N. Agard and C. Bertozzi, Chemical Approaches To Perturb, Profile, and Perceive Glycans, Accounts of Chemical Research, vol.42, issue.6, pp.788-97, 2009.
DOI : 10.1021/ar800267j

URL : http://pubs.acs.org/doi/pdf/10.1021/ar800267j

D. Akramiene, A. Kondrotas, J. Didziapetriene, and E. Kevelaitis, Effects of beta-glucans on the immune system, Medicinan, vol.43, issue.8, pp.597-606, 2007.

M. Andersen, D. Schrama, T. Straten, P. Becker, and J. , Cytotoxic T Cells, Journal of Investigative Dermatology, vol.126, issue.1, pp.32-41, 2006.
DOI : 10.1038/sj.jid.5700001

P. Banerjee, E. Zuniga, I. Ojima, and I. Carrico, Targeted and armed oncolytic adenovirus via chemoselective modification, Bioorganic & Medicinal Chemistry Letters, vol.21, issue.17, pp.4985-4993, 2011.
DOI : 10.1016/j.bmcl.2011.05.039

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3413283/pdf

C. Bode, G. Zhao, F. Steinhagen, T. Kinjo, and D. Klinman, CpG DNA as a vaccine adjuvant, Expert Review of Vaccines, vol.19, issue.4, pp.499-511, 2011.
DOI : 10.1086/533467

L. Bracci, G. Schiavoni, A. Sistigu, and F. Belardelli, Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer, Cell Death & Differentiation, vol.118, issue.1, pp.15-25, 2014.
DOI : 10.1172/JCI34333

B. Calmels, Immunologie et cancer : mécanismes d'échappement tumoraux. Oncologie, 2004.
DOI : 10.1007/s10269-005-0124-1

G. Caron, D. Duluc, I. Frémaux, P. Jeannin, C. David et al., Direct Stimulation of Human T Cells via TLR5 and TLR7/8: Flagellin and R-848 Up-Regulate Proliferation and IFN-?? Production by Memory CD4+ T Cells, The Journal of Immunology, vol.175, issue.3, pp.1551-1558, 2005.
DOI : 10.4049/jimmunol.175.3.1551

A. Carpentier, L. Chen, F. Maltonti, and J. Delattre, Oligodeoxynucleotides containing CpG motifs can induce rejection of a neuroblastoma in mice, Cancer Res, vol.59, issue.21, pp.5429-5461, 1999.

A. Carpentier, Immunoth??rapie des cancers par oligonucl??otides immunostimulants, m??decine/sciences, vol.21, issue.1, pp.73-80, 2005.
DOI : 10.1051/medsci/200521173

URL : http://www.medecinesciences.org/articles/medsci/pdf/2005/01/medsci2005211p73.pdf

V. Catros-quemener, F. Bouet, and N. Genetet, Antitumor immunity and cellular cancer therapies, Med Sci, vol.19, issue.1, pp.43-53, 2003.

G. Chan, W. Chan, and D. Sze, The effects of ??-glucan on human immune and cancer cells, Journal of Hematology & Oncology, vol.2, issue.1, p.25, 2009.
DOI : 10.1186/1756-8722-2-25

K. Chuh and M. Pratt, Chemistry-enabled methods for the visualization of cell-surface glycoproteins in Metazoans, Glycoconjugate Journal, vol.362, issue.7, pp.443-54, 2015.
DOI : 10.1016/j.carres.2012.09.012

K. Chuh, B. Zaro, F. Piller, V. Piller, and M. Pratt, -GlcNAc Modification, Journal of the American Chemical Society, vol.136, issue.35, pp.12283-95, 2014.
DOI : 10.1021/ja504063c

D. Libero, G. Lau, S. Mori, and L. , Phosphoantigen Presentation to TCR ?? Cells, a Conundrum Getting Less Gray Zones. Front Immunol, p.679, 2015.

J. Dommerholt, S. Schmidt, R. Temming, L. Hendriks, F. Rutjes et al., Readily Accessible Bicyclononynes for Bioorthogonal Labeling and Three-Dimensional Imaging of Living Cells, Angewandte Chemie International Edition, vol.121, issue.49, pp.9422-9427, 2010.
DOI : 10.1002/cber.19881211118

J. Du, M. Meledeo, Z. Wang, H. Khanna, V. Paruchuri et al., Metabolic glycoengineering: Sialic acid and beyond, Glycobiology, vol.6, issue.52, pp.1382-401, 2009.
DOI : 10.1038/nmeth.1305

URL : https://academic.oup.com/glycob/article-pdf/19/12/1382/16653252/cwp115.pdf

E. Hage, F. Abouzahr-rifai, S. Meslin, F. Mami-chouaib, F. Chouaib et al., Immune response and cancer]. Bull Cancer, pp.57-67, 2008.

D. Euhus, C. Hudd, M. Laregina, and F. Johnson, Tumor measurement in the nude mouse, Journal of Surgical Oncology, vol.40, issue.4, pp.229-263, 1986.
DOI : 10.1002/jso.2930310402

D. Ferraro, N. Gaborit, R. Maron, H. Cohen-dvashi, Z. Porat et al., Inhibition of triple-negative breast cancer models by combinations of antibodies to EGFR, Proceedings of the National Academy of Sciences, vol.311, issue.1-2, pp.1815-1835, 2013.
DOI : 10.1016/j.jim.2006.01.018

B. Gantner, R. Simmons, S. Canavera, S. Akira, and D. Underhill, Collaborative Induction of Inflammatory Responses by Dectin-1 and Toll-like Receptor 2, The Journal of Experimental Medicine, vol.63, issue.9, pp.1107-1124, 2003.
DOI : 10.1093/infdis/163.5.1154

M. Goldstein, B. Varghese, J. Brody, R. Rajapaksa, H. Kohrt et al., A CpG-loaded tumor cell vaccine induces antitumor CD4+ T cells that are effective in adoptive therapy for large and established tumors, Blood, vol.117, issue.1, pp.118-145, 2011.
DOI : 10.1182/blood-2010-06-288456

M. Grammel and H. Hang, Chemical reporters for biological discovery, Nature Chemical Biology, vol.10, issue.8, 2013.
DOI : 10.1002/anie.196305651

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866016/pdf

S. Halder, S. Cotmore, J. Heimburg-molinaro, D. Smith, R. Cummings et al., Profiling of Glycan Receptors for Minute Virus of Mice in Permissive Cell Lines Towards Understanding the Mechanism of Cell Recognition, PLoS ONE, vol.69, issue.1, p.86909, 2014.
DOI : 10.1371/journal.pone.0086909.s001

S. Hapuarachchige, Y. Kato, and D. Artemov, Bioorthogonal two-component drug delivery in HER2(+) breast cancer mouse models. Sci Rep, p.24298, 2016.

M. Herbáth, Z. Szekeres, D. Kövesdi, K. Papp, A. Erdei et al., Coadministration of antigenconjugated and free CpG: effects of in vitro and in vivo interactions in a murine model

D. Hicklin, Z. Wang, F. Arienti, L. Rivoltini, G. Parmiani et al., beta2-Microglobulin mutations, HLA class I antigen loss, and tumor progression in melanoma., Journal of Clinical Investigation, vol.101, issue.12, 1998.
DOI : 10.1172/JCI498

J. Hudak and C. Bertozzi, Glycotherapy: New Advances Inspire a Reemergence of Glycans in Medicine, Chemistry & Biology, vol.21, issue.1, pp.16-37, 2014.
DOI : 10.1016/j.chembiol.2013.09.010

C. Iacobucci, S. Reale, J. Gal, D. Angelis, and F. , Dinuclear Copper Intermediates in Copper(I)-Catalyzed Azide-Alkyne Cycloaddition Directly Observed by Electrospray Ionization Mass Spectrometry, Angewandte Chemie International Edition, vol.52, issue.10, pp.3065-3073, 2015.
DOI : 10.1016/j.tetlet.2011.03.094

M. Irmler, M. Thome, M. Hahne, P. Schneider, K. Hofmann et al., Inhibition of death receptor signals by cellular FLIP, Nature, vol.370, issue.6638, pp.190-195, 1997.
DOI : 10.1038/370650a0

L. Jin, D. Tolentino, M. Melaimi, and G. Bertrand, Isolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne "click reaction". Sci Adv, Jun, vol.121, issue.5, p.1500304, 2015.

T. Ju and R. Cummings, A unique molecular chaperone Cosmc required for activity of the mammalian core 1 ??3-galactosyltransferase, Proceedings of the National Academy of Sciences, vol.13, issue.2, pp.16613-16621, 2002.
DOI : 10.1093/ndt/12.4.701

S. Kang, S. Lee, J. Na, H. Yoon, D. Lee et al., Cell labeling and tracking method without distorted signals by phagocytosis of macrophages. Theranostics, Feb, vol.124, issue.4, pp.420-451, 2014.

I. Khan, P. Agris, M. Yigit, and M. Royzen, In situ activation of a doxorubicin prodrug using imaging-capable nanoparticles, Chemical Communications, vol.32, issue.36, pp.6174-6181, 2016.
DOI : 10.1038/onc.2012.173

D. Klinman, Immunotherapeutic uses of CpG oligodeoxynucleotides, Nature Reviews Immunology, vol.22, issue.Suppl. 72, pp.249-58, 2004.
DOI : 10.1016/S0264-410X(03)00541-3

H. Koo, S. Lee, J. Na, S. Kim, S. Hahn et al., Bioorthogonal Copper-Free Click Chemistry In???Vivo for Tumor-Targeted Delivery of Nanoparticles, Angewandte Chemie International Edition, vol.50, issue.47, pp.11836-11876, 2012.
DOI : 10.1002/anie.201102459

R. Lacave, C. Larsen, and J. Robert, Cancérologie fondamentale. Collection L'innovation thérapeutique en cancérologie, John Libbey Eurotext, vol.389, 2005.

M. Lahoud, A. F. Zhang, J. Meuter, S. Policheni, A. Kitsoulis et al., DEC-205 is a cell surface receptor for CpG oligonucleotides, Proceedings of the National Academy of Sciences, vol.26, issue.3, pp.16270-16275, 2012.
DOI : 10.1182/blood-2006-05-015354

S. Laughlin, J. Baskin, S. Amacher, and C. Bertozzi, In Vivo Imaging of Membrane-Associated Glycans in Developing Zebrafish, Science, vol.99, issue.1, pp.664-671, 2008.
DOI : 10.1073/pnas.012583299

M. Lauriola, Y. Enuka, A. Zeisel, D. Uva, G. Roth et al., Diurnal suppression of EGFR signalling by glucocorticoids and implications for tumour progression and treatment, Nature Communications, vol.29, p.2014
DOI : 10.1093/bioinformatics/btt145

J. Lee, Y. Kim, H. Kim, Y. Kim, and W. Park, Immunostimulatory effect of laminarin on RAW 264.7 mouse macrophages. Molecules, pp.5404-5415, 2012.

S. Lee, H. Koo, J. Na, S. Han, H. Min et al., Chemical Tumor-Targeting of Nanoparticles Based on Metabolic Glycoengineering and Click Chemistry, ACS Nano, vol.8, issue.3, pp.2048-63, 2014.
DOI : 10.1021/nn406584y

S. Lee, S. Lee, J. Lee, J. Yhee, H. Yoon et al., Non-invasive stem cell tracking in hindlimb ischemia animal model using bio-orthogonal copper-free click chemistry, Biochemical and Biophysical Research Communications, vol.479, issue.4, pp.779-786, 2016.
DOI : 10.1016/j.bbrc.2016.09.132

N. Leone, N. Voirin, L. Roche, F. Binder-foucard, A. Woronoff et al., Projection de l'incidence et de la mortalité par cancer en France métropolitaine en 2015. Rapport technique. Saint-Maurice (Fra) : Institut de veille sanitaire, 2015. 62 p. Disponible sur le site de l

P. Li, Y. Zheng, H. Ran, J. Tan, Y. Lin et al., Ultrasound triggered drug release from 10-hydroxycamptothecin-loaded phospholipid microbubbles for targeted tumor therapy in mice, Journal of Controlled Release, vol.162, issue.2, pp.349-54, 2012.
DOI : 10.1016/j.jconrel.2012.07.009

H. Liu, B. Kwong, and D. Irvine, Membrane Anchored Immunostimulatory Oligonucleotides for In Vivo Cell Modification and Localized Immunotherapy, Angewandte Chemie International Edition, vol.36, issue.31, pp.7052-7057, 2011.
DOI : 10.1002/eji.200535210

A. Méjean and T. Lebret, La cascade m??tastatique : angiogen??se et nouveaux concepts, Progr??s en Urologie, vol.18, pp.156-66, 2008.
DOI : 10.1016/S1166-7087(08)74538-X

S. Mochizuki, H. Morishita, K. Kobiyama, T. Aoshi, K. Ishii et al., Immunization with antigenic peptides complexed with ??-glucan induces potent cytotoxic T-lymphocyte activity in combination with CpG-ODNs, Journal of Controlled Release, vol.220, pp.495-502, 2015.
DOI : 10.1016/j.jconrel.2015.11.008

K. Moremen, M. Tiemeyer, and A. Nairn, Vertebrate protein glycosylation: diversity, synthesis and function, Nature Reviews Molecular Cell Biology, vol.9, issue.7, pp.448-62, 2012.
DOI : 10.1242/jcs.02814

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3934011/pdf

M. Morvan and L. Lanier, NK cells and cancer: you can teach innate cells new tricks, Nature Reviews Cancer, vol.25, issue.1, pp.7-19
DOI : 10.1038/leu.2011.42

URL : https://cloudfront.escholarship.org/dist/prd/content/qt5t11r9h0/qt5t11r9h0.pdf

A. Neves, H. Stöckmann, R. Harmston, H. Pryor, I. Alam et al., Imaging sialylated tumor cell glycans in vivo, The FASEB Journal, vol.50, issue.8, pp.2528-2565, 2011.
DOI : 10.1053/j.gastro.2010.01.009

A. Neves, H. Stöckmann, Y. Wainman, J. Kuo, S. Fawcett et al., Imaging Cell Surface Glycosylation in Vivo Using ???Double Click??? Chemistry, Bioconjugate Chemistry, vol.24, issue.6, pp.934-975, 2013.
DOI : 10.1021/bc300621n

A. Neves, Y. Wainman, A. Wright, M. Kettunen, T. Rodrigues et al., Imaging Glycosylation In Vivo by Metabolic Labeling and Magnetic Resonance Imaging, Angewandte Chemie International Edition, vol.16, issue.4, pp.1286-90, 2016.
DOI : 10.1002/jmri.10180

C. Nolte, P. Mayer, and B. Straub, Isolation of a Copper(I) Triazolide: A ???Click??? Intermediate, Angewandte Chemie International Edition, vol.30, issue.12
DOI : 10.1002/anie.200604444

O. Brien, X. Heflin, K. Lavigne, L. Yu, K. Kim et al., Lectin Site Ligation of CR3 Induces Conformational Changes and Signaling, Journal of Biological Chemistry, vol.51, issue.5, pp.3337-3385, 2012.
DOI : 10.1002/jcp.21603

C. Pardoux and S. Chouaiba, Les cytokines : Modulateurs physiologiques de l'immunit?? et outils de l'immuno-intervention, Revue Fran??aise des Laboratoires, vol.2000, issue.328, pp.31-36, 2000.
DOI : 10.1016/S0338-9898(00)80105-5

O. Pearce, H. Läubli, A. Verhagen, P. Secrest, J. Zhang et al., Inverse hormesis of cancer growth mediated by narrow ranges of tumor-directed antibodies, Proceedings of the National Academy of Sciences, vol.6, issue.4, pp.5998-6003, 2014.
DOI : 10.1146/annurev-pathol-011110-130315

H. Pegram, D. Andrews, M. Smyth, P. Darcy, and M. Kershaw, Activating and inhibitory receptors of natural killer cells, Immunology and Cell Biology, vol.180, issue.2, pp.216-240, 2011.
DOI : 10.4049/jimmunol.180.3.1686

P. Alain, Les révolutions de la recherche sur le cancer Ouvrage réalisé et diffusé par la Fondation ARC dans le cadre de sa mission sociale. 2015. 127p. Disponible sur le site de la Fondation ARC

F. Piller, A. Mongis, and V. Piller, Metabolic Glyco-Engineering in Eukaryotic Cells and Selected Applications, Methods Mol Biol, vol.1321, pp.335-59, 2015.
DOI : 10.1007/978-1-4939-2760-9_23

G. Pratesi, G. Petrangolini, M. Tortoreto, A. Addis, S. Belluco et al., Therapeutic Synergism of Gemcitabine and CpG-Oligodeoxynucleotides in an Orthotopic Human Pancreatic Carcinoma Xenograft, Cancer Research, vol.65, issue.14, pp.6388-93, 2005.
DOI : 10.1158/0008-5472.CAN-05-0602

C. Qi, Y. Cai, L. Gunn, C. Ding, B. Li et al., Differential pathways regulating innate and adaptive antitumor immune responses by particulate and soluble yeast-derived ?-glucans. Blood, pp.6825-6861, 2011.

S. Read, G. Currie, and A. Bacic, Analysis of the structural heterogeneity of laminarin by electrospray-ionisation-mass spectrometry, Carbohydrate Research, vol.281, issue.2, pp.187-201, 1996.
DOI : 10.1016/0008-6215(95)00350-9

N. Restifo, Countering the 'counterattack' hypothesis, Nature Medicine, vol.130, issue.3, p.259, 2001.
DOI : 10.7326/0003-4819-130-7-199904060-00020

S. Rosenberg, N. Restifo, J. Yang, R. Morgan, and M. Dudley, Adoptive cell transfer: a clinical path to effective cancer immunotherapy, Nature Reviews Cancer, vol.17, issue.4, pp.299-308, 2008.
DOI : 10.4049/jimmunol.167.11.6356

S. Rosenberg, J. Yang, D. Schwartzentruber, P. Hwu, F. Marincola et al., Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma, Nature Medicine, vol.156, issue.3, 1998.
DOI : 10.1016/0167-5699(90)90113-N

R. Rossin, P. Verkerk, S. Van-den-bosch, R. Vulders, I. Verel et al., In???Vivo Chemistry for Pretargeted Tumor Imaging in Live Mice, Angewandte Chemie International Edition, vol.34, issue.19, pp.3375-3383, 2010.
DOI : 10.1016/j.nucmedbio.2007.04.001

C. Saeui, E. Urias, L. Liu, M. Mathew, and K. Yarema, Metabolic glycoengineering bacteria for therapeutic, recombinant protein, and metabolite production applications, Glycoconjugate Journal, vol.103, issue.360, p.2015
DOI : 10.1073/pnas.0605418103

H. Shirota and D. Klinman, CpG-conjugated apoptotic tumor cells elicit potent tumor-specific immunity, Cancer Immunology, Immunotherapy, vol.5, issue.5, pp.659-69, 2011.
DOI : 10.1038/nrc1586

H. Shirota, D. Tross, and D. Klinman, CpG Oligonucleotides as Cancer Vaccine Adjuvants, Vaccines, vol.6, issue.4, pp.390-407, 2015.
DOI : 10.1126/science.1245316

URL : http://www.mdpi.com/2076-393X/3/2/390/pdf

Y. Shirota, H. Shirota, and D. Klinman, Intratumoral injection of CpG oligonucleotides induces the differentiation and reduces the immunosuppressive activity of myeloid-derived suppressor cells, J Immunol Feb, vol.15188, issue.4, pp.1592-1601, 2012.

E. Sletten and C. Bertozzi, From Mechanism to Mouse: A Tale of Two Bioorthogonal Reactions, Accounts of Chemical Research, vol.44, issue.9
DOI : 10.1021/ar200148z

R. Sprung, A. Nandi, Y. Chen, S. Kim, D. Barma et al., Tagging-via-Substrate Strategy for Probing O-GlcNAc Modified Proteins, Journal of Proteome Research, vol.4, issue.3, pp.950-957, 2005.
DOI : 10.1021/pr050033j

P. Taylor, L. Martinez-pomares, M. Stacey, H. Lin, G. Brown et al., MACROPHAGE RECEPTORS AND IMMUNE RECOGNITION, Annual Review of Immunology, vol.23, issue.1, pp.901-945, 2005.
DOI : 10.1146/annurev.immunol.23.021704.115816

B. Temizoz, E. Kuroda, and K. Ishii, Vaccine adjuvants as potential cancer immunotherapeutics, International Immunology, vol.2, issue.7
DOI : 10.1093/annonc/mdt536

URL : https://academic.oup.com/intimm/article-pdf/28/7/329/18323781/dxw015.pdf

S. Tohme, H. Yazdani, A. Khafaji, A. Chidi, P. Loughran et al., Neutrophil Extracellular Traps Promote the Development and Progression of Liver Metastases after Surgical Stress, Cancer Research, vol.76, issue.6, pp.1367-80, 2016.
DOI : 10.1158/0008-5472.CAN-15-1591

J. Tom, R. Mancini, and A. Esser-kahn, Covalent modification of cell surfaces with TLR agonists improves & directs immune stimulation, Chemical Communications, vol.190, issue.83, pp.9618-9638, 2013.
DOI : 10.1084/jem.190.12.1909

A. Torosantucci, C. Bromuro, P. Chiani, D. Bernardis, F. Berti et al., A novel glyco-conjugate vaccine against fungal pathogens, The Journal of Experimental Medicine, vol.14, issue.5, pp.597-606, 2005.
DOI : 10.1099/00222615-27-4-233

A. Toubert, N. Dulphy, V. Tieng, R. Tamouza, and D. Charron, R??cepteurs des lymphocytes Natural Killer et r??ponses au stress, Transfusion Clinique et Biologique, vol.10, issue.3, pp.109-121, 2003.
DOI : 10.1016/S1246-7820(03)00041-7

D. Vaux, C. S. Adams, and J. , Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells, Nature, vol.335, issue.6189, pp.440-442, 1988.
DOI : 10.1038/335440a0

V. Vetvicka, Glucan-immunostimulant, adjuvant, potential drug, World Journal of Clinical Oncology, vol.2, issue.2, 2011.
DOI : 10.5306/wjco.v2.i2.115

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3095473/pdf

J. Vollmer and A. Krieg, Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev, pp.195-204, 2009.

J. Volman, J. Ramakers, and J. Plat, Dietary modulation of immune function by beta-glucans

S. Walachowski, G. Tabouret, and G. Foucras, Triggering Dectin-1-Pathway Alone Is Not Sufficient to Induce Cytokine Production by Murine Macrophages, PLOS ONE, vol.78, issue.2, p.148464
DOI : 10.1371/journal.pone.0148464.s005

H. Wang, E. Rayburn, W. Wang, E. Kandimalla, S. Agrawal et al., Immunomodulatory oligonucleotides as novel therapy for breast cancer:pharmacokinetics, in vitro and in vivo anticancer activity, and potentiation of antibody therapy, Mol Cancer Ther, 2006.

G. Weiner, H. Liu, J. Wooldridge, C. Dahle, and A. Krieg, Immunostimulatory oligodeoxynucleotides containing the CpG motif are effective as immune adjuvants in tumor antigen immunization, Proceedings of the National Academy of Sciences, vol.28, issue.1, pp.10833-10840, 1997.
DOI : 10.2165/00003088-199528010-00002

C. Witte, V. Martos, H. Rose, S. Reinke, S. Klippel et al., Live-cell MRI with Xenon Hyper-CEST Biosensors Targeted to Metabolically Labeled Cell-Surface Glycans, Angewandte Chemie International Edition, vol.107, issue.9, pp.2806-2816, 2015.
DOI : 10.1073/pnas.0912081107

B. Worrell, J. Malik, and V. Fokin, Direct evidence of a dinuclear copper intermediate in Cu(I)-catalyzed azide-alkyne cycloadditions. Science, pp.457-60, 2013.

G. Wurz, C. Kao, and M. Degregorio, Novel cancer antigens for personalized immunotherapies: latest evidence and clinical potential, Therapeutic Advances in Medical Oncology, vol.7, issue.1, 2016.
DOI : 10.3892/or.2014.3016

Y. Wu, Y. Ding, Y. Tanaka, L. Shen, C. Wei et al., ???? T Cells and Their Potential for Immunotherapy, International Journal of Biological Sciences, vol.10, issue.2, pp.119-154, 2014.
DOI : 10.7150/ijbs.7823

R. Xie, L. Dong, Y. Du, Y. Zhu, R. Hua et al., In vivo metabolic labeling of sialoglycans in the mouse brain by using a liposome-assisted bioorthogonal reporter strategy, Proceedings of the National Academy of Sciences, vol.1686, issue.3
DOI : 10.1021/ja504063c

P. Natl, A. Sci, and U. A. , 5173-8. 1. Basic tissue culture equipment: Vertical laminar flow tissue culture hood, humid CO 2 incubator, centrifuge, inverted microscope , hemocytometer (cell counting chamber), sterile tissue culture plasticware (6-well plates, Corning), 2016.

®. Excell, . Cho, and . Free, Sigma-Aldrich) with 2 mM glutamine, antibiotics (100 units/mL of penicillin, 100 ?g/mL of streptomycin)

M. Cambridge and D. Lombardo, ) for the CHO-ldlD cell line, and Dr The work received support from the Ligue Nationale Contre le Cancer (Région Grand Ouest) and A, Mounting medium: For example Vectashield (Vector LabsINSERM UMR 911 Mongis acknowledges a stipend from the Ligue Nationale Contre le Cancer. We would like to thank D. Gosset (CBM, Orléans) for help with flow cytometry. Metabolic Glyco-Engineering 764

R. 1. Mahal, L. Bertozzi, and C. , Engineered cell surfaces: fertile ground for molecular landscaping, Chemistry & Biology, vol.4, issue.6, pp.415-422, 1997.
DOI : 10.1016/S1074-5521(97)90193-9

D. Dube and C. Bertozzi, Metabolic oligosaccharide engineering as a tool for glycobiology, Current Opinion in Chemical Biology, vol.7, issue.5, pp.616-625, 2003.
DOI : 10.1016/j.cbpa.2003.08.006

P. Chang and C. Bertozzi, Imaging beyond the proteome, Chemical Communications, vol.31, issue.71, pp.8864-8879, 2012.
DOI : 10.1364/OL.31.001872

H. Freeze, A. Elbein, A. Varki, R. Cummings, J. Esko et al., Glycosylation precursors Essentials of glycobiology, Etzler ME, pp.47-61, 2009.

M. Tang, S. Odejinmi, and H. Vankayalapati, Innovative therapy for Classic Galactosemia ??? Tale of two HTS, Molecular Genetics and Metabolism, vol.105, issue.1, pp.44-55, 2012.
DOI : 10.1016/j.ymgme.2011.09.028

A. Bergfeld, O. Pearce, and S. Diaz, -Glycolyl Groups, Journal of Biological Chemistry, vol.125, issue.34, pp.28865-28881, 2012.
DOI : 10.1093/oxfordjournals.jbchem.a022293

URL : http://www.jbc.org/content/287/34/28865.full.pdf

L. Liu, Y. Xu, and C. Hirschberg, The role of nucleotide sugar transporters in development of eukaryotes, Seminars in Cell & Developmental Biology, vol.21, issue.6, pp.600-608, 2010.
DOI : 10.1016/j.semcdb.2010.02.002

R. Augustin, The protein family of glucose transport facilitators: It's not only about glucose after all, IUBMB Life, vol.25, issue.Part 3, pp.315-333, 2010.
DOI : 10.1042/bj2900701

E. Kim, S. Sampathkumar, and M. Jones, -Acetylmannosamine Analogs in Jurkat Cells, Journal of Biological Chemistry, vol.269, issue.18, pp.18342-18352, 2004.
DOI : 10.1093/glycob/cwg022

S. Pouilly, V. Piller, and F. Piller, Metabolic glycoengineering through the mammalian GalNAc salvage pathway, FEBS Journal, vol.15, issue.4, pp.586-598, 2012.
DOI : 10.1093/glycob/cwh151

URL : https://hal.archives-ouvertes.fr/hal-00726255

C. Campbell, U. Aich, and C. Weier, Targeting Pro-Invasive Oncogenes with Short Chain Fatty Acid-Hexosamine Analogues Inhibits the Mobility of Metastatic MDA-MB-231 Breast Cancer Cells, Journal of Medicinal Chemistry, vol.51, issue.24, pp.8135-8147, 2008.
DOI : 10.1021/jm800873k

Z. Wang, J. Du, and P. Che, Hexosamine analogs: from metabolic glycoengineering to drug discovery, Current Opinion in Chemical Biology, vol.13, issue.5-6, pp.565-572, 2009.
DOI : 10.1016/j.cbpa.2009.08.001

M. Allen and D. Walker, The isolation and preliminary characterization of, 1980.

F. Piller, M. Hanlon, and R. Hill, Co-purification and characterization of UDP-glucose 4-epimerase and UDP-Nacetylglucosamine 4-epimerase from porcine submaxillary glands, J Biol Chem, vol.258, pp.10774-10778, 1983.

M. Boyce, I. Carrico, and A. Ganguli, Metabolic cross-talk allows labeling of O-linked ??-N-acetylglucosamine-modified proteins via the N-acetylgalactosamine salvage pathway, Proceedings of the National Academy of Sciences, vol.293, issue.1, pp.3141-3146, 2011.
DOI : 10.1006/abio.2001.5091

B. Zaro, Y. Yang, and H. Hang, Chemical reporters for fluorescent detection and identification of O-GlcNAc-modified proteins reveal glycosylation of the ubiquitin ligase NEDD4-1, Proceedings of the National Academy of Sciences, vol.34, issue.5, pp.8146-8151, 2011.
DOI : 10.1021/bi00005a025

S. Pouilly, V. Bourgeaux, and F. Piller, Evaluation of Analogues of GalNAc as Substrates for Enzymes of the Mammalian GalNAc Salvage Pathway, ACS Chemical Biology, vol.7, issue.4, pp.753-760, 2012.
DOI : 10.1021/cb200511t

URL : https://hal.archives-ouvertes.fr/hal-00726252

A. Bergfeld, O. Pearce, and S. Diaz, -Glycolyl Groups, Journal of Biological Chemistry, vol.415, issue.34, pp.28898-28916, 2012.
DOI : 10.1023/A:1020256004616

URL : http://www.jbc.org/content/287/34/28865.full.pdf

S. Barthel, A. Antonopoulos, and F. Cedeno-laurent, -Glycans without Direct Incorporation, Journal of Biological Chemistry, vol.16, issue.24, pp.21717-21731, 2011.
DOI : 10.1242/jcs.053678

K. Chuh, B. Zaro, and F. Piller, -GlcNAc Modification, Journal of the American Chemical Society, vol.136, issue.35, pp.12283-12295, 2014.
DOI : 10.1021/ja504063c

J. Du, M. Meledeo, and Z. Wang, Metabolic glycoengineering: Sialic acid and beyond, Glycobiology, vol.6, issue.52, pp.1382-1401, 2009.
DOI : 10.1038/nmeth.1305

URL : https://academic.oup.com/glycob/article-pdf/19/12/1382/16653252/cwp115.pdf

L. Dafik, M. Alarcao, and K. Kumar, Fluorination of mammalian cell surfaces via the sialic acid biosynthetic pathway, Bioorganic & Medicinal Chemistry Letters, vol.18, issue.22, pp.5945-5947, 2008.
DOI : 10.1016/j.bmcl.2008.09.010

H. Gross and R. Brossmer, Enzymatic introduction of a fluorescent sialic acid into oligosaccharide chains of glycoproteins, European Journal of Biochemistry, vol.245, issue.3, pp.583-589, 1988.
DOI : 10.1016/0076-6879(66)08014-5

S. Han, B. Collins, and P. Bengtson, Homomultimeric complexes of CD22 in B cells revealed by protein-glycan cross-linking, Nature Chemical Biology, vol.170, issue.2, 2005.
DOI : 10.1016/S0959-440X(02)00375-5

H. Moller, V. Bohrsch, and J. Bentrop, Glycan-Specific Metabolic Oligosaccharide Engineering of C7-Substituted Sialic Acids, Angewandte Chemie International Edition, vol.92, issue.24, pp.5986-5990, 2012.
DOI : 10.1016/j.ygeno.2008.05.008

T. Angata and A. Varki, Chemical Diversity in the Sialic Acids and Related ??-Keto Acids:??? An Evolutionary Perspective, Chemical Reviews, vol.102, issue.2, pp.439-469, 2002.
DOI : 10.1021/cr000407m

M. Sawa, T. Hsu, and T. Itoh, Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo, Proceedings of the National Academy of Sciences, vol.125, issue.32, pp.12371-1236, 2006.
DOI : 10.1021/ja0302836

T. Hsu, S. Hanso, and K. Kishikaw, Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells, Proceedings of the National Academy of Sciences, vol.102, issue.32, pp.2614-2619, 2007.
DOI : 10.1073/pnas.0406547102

C. Anderson, I. Wallace, and C. Somerville, Metabolic click-labeling with a fucose analog reveals pectin delivery, architecture, and dynamics in Arabidopsis cell walls, Proceedings of the National Academy of Sciences, vol.132, issue.47, pp.1329-1334, 2012.
DOI : 10.1021/ja106553e

K. Dehnert, B. Beahm, and T. Huynh, Metabolic Labeling of Fucosylated Glycans in Developing Zebrafish, ACS Chemical Biology, vol.6, issue.6, pp.547-552, 2011.
DOI : 10.1021/cb100284d

Y. Zeng, T. Ramya, and A. Dirksen, High-efficiency labeling of sialylated glycoproteins on living cells, Nature Methods, vol.268, issue.3, pp.207-209, 2009.
DOI : 10.1016/S0304-4165(01)00211-2

S. Laughlin and C. Bertozzi, Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation, Nature Protocols, vol.5, issue.11, pp.2930-2944, 2007.
DOI : 10.1038/nprot.2007.422

C. Rillahan, A. Antonopoulos, and C. Lefort, Global metabolic inhibitors of sialyl- and fucosyltransferases remodel the glycome, Nature Chemical Biology, vol.179, issue.7, pp.661-668, 2012.
DOI : 10.1080/10739680500466376

D. Kingsley, K. Kozarsky, and L. Hobbie, Reversible defects in O-linked glycosylation and LDL receptor expression in a UDP-GalUDP-GalNAc 4-epimerase deficient mutant, Cell, vol.44, issue.5, pp.749-759, 1986.
DOI : 10.1016/0092-8674(86)90841-X

Y. Hong and P. Stanley, Gene, Journal of Biological Chemistry, vol.60, issue.52, pp.53045-53054, 2003.
DOI : 10.1212/01.WNL.0000061617.71839.42

URL : https://hal.archives-ouvertes.fr/hal-00123930

C. Whitman, F. Yang, and J. Kohler, Modified GM3 gangliosides produced by metabolic oligosaccharide engineering, Bioorganic & Medicinal Chemistry Letters, vol.21, issue.17, pp.5006-5010, 2011.
DOI : 10.1016/j.bmcl.2011.04.128

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3156312/pdf

R. Van-geel, G. Pruijn, and F. Van-delft, Preventing Thiol-Yne Addition Improves the Specificity of Strain-Promoted Azide???Alkyne Cycloaddition, Bioconjugate Chemistry, vol.23, issue.3, pp.392-398, 2012.
DOI : 10.1021/bc200365k

R. Lim and Q. Lin, Bioorthogonal chemistry: a covalent strategy for the study of biological systems, Science China Chemistry, vol.6, issue.1, pp.61-70, 2010.
DOI : 10.1007/s11426-010-0020-4

?. Associated, Supporting Information The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.bioconj- chem.7b00042. Figures showing the preparation, purification, and characterization of experimental compounds and flow cytometry histograms

J. Ca-cancer and . Clin, Guidance Development Review Committee, Working Group for Clinic Studies of Cancer Immunotherapy, Working Group for Effector Cell Therapy, Working Group for CMC/Non-Clinical Studies, Working Group for Cancer Vaccines and Adjuvants, Working Group for Anti-immune Checkpoint Therapy and Comprehensive Cancer Immunotherapy, Biostatistics Subcommittee, vol.62, issue.2, p.2015, 2015.

H. Fukuhara, Y. Ino, T. Todo, D. N. Khalil, E. L. Smith et al., The future of cancer treatment: immunomodulation, CARs and combination immunotherapy Overcoming tumor-mediated immunosuppression Improving cancer immunotherapy by targeting tumor-induced immune suppression Vaccine adjuvants as potential cancer immunotherapeutics CpG Oligonucleotides as Cancer Vaccine Adjuvants. Vaccines (Basel, Switz.) 3, 390?407 Immunostimulatory properties and antitumor activities of glucans) ?-Glucans and their applications in cancer therapy: focus on human studies N- Glycolylneuraminic acid in human tumours Cu-free click cycloaddition reactions in chemical biology Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology In vivo imaging of Caenorhabditis elegans glycans Imaging the sialome during zebrafish development with copper-free click chemistry, Guidance on cancer immunotherapy development in early-phase clinical studies. Cancer Sci. 106, 1761?1771. (3) Cancer Sci. 107, 1373?1379 125?140. (7) Temizoz, 623?634. (12)) Copper-free click chemistry in living animals. Proc. Natl. Acad. Sci. U. S. A. 107, pp.329-338, 2001.

W. Meng, R. Zhao, J. Wang, S. Q. , C. et al., Glycan imaging in intact rat hearts and glycoproteomic analysis reveal the upregulation of sialylation during cardiac hypertrophy, J. Am. Chem, 2014.

5. Koo, H. Lee, S. Na, J. H. Kim, S. H. Hahn et al., Bioorthogonal copperfree click chemistry in vivo for tumor-targeted delivery of nanoparticles Chemical tumor-targeting of nanoparticles based on metabolic glycoengineering and click chemistry, Proc. Natl. Acad. Sci. U. S. A. 113, 2012.

J. Brindle, K. M. Neves, A. A. Sto?-ckmann, H. Wainman, Y. A. Kuo et al., Imaging sialylated tumor cell glycans in vivo Imaging cell surface glycosylation in vivo using ?double click? chemistry, 2528?2537. (22), 2011.

R. Xie, L. Dong, R. Huang, S. Hong, R. Lei et al., Bioconjugate Chemistry Article DOI: 10.1021/acs.bioconjchem.7b00042 Targeted Ultrasound-Assisted Cancer-Selective Chemical Labelling and Subsequent Cancer Imaging using Click Chemistry A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation Analysis of the structural heterogeneity of laminarin by electrospray-ionisation-mass spectrometry The Scavenger Receptor SREC-I Cooperates with Toll-Like Receptors to Trigger Inflammatory Innate Immune Responses (2014) The class A scavenger receptor SR-A/CD204 and the class B scavenger receptor CD36 regulate immune functions of macrophages differently Role of scavenger receptor MARCO in macrophage responses to CpG oligodeoxynucleotides Laminarin-mediated targeting to Dectin-1 enhances antigen-specific immune responses, 5452?5456. (26) Vivo Targeting of Metabolically Labelled Cancers with Ultra-Small Silica Nanoconjugates. Theranostics 6, 1467?1476. (29) Murshid, 826?847. (31), pp.1308-1312, 1996.

R. Touret, N. Janotova?, T. Janotova?, . Jalovecka?, M. Jalovecka? et al., Enhanced immunogenicity of a tricomponent mannan tetanus toxoid conjugate vaccine targeted to dendritic cells via Dectin-1 by incorporating ?-glucan The use of anchored agonists of phagocytic receptors for cancer immunotherapy: B16-F10 murine melanoma model CpG-conjugated apoptotic tumor cells elicit potent tumor-specific immunity, J. Immunol. PLoS One Cancer Immunol. Immunother, vol.190, issue.60, pp.4116-4128, 2011.