where

P = {()\j,uj)ij,m € {(0,1) x R}™; Z/\j =1land p; #pjforl1 <i<j< m} :

J=1

2.2 The EM algorithm

Mixture models are deeply connected to the EM (Expectation — Maximization) algorithm.
In particular, a very detailed treatment of the EM method for exponential families was
published by Rolf Sundberg in his thesis and several papers Sundberg [1972|, Sundberg
[1974], Sundberg [1976]. Dempster et al. [1977| generalized the method and sketched
a convergence analysis for a wider class of problems and established the EM method
as an important tool of statistical analysis. It is often efficient approach for locating
the posterior mode of a distribution (Tanner and Wong [1987|, Wei and Tanner [1990]).
This algorithm, as defined in the seminal article Dempster et al. [1977|, is more properly
understood to be a class of algorithms, a number of which predate even Dempster et al.
[1977] in the literature. These algorithms are designed for maximum likelihood estimation
(MLE) in missing data problems, of which finite mixtures are canonical examples because
the unobserved labels of the individuals (as in unsupervised clustering) give an easy
interpretation of missing data. A recent account of the EM algorithm principle, properties
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and generalizations can be found in McLachlan and Krishnan [2008|, and mixture models
are deeply detailed in McLachlan and Peel [2000].

The EM algorithm formalizes an intuitive idea for obtaining parameter estimates when
some of the data are missing:

1. replace missing values by estimated values,
2. estimate parameters.

3. Repeat
e step (1) using estimated parameter values as true values, and

e step (2) using estimated values as “observed” values, iterating until convergence.

In a missing data setup, the n-fold product of the probability density function (pdf)
ge of the observations corresponds to the incomplete data pdf, associated with the log-
n

likelihood £,(0) = Zlog go(x;). In mixture models and many other missing data situa-
i=1

tions, maximizing L£,(0) leads to a difficult problem. Intuitively, EM algorithms replace

this unfeasible maximization by the maximization of a pseudo-likelihood that resembles

the likelihood for some complete data y that is defined from the model, so that this

pseudo-likelihood is easy to maximize. Assuming y comes from a complete data pdf gj,

the EM algorithm iteratively maximizes the operator

Q(6/6") := E[log g§(y)|z. 6],

the expectation being taken relatively to the conditional distribution of (y|x), for the
value 8 of the parameter at iteration ¢.

Thus the EM algorithm consists of an E-step (Estimation step) followed by an M-
step (Maximization step) defined as follows:

1. E-step: compute Q(0]0)

2. M-step: set 6D = argmax Q(6]6").
0co

Classification procedures that use labeled samples to train the classifier are said to be
supervised. Sometimes we do not have the training data. Classification procedures which
use only unlabeled samples are said to be unsupervised. One of the statistical approaches
for unsupervised learning is the method of moments. In the method of moments, the
unknown parameters in the model are related to the moments of one or more random
variables, and thus, these unknown parameters can be estimated given the moments. Un-
supervised learning is the learning task of inferring a function to describe hidden structure
from unlabeled data. The EM algorithm is one of the most practical methods for learning
latent variable models and thus, is the primary tool in finite mixture models and model-
based clustering. Vandewalle [2009] estimated the models for which the semi-supervised
classification is considered using both labeled data and many unlabeled data.

10
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The DLR paper of Dempster et al. [1977] has made many significant contributions and
EM algorithm has become a very popular computational method in Statistics. However,
Wu [1983] showed that the proof convergence of EM sequences in DLR is incorrect. Wu
[1983] studied more broadly two convergence aspects of the EM algorithm that have been
considered and obtained several results in the literature:

e does the EM algorithm find a local maximum or a stationary value of the incomplete
data likelihood function?

e does the sequence of parameter estimates generated by EM converge?

He summarized some convergence properties of EM algorithm (see more detail in Wu
[1983]). Jordan and Xu [1995] have forged a link between EM and gradient methods
via the projection matrix and analyzed the convergence properties of EM algorithm for
Gaussian Mixtures in terms of special properties of this matrix.

Many important inference problems in Statistics such as latent variable models and
random parameter models, turn out to be solvable by EM when they are formulated as
missing value problems. However, there are also well documented limitations of EM algo-
rithm: it could converge to local maximum or saddle points of the loglikelihood function
and its rate of convergence can be slow since it depends on the starting values. Many non-
stochastic improvements on the EM algorithm have been proposed (Louis [1982], Meilijson
[1989], Silverman et al. [1990], Green [1990]) but did not completely result. Stochastic
EM comes as an attractive alternative to EM algorithm. The main idea of Stochastic EM
is to impute a sample value drawn from the conditional distribution of the missing data
given the parameter. This is called the S-step. Stochastic EM is particularly useful in
problems where EM is intractable. For example, in the problems where the computation
of E-step of EM involves high dimensional integrations. Stochastic EM generally con-
verges reasonably quickly to its stationary regime (Diebolt and Robert [1994]). Celeux
et al. [1996] compared the characteristics of three stochastic versions of EM: the SEM
algorithm (Broniatowski et al. [1983], Celeux and Diebolt [1985]), the SAEM algorithm
(Celeux and Diebolt [1989]) and the MCEM algorithm (Wei and Tanner [1990|, Tanner
[1991]). They show that, for some particular mixture situations, the SEM algorithm is
almost always preferable to the EM. Chauveau [1995] proposed an extension of the SEM
algorithm in a particular case of incomplete data, where the loss of information is due
both to mixture models and censored observations. Recently, Bordes and Chauveau [2017]
proposed Stochastic EM algorithms for parametric and semiparametric mixture models
for randomly right censored lifetime data, provided they are identifiable.

On spirit of a self-contained literature, we recall the maximum likelihood estimation
in Subsection 2.2.1 and present an example to introduce the EM algorithm in Subsec-
tion 2.2.2. An overview of the general EM algorithm for mixture models is described
in Subsections 2.2.4, and EM algorithms for parametric/non-parametric/semi-parametric
mixture are described in Subsections 2.2.5/2.2.7 and 2.2.6.

11
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2.2.1 Maximum Likelihood Estimation (MLE)

We have a density function g(z|@) that is indexed by the set of parameters 6 (e.g., g
might be a set of Gaussian and @ could be the mean and variance). We also have a data
set of size n, supposedly drawn from this distribution, i.e., * = {z1,...,z,}. That is, we
assume that these data vectors are independent and identically distributed (i.i.d.) with
distribution g. Therefore, the resulting density for the samples is

9(x|6) = Hg(a:iIO) = L(6]z). (2.7)

This function £(0|x) is called the likelihood of the parameters given the data, or just the
likelihood function. The likelihood is thought of as a function of the parameters 6 where
the data @ is fixed. In the maximum likelihood problem, our goal is to find the 6 that
maximizes L. That is, we wish to find @ where

0 = arg mgux/l(@\w). (2.8)
Often we maximize log(L£(0|x)) instead because it is numerically easier.

Depending on the form of f(x|@) this problem can be easy or hard. For example,
if f(x|0) is simply a single Gaussian distribution where @ = (u,0?), then we can set
the derivative of log(L(0|x)) to zero, and solve directly for p and ¢?. This example is
presented in Example 1. We also present a comprehensive example for the multivariate
normal case in Example 2. Moreover, Example 3 shows that the MLE is not easy for
mixtures.

Exemple 1 (Univariate normal model). Let X;, Xy, ..., X,, be a univariate random sample

from a normal distribution with unknown mean p and variance o*. To find mazimum

likelihood estimators of mean p and variance o?, the probability density function can be
written as a function of 0; = p and Oy = o*:

g(x;;01,00) = M}

1
|

for —oo < 0y < 00 and 0 < Oy < 0.

Now, it makes the likelihood function

n . . 1 n
E(Gl, 92) = H f(fl?z, 61, 92) = 92 /2(27'(') /26Xp [—2—92 Z(;UZ — 01)2] s

i=1 i=1

and therefore the log of the likelihood function

log L(64,05) = —g log 0 — n log(2m) — — Z(xl —6,)%.

12
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Upon taking the partial derivative of the log likelihood with respect to 6y, and setting to
0, we see that a few things cancel each other out, leaving us with:

n

610g£<91,02) o 1 L
30, =2 ;(x 0,) := 0.

Multiplying through by 65, and distributing the summation, we get:

i T; — 7’L91 = 0.
i=1

Solving for 61, and putting on its hat, we have shown that the maximum likelihood
estimate of 6, is:

alzﬁ:%sz =T1.

Now for 6,5, taking the partial derivative of the log likelihood with respect to 65, and
setting to 0, we get:

Olog L(01,8,) _ —n | DT =01
00 20, 203 B

Multiplying through by 263, we get:

—n02 + Z(%’l - (91)2 =0.
=1

Then, solving for 5, and putting on its hat, it is shown that the maximum likelihood
estimate of 6, is:

In summary, the maximum likelihood estimators of p and variance oy for the normal
model are:

respectively.

Exemple 2 (Multivariate normal model). Let X, Xs,..., X, be a multivariate random
sample from a normal distribution with unknown mean vector p and variance matriz 3.
The probability density function can be written as

1
N T REN >

where as stated in the introduction x; € R, pu € R™ and X is a r X r symmetric positive
definite matriz.

6_%(mi_“)T§:*1(mi—u)’ 0= (X)), (2.9)

13
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To find maximum likelihood estimators of mean g and variance ¥, we need to recall
some results from matrix algebra.

The trace of a square matrix tr(A) is equal to the sum of A’s diagonal elements. The
trace of a scalar equals that scalar. Also, tr(A+B) = tr(A)+tr(B), and tr(AB) = tr(BA)
which implies that ¥;z] Ax; = tr(AB) where B = X;z;x]. Also note that det A indicates
the determinant of a matrix and that det A~! = 1/ det A.

We need to take derivatives of a function of a matrix f(A) with respect to elements of

af(A e af(A
];54) to be the matrix with 7, j'* entry [%} where

i j is the i, j' entry of A. The definition also applies taking derivatives with respect to
0zT Ax
oz

that matrix. Therefore, we define

a vector. First, = (A+ AT)z. Second, it can be shown that when A is a symmetric

matrix:
Odet A { Ay i i=
dai j 24;; if i#£j
where A; ; is the i, j' cofactor of A. Given the above, we see that:
Ologdet A { Aij/detA if i=j

— -1 _ 7 —1
9A | 24,;/det A if z'#j}_QA diag (A7)

by the definition of the inverse of a matrix. Finally, it can be shown that:

otr(AB)
0A

Returning the example, it can be shown that the log of the likelihood function is

= B + BT — diag(B).

n

log £(8) = —% log(2r) — glog(det > — %Z((mi — WIS Yz — ). (2.10)

=1

Therefore, to find 8, we solve the system

dlog £()  ndlog(detX) 19 <, oo,

Taking the derivative with respect to p by replacing 8 by p and using the symmetric
feature of matrix X!, we get

Z X @ — p) =0,
i=1
with which we can easily solve for p to obtain:
1 n
=1
To find X, replacing @ by X! and rewriting Equation (2.11) as

Z % (—log(det X1 + tr(E7 (z; — p)(m; — p)")) = 0. (2.12)

i=1

14
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It is equivalent to

i (—2% + diag(X) + 2N; — diag(V;)) = —2 i (X — N;) + diag (i(ﬁ — Nl)>

i=1 i=1
= —25+diag §=0
where N; = (z; — p)(z; — )7 and S = Z (¥ — N;). This implies that S = 0. This

. i=1
gives

n n

Y(E-N)=0 o Z= %ZN = %Z(az — ) (xi — )7 (2.13)

i=1 =1

Exemple 3. Suppose that the p.d.f. of a random vector X has a 2-component mizture
form

g(@; ) = M fi(x) + Ao fol), (2.14)

where X = (A1, \g) is the vector containing the unknown parameters and Ay + Ay = 1.
This mizture model covers situations where the underlying population is modeled as con-
sisting of 2 distinct groups G, Gy in some unknown proportions Ay, Ay, and where the
conditional p.d.f of X given membership of the ith group G; is fi(x).

Let © = (x1,...,1,)T denote the observed random sample obtained from the mizture den-
sity (2.14). The log likelihood function for X that can be formed from the observed data x
18 given by

log £L(A) = Y log (Aifi(a:) + Aafalas)) . (2.15)
i=1
On differentiating (2.15) with respect to Ay and equating the result to zero, we obtain

i( hiw) _ folw) ) =0 (2.16)

i=1 g($i§ A) g(xﬁ }‘)

as the likelihood equation, which clearly does not yield an explicit solution for A= (Xl, XQ)
However, this problem can be posed as an incomplete-data (unobservable or missing data)
one. This problem s overcome by the EM algorithm which will be introduced in the next
subsection.

2.2.2 Example to introduce the EM algorithm

DLR Dempster et al. [1977| used a multinomial example to introduce the EM algorithm
and that example has been subsequently used many times in the literature to illustrate
various modifications and extensions of this algorithm. The idea of EM is that the ob-
served data is viewed as being incomplete, then unobservable or missing data is added to
achieve the complete-data. The complete-data log likelihood is then used in a step called
E-step to find parameters at each iteration.

15
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We will present the EM algorithm through applying the excellent idea for the mixture
model in Example 3. Namely, we now introduce as the unobservable or missing data the
vector

z= (21, ., 2n), (2.17)

where z; is a 2-dimensional vector of zero-one indicator variables and where z;; = (2;); is
one or zero according to whether z; arose or did not arise from the jth component of the
mixture (j =1,2;i=1,...,n).

If these z;; is observable, then the MLE of A; is simply given by

1 & ,
Ezzzj (j=1,2), (2.18)
=1

which is the proportion of the sample having arisen from the jth component of the mixture.
On defining the complete-data vector (x,z) the complete-data log likelihood for A has
the multinomial form

n

log L(A) = Z (zi1 log(A1) + zin log(A2)) + C, (2.19)
where

does not depend on A.

As (2.19) is linear in the unobservable data z;;, the socalled E-step on the (¢ + 1)th
iteration simply requires the calculation of the current conditional expectation of Z;; given
the observed data x, where Z;; is the random variable corresponding to z;;. Now

EA(t)<ZZ'j|iB) = ]P))‘(i)(Zij = ]_|Cl3)
= 2 (2.21)

ij
where by Bayes Theorem,

¢
o _ o _ N i)

“ij =P = T (N
J J g(IH )\(t))
for j =1,2;4 =1,...,n. The quantity pl(;) is the posterior probability that the ¢th member
of the sample with observed value x; belongs to the jth component of the mixture.

(2.22)

The so called M-step on the (¢ 4 1)th iteration simply requires replacing each z;; by
zg) in (2.18) to give
¢+ _ LN~ o .
A = EZzM , for j=1,2. (2.23)

i=1

16
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Thus in forming the estimate of A; on the (¢ + 1)th iteration, there is a contribution
from each observation x; equal to its posterior probability of membership of the jth
component of the mixture model. The EM solution therefore has an intuitively appealing
interpretation.

The computation of the MLE of A; by direct maximization of the incomplete-data log
likelihood function (2.15) requires solving the likelihood equation (2.16). The latter can
be identified with the iterative solution (2.23) provided by the EM algorithm after some

manipulation as follows. On multiplying throughout by JA; in equation (2.16), we have
that

n R /):'/\
Z Pij — A—]Piz =0, for j =1, (2'24)
A2

i=1

where p;; = % As (2.24) also holds for j = 2, we can sum over j = 1,2 in (2.24) to
give

A=Y Pi/n. (2.25)
i=1
Substitution now of (2.25) into (2.24) yields
~ 1 e— _
Y= (2.26)

The resulting equation (2.26) for the MLE /)\\j can be identified with the iterative solution
(2.22). The latter solves the likelihood equation by substituting an initial value for A,
into the right-hand side of (2.26), which yields a new estimate for \;, which in turn is
substituted into the right-hand side of (2.26) to yield a new estimate, and so on until
convergence.

Exemple 4 (A Numerical example). As a numerical example, we generated a random
sample of n = 50 observations x1, ..., x, from a mizture of two univariate normal densities
with means py = 0 and po = 2 and common variance o® = 1 in proportions A\, = 0.8 and
Ao = 0.2. Starting the EM algorithm from Aﬁo) = 0.5, it converged after 27 iterations to
the solution /):1 = 0.75743. The EM algorithm was stopped when

D AO) <1075, (2.27)
It was also started from the moment estimate given by

A = (T — p12) /(1 — p12) = 0.86815 (2:28)

and, using the same stopping criterion, it converged after 30 iterations to Xl.

In Table 2.1, we have listed the value of )\gt) and of log £()\§t)) for various values of t. It
can be seen that it is during the first few iterations that the EM algorithm makes most of
its progress in reaching the mazimum value of the log likelihood function.

This method of moments can also be used for m small.
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2.2. THE EM ALGORITHM

Iteration

t AD T 1og £
0 0.50000 —91.87811
1 0.68421 —85.55353
2 0.70304 —85.09035
3 0.71792 —84.81398
4 0.72885 —84.68609
5 0.73665 —84.63291
6

0.74218 —84.60978

27 0.75743 —84.58562

Table 2.1  Results of EM algorithm for example on Estimation of mixing proportions

2.2.3 The MM algorithm and EM algorithm

Every EM algorithm is a special case of the more general class of MM (Majorization-
Minorization) optimization algorithms. An MM algorithm operates by creating a sur-
rogate function that minorizes or majorizes the objective function. When the surrogate
function is optimized, the objective function is driven uphill or downhill as needed. The
original idea of the MM algorithm can be dated back at least to Ortega and Rheinboldt
[1970] in the context of line search methods. De Leeuw and Heiser [1977] presented an
MM algorithm for multidimensional scaling contemporary with the classic Dempster et al.
[1977] paper on EM algorithms. The same idea kept reappearing under different guises
in different areas until Hunter and Lange [2000] put forth "MM" as general framework.
They stated the general principle, sketched various methods of majorization and proposed
a variety of applications. In their view, MM algorithms are useful extensions of the class
of EM algorithms and MM algorithms are easier to understand and sometimes easier to
apply than EM algorithms.

MM algorithms exploit an optimization technique that extends the central idea of
EM algorithms to situations not necessarily involving missing data nor even maximum
likelihood estimation. The MM principle is based on the notion of (tangent) majorization.
A real-value function of § whose form depends on %), denote h(6]0®"), is said to minorize
a real-value function £(#) at the point #® provided

h(016W) < L£(6), V8 and h(6D|9D) = £(6D).

In other words, the surface £(6) is lower bounded by the surface § — h(9]6®")) and is
tangent to it at the point § = §®). The function h(#]|0®)) is said to majorize L(0) at 6 if

—h(0]0)) minorizes — L£(6) at 6O,
Here ) represents the current iterate in a search of the surface £(6). In the majorization

version of the MM algorithm, we maximize the surrogate minimizing function h(9|0®)
rather than the actual function £(0). If 8¢*1 denotes the maximizer of h(0|0®), then

18



2.2. THE EM ALGORITHM

one can show that the MM procedure forces £() uphill. Fig 2.2 shows the relations

L(Q(t)) — h(g(t)|9(t)) < h(@(t+l)|9(t)) < L(g(tﬂ))_

With straightforward changes, in the minimization version of the MM algorithm, we
minimize the surrogate majorizing function h(6|6®). Thus, the acronym MM does double
duty, serving as an abbreviation of both pairs majorize-minimize and minorize-maximize.

Let X be random vector which results from a parameterized family and X is associ-
ated to a missing data. The EM algorithm is an iterative procedure for maximizing log
likelihood function £(6) = logP(X|0). Assume that after the tth iteration the current
estimate for @ is given by 0™, We wish to compute an updated estimate 6 such that
L£(0) > £(8Y) or we want to maximize the difference

L£(0) — £(6Y) =1logP(X|0) — log P(X|6Y).

Denote the hidden random vector by Z and a given realization by z. The total probability
log P(X |@) may be written in terms of the hidden variables z as

P(X|0) = ) P(X|z 0)P(z|0).

Since P(z| X, H(t)) is a probability measure, we have that

P(2[X,0") > 0and > P(z|X,0") = 1.

Then

L(6) - L6Y) = log> P(X|z,0)P(2]0) —log P(X|0")

P(z|X,0)
= 1o P(X |z, 0)P(z|0).————. —logP(X|0®
gEz (X )(|)P(z|X,0(t)) gP(X(6")
P(X |z, 0)P(z|0)
= lo P(z|X,0W). ’ —loeP(X|6W
g Ez (2] ) P(2|X.00) gP(X(6%)
P(X|z,0)P(z|0)
> P(z|X,09).10 ) loeP(X9®

P(X |z, 0)P(2|0)
P(z|X,0)P(X|0Y)

= ) P(z|X,09).1og
= A(0]6Y).
Equivalently we may write

L£(0) > L(0D) + A(0]60Y)) := h(0|6Y).
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2.2. THE EM ALGORITHM

Additionally, observe that,

h(g(t)w(t)) - E(G(t)) + A(g(t)w(t))
P(X|z,0Y)P(z|60")
P(z|X,0")P(X|0")
P(X, z|0")
P(X,z|0)
= L(6Y)+) P(z|X,6").log1

= L£(6Y)+) P(z|X,6%).log

= L(6Y)+) P(z|X,6%).1og

= L(0Y).

The function h(0]8") is upper-bounded by the likelihood function £(8). The functions
are equal at @ = ). The EM algorithm chooses 8%V as the value of 6 for which
h(0]0Y) is a maximum. Since £(0) > h(0]0) increasing h(0|0®) ensures that the
value of the likelihood function £(0) is increased at each step. Our objective is to choose
a values of 0 so that £(0) is maximized. Formally we have,

') = argmax{h(0]0""V)}
6co
P(X|z,0)P(z|0)
= argmax< L£(09)+Y P(z|X,0Y).10 ’
5o {( ) Z (=] 108 5 X 0B (X [0

Now drop terms which are constant w.r.t. @

= argmax {Z P(z|X,0").1ogP(X |z, 0)P(z|0) + constant(e(t))}
0co .

P(X,z,0)P(z,0)
P(z,0) P(0)

= argmax
6co

Z P(z|X,0"). log + constant(e(t))}

= argmax

0co >

Z P(z|X,0").1ogP(X, z|0) + constant(O(t))}

= argmax

Ez x o0 [logP(X, 2|0)] + constant(ﬁ(t))}
6O ’

= argmax {Q(O!O(t)) + constant(O(t))} .
9co

Given an arbitrary starting value 0” remind here the EM algorithm generates a
sequence (O(t))tzl by iterating the following steps:

1. E-step: compute Q(0]0") =Ezx o0 [logP(X, 2(0)]

2. M-step: set 0"V = argmax Q(6]0").
0co

The EM algorithm is actually a special case of the MM algorithm. If the log-likelihood
of the observed data is £(6), and Q(0|6"")) is the function created in the E-step. Let
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2.2. THE EM ALGORITHM

Lottt
h(0T 16

£(6%) = h(0°0%)

h(616)

gt 0t+1
Figure 2.2 — MM principle

h(0)10Y) = Q(8]0Y) + constant(0™) such that h(8]0") is minorize £(0) at 8. Then

the minorization

L(0) > Q(016") + L£(6V) — Q6" ]6™))

is the key to EM algorithm. Moreover, this insures an ascent property

L(OUD) > £(6D).

2.2.4 EM algorithm for mixture model

In finite mixture models, the complete data associated with the actually observed sample
x is y = (x,Z), where to each individual (multivariate) observation «; is associated
an indicator variable Z; denoting its component of origin. It is common to define Z; =
(Zi1, ..., Zym) with the indicator variables

m
Z;; = I{observation i comes from component j}, Z Z;; = 1.
j=1

From (21), this means that Pg(Zij = 1) = )\j, and (XZ|Z” = 1) ~ fja ] = ]_, ., Mm. In
this case, the expectation is w.r.t. the conditional distribution of the Z;;’s,

n

Z Zij IOg A]f](.’l'}@) |IB, O(t)]

i=1 j=1

= Y3 E[Z402,69] log(h (). (2.29)

i=1 j=1

QOeY) = E
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2.2. THE EM ALGORITHM

Next we compute

E [Zij‘m,a(t)] = Py (Zij = 1|x;)
Py (i Zij = 1) Py (Zij = 1)
Py ()
/\5 )f(t)(fl?z) (t)

m = Py
Zj’:l j’)fj’ (i)

(2.30)

This is Bayes formula and p() = Py(Zi; = 1|=;) is the posterior probability that the
individual 7 comes from component j.

The M-step is a constrained maximization, which means that there are constraints on
valid solutions not encoded in the function itself. Namely, maximizing Q(8/8") such that
Z;.”:l Aj = 1. Such problems can be solved using the method of Lagrange multipliers. To

maximize a function Q(@]6") on the open set in R subject to the constraint Y Ai—1=

0 it suffices to maximize the unconstrained function

F(0,a)=Q(00Y) — « (Z)\ - 1) (2.31)
in the unusual unconstrained manner, by solving the system of equations

OF(0,0) .
{T_Oa j_la"'am
OF(0,a) -0

[ole"

namely,

n 1 m
Zpg)r—a:Q and Z)\j—l = 0.
i=1 J

j=1
It is equivalent to

1 m n
(t) (t)
szw d—> > p =1
j=1 i=1
which leads to the solution a = £ and X\; = 13" p w)
Therefore, the M-step for ﬁnlte mixture models always looks partly the same: No
matter what form the f;’s take, the updates to the mixing proportions are given by

A pr , forj=1,. (2.32)

The updates for the f;’s depend on the particular form of the component densities. In
parametric mixtures (i.e. when the family F is completely specified by a finite-dimensional
parameter), the updates of these parameters are often straightforward, and can be looked
like weighted MLE estimates. This is the case for, e.g., Gaussian mixtures.
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2.2. THE EM ALGORITHM

2.2.5 The EM algorithm for the parametric mixture model

The mixture-density parameter estimation problem is probably one of the most widely
used applications of the EM algorithm in the computational pattern recognition commu-
nity. In this case, we assume the following probabilistic model:

T) = Z Aifi(@|€5),

where the parameters are @ = (\y, ..., A, &1, -0, &) such that Z;”Zl A; =1 and each f; is
a density function parameterized by ;. In other words, we assume we have m component
densities mixed together with m unknown parameters ¢;.

Given an arbitrary starting value 0, the EM algorithm is given by iterating the
following steps:

1. E-step: compute Q(0|6").
In this case, from (2.29) and (2.30),

n m

Q(016Y) = > " pi log \; fi(@il¢)), (2.33)

=1 j=1

where the posterior probability is given by

t t
(*) Aﬁ-)fj(wilé(-))
Ejle )\j’ fj’<$i|§j/ )
2. M-step: set 0"V = argmax Q(6]0").
6co
In the finite mixture model, the updated estimates )\ WD) of mixing proportions A,

(t+1)

are calculated independently of the updated estimate f ) of the parameter vector

€= (&, -+ ,&n) , namely as (2.32)

S S N

Obviously, E(tH) is obtained as an appropriate root of

( n
0]9 ZZ ! alogf] (x:]&5) _o (2.35)

One nice feature of the EM algorithm is that the solution of (2.35) often exists in closed
form, as is to be demonstrated for the normal mixture model hereafter.
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Gaussian mixture model (Adapted in Plasse [2013])

We now turn our attention to the case when each f; may be represented as

ey — 1 Y ay) TS (@)

f](wz‘éj) (27_‘_)”2@6 éj (:U'J? )7 (2'36)
where as stated in the introduction x; € R", u; € R" and ¥, is a r X r symmetric positive
definite matrix. We assume that We have a current approximate maximizer of our function
@ which we denote by 8% ()\ LA ( Z(t)) (M%),Z%))). Our goal is to now
implement the maximization that occurs durln the M- S‘rep of the EM algorithm to obtain
updated maximizers denoted by 8¢ = )\(tH ,)\T,tfl), ( §””, Z(t+1)), (u(tﬂ), Z(tﬂ))).
The updated maximizers for our mixture proportlons are derived first. The results were
presented as in (2.32). Next, the derivations of ,ugtﬂ) and Egtﬂ) are implemented by

(2.35).

Taking the log of Equation (2.36), ignoring any constant terms (since they disappear
after taking derivatives), we get:

“eey

1 1 _
log fi(x4]&5) = ) log(det 33;) — 5(%‘ — 1) 5 (@ — ).

Substituting into the right side of Equation (2.35), we get:

Zng) 5 (log(det %) + (a; — p;)TE7 (@ — 1)) = 0. (2.37)
i=1 j=1

To find p;, replacing € by p; (i.e., taking the derivative with respect to p;), we get:

ZE — )P =0

with which we can easily solve for yu; to obtain:

n () )
M(t+1) . > ie1 TiDij dict LiDyj
§ =

n t (t+1)
> e Di; n>‘j

To find X, replacing & by Zj_l and rewritting Equation (2.37) as

Z szk - (—log(det S;1) + tr(S (i — ) (@i — ) ™)) = 0. (2.38)
i=1 k=1 82
It is equivalent to
Zp(t) (—2%; + diag(X;) + 2NV;; — diag(N;)

= QZP»L] - l]) + dlag (sz] - Nlj))
=1

= —2S+d1agS:0
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where N;; = (z; — p;)(z; — p;)" and where S =" pg) (X; — Ni;). This implies that
S = 0. This gives

> (8- Ny) =0
=1

or

n t n t
XN S ey (@ — ) (@ — )T
J n t o n t ’
Zizl pz(j) Zi:l pgj)

Summarizing, the Updated Parameter Estimates

@+ _ 1 (t)
A= 2P

i=1

> (2.39)

n t
(t+1) D i1 wipz(j)

Ky = = )
> e Di;
n L t+1 t+1
gt _ iy (= ) (e — )T
J n t :
Zz‘:1 pz('j)

These updated parameter estimates are analog with the univariate case. A model-
based approach is a way to deal with clustering problems. It consists in using certain
models for clusters and attempting to optimize the fit between the data and the model.
Typically the data are clustered using some assumed mixture modeling structure. Then
the group memberships are learned in an unsupervised fashion. In practice, each cluster
can be mathematically represented by a parametric distribution, like a Gaussian (univ-
or multivariate case). The entire data set is therefore modeled by a mixture of these
distributions. The advantages of model-based clustering with multivariate mixtures are
the flexibility in choosing the component distributions, the well-studied statistical infer-
ence techniques available. Moreover, the mixture model covers the data well and one can
obtain a density estimation for each cluster.

Celeux and Govaert [1995] especially analyzed the influence of the volumes of clusters
in Gaussian parsimonious clustering models. Biernacki et al. [2006] examined model-based
cluster with the Mixture Modeling MIXMOD software and included different information
criteria for choosing a parsimonious model. Hennig [2010] proposed methods to decide
whether and which Gaussian mixture components should be merged in order to interpret
their union as cluster.

2.2.6 A semiparametric EM algorithm

In the univariate case, Bordes et al. [2007] first proposed a univariate semiparametric (and
stochastic) “EM-like” algorithm for a location-shift semiparametric mixture model (2.6)

go(x) =D Nflw—p), ze€R, 0=up,f)
j=1
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where the pdf f itself is an unknown, even density, considered as a parameter which has
to be estimated from the data .

The novelty that is hidden behind the term EM-like is that the M step is not a genuine
maximization step. It is a hybrid algorithm that introduces a nonparametric, Weighted
Kernel Density Estimation (WKDE) step. This algorithm hence provides a kernel density
estimate for f. It is also a stochastic algorithm since, at each iteration, each observation
in the dataset is randomly assigned to one of the mixture components, the assignment
being based on the posterior probabilities of component membership. This algorithm is
simple to program and is applicable practically for any number m of components, even
beyond the cases for which identifiability has been proved.

The parameter of the semiparametric model is @ = ((Aj, itj)j=1...m, [) = (¢, f) €
O = & x F, where F is the set of continuous even pdf’s over R. In this framework, we
still have that the pdf of the observed and complete data are

go(v) = g(z]0) = Z)\jf(ﬂﬁ — 115),
h(y|@) = h((z,2)|0) =\ f(z — p.)

and, formally, the log-likelihood associated to x for the parameter @ is

= Zlogg($i|9)-
i=1

To design an EM-like algorithm which “mimic” the parametric version, we have to define,
for a current value 8% = (gb(t), f®) of the parameter at iteration ¢, the operator

Q(6816") = E[log h(y|0)|z, 0]

As in the parametric case, the expectation is taken with respect to the distribution of the
y given z, for the value 8 of the parameter:

n

=1

=1

where

N FO@ — )

k(jlz, 0Y) = P(Z = jlz,0) = — . j=1,,m.
Zj’:l )‘S)f(t) (z — Ny))
Hence Q(6]0"") is given by
Q(016") =Y > k(jle, 6)[log(N;) + log f(x; — py)].
i=1 j=1

Bordes et al. [2006a] describe the flavor of the method in what can be considered as an
“ideal situation”. Assume that the complete data y = (z, z) is available, and that 0 is
known. Then a consistent estimate of f would be given by the following steps:
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1. compute & = (21, -+ ,2,), where &; =z; — p,,,i=1,---,n

2. compute a kernel density estimate using some kernel K and bandwidth h,,,

o 2 (5

Assume now that the z are missing, but that the true parameter 6 is known. The
difficulty then is to recover a sample from f be given a sample from gg. The allocation
can only be deduced from the posterior probabilities k(j|z,0). An “expectation strategy”
following the EM principle:

m

:iy:xl—Zk(j\x,O),uJ, Zzl,,n

j=1

We may also use the maximum of the posterior probabilities, as it is usually done in
classification algorithms based on EM:

T = Ty — MUjx, jz*: argmax k(]'ZL‘,O), t=1--,n.
' je{lz'"rm}

Unfortunately, even with 8 known, none of these strategies return a sample f distributed,
as it can be checked on simple explicit situations. To recover a sample from f , we need
to simulate the ith allocation according to the posterior probabilities (k(j|z,0), j =
L,---,m) i.e. from a multinomial distribution of order 1:

e S-1: fori=1,---  nsimulate Z(x;,0) ~ M(1; (k(j|z,0), j=1,---,m)

e S-2: set Zf'z =T — Mz(x;,0)s
where Z(x,0) € {1,--- ,m} and piz(4,6)=n, When Z(z,0) = j. Then they proved that this
procedure returns a sample f distributed.

It is then possible to compute a kernel density estimate of f. Finally, the step 0" —
6"V of the semiparametric EM algorithm (SP-EM) is defined by:

1. E-step: compute

AD £ (g, — O
k(]|$za0(t)):P(Z:.ﬂxlae(t)): mj f(t)( ILL] )(t) 7i:17"'anaj:17"'am'
Zj’:l )‘j/ SO (i — g )

2. S-step:
~S-1: for i =1,...,n, draw Z¢D (z;,00) ~ M(1; (k(j|z;,07), j=1,...,m)

o g D t
8—2. Set .Tz — x’l - /‘Lz(t+l)(xi79<t))7

3. Nonparametric step:
— kernel density estimate

n ~(t+1)
5 1 u—;
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— symetrization

f(t“)(u) _ Jgj(tﬂ)(“) +2f5c<t+1)(_u)‘

4. M-step: (parametric EM strategy to update the Euclidean parameter)

1 n
N == k(i 09),
i=1

t+1 _ 2?21 k(j‘xzwe(t))fb’i
’ S k(|e, 00)

j=1,---,m.

2.2.7 A nonparametric EM algorithm (npEM algorithm) in multi-
variate case

As reviewed briefly in Subsection 2.1.3, the common restriction placed on F in is that
each joint density f;(-) is equal to the product of its marginal densities. Then, we have
mixture model (2.5)

Hettmansperger and Thomas [2000| have developed an estimation method, the cutpoint
approach, that discretizes the continuous measurements by replacing each r-dimensional
observation, for the conditionally i.i.d. model. Hettmansperger and Thomas [2000] treat
the case in which joint density f;(.) is equal to the product of its marginal densities
fi = [Tk [ix and consider the special case in which the density f;(.) does not depend on
kor fji(.) =---= fj(.)- that is, in which the X; are not only conditionally independent
but identically distributed as well

go(m:) =D N [ filwan)-
k=1

J=1

In some situations, the later assumption may be too restrictive. Thus, to encompass both
the special case and the more general case, Benaglia et al. [2009a] introduced a more
flexible and important model: They allowed that the coordinates of X; are conditionally
independent and that there exist blocks of coordinates that are also identically distributed.
This model admitted for continuous component densities f;;’s. Let b, denote the block to
which the kth coordinate belongs, where 1 < b, < B and B is the total number of such
blocks, then (2.5) is replaced by

m T

go(@:) = > N [ fio(@in)- (2.40)

j=1 k=

Benaglia et al. [2009a] proposed an algorithm for nonparametric estimation for finite
mixtures of multivariate random vectors that strongly resembles a true EM algorithm
— an EM-like algorithm: Suppose we are given initial values 8° = (A° £°). Then for
t=1,2,---, we follow these three steps:
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1. E-step: Calculate the “posterior” probabilities (conditional on the data and O(t))
of component inclusion,

p(t‘) o Aj Hk 1f]bk<$zk)
Y A T £, ()

Vi=1,---,nand j=1,--- ,m.

2. M-step:

A sz] , forj=1,.

3. Nonparametric density estimation step: For any real u, define for each com-
ponent j € {1,--- ,m} and each block ¢ € {1,--- | B}

(t+1)
fjé (u) = hc)\tJrl Zzng Tp= Z}K( h )

k=1 i=1

where K (.) is a kernel density function, h is a bandwidth chosen by the user, and

Cr=> Tp—n
h=1

is the number of coordinates in the ¢th block.

This algorithm is flexible and can be extended to any number of mixture components
and any number of coordinates of the multivariate observations. It is called npEM algorithm
(non-parametric EM) by Benaglia et al. [2009a] and eliminates the stochasticity of the
univariate algorithm from Bordes et al. [2007], but also relies on a weight kernel density
estimation (WKDE) step for the updates of the f;;’s. However, this algorithm lacks
of theoretical justification because it has not been proved the monotonicity property of
loglikelihood function. The npEM algorithm is available online from the Comprehensive R
Archive Network (CRAN) in R package: mixtools (Young et al. [2009]).

2.3 Kernel density estimation (KDE)

Given a sufficiently large number of mixture components, a Gaussian mixture model
can be used to approximate any density. If we associate a single Gaussian with every
data point, we get what is called a kernel density estimate. This is a nonparametric
density estimator. This method first finds a single kernel density estimate of the entire
data, and then detect clusters by identifying modes or regions of high density in the
estimated density. KDE is a widely used method of nonparametric density estimation.
For instance, in the third step of npEM algorithm, the component estimate fj(t) at tth
iteration is obtained by a weighted nonparametric (kernel) density estimate. In this
section, we look at kernel density estimation, where we approximate the true distribution
by sticking a small weighted copy of a kernel pdf at each observed data point.
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2.3.1 Discrete estimator and kernel estimator

Let X be a random variable with continuous distribution F(z) and density f(z) = - F(x).
The goal is to estimate f(z) from a random sample {X3, ..., X,,}.

The distribution function F(z) is naturally estimated by the EDF

m

Fz)=n"Y I(X,; < 2).

=1

It might seem natural to estimate the density f(z) as the derivative of F(z), %ﬁ(as), but
this estimator would be a set of mass points, not a density, and as such is not a useful
estimate of f(z).

Instead, consider a discrete derivative. For some small A > 0, let

o) = F(z+ h)2—hF(:c — h)‘ (2.41)

We can write this as

R 1 & (X — o
L S Me—h<X;<ao+h) = —S (it oy
th;(‘” K=ot = on 2 ( h —)

where

is the uniform density function on [—1,1].

The estimator f(z) counts the percentage of observations which are closed to the point

-~

x. If many observations are near x, then f(z) is large. Conversely, if only a few X; are

~

near x, then f(x) is small.

This discrete estimator is not wholly satisfactory from the point of view of using density
estimates for presentation. It follows from the definition that f(x) is not a continuous
function, but has jumps at the points X; £ h and has zero derivative everywhere else.
This gives the estimates a somewhat ragged character which is not only aesthetically
undesirable, but, could provide the untrained observer with a misleading impression.
Partly to overcome this difficulty, it is of interest to consider the generalization of the
discrete estimator. Replace the above uniform density function by a kernel function K
which satisfies the condition

/K(u)du =1 (2.42)

A non-negative kernel satisfies K(u) > 0 for all u. In this case, K(u) is a probability
density function. A symmetric kernel function satisfies K(u) = K(—u) for all u. Most
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2.3. KERNEL DENSITY ESTIMATION (KDE)

nonparametric estimation uses symmetric probability density function, and we focus on

this case. By analogy with the definition of the discrete estimator, the kernel estimator
with kernel K is defined by

F(z) = %i}( (Xh_ ‘”) : (2.43)

where the bandwidth h, also called the smoothing parameter or window width by some
authors, controls the degree of smoothing.

The most commonly used kernels are special cases of the polynomial family

(2s+1)N
2s+1¢|

K (u) = (1 - u?)I(ju] < 1), (2.44)
where the double factorial means (2s + 1)/l = (2s 4+ 1) x (2s — 1) x ... x 5 x 3 x 1. The
Gaussian kernel is obtained by taking the limit as s — oo after rescaling. The kernels
with higher s are smoother, yielding estimates f(x) which are smoother and possessing
more derivatives. Estimates using the Gaussian kernel have derivatives of all orders.

For the purpose of nonparametric estimation the scale of the kernel is not uniquely
defined. That is, for any kernel K (u) we could have defined the alternative kernel K*(u) =
b~ K (u/b) for some constant b > 0. These two kernels are equivalent in the sense of
producing the same density estimator, so long as the bandwidth is rescaled. That is,

-~

if f(x) is calculated with kernel K and bandwidth h, it is numerically identically to a
calculation with kernel K* and bandwidth h* = h/b.

2.3.2 Measures of discrepancy: mean-squared error and mean
integrated square error

When considering estimation at a single point, a common and convenient measure of
estimation precision is the mean-squared error (abbreviated MSE), defined by

MSE(f(z)) = E(f(ac)—f(af))2

= bias(f(z))* + var <f(a:)> :

~ ~ -~

where biasf(z) = E[f(z)] — f(z) and var(f(z)) = E[f(z)?] — E[f(2)]?. From the point

of view of approximation, these bias and variance are estimated as two following steps:

First step: Estimation of bias

It is useful to observe that expectations of kernel transformations can be written as inte-
grals which take the form of a convolution of the kernel and the density function:

E HK <Xh_$)} - /R%K (Z;x) F(2)dz. (2.45)
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Kernel Equation ko (K)
Uniform Ko(u) = —]I(|u\ <1) 3
Epanechnikov Kl(u) =31 —u?)I(Jul < 1) :
Biweight Ky(u) = 12(1 — u?)’I(Jul < 1) %
Triweight Ky(u) = 35(1 — )3]I(|u| <1) 5
Gaussians Ky(u) = S 1

Table 2.2 — Common Second-Order Kernels

Using the change-of variables u = (z — x)/h, this equals

/RK(u)f(x + hu)du. (2.46)

By the linearity of the estimator we see

ZE[ ( )} /K f(x + hu)du. (2.47)

The last expression shows that the expected value is an average of f(z) locally about x.
This integral (typically) is not analytically solvable, so we approximate it using a Taylor
expansion of f(x + hu) in the argument hu, which is valid as o — 0. Conveniently, we
give some new definitions.

The moments of a kernel are k;(K) = [, w/K(u)du. The order of a kernel, v, is
defined as the order of the first non-zero moment. For example, if x;(K) =0 and k3 > 0
then K is a second-order kernel and v = 2. If k1 (K) = ko(K) = k3(K) = 0 but k4(K) > 0
then K is a fourth-order kernel and v = 4. The order of a symmetric kernel is always
even. Symmetric non-negative kernels are second-order kernels. Common second-order
kernels are listed in Table 2.2.

For a vth-order kernel we take the expansion out to the vth term

Flo o h) = F() + O @+ 3 FO@I2 + 2 fO @+ fO @R+ ol

31
(2.48)

The remainder is of smaller order than h” as h — oo, which is written as o(h”). (This
expansion assumes ft1)(z) exists). Integrating term by term and using [, K (u)du = 1
and the definition [, v/ K (u)du = k;(K),

/RK(Wf(x +hu)du = f(x)+ fO(x)he (K) + %f(”(x)h%(ff) + o O (@)W ks (K)
.+ % FY(x)h Ky (K) + o(hY)

= f(z)+ % F(x)h Ky (K) + o(hY),

32



2.3. KERNEL DENSITY ESTIMATION (KDE)

where the second equality uses the assumption that K is a vth-order kernel (so x;(K) =0
for j < v).
That means that

Bf)] = %ZE[%K(X;)}
= @)+ SO @R R, () + o)

The bias of f(z) is then
~ 1

bias(f(x)) = E[f(2)] - f(z) = o] “ (@) ki, (K) + o(h"). (2.49)
For second-order kernels, this simplifies to
bias(F(x)) = BLF(@)] - f(r) = 3/ (@)*Ra(K) + ofh). (250)

The bias is increasing in the square of the bandwidth. Smaller bandwidths imply reduced
bias. The bias is also proportional to the second derivative of the density f®(x). In-
tuitively, the estimator J?(x) smooths data local to X; = x, so is estimating a smoothed
version of f(x). The bias results from this smoothing, and is larger the curvature in f(z).

When higher-order kernels are used (and the density has enough derivatives), the bias
is proportional to h”, which is of lower order than h?. Thus the bias of estimates using
higher-order kernels is of lower order than estimates from second-order kernels, and this is
why they are called bias-reducing kernels. This is the advantage of higher-order kernels.

Second step: Estimation of the variance

Since the kernel estimator is a linear estimator, and K (%) is i.i.d.,

wor (Fn) = e (1 (255)) :
- e (Y] %(xgﬂb-

From the analysis of bias it is known that +E [K (¥:=2)] = f(z) + o(1) so the second
term is O (n)

For the first term, write the expectation as an integral, make a change-of-variables and a
first-order Taylor expansion

e ()| = R (5 oo
_ / K (u)f(z + hu)du
_ / K(w)?(f(z) + O(h))du
= K)+ O(h),
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2.3. KERNEL DENSITY ESTIMATION (KDE)

where R(K) = [, K(u)*du is the roughness of the kernel. Together, we see

var (f(:v)) = @) R(K) +0 (l) . (2.51)

nh n

The remainder O (%) is of smaller order than the O (%) leading term, since h=' — oo.

Approximation of the MSE

From above estimators, the approximation of MSE is given by

Q

MSE(f()) (if<v><x>m<m) | T@)R(K)

V! nh
fi(,%y(ég)f(y)(x)%b i f(xL};:(K>
= AMSE(f(z)).

Since this approximation is based on asymptotic expansions this is called the asymp-
totic mean-squared-error (AMSE). Note that it is a function of the sample size n, the
bandwidth h, the kernel function (through s, and R(K)), and varies with x as f®)(x)
and f(z) vary.

Notice as well that the first term (the squared bias) is increasing in h and the second
term (the variance) is decreasing in nh. For MSE(f(z)) to decline as n — oo both of
these terms must get small. Thus as n — oo we must have h — 0 and nh — oo. That is,
the bandwidth must decrease, but not at a rate faster than sample size. This is sufficient

to establish the pointwise consistency of the estimator. That is, for all z, f(x) —, f(2)
as n — o0o.

MISE and its approximation

The most widely used way of placing a measure on the global accuracy of anS an estimator
of f is the mean integrated square error defined by

MISE = E[/R (f(x)—f(x))de]. (2.52)

The asymptotic mean integrated squared error (AMISE) can be defined by

-~

AMISE — / AMSE(f(z))dx

R(K)

_ v (v) 2v
= R(f") ™ + —

where R (f®) = [, (f(”))2 dz is the roughness of f®).

34



2.3. KERNEL DENSITY ESTIMATION (KDE)

2.3.3 Choosing bandwidth

The AMISE formula expresses the MSE as a function of A: The value of h which minimizes
this expression is called the asymptotically optimal bandwidth. The solution is found by
taking the derivative of the AMISE with respect to h and setting it equal to zero:

d o d /{12/<K) v 2v R(K>
TAMISE = %( Bk R(f“)h >+W

_ 21/71’{12/([{) v R(K) L
= 2Wh Ok R(f()— e ) =0

with solution

ho = C,(K, f)n~/ D
. (l/) 71/(2114*1)
C,(K,f) = R(fY) A, (K)

U2 1/(2v41)
A,(K) = (%) | (2.53)

The optimal bandwidth is propotional to n~ "/t We say that the optimal band-
width is of order O (n=V/*1)_ For second-order kernels the optimal rate is O (n~'/?).
For higher-order kernels the rate is slower, suggesting that bandwidths are generally larger
than for second-order kernels. The intuition is that since higher-order kernels have smaller
bias, they can afford a larger bandwidth.

The constant of proportionality C, (K, f) depends on the kernel through the function
A, (K) (which can be calculated from Table 2.2), and the density through R(f*)) (which
is unknown).

If the bandwidth is set to hg, then with some simplification the AMISE equals

1/(2v+1)
R (f") k3 (K)R(K)> v/
AMISEy(K) = (1 +2v) ( ( (Z!)Q(Ql/)2” n-2/(@v+1) (2.54)
For second-order kernels, this equals
AMISEy(K) = Z (R2(K)RK ) R(f@)) /" n4/5. (2.55)

As v gets large, the convergence rate approaches the parametric rate n=!. Thus, at
least asymptotically, the slow convergence of nonparametric estimation can be mitigated
through the use of higher-order kernels.

Reference to a standard distribution

A very easy and natural approach is to use a standard family of distributions (second-
order kernel) to assign a value to the term R(f®) in the expression (2.53) for the ideal
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2.3. KERNEL DENSITY ESTIMATION (KDE)

bandwidth. For example, the normal distribution with variance o2 has , setting ¢ to be
the standard normal density,

/R fO@)de = o / e

= 8 5~ 0212077, (2.56)

If a Gaussian kernel is being used, then the window width obtained from (2.53) would be,
substituting the value (2.56),

3
ho = (4%)_1/10§ﬁ0n_1/5

A\ /5
- (5) on Y% ~ 1.060n"1/°. (2.57)

A quick way of choosing the smoothing parameter, therefore, would be to estimate o
from the data and then to substitute the estimate into (2.57). Either the usual sample
standard deviation or a more robust estimator of ¢ could be used.

Better results can be obtained using a robust measure of spread. Formula (2.57)
written in terms of the interquartile range IQR of the underlying normal distribution
becomes

ho = 0.79 x IQR x n~ %/, (2.58)

Unfortunately, using (2.58) for the bimodal distributions makes matters worse, because
it oversmooths even further. The best of both worlds can be obtained using the adaptive
estimate of spread

IQR}

A:min{SD T34

(2.59)
instead of ¢ in the formula (2.57) with SD is standard deviation. This will cope well with
the unimodal densities and will not do too badly if the density is moderately bimodal.
Another modification, which will improve matters further, is to reduce the factor 1.06 in
(2.57); for instance, the choice, for a Gaussian kernel,

h=0.9An"1/5 (2.60)

will yield a mean integrated square error within 10% of the optimum for all the t-
distributions considered, for the log-normal with skewness up to about 1.8, and for the
normal mixture with separation up to 3 standard deviations. This rule is commonly used
in practice and it is often referred to as Silverman’s reference bandwidth or Silverman’s
rule of thumb (Silverman [1986], page 48). From (2.59) and (2.60) the default bandwidth
is

IQR} n-1/5

h = 0.9min {SD To

In R, Silverman’s bandwidth is invoked by bw = “bw.nrd0”.
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2.3.4 Multivariate Density Estimation

Multivariate Kernel Density Estimation has been used since a long time in multivariate
data analysis (see, e.g.,Scott [1992]). Considering a single sample (x1,...,x,) iid from a
pdf f over R", the general form of a multivariate KDE is

Fr(u) = %Z K(u— ), (2.61)

where for u = (u1, us, . .., u,)! € R
Ky(u) = |H|7V?PK(H 2 ),

and where K is a multivariate kernel function, H is a symmetric positive definite r x r
“bandwidth matrix”, and H~Y2.w is the usual matrix product.

With a full bandwidth matrix, the corresponding kernel smoothing is equivalent to pre-
rotating the data by an optimal amount and then using a diagonal bandwidth matrix.
The bandwidth matrix can be restricted to a class of positive definite diagonal matrices,
and then the corresponding kernel function is often a product kernel (e.g. Gaussian). In
this case, H = diag(h?, h, ..., h?) where h; denotes the kth coordinate bandwidth. Then
|H|'/2 = hy---h, so that (denoting informally by K for the multivariate kernels and K
for univariate kernels)

1 Uy Uy 7 1 Uk
K = K|—,....,— | =|| —K(—=).
H(u) hl"'hr (h17 ’h,,.) kH[hk (hk)
In the simplest case H = diag(h?,...,h?), we have
1 1
Kuy(w) = —K(~u).
PR

~

As in the univariate case, f(w) has the property that it integrates to one, and is
non-negative if K(u) > 0.

2.4 Maximum Smoothed Likelihood for Multivariate
Mixtures

Under the assumption of conditional independence, remind here that the mixture density

evaluated at the point @; = (z1,- - ,7;)' can be presented as in model (2.5):
go(xi) = Z Aj H fir(@ix).
j=1 k=1

To estimate parameters 6 in a finite mixture of completely unspecified multivariate com-
ponents in at least three dimensions of model (2.5), Benaglia et al. [2009a| proposed an
algorithm that strongly resembles a true EM algorithm. Indeed, this EM-like algorithm
lacks theoretical justification (as we mentioned in Section 2.2.7). Levine et al. [2011] cor-
rected this problem and introduced an alternative algorithm which possesses a desirable
descent property just as any EM algorithm does.
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2.4.1 Smoothing the log-density

Assume that € is a compact subset of R" and define the linear vector function space

‘F:{f: (fla"' 7fm)—|—:0< fj ELl(Q)vlogfj € Ll(Q)vjz 17 am}'

The assumption of compact support may appear somewhat limiting from a theoretical
point of view, but it is not problematic from a practical point of view because of the
bounded property of a dataset.

Define a smoothing operator S and a nonlinear smoothing operator N for any function

f € Ly(9) by
Sf(x) = /QKh(zc — ) f(w)du,

Nf(x) =exp{(Sf)(xz)} = GXp/QKh(CL‘ —u)log f(u)du.

where K(.) denote some kernel density function on the real line. The product kernel
function K (u) = [],_, K (ux) and its rescaled version kj(u) = h™"[],_, K(h tuy). This
operator N is strictly concave, and it is also multiplicative in the sense that N f; =
[T, N fji (see Eggermont and Lariccia [1999]).

Then, Levine et al. [2011] introduce the finite mixture operator

Maf(x) E 3N fi(),
j=1

MaNf(z) & Xm: NN ().

J=1

Let g(x) now represent a known target density function, define the following functional
of @ (and, implicitly, g):

B 2o g(x)
£0) = [ ota)tox VN (@)

The goal is to find a minimizer of £(@) subject to the assumptions that each f;; is a uni-
variate density function and X satisfies Z;"Zl ; =1, A; > 0. An immediate consequence
is that £(0) can be viewed as a penalized Kullback-Leibler distance between g(x) and

(MANT) (@)
£(6) = DSIMaNA) + [ glarde = S0, [N @)da

where —)\; [ N f;(x)dx is a penalization term (see Eggermont and Lariccia [1999)]).

Levine et al. [2011] defined an iterative algorithm for the npEM algorithm of
Benaglia et al. [2009a]. Tt possesses a descent property with respect to the functional
L(A, f); that is, we wish to ensure that the value of L(, f) cannot increase from one
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iteration to the next. Let (A°, f°) denote the current parameter values in an iterative al-
gorithm. Define a functional b°(\, f) that, when shifted by a constant, majorizes L(X, f)-
ie.,

V(X f) +C° > L(X, f), with equality when (X, f) = (A°, £°).

For j=1,--- ,m, let
NN @) &
0 def
wj (@) = W D wj=

and

P ) / Zw )V log AN (@)]dae

— _ZZ//Kh zp — w)g(@)w)(z) log fir(u)dude

7=1 k=1

_Zlog)\j/g(:v)w?(a:)dm

= =D ) (i) H BN,

j=1 k=1
Note that b°(X, f) separates the parameters from each other, in the sense that it is the
sum of separate functions of the individual fj; and A;.

Subject to the constraint ), \; = 1, it is not hard to minimize °(X, f) with respect
to the A parameter: For each j, the minimizer is

~ z)w?(x)dx
= Z’glg } Q)(CEJ)(wQ)(a:)d:c - / g(@)w;(z)d. (2.62)

Forj=1,--- mand k=1,---,r
Fr = an / K (2, — u)g(a)u’(z)de, (2.63)

where ajj, is a constant chosen so that [ f;k(u)dt = 1 is the unique (up to changes on a
set, of Lebesgue measure zero) density function minimizing b%(.).

From the convexity of the negative logarithm function, Levine et al. [2011] proved that
E()\a f) - £<)‘07 fo) < b0<>‘7 f) - bo()‘oa fo)

Since each individual piece of the 8°(.) function is minimized by the corresponding

piece of (X, ?) = (:\\j, .]/C;k)jzlj...’m’ k=1, ,r then

o~

LONF) — LN, £0) <O F) — (A%, ) <0,

which proves the descent property

LOXF) < L, £0.
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2.4.2 Inference for the parameters of nonparametric mixture model

Given a simple random sample xy,--- @, distributed according to the gg(x) density
defined in Equation 2.5. Letting G,,(.) denote the empirical distribution function of the
sample and ignoring the term [ go(x)log ge(x)dx that does not involve any parameters,
a discrete version of L(, f) is

dG,(x) = — Zlog[MANf](mi).

def [ 1
LnlA F) = / 8 N FI (@)

Levine et al. [2011] show that the following algorithm results in an EM algorithm in which
the value of £,(.) decreases at each iteration: Given initial values (A°, f"), iterate the
following three steps for t = 1,2, --

1. E-step: Define, for each 7 and j,

o AN (@) AN F ()

W T Moo N FD m (t) '
Ao N5 (@) 30 AN ()
2. M-step, part 1: Set

1
)\gtﬂ) = —ng), forj=1,---,m.

3. M-step, part 2: For each j and k, let

n (t) n

L w Ky (u—x; 1 —

fj(/i‘_‘—l)(u) = Zlil ]n h((t) k) = (t+1) E U)S)K (u hm k) .
> i W nh}‘j i=1

With regard to the convergence properties of the algorithm, if we hold A fixed and re-
peatedly iterate equation (2.63), then the sequence of f functions converges to a global
minimizer of L(A, f) for that value of A (see Appendix of Levine et al. [2011]).

If we allow that the coordinates of X, are conditionally independent and that there
exists blocks of coordinates that are also identically distributed, B is the total number of
such blocks and let b, denote the block index of the kth coordinate, where 1 < b, < B,
then equation (2.5) is replaced by (2.40):

go(m:) = D> N | oo (wan)-
j=1 k=1
The non-linear smoothing operator N applied to f; is simply N f; = [[i_; N fiv,, and

definitions of My f and MyN f are unchanged. The algorithm can easily be adapted for
handling the block structure with the second part of the M-step becomes
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3’. M-step, part 2: For each component j and block ¢ € {1,--- | B}, let

£ Sy S Wi Ty K (u — @)
r n t
> ket Zz 1wz(j)]I{bk_g}

= Hl)@ZZw L=y I < hm)

k=1 i=1

where Cy = 22:1 If,—¢y is the number of coordinates in the £th block.

This algorithm is implemented by the function npMSL in the version of the publicly
available R (R Core Team [2016]) package called mixtools.

There is still the question of asymptotic convergence rates. Empirical studies in Be-
naglia et al. [2009a] are suggestive of rates of convergence of the original npEM algorithm,
though no theoretical result on this subject is yet known. Levine et al. [2011] demon-
strated that their new algorithm may be used to optimize a particular objective function.
This result is not a definitive proof of consistency. We have not yet convergence in the
statistical sense, ie when n — oo, of the estimator towards the true value of 0 since the
smoothed version is optimizing a smoothed loglikelihood, not the true one. It will perhaps
be possible to establish such results in the future.

41



2.4. MAXIMUM SMOOTHED LIKELIHOOD FOR MULTIVARIATE MIXTURES

42



Chapter 3

Nonparametric mixture models with
conditionally independent multivariate
component densities

3.1 Introduction

Model (2.40) which is proposed by Benaglia et al. [2009a| has required the conditionally
independent coordinates and there exit blocks of coordinates that are also identically
distributed. However this assumption is not always satisfied in all cases. We introduce
here a dataset in which model (2.40) and npEM algorithm of Benaglia et al. [2009a] does
not work.

Breast cancer is the most common invasive cancer in females worldwide. Machine
learning applications are vast; one such particular application to be investigated is in
regards to classifying whether a breast tumor is malignant or benign. In fact, the medical
literature is already becoming rich in such methods, with the potential goal of submitting
patients to fewer extensive testing. The Breast Cancer Wisconsin Diagnostic (WDBC)
dataset, which was obtained from the University of Wisconsin Hospitals, Madison, saves
the Diagnostic together with 30 features related to Breast Cancer in Wisconsin. The
features are computed from a digitized image of a fine needle aspirate (FNA) of a breast
mass. Malignant breast tumors were detected from a set of benign (-) and malignant
(+) samples. The comprehensive dataset utilized is available from the Breast Cancer
Wisconsin (Diagnostic) Dataset on the UC Irvine Machine Learning Repository through
the UW CS ftp server. The dataset is fairly rich in examples, considering n = 569 patients.
It consists of a matrix with 32 columns, where the first such column is the patient ID and so
ignored in this study and the second column is the label M for malignant and B for benign.
Ten real-valued features computed for each cell nucleus: Radius, Texture, Perimeter, Area,
Smoothness, Compactness, Concavity, Concave points, Symmetry and Fractal dimension.
These features are computed from a digitized image of a breast mass. The mean, standard
error, and “worst” (mean of the three largest values) of these features are computed for
each image, resulting in a total of 30 features in the remaining 30 columns. The class
distribution is given by 357 benign samples (62.74%) and 212 malignant samples (37.26%).
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Axiltary
Iymgh nodes

Figure 3.1 Breast Cancer.

We first observed the ten “mean” features of WDBC data. This » = 10 dimensional
dataset can be consider as a mixture of m = 2 components (Malignant/Benign), r = 10
coordinates. With the conditional independence assumption on the subpopulation or
component, an identifiable model in the multivariate case can be defined as in (2.5) and
a nonparametric EM algorithm (npEM) can be applied for this model (see Benaglia et al.
[2009a]). With this kind of model, the dependence only comes from the mixture. A
simple graphical exploration of the data shows that there are some obvious correlations
across coordinates, not due to a mixture. Fig. 3.2 displays such dependencies among
the ten mean features, for instance group of 3 features: radius, perimeter and area or
compactness, concavity and number of concave points.

Our motivation in view of such datasets, is to relax the conditional independence of
coordinates. Then, we consider such multivariate conditionally independent blocks in-
stead of just coordinates. This chapter describes a new nonparametric mixture model
that extends model (2.5) in the sense that it allows for conditionally independent mul-
tivariate and nonparametric component densities. Importantly, this extension allows for
dependence structures within multivariate subsets of coordinates, apart from the depen-
dence induced by the mixture that is the unique dependence allowed in model (2.5). Note
that the idea of using conditionally independent multivariate subsets of variables itself is
not new in the world of usual parametric mixtures; see, e.g., Hunt and Jorgensen [2003].
But the idea there is usually motivated by specific modelling needs, or for reducing the
number of parameters in the covariance matrices of the component distributions. Our
objective here is motivated by the need to extend the currently available nonparametric
mixture models from the recent literature.

We present this model in Section 3.2, and verify in Section 3.3 that its parameters
are identifiable using results from Allman et al. [2009] that go beyond the conditionally
independent univariate case. We then focus on statistical estimation of the parameters
in Section 3.4. We propose a new “EM-like” algorithm called mvnpEM since it relies
and is a multivariate (mv) per block extension of — the npEM algorithm introduced by
Benaglia et al. [2009a]. Like the EM-like algorithms presented in this introduction, our
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Figure 3.2 — The pairs plot of the first 10 features, colored by diagnostic. The 5 colored
rectangles show a data-driven possible dependencies.
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algorithm requires a weighted kernel density estimation step, which turns out here to
be a multivariate WKDE. We thus describe possible bandwidth selection strategies for
this WKDE in Section 3.4.2. Section 3.5 is devoted to implementation considerations
and a study of the algorithm through large scale Monte-Carlo simulations. Section 3.6
describes an analysis, using our model, of the WDBC dataset. The perspective there
is unsupervised model-based clustering, illustrating the potential usefulness of our new
mixture model approach relaxing the conditional independence assumption.

3.2 Nonparametric mixture with multivariate blocks

We assume now that each joint density f; is equal to the product of B multivariate
densities that will correspond to conditionally independent multivariate blocks in the
mixture model. Let the set of indices {1,...,7} be partitioned into B disjoint subsets sy,
ie. {1,..,r} = Uil s;, where 2 < B < r is the total number of such blocks, and d, is
the number of coordinates in ¢th block, i.e. the [th block dimension. Actually, we will
impose B > 3 in practice since from Allman et al. [2009] and the identifiability discussion
in section 3.3 there is little hope to have an identifiable model for less than 3 independent
blocks.

Here, the indices 4, j, k and ¢ denote a generic individual, component, coordinate, and
block, 1 <i<n,1<j<ml<k<randl </¢< B (m,r,B and n stand for the
number of mixture components, repeated measurements, blocks, and the sample size).
Each f; is equal to the product of the f;;’s, where fj, is the multivariate density function
for jth component and ¢th block. Then model (2.1) becomes

m B
go(@:) =Y N [ [ frelwico), (3.1)
j=1  I=1
where x;5, = {xix, k € s¢} is the multivariate variable which have its coordinates in the
fth block. Hence this model assumes independence of blocks of multivariate densities,
conditional on the subpopulation from which each observation is drawn. This is a main
difference in comparison with model (2.5) introduced by Hall and Zhou [2003] assuming
conditional independence: here the dependence structure does not come only from the
mixture structure, since an additional within-block dependence is allowed. This model
thus brings more flexibility with respect to the conditional independence assumption, that
is in some applications a shortcoming of model (2.5) (see, e.g., discussion on actual data
in Section 3.1 and in Section 3.6).

When all blocks are of size 1 (univariate blocks), then B = r and the model is exactly
model (2.5). Thus, to have at least one multivariate block of size > 2, we assume B < r
in the sequel. Note that “block” has a different meaning in Benaglia et al. [2009a] and
successive works on smoothed versions like Chauveau et al. [2015]; in these works block
means a group of coordinates sharing a same univariate density for component 7, allowing
for more parsimonious models motivated by some actual applications from psychometrics.

As reviewed briefly, Hall et al. [2005] explored the identifiability question related to
model (2.5) with univariate conditionally independent marginals. They also suggest that
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a similar result could be achievable for conditionally independent blocks of multivariate
densities, that is precisely our model (3.1). Then Allman et al. [2009] proved a collection
of identifiability results, based on a representation of some latent variable model in terms
of 3-way contingency tables. Next section provides the proof more details, and a survey-
like shorter description for application to model (2.5) can be found in Chauveau et al.
[2015].

3.3 Identifiability of the mixture with multivariate blocks

Hall et al. [2005] stated that an identifiability result similar to the one they claimed for
model (2.5) with univariate conditionally independent marginals, could be achievable for
conditionally independent blocks of multivariate densities. Then Allman et al. [2009]
proved more generally a collection of identifiability results, based on a representation of
some latent variable model in terms of 3-way contingency tables.

Their work describes a 3-way contingency table that cross-classifies a sample of n
individuals with respect to three polytomous variables, the kth of which has a state space
{1, -+ ,kr}. This classification can also be described in terms of the latent structure
model. Assume that there is a latent (unobservable) variable Z with values in {1,--- ,m}.
Let us suppose that each of the individuals is known to belong to one of m latent classes
and, conditionally on knowing the exact class j, 7 =1,---,m, the 3 observed variables
are mutually independent. Then latent class structure explains relationships among the
categorical variables that we observe through the contingency table.

For a more detailed explanation, some algebraic notation is needed. For k = 1,2, 3,
let. A be a matrix of size m X iy, with af = (a}(1),--- ,a}(ky)) being the jth row of Ay.
Later, we will see that a;?(l) is the probability that the kth variable is in the [th state,
conditional on the observation coming from the jth mixture component. Let A; X Ay X Az

be the k1 X kg X k3 tensor defined by
[A1, Ay, As] =) “aj®@al@al. (3.2)
j=1

Using simpler language, the tensor [A;, As, As] is a 3-dimensional array whose element
with coordinates (u,v,w) is a sum of products of elements of matrices A,, k = 1,2,3,
with column numbers u, v and w, respectively, added up over all of m rows:

[Ab A2> AS]u,v,w = Z ajl' (U)G?(ma?(w)
j=1

Such a tensor describes exactly the probability distribution in a finite latent class model
with three observed variables. To see why this is the case, imagine that there is some
latent variable Z that takes positive integer values from 1 to some m > 1 and each of the
n individuals belongs to one of m latent class. If the 3 observed variables are mutually
independent when the specific latent class j, 1 < j < m, is known, we have a mixture of
m components with each component being a product of finite measures and probabilities
A =P(Z =j), j=1,---,m being the mixing probabilities. Now, let the jth row of
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the matrix Ay be the vector of probabilities of the kth variable conditioned on belong
to jth class p§ = P(X, = .|Z = j). Choose one of the three matrices (say, A;) and
define A; = diag(X\)A;, where A = (Ay,---, \n) " is a vector describing the distribution
of the latent class variable Z. Then, the (u,v,w) element of the tensor [A;, A, As] is the
unconditional probability P(X; = u, Xy = v, X3 = w) and, therefore, the joint probability
distribution in such a model is exactly described by the tensor 3.2.

Define the Kruskal rank of a matrix A, rankx A, as the largest number I of rows such
that every set of I rows of A is independent. The following result was established by
Kruskal in the mid-1970s.

Theorem 1. Let I}, = rankyx Ay. If

then [Ay, Ay, A3] uniquely determines the Ay, up to simultaneous permutation and rescal-
ing of rows.

Kruskal’s result is very general and is a cornerstone of several subsequent results estab-
lishing identifiability criteria for various latent structure models with multiple observed
variables. The one that follows most directly is the identifiability result of finite mix-
tures of finite measure products. We refer to the model described above as the m—class,
r = 3—feature model with state space {1,...,k1} X {1,...,ka} x {1,..., K3}, and denote it
by M(m; k1, ke, k3). The equivalence between the distributions of 3—variate latent class
models and 3—tensors, combined with the fact that rows of stochastic matrices sum to 1,
Theorem 1 gives the following reformulation.

Corollary 1. Consider the model M(m; k1, ks, K3). Suppose all entries of A are positive.
For each k =1,2,3, let A;, denote the matriz whose rows are p;?, 7=1,....m, and let I}
denote its Kruskal rank. Then if

the parameters of the model are uniquely identifiable, up to label swapping.

Allman et al. [2009] expressed from Kruskal’s theorem on 3—variate models, to a
similar one for r—variate models by combining into 3 agglomerate variables, so that
Kruskal’s result can be applied.

Theorem 2. Consider the model M(m; Ky, ke, k3) where r > 3. Suppose there exists a
tripartition of the set S = {1,...,r} into three disjoint nonempty subsets Sy, Ss,Ss, such
that if 7, = erSz ki then

min(m, 71) + min(m, 75) + min(m, 73) > 2m + 2. (3.5)

Then model parameters are generically identifiable, up to label swapping. Moreover, the
statement remains valid when the mizing proportions {\;}1<j<m are held and positive.
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The above inequality is coming from the property: for any fixed choice of a positive
integer I, < min(m, k), those m X K matrices Ay, whose Kruskal rank is strictly less
than I, form a proper algebraic variety (see the details in Allman et al. [2009]).

Let us recall that we are specifically interested in finite mixtures of nonparametric
measure products. We consider a nonparametric model of finite mixtures of m probability
distributions. Each distribution is specified as a measure p; on R",1 < 5 < m. Assume
that the dimensionality r (the number of classification variables) is at least 3. The kth
marginal of j1; is denoted ,uf. As before, let Z be the variable defining the latent structure
of the model with values in {1,...,m} and P(Z = j) = A; for any j = 1,...,m. Then, the
mixture model becomes

P= M=y N][w (3.6)
=1 k=1

j=1

This model implies that the r variates are, yet again, independent conditional on a latent
structure. The next theorem proves identifiability of the model’s parameters under a mild
and explicit regularity condition on P, as soon as there are at least 3 variates and m is
known.

Theorem 3. (Theorem 8 in Allman et al. [2009]) Let P be a mizture of nonparamet-
ric measure products as defined in (3.6) and, for every variate k € {1,....,r}, assume the
marginal measures {M?}lgjgm are linearly independent in the sense that the corresponding
(univariate) distribution functions satisfy no nontrivial linear relationship. Then, if the
number of variables r > 3, the parameters {)\j,ﬂf}lgg‘gm,lgkgr are uniquely identifiable
from P, up to label swapping.

The proof of Theorem 3 is making a judicious use of cut points to discretize the
distribution, and then using Kruskal’s work. The idea is to construct a binning of 3
random variables at a time only, beginning first with the random variables X, X5 and
X3, using kK — 1 € N cut points for X;, k = 1,2,3, consider a partition of R into xj
consecutive intervals {I!}< <, and the random variable Y} = {Ixeenrs oo kaelsk}, where
Iy denotes the indicator function of set A. Allman et al. [2009] proved it is able to
choose the cut points u; < us < ... < u,,—1 so for general enough and to have well-chosen
partitions {I}}1<i<., of R for recovering the measure pﬁ, k=1,2,3, 1<7<m. That
is able to construct partitions that involve any chosen cut points in such a fashion that
Kruskal’s result in the form of Corollary 1 will apply. Note that an earlier result linking
identifiability with linear independence of the densities to be mixed appears in literature in
a parametric context. The linear independence of the probability distributions {/,L?}lgjgm
is equivalent to linear independence of the c.d.f.s {F}}1<j<n. The proof needs the following
lemma.

Lemma 1. Let {F;}1<j<m be linearly independent functions on R. Then there exists some
k € N and real numbers uy < ug < ... < u,_1 such that the vectors

{F(ur), Fj(uz), .y Fj(us-1), 1hi<j<m (3.7)

are linearly independent.
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And relying only on the binned observed variables {Y7, Y5, Y3}, the identifiability of
the proportions ); and the probability measures ,u;? can be infer. Repeating the same
procedure with the random variables X, X5, X4 and getting the set {1, po, pig, 14} can
be recover, up to a relabeling of the groups. Adding a new random variable at a time
finally gives the result.

This result also generalizes to nonparametric mixture models where at least three
blocks of variates are independent conditioned on the latent structure. It is exactly our
models which was described above. Remind here that if we let the set of indices {1,...,7}
be partitioned into B disjoint subsets s;, i.e. {1,..,r} = U2 s, where 3 < B < r
is the total number of such blocks, and d, is the ¢th block dimension and the ,uﬁ be
absolutely continuous probability measures on R%. With r = Zle dy, consider the
mixture distribution on R" given by

P=S T 3.5)

Theorem 4. (Theorem 9 in Allman et al. [2009]) Let P be a mizture of the form
(3.8), such that for every ¢ € {1,..., B}, the measures {115} 1<j<m on R¥ are linear inde-
pendent. Then, if B > 3, the parameters {\;, ,ug}lgjgm,lgggB are strictly identifiable from
P, up to label swapping.

Allman et al. |2009| proceeded much as in the proof of Theorem 3, but construct
a binning into product intervals. For instance, if X is two dimensional, constructing
Y = {Iixenxsy, - Ixersx=} }, where {J}1<i1<w is a second partition of R into k € N
consecutive intervals. Lemma 1 generalizes to the following.

Lemma 2. Let {Fj}1<j<, be linearly independent functions on R. There exists some k,
and b collections of real numbers u§ < ub < ... <u’ |, for 1 <€ <b, such that the m row
vectors composed of the values

{F3 (s oot oo € {1y oY}, for 1< <m (3.9)

are linearly independent.

The equivalence between linear independence of the probability distributions and cor-
responding multidimensional c¢.d.f.’s remains valid, and conclude the proof in the same
way as the last theorem. The details can be found in Allman et al. [2009].

3.4 Estimating the parameters

The algorithm we propose is an extension of the original npEM algorithm that was designed
for estimation in the multivariate mixture model (2.5). The EM principle is first applied
in the E-step, i.e. computation of the posterior probabilities given the current value 0"
of the parameter. The EM machinery is also applied straightforwardly for the M-step
of the scalar parameters that are only the weights A. Then a nonparametric WKDE is
applied to update the component densities per blocks. The main difference is that in this
model, we need multivariate density estimates. This is also why this algorithm becomes
“EM-like”, since kernel density estimation is not a genuine maximization step.
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3.4.1 A multivariate npEM algorithm (mvnpEM)

Given initial values 8 = (A(O),f(o)), the mvnpEM algorithm consists in iterating the
following steps:

1. E-step: Calculate the posterior probabilities (conditional on the data and O(t)), for

eachi=1,...,nand j=1,...,m:
A7 )
) . j Ji i
pij = ]P)g(f)(Zij = 1|a3,) = ™ s (310)
S A ()
where f1"(2:) = [1., £}¢ (v:s,).
2. M-step for A:
1< ,
)\§-t+1) :—Zpg-), j=1,...,m. (3.11)

3. Nonparametric kernel density estimation step: For any w in R%, define for
each component j € {1,...,m} and block ¢ € {1,..., B}

1 n

1

£ (w) = — S VK, (u— ), (3.12)
nA; i=1

where Kp,, is a multivariate kernel density function, typically Gaussian, and Hj,
is a symmetric positive definite d; x d, matrix known as the bandwidth matrix.
This matrix may depend on the ¢th block and jth component, and even on the tth
iteration, as it will be precised in the next Section.

3.4.2 Bandwidth selection in multivariate KDE

The central decision in the nonparametric density estimation step of both the npEM and
mvnpEM algorithm is the selection of an appropriate value for the (scalar or matrix) band-
width or smoothing parameter. Following Benaglia et al. [2009a], we first simply use a
single fixed bandwidth for all components per coordinate within each block, selected by
default according to a rule of thumb from Silverman [1986] (see also Section 2.3). We
then investigate a (often) more appropriate strategy defining iterative and per component
and coordinate bandwidths by adapting Silverman’s rule of thumb as in Benaglia et al.
[2011].

Forgetting for now about blocks and components, considering the general multivariate
KDE (2.61) in the case of bandwidth matrix H = diag(h?, h3,...,h?) where h; denotes
the kth coordinate bandwidth. The multivariate kernel is the product of univariate kernels
(see more detail in Section 2.3.4):

1 Uy Uy 1 Ug,
Kyw)=— K2 U)K (&
H(U’) hl"'hr <h17 ’hr> Hhk (hk)’
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where w = (uy, us, ..., u,)" € R" and denote K for the multivariate kernel, K for univari-
ate kernels.

In our mixture model with multivariate blocks, we propose to consider two cases for
the dy, x d; diagonal bandwidth matrix of the ¢th block.

Case (i) Same bandwidth per block for all components The bandwidth matrix
for block /¢ is diagonal with scalar bandwidths for each coordinates in the block: H, =
diagonal (hgz), where h,, = (hy)kes,. The multivariate kernel for block ¢ becomes

B 1
Hk‘ESe h'k

where hy is fixed and selected by default according to a rule of thumb from Silverman
[1986], page 48:

Ky, (u) K(H,"?u), ueR¥,

1.34

and SDy and Q) Ry, are respectively the standard deviation and interquartile range of the
n univariate observations from the kth coordinate.

hi = 0.9 min {SDk, ]QRk} (n)~1/°, (3.13)

Case (ii) Adaptive bandwidth per block and component In this case the band-
width matrix for block ¢ is diagonal with a scalar bandwidth for each coordinate in the
block, but it depends also on component j and current algorithm iteration t:
t . t t t
Hg(z) = dlagonal((hg»s)l)Q), where h§~s),_, = (hgk))k@[
The multivariate Kernel for block ¢, component j and iteration ¢ is

B 1
- (®)
Hk‘GSZ h]k
The values of the per-block and component bandwidths are computed following the adap-
tive bandwidth strategy from Benaglia et al. [2011], except that in the present definition
of our model there are no i.i.d. coordinates for which the n data can be pooled; as said
previously, blocks in our model have a different meaning than in Benaglia et al. [2009a].
Each scalar bandwidth is hence determined from the corresponding n scalar observations

of coordinate k, using a Silverman’s like rule weighted by the posterior probabilities at
each iterations of the mvnpEM algorithm:

Ky () K ((H)) ). weR™

] R(-t+1)
P = 0.9min {Uﬁﬂ), %—52 (nASD) 12, (3.14)
where n)\g-tﬂ) estimates the sample size in the jth component, and
n t n t
ik o n ) t+1
D i1 pz(j) ”)\E Y
n 1/2
(t+1) _ ; Z (t)( o (t+1))2
Tjk - NG Pij ik — Hjp,
nA; I
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are the weighted empirical means and variances.

To define the iterative interquartile range IQR%CH) appearing in (3.14), we introduce

a weighted quantile estimate as in Benaglia et al. [2011]. Let aq,...,a, be real numbers
and wy, ..., w, be associated (nonnegative) weights, with W = w; + --- + w,. Denote
7(-) the permutation sorting the a;’s in non-decreasing order, a;q) < --- < a,). For

a € (0,1), define the weighted a quantile estimate to be ou(;,), where

o = min{s: ZwT(i) > aW},
i=1

is the smallest integer that gives at least a proportion « of the total sum of weights W.
We compute ]QRJ(.ZH) as the difference between the estimated 0.75 and 0.25 quantiles of

the v = n observations from the kth coordinate, using weights w; = pgﬂ) for the jth
component. Note that function wIQR for computing these quantiles is provided in the
mixtools package Benaglia et al. [2009b].

3.5 Implementation and simulated examples

We propose in this section some examples illustrating the performances of our algorithm,
on three synthetic multivariate models, after some details about implementation and
experiment settings. The mvnpEM algorithm defined in Section 3.4.1 has been implemented
in the most recent public version of the mixtools package Benaglia et al. [2009b] for the R
statistical software R Core Team [2016|. In particular, the step requiring nonparametric
multivariate WKDE’s has been coded in C to speed up approximately 9 times the CPU
time.

3.5.1 Initialization of the mvnpEM algorithm.

As for EM algorithms, the choice of the starting parameter value 0% is important. In
parametric settings, a simple manner consists in starting the algorithm from a parameter
value “reasonably close” to the true value, that may be given by a priori knowledge
obtained from some expert on the model and data. When this sort of information is
not available, the usual practice consists in starting the algorithm from several values
randomly drawn from a uniform distribution on the parameter space (or a subset of it),
and retaining the EM estimate achieving the maximum of the observed likelihood among
all the trials. If this exhaustive exploration of the parameter support is done with enough
precision (enough random draws), then at least some of these randomly chosen 0)’s fall
close enough to the global maximum so that the final estimate corresponds to the global
maximum.

In our nonparametric setup, we can see that the first E-step of mvnpEM requires initial
values for the f;o)’s (and )\5-0)’8) that themselves only require an initial n x m matrix
of posteriors P© := (pgg),i =1,...,n,7 =1,...,m). To obtain this matrix, the most

appealing method consists in using a prior clustering of the data using any unsupervised
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algorithm such as k-means, that assigns each observation to one initial component as,
e.g., in Benaglia et al. [2009a]. At this point, an equivalent of the parametric initialization
method based on some prior knowledge on the model and data consists in providing k-
means with meaningful cluster centers instead of letting it randomly choose m centers.
These “weakly informative” centers, even vaguely related to the true component means,
usually help k-means finding an initial clustering good enough for an EM algorithm to
start with. If such even crude prior information is not available, one can just provide k-
means with the number of clusters m, so that m data points are randomly chosen as the
initial centers. To be fair in our experiments, this completely blind, automatic and data-
driven initialization is actually what we did in all our simulated and real data situations
hereafter. Note also that this k-means based initialization is also often used in standard
EM algorithms for, e.g., multivariate Gaussian mixtures, where cluster means and (co)-
variances are used as initialization means and variances for the component Gaussian
distributions.

In even more complex situations the above initialization strategies may fail. A first
point is how to detect that k-means failed, i.e., end up with a poor clustering? The
common answers from the unsupervised clustering community are (i) analyse the clusters
obtained with the help of prior (external) knowledge about the clustering objective; (ii)
check for the number of iterations k-means required; (iii) compare k-means solutions when
started with several random centroids; (iv) compare k-means clustering against other
clustering methods including a Gaussian EM (see, e.g., Sawant [2015| for precisions about
(i-iii)). In addition, a k-means failure or poor initialization may also be detected in the
EM framework by the algorithm itself, which often “degenerates”, producing an estimate
with m — 1 components after few iterations i.e., one of the \; estimates goes to zero (see
Section 3.5.4 for an example when this can occur). Hence, when the above initialization
strategies fail we can proceed by analogy with the parametric space exploration: draw PO
posterior matrices randomly (uniformly) several times, and run several mvnpEM algorithms
initialized with these P(®’s. Then retain the 0 corresponding to the largest “observed
loglikelihood” >~ | log gs(2;) which is not in the nonparametric case a true likelihood but
merely an empirical criterion. The uniform simulation of P*) can be done in several ways,
e.g. simply by choosing, for each row the j for which pg)) = 1 uniformly in {1,...,m}.
One can also use uniform Dirichlet if non 0/1 weights are desired. There is also always
the possibility to run a first parametric Gaussian EM to get a first matrix of posteriors
to start mvnpEM. We tried the initialization strategy using uniform Dirichlet for Models A
and B defined below, and obtained the same results as with the k-means initialization.

Handling the label-switching problem Not surprisingly, the data-driven initializa-
tion without specifying initial centers for the k-means procedure generates more label-
switching than when proper centers are provided. As explained in Section 2.1.1, label-
switching refers to the fact that arbitrary re-orderings of the component indices (1,...,m)
correspond to the same mixture model. In a single real data study, label switching is not
important since a component index does not change its interpretation. But these re-
orderings are possible when numerous instances of the same mixture problem are solved.
Hence label-switching becomes problematic in Monte-Carlo simulation studies and boot-
strap estimation involving mixture models. For detailed explanation, see discussion in
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McLachlan and Peel [2000] (section 4.9), and for an illustrative stochastic EM example
see Celeux et al. [1996]. In their study, Hall et al. [2005] dealt with label-switching in
the same context by enforcing the constraint A < Xa. We choose here to detect and
“switch-back” the estimates (the final matrix of posteriors from which the other estimates
are computed) to be in accordance with the initial representation. Since in all our exper-
iments we ordered the weights A\; < --- < \,,, we decided that a switching occured after
a replication if this order was not preserved for the estimates.

In our Monte-Carlo experiments, we computed the errors in terms of the square root
of the Mean Integrated Squared Error (MISE) for the densities as in Hall et al. [2005]
and Benaglia et al. [2009a]:

1 A(s) 2
MISE; =3 [ (75 (w) = fu(w)du,

where the integral over R% is computed numerically and f](lf) is the density estimate at
replication s, computed from (3) but using the final values of the pg)

probabilities after convergence of the algorithm that we denote p;;’s.

’s, i.e. the posterior

In our experiments, when we applied mvnpEM for Model A (see the detail in Table 3.2)
which has two univariate blocks and one bivariate block, we found a problem with nu-
merical integral of a probability density function with strong correlation on a hypercube.
Fig 3.3 gives an example for showing that the MISE};, for block 3 only (the only multi-
variate block) depends on the correlation p.

A difference with both Hall et al. [2005] and Benaglia et al. [2009a| results is that
in their work the Integrated Squared Errors ISE; = f(fjg — fje)* were evaluated using
numerical integrations of univariate densities (since the f;,'s were univariate only). Here,
it appears that estimating fj, for multivariate densities with very strong dependence
structure using a kernel density estimate (KDE) with diagonal bandwidth matrix is more
difficult, and this difficulty may result in overestimated MISE values, not necessarily
implying a poor fitting of the mixture by the algorithm. To illustrate that in a simple
case, we ran S = 300 replications of n = 300 observations of a single bivariate sample (i.e.
no mixture, no posteriors, usage of standard unweighted KDE) from a centered bivariate
Gaussian density f with unit variances and varying correlation p. We then computed
MISE; = L35 | [(f® — f)? using a bandwidth matrix following Silverman [1986] as
in (3.13). Results are in Table 3.1:

p 0.25 0.5 0.8 0.95 0.99
MISE; 0.00339 0.00349 0.00601 0.03547 0.25591

Table 3.1 — The effect of correlation p on MISE of the estimation of a centered bivariate
Gaussian density f with unit variances.

This shows that estimation of the MISE deteriorates as correlation increases. Using
a non-diagonal bandwidth matrix is thus an interesting perspective for future work, to
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MISE depends on the correlation
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Figure 3.3 — Square roots of MISE for the densities fj, of 3 blocks ¢ = 1,2, 3, for Model
A, n =500 and S = 300 replications, adaptive bandwidth. The two colors correspond to
the components.

26



3.5. IMPLEMENTATION AND SIMULATED EXAMPLES

better recover multivariate and strongly correlated component and block densities. In
our present setup and experiment, in order to get results not too biased by this KDE
problem i.e. to obtain comparable MISFE;,’s between univariate and multivariate blocks,
we selected variance matrices ¥;’s with correlations not larger than 75%.

We also computed the mean squared errors (MSE’s) for the proportions that are the
only scalar parameters in these models. For a weight \;,

where, at replication s, 5\5»8) is computed using (2) with the final values of the posterior
probabilities, p;;’s. Note that we computed and displayed as well MSE’s for other scalar
empirical moments like means and variances, but these are not genuine parameters of
the model, i.e. they are provided only as additional criteria. At each replication, these
scalar measures are weighted versions of the empirical estimates; for instance, the mean
for component j and coordinate k is given by

2ic1 Dij Tik _ D oi Dij Tik

ﬂjk’ = n A~ <
> iz Dij nA;

Finally, we compared several models in terms of their clustering efficiency. Model-
based clustering using mixture models is done using the Mazimum A Posteriori (MAP)
strategy deduced from the parameter estimate 0 given by any EM-like algorithm. The
MAP consists in setting

Zijo =1, where jo = argmax{p;;}, and Zij =0 for j # jo,

7j=1,....m

where the p;;’s are as above the posterior probabilities after convergence of the algorithm.

3.5.2 Model A: simple Gaussian data

We first introduce this simple model with two univariate blocks and one bivariate block,
chosen intentionally as close as possible to model (2.5) (with conditionally independent
univariate marginals) used first by Hall et al. [2005] to illustrate the performance of their
estimation technique based on inverting the mixture. Their example was considering r = 3
conditionally independent univariate Gaussian, all N'(0, 1) for component 1, and N(3,1),
N(4,1) and N (5,1) for component 2. This model has being used later in Benaglia et al.
[2009a] for comparison with the npEM algorithm. We consider a r = 4 variables, m = 2
components Gaussian mixture which have one multivariate block, i.e. B = 3 blocks of
coordinates with s, = {1},sy, = {2},s3 = {3,4}. Densities f;, are univariate normals
for [ = 1,2, and bivariate Gaussian for block [ = 3, where the means and the common
covariance matrix of the bivariate block are given in Table 3.2: Hence to allow comparison
with the original npEM and both Hall et al. [2005] and Benaglia et al. [2009a| results for
the univariate coordinates, we kept individual densities as in their examples for the first
and the second block. We also kept their experiment settings: S = 300 replications of
n = 500 observations each, where \; is varying from 0.1 to 0.4.
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3.5. IMPLEMENTATION AND SIMULATED EXAMPLES

Model A Block 1 Block 2 Block 3
Coordinate(s) 1 2 {3,4}
o] [1 1/2
Component 1~ N(0,1) N(0,1) N> ([O] : {1/2 ] })

I (1 )

Table 3.2 — Parameters for Model A.

Results for model A ran with the adaptive bandwidth strategy are given in Fig. 3.4.
We obtained similar results with the simplest bandwidth setting. For this model with
similar ranges across components and blocks, the bandwidth strategy does not make a
noticeable difference. These results were obtained, as said in Section 3.5.1, using k-means
initialization with randomly chosen initial centers and checking for label switching.

The stable behavior of the MSE’s for A\; and for the other scalar measures (means,
covariances) estimates show that the algorithm behaves well. In particular, density and
scalar estimate errors associated with component 1 decrease when \; increases, as ex-
pected since the proportion of data actually coming from this component increases with
A1. Simultaneously, the estimate errors associated with component 2 increase. Moreover,
the results for the vV MISEy,’s are close to the results we can see on the plots on page
517, figure 2 of Benaglia et al. |2009a| and outperform the plots on page 675, figure 2 of
Hall et al. [2005] for univariate blocks.

3.5.3 Model B: Three-component Gaussian heavy tailed and
skewed data

We also experimented our method on a second model, with m = 3 components and
three bivariate blocks using the full potential of our approach. We wanted here to show
that our algorithm can compete to some extent with a fit based on a Gaussian mixture
model where mixture components are indeed Gaussian, and do better when they are
non Gaussian, all this using a single model for brevity. Model B thus has one bivariate
Gaussian block, one bivariate block with heavy-tailed (Student) distributions, and one bi-
variate block with heavy-tailed and severely skewed distributions. Precisely, it has r = 6
variables, m = 3 components, and B = 3 blocks. Block 1 involves bivariate Gaussian den-
sities N2 (151, £)’s with some correlation structure; block 2 involves bivariate non-central
Student densities with the same correlation structure and four degrees of freedom. The
component densities of block 3 are themselves mixtures of bivariate Gaussian contami-
nated by bivariate Student’s, thus generating skewed densities. Note that it is common
to use parametric mixtures as a simulation tool to build synthetic complex models like
skewed or contaminated distributions, and this is what we did here for the third block.
Nevertheless, since the other block densities are not themselves mixtures, model B is a
genuine three-component mixture. Of course, one could re-write and interpret it as a
6-component mixture, but with several non-natural equality constraints between blocks 1
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3.5. IMPLEMENTATION AND SIMULATED EXAMPLES

Model A - adaptive bandwidth Model A - same bandwidth
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Figure 3.4 — Square roots of MISE for the densities and square roots of MSE for the scalar
parameter A;, and means and covariances (that are not parameters in the model), for
several values of \{, for Model A, n = 500 and S = 300 replications, adaptive bandwidth
and same bandwidth. The gray line types in the legend are identifying densities and scalar
criterions, that are plotted colored by component.

and 2 densities, which is not the model fitted here.

The component proportions for this model are set to (15%, 35%, 50%), and it involves
two covariance matrices,

1 3/4 , 1 1/2
E:<3/4 1) and % :(1/2 4)’
where Y’ is used only in block 3, component 2 and 3. The other parameters are given
in Table 3.3, where two settings for the means are displayed: the first setting (model B)
corresponds to a complex model because most of the within-block components are severely
overlapping, it is the model for which we provide detailed results; the second setting defines
more separated components for some coordinates, resulting in an easier model denoted

B2, which purpose is to allow interesting comparisons between a parametric Gaussian EM
and our non-parametric algorithm.

Before presenting a full Monte-Carlo experiment as for model A, we display in Fig-
ure 3.5 the true marginal densities of model B, together with results from a single run of
the mvnpEM algorithm and a standard Gaussian EM algorithm using the mvnormalmixEM
function from the mixtools package Benaglia et al. [2009b].

Figure 3.5 shows that the mvnpEM fit is rather good in all component and block marginal
densities (including the recovering of the contaminated densities in block 3), whereas
the Gaussian EM cannot recover the shape of the f; marginals (except for block 1,
component 1). Surprisingly, the Gaussian EM fails even for the Gaussian block 1, this
being probably due to these severely overlapping and non Gaussian components and
blocks. The MAP clustering from the mvnpEM solution gave a clustering error of 4.2%,
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3.5. IMPLEMENTATION AND SIMULATED EXAMPLES

Model B {B2} Block 1 Block 2 Block 3
Coords {1,2} {3,4} {5,6}

() @) () ()
= () @) @)
o (@) HEE) = (E) ()

Table 3.3 — Parameters for Model B, together with the alternative mean vectors for the
easier model B2 displayed in braces when appropriate. The covariance matrices used in
Gaussian and Student distributions are Y except when Y is specified. All the multivariate
Student distributions involve 4 degrees of freedom. The weights for the mixture within
block 3 are a = 0.87 and f =1 — «a = 0.13.

block 1, coord. 1 block 2, coord. 3 block 3, coord. 5

| — component 1
. | — component 2
=] —— component 3

, p - 4 s o 5
adapt bw: 0.307 0.27 0.226 adapt bw: 0.322 0.338 0.29 adapt bw: 0.401 0.334 0.355

block 1, coord. 2 block 2, coord. 4 block 3, coord. 6
N N true density
. | === mvnpEM
S e gaussian EM

F 5 0 5 0 15
adapt bw: 0.289 0.265 0.25 adapt bw: 0.398 0.324 0.282 adapt bw: 0.453 0.386 0.341

Figure 3.5 — Marginal density estimates for a sample of size n = 1000 from Model B,
where column [ corresponds to the two marginals of the [th bivariate block, [ = 1,2, 3.
Each plot shows the true marginals (solid lines), the mvnpEM with adaptive bandwidth
estimates (dashed lines), Gaussian EM estimates (dotted lines). The final values of the
adaptive bandwidths are also given under each plot.
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model B - block 1 model B - block 2 model B - block 3

mvnpEM
npEM

—— component 1
—— component 2
—— component 3

Figure 3.6 — Level plots of the bivariate mixture densities per block, estimated by the
mvnpEM (solid lines) and Benaglia et al. [2009a] (dashed lines), for Model B. Scatterplots
are colored by their true cluster membership.

whereas the Gaussian EM returns 45%, with confusion mostly between components 2
and 3, as the marginals suggest. A run of the npEM algorithm from Benaglia et al.
[2009a] (which fits » = 6 univariate blocks) returns a clustering error of 5.4%. Since
plots of the marginal densities do not show the estimation of the dependence structure,
we then propose to illustrate the difference betwen these two alternative nonparametric
solutions by plotting the estimated bivariate densities: the fjl’s estimated from the mvnpEM
versus the product of the univariate kernel density estimates npEM given by Benaglia et al.
[2009a]. Figure 3.6 shows that the mvnpEM captures the dependence structure (here the
75% within-block correlation and block 3 contamination). This illustrates the essential
difference with the univariate conditional independence assumption of Benaglia et al.
[2009a], for which the joint density can only be obtained by the product of two univariate
marginals, resulting in wrong joint densities (see, e.g., block 1 component 1).

We then ran S = 300 replications of samples of sizes n = 400, 600, 800, 1000. The fact
that the Gaussian EM did not recover even the Gaussian block 1 for model B motivates a
second experiment with our model B2, for which we could more easily compare our method
against a Gaussian solution. Moreover, since our purpose was also to build a model
illustrating the performance of the adaptive bandwidth strategy (Section 3.4.2), which
is appropriate typically for models with different ranges of observations per components
and coordinates, we ran this experiment for both bandwidth strategies. We computed
the MISE’s of the densities and the MSE’s of the scalar parameters X for all these cases.
Figure 3.7 (left and middle) first shows that the MISE’s decrease when the sample size n
increases, which can be understood as numerical evidence of “consistency”. These results
also show a slight advantage for the adaptive bandwidth strategy, as expected. Finally
we can see by comparing in Figure 3.7 the nonparametric and parametric solutions block
per block, that for the well-separated mixture (B2), our method is slightly outperformed
by the Gaussian EM for the Gaussian block 1, but gives better results than it for the
heavy-tailed block 2, and this is even better for the heavy-tailed and skewed block 3 (in
blocks 2 and 3, the parametric estimates even show no convergence at all as n increases).
Not surprisingly, for the more overlapping model B, our algorithms entirely gave the best
estimation.

We finally compared the performance of the two nonparametric algorithms in term
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Figure 3.7 — Square roots of MISE’s for the densities as a function of the sample size
n, S = 300 replications, for the two algorithm settings for Model B (top) and for the
less overlapping Model B2 (bottom): mvnpEM adaptive bandwidth (left), mvnpEM same
bandwidth (middle) and Gaussian EM (right). MISE’s for densities are plotted in circles
and solid lines (block 1), dashed lines (block 2) and dot-dashed (block 3). MSE’s for the
proportion estimates are given in dotted lines.
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Method (%) correctly-classified
k-means 83.11
npEM & MAP 73.27
mvnpEM & MAP 92.87

Table 3.4 The % of correct clustering averaged over S = 300 replications, for model
B using mvnpEM and the MAP strategy, compared with the k-means algorithm and the
method given by Benaglia et al. [2009a].

Method (%) correctly-classified
k-means 85.07
npEM & MAP 45.15
mvnpEM & MAP 99.43

Table 3.5 The % of correct clustering averaged over S = 300 replications of size n = 2000
from model C.

of their MAP clustering performance. Table 3.4 clearly shows that the mvnpEM for our
model with within-block dependence structure outperforms the algorithm proposed by
Benaglia et al. [2009a], and is also better than the classical k-means algorithm (which is
not model-based).

3.5.4 Model C: non-linear dependence within clusters

In this section we briefly show how our method behaves for a model involving non-linear
dependencies within clusters (components). We choose as a building density the non-
linear “banana-shaped” distribution that has been proposed by Haario et al. [2001] and
used by several authors since then, mostly in Monte-Carlo Markov Chain literature. It
is constructed by “twisting” a d-multivariate Gaussian distribution ANy(0,C) with diag-
onal covariance matrix C' = diag(100,a,...,a) and density denoted Ny as well. The
banana-shaped density is fy(x) = Ny o ¢p(x), where ¢p(xy,...,14) = (71,29 + bt —
100D, x3, ..., z4). The so-called “bananicity” constant b controls the non linearity of the
distribution. Haario uses values a = 1, b = 0.03 for a moderately twisted density, and
b = 0.1 for a strongly twisted density. We designed here a 2-component mixture with
B = 3 bivariate blocks (r = 6) by shifting simulated data from f, in a way to obtain
overlapping and non-linear clusters of different “bananicity” constants in each blocks.
Figure 3.8 shows the contour plots of the two-dimensional density estimates for a typical
run from a sample of size n = 2000. It is clear that the mvnpEM model and algorithm
captures the non-linearity of these clusters in all blocks, whereas the univariate block
strategy fails. The typical MAP clustering for this model is given in Table 3.5 which
compares k-means and the two nonparametric algorithms.

Note that for this model with non convex clusters, the initialization based on the k-
means algorithm is expected to behave poorly. Indeed, we did observe few cases where the
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model C - block 1 model C - block 2 model C - block 3

—— component 1
—— component 2

Figure 3.8 — Level plots of the bivariate mixture densities per block, estimated by the
mvnpEM (solid lines) and Benaglia et al. [2009a] (dashed lines), for Model C, n = 2000.
Scatterplots are colored by their true cluster membership.

mvnpEM algorithm degenerates (by emptying one component). These cases where solved
as indicated in Section 3.5.1 by applying random initialization.

3.6 A real data example

We consider here a real dataset, Wisconsin Diagnostic Breast Cancer (WDBC), from an
experiment involving n = 569 instances (see description in Section 3.1).

This actual dataset has already been used as an illustration for comparing supervised
and unsupervised clustering methods. The principle of such a study from the unsupervised
clustering perspective consists in clustering the population based on the quantitative
variables, and after that comparing these estimates given the observed classes.

Our motivation in using this dataset is not to find a scientific definitive answer or
the best clustering algorithm. We have chosen this dataset because: (i) it illustrates
the potential and feasibility of our estimation algorithm for models involving blocks and
data of moderate to large dimensions; (ii) there are obvious dependence structures across
some coordinates that prevent the usage of the previous nonparametric npEM approach
from Benaglia et al. [2009a] since the conditional independence of coordinates is obviously
violated (see Fig. 3.9); (iii) it has been used recently in Hennig [2010|, who proposed
a competitive, alternative model-based parametric but not simply Gaussian clustering:
their method amounts to build clusters by merging components obtained from a Gaussian
mixture model fit. Hence their cluster distributions are not Gaussian, they can e.g., be
multimodal.

In their merging Gaussian method, Hennig [2010] just used the ten “mean” features
of the WDBC dataset. Hence we first tried our approach on this » = 10 dimensional
dataset. As we discussed in Section 3.1 and showed the dependence among this ten
features in Fig 3.2, we had to define multivariate conditionally independent blocks prior
to apply our mvnpEM algorithm. Fig. 3.9 displays the most obvious such dependencies
among the ten mean features. It is for instance clear that radius, perimeter and area
must be grouped in one block. Similarly, compactness, concavity and number of concave
points can be grouped in another block.
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Figure 3.9 — Pair plots for selected “mean” features from the WDBC database; s;

{1, 3,4} for block 1 (left), and sy = {6, 7,8} for block 2 (right).

Method B (over 357) M (over 212) (%) correctly-classified
k-means 355 122 83.831
merging Gaussian 344 178 91.740
mvnpEM & MAP 350 183 93.673

Table 3.6 — The % of correct classification of the WDBC data using mvnpEM and the
MAP strategy, compared with the k-means clustering strategy and the merging Gaussian

method of Hennig [2010].

This way of designing blocks can be summarized by the following general guidelines:

1. group in a block coordinates obviously dependent “by definition” whatever their

component membership, using prior or expert information from the model;

2. look for obvious dependence structures between groups of coordinates not due to
clustering (when clusters are visible on some scatterplots); this can be done using

pair plots as in Fig. 3.9, and also using the correlation matrix.

3. Try several reasonable block structures for the remaining coordinates for which
none of the above rules could lead to a clear block design. Compare MAP clustering
results between the possible block structures, in view of what is expected from the
clustering (analysis of the clusters with the help of prior or external knowledge about

the clustering objective).

Proceeding like this, we are able to design some plausible models. One of the best
ones for clustering precision uses B = 5 blocks: the two trivariate blocks from Fig. 3.9, a
block of size 2 (symmetry and fractal dimension), and two remaining blocks of size 1. The
results are given in Table 3.6, together with k-means that we tried as well (and that is used
in our initialization of the mvnpEM, see Section 3.5.1). The MAP classifier is compared

with the classes given by the Diagnosis (62.74% B and 37.26% M).

In experimenting some alternative block designs we somehow proceed like Hennig
[2010] who tries several (heuristical) merging criterions and reports the best result ob-
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tained. However, in our case, these alternative models (e.g., merging smoothness with
the block in Fig. 3.9, right) always showed results between 92.5 and 93.67% i.e. better
than Hennig [2010]. We tried more complex models by adding the other groups of avail-
able measures, the 10 standard errors (se), or the 10 “worst” measures keeping the same
structure in B = 5 blocks (also supported by the exploration of the scatterplots). We
found that adding the se’s where not bringing better results, whereas a » = 20 dimensional
model made of the means and worst features with B = 5 blocks as before but of double
dimensions (e.g., s; = 6 and block 1 made of radius, perimeter and area features) gave a
slightly better 94% of correct classification. Finally, we tried the full » = 30 model with
B = 5 blocks of sizes up to s; = so = 9 with no better results. However, this showed us
that running the algorithm on these large dimensional models and n = 569 individuals
only took a few minutes (1.45ms) on a common laptop computer.
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Chapter 4

Maximum Smoothed Likelihood for
Nonparametric mixture with
multivariate blocks

4.1 Introduction

The convergence of our mvnpEM algorithm presented in Chapter 3, is not proved. The
reason is that, as for the original npEM algorithm for univariate blocks from Benaglia et al.
[2009a|, the mvnpEM is not proved to maximize any objective function, and its weighted
KDE step is not a genuine M-step. Like its predecessors in recent literature, it however
provides “numerical evidence of consistency” in the sense that MSE an MISE measures
decrease when we let n increase, for all the models we tried. The purpose of this chapter is
precisely to show some type of convergence, extending the ideas from Levine et al. [2011|
and Chauveau et al. [2015] introducing a non-linearly smoothed log-likelihood objective
function and developing an iterative algorithm with a monotony property as for a genuine
EM.

We introduce in Section 4.2 a smoothed model for the finite mixture model of com-
pletely unspecified multivariate components under the assumption of conditionally inde-
pendent blocks of coordinates which was presented in Section 3.2 of Chapter 3. Then
we define an iterative algorithm for the mvnpEM algorithm in Section 4.3. We prove that
this algorithm, based on a majorization-minimization idea, possesses a desirable descent
property just as any EM algorithm does. Section 4.4 devotes to estimating the param-
eters of this smoothed model. We also present some convergence properties in the end
of this Section. Some simulation studies show that the new algorithm gives very similar
results to mvnpEM algorithm that does not satisfy the descent property, are described in
Section 4.5.
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4.2 The smoothed model

We first recall here the nonparametric mixture model with multivariate blocks and mul-
tivariate kernel density function.

Suppose the vectors X1,---, X, are a simple random sample of m > 1 components,
the weight of jth component is A\;. Assume that each jth component density f; is equal to
the product of B conditionally independent multivariate blocks of densities, i.e. f;(x;) =
Hle fie(wis,), where x; € R and w5, = {z, k € 5.} € R% with s,’s are disjoint subsets
satisfy Ule s ={1,---,r} and dy = card(sy) is the number of coordinates in ¢th block.
Then the density of each X; is written

m B

go(xi) = Y N [[ fielisn),
/=1

j=1
where 8 = (A, f) = (A, , A\, f1,- -+, fin) are the parameters of the model.

In the E-step of mvnpEM algorithm, Chapter 3 and Chauveau and Hoang [2016] used
a multivariate kernel density function to estimate nonparametric densities. This mul-
tivariate kernel density function is considered in the constrained context with diagonal
bandwidth matrices (see more detail in Section 2.3.4). It also works for any block-diagonal
bandwidth matrices.

For w = (uy, uy, ..., u,)’ € R", remind here in the simple case of the bandwidth matrix
H = diag(h?, hZ, ..., h?), where hy, denotes the kth coordinate bandwidth, the multivariate
kernel is multiplicative in the sense that:

T B
]‘ Uy Uy ]. U
K = K2 =)= iy e R K
H(U) hl...hr <h1’ " h ) H hk (hk> | | He(gsg>7
k=1 =1

r

where u,, = {uy, k € s¢} € R%. Tt itself can be a dy-product. H, = diag(h?)res, is dy X dy
diagonal symmetric positive bandwidth matrix of ¢th block.

Smoothed model We now assume that €2 is a compact subset of R" and define the
linear vector function space

F={f=(fr,fm) :0< fj € L1(Q), log f; € L1(Q), j=1,....m}.

In the theoretical side, this assumption appears as a limitation in most cases. But
this limit does neither appear in the practical computation implementation nor play an
important role in our algorithm.

Then we define the smooth operators for any function f; € Li(€2) and any d,- multi-
variate function f;; € L1(QY), Qf C R% as

Sufi(a) = [ Kulw - wfiu)du

SHijZ(QSg) = /S;[ KHZ(QSg - gsz)-fJ[(gsz)dQSg’
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Their corresponding nonlinear operators are

Nu fi(x) = exp{(Sg log f;)(x)} = exp/QKH(a: —u)log f;(u)du

Nu, fje(z,,) = exp{(Sn log fje)(z,,)} = exp / Ko (2, — ug,) 08 fe(u,, )du,,
Q
These smooth and nonlinear operators depend on the multivariate kernel density func-
tion which itself depends on the bandwidth matrix H or H, per block. However to be

brief, from here we use the simple notations Sf;, Sfj,, N f; and N fj, instead of Sy f;,
Su, e, NHfj and NHéfjg, respectively.

From f;(x) = Hle fie(z,,) and the Fubini’s theorem we have that the operator N is
multiplicative in sense N f;(z) = [[.., N fie(z,,). Indeed,

Nfi(z)
= exp/QKH(m —u)log f;(u)du

= exp/QKH(zc —u)log [H fjg(@sZ)] du
= exp/QKH(w —u) [Z log fjg(g%)] du

B
= eXpZ /Q@ KH€(£S( - Es,g)log fjﬁ(gse)d Sy / KH@/ Lspr S[/)dQSEI
=1

re{l,- B} 27,

B
- Hlexp/ Ky, (z,, — u,,)log f(u,, ] HNfﬂf z,) O
=1 Qf

Similarly, Sf;(x) itself has a /-product form and owns the multiplicative property.

To simplify notation, we introduce the finite mixture operator

Mif (= defZA Si ZA Hfﬂ Tis,);
7j=1

so that M f(x) = ge(x), and

MuN f(z defZ)\J\/'f] ZA HNf]g x,,) (4.1)
7j=1

Hence MHN f(.) is considered as a smoothed finite mizture model.

4.3 A MM algorithm

We follow here the technique introduced in Levine et al. [2011]. Let g(x) now represent a
known target density function. We consider the following function of 8, where 8 = (f, A)

69



4.3. A MM ALGORITHM

are the parameters of model (3.1)

= = x) lo __ 9@ x
£0) = LX) = [ gla) log AT (4.2
— DlMNP) + [ gle)da - > | ¥t(@a (43)
where D(a|b) is viewed as penalized Kullback-Leibler distance between a(x) and b(x):
= a(x)lo a() x) —a(x)| dx
Dlalt) = [ [ata)tog 55 + @) ~ ata)| a

and the term — Z Aj fQ N fj(x)dz can be viewed like a penalization term (cf. Egger-
mont [1999]).

The goal is to define an iterative algorithm that possesses a descent property with
respect to the functional £(f, X). We start by defining a function 5(0|0°) = °(@), which
depends also on the parameter 8° which denotes the current values we use in our iterative
algorithm so that when shifted by a constant, it majorizes £(8).

For j=1,...,m, let
0 def )\?ijo(w)

T MV Y
be the “weight” functions and w}’s satisfy ). w{(z) = 1. The majorizing function
PO) = (12— [ gla) Y ul@) lol\A S (@)lda (4.)
=1
satisfies
v°(0) —b°(8°) > L£(8) — L£(6). (4.6)

which comes from convexity of —log function since " w{(2) = 1 and Jensen’s inequality.
Indeed,

0000~ 2000 £00.7) — — [ i NI

T-n_l)\j./\/ j X
— —/g(a:)log Z/\J/;AONfo(()>dw

_ NN () NN fi(x)
= / 10gz My Fo@) NN (@) "

dx

- 0 )\JN G\

= bO(A7 f) - bO(AO7 fo)
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[ |
Rewriting (4.5) we obtain
PN = [ @) 3 u(e) s\ @)l
= —/Qg(:v)Zw]Q(m) log[/\/fj(w)]d:v—/Qg(w)Zw?(w) log \;dx
- —/Qg(a:)jzle(w) log [HNJC]‘[(QSZ)] dw—/ﬁg(m)jzle(a:) log \;dx
— —/Qg(:c)Zw?(:L‘) Zlog {exp g Ky, (z,, _usl>logfj£(g55)d28£:| dx
—Zlog)\j/ﬂg(a:)w?(w)dw
-2y [ Kna, - )o(@)ud(e) toe fulw, i, |
—ZlogAng(w)wg(w)dm

where the right hand side of the last equation is the sum of separate functions of the
individual f;,’s and A;’s.

Theorem 5. If we define
/)\\j = / g(a:)w?(w)dw (4.7)
Q

and

Frelu,,) = e / K, (z,, - u,)g(@yu’(@)de, u, € R®, (4.8)

where aje is a constant chosen so that [, f/;g(gsz)dgsé = 1. Then V°(-) is minimized by

the corresponding piece of (},/)\\) and the newly updated 0 = (},/)\\) satisfies the descent
property:
L£(0) < L£(6°).

Proof.

The proof here is nearly identical to a result of Levine et al. [2011] except that we
handle here the fact that fj,(u,,) is a d;—dim multivariate function as in (4.8).
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Fubini’s theorem yields

0050 = = [ [ Knte, - w)atenita) s ot ]
Q Qf
- - / el )08 f(u,)du,,
= e (fj@‘f]f /fﬂ Us, 10gf]5( U, )du

where the second term on the right hand side does not depend on fj,. Then J/C;'g is the
unique (up to changes on a set of Lebesgue measure zero) density function minimizing

bje(")
To minimize b°(f,\) with respect to the A parameter, we define in the Lagrange
multiplier method

argmax b\ Z A;log();), with constraint W(X) = Z Aj—1=0.

where A; = [, g(x wj(w)daz and 337", Aj = 1.
Then the solution differentiating L(X, ) = 0°(X) + a¥(A) is
- A

)\':m—, ]:17
’ Zj:lAj

We may also conclude that 5°(-) is minimized by the corresponding piece of (}', X) and
the newly updated @ = (f, ) satisfies the inequality (4.6)
L£(6) — £(6°) < b°(8) —1°(8°) < 0
which proves the descent property.

, M.

4.4 Estimation of the Parameters

We now assume that we observe a simple random sample x, ..., , distributed according
to some r-dimensional density g(z). Letting G,(-) denote the empirical distribution
function of the sample and ignoring the term [ g(x)log g(x)dx that does not involve any
parameters, we consider a discrete version of (4.2):

L,(0) = L.(f,A) = /logm Zlog{ MON f](z:) }-
= —ZlogZ/\ HNsz Z,)
= — Z log Z A H exp/ Ky, (v, — u,,)log fje(u,,)du,,.
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L,(0) here resembles a penalized loglikelihood function except for the presence of the
nonlinear smoothing operator A/. We may rewrite £,(0) as

n m B
£Tl(0) - = Z 1Og Z A] eXp {Z /Ql’ KHZ (gng - QS@) log fje<g$g)du82} N (49)
i=1 =1 =1 '

We may show that the following algorithm results in an MM algorithm in which the value
of L,(-) decreases at each iteration.

With initial parameter values 8° = (£°, A°) and the fixed d; x d; bandwidths matrices
H, = diag(h?, ..., hj,) for £th block, the modified Maximum Smoothed Likelihood (MSL)
algorithm iterates the following steps for t = 0,1, ...:

4.4.1 MSL algorithm with conditionally independent multivari-
ate blocks

e Majorization step: Define, for each ¢ and j:

B
o AN @) N TIL N (@) (4.10)
(/A m t t Too—m t) 1B t ) )
Za:l )‘El )thg )(wz) Za:l )\((1) Hezl Nféz) (22'5@)
where
t t
NI (x,) = exp /Q K, (@i, — uy,)log 1 (w,,)du,,.
e Minimization step 1:
1 n
ALY = - > wl. (4.11)
i=1
e Minimization step 2:
t+1 1 a t
£ () = — Zwl(j)KHf (uy, — 24,), 1w, € RY, (4.12)
j o=l

where Ky, is a multivariate kernel density function, typically Gaussian.

3

tions (4.4), (4.7) and (4.8), respectively.

Note that equations (4.10), (4.11) and (4.12) are merely the discrete versions of equa-

4.4.2 The Descent Property

Theorem 6. En(O(t)) s non-increasing in t using the MSL algorithm. In other words,
equations (4.10) through (4.12) ensure the descent property:

L,(0)) < £,(6M).
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4.4. ESTIMATION OF THE PARAMETERS

Proof.
For a given (fixed) 8", let the constants wgf) be defined as in Equation (4.10), we first
define the finite-sample version of Eq. (4.5) at iteration ¢:

BO0) =~ 3wl log I\ ().

i=1 j=1

It is the sum of separate function of the f;, and A;. Indeed,

b)) = —ZZw log[N f;(z;)] ZZ@U log A,

=1 j5=1 =1 j5=1

— _ZZw log [H/\ff]e ZSZ]—ZZUJ%)Iog)\j

i=1 j=1 i=1 j=1

= - Z Z w’Lj Z IOg |:eXp/ KHZ Lisp Qse) IOg fjﬁ(@sz)dz_ﬁslz}

11]1

— Z Z wg) log A;

i=1 j=1

_ _iizw [/ Ky, (2, — u,,) log fio(u, } Zzw“)1ogAj.

j=1 (=1 =1 i=1 j=1

Lemma 3. If 04D = (FD XY yhere £ and XY are defined as in (4.12) and

0 (t+1)

(4.11) respectively, then ) minimizes bfp(@).

Proof: As a function of A, with the constraint Zj Aj = 1, the general framework of

Lagrange multiplier introduced above include that case, with A; = >"" | w(t). Then for
each 7 the minimizer with respect to A\ of

def " —
D) E =D wilog
i=1 j=1
is given by the equation (4.11).

As a function of fj, with the definition of fj(éﬂ) in (4.12), the penalized Kullback-

Leibler distance between fﬁﬂ) and fj, is:

(t+1)
D(f (t+1)|fj ) = /m [f](;fﬂ (u,,) lo gffT(gS;) + fie(ug,) — f;;ﬂ)(uw)] du,

= [ ) tor £ w,) = 157w, o )| da,

. 1
(since f]t+1 (u,, )du,, = =~ Zw /KHz — Tis,)du,, = 1 by (4.11)).
J
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Then the piece involving f;; may be written

b(t fJZ d: - Z w; [ KH[( Lis, — QS(Z) IOg fjf(g53>dg55:|

/ [Z w; KHe Lis, — Qsz)] log fjﬁ(ﬂsg)dﬂse
/Q A ) log e, ), (by (4.12)

= n>\§. 1) [ ( (t+1) |fgz) / f(t+1( u,,) log f;§+1)(ﬂ5g>dgse:| 7

where the second term on the right hand side does not depend on f;,. Thus, f]&fﬂ) is the

unique density function minimizing bﬁf)(fﬂ) .
Lemma 4. Let L£,(0) be defined as in Equation (4.9). Then
L,(8) — L,(6") < b(6) — b (6").

Proof:
L,(08) — L,(6")

= =3 log{MaN S} + D los{ My S o)

_ = MANwal)
N Z Mo N FO)(2;)

u ANfJ sm) AN f ( i)
= SNlo
Z gz " AN (@) AN O

_ _Zlogz —A;‘N Jit)

j=1 )‘g't ijt)(mi)
NN fi(;)
< — w! log ST
; g TUNINE ()

(by the convexity of the negative logarithm function, since for each i : ng) =1)
J

== Xn: Zm: wii log\N £ ()] + Zn: Zm: wi 1og AN Y (a;)]

i=1 j=1 i=1 j=1
=b(0) - b (6") 0.
Combining two above lemmas, we conclude that
L,(00) — £,(0") <b,(00)) — (0" < 0.

This is the same “MM trick” of Jensen’s inequality as for the infinite sample case.
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4.4. ESTIMATION OF THE PARAMETERS

4.4.3 Some convergence properties
The convergence properties we present in this subsection are the extensions to multivariate

density functions f;,’s of the Appendix in Levine et al. [2011].

We prove that, if we hold A fixed and repeatedly iterate equation (4.8), then the
sequence of f functions converges to a global minimizer of L£(f, ) for that value of A.
Extend S to F by defining Sf = (Sf1,...,Sfm)". Assume that K(-) is strictly positive,
we define the subset B C F by

B—{ngﬁ:OngSE]:and /gzﬁj(w)d:c—lforallj}.
Q
We are defining the suitable ¢),(u,,) such that
fielu,,) = S¢5i(u,,),  u,, €R™, (4.13)

where E@(Qsz) is defined in equation (4.8).
The integral of the right hand side of equation (4.13) is

fje(QSg)dQSg = / |: KHZ (HSZ - £53)¢?€<£55)dx5l:| dgsz
Qy Q 9]

and the integral of the left hand side equivalents

B
o, Ky, (z, —u,)dz,, | g(x)wd(z dz, du,, .
/Qz ﬂ{/®g1,zl¢z9z' { Q HZ( ’ Z) £:| ( ) J< ) ( H ‘ )} ‘

0=1050

Combine these above equations and the definition of aj, we conclude that

def
?Z(QSK) = a]£/® g(w)w?(w)d£81"‘d£5171d£$(+1'“d£53

B
o =1,0"+£¢ Qp

must integrate by one because of the definition of aje. Also, ¢9(x) = ], ¢%(z,,) must
integrate to one.

Therefore, B will contain the whole sequence f°, f!, f2, ... except possibly the initial

, where each element in the sequence is define applying the formula of (4.8) to the

0 wh h el t in th is defined by applying the formula of (4.8) to th
preceding element. Suppose we fix A and consider the sequence

(P70, (FL A7), (F2, 00, .. (4.14)

For any (fi,..., fm) € B, f; is bounded below by inf,cq K(x) > 0 since K(-) is positive,
so the function f +— L(f,A) is defined on B and then N f is well-defined for f € B.

The function f +— L(f,A) is uniformly bounded from below on B. The lower semi-
continuity combined with strict convexity imply that for any fixed A, the sequence (4.14)
converges to a global minimizer of the functional (f,A). These above properties are
proven as in the Appendix of Levine et al. [2011]|, we do not repeat the proof here for
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4.5. IMPLEMENTATION

brevity. As a practical matter, this means that we could essentially replace L£(f, ) by

the profile loglikelihood:
def .

L5(A) = inf L(f, A

(A) = inf L(f, )

because the minimization on the right-hand side may be accomplished by iterating the
formula of (4.8) until convergence.

The fact that MSL satisfies a monotonic property but for an objective function that is
a smoothed loglikelihood, hence convergence in the statistical sense of the MSL estimate
to the MLE is not guaranteed. As in Levine et al. [2011], there is still that gap about
how the smoothed loglikelihood behaves when the bandwidth A goes to zero as n goes to
infinity. This has been addressed by Eggermont [1999] but with a technique that does
not pass to mixture. This is where the doubly-smoothed idea can be studied (see in the
Discussion and Perspectives Chapter).

4.5 Implementation

The implementation study compares the mvnpEM algorithm with the new algorithm mvnpMSL
using the same examples proposed in Chapter 3 and Chauveau and Hoang [2016]. We
recall and list briefly these models in section 4.5.1.

4.5.1 Three simulated and one actual examples

Model A: simple Gaussian data This is a » = 4 variates, B = 3 blocks, m = 2
components Gaussian mixture (see detail in Section 3.5.2).

Model B: Gaussian, heavy-tailed and skewed data This is a » = 6-coordinate,
m = 3-component model with B = 3 bivariate blocks using the full potential of our
approach: one bivariate Gaussian block, one bivariate block with heavy-tailed (Student)
distributions, and one bivariate block with heavy-tailed and severely skewed distributions
(see Section 3.5.3).

Model C: Non-linear dependence within clusters (banana data) Here is a non-
linear mixture model with m = 2 components, B = 3 bivariate blocks (r = 6 coordinates).
The banana-shaped density is described in detail in Section 3.5.4. Figure 4.1 shows a
typical pairplot for Model C.

Model D: Wiscosin Diagnostic Breast Cancer (WDBC) data The Wisconsin
Breast Cancer datasets from the UCI Machine Learning Repository is used to distinguish
malignant (cancerous) from benign (non-cancerous) samples (see more detail in Section 3.1
and Section 3.6). We considered the first ten features of the Mean and keep the same
block structure of these feature as in Section 3.6. We then applied our smoothed algorithm
mvnpMSL on this 7 = 10 dimensional dataset. The total block is B = 5.
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Figure 4.1 — Pairs plot for Model C

4.5.2 The approximating integrals and the monotony of loglikli-
hood function

The E-step of the mvnpMSL algorithm requires the discretization of the intervals over which
are approximated the multivariate integrals for non linear smoothing of the log densities.
This is the major difference with the previous MSL that already exists in Levine et al.
[2011] because of the nonlinear smoothing of multivariate f;,’s instead of the univariate
N fir’s. Tt is also the huge difference in computing task between both versions: mvnpEM
and mvnpMSL algorithm. To see that, we made some trials on the simple model B (all
gaussians, 7 = 6 coordinates, 3 bivariate blocks with correlation p = 0.25, n = 50, where
"easy'" means separated enough so that all algorithms require only 3 iterations. Then we
compared the CPU time betweeA simulated 6-dimensional example (Model B)

(75% within—blocks & component correlation)A simulated 6-dimensional example (Model B)
(75% within—blocks & component correlation)n our code versions (these codes are differ-
ent at step of computing the multivariate integrals which were done in R or C language):

e Qur very first all-in-R code: 1600 s
e Some others improved codes: 360 s
e Our last all-in-C code version: 2.16 s
e mvnpEM: 0.004 s

It seems a very good improvement in terms of CPU time.

We define the multivariate grid for integration inside the code, from the min and the
max of the data per columns. Let ngrid is the same number of points in the discretization
of these intervals. We made an experiment to see the influence of ngrid by increasing
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Figure 4.2 — The behavior of the loglik and pseudo-loglik sequence for monotony of WDBC
data.

the numbers of the point ngrid in each grid dimension as in the Table 4.1. The criterion
considered here is corrected classification. Model-Based Clustering and Classification
using mixture model is based on the Maximum A Posterior (MAP) strategy.

The results show that the cases of ngrid = 10 (for Model A), ngrid = 50 (for Model
B), ngrid = 18 (for Model C) and ngrid = 18 (for Model D) are the best cases. In the
(th block with dimension is d,, the number of the points in the discretization will be
ngrid%. For instance, in Model C the largest dimension of the blocks is 3. Then the best
“smooth” grid has ngrid® meshes. This explains why the CPU time increases nonlinearly
when ngrid increases and we have to make a trade-off between the CPU times and the
grid size to get a workable smooth algorithm.

Additionally, we can see the poor grid size not only give the poor result in the corrected
classification but also destroys the ascent property of the loglikelihood objective function
as in Figure 4.2.

We also plot the smoothed loglik £(6) of Model A along iterations. It increases (ascent
property) in same bandwidth case with mvnpMSL algorithm. This monotony property will
be destroyed in adaptive bandwidth case as in Figure 4.3.

4.5.3 Monte Carlo experiments

In our Monte-Carlo experiments, we computed the errors in terms of the square root of
the Mean Integrated Squared Error (MISE) for the densities. and the mean squared error
(MSE) for the proportions that are the only scalar parameters in these models

We kept the experiment settings as in Section 3.5 and Chauveau and Hoang [2016]:
S = 300 replications of n = 500 observations each, where \; is varying from 0.1 to 0.4
(for Model A) and S = 300 replications of samples of sizes n = 400, 600, 800, 1000 (for
Model B). Figure 4.4 and 4.5 point out that our smooth method and mvnpEM algorithm
gave the same results in term of the errors MISE of the densities estimates and MSE of the
scalar parameters estimates. Our smoothed method is also slightly better than mvnpEM in
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Model A A1 A2 % correctly-classified # iterations CPU times (s)
ngrid = 2 0.4577 0.5423 63.4 500 1.392
ngrid = 3 0.380  0.620 68.8 06 0.333
ngrid = 5 0.3942  0.6058 98.0 26 0.345
ngrid = 8 0.3807 0.6193 99.8 18 0.478
ngrid=10 0.3812 0.6188 99.6 14 0.576
ngrid = 15 0.381  0.619 99.6 14 1.093
ngrid = 20 0.381  0.619 99.6 14 1.508
ngrid = 50 0.381  0.619 99.6 14 7.137
ngrid =150  0.381  0.619 99.6 14 60.682
ngrid =200  0.381  0.619 99.6 14 107.272
ngrid =300 0.381  0.619 99.6 14 239.993
ngrid =500  0.381  0.619 99.6 14 663.462
ngrid = 1000 0.381  0.619 99.6 14 2639.721
Model B A A2 A3 % correctly-classified # iterations CPU times (s)
ngrid =2  0.1567 0.4071 0.4361 16.2 33 0.169
ngrid =4  0.1092 0.2434 0.6474 37.0 24 0.396
ngrid =10  0.1619 0.3945 0.4436 43.6 83 7.987
ngrid =15  0.162 0.3271 0.5109 45.6 62 13.066
ngrid =18  0.162 0.3171 0.5209 94.0 116 34.86
ngrid =20  0.162 0.3127 0.5253 94.6 116 43.352
ngrid=50 0.162 0.2984 0.5396 95.4 174 400.204
ngrid = 150  0.162  0.2983 0.5397 95.4 166 3428.401
ngrid =200 0.162 0.2983 0.5397 95.4 165 6051.996
ngrid = 300 0.162 0.2983 0.5397 95.4 106 8728.074
ngrid =400 0.162 0.2983 0.5397 95.4 108 15805.470
Model C A1 Ao % correctly-classified # iterations CPU times (s)
ngrid =5  0.4895 0.5105 80.0 50 0.557
ngrid =10  0.4052 0.5948 96.6 71 2.821
ngrid =15 0.4015 0.5985 98.6 61 5.411
ngrid=18 0.3997 0.6003 99.4 60 7.673
ngrid =19 0.4001 0.5999 99.0 83 11.878
ngrid =20 0.4007 0.5993 98.8 80 12.477
ngrid =22 0.4006 0.5994 99.0 46 8.696
ngrid =25 0.4005 0.5995 98.8 83 20.113
ngrid =26  0.4005 0.5995 98.8 83 21.783
ngrid = 27 0.4005 0.5995 98.8 84 23.893
ngrid = 30  0.4005 0.5995 99 43 15.17
ngrid =50  0.4005 0.5995 99 83 81.018
ngrid =70 0.4005 0.5995 99 43 82.126
ngrid = 100 0.4005 0.5995 99 43 170.134
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Model D B (over 357) M (over 212) % correctly-classified # iterations CPU times (s)

ngrid = 4 329 79 71.705 31 0.805
ngrid =5 255 144 70.121 68 3.183
ngrid = 10 347 168 90.510 31 10.61
ngrid = 15 340 186 92.443 135 152.434
ngrid=18 348 184 93.497 114 229.92
ngrid = 19 344 186 93.146 163 436.175
ngrid = 20 344 186 93.146 303 755.619
ngrid = 22 344 185 92.970 200 754.122
ngrid = 25 343 185 92.794 212 1131.697
ngrid = 30 343 185 92.794 205 2013.846
ngrid = 50 343 185 92.794 204 8451.637

Table 4.1 — Comparing the % of correct classification and the proportion estimates of
Model A, Model B, Model C, sample size n = 500, Ten first features of Model D (bottom),
using mvnpMSL (same bandwidth) and the MAP strategy when changing the grid size.

mvnpEM - same bandwidth mvnpMSL - same bandwidth

loglikelihood
-125196  -12519.4  -12519.2
Il
loglikelihood
-13093.7 -13093.6 -13093.5

-12519.8
I

-13093.8

T T T T T T T T T T
20 40 60 80 0 10 20 30 40

o

iterations iterations

mvnpEM - adaptive bandwidth pl -

-12385.0
-12703.0

-12386.0
-12703.5

loglikelihood
-12387.0
loglikelihood
-12704.0

-12704.5

-12388.0

Figure 4.3 — The behavior of the loglik and pseudo-loglik sequence for monotony of Model
A (sample size n = 200) using mvnpEM (left) and mvnpMSL, ngrid = 20, (right) in 2 cases:
same bandwidth (top), adaptive bandwidth (bottom).
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Figure 4.4 — Square roots of MISE for the densities and square roots of MSE for the scalar
parameter A\, and other scalar measures that are not parameters in the model (means
and covariances), as a function of the proportion of the first component Ay, for Model A,
n = 500 and S = 300 replications, random initialization of 2 algorithms: mvnpMSL (on the
left) and mvnpEM (on the right) in same bandwidth case.

Method | A\ = 0.6274 Ay = 0.3726
mvnpMSL | 0.6102 0.7137 | 0.2863 0.3898
mvnpEM | 0.6130 0.7072 | 0.2928 0.3870

Table 4.2 — 95 % Confidence Intervals for the true proportion A = (A, ) =
(0.6274,0.3726), based on B = 10000 bootstrap replications, for the WDBC data ex-
ample, using two methods: mvnpEM and mvnpMSL with same bandwidth case.

the results of Model B.

For WDBC data, the estimated proportion of these two components for smoothed al-
gorithm (and the corresponding mvnpEM estimates in parentheses) are, respectively, 0.338
(0.353), 0.662 (0.647). This observed slight difference between the two algorithms’ esti-
mates of these proportions suggests that it might be wise to compute confidence intervals
for them. It is possible to obtain confidence intervals on the proportion estimates X using
a nonparametric bootstrap approach by repeatedly re-sampling with replacement from the
empirical distribution defined by the n observed r-dimensional vectors. Table 4.2 shows
the empirical 95% confidence interval for A\; and )y, respectively using 10000 bootstrap
replications.

4.5.4 Clustering efficiency
We compared the performance of mvnpMSL algorithm and mvnpEM algorithm proposed by

Chauveau and Hoang [2016] in terms of the MAP clustering efficiency. Table 4.3 and 4.4
clearly shows that two algorithms give the similar result. It is also better than the result
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Figure 4.5 — Square roots of MISE’s for the densities as a function of the sample size n,

S = 300 replications, for the two algorithm settings: mvnpMSL (left), mvnpEM (right) for
Model B in same bandwidth case.

Y%correctly-classified
Model B Model C
mvnpMSL | 92.993 98.99
mvnpEM | 93.849 98.53
k-means | 76.269 68.69

Method

Table 4.3 — The % of correct clustering averaged over S = 300 replications for a sample
size of n = 1000 from Model B and C using mvnpMSL /mvnpEM and the MAP strategy
comparing with the k-means clustering strategy.

from k-means strategy.

Method B (over 357) M (over 212) % correctly-classified

mvnpMSL 348 184 93.497
mvnpEM 350 183 93.673
k-means 355 122 83.831

Table 4.4 — The % of correct classification of the WDBC data using mvnpMSL /mvnpEM and
the MAP strategy comparing with the k-means clustering strategy.

On several trials we did with the mvnpMSL algorithm, we get results very similar to the
empirical one mvnpEM. So this smoothed version is definitely a usable alternative to the
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empirical version. The fact that the smoothed takes more CPU time than the other one
requires a possible useful hybrid method to use in practice.
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Chapter 5

A multivariate model and mixture
approach for FDR estimation

5.1 Introduction

The False Discovery Rate (FDR) is one way of conceptualizing the rate of type I errors
in null hypothesis testing when conducting multiple comparisons. FDR controlling pro-
cedures are designed to control the expected proportion of rejected null hypotheses that
were incorrect rejections. It plays a prominent role in many high dimensional testing
and model selection procedures. Several statistical algorithms have been proposed in the
literature for estimating the FDR, the recent and unified procedure based on a nonpara-
metric approach from Strimmer [2008b] appearing to be one of the current standards for
practitioners.

In hypotheses testing framework, we observe the p—value (or probability value), which
is the probability of getting a sample statistic (such as the mean) or a more extreme sample
statistic in the direction of the alternative hypothesis, given that the value stated in the
null hypothesis Hj is true (not significant or not interesting). Thus, how p-values are
defined is important to the performance of the procedure. When we decide whether to
retain or reject the null hypothesis, it is possible that a conclusion may be wrong since we
are observing a sample and not an entire population. The central problem is the control
of type I error (false positive) and type II error (false negative).

Decision
Retain the null | Reject the null
Correct Type I error
Truth in the Ho True -« o
population H, False Type Iﬁl error Clolj"egt

Table 5.1 — Four outcomes from making a decision.

It is easy to check that, if n independent tests with level of significance « are applied

85



5.1. INTRODUCTION

simultaneously, the achieved Family Wise Error Rate (FWER), that is the probability of
observing at least one false rejection among the n tests, is 1 — (1 — a)™ which quickly
increases with n and is already ~ 99% for n = 100.

Consider the problem of testing simultaneously n null hypotheses, of which ngy are
true. P/N (Positive/Negative) is the number of hypotheses rejected/accepted. Table
5.2 summarizes the situation of possible outcomes (True Positive, False Positive, True
Negative, False Negative) from n testing.

Truth /decision | Accepted Hy | Rejected Hy | Total
Hy is true TN FP o

H, is false FN TP n—ng
’ Total ‘ N ‘ P n

Table 5.2 The possible outcomes when testing n hypotheses for H.

FDR theory starts with the seminal papers by Schweder and Spjotvoll [1982], Ben-
jamini and Hochberg [1995],.... Benjamini and Hochberg [1995] suggested that the false
discovery rate (FDR), defined as the expected proportion of erroneous rejections among
all rejections, may be the appropriate error rate to control the increased type I error when
testing simultaneously a family of hypotheses in many applied multiple testing problems.

FP FP
FDR=E|—— | =E|—P >0
) B[P

P(P > 0).

Storey [2002| defined a new false discovery rate, pFDR, of which the term “positive” has
been added to reflect the fact that we are conditioning on the event that positive findings
have occurred.

FP
pFDR = E [?|P > 0} .

The usual setup for FDR estimation using a mixture model is to consider n iid “cases”,
where to each case i corresponds the response from a statistical test for some null hypoth-
esis Hy, leading to a p-value p; €]0; 1[. A “small” p-value p; indicates rejection of Hy, i.e.
significant cases corresponding to H; true, whereas when Hj is true, p; ~ Ujp ). Since it
is not observed whether each hypothesis is true or false, we are in the general framework
of statistical inference from missing data. Let the missing data Z; € {1,2} defining the
unknown test result, Z; = 1 when Hj is true and Z; = 2 when it is false.

In multiple testing, we observe a sample of n p-values py, po, ..., p, where each individual
observation p; corresponds to the critical probability of the ith test. The FDR control
with a mixture model is based on estimation of a m = 2-component mixture for the n
iid random variable’s p = (p1, p2, ..., p,) in which the component pdf associated to Hy is
J1 known to be Uniform Uy,

(pi[“not interesting”) = (p;|Ho true) = (p;|Z; = 1) ~ Ujp 1),

and the component associated to H; is some pdf f, with a mass concentrated near 0. The
pdf of the p-values is thus

f(p) =2+ (1= A)fa(p), (5.1)
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where A is the unknown proportion of the true null hypotheses and the FDR control is
based on the estimated posterior probabilities.

In a mixture context, the pFDR is given by

/\U(pi)
AU (pi) + (1= N Fa(ps)’

pFDR(p;) = P(Hy true|P < p;) =

where U and F} are the cumulative distribution functions (cdfs) for densities Uy ;jand fs,
respectively.

Efron et al. [2001] define the local false discovery rate (/FDR) to quantify the plau-
sibility of a particular hypothesis being true, given its specific test statistic or p-value.
Generally, two distinct types of FDR need to be distinguished: density-based local FDR
((FDR) and tail area-based FDR (7FDR). More formally, consider an observed test statis-
tic y > 0 designed such that a small y indicates an uninteresting null case, and conversely,
a large y an interesting alternative case. It is assumed that test statistics y follow a
two-component mixture, with density

fly) =Afiyl0) + (1= A) fa(y)
and distribution function
F(y) = AF(yl0) + (1 = A Fa(y),

where 6 is the parameters of the pdf and cdf of the null. The local and tail area-based
FDR are then defined as follows:

0
(FDR = P(“not interesting”|Y = y) = )\fl(y| >7
f(y)
; : 1 — Fi(yl0)
TF DR = P(“not interesting”|Y > y) = A—-—+——.
( VR TR

fdrtool is a package available online from the Comprehensive R Archive Network
(Strimmer [2008a]). This package allows to estimate both tail area-based false discovery
rates (Fdr) as well as local false discovery rates (fdr) for a variety of null models (p-values,
z-scores, correlation coefficients, t-scores). In contrast to other FDR. estimation schemes,
in fdrtool there is no unnecessary distinction between p-values and other test statistics
and regardless of the choice of test statistic, simultaneously both local FDR as well as tail
area-based FDR values are estimated.

FDR analysis with fdrtool is simple: start the R application (R Development Core
Team, 2007), arrange the test statistics in vector format, and run the fdrtool command
(p is vector of p-values)

library(fdrtool)
fdr.out = fdrtool(p, statistic=¢‘pvalue’’)

The actual estimated FDR values can be accessed as follows:
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fdr.out$pval # p-values
fdr.out$lfdr # local FDR
fdr.out$qval # tail area-based FDR
fdr.out$param # estimated parameters

Robin et al. [2007| propose to estimate the FDR by computing the average of the
(FDR(p;)’s over all the rejected p;’s. Their results were applied in a two component
mixture model where one component is known to estimate the posterior population prob-
abilities and the /FDR. The unknown part is estimated with a weighted kernel density
estimator.

Chauveau et al. [2014] explore a solution for /FDR estimation by introducing a specific
version of a semi-parametric EM algorithm. It relies on the missing data aspect induced
by the mixture. An EM-like algorithm delivers, together with estimates of the mixture
parameters, estimates of the posterior probabilities that each p-value comes from each
component. The /FDR can be computed directly from these posteriors

(FDR(p;) = P(“not interesting”|p;) = P(Z; = 1|p;).

Robin et al. [2007]|'s work is very close to the semi-parametric EM approach. The
difference is that they estimate A separately, and then estimate f; using a weighted kernel
density estimate.

To estimate the /FDR, it is necessary to estimate the density f,. Allison et al. [2002]
formulate f, as a mixture of beta distributions. Liao et al. |2004| proposes a special
parametric model tailored to multiple testing by requiring f5> to be stochastically smaller
than fi, a structure appropriate for multiple testing. A smoothing mechanism is built in.
The proposed model provides stable and robust estimation of the /FDR for any reasonable
form of f.

Motivated by the issue of local false discovery rate estimation, Nguyen and Matias
[2014] focus on the estimation of the nonparametric unknown component fs in the mixture,
relying on a preliminary estimator of the unknown proportion 6 of true null hypotheses.

Bordes et al. [2006¢| considered a special case of model 5.1 where the unknown com-
ponent belongs to a location family. It was defined as

f(p) = AMi(p) + (1 = A) fo(p — 1),

where f; is known (under the null hypothesis) while f; is unknown (under the alternative
hypothesis) and symmetric around the non-null location unknown parameter p. Under
some conditions they showed that this kind of model is identifiable and then they proposed
an estimation method for the unknown parameters. This model provided a motivation for
the work of Shen et al. [2016]. With the assumption that we do not have any informations
of the unknown density function Shen et al. [2016] derived a new sufficient identifiability
condition and proposed an iterative MM algorithm to estimate the parameters of this
model, based on an idea of applying a maximum smoothed likelihood.

Often in experimental design multiple variables are related in such a way that, by
analyzing them simultaneously additional information and sometimes essentially infor-
mation, can be gathered that would be missed if each variable was examined individually.
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Hypothesis on high dimensional data involves a sample of random vectors from which a
multivariate statistic is derived to capture critical features of the sample.

In this chapter, we first establish a multivariate nonparametric mixture model in mul-
tiple testing for False Discovery Rate (FDR) evaluation and then verify its identifiability.
We propose in the next section new “EM-like” algorithms, called mvnpEMNO1 (multi-variate
non-parametric) since they have one component known and set to multivariate standard
normal distribution function. In the implementation section, we conduct numerical study
on the FDR control based on the simulated examples. Then, we evaluate the effect of our
algorithms on an actual dataset from micro-array experiments.

5.2 Multivariate FDR (mvFDR) model

Assume that for each case i = 1,2,....,n, r > 1 tests are performed (instead of a single
test as in the common FDR framework above), these tests being based on r samples,
corresponding to different tests of sub hypothesis H}, k = 1,2, ..,r. There must be a way
to define a “global” hypothesis Hj of interest with respect to the context, in terms of the
individual hypotheses. For instance, a simple model is to asses that H, being true for case
i means that all the HY are true as well, so that the r individual tests should lead to non
significant cases. We can denote this formally by Hy = Hj --- H}. Similarly, the global
alternative hypothesis has to be specified in the model. For instance, the simplest case is
that, when the global Hj is false, the r tests should lead to rejection: H; = H{ --- HJ.

To case i corresponds the r-dimensional observed data p, = (p;1, ..., pir) and p is the
matrix of observations for n cases, with n rows and r columns. A multivariate mixture
model can be defined here, and the assumption above can be precised to insure conditional
independence assumption required for identifiability of a multivariate nonparametric mix-
ture. Assume that, conditionally to Hy being true, the r tests responses (p;1, ..., p;-) are
iid ~ Ujp,1) and that conditionally to Hy being false they are independent, i.e.

(P, Zi =2) ~ [ for(pin),
k=1

then the pdf of p, is a multivariate mixture with one component known.

Chi et al. [2008] the first reference we found of a work related to FDR control with
multivariate p-values give an example to illustrate when multivariate p-values may be
useful for pFDR control. They study how to use multivariate statistics to control (p)FDR
with good power and propose some rules to reject the nulls. Our approach here is com-
pletely different since we use mixture models.

It is easier to work with a transformation that removes the restriction on the range
of the values. We consider the probit transform x; = ®~!(p,) of the p-values since the
known component pdf simply becomes A(0,1)®". Denoting f;’s is the probit transform
functions of fy;.’s. The model (5.1) may be written

(@) = X[V, ) @) + 0= N [ ] filza). (5.2)
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where component “1” with weight A is associated to Hy and component “2”, with un-
specified nonparametric densities f;’s, to H;. This multivariate model can be fitted with
a specifically designed version of the npEM algorithm which has been introduced in Sec-
tion 2.2.7. Chauveau et al. [2014] proposed two univariate mixture models for FDR
estimation which are particular versions of model (5.1).

This m = 2-component mixture model, which has the first component is N (0,1) for
all coordinate k, is a special case of model (2.5) which is identifiable under the condition
precised in Allman et al. [2009]. The number of coordinates is » > 3 and for every
coordinate k € {1,---,r} the densities {N(0,1), fr} where f; is not standard normal
distribution, are linearly independent. Such conditions prove the identifiability of the
finite mixture (2.5) following Theorem 8 in Allman et al. [2009).

The motivation for this model is that, if multivariate measures and tests are available
for a set of global hypotheses Hy and H;, then the FDR estimation should be better
than the standard univariate framework, since the clustering between interesting/non
interesting cases should be more efficient (due to the effect of the conditional independence
assumption). In particular, a situation where the global (mv) model should bring some
improvement is a situation where the r tests are comparable in terms of power, so that
the r p-values are in the same range, and not too obviously leading to rejection, i.e. a
situation where the underlying mixtures at the univariate levels are not too obvious, so
that a univariate FDR control is not easy, and a multivariate version may take benefit
of the “blessing of dimensionality”. Conversely, if the significant cases correspond to very
small p-values, the mixture at the level of the probit transform is very well-separated, and
any univarite FDR control (EM-based or not), should deliver the right answer.

Our first experiments show that this expected behavior hold, i.e. the mvFDR control
brings a significative improvement in the case of the simpler m = 2-component model for
simple global hypotheses (see e.g., example in Section 5.5.1). The question of comparison
between uni- and multi-variate FDR is considered in Section 5.4.

5.2.1 More complex mixture models for mvFDR

How many components shoud we set for the mixture model? This is an interesting
but delicate question, which is completely determined by the model assumed for the
possible behavior of the r tests. In the simplest case as described above, where the r
tests correspond to r conditionally independent measures of a same phenomenon, i.e.
the corresponding hypothesis are simultaneously either true or false, we have only two
possibilities:
Hy=Hy---H} vs. Hy =H---Hj,

so that the m = 2 components mixture model (5.2) after a probit transform of the p’s
leading to the data x,--- , x, is appropriate.

More complex models in terms of the possible hypothesis (i.e. multivariate test out-
comes) can be defined similarly. For instance, in the case of r = 3 tests the setup can
be

Hy= HyHZH? vs. Hy={H{H!H}or HyH{H}}. (5.3)
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Setup of the hypothesis | Coord 1 | Coord 2 | Coord 3
Comp 1 (Hy, H, Hy) | N(0,1) | N(0,1) | N(0.1)
—1 —2 —3
Comp 2 (H0>H8>Hg) J1 Ja2 Jo3
Comp 3 (H}, Hy, Hy) | N(0,1) 32 [3

Table 5.3 an example of 3-coordinate, 3-component mixture of model (5.3).

In this situation, each case ¢ and associated p-value p, can be either in component
1 with known (uniform) density, or one of the two possible situations considered as the
alternative. It is then natural to fit for the probit transform a m = 3 component mixture
model (detail in Table 5.3)

go(xi) = M\ HN(O, D)(xik) + Az H Jor(wir) + As H far(Tix), (5.4)

where component 2 is associated to H{ Hf H{ and component 3 to Hy H?H}. In this case
the model induces other constraints on the component densities than one component know
(fie =N(0,1),k = 1,2,3). Precisely here:

f31= fie =N(0,1), k=1,2,3.

We can also impose the constraint on the pdf of alternative hypotheses H* in component
2 and 3, i.e.

fo2 = fzz  and fo3 = f33.

Unfortunately, this model is not identifiable — that is, that gg uniquely determines the
parameters appearing in (5.4) under a mild and explicit regularity condition on gg of
Allman et al. [2009], as soon as there are at least 3 variates for the mixture of the form
(5.4) such that for every k € {1,---r}, the densities {fji}1<j<m are linearly independent,
(see section 3.3). Indeed, in the first coordinate:

k=1, (fi1, fa1, f31) = (N(0,1), f21, N(0,1)) are not linearly independent.

On the other hand, if we relax the hypotheses in Theorem 9 from Allman et al. [2009] and
compute the sum of Kruskal rank of the set {fj;}1<j<m for £ =1,2,3 say a finite set of
measures has Kruskal rank &, if k is the maximal integer such that every x-element subset
is linearly independent. Then, for m = 3, straightforward modifications of the proofs
establish identifiability provided the sum of the Kruskal ranks of the sets {f;;}i<j<m for
k= 1,2, 3 is at least 2m 4 2 = 8. Here the sum of Kruskal rank is 2 +2+42 =6 < 8.
Hence unfortunately, this relaxation of the proof does not insure identifiability of model
(5.4).

The constraint f3; = f1; = N(0,1) of the first coordinate violates the identifiable
condition for model (5.4). We can overcome this problem without changing the setup of
the possible hypothesis as in (5.3) by increasing the dimension of the observed variable
and use the dependence within blocks of coordinates to obtain identifiability. In detail, we
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build a general mixture model with multivariate blocks (see the definition in Section 3.2):

B m B m
go(@i) = M [ [N (0, D)(wis) + D N [ [ fielwia), DN =1 (5.5)
=1 =2 =1 j=1
Setup of Block 1 Block 2 | Block 3
the hypothesis Coord 1&2 Coord 3 | Coord 4
comp 1 ity iz )| A ([o][o 1)) [ e | wo
Comp 2 (Fé,ﬁﬁ,ﬁg) Jo1 f22 J23
=2 =5 o |1
Comp 3 (Hj, Hy, Ho) | No (H , L ﬂ) T#O0 | fao fas

Table 5.4 — an example of 4-coordinate, 3-block, 3-component mixture of model (5.3).

Here, we fix the known component—mutivariate standard normal distribution is the
first component (component null) with the proportion A;. We denote for each block of
coordinate ¢ the subset J, C J = {1,---,m} storing the indices of components where
the alternative hypotheses H{ is true and with equality constraint of the densities. For
instance, in the setup of model (5.3) we have

J1 = {2},

The component densities where the null hypotheses H§ is true, have the marginals N(0, 1)
and different dependence structure between component. Precisely, the densities of com-
ponents having index jin J\ J,, ¢=1,--- B are

- Ndl(o,ﬂ) if =1
Te= Ny 0 V) it j£1

Jo ={2,3}, and J; = {2,3}

where 0 = (0,---,0) € R% is the d,-dimensional mean vector, I = diag(d,) is dy x d,
identity matrix and V' # 1 is dy X d, covariance matrix with diagonal elements 1.

Similarly, the component densities where the alternative hypotheses Hf is true— i.e.
fije, 7 € J, have the same marginal function and different variance structure (and we need
at least r = 6 coordinates) (see Table 5.10 in section simulation study 5.5) or we can also
relax the equal constraint on the pdf of False H* (at least r = 4 necessary coordinates)
(see Table 5.4) . Then, the set of {f;s}1</<p is linearly independent for all j € {1,--- ,m}.

Model (5.5) is a special case of the multivariate mixture model that Chauveau and
Hoang [2016] and Section 3.2 in the present dissertation presented. Theorem 9 in All-
man et al. [2009] proved identifiability of a finite mixture of conditionally independent
multivariate nonparametric measures such that for every block ¢ € {1,---, B} the den-
sities {fje}1<j<m are linear independent is whenever the number of blocks B > 3. For
the mvFDR setup (5.3) the mixture model (5.5) has B = 3 blocks and in each block
the component densities {fjs}i1<j<m are different. Then under the condition precised in
Theorem 9 of Allman et al. [2009], this model is identifiable.
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MIXTURE WITH ONE COMPONENT KNOWN

5.3 The mvnpEMNO1 algorithm for a multivariate non-
parametric mixture with one component known

Given initial values 8 = (A© £©) the mvnpEMNO1 algorithm consists in iterating the
following steps:

1. E-step: Calculate the posterior probabilities (conditional on the data and B(t)), for
each:=1,..., n:

of the component 1: pg) =Py (Zn = 1]z;) =

M TIE Ny, (0,1 (s,
AT N, (0,1) (i, ) + S0y MO TIE, £ (is,)

of the component j # 1: pg;) =Py (Zi; = 1|x;) =

NI S () |
He 1 N, (0, ]I)(xw) + ZJIJ i Hz 1f/e(xzs/g)

2. M-step for A:

n

@+ _ 1 ()
Aj = n sz’j :

i=1

3. Nonparametric kernel density estimation step: For any w in R%, define for
each block ¢ € {1,..., B} and each component j € {2,--- ,m}

1
t+1 (t
fj(ﬁ (u n)\ TN\t 1) ZpZJ)KH = Zis,),

where Ky, is a multivariate kernel density function, typically Gaussian, and Hjy is
a symmetric positive definite d, x d, matrix known as the bandwidth matrix.

For the first component:

U (w) = Ny, (0,1)(u), VL=1,--- B.

5.4 Comparing univariate and multivariate FDR

A question is how to compare univariate FDR (univFDR) and multivariate FDR (mvFDR)
controls? Before going to answer this question, we want to underline that in any way,
it is not possible to achieve a fair comparison since the multivariate p-value bring an
additional information. The purpose is that we try to obtain some sort of comparisons
but obviously the information from each situation is not comparable.

We first tried some simple rules as applying univariate FDR control to the max of the
coordinates in p,. The idea is that, if the r tests are similar and the only two possible
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situations are TTT or F'FF', then univariate FDR will perform equivalently as if only one
test was observed, whereas the max is more conservative. A problem with this strategy
is that under the null, the max (or min or other rules) are no longer Uy}, so that usual
FDR controlling procedures fail.

In the univariate case, the procedure for plotting the so-called “local FDR” control is
to sort the p-values, and compute

1 1
1+ gFDR(Z) = - E ]5[1,
]
=1

where py; is the (estimated) posterior P(Hy|p;) that the ith smallest p-value corresponds
to a non-significant case (Hy). The decision rule consists then is rejecting the ¢ smallest p-
values, such that ({FDR(i) < a. In practice, it is used to define how many of the smallest
observed p-values have to be rejected, in order to achieve an estimated error level smaller
than a. This number of rejections can be defined by the index

do :==max{i € {1,--- ,n} : (FDR(i) < a}

This index corresponds to the largest ordered p-value before which the estimated FDR
crosses the level « for the “last time”.

In mutivariate setup it is not possible to order the multivariate p,’s. Some alternatives
are possible:

e Order the rows according to the max (or the min, the average, etc) of the p =
(pi1, - -+ ,pir). But these strategies are not proper way of building a substitute for
multivariate FDR. Actually, they are wrong theoretically since for the null cases,
the max or the min or any such transformation of the distribution Uﬁ’i] destroys
the uniform distribution under the null property. Since fdrtool or other local FDR
procedures are grounded on the uniform for the null cases, these are theoretically
not applicable.

e Order according to the posteriors obtained by the multivariate algorithm. For our
algorithm, we use the order of the final values of the p;;’s under the component H,
i.e. the posterior probabilities after convergence of the algorithm that we denote

~ bl
pi1’s.

e Other rejection rules as in Chi et al. [2008]’s:
— “by product”™ reject a null if [[,_, px small;
“by max”: reject H; if maxy, Ty is large enough where T'; = (T}, -+, T},.) are the
test statistics;
— “by sum”™: reject H; if Zk ci Ty is large enough where ¢, > 0 are some positive
constants.

We have not used these rules since they requires constructing p-values via maxi-
mization under linear constraints imposed by data’s empirical distribution which
lead to the case that the rejection associated to the largest p-value is retained or
“conservative”.
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e Use the r results of the r univariate local FDR’s, (Positive/Negative for each case)
to decide wether the global Hy or Hy is true.

Comparison then requires some caution, since the sorting order depends on the vector
of p-values used. The number of rejected cases at level a do not correspond to the same
cases, depending on which input has been used (univariate p;’s, max of p per rows, order
from posteriors, something else, ...). Hence, in a typical FDR plot where the z axis in the
index 7 = 1,--- ,n, the number of rejected cases P (Positives) do not correspond to the
same cases from the experiment, but to the P cases associated to the smallest p-values in
each input vector used to build the FDR.

Observing the complete data (p, Z), we can compute the true FDR by
i > LF D Rypye (i) Z Loy = 1,

where the z(l)’s is the Ith component membership corresponding to the [th smallest p-
value in the ordering of the n cases. The ordering of z vector changes the true FDR of
the “smallest” rejected cases.

However, the percentage of wrongly rejected cases, the False Positive (FP) divided
by the total number of cases declared Positive (P), if available, is still meaningful for
comparisons among several approaches (FP/P when P > 0 is the definition of the FDR
from Benjamini and Hochberg [1995]). Similarly, the percentage of False Negative (FN/N)
is meaningful to compare the power of the various FDR control methods: we want FN/N
as small as possible. Indeed, the four possible outcomes as defined in table 5.2, can be
computed on simulated data, from the knowledge of the true component membership z
The toy example below on simulated data illustrates this.

The error on the target level o which is supposed to be achieved by an FDR control
procedure may also be evaluated in simulation. In our Monte-Carlo experiments, we ran
S replications of n such tests. From which we can evaluate the actual error KFDR(C/ZES))
when the c/l\a smallest p-values are rejected at replication s, so that

S 2
Z (EFDR (@) )

can be viewed as a MSE on the target level a over all the replications.

5.5 Simulation study

5.5.1 Simple simulated examples

Model 1 Here is a toy example to illustrate the behavior of our novel approach and the
possible comparisons between FDR control methods. The r = 3 trivariate data correspond
to the simplest model, i.e. Hy = T7T7T and Hy = FFF. This is a 2-component mixture
with the proportion of true Hy set to Ay = 0.6. The n = 1000 cases are simulated directly
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Hy True Hj False
not rejected | rejected | not rejected | rejected | FDR | FN/N
k=1 569 9 228 194 0.044 | 0.286
k=2 567 11 227 195 0.053 | 0.286
k=3 569 9 198 224 0.038 | 0.258
mvEDR 530 48 8 414 0.104 | 0.015
Sum 578 422

Table 5.5 — FDR and FN/N using fdrtool for each coordinate k = 1,2,3 in a single
sample of n = 1000 tests for Model 1, comparing with mvFDR strategy.

at the level of the probit transform, i.e. A(0,1)®3 for the null, and some distribution
located on negative values for the significant cases ( H;), actually here simply N (—2,1)®3.
Then the p-values are obtained by reversing the probit transform, i.e. by applying the
normal cdf to the . These are denoted p;,,i =1,--- ,nand k =1,--- ,r as usual.

Applying the mvFDR algorithm for this model, sorting the n cases by the posteriors
and computing ¢FDR(i) returns the plot of the mvFDR control in Fig 5.2 (A). Then
computing the (FDR using fdrtool for each coordinate k, ie each vector of p-values
(P1ks -+, Pnk) Teturns r ways of controlling the FDR. If we want to superimpose these on
the same plot, we have to sort each kth coordinate separately, and to plot i — FDR(7) if
we want to display the increasing F'DR(.) curves, since each ordering is different. As said
above, the plot is then misleading since the P rejected cases are all different. We finally
can do that as well for the min and the max of the rows (p;1,...,p;) (remind that the
max/min both destroy the uniform distribution of the p-values under the null, so we just
use them for illustration). Fig 5.2 shows however that the mvFDR is very accurate here
(since the true FDR can be computed from the z for the ordering used in the figure),
that the univariate FDR’s are more conservative, that the max is way too conservative
(conservative in the sense that the rejection associated to the largest p-value is retained)
and the min rejects too many cases.

If we want the ordering to be meaningful for each method we can split the plots, as
in Fig 5.3, which displays the mvFDR control result, and each of the r = 3 univariate
FDR controls based on the Benjamini and Hochberg [1995] procedure, and the two fdrtool
controlling methods (the one that corresponds to the (FDR is the local fdr).

Comparing from the FP and the FN rates. These behavior can then be precised
as said above, by computing the exact FDR = FP/P and the false negative rate FN/N
as in Table 5.2. For this sample dataset we found, each univariate local FDR control per
coordinate at level & = 10% in S = 1 replication as in Table 5.5.

We can see that the three univariate FDR controls are conservative, with actual
locFDR < «, and more importantly, they miss about 28% of the interesting cases. The
same statistics but based on the tail fdr return FDR closer to the target « (between 8%
and 10%), but FN/N still large, about 17%. These results have to be compared with the
same output for the mvFDR: FDR = 10.4% and FN/N = 0.015.

As already noticed in the plots, the FDR is close to the target level «, and the False
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Coord 1 | Coord 2 | Coord 3 | mvFDR
FDR 0.056 0.056 0.057 0.111
FN/N | 0.266 0.267 0.267 0.015
A(a) | 0.00224 | 0.00225 | 0.00220 | 0.00027

Table 5.6 — Average of FDR, FN/N using fdrtool and MSE on the target level a over all
the replications for each coordinate k = 1,2,3 when do S = 300 replications of n = 1000
tests, for Model 1, comparing with mvFDR strategy.

Negative rate of 1.5% is much smaller than for both univariate FDR strategies: the
mvFDR is definitely better. Similar conclusions are drawn when doing Monte Carlo
simulation for S = 300 replications (the results are as in Table 5.6).

It may seem surprising that the true FDR based on the same vector z looks different
in all cases. This is precisely the effect of the ordering of the p-values.

Model 2 Of course, Model 1 above is very simplistic, with the r multivariate tests
completely similar (p-values comparable): we know this is the situation for which the
multivariate setup helps to recover the mixture better than from univariate’s (the blessing
of dimensionality). We build another example to see the behaviors of univariate and
multivariate FDR controls.

We modified Model 1 by changing the location of the probit transform’s densities, i.e.
replacing N (—2,1)%% by N (—1.5,1)N'(—=2,1)N(=3,1). The proportion estimates of the
2-component mixture are /):1 = 0.566,:\\2 = (0.434 and the densities estimates are plotted
as in figure 5.1, when we apply mvnpEMNO1 algorithm on a single sample. Fig. 5.1 shows
that this constrained model recovered properly component 2 as “FFF”, even if this is
not specified in the model.

The FP and FN rates for Model 2 are precised in Table 5.7. We can see that, the
univariate FDR controls are conservative and the interesting cases they miss are different
for each coordinate (decreasing from 35.5%, 23.8% to 4% when the mixture is more and
more separated). The mvFDR controls is definitely better with FDR = 10.9% and the
False Negative rate of 0.4%. Similarly, several FDR controls are plotted in Fig 5.2 (B)
and Fig 5.3 (B).

FDR FN/N

k=1 0072 0.355
k=2 0052 0238
k=3 0.067 0.040
mvFDR  0.109 0.004

Table 5.7 — FDR and FN/N using fdrtool for each coordinate k¥ = 1,2,3 in a single
sample of n = 1000 tests for Model 2, comparing with mvFDR strategy.

We also made Monte Carlo experiment of S = 300 replications for Model 2 and got
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Figure 5.1 — The histogram of p-values (top) and the densities estimates of the probit
transform of p-values (bottom) given by the mvnpEMNO1 algorithm, per coordinate, of
Model 2.

the results as in Table 5.8.

Model 2 | Coord 1 | Coord 2 | Coord 3 | mvFDR
FDR 0.216 0.056 0.087 0.111
FN/N 0.374 0.266 0.052 0.005
Aa) 0.14290 | 0.00223 | 0.00041 | 0.00025

Table 5.8 — Average of FDR, FN/N using fdrtool and MSE on the target level a over all
the replications for each coordinate k = 1,2,3 when do S = 300 replications of n = 1000
tests for Model 2, comparing with mvFDR strategy.

When the mixture is more and more overlapping (from coordinate 3 to coordinate 1),
the univariate FDR control is worst and worst: coordinate 3 has the best FDR control
value (0.087) and the false negative rate is smallest (5.2 %), comparing with two other
coordinates. For both of two strategies: univ- and multi- FDR control, the mvFDR is
definitely better.

98



5.5. SIMULATION STUDY

FDR estimate, n= 1000
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Figure 5.2 Example from Gaussian data, several FDR plots in one figure: true FDR,
mvFEDR, each of » = 3 univFDR controls using fdrtools, as well the univFDR controls
based on the max/min of the rows (p;1, -, pir); Model 1 (A) and Model 2 (B).
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Figure 5.3 — Example from Gaussian data, several FDR plots separately; topleft: mvFDR
and true FDR, the other three panels correspond to the £ = 1,2,3 coordinates for the
multivariate p-values. In each plot, the ordering of the n cases is different; Model 1 (A)
and Model 2 (B).
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MODEL 3 Block 1 Block 2 | Block 3
Probit(p): y Coord 1&2 Coord 3 | Coord 4
Comp 1 (H}. H3, H}) | N (m , F) ?D N(01) | N(01)
Comp 2 (Hy, Hy, Hy) | N {:; Ll) ﬂ N(=2,1) | N(=2,1)

Table 5.9 Model 3: a sample of 4-coordinate, 3-block, 3-component mixture with A\ =
20% component 1 (under Gaussian distribution), Ay = 35%, A3 = 45% respectively for
component 2 and 3 (under Hy).

5.5.2 3-component simulated examples

Remind here a complex model in term of the possible hypothesis in case of r = 3 tests
as setup in model 5.3, i.e. Hy = TTT and H; = FFF + TFF. It can be fit with a
m = 3-component mixture model, where component 1 with known density, component 2
is associated to “F FF”, and component 3 to “T'F'F”. The possible constraints on the pdf
of the null and the alternative are

fll = f12 = f13 = f317

fo2 = fs2 and fo3 = f33.

This model is not identifiable under the condition of Allman et al. [2009] if we have not
extended the dimension of coordinates and use the within block of coordinate dependence.
Thanks to the nonparametric mixture model with multivariate block which allows the dif-
ference in covariance structures whereas preserving the marginals and gives identifiability
(see detailed analysis in Section 5.2.1)

We present in this section two examples of extended model depend on considering or
not the equal constraints on the pdf of the alternative hypotheses: an extension to r = 6-
coordinate, B = 3-bivariate block mixture model (Model 3) and another one with B = 3
blocks (one bivariate and two univariate), » = 4 coordinates (Model 4). The n = 1000
cases are simulated at the level of the probit transform, i.e. multivariate standard normal
distribution for the null, and for the significant cases (H;) as detail in the Table 5.9
(Model 3) and Table 5.10 (Model 4). Both Model 3 and Model 4 are identifiable because
of the different covariances. The difference between them is that we drop or not the
constraints on the pdf of the significant cases.

The proportion estimates of 3 components are Xl = 0.221,X2 = (0.344, /):3 = 0.435 and
the densities estimates are plotted as in figure 5.4, for Model 3.

We illustrate the possible comparisons between FDR control methods as we did for the
simple examples in previous Section. The behaviors of several FDR controls in Fig 5.5 and
Fig 5.6 together with the False negative rate of 0.05% (under mvFDR controls) which is
smaller than other univariate methods (see Table 5.11), precise that the mvFDR control
is appropriate and very accurate.
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MODEL 4

Block 1

Block 2

Block 3

Probit(p): y

Coord 1&2

Coord 3&4

Coord 5&6

Comp 1 (Hj, H3, HY)
Comp 2 (Hy, Ha, Hy)

Comp 3 (HY, Hy, Hy)
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Table 5.10 — Model 4: a sample of 6-coordinate, 3-block, 3-component mixture with
A1 = 20% component 1 (under Gaussian distribution), Ao = 35%, A3 = 45% respectively
for component 2 and 3 (under Hy).
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transform of p-values (bottom) given by the mvnpEMNO1 algorithm, per coordinate, for

Model 3.
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Model 2 | Coord 1 | Coord 2 | Coord 3 | Coord 4 | mvFDR
FDR 0.112 0.093 0.082 0.082 0.100
FN/N 0.767 0.767 0.140 0.141 0.00048
Aa) 0.07060 | 0.06624 | 0.00051 | 0.00053 | 0.00022

Table 5.11 — Average of FDR, FN/N using fdrtool and MSE on the target level a over
all the replications for each coordinate k& = 1,2,3,4 when do S = 300 replications of
n = 1000 tests for Model 3, comparing with mvFDR strategy.
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Figure 5.5 — Several FDR plots in one figure for Model 3.

Of course, the comparison between uniFDR’s and the mvFDR is unfair since the latter
uses all the available information from the 4-dimensional data.

The false negative rate in coordinate 1 and 2 are more than 5 times of coordinate 3
and 4 since the mixture is more overlapping within coordinate 1 and 2. We can also see

this result in Fig 5.6.

We made the same computation as in Model 3. Table 5.12 indicates that mvFDR
strategy is rather good in all value of FDR, FN/N, A(a) whereas univFDR strategies
cannot, even that Model 4 is more overlapping than Model 3.
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Several FDR plots separately for Model 3; topleft: true FDR and mvFDR,
the other four panels correspond to the & = 1,2,3,4 coordinates for the multivariate
p-values. In each plot, the ordering of the n cases is different.

Model 2 | Coord 1 | Coord 2 | Coord 3 | Coord 4 | Coord 5 | Coord 6 | mvFDR
FDR 0.081 0.097 0.067 0.067 0.066 0.067 0.115
FN/N 0.768 0.768 0.318 0.319 0.322 0.322 0.014
A(w) 0.05544 | 0.06796 | 0.00130 | 0.00131 | 0.00134 | 0.00127 | 0.00041

Table 5.12 — Average of FDR, FN/N using fdrtool and MSE on the target level «
over all the replications for each coordinate £k = 1,...,6 when do S = 300 replications of
n = 1000 tests for Model 4, comparing with mvFDR strategy.
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5.6 Real data example

5.6.1 Real data from large scale micro-array experiments

We propose to illustrate the behavior of our approach using parts of a large dataset from a
“Maize Methylation Project” experimented by the group LIMAGRAIN and Laboratoire de
Biologie des Ligneux et des Grandes Cultures (LBLGC) Université d’Orléans, EA 1207
(agreement 396N). This project is based on microarray experiments involving several
hybrids and parental lines of maize. The ultimate purpose of this project is to explain
modifications involved in the hybridization process. The base dataset consists in more
than 2 millions of responses called “spots” hereafter, with a hundred variables recorded
for each spot. From this dataset we only retain 7" = 21 quantitative measures that
are log-ratio’s between two signals (red and green) from the microarrays, related to T
different hybrids and parental lines, that are denoted “treatments” in the sequel. These T
treatments can be viewed as multivariate measures on the same “individuals”, where the
individuals here are the locations along the genome sequence (also called spots).

Briefly, the statistical setup proposed by the biologists consists in the following steps:
for each scaffold of the genome,

1. Define a reference value pf for each treatment ¢ (from prior data or a reference
sample);

2. Define a window size, and build samples of spots belonging to each window (consec-
utive along the sequence). This determines for each scaffold s a certain number ng
of windows, and sample sizes in each window that vary (because of the micro-array
setup).

3. For each treatment ¢t € {1,---,7} and window w = 1,--- ,ng, test the null hy-
pothesis Hé’w cpb = pf e, that the mean of the distribution of the spots in the
window w is equal to the reference. Stated like this, we think of applying a standard
parametric Student ¢-test. However, since the sample sizes within each window are
often too small (less than 30), and the underlying normality assumption is often
violated, a nonparametric version, namely a Wilcoxon signed rank test of a null
hypothesis related to localization, i.e. that the distribution of the sample from each
window is symmetric about pf, is used instead.

4. For each treatment, control the FDR of the ng, multiple tests obtained, using a
standard univariate FDR procedure like fdrtool.

The results from the univariate FDR perspective are summarized in Fig 5.7. It shows
in particular that the percentage of rejected cases is rather stable for all the 10 Scaffolds,
whereas it clearly depends on the applied treatment. For instance, treatment 3 shows an
average 40% of rejected cases, whereas treatment 20 is limited to about 10% of rejections.
We do not discuss this in more details here.
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Figure 5.7 — Summarized results as percentages of rejection for each univariate FDR
control. Each color line here is only to connect all the treatments for each of 10 scaffolds.

5.6.2 mvFDR for multivariate p-values:

Each test above returns a p-value p,,; for window w, treatment ¢, this being also for each
scaffold. Hence we ultimately have for each scaffold s, ny T-dimensional p-values as in
our multivariate FDR general setup,

Py = Dwis- - Pwr), wW=1...,n,

The number of windows per scaffold (the ns’s) vary here between 2800 and 5800 with n =
Zle =39, 141. That sample size is largely enough to apply nonparametric multivariate
mixture estimates using our approach, even if multivariate blocks are required to allow

for some dependence.

Our purpose is not to obtain a scientific answer to the ultimate goal of the project,
but merely to select some r-dimensional subsets of p-values from these actual multiple
tests, upon which a multivariate FDR control can be experimented. We consider here the
simplest model with m = 2 components, and the control of the FDR. for the null hypoth-
esis denoted “T...T” (r times) above, corresponding to the simultaneous non significant
answers to the r individual null hypotheses, associated to component 7 = 1. Component
) = 2 is associated to a nonparametric multivariate distribution which is actually com-
pletely unconstrained in the model, except for the conditional independence of blocks (or
coordinates) design. Hence, even if we designate component 2 in the initial presentation
by the simultaneous rejection of the r univariate hypotheses, any combination might be
obtained by the algorithm, in a completely data-driven way.
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Figure 5.8 — Pairplots of probit transforms from maize data, Scaffold 1, first 5 treatments.

We proceed as follows: (i) apply a probit transform to all the p-values; (ii) remove
from the datasets the rows (individual multivariate observations) for which at least one p-
values equals 1, since these results correspond to wrong numerical approximations from the
test procedures that result in undefined probit transforms (equal to co). This procedure
discards only about 9% of the data, the final size for Scaffold 1 is n; = 5219. Of course a
more precise way of handling these numerical difficulties could be developed.

An interesting feature of these (probit transform of) p-values is that the conditional
independence assumption of coordinates is almost satisfied, except for some couple of
variables, as revealed by, e.g., the pairplots of the r = 5 first p-values in Fig. 5.8, where a
grouping of treatments (1, 3) in a block and keeping the 3 other coordinates as univariate
blocks make sense.

We then try the m = 2 components simple model with these r = 5 coordinates.
A typical result for blocks defined as (1, 2, 1, 3, 4) is given in Fig. 5.9. The mvFDR
control rejects here the 4170 cases ordered by smallest posterior probability of belonging
to component 1, as defined previously.

We use a generic plot to display the marginals of both mvnpEMNO1 and mvnpEM al-
gorithm, i.e. the marginals are plotted as wKDE’s. Even we know that the theoretical
shape for component 1 in the model is Gaussian, we keep that to illustrate the difference
between this constrained model and the generic full model. The wKDE’s of component 1
densities are “Gaussian-looking”, which shows that the algorithm is forced to use A(0,1)’s
as densities, that helps the algorithm retaining the cases corresponding to Hy : “I"T"T"T"T™.
This implies a small component weight A\; &~ 21% (mvnpEMNO1 solution). Then component
2 uses the nonparametric flexibility to describe the distribution of all the other cases, that
correspond to negative localization and more or less to Hy : “FFFFF”, even if this was
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Figure 5.9 — Example from maize data, Scaffold 1, » = 5 first probit transforms of p-
values with block design (1, 2, 1, 3, 4). Solid line: mvnpEMNO1 solution, dash line: mvnpEM
solution. First 5 panels: marginal plots; bottom-right panel: the mvFDR control using
mvnpEMNO1 algorithm.

not forced in the model. When using the unconstrained model, i.e. the plain mvnpEM
algorithm, the component labeled “1” (black) corresponds to the largest A\; ~ 70%, but
to a more blurred hypothesis, with pdf estimates definitely not Gaussian-looking: their
modes are around -1. So the hypothesis associated to j = 1 is not simply Hy : “T'TTTT";
even if component 2 is H; : “FFFFF” where the pdf estimates have negative location
(around —4).

The percentage of rejection (about 80%, mvnpEMNO1 solution) is higher for the Hj :
“T'T'TTT” mvEDR control, and in particular higher than the individual percentages given
in Fig. 5.7 for the 5 first treatments. This is expected since the global Hj here involves
5 simultaneous individual hypotheses. It is interesting to see that the known component
strategy is really “doing the job” in this real data case, since without it, component 1 is
about 70% of the cases and is encompassing much more general cases, whereas component
2 (and mvFDR% of rejection) is smaller. This is because component 1 is not associated
to Hy : “T'TTTT” here. That’s why we have not presented the mvFDR control using
the mvnpEM algorithm in Fig. 5.9. The two solutions are completely different. This actual
data example illustrates the importance of using the constrained algorithm if the model
implies that Hy : “T"T'T'T'T” is meaningful.

We made an experiment on other coordinates, the last treatments (17, 20, 21) that are
associated to small percentages of univariate rejection (see Fig. 5.7). The mvFDR control
rejects 2344 cases (mvnpEMNO1 solution, Fig. 5.10). The global mvFDR null “TTT” re-
tains 44,5%), higher than the individual percentage given in Fig. 5.7. In mvnpEM solution,
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Figure 5.10 — Example from maize data, Scaffold 1, » = 3 probit transforms of p-values
corresponding to coordinate (17,20,21) with block design (1, 2, 3). Solid line mvnpEMNO1
solution, dash line:: mvnpEM solution. First 3 panels: marginal plots; bottom-right panel:
the mvFDR control using mvnpEMNO1 algorithm.

two components locate around -1 and -3 pdf estimates. Hence the imposed constraints
forces the algorithm to identify component j =1 to Hy: “TTT".

We tried other model on rich data with B = 3 bivariate blocks designed as (1, 2, 1,
3,4,5,5,6, 7 7) for 10 coordinates corresponding to the treatments 1 to 6 and 10 to
13. The most obvious blocks showing a dependence apart from a possible mixture model
are the pairs of p-values: (p1,ps), (ps, p10) and (p12, p13) (see pairplots in Fig. 5.11). The
proportion estimate of component 1 using the posterior probability after convergence of
mvnpEMNO1 algorithm is 22.26%. The marginal density functions are plotted in Fig. 5.12.
The marginal wKDE solutions from the constrained model and algorithm show normal-
looking densities for component 1, hence this component is associated as expected to the
simultaneously non significant 10 univariate hypotheses. The results of mvFDR control
are presented in Fig. 5.13. Our constraint model works as well on a rich real dataset,
and illustrates the potential of our approach in controlling a multivariate FDR against a
simple global null hypothesis (“T'T"...T”, r times).
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Figure 5.12 The marginal density estimate plots of an example from maize data, Scaffold
1, » = 10 probit transforms of p-values corresponding to coordinate: 1 to 6 and 10 to 13;
with block designed as (1, 2, 1, 3, 4, 5, 5, 6, 7, 7); mvnpEMNO1 solution.

)\8
\
\

S BN
a
) # " ﬁ‘
o
Density
0.00 0.05 0.10 0.15 0.20
&

110




5.6. REAL DATA EXAMPLE

mvnpEMNO1 algorithm, mvFDR: 4003 rejects
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Figure 5.13 — The mvFDR control using mvnpEMNO1 algorithm of an example from maize
data, Scaffold 1, » = 10 probit transforms of p-values corresponding coordinate (1:6,10:13)
with block designed as (1, 2, 1, 3, 4, 5,5, 6, 7, 7).
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Chapter 6

Discussion and Perspective

In this work, we have first proposed (in Chapter 3) a nonparametric mixture model with
conditionally independent multivariate blocks of nonparametric components. The condi-
tional independence assumption has been introduced in several works in the literature, as
e.g. in Hunt and Jorgensen [2003] in the context of parametric mixtures, but was limited so
far in nonparametric mixture models to conditionally independent univariate coordinates.
The crucial novelty of our model from a statistical modelling perspective is that it allows
the dependence to be due not only to the mixture but also to the internal dependence
structure of the multivariate distributions within each block. The identifiability of the
parameters of our new model regardless the number of components m comes directly using
a results from Allman et al. [2009]: actually we have merely pointed out that our model
corresponds exactly to one of the theoretical setup developed in Allman et al. [2009].

We then proposed a multivariate EM-like algorithm for this model, called mvnpEM since
it extends the npEM algorithm from Benaglia et al. [2009a] (the additional “mv” means
that this model is “more multivariate” than npEM model). We have also introduced and
described two strategies to select the bandwidth involved in the kernel density estima-
tion step of this algorithm. The performance of this model has been evaluated through
numerical studies with two perspectives. We experimented it focusing on parameter esti-
mation (including the nonparametric multivariate densities), on three synthetic models:
one allowing for comparison with the original npEM algorithm Benaglia et al. [2009a| and
results from Hall et al. [2005] based on an inversion method (both designed for univari-
ate blocks only, and 2 or at most 3 components); another more complex model showing
that our algorithm behaves well in case of Gaussian, non-Gaussian with heavy tails, and
non-Gaussian with both heavy tails and severely skewed bivariate blocks; a third model
illustrating the clustering performance of our algorithm in the presence of strongly non-
linear within-group dependencies. We also showed that some better estimates can result
from the adaptive bandwidth strategy we have introduced, compared to a more immediate
fixed bandwidth approach.

We have then experimented these new model and algorithm on an actual dataset,
from the perspective of model-based unsupervised clustering in dimensions from 10 to 30.
We compared our approach with the simple k-means algorithm, but also against a recent
parametric but non-Gaussian model-based clustering alternative Hennig [2010|. This
example allows us to illustrate, from a modelling perspective, the way to choose the
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conditionally independent blocks from the structure of the data. By simple exploratory
analysis of the data, one can recognize dependences between variables not obviously due
to any mixture structure and group these variables in blocks. We have provided general
guidelines for this block structure design in Section 3.6. We showed that, for several
possible block designs, a clustering based on the Maximum A Posteriori (MAP) strategy
using the estimated posterior matrix produced by our algorithm outperformed the two
other approaches. Of course, there are many other existing methods to deal with the
same problem. The purpose of this example was mostly to illustrate the applicability of
our algorithm in real-size datasets and actual multi-dimensional models.

Both strategies about bandwidth selection for the kernel density estimation step of our
algorithm use diagonal bandwidth matrices whose elements are computed from a fixed
or adaptive weighted Silverman’s rule. This rule is known to be somehow motivated by
estimation of Gaussian-shaped distributions, which is too restrictive. Other strategies
for the smoothing parameter, i.e. non diagonal bandwidth matrices, or cross-validation
strategies are interesting perspectives for future investigations (see, e.g., Hyndman et al.
[2004] for recent research on multivariate bandwidth selection, or Chauveau et al. [2015]
for cross-validation techniques used for the smoothed npEM model).

Other extensions to the present model are possible. For instance, it is reasonable to
allow the model to encompass the possibility that the block structure could be different
in each component. In this case the set of coordinates {1,...,7} would be partitioned for
component j into B; disjoint subsets, i.e. {1,...,7} = Uf:jl sy for j =1,...,m, where dj
would be the ¢th block dimension for component j. This extension would replace (3.1) by

B

go(mi) = Y N [ [ fielwis,,),

j=1  ¢=1

<

where Tis;, would now denote the coordinates in sj,. An algorithm in the spirit of our
mvnpEM for this extension can conceptually be done. However, there is a major issue with
label switching in this model: since the algorithm would depend on the block structure per
component, it would be necessary to ensure that “component j” always refers to a same
particular component and structure in the model across iterations. This is a perspective
for future developments.

Our mvnpEM algorithm (detailed in Chapter 3) lacks theoretical justification since its
convergence is not proved: proving convergence in this nonparametric setup is difficult
because the wKDE step is not a genuine maximization step of a Q(6|0’) operator. In
Chapter 4, we proposed a maximum smoothed likelihood method and an alternative
algorithm, called mvnpMSL that can be seen as a first building block towards a full proof
of consistency. This algorithm incorporates similar ideas as Levine et al. [2011] for the
EM-like algorithm npEM Benaglia et al. [2009a|. Under the assumption of conditionally
independent blocks of coordinates, a smoothed multivariate finite mixture model was
introduced by defining the nonlinear operators for the multivariate density functions.
These nonlinear smoothing operators depend on the bandwidth matrix.

We considered maximum smoothed likelihood estimators (Eggermont and LaRiccia
[2001]) which maximize a smoothed likelihood function and inherit all the important
properties of probability density functions. A Majorization-Minimization (MM) algorithm
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based on smoothed likelihood principal is suggested to compute numerically our density
estimates. The proposed algorithm is in spirit similar to the majorization-minimization
algorithm in Levine et al. [2011]. Extending from their ideas to the multivariate compo-
nent density functions, we have proved that the mvnpMSL with conditionally independent
multivariate blocks has the monotony property like any others EM algorithms. We showed
that under finite samples, starting from any initial value, this algorithm not only decreases
the smoothed likelihood function but also leads to estimates that minimize the smoothed
likelihood function. This indicates the convergence of the algorithm but only towards
a smoothed version of the log-likelihood, which is not a definitive proof of consistency.
Some convergence results associated with mvnpMSL algorithm for our multivariate density
estimates have been developed from the asymptotic convergence properties of univariate
estimators proposed by Levine et al. [2011].

In the implementation, we studied the performance of our smoothed method on the
three simulated examples presented in Chapter 3 and in Chauveau and Hoang [2016]. The
real data example from the Wisconsin Breast Cancer datasets is also analyzed. Simulation
studies show that the proposed method is as efficient as the empirical version in terms of
mean integrated squared errors for the density estimates and mean squared errors for the
Euclidean parameter estimates. Discretization of the intervals for non linear smoothing of
the multivariate log-densities is the huge difficulty in empirical computing task, comparing
with the mvnpEM algorithm from Chapter 3. This is also the major difference with the
previous maximum smoothed likelihood estimators that already exits in Levine et al.
[2011]. We made several experiments to define a multivariate grid and studied its effect
based on the correct classification of the mixture and computing time.

Although we did serious improvement to get it better in term of CPU time, the
smoothed algorithm takes more CPU time than the empirical one. It suggests to use in
practice a hybrid method which combines both of two versions: using the mvnpEM algo-
rithm to find a good initialization point for the monotone maximum smoothed likelihood
algorithm to go to the optimization of the pseudo-loglikelihood. We have not explored
this possibility yet. But we could try this interesting perspective in some difficult models.

As we mentioned at the end of Section 2.4.2, we have not yet convergence in the sta-
tistical sense. This kind of MSL algorithm does minimize /maximize an objective function
which is not a true loglikelihood of the statistical model as commented by Levine et al.
[2011]. The maximum smoothed likelihood method fails to yield a consistent estimator.
This may impose difficulty in the subsequent technical development. Recently, a doubly
smoothed maximum likelihood estimator (DS-MLE) (Seo and Lindsay [2010]) was pro-
posed as a general alternative to the ordinary maximum likelihood estimator. It may be
possible to propose a new estimation method using this doubly smoothed maximum like-
lihood ideas, which can give a potential high efficiency. Yet, the corresponding theoretical
properties as well as the numerical performance of these estimates are left unknown. This
is an interesting perspective for future work.

In Chapter 5 we have proposed an approach specializing our model and algorithm
for False Discovery Rate (FDR) estimation which plays an important role in many high
dimensional hypotheses testing framework. Instead of a single test as in common FDR
framework in the literature, we assumed a multivariate multiple hypotheses testing frame-
work whose global hypothesis Hj is precised True if and only if HY in kth test is True for
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all £ of r tests. The motivation is that multivariate FDR (mvFDR) should bring more im-
provement than the univariate FDR (univFDR) in case of multivariate statistics available.
Then we have r-dimensional observed p-values p, for each ith case of n cases. We estab-
lished a simple 2-component mixture model with one component known for the probit
transform of the n x r of matrix of p-values. Under conditional independence assumption,
the parameters could be estimated by a specific, constrained version of npEM algorithm.
The identifiability of parameters is inferred directly from the results in Theorem 8 of All-
man et al. [2009|. However, this identifiability property is destroyed when we extend to a
3-component mixture model because of the constraint Gaussian density imposed on pdf
of the null hypothesis as well as others constraints on the pdf of the alternative hypoth-
esis. Our new model and a constrained version of our mvnpEM algorithm allows to build
blocks of coordinates which is able not only to impose the constraints for the component
densities but also to keep their linearly dependent property, i.e. we can use within blocks
dependence to achieve identifiability of the model following the condition of Theorem 9
in Allman et al. [2009]. We specified a multivariate nonparametric EM algorithm with
the first component known as d,-dimensional standard normal distribution for ¢th block,
called mvnpEMNO1, which also uses the multivariate weighted kernel density estimator to
estimate the jth component density, for all j # 1.

To see the convenience of our new algorithm, we have discussed some comparison cri-
teria between our new “mvFDR” strategy (using our mvnpEMNO1 algorithm) and univFDR
strategy (using fdrtools of Strimmer [2008a|). As we mentioned, we cannot have a fair
comparison because the information from multivariate and univariate p-values is not com-
parable. The percentage of wrongly rejected cases (and of False Negative); the MSE on
the target level a over all the replications are however meaningful. The procedure of uni-
vFDR control in univariate case has a step of ordering the sequence of p-values which is
not possible in multivariate case. Some alternatives have been suggested. In mvFDR con-
trol, we apply our mvnpEMNO1 algorithm for the probit transform of multivariate p-values
and sorted the posterior probability of belonging to component 1 after the convergence.

In the implementation, some examples of a complex hypothesis testing model with
one component corresponding to the null and others components to the alternative were
simulated at the level of the probit transform of a multivariate p-value. The comparisons
from the FP and FN rates have precised the difference between univFDR strategy for each
coordinate and mvFDR strategy. Monte Carlo simulations also have been done to compare
the MSE on the target level a. The mvFDR strategy is definitely more effective and has
got the advantage in case of a 3-component model where the npEM does not work because
of the non-identifiability under some restrictions imposed on the component densities. The
mvnpEMNO1 is general for an arbitrary r-dimensional hypothesis testing so that designing
more complex models and applying to rich real dataset is an ongoing work. In addition,
studying the simulated models and real data to see how would behaves a procedure using
r results of the » univFDR, control to decide weather the global Hy or H; is true in m = 2
case is another area in which further work could bring some light.

We used parts of a large real dataset to compare the behavior of our constrained model
with the generic one. This data from a micro-array experiment contains the results from
the univEDR, which shows the individual percentage of rejected cases for all 10 scaffold
and 21 treatments for some maize hybridization experiment. On some 2-component mix-
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ture models built by selecting some treatments and designing the meaningful blocks of
coordinate according to the pairplots, the number of mvFDR control rejections from ap-
plying the constrained mvnpEMNO1 algorithm is more expected and accurate than from the
plain mvnpEM algorithm. Considering more complex models such as mixture with m > 3
components in a real data case is an interesting perspective.

Finally, our nonparametric mixture models with conditionally independent multivari-
ate component densities introduced in Chapter 3 is published in Computational Statistics
and Data Analysis journal, Vol 103, 1-16. The mvnpEM algorithm of this model is also
publicly available in the last update (version 1.0.4 released in January 2016) of the mix-
tools package Benaglia et al. [2009b] for the R statistical software R Core Team [2016].
Future revisions of this package may include the smoothed version mvnpMSL of mvnpEM as
well as the constrained algorithm mvnpEMNO1.

The idea in relaxing the conditional independence of coordinates and allowing depen-
dence within each block of coordinates and even within component has provided several
worth researches which can be applied for real data. Our models have opened many new
investigations in EM-like algorithm for mixture model problems and contributed effec-
tively in this direction as well.
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Appendix A

The help files from mixtools
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mvnpEM R Documentation

EM-like Algorithm for Nonparametric Mixture Models with Conditionally
Independent Multivariate Component Densities

Description

An extension of the original npEM algorithm, for mixtures of multivariate data where the coordinates of a row (case) in the data matrix are
assumed to be made of independent but multivariate blocks (instead of just coordinates), conditional on the mixture component
(subpopulation) from which they are drawn (Chauveau and Hoang 2015).

Usage

mvnpEM(x, mu®, blockid = 1l:ncol(x), samebw = TRUE,
bwdefault = apply(x,2,bw.nrd0®), init = NULL,
eps = le-8, maxiter = 500, verb = TRUE)

Arguments
X An n x r matrix of data. Each of the n rows is a case, and each case has r repeated measurements. These measurements are
assumed to be conditionally independent, conditional on the mixture component (subpopulation) from which the case is drawn.

mu@ Either an m x r matrix specifying the initial centers for the kmeans function, or an integer m specifying the number of initial
centers, which are then chosen randomly in kmeans

blockid A vector of length ridentifying coordinates (columns of x) that are in the same block. The default has all distinct elements,
indicating that the model has r blocks of dimension 1, in which case the model is handled directly by the npEM algorithm. See
example below for actual multivariate blocks example.

samebw Logical: If TRUE, use the same bandwidth per coordinate for all iteration and all components. If FALSE, use a separate bandwidth for
each component and coordinate, and update this bandwidth at each iteration of the algorithm using a suitably modified bw.nrd0
method as described in Benaglia et al (2011) and Chauveau and Hoang (2015).

bwdefault Bandwidth default for density estimation,a simplistic application of the default bw.nrd0 for each coordinate (column) of the data.

init Initialization method, based on an initial n x m matrix for the posterior probabilities. If NULL, a kmeans clustering with mu@ initial
centers is applied to the data and the initial matrix of posteriors is built from the result.

eps Tolerance limit for declaring algorithm convergence. Convergence is declared whenever the maximum change in any coordinate of
the lambda vector (of mixing proportion estimates) does not exceed eps.

maxiter The maximum number of iterations allowed; convergence may be declared before maxiter iterations (see eps above).

verb Verbose mode; if TRUE, print updates for every iteration of the algorithm as it runs

Value
mvnpEM returns a list of class mvnpEM with the following items:

data The raw data (an n x r matrix).

posteriors An n x m matrix of posterior probabilities for each observation (row).

lambda The sequence of mixing proportions over iterations.

blockid The blockid input argument. Needed by any method that produces density estimates from the output, like plot.mvnpEM.
samebw The samebw input argument. Needed by any method that produces density estimates from the output, like plot.mvnpEM.

bandwidth The final bandwidth matrix after convergence of the algorithm. Its shape depends on the samebw input argument. If samebw =
TRUE, a vectors with the bandwidth value for each of the r coordinates (same for all components and iterations). If samebw =
FALSE, a m x r matrix, where each row is associated to one component and gives the r bandwidth values, one for each coordinate.
Needed by any method that produces density estimates from the output, like plot.mvnpEM.

lambdahat The final mixing proportions.

loglik The sequence of pseudo log-likelihood values over iterations.

References

e Benaglia, T., Chauveau, D., and Hunter, D. R. (2009), An EM-like algorithm for semi- and non-parametric estimation in multivariate
mixtures, Journal of Computational and Graphical Statistics, 18, 505-526.

e Benaglia, T., Chauveau, D. and Hunter, D.R. (2011), Bandwidth Selection in an EM-like algorithm for nonparametric multivariate mixtures.
Nonparametric Statistics and Mixture Models: A Festschrift in Honor of Thomas P. Hettmansperger. World Scientific Publishing Co., pages
15-27.

e Chauveau, D., and Hoang, V. T. L. (2015), Nonparametric mixture models with conditionally independent multivariate component
densities, Preprint under revision. https://hal.archives-ouvertes.fr/hal-01094837

See Also

plot.mvnpEM, npEM



Examples

# Example as in Chauveau and Hoang (2015) with 6 coordinates

## Not run:

m=2; r=6; blockid <-c(1,1,2,2,3,3) # 3 bivariate blocks

# generate some data x ...

a <- mvnpEM(x, mu@=2, blockid, samebw=F) # adaptive bandwidth
plot(a) # this S3 method produces 6 plots of univariate marginals
summary(a)

## End(Not run)



plot.mvnpEM {mixtools} R Documentation

Plots of Marginal Density Estimates from the mvnpEM Algorithm Output

Description
Takes an object of class mvnpEM, as the one returned by the mvnpEM algorithm, and returns a set of plots of the density estimates for each

coordinate within each multivariate block. All the components are displayed on each plot so it is possible to see the mixture structure for each
coordinate and block. The final bandwidth values are also displayed, in a format depending on the bandwidth strategy .

Usage

## S3 method for class 'mvnpEM'
plot(x, truenorm = FALSE, mu = NULL, v = NULL,

lgdcex = 1, ...)
Arguments
X An object of class mvnpEM such as the output of the mvnpEM function

truenorm Mostly for checking purpose, if the nonparametric model is to be compared with a multivariate Gaussian mixture as the true model.
mu true mean parameters, for Gaussian models only (see above)

\ true covariance matrices, for Gaussian models only (see above)

lgdcex Character expansion factor for legend.

Any remaining arguments are passed to hist.

Value

plot.mvnpEM currently just plots the figure.
See Also

mvnpEM, npEM, density.npEM

Examples

# example as in Chauveau and Hoang (2015) with 6 coordinates

## Not run:

m=2; r=6; blockid <-c(1,1,2,2,3,3) # 3 bivariate blocks

# generate some data x ...

a <- mvnpEM(x, mu@=2, blockid, samebw=F) # adaptive bandwidth
plot(a) # this S3 method produces 6 plots of univariate marginals
summary(a)

## End(Not run)

[Package mixtools version 1.0.4 Index]
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Vy-Thuy-Lynh HOANG

Modeéles et algorithmes d’estimation pour des mélanges finis de densités de composantes
multivariées nonparamétriques et conditionnellement indépendantes

Résumé : Plusieurs auteurs ont proposé récemment des modéles et des algorithmes pour I’estimation
nonparamétrique de mélanges multivariés finis dont 'identifiabilité n’est pas toujours assurée. Entre les
modéles considérés, I’hypothése des coordonnées indépendantes conditionnelles & la sous-population de
provenance des individus fait I’objet d’une attention croissante, en raison des développements théoriques
et pratiques envisageables, particuliérement avec la multiplicité des variables qui entrent en jeu dans
le framework statistique moderne. Dans ce travail, nous considérons d’abord un modéle plus général
supposant I'indépendance, conditionnellement a la composante, de blocs multivariés de coordonnées au
lieu de coordonnées univariées, permettant toute structure de dépendance & l'intérieur de ces blocs. Par
conséquent, les fonctions de densité des blocs sont complétement multivariées et non paramétriques.
Nous présentons des arguments d’identifiabilité et introduisons pour I’estimation dans ce modéle deux
algorithmes méthodologiques dont les procédures de calcul ressemblent & un véritable algorithme EM
mais incluent une étape additionnelle d’estimation de densité: un algorithme rapide montrant Pefficacité
empirique sans justification théorique, et un algorithme lissé possédant une propriété de monotonie
comme certain algorithme EM, mais plus exigeant en terme de calcul. Nous discutons également les
méthodes efficaces en temps de calcul pour l'estimation et proposons quelques stratégies. FEnsuite,
nous considérons une extension multivariée des modéles de mélange utilisés dans le cadre de tests
d’hypothéses multiples, permettant une nouvelle version multivariée de controle du False Discovery
Rate. Nous proposons une version contrainte de notre algorithme précédent, adaptée spécialement a ce
modéle. Le comportement des algorithmes de type EM que nous proposons est étudié numériquement
dans plusieurs expérimentations de Monte Carlo et sur des données réelles de grande dimension et
comparé avec les méthodes existantes dans la littérature. Enfin, les codes de nos nouveaux algorithmes
sont progressivement ajoutés sous forme de nouvelles fonctions dans le package en libre accés mixtools
pour le logiciel de statistique R.

Mots clés : Algorithme EM, Estimation non-paramétrique de densité multivariées, Mélanges non-
paramétriques multivariés.

Models and estimation algorithms for nonparametric finite mixtures with conditionally
independent multivariate component, densities

Abstract: Recently several authors have proposed models and estimation algorithms for finite non-
parametric multivariate mixtures, whose identifiability is typically not obvious. Among the considered
models, the assumption of independent coordinates conditional on the subpopulation from which each
observation is drawn is subject of an increasing attention, in view of the theoretical and practical
developments it allows, particularly with multiplicity of variables coming into play in the modern
statistical framework. In this work we first consider a more general model assuming independence,
conditional on the component, of multivariate blocks of coordinates instead of univariate coordinates,
allowing for any dependence structure within these blocks. Consequently, the density functions of
these blocks are completely multivariate and nonparametric. We present identifiability arguments and
introduce for estimation in this model two methodological algorithms whose computational procedures
resemble a true EM algorithm but include an additional density estimation step: a fast algorithm
showing empirical efficiency without theoretical justification, and a smoothed algorithm possessing a
monotony property as any EM algorithm does, but more computationally demanding. We also discuss
computationally efficient methods for estimation and derive some strategies. Next, we consider a
multivariate extension of the mixture models used in the framework of multiple hypothesis testings,
allowing for a new multivariate version of the False Discovery Rate control. We propose a constrained
version of our previous algorithm, specifically designed for this model. The behavior of the EM-type
algorithms we propose is studied numerically through several Monte Carlo experiments and high
dimensional real data, and compared with existing methods in the literature. Finally, the codes of
our new algorithms are progressively implemented as new functions in the publicly-available package
mixtools for the R statistical software.

Keywords: EM algorithm, Nonparametric, Mixture models, multivariate component densities.

[MAPMO UMR 6628 - CNRS
dp Rue de Chartres - BP6759
- 45067 ORLEANS CEDEX]




