W. Koch and M. C. Holthausen, A Chemist's Guide to Density Functional Theory
DOI : 10.1002/3527600043

A. C. Phillips, Introduction to Quantum Mechanics, 2013.

D. B. Cook, Handbook of Computational Quantum Chemistry. Dover Books on Chemistry, 2005.

T. Tsuneda, Density Functional Theory in Quantum Chemistry
DOI : 10.1007/978-4-431-54825-6

F. Jensen, Introduction to Computational Chemistry, Great Britain, 1999.

J. G. Lee, Computational Materials Science: An Introduction, Second Edition, 2016.

I. N. Levine, Quantum Chemistry. Pearson Education, 2013, pp.3-6

P. W. Atkins and R. S. Friedman, Molecular Quantum Mechanics, 2011.

D. A. Mcquarrie, Quantum Chemistry, 2008.

]. V. Balzani and S. Campagna, Photochemistry and Photophysics of Coordination Compounds II. Topics in Current Chemistry, Bibliography, issue.1, 2007.

B. P. Chan, Biomedical Applications of Photochemistry, Tissue Engineering Part B: Reviews, vol.16, issue.5, pp.509-522, 2010.
DOI : 10.1089/ten.teb.2009.0797

P. S. Wagenknecht and P. C. Ford, Metal centered ligand field excited states: Their roles in the design and performance of transition metal based photochemical molecular devices, Coordination Chemistry Reviews, vol.255, issue.5-6, pp.591-616, 2011.
DOI : 10.1016/j.ccr.2010.11.016

V. Balzani, G. Bergamini, and P. Ceroni, Photochemistry and photocatalysis, Rendiconti Lincei, vol.131, issue.S1, pp.125-142, 2017.
DOI : 10.1021/ja809108y

Q. Sun, S. Mosquera-vazquez, Y. Suffren, J. Hankache, N. Amstutz et al., On the role of ligand-field states for the photophysical properties of ruthenium(II) polypyridyl complexes, Coordination Chemistry Reviews, vol.282, issue.283, pp.87-99, 2015.
DOI : 10.1016/j.ccr.2014.07.004

C. Daniel, Photochemistry and photophysics of transition metal complexes: Quantum chemistry, Coordination Chemistry Reviews, vol.282, issue.283, pp.282-28319, 2015.
DOI : 10.1016/j.ccr.2014.05.023

B. Wardle, Principles and Applications of Photochemistry, 2009.

M. Nic and J. Jirat, Division of Chemical Nomenclature, Structure Representation International Union of Pure, Applied Chemistry, and B. Kosata. IUPAC goldbook. IUPAC, 2006.

M. Sauer, J. Hofkens, and J. Enderlein, Handbook of Fluorescence Spectroscopy and Imaging: From Ensemble to Single Molecules, 2010.
DOI : 10.1002/9783527633500

A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser et al., Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence, Coordination Chemistry Reviews, vol.84, p.85, 1988.
DOI : 10.1016/0010-8545(88)80032-8

B. Valeur and M. N. Berberan-santos, Molecular Fluorescence: Principles and Applications, 2013.
DOI : 10.1002/9783527650002

J. Michl and V. V. Bona?i?-kouteck, Kouteck`y. Electronic aspects of organic photochemistry, 1990.

C. Wawire, Theoretical Investigation of Ruthenium Photosensitizers, 2012.

M. Kasha, Characterization of electronic transitions in complex molecules, Discussions of the Faraday Society, vol.9, pp.14-19, 1950.
DOI : 10.1039/df9500900014

D. Ganten and K. , Stokes Shift, pp.1807-1807, 2006.

V. Balzani, P. Ceroni, and A. Juris, Photochemistry and Photophysics: Concepts, 2014.

M. A. Robb and M. Olivucci, Photochemical processes: potential energy surface topology and rationalization using VB arguments, Journal of Photochemistry and Photobiology A: Chemistry, vol.144, issue.2-3, pp.237-243, 2001.
DOI : 10.1016/S1010-6030(01)00453-1

]. J. Slater, A simplification of the Hartree-Fock method, Bibliography Phys. Rev, vol.81, issue.13, p.385, 1951.

T. Tsuneda, Density Functional Theory in Quantum Chemistry
DOI : 10.1007/978-4-431-54825-6

D. B. Cook, Handbook of Computational Quantum Chemistry. Dover Books on Chemistry, 2005.

T. Helgaker, P. Jorgensen, and J. Olsen, Molecular Electronic-Structure Theory, 2014.
DOI : 10.1002/9781119019572

URL : http://cds.cern.ch/record/1529252/files/9781118531471_TOC.pdf

R. F. Nalewajski, Perspectives in Electronic Structure Theory, 2012.
DOI : 10.1007/978-3-642-20180-6

G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid. Masters Series in Physics and Astronomy, 2005.

A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, 1982.

W. Koch and M. C. Holthausen, A Chemist's Guide to Density Functional Theory
DOI : 10.1002/3527600043

J. C. Slater, The Theory of Complex Spectra, Physical Review, vol.35, issue.10, pp.1293-1322, 1929.
DOI : 10.1007/BF01379806

F. Jensen, Introduction to Computational Chemistry, Great Britain, 1999.

L. Piela, Ideas of Quantum Chemistry

J. Kobus, Diatomic Molecules: Exact Solutions of HF Equations, Adv. Quantum Chem, vol.28, pp.1-14, 1997.
DOI : 10.1016/S0065-3276(08)60203-8

C. C. Roothaan, New Developments in Molecular Orbital Theory, Reviews of Modern Physics, vol.46, issue.2, p.69, 1951.
DOI : 10.1051/jcp/1949460497

C. J. Cramer, Essentials of Computational Chemistry Theories and Models, Great Britain, 2004.

]. W. Koch and M. C. Holthausen, A Chemist's Guide to Density Functional Theory, Bibliography, issue.1, 2001.
DOI : 10.1002/3527600043

R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, 1989.
DOI : 10.1007/978-94-009-9027-2_2

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review, vol.80, issue.3B, p.864, 1964.
DOI : 10.1088/0370-1328/80/5/307

M. Levy, Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem, Proceedings of the National Academy of Sciences, vol.76, issue.12, pp.6062-6065, 1979.
DOI : 10.1073/pnas.76.12.6062

H. Elliott, R. M. Lieb, J. Dreizler, and P. Da, Density functional methods in physics, Nato Asi Series B, vol.123, 1985.

L. H. Thomas, The calculation of atomic fields, Mathematical Proceedings of the Cambridge Philosophical Society, pp.542-548, 1927.

E. Teller, On the Stability of Molecules in the Thomas-Fermi Theory, Reviews of Modern Physics, vol.99, issue.4
DOI : 10.1103/PhysRev.99.1291

E. H. Lieb, Thomas-fermi and related theories of atoms and molecules, Reviews of Modern Physics, vol.31, issue.4, p.603, 1981.
DOI : 10.1143/JPSJ.31.882

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, vol.119, issue.4A, p.1133, 1965.
DOI : 10.1103/PhysRev.119.1153

D. M. Ceperley and B. J. Alder, Ground State of the Electron Gas by a Stochastic Method, Physical Review Letters, vol.34, issue.7, p.566, 1980.
DOI : 10.1039/tf9383400678

G. Ortiz and P. Ballone, Correlation energy, structure factor, radial distribution function, and momentum distribution of the spin-polarized uniform electron gas, Physical Review B, vol.2, issue.3, p.1391, 1994.
DOI : 10.1103/PhysRevB.2.3004

S. H. Vosko, L. Wilk, and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Canadian Journal of Physics, vol.58, issue.8, pp.1200-1211, 1980.
DOI : 10.1139/p80-159

J. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Physical Review B, vol.7, issue.23, p.4513244, 1992.
DOI : 10.1016/0003-4916(59)90016-8

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol.80, issue.18, p.3865, 1996.
DOI : 10.1063/1.446965

J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson et al., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Physical Review B, vol.20, issue.11, p.6671, 1993.
DOI : 10.1103/PhysRevB.20.3136

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A, vol.28, issue.6, p.3098, 1988.
DOI : 10.1103/PhysRevB.28.1809

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, vol.20, issue.2
DOI : 10.1103/PhysRevA.20.397

A. D. Becke, Density???functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics, vol.98, issue.7, p.5648, 1993.
DOI : 10.1063/1.460205

A. D. Becke, A new mixing of Hartree???Fock and local density???functional theories, The Journal of Chemical Physics, vol.23, issue.2, pp.1372-1377, 1993.
DOI : 10.1103/PhysRevA.38.3098

J. P. Perdew, M. Ernzerhof, and K. Burke, Rationale for mixing exact exchange with density functional approximations, The Journal of Chemical Physics, vol.47, issue.22, pp.9982-9985, 1996.
DOI : 10.1002/qua.560560422

J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation, Physical Review Letters, vol.59, issue.12, p.2544, 1999.
DOI : 10.1016/0010-4655(90)90187-6

F. Zahariev, S. S. Leang, and M. S. Gordon, Functional derivatives of meta-generalized gradient approximation (meta-GGA) type exchange-correlation density functionals, The Journal of Chemical Physics, vol.138, issue.24, p.244108, 2013.
DOI : 10.1016/0009-2614(96)00440-X

Y. Zhao, B. J. Lynch, and D. G. Truhlar, Doubly Hybrid Meta DFT:?? New Multi-Coefficient Correlation and Density Functional Methods for Thermochemistry and Thermochemical Kinetics, The Journal of Physical Chemistry A, vol.108, issue.21, pp.4786-4791, 2004.
DOI : 10.1021/jp049253v

N. Mardirossian and M. Head-gordon, ??B97X-V: A 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy, Physical Chemistry Chemical Physics, vol.5, issue.21, pp.9904-9924, 2014.
DOI : 10.1021/ct9004905

J. P. Perdew and K. Schmidt, Jacob???s ladder of density functional approximations for the exchange-correlation energy, AIP Conference Proceedings, pp.1-20, 2001.
DOI : 10.1063/1.1390175

M. E. Casida, John perdew's Jacob's ladder. https, 2015.

G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists
DOI : 10.1119/1.1973757

I. Ema, D. L. Garcia, G. Ramírez, R. López, R. J. Fernández et al., Polarized basis sets of Slater-type orbitals: H to Ne atoms, Journal of Computational Chemistry, vol.24, issue.7, pp.859-868, 2003.
DOI : 10.1002/jcc.10227

M. Springborg, Methods of Electronic-Structure Calculations -from Molecules to Solids, 2000.

B. I. Mayer, BSSE-free second-order intermolecular perturbation theory, Molecular Physics, vol.92, issue.3
DOI : 10.1080/00268979709482122

M. Wilson, H. Ziolkowski, and . Ågren, The Dalton quantum chemistry program system, WIREs Comput. Mol. Sci, vol.4, issue.3, pp.269-284, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01082875

M. E. Casida and M. Huix-rotllant, Progress in Time-Dependent Density-Functional Theory, Annual Review of Physical Chemistry, vol.63, issue.1, pp.287-323, 2012.
DOI : 10.1146/annurev-physchem-032511-143803

URL : https://hal.archives-ouvertes.fr/hal-01415184

M. A. Marques and E. K. Gross, TIME-DEPENDENT DENSITY FUNCTIONAL THEORY, Annual Review of Physical Chemistry, vol.55, issue.1, pp.427-455, 2004.
DOI : 10.1146/annurev.physchem.55.091602.094449

URL : https://hal.archives-ouvertes.fr/hal-00438357

M. E. Casida, Time-dependent density-functional theory for the calculation of molecular electronic excited states 2 nd year masters, theoretical chemistry. https://sites.google.com/site, 2009.

R. F. Nalewajski, Perspectives in Electronic Structure Theory, 2012.
DOI : 10.1007/978-3-642-20180-6

N. Ferré, M. Filatov, and M. Huix-rotllant, Density-Functional Methods for Excited States Topics in Current Chemistry, 2015.

X. Gonze, Adiabatic density-functional perturbation theory, Physical Review A, vol.16, issue.2
DOI : 10.1103/PhysRevB.16.5212

E. Runge and E. K. Gross, Density-Functional Theory for Time-Dependent Systems, Physical Review Letters, vol.140, issue.12, p.997, 1984.
DOI : 10.1103/PhysRev.140.A1133

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review, vol.80, issue.3B, p.864, 1964.
DOI : 10.1088/0370-1328/80/5/307

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, vol.119, issue.4A, p.1133, 1965.
DOI : 10.1103/PhysRev.119.1153

E. K. Gross and W. Kohn, Time-Dependent Density-Functional Theory
DOI : 10.1016/S0065-3276(08)60600-0

E. K. Gross and W. Kohn, Local density-functional theory of frequency-dependent linear response, Physical Review Letters, vol.4, issue.26, p.2850, 1985.
DOI : 10.1103/PhysRevB.4.3455

J. P. Sauvage, J. P. Collin, J. C. Chambron, S. Guillerez, and C. Coudret, Ruthenium(II) and Osmium(II) Bis(terpyridine) Complexes in Covalently-Linked Multicomponent Systems: Synthesis, Electrochemical Behavior, Absorption Spectra, and Photochemical and Photophysical Properties, Chemical Reviews, vol.94, issue.4, p.933, 1994.
DOI : 10.1021/cr00028a006

M. E. Casida, Time-dependent density-functional theory for molecules and molecular solids, Journal of Molecular Structure: THEOCHEM, vol.914, issue.1-3, p.3, 2009.
DOI : 10.1016/j.theochem.2009.08.018

URL : https://hal.archives-ouvertes.fr/hal-01659058

A. D. Becke, Density???functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics, vol.98, issue.7, p.5648, 1993.
DOI : 10.1063/1.460205

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, vol.20, issue.2
DOI : 10.1103/PhysRevA.20.397

R. Ditchfield, W. J. Hehre, and J. A. Pople, Self???Consistent Molecular???Orbital Methods. IX. An Extended Gaussian???Type Basis for Molecular???Orbital Studies of Organic Molecules, The Journal of Chemical Physics, vol.54, issue.2, pp.724-728, 1971.
DOI : 10.1063/1.1696113

W. J. Hehre, R. Ditchfield, and J. A. Pople, Self???Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian???Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules, The Journal of Chemical Physics, vol.56, issue.5, pp.2257-2261, 1972.
DOI : 10.1021/ja00750a005

P. C. Hariharan and J. A. Pople, The influence of polarization functions on molecular orbital hydrogenation energies, Theoretica Chimica Acta, vol.53, issue.3, pp.213-222, 1973.
DOI : 10.1007/BF00533485

P. C. Hariharan and J. A. Pople, equilibrium geometries by single determinant molecular orbital theory, Molecular Physics, vol.36, issue.1, pp.209-214, 1974.
DOI : 10.1063/1.1732773

M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon et al., Self???consistent molecular orbital methods. XXIII. A polarization???type basis set for second???row elements, The Journal of Chemical Physics, vol.77, issue.7
DOI : 10.1002/jcc.540020118

. Curtiss, 6-31G* basis set for third-row atoms, J. Comp. Chem, vol.22, issue.9, pp.976-984, 2001.

G. A. Petersson and M. A. , A complete basis set model chemistry. II. Open???shell systems and the total energies of the first???row atoms, The Journal of Chemical Physics, vol.12, issue.9, pp.6081-6090, 1991.
DOI : 10.1016/0009-2614(90)85105-L

P. J. Hay and W. R. Wadt, effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, The Journal of Chemical Physics, vol.82, issue.1, p.299, 1985.
DOI : 10.1021/ja00389a020

M. Kozlowska, P. Rodziewicz, D. M. Brus, J. Breczko, and K. Brzezinski, Bis(2,2???:6???,2??????-terpyridine)ruthenium(II) bis(perchlorate) hemihydrate, Acta Crystallographica Section E Structure Reports Online, vol.68, issue.11, pp.681414-1415, 2012.
DOI : 10.1107/S1600536812043917/bt6849Isup2.hkl

URL : https://doi.org/10.1107/s1600536812043917

D. E. Lewis, Klaus at Kazon is a place name (https://en.wikipedia.org/wiki/ Kazan) and so should be capitalized.kazon: the discovery of ruthenium, Bull. Hist. Chem, vol.3, issue.1, p.41, 2016.

J. Sauvage, Ruthenium(II) and Osmium(II) Bis(terpyridine) Complexes in Covalently-Linked Multicomponent Systems: Synthesis, Electrochemical Behavior, Absorption Spectra, and Photochemical and Photophysical Properties, Chemical Reviews, vol.94, issue.4, pp.94-993, 1994.
DOI : 10.1021/cr00028a006

C. M. Wawire, Density-functional study of lumininescence in polypyridine ruthenium complexes, J. Photochem. Photobiol. A, vol.276, issue.8, 2014.

V. Balzani and A. Juris, Photochemistry and photophysics of Ru (II) polypyridine complexes in the Bologna group. From early studies to recent developments, Coord. Chem. Rev, pp.211-97, 2001.

K. Nakamaru, Synthesis, Luminescence Quantum Yields, and Lifetimes of Trischelated Ruthenium(II) Mixed-ligand Complexes Including 3,3???-Dimethyl-2,2???-bipyridyl, Bulletin of the Chemical Society of Japan, vol.55, issue.9, pp.55-2697, 1982.
DOI : 10.1246/bcsj.55.2697

G. Liebsch, I. Klimant, and O. S. Wolfbeis, Luminescence Lifetime Temperature Sensing Based on Sol-Gels and Poly(acrylonitrile)s Dyed with Ruthenium Metal-Ligand Complexes, Advanced Materials, vol.11, issue.15, pp.11-1296, 1999.
DOI : 10.1002/(SICI)1521-4095(199910)11:15<1296::AID-ADMA1296>3.0.CO;2-B

A. Harriman, A. Khatyr, and R. , ) poly(pyridine) complexes in solution at ambient temperature, Dalton Trans., vol.104, issue.180, p.10, 2003.
DOI : 10.1021/ja00366a051

M. Duati, Enhancement of Luminescence Lifetimes of Mononuclear Ruthenium(II)???Terpyridine Complexes by Manipulation of the ??-Donor Strength of Ligands, Inorganic Chemistry, vol.42, issue.25, p.42, 2003.
DOI : 10.1021/ic034691m

E. A. Medlycott and G. S. Hanan, Designing tridentate ligands for ruthenium(II) complexes with prolonged room temperature luminescence lifetimes, Chem. Soc. Rev, vol.133, p.34, 2005.
DOI : 10.1002/chin.200521274

K. J. Morris, M. S. Roach, W. Xu, J. N. Demas, and B. A. Degraff, Luminescence lifetime standards for the nanosecond to microsecond range and oxygen quenching of ruthenium(II) compounds, Anal. Chem, pp.79-9310, 2007.

L. J. Nurkkala, The Effects of Pendant vs. Fused Thiophene Attachment upon the Luminescence Lifetimes and Electrochemistry of Tris(2,2???-bipyridine)ruthenium(II) Complexes, European Journal of Inorganic Chemistry, vol.324, issue.26, pp.26-4101, 2008.
DOI : 10.1002/ardp.2503240908

R. O. Steen, The role of isometric effects on the luminescence lifetimes and electrochemistry of oligothienyl-bridged dinuclear tris(2,2'-bipyridine) ruthenium(II) complexes, Eur. J. Inorg. Chem, pp.11-1784, 2008.

S. Ji, Tuning the luminescence lifetimes of ruthenium(ii) polypyridine complexes and its application in luminescent oxygen sensing, Journal of Materials Chemistry, vol.82, issue.10, 1953.
DOI : 10.1016/S0010-8545(98)90009-1

H. Ramanantoanina, W. Urland, A. Garciá-fuente, F. Cimpoesu, and C. , Ligand field density functional theory for the prediction of future domestic lighting, Phys. Chem. Chem. Phys., vol.52, issue.28, pp.28-14625, 2014.
DOI : 10.1002/anie.201208218

A. Juris, Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence, Coordination Chemistry Reviews, vol.84, issue.85, 1988.
DOI : 10.1016/0010-8545(88)80032-8

M. Kasha, Characterization of electronic transitions in complex molecules, Discussions of the Faraday Society, vol.9, issue.14, 1950.
DOI : 10.1039/df9500900014

G. A. Crosby, Spectroscopic investigations of excited states of transition-metal complexes, Accounts of Chemical Research, vol.8, issue.7, p.231, 1975.
DOI : 10.1021/ar50091a003

J. Heully, F. Alaray, and M. , Boggio-Pasqua, Spin-orbit effects on the photophysical properties of [Ru(bpy) 3 ] 2+, J. Chem. Phys, pp.131-184308, 2009.

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, vol.119, issue.4A, pp.140-1133, 1965.
DOI : 10.1103/PhysRev.119.1153

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A, vol.28, issue.6, p.3098, 1988.
DOI : 10.1103/PhysRevB.28.1809

S. H. Vosko, L. Wilk, and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Canadian Journal of Physics, vol.58, issue.8, pp.58-1200, 1980.
DOI : 10.1139/p80-159

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, vol.20, issue.2, p.785, 1988.
DOI : 10.1103/PhysRevA.20.397

A. D. Becke, P. J. Hay, and W. R. Wadt, Density-functional thermochemistry. III. The role of exact exchange Ab initio effective core potentials for molecular calculations. potentials for K to Au including the outermost core orbitals, J. Chem. Phys. J. Chem. Phys, vol.98, issue.299, 1985.

P. J. Hay and W. R. Wadt, effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, The Journal of Chemical Physics, vol.67, issue.1, p.82, 1985.
DOI : 10.1063/1.433731

R. Ditchfield, W. Hehre, and J. A. Pople, Self???Consistent Molecular???Orbital Methods. IX. An Extended Gaussian???Type Basis for Molecular???Orbital Studies of Organic Molecules, The Journal of Chemical Physics, vol.54, issue.2, pp.54-724, 1971.
DOI : 10.1063/1.1696113

W. J. Hehre, R. Ditchfield, and J. A. Pople, Self???Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian???Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules, The Journal of Chemical Physics, vol.56, issue.5, pp.56-2257, 1972.
DOI : 10.1021/ja00750a005

P. Hariharan and J. A. Pople, The influence of polarization functions on molecular orbital hydrogenation energies, Theoretica Chimica Acta, vol.53, issue.3, 1973.
DOI : 10.1007/BF00533485

P. C. Hariharan and J. A. Pople, Accuracy of AH n equilibrium geometries by single determinant molecular orbital theory, Mol. Phys, vol.27, issue.209, 1974.

M. M. Francl, Self???consistent molecular orbital methods. XXIII. A polarization???type basis set for second???row elements, The Journal of Chemical Physics, vol.77, issue.7, p.77, 1982.
DOI : 10.1002/jcc.540020118

V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern, and L. A. , Curtiss, 6-31G* basis set for third-row atoms, J. Comp. Chem, pp.22-976, 2001.
DOI : 10.1002/jcc.1058

G. A. Petersson and M. A. , Al-Laham, A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms, J. Chem. Phys, pp.94-6081, 1991.

R. K. Hocking, R. J. Deeth, and T. W. Hambley, DFT Study of the Systematic Variations in Metal???Ligand Bond Lengths of Coordination Complexes:?? the Crucial Role of the Condensed Phase, Inorganic Chemistry, vol.46, issue.20, p.46, 2007.
DOI : 10.1021/ic701166p

C. Latouche, A. Balardi, and V. Barone, Virtual Eyes Designed for Quantitative Spectroscopy of Inorganic Complexes: Vibronic Signatures in the Phosphorescence Spectra of Terpyridine Derivatives, The Journal of Physical Chemistry B, vol.119, issue.24, p.7253, 2015.
DOI : 10.1021/jp510589u

R. Prajapati, V. K. Yadav, S. K. Dubey, B. Durham, and L. Mishra, Reactivity of metal (Zn II , Ru II )-2,2'-bipyridyl with some bifunctional ligands, Indian J. Chem. Sect. A, vol.47, p.1780, 2008.

H. Shen, A new three-dimensional ruthenium(II) complex via hydrogen bonds: Ru(bpy)2(ox)??4H2O (bpy=2,2???-bipyridine, ox=oxalate ion), Inorganic Chemistry Communications, vol.2, issue.12, p.615, 1999.
DOI : 10.1016/S1387-7003(99)00163-X

D. P. Rillema, D. S. Jones, and H. A. Levy, Structure of tris(2,2-bipyridyl)ruthenium (II) hexafluorophosphate, [Ru(bipy) 3 ][PF 6 ] 2 ; X-ray crystallographic determination, J. Chem. Soc. Chem. Commun, vol.849, p.1979, 1979.

P. Reveco, R. H. Schmehl, W. R. Cherry, F. R. Froczek, and J. Selbin, Cyclometalated complexes of ruthenium. 2. Spectral and electrochemical properties and x-ray structure of bis(2,2'-bipyridine)(4-nitro-2-(2-pyridyl)phenyl)ruthenium(II), Inorganic Chemistry, vol.24, issue.24, p.4078, 1985.
DOI : 10.1021/ic00218a023

D. Hesek, Conversion of a new chiral reagent D-[Ru(bpy) 2 (dmso)Cl]PF 6 to (dmbpy = 4, Chem. Commun, vol.403, issue.2, p.5, 1999.

L. E. Hansen, Syntheses and characterization of some chloro, methoxy, and mercapto derivatives of [Ru(??2-2,2???-bipyridine)3]2+2PF6???: crystal and molecular structures of [Ru(??2-2,2???-bipyridine)2(??2-4,4???-(X)2-2,2???-bipyridine)]2+2PF6??? (X=Cl, OCH3), Ru(h 2 -2,2'-bipyridine) 2 (h 2 -4,4'-(X) 2 -2,2'- bipyridine)] 2+ 2PF6 À (X=Cl, OCH 3 ), p.91, 2003.
DOI : 10.1016/S0020-1693(02)01485-8

M. Du, X. Ge, H. Liu, and X. Bu, Synthesis, spectra, and crystal structures of two Ru II complexes with polypyridyl ligands: cis-[Ru(pby), bpy)Cl](PF 6 )ÁH 2 O and cis-[Ru(phen) 2 (CH 3 CN) 2 ](PF 6 ) 2, p.610, 2002.

B. Ye, X. Chen, T. Zeng, and L. , Ji, syntheses, spectra and crystal structures of ruthenium(II) complexes with polypyridyl, Ru(bipy) 2 (phen)](ClO 4 ) 2 .H 2 O and [Ru(bipy), 1995.

V. W. Yam, B. Li, and N. Zhu, Synthesis of Mesoporous Silicates with Controllable Pore Size Using Surfactant Ruthenium(II) Complexes as Templates, Advanced Materials, vol.14, issue.10, pp.14-719, 2002.
DOI : 10.1002/1521-4095(20020517)14:10<719::AID-ADMA719>3.0.CO;2-5

C. M. Kepert, The synthesis and structure of heteroleptic tris(diimine)ruthenium(ii) complexes, Dalton Transactions, issue.11, p.1766, 2004.
DOI : 10.1039/b401761g

L. J. Henderson-jr, F. R. Fronczek, and W. R. Cherry, Selective perturbation of ligand field excited states in polypyridine ruthenium(II) complexes, Journal of the American Chemical Society, vol.106, issue.20, 1984.
DOI : 10.1021/ja00332a020

Y. Wang, D. C. Jackman, C. Woods, and D. P. Rillema, Crystal structure, physical, and photophysical properties of a ruthenium(II) bipyridine diazafluorenone complex, Journal of Chemical Crystallography, vol.22, issue.9, p.25, 1995.
DOI : 10.1007/BF01667023

P. B. Hitchcock, Cis-bis(2,2'-bipyridine)bis(pyridine)ruthenium(II), J. Chem. Soc. Dalton Trans, pp.1988-1837, 1988.
DOI : 10.1039/dt9880001837

B. Klop, H. Viebrock, A. Von-zelewsky, and D. , Abeln, Crystal structure analysis and chiral recognition study of D-[Ru(bpy) 2 (py) 2 ], tatrate]Á 12H 2 O and L-[Ru(bpy) 2 (py) 2 ]

A. H. Velders, A simple example of the fluxional behaviour of ruthenium-coordinated C 2 -symmetric monodentate ligands ? synthesis 1 H NMR spectroscopic study and crystal structure of cis, Ru(bpy) 2 (4Pic) 2 ](PF 6 ) 2, p.2002, 2002.

S. Derossi, H. Adams, and M. D. Ward, )-biimidazole complex cations and cyanometallate anions: structures and photophysics, Dalton Trans., vol.11, issue.1, 2007.
DOI : 10.1021/cm980323i

N. Rockstroh, Structural Properties of Ruthenium Biimidazole Complexes Determining the Stability of their Supramolecular Aggregates, Zeitschrift f??r Naturforschung B, vol.65, issue.3, pp.65-281, 2010.
DOI : 10.1515/znb-2010-0309

P. Wang, Structure and Properties of Diastereoisomers of a Ruthenium(II) Complex Having a Pyridylpyrazoline Derivative as a Ligand, Chemistry Letters, vol.30, issue.9, pp.30-940, 2001.
DOI : 10.1246/cl.2001.940

A. A. Farah, D. V. Stynes, and W. J. Pietro, Syntheses, characterization and structures of 2-(2-pyridyl)-4-methylcarboxyquinoline ligand and bis(2,2???-bipyridine)-2-(2-pyridyl)-4-methylcarboxyquinoline ruthenium (II) hexafluorophosphate, Inorganica Chimica Acta, vol.343, p.295, 2003.
DOI : 10.1016/S0020-1693(02)01255-0

S. Rau, Efficient synthesis of ruthenium complexes of the type

P. U. Maheswari, V. Rajendiran, M. Palaniandavar, R. Thomas, and G. U. Kulkarni, Mixed ligand ruthenium(II) complexes of 5,6-dimethyl-1,10-phenanthroline: The role of ligand hydrophobicity on DNA binding of the complexes, Inorganica Chimica Acta, vol.359, issue.14, 2006.
DOI : 10.1016/j.ica.2006.07.053

M. Kato, K. Sasano, M. Kimura, and S. Yamauchi, Solid State Effect on the Phosphorescence Spectrum of a Tris(3,3???-biisoquinoline)ruthenium(II) Salt, Chemistry Letters, vol.21, issue.10, p.1887, 1992.
DOI : 10.1246/cl.1992.1887

A. Taketoshi, T. Koizumi, and T. Kanbara, Aerobic oxidative dehydrogenation of benzylamines catalyzed by a cyclometalated ruthenium complex, Tetrahedron Letters, vol.51, issue.49, p.51, 2010.
DOI : 10.1016/j.tetlet.2010.10.004

C. Tsai, Characterization of low energy charge transfer transitions in (terpyridine)(bipyridine)ruthenium(II) complexes and their cyanide-bridge bi-and tri-metallic analogues, Inorg. Chem, pp.50-11965, 2011.

C. Tsai, CCDC: 868664: Experimental Crystal Structure Determination, 2012.

D. Onggo, M. L. Scudder, D. C. Craig, and H. A. Goodwin, The influence of orthosubstitution within the ligand on the geometry of the tris(2,2'-bipyridine) ruthenium(II) and tris(1,10-phenanthroline)ruthenium(II) ions, J. Mol. Struct, vol.129, p.738, 2005.

M. Schwalbe, Synthesis and Characterisation of Poly(bipyridine)ruthenium Complexes as Building Blocks for Heterosupramolecular Arrays, European Journal of Inorganic Chemistry, vol.46, issue.21, pp.2008-3310, 2008.
DOI : 10.1002/9783527618248

J. Gao, Molecule-Based Water-Oxidation Catalysts (WOCs): Cluster-Size-Dependent Dye-Sensitized Polyoxometalates for Visible-Light-Driven O2 Evolution, Scientific Reports, vol.10, issue.1, p.1853, 2012.
DOI : 10.1166/jnn.2010.1493

E. Baranoff, L Family (L = Diimine or Dinitrile Ligands), Inorganic Chemistry, vol.41, issue.5, pp.41-1215, 2002.
DOI : 10.1021/ic011014o

E. Wachter, D. K. Heidary, B. S. Howerton, S. Parkin, and E. C. Glazer, Light-activated ruthenium complexes photo bind DNA and are cytotoxic in the photodynamic therapy window, Chem. Commun, pp.48-9649, 2012.

A. C. Hotze, Characterization by NMR Spectroscopy, X-ray Analysis and Cytotoxic Activity of the Ruthenium(II) Compounds [RuL 3 ](PF 6 ) 2 (L = 2- Phenylazopyridine or o-Tolylazopyridine) and [RuL' 2, PF 6 ) 2 (L', L " = 2- Phenylazopyridine, pp.2005-2648, 2005.

A. A. Farah and W. J. Pietro, Synthesis, structure and electrochemical properties of tris (2-(2-pyridyl)-4-methylcarbonylquinoline) ruthenium(II) hexafluorophosphate, Inorganic Chemistry Communications, vol.6, issue.6, 2003.
DOI : 10.1016/S1387-7003(03)00072-8

M. Kozlowska, P. Rodziewicz, D. M. Brus, J. Breczko, K. Brzezinski et al., Bis(2,2???:6???,2??????-terpyridine)ruthenium(II) bis(perchlorate) hemihydrate, Acta Crystallographica Section E Structure Reports Online, vol.68, issue.11, p.1414, 2012.
DOI : 10.1107/S1600536812043917/bt6849Isup2.hkl

URL : https://doi.org/10.1107/s1600536812043917

F. H. Allen, The Cambridge Structural Database: a quarter of a million crystal structures and rising, Acta Crystallographica Section B Structural Science, vol.58, issue.3, 2002.
DOI : 10.1107/S0108768102003890

M. E. Casida, Time-dependent density-functional theory for molecules and molecular solids, J. Mol. Struct.: THEOCHEM, vol.914, issue.3, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01659058

M. E. Casida and M. Huix-rotllant, Progress in time-dependent densityfunctional theory, Annu. Rev. Phys. Chem, vol.63, issue.287, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01415184

P. The, PY program is described in the supplementary data associated with Ref. [3]. The current version of the program PABLO_BAUDIN_PDOS.PY and documentation Pablo_Baudin_User_Guide.txt may be downloaded from https

A. A. Darghouth, Assessment of Density-Functional Tight-Binding Ionization Potentials and Electron Affinities of Molecules of Interest for Organic Solar Cells Against First-Principles GW Calculations, Computation, vol.81, issue.4, p.616, 2015.
DOI : 10.1002/adma.200501717

W. Koch and M. C. Holtzhausen, A Chemist's Guide to Density Functional Theory, 2000.
DOI : 10.1002/3527600043

N. Yoshikawa, Transition states of the 3 MLCT to 3 MC conversion in Ru (bpy) 2 (phen derivative) 2+ complexes, J. Mol. Struct, pp.1094-98, 2015.

E. Borfecchia, X-ray transient absorption structural characterization of the 3 MLCT triplet excited state of cis-[Ru(bpy) 2 (py) 2 ] 2+, p.42, 2013.

J. Y. Choi, E. J. Park, S. H. Chang, and T. J. Kang, Solvent effects on the solvatochromism of 7-aminocoumarin derivatives in neat and binary solvent mixtures: correlation of the electronic transition energies with the solvent polarity parameters, Bull. Korean Chem. Soc, pp.30-1452, 2009.

M. Maestri, N. Armaroli, V. Blazani, E. C. Constable, and A. M. Thompson, Complexes of the Ruthenium(II)-2,2':6',2''-terpyridine Family. Effect of Electron-Accepting and -Donating Substituents on the Photophysical and Electrochemical Properties, Inorganic Chemistry, vol.34, issue.10, p.2759, 1995.
DOI : 10.1021/ic00114a039

F. Barigelletti, P. Belser, A. Von-zelewsky, A. Juris, and V. Balzani, Luminescence of mixed-ligand polypyridine-ruthenium(II) complexes in the temperature range 84-250 K. Interligand interactions and viscosity effects on radiationless processes, The Journal of Physical Chemistry, vol.89, issue.17, 1985.
DOI : 10.1021/j100263a021

I. Fleming, Frontier Orbitals and Organic Chemical Reactions, 1976.
DOI : 10.1002/9780470684306

N. T. Anh, Frontier Orbitals: A Practical Manual The Atrium, Soutern Gate, 2007.
DOI : 10.1002/9780470065709

M. J. Dewar, A critique of frontier orbital theory, Journal of Molecular Structure: THEOCHEM, vol.200, issue.301, 1989.
DOI : 10.1016/0166-1280(89)85062-6

M. Wolfsberg and L. Helmholtz, The spectra and electronic structure of the tetrahedral ions MnO Mn O À À

C. Daniel, Electronic spectroscopy and photoreactivity in transition metal complexes, Coordination Chemistry Reviews, vol.238, issue.239, pp.238-239, 2003.
DOI : 10.1016/S0010-8545(02)00295-3

A. Rosa, G. Ricciardi, O. Gritsenko, and E. J. Baerends, Excitation Energies of Metal Complexes with Time-dependent Density Functional Theory, Stuct. Bond, vol.112, p.49, 2004.
DOI : 10.1007/b97937

A. V. Záli?-jr, Modeling of charge-transfer transitions and excited states in d 6 transition metal complexes by DFT techniques, Coord. Chem. Rev, vol.258, p.251, 2007.

E. Lebon, Can a functionalized phosphine ligand promote room temperature luminescence of the [Ru(bpy)(tpy)] 2+ core? Phosphoryl Group as a strong s-donor anionic phosphinetype ligand: a combined experimental and theoretical study on long-lived room temperature luminescence of the, Ru(tpy)(bpy)(Ph 2 PO)] + Complex, p.53, 1946.

Q. Sun, B. Dereka, E. Vauthey, L. M. Lawson-daku, and A. Hauser, ) polypyridyl complexes, Chemical Science, vol.29, issue.1, 2016.
DOI : 10.1002/jcc.20823

X. Zhou, P. L. Burn, and B. J. Powell, Bond fission and non-radiative decay in iridium (III) complexes, Inorg. Chem, vol.5266, p.55, 2016.

C. M. Wawire, D. Jouvenot, F. Loiseau, P. Baudin, S. Liatard et al., Density-functional study of luminescence in polypyridine ruthenium complexes, Journal of Photochemistry and Photobiology A: Chemistry, vol.276, p.8, 2014.
DOI : 10.1016/j.jphotochem.2013.10.018

URL : https://hal.archives-ouvertes.fr/hal-01652176

A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser et al., Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence, Coordination Chemistry Reviews, vol.84, p.85, 1988.
DOI : 10.1016/0010-8545(88)80032-8

J. P. Sauvage, J. P. Collin, J. C. Chambron, S. Guillerez, and C. Coudret, Ruthenium(II) and Osmium(II) Bis(terpyridine) Complexes in Covalently-Linked Multicomponent Systems: Synthesis, Electrochemical Behavior, Absorption Spectra, and Photochemical and Photophysical Properties, Chemical Reviews, vol.94, issue.4, p.933, 1994.
DOI : 10.1021/cr00028a006

V. Balzani and A. Juris, Photochemistry and photophysics of Ru(II)???polypyridine complexes in the Bologna group. From early studies to recent developments, Coordination Chemistry Reviews, vol.211, issue.1, pp.97-115, 2001.
DOI : 10.1016/S0010-8545(00)00274-5

K. Nakamaru, Synthesis, Luminescence Quantum Yields, and Lifetimes of Trischelated Ruthenium(II) Mixed-ligand Complexes Including 3,3???-Dimethyl-2,2???-bipyridyl, Bulletin of the Chemical Society of Japan, vol.55, issue.9, pp.2697-2705, 1982.
DOI : 10.1246/bcsj.55.2697

G. Liebsch, I. Klimant, and O. S. Wolfbeis, Luminescence Lifetime Temperature Sensing Based on Sol-Gels and Poly(acrylonitrile)s Dyed with Ruthenium Metal-Ligand Complexes, Advanced Materials, vol.11, issue.15, p.1296, 1999.
DOI : 10.1002/(SICI)1521-4095(199910)11:15<1296::AID-ADMA1296>3.0.CO;2-B

A. Harriman, A. Khatyr, and R. Ziessel, ) poly(pyridine) complexes in solution at ambient temperature, Dalton Trans., vol.104, issue.180, p.2061, 2003.
DOI : 10.1021/ja00366a051

M. Duati, S. Tasca, F. C. Lynch, H. Bohlen, J. G. Vos et al., Enhancement of Luminescence Lifetimes of Mononuclear Ruthenium(II)???Terpyridine Complexes by Manipulation of the ??-Donor Strength of Ligands, Inorganic Chemistry, vol.42, issue.25, p.8377, 2003.
DOI : 10.1021/ic034691m

E. A. Medlycott and G. S. Hanan, Designing tridentate ligands for ruthenium(ii) complexes with prolonged room temperature luminescence lifetimes, Chemical Society Reviews, vol.43, issue.2, p.133, 2005.
DOI : 10.1016/S0010-8545(98)90009-1

K. J. Morris, M. S. Roach, W. Xu, J. N. Demas, and B. A. Degraff, Luminescence Lifetime Standards for the Nanosecond to Microsecond Range and Oxygen Quenching of Ruthenium(II) Complexes, Analytical Chemistry, vol.79, issue.24, p.9310, 2007.
DOI : 10.1021/ac0712796

M. J. Bernhardt, S. J. Riley, and . Dunne, The effects of pendant vs. fused thiophene attachment upon the luminescence lifetimes and electrochemistry of tris(2,2'-bipyridine)ruthenium(II) complexes, Eur. J

M. J. Constable, P. V. Riley, S. J. Bernhardt, and . Dunne, The role of isometric effects on the luminescence lifetimes and electrochemistry of oligothienyl-bridged dinuclear tris(2,2'-bipyridine)ruthenium(II) complexes, Eur. J. Inorg. Chem, vol.11, p.1784, 2008.

S. Ji, W. Wu, W. Wu, P. Song, K. Han et al., Tuning the luminescence lifetimes of ruthenium(ii) polypyridine complexes and its application in luminescent oxygen sensing, Journal of Materials Chemistry, vol.82, issue.10
DOI : 10.1016/S0010-8545(98)90009-1

C. J. Cramer and D. G. Truhlar, Density functional theory for transition metals and transition metal chemistry, Physical Chemistry Chemical Physics, vol.122, issue.205, pp.10757-10816, 2009.
DOI : 10.1021/jp8043797

J. P. Sauvage, J. P. Collin, J. C. Chambron, S. Guillerez, and C. Coudret, Ruthenium(II) and Osmium(II) Bis(terpyridine) Complexes in Covalently-Linked Multicomponent Systems: Synthesis, Electrochemical Behavior, Absorption Spectra, and Photochemical and Photophysical Properties, Chemical Reviews, vol.94, issue.4, p.933, 1994.
DOI : 10.1021/cr00028a006

V. Balzani and A. Juris, Photochemistry and photophysics of Ru(II)???polypyridine complexes in the Bologna group. From early studies to recent developments, Coordination Chemistry Reviews, vol.211, issue.1, pp.97-115, 2001.
DOI : 10.1016/S0010-8545(00)00274-5

K. Nakamaru, Synthesis, Luminescence Quantum Yields, and Lifetimes of Trischelated Ruthenium(II) Mixed-ligand Complexes Including 3,3???-Dimethyl-2,2???-bipyridyl, Bulletin of the Chemical Society of Japan, vol.55, issue.9, pp.2697-2705, 1982.
DOI : 10.1246/bcsj.55.2697

G. Liebsch, I. Klimant, and O. S. Wolfbeis, Luminescence Lifetime Temperature Sensing Based on Sol-Gels and Poly(acrylonitrile)s Dyed with Ruthenium Metal-Ligand Complexes, Advanced Materials, vol.11, issue.15, p.1296, 1999.
DOI : 10.1002/(SICI)1521-4095(199910)11:15<1296::AID-ADMA1296>3.0.CO;2-B

A. Harriman, A. Khatyr, and R. Ziessel, ) poly(pyridine) complexes in solution at ambient temperature, Dalton Trans., vol.104, issue.180, p.2061, 2003.
DOI : 10.1021/ja00366a051

M. Duati, S. Tasca, F. C. Lynch, H. Bohlen, J. G. Vos et al., Enhancement of Luminescence Lifetimes of Mononuclear Ruthenium(II)???Terpyridine Complexes by Manipulation of the ??-Donor Strength of Ligands, Inorganic Chemistry, vol.42, issue.25, p.8377, 2003.
DOI : 10.1021/ic034691m

E. A. Medlycott and G. S. Hanan, Designing tridentate ligands for ruthenium(ii) complexes with prolonged room temperature luminescence lifetimes, Chemical Society Reviews, vol.43, issue.2, p.133, 2005.
DOI : 10.1016/S0010-8545(98)90009-1

K. J. Morris, M. S. Roach, W. Xu, J. N. Demas, and B. A. Degraff, Luminescence Lifetime Standards for the Nanosecond to Microsecond Range and Oxygen Quenching of Ruthenium(II) Complexes, Analytical Chemistry, vol.79, issue.24, p.9310, 2007.
DOI : 10.1021/ac0712796

M. J. Bernhardt, S. J. Riley, and . Dunne, The effects of pendant vs. fused thiophene attachment upon the luminescence lifetimes and electrochemistry of tris(2,2'-bipyridine)ruthenium(II) complexes, Eur. J

M. J. Constable, P. V. Riley, S. J. Bernhardt, and . Dunne, The role of isometric effects on the luminescence lifetimes and electrochemistry of oligothienyl-bridged dinuclear tris(2,2'-bipyridine)ruthenium(II) complexes, Eur. J. Inorg. Chem, vol.11, p.1784, 2008.

S. Ji, W. Wu, W. Wu, P. Song, K. Han et al., Tuning the luminescence lifetimes of ruthenium(ii) polypyridine complexes and its application in luminescent oxygen sensing, Journal of Materials Chemistry, vol.82, issue.10
DOI : 10.1016/S0010-8545(98)90009-1

C. J. Cramer and D. G. Truhlar, Density functional theory for transition metals and transition metal chemistry, Physical Chemistry Chemical Physics, vol.122, issue.205, pp.10757-10816, 2009.
DOI : 10.1021/jp8043797

A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser et al., Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence, Coordination Chemistry Reviews, vol.84, p.85, 1988.
DOI : 10.1016/0010-8545(88)80032-8

C. M. Wawire, D. Jouvenot, F. Loiseau, P. Baudin, S. Liatard et al., Density-functional study of luminescence in polypyridine ruthenium complexes, Journal of Photochemistry and Photobiology A: Chemistry, vol.276, p.8, 2014.
DOI : 10.1016/j.jphotochem.2013.10.018

URL : https://hal.archives-ouvertes.fr/hal-01652176

N. Yoshikawa, S. Yamabe, S. Sakaki, N. Kanehisa, T. Inoue et al., Transition states of the 3MLCT to 3MC conversion in Ru(bpy)2(phen derivative)2+ complexes, Journal of Molecular Structure, vol.1094, pp.98-108, 2015.
DOI : 10.1016/j.molstruc.2015.04.011

A. D. Becke, Density???functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics, vol.98, issue.7, p.5648, 1993.
DOI : 10.1063/1.460205

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, vol.20, issue.2
DOI : 10.1103/PhysRevA.20.397

Q. Sun, B. Dereka, E. Vauthey, L. M. Lawson-daku, and A. Hauser, ) polypyridyl complexes, Chemical Science, vol.29, issue.1, pp.223-230, 2017.
DOI : 10.1002/jcc.20823

O. A. Borg, S. S. Godinho, M. J. Lundqvist, S. Lunell, and P. Persson, Computational Study of the Lowest Triplet State of Ruthenium Polypyridyl Complexes Used in Artificial Photosynthesis, The Journal of Physical Chemistry A, vol.112, issue.19
DOI : 10.1021/jp8000702

E. Ruiz, J. Cirera, and S. Alvarez, Spin density distribution in transition metal complexes, Coordination Chemistry Reviews, vol.249, issue.23, pp.2649-2660, 2005.
DOI : 10.1016/j.ccr.2005.04.010

Q. Sun, S. Mosquera-vazquez, Y. Suffren, J. Hankache, N. Amstutz et al., On the role of ligand-field states for the photophysical properties of ruthenium(II) polypyridyl complexes, Coordination Chemistry Reviews, vol.282, issue.283, pp.87-99, 2015.
DOI : 10.1016/j.ccr.2014.07.004

F. Alary, M. Boggio-pasqua, J. Heully, C. J. Marsden, and P. Vicendo, Theoretical Characterization of the Lowest Triplet Excited States of the Tris-(1,4,5,8-tetraazaphenanthrene) Ruthenium Dication Complex, Inorganic Chemistry, vol.47, issue.12, pp.475259-5266, 2008.
DOI : 10.1021/ic800246t

URL : https://hal.archives-ouvertes.fr/hal-00838539

A. Maria, M. J. Lundqvist, H. Wolpher, O. Johansson, L. Eriksson et al., Steric influence on the excited-state lifetimes of ruthenium complexes with bipyridyl-alkanylene-pyridyl ligands, Inorg. chem, issue.9, pp.47-3540, 2008.

P. J. Hay and W. R. Wadt, effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, The Journal of Chemical Physics, vol.82, issue.1, p.299, 1985.
DOI : 10.1021/ja00389a020

T. H. Dunning and P. J. Hay, Applications of Electronic Structure Theory, 1976.

C. Adamo and V. Barone, Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models, The Journal of Chemical Physics, vol.244, issue.2, pp.664-675, 1998.
DOI : 10.1021/ja00102a034

M. Schwalbe, B. Schäfer, H. Görls, S. Rau, S. Tschierlei et al., Synthesis and Characterisation of Poly(bipyridine)ruthenium Complexes as Building Blocks for Heterosupramolecular Arrays, European Journal of Inorganic Chemistry, vol.46, issue.21, pp.3310-3319, 2008.
DOI : 10.1002/9783527618248

F. Alary, J. L. Heully, L. Bijeire, and P. Vicendo, MLCT the Only Photoreactive State of Polypyridyl Complexes?, Inorganic Chemistry, vol.46, issue.8, pp.3154-3165, 2007.
DOI : 10.1021/ic062193i

URL : https://hal.archives-ouvertes.fr/hal-00941075

-. Td-b3lyp, (d), and experimental spectra. Experimental curve measured at room temperature in acetonitrile, Cl, vol.261, p.31

J. Gu, J. Chen, and R. H. Schmehl, Using Intramolecular Energy Transfer to Transform non-Photoactive, Visible-Light-Absorbing Chromophores into Sensitizers for Photoredox Reactions, Journal of the American Chemical Society, vol.132, issue.21, p.7338, 2010.
DOI : 10.1021/ja909785b

L. Fodor, G. Lendvay, and A. Horváth, :?? Experiment and Explanation Based on Electronic Structure Theory, The Journal of Physical Chemistry A, vol.111, issue.50, p.12891, 2007.
DOI : 10.1021/jp075615y

H. Yersin, W. Humbs, and J. Strasser, Low-lying electronic states of [Rh(bpy)3]3+, [Pt(bpy)2]2+, and [Ru(bpy)3]2+. A comparative study based on highly resolved and time-resolved spectra, Coordination Chemistry Reviews, vol.159, p.325, 1997.
DOI : 10.1016/S0010-8545(96)01318-5

B. Sullivan, Multiple emissions from charge transfer excited states of ruthenium(II)???polypyridine complexes, Chemical Physics Letters, vol.58, issue.3, p.389, 1978.
DOI : 10.1016/0009-2614(78)85059-3

D. P. Rillema, G. Allen, T. J. Meyer, and D. Conrad, Redox properties of ruthenium (II) tris chelate complexes containing the ligands 2, Inorg. Chem, vol.2, issue.22, p.1617, 1983.

N. Yoshikawa, Transition states of the 3MLCT to 3MC conversion in Ru(bpy)2(phen derivative)2+ complexes, Journal of Molecular Structure, vol.1094, p.98, 2015.
DOI : 10.1016/j.molstruc.2015.04.011

W. B. Heuer, Thin Film, Inorganic Chemistry, vol.49, issue.17, p.7726, 2010.
DOI : 10.1021/ic100527d

E. Borfecchia, X-ray transient absorption structural characterization of the 3 MLCT triplet excited state of cis, Ru(bpy ) 2 (py) 2 ] 2+, p.6564, 2013.

Z. Z. Li, Y. L. Niu, H. Y. Zhou, H. Y. Chao, and B. H. Ye, Visible-Light-Induced Photooxidation of Ruthenium(II) Complex with 2,2???-Biimidazole-like Ligand by Singlet Oxygen, Inorganic Chemistry, vol.52, issue.17, p.10087, 2013.
DOI : 10.1021/ic4014043

C. D. Tait, T. M. Vess, M. K. Mcarmond, K. W. Hanck, and D. W. Wertz, Characterizations of the redox orbitals of mixed-ligand 2,2'-bipyridine-2-(2'-pyridyl)quinoline ruthenium(II) complexes, J. Chem. Soc, p.2467, 1987.

Q. Sun, dd State, Journal of the American Chemical Society, vol.135, issue.37, p.13660, 2013.
DOI : 10.1021/ja407225t

R. H. Fabian, D. M. Klassen, and R. W. Sonntag, Synthesis and spectroscopic characterization of ruthenium and osmium complexes with sterically hindering ligands. 3. Tris complexes with methyl-and dimethyl-substituted 2, Inorg. Chem, vol.1, issue.19, pp.10-1977, 1980.

B. Maubert, N. D. Mcclenaghan, M. T. Indelli, and S. Campagna, Absorption Spectra and Photophysical Properties of a Series of Polypyridine Ligands Containing Appended Pyrenyl and Anthryl Chromophores and of Their Ruthenium(II) and Osmium(II) Complexes, The Journal of Physical Chemistry A, vol.107, issue.4, p.447, 2003.
DOI : 10.1021/jp0213497

M. Schwalbe, Synthesis and Characterisation of Poly(bipyridine)ruthenium Complexes as Building Blocks for Heterosupramolecular Arrays, European Journal of Inorganic Chemistry, vol.46, issue.21, p.3310, 2008.
DOI : 10.1002/9783527618248

N. Leventis, ???-methyl Viologen. Improving the Dynamic Range, Sensitivity, and Response Time of Sol???Gel-Based Optical Oxygen Sensors, Chemistry of Materials, vol.16, issue.8, p.1493, 2004.
DOI : 10.1021/cm034999b

E. Wachter, D. K. Heidary, B. S. Howerton, S. Parkin, and E. C. Glazer, Light-activated ruthenium complexes photobind DNA and are cytotoxic in the photodynamic therapy window, Chemical Communications, vol.128, issue.3, p.9649, 2012.
DOI : 10.1021/ja057620q

D. P. Segers and M. K. Dearmond, Emission studies of transition-metal complexes of 2,2'-dipyridylamine. 2. Tris complexes of ruthenium(II), The Journal of Physical Chemistry, vol.86, issue.19, p.3768, 1982.
DOI : 10.1021/j100216a014

J. T. Hewitt, P. J. Vallett, and N. H. Damrauer, MLCT in Ru(II) Terpyridyl Complexes Probed by Ultrafast Spectroscopy: Evidence of Excited-State Equilibration and Interligand Electron Transfer, The Journal of Physical Chemistry A, vol.116, issue.47, p.11536, 2012.
DOI : 10.1021/jp308091t

J. Sauvage, Ruthenium(II) and Osmium(II) Bis(terpyridine) Complexes in Covalently-Linked Multicomponent Systems: Synthesis, Electrochemical Behavior, Absorption Spectra, and Photochemical and Photophysical Properties, Chemical Reviews, vol.94, issue.4, p.993, 1994.
DOI : 10.1021/cr00028a006