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Résumé

Acquises dans plusieurs centaines de bandes spectrales contigués, les images hyperspectrales permettent d’analyser fine-
ment la composition d’une sceéne observée. En raison de la résolution spatiale limitée des capteurs utilisés, le spectre d’un
pixel d’une image hyperspectrale résulte de la composition de plusieurs signatures associées a des matériaux distincts. A
ce titre, le démélange d’images hyperspectrales vise a estimer les signatures des différents matériaux observés ainsi que
leur proportion dans chacun des pixels de I’image.

Pour cette analyse, il est d’usage de considérer qu’une signature spectrale unique permet de décrire un matériau donné,
ce qui est généralement intrinséque au modele de mélange choisi. Toutefois, la signature d’un matériau présente en
pratique une variabilité spectrale qui peut étre significative d’une image a une autre, voire au sein d’'une méme image. De
nombreux parametres peuvent en étre cause, tels que les conditions d’acquisitions (e.g., conditions d’illumination locales),
la déclivité de la scéne observée ou des interactions complexes entre la lumiere incidente et les éléments observés. A défaut
d’étre prises en compte, ces sources de variabilité perturbent fortement les signatures extraites, tant en termes d’amplitude
que de forme. De ce fait, des erreurs d’estimation peuvent apparaitre, qui sont d’autant plus importantes dans le cas
de procédures de démélange non-supervisées. Le but de cette these consiste ainsi a proposer de nouvelles méthodes de
démélange pour prendre en compte efficacement ce phénomene.

Nous introduisons dans un premier temps un modele de démélange original visant a prendre explicitement en compte
la variabilité spatiale des spectres purs. Les parametres de ce modele sont estimés a 1’aide d’un algorithme d’optimisation
sous contraintes. Toutefois, ce modele s’avere sensible a la présence de variations spectrales abruptes, telles que causées
par la présence de données aberrantes ou I’apparition d’un nouveau matériau lors de 1’analyse d’images hyperspectrales
multi-temporelles. Pour pallier ce probleme, nous introduisons une procédure de démélange robuste adaptée a 1’analyse
d’images multi-temporelles de taille modérée. Compte tenu de la dimension importante des données étudiées, notamment
dans le cas d’images multi-temporelles, nous avons par ailleurs étudié une stratégie d’estimation en ligne des différents
parametres du modele de mélange proposé. Enfin, ce travail se conclut par 1’étude d’une procédure d’estimation distribuée
asynchrone, adaptée au démélange d’un grand nombre d’images hyperspectrales acquises sur une méme sceéne a différents

instants.

Mots clés : Imagerie hyperspectrale, séparation aveugle de sources, optimisation non-convexe, optimisation stochas-

tique, méthodes de Monte-Carlo par chaine de Markov.
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Abstract

Acquired in hundreds of contiguous spectral bands, hyperspectral (HS) images have received an increasing interest due
to the significant spectral information they convey about the materials present in a given scene. However, the limited
spatial resolution of hyperspectral sensors implies that the observations are mixtures of multiple signatures corresponding
to distinct materials. Hyperspectral unmixing is aimed at identifying the reference spectral signatures composing the data
— referred to as endmembers — and their relative proportion in each pixel according to a predefined mixture model. In
this context, a given material is commonly assumed to be represented by a single spectral signature. This assumption
shows a first limitation, since endmembers may vary locally within a single image, or from an image to another due
to varying acquisition conditions, such as declivity and possibly complex interactions between the incident light and
the observed materials. Unless properly accounted for, spectral variability can have a significant impact on the shape
and the amplitude of the acquired signatures, thus inducing possibly significant estimation errors during the unmixing
process. A second limitation results from the significant size of HS data, which may preclude the use of batch estimation
procedures commonly used in the literature, i.e., techniques exploiting all the available data at once. Such computational
considerations notably become prominent to characterize endmember variability in multi-temporal HS (MTHS) images,
i.e., sequences of HS images acquired over the same area at different time instants.

The main objective of this thesis consists in introducing new models and unmixing procedures to account for spatial
and temporal endmember variability. Endmember variability is addressed by considering an explicit variability model
reminiscent of the total least squares problem, and later extended to account for time-varying signatures. The variability
is first estimated using an unsupervised deterministic optimization procedure based on the Alternating Direction Method
of Multipliers (ADMM). Given the sensitivity of this approach to abrupt spectral variations, a robust model formulated
within a Bayesian framework is introduced. This formulation enables smooth spectral variations to be described in terms
of spectral variability, and abrupt changes in terms of outliers. Finally, the computational restrictions induced by the
size of the data is tackled by an online estimation algorithm. This work further investigates an asynchronous distributed

estimation procedure to estimate the parameters of the proposed models.

Keywords: Hyperspectral imagery, blind source separation, non-convex optimization, stochastic optimization, Markov

chain Monte-Carlo (MCMC) methods.
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Introduction (in French)

Contexte et problématique de la these

L’imagerie hyperspectrale a fait I’objet d’un grand nombre de travaux de recherche au cours des dernieres années, mo-
tivés essentiellement par I’information spectrale que ces images apportent quant aux matériaux présents dans une scene
observée. En pratique, les spectres acquis sont souvent constitués d’un mélange de signatures associées a des matériaux
distincts, en raison de la résolution spatiale limitée des capteurs utilisés. A cet égard, le démélange d’images hyperspec-
trales a pour but d’identifier ces signatures de référence (spectres purs), ainsi que de quantifier leur proportion en chacun
des pixels suivant un modele de mélange prédéfini. En général, le choix d’un modele de mélange reflete une connaissance
a priori de I’analyste quant & la nature des phénomenes physiques pouvant affecter les observations (e.g., déclivité de
la scene, réflections multiples) [Bio+12; Dob+14b; HPG14]. 11 est alors d’usage de supposer qu’une signature spectrale
caractérise un matériau donné de facon univoque. Toutefois, la validité de cette hypothese est mise en défaut en présence
de fortes variations des conditions d’acquisition, telles que I’évolution naturelle du milieu observé ou une variation locale
des conditions d’illumination. Ces variations ont un impact important sur la forme et I’amplitude des signatures acquises

[ZH14], ce qui résulte en une forte variabilité des spectres purs.

Jusqu’a présent, de nombreux travaux se sont attachés a prendre en compte ce phénomene lors de 1’analyse d’une image
donnée. A ce titre, deux grandes classes d’approches ont été proposées dans un cadre soit statistique, soit déterministe.
Tandis que la premiere classe de méthodes représente les spectres purs par la réalisation de vecteurs aléatoires [Ech+10;
Du+14; HDT15], la seconde s’appuie sur 1’utilisation d’un dictionnaire de signatures — disponible a priori ou extrait des
données — pour appréhender la variabilité spectrale [JWZ10; Som+12]. Enfin, une autre méthode récente suppose que la
variabilité résulte exclusivement de facteurs d’échelle spatialement variables [Veg+14; Dru+16]. Tandis que la variabilité
spectrale au sein d’une seule image a déja fait I’objet d’un grand nombre d’études, ce phénomene n’a été que peu étudié
lors de I’analyse d’images hyperspectrales multi-temporelles. Par ailleurs, les méthodes de démélange proposées dans ce
contexte [HCJ16; Hal+15] restent sensibles aux variations spectrales abruptes, fréquemment observées dans les données

réelles disponibles.

Dans ce contexte, cette these vise a développer de nouvelles techniques de démélange afin de mieux représenter la
variabilité spatiale et temporelle des acquisitions. Le travail présenté dans ce manuscrit a été mené au sein de 1’équipe
Signal et Communications de I'Institut de Recherche en Informatique de Toulouse (IRIT), équipe au sein de laquelle

I’analyse d’images hyperspectrales a déja motivé plusieurs travaux de doctorats [Dob07; Ech10; Alt13; Weil5]. Cette
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these a été intégralement financée par la Direction Générale de I’ Armement, relevant du ministere francais de la défense.

Structure du manuscrit

Le premier chapitre de ce manuscrit présente un modele de mélange original visant a prendre en compte explicitement la
variabilité spatiale des signatures au sein d’une image hyperspectrale. Basé sur une formulation inspirée d’un probleme
de moindres carrés totaux [GL80] sous contraintes, le modele proposé consiste a représenter les observations par une
combinaison convexe de spectres purs, affectés chacun par une perturbation additive. Ces perturbations sont supposées
spatialement variables afin de représenter la variabilité spatiale éventuelle des spectres purs. Sachant que la variabilité
spectrale présente une contribution limitée au signal observé, I’énergie de la variabilité capturée par le modele est restreinte
a priori. Les parametres de ce modele, estimés a 1’aide d’un premier algorithme d’optimisation basé sur la méthode des
multiplicateurs de Lagrange (ADMM) [Boy+10], permet d’obtenir des résultats prometteurs sur données synthétiques et
réelles. Les performances d’un deuxiéme algorithme, découlant de 1’algorithme PALM (proximal alternating linearized
algorithm) [BST13; CPR16] et disposant de garanties de convergence mieux établies que I’algorithme précédent, sont

également étudiées.

Inspiré par les travaux [Hal+15; AMH15], le deuxieéme chapitre est dédié a I’estimation conjointe de la variation tem-
porelle des spectres purs (décrite en termes de variabilité spectrale), ainsi que des variations éventuellement brutales des
signatures spectrales au cours du temps. L’approche proposée concerne plus particulierement I’étude d’images acquises
pour une mé€me scene a différents instants, ou certains matériaux sont de fait observés dans plusieurs des images acquises.
Formulé dans un cadre bayésien, le modele proposé vise a réduire la sensibilité a des variations spectrales abruptes des
méthodes précédemment proposées dans ce contexte [HCJ16; Hal+15], tout en exploitant la donnée temporelle a dispo-
sition. Les parametres de ce modele sont estimés a 1’aide d’un algorithme de Monte-Carlo par chaine de Markov. Les
résultats obtenus montrent 1’intérét d’une analyse conjointe de plusieurs images hyperspectrales, comparée a une analyse

individuelle de ces mémes images.

Par ailleurs, la taille des données considérées peut compromettre la mise en ceuvre de méthodes d’estimation con-
jointes, i.e., qui exploitent simultanément la totalité des données disponibles. Dans cette perspective, le troisieme chapitre
s’intéresse a un algorithme d’estimation en ligne adapté a I’analyse d’images hyperspectrales multi-temporelles. Formulé
sous la forme d’un probléme d’optimisation stochastique avec recours [RX11; Mai+10], le probleme de démélange en

présence de variabilité est abordé a 1’aide d’un algorithme inspiré de celui proposé dans [Mai+10].

Le quatrieme chapitre envisage finalement le développement d’un algorithme d’optimisation distribué asynchrone,
fondé sur des contributions récentes en analyse non-convexe [PR15; Sra+16; Cha+16; Scu+17; Dav16; HY 16; Can+16;
CE16; Pen+16]. Offrant un point de vue complémentaire a celui proposé dans le chapitre précédent, I'intérét d’une
procédure d’optimisation distribuée asynchrone, par rapport a une version synchrone du méme algorithme, est illustré sur

des données synthétiques et réelles.
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Principales contributions

Chapter 1. Un modele explicite de variabilité spatiale est proposé dans le cadre du démélange d’images hyperspectrales.
Un premier algorithme d’optimisation, qui consiste a résoudre une séquence de sous-problémes strictement convexes par
la méthode des multiplicateurs de Lagrange (ADMM) dans un algorithme de descente par coordonnées, permet d’estimer
les parametres du modele. Les performances de 1’algorithme PALM [BST13; CPR16] sont également évaluées dans
ce contexte. Ces deux algorithmes permettent d’obtenir des résultas de reconstruction compétitifs, tout en donnant une

représentation satisfaisante de la variabilité.

Chapter 2. Un modele bayésien hiérarchique est proposé pour le démélange robuste d’images hyperspectrales multi-
temporelles. Ce modele de mélange rend compte d’une variation temporelle modérée des spectres purs — décrite en termes
de variabilité — et de changements spectraux abrupts — interprétés en termes de données aberrantes. Le modele proposé
s’avere particulierement pertinent pour 1’analyse de données réelles, notamment lorsque 1’intervalle de temps entre deux
acquisitions est important. Dans un tel cas, 1’apparition d’un matériau non présent dans la scene de référence induit par

exemple de telles variations.

Chapter 3. Une stratégie de démélange en ligne est proposée pour analyser une collection d’images hyperspectrales,
acquises au-dessus d’une méme sceéne d’intérét a différents instants. Basé sur une variante du modele introduit dans
le permier chapitre, le probleme de démélange est formulé sous la forme d’un probleme d’optimisation stochastique
avec recours. Les résultats obtenus sur données synthétiques et réelles montrent 1’intérét d’utiliser plusieurs images

hyperspectrales pour améliorer les résultats du démélange.

Chapter 4. La mise en ceuvre d’un algorithme distribué asynchrone, basé sur de récentes contributions en optimisation
distribuée, est envisagée pour 1’estimation des parametres d’ un modele de mélange linéaire et du modele introduit dans
le premier chapitre. Les simulations proposées visent a évaluer I’intérét de 1’asynchronie pour réduire le temps de calcul

nécessaire a I’estimation des parametres, en comparaison avec une version synchrone du méme algorithme.
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Context and objective of the thesis

Over the past decades, hyperspectral imagery has received an increasing interest, resulting from the significant spectral
information it conveys about the materials contained in the observed scene. In practice, the observations are mixtures of
multiple signatures corresponding to distinct materials due to the limited spatial resolution of hyperspectral sensors. In
this context, spectral unmixing consists in identifying the reference signatures composing a hyperspectral (HS) image —
referred to as endmembers — and their abundance fractions in each pixel according to a predefined mixture model. The
choice of a specific model generally reflects the practitioners’ prior knowledge on the environmental factors possibly
affecting the data (e.g., declivity, multiple reflections) [Bio+12; Dob+14b; HPG14]. Traditionally, a given material is
assumed to be fully characterized by a single signature. However, this assumption presents severe limitations when the
observations are affected by varying acquisition conditions (e.g., local illumination variations, natural evolution of the
scene). In practice, these phenomena have a significant impact on the acquired signatures [ZH14], referred to as spectral

variability.

Spectral variability within a single image has been hitherto considered in various models, either derived from a statistical
or a deterministic point of view [ZH14]. The first class of methods assumes that the endmember spectra are realizations of
multivariate random variables [Ech+10; Du+14; HDT15]. The second class of methods represents endmember signatures
as members of spectral libraries associated with each material (bundles) [JWZ10; Som+12]. In another recent approach,
the variability is assumed to exclusively result from scaling factors [Veg+14; Dru+16]. While endmember variability
has been extensively considered within a single HS image, fewer works have considered temporal variability by exploit-
ing multitemporal HS (MTHS) images. In addition, unmixing approaches previously proposed in this context [HCJ16;

Hal+15] show a notable sensitivity to abrupt spectral variations, which are commonly observed in real MTHS images.

In this context, this thesis is aimed at designing new unmixing techniques to account for spectral variability, in order
to improve the estimation results obtained from HS or MTHS images. The work presented in this manuscript has been
carried out within the Signal and Communications group of the Institut de Recherche en Informatique de Toulouse, where
several doctoral works have been previously conducted on hyperspectral image analysis [Dob07; Ech10; Alt13; Weil5].

This thesis has been funded by the Direction Générale de I’ Armement, French ministry of Defense.



Introduction

I.1. Linear unmixing of hyperspectral images

Whereas traditional red / green / blue and multispectral images are composed of a few spectral channels (from three to
tens), hyperspectral (HS) images are acquired in hundreds of contiguous spectral bands. These images have received an
increasing interest due to the significant spectral information they convey. Indeed, the spectral dimension of HS data,
i.e., the different wavelengths at which the scene is observed, allow different materials to be discriminated based on their
reflectance, as illustrated in Fig. 1.1. However, the high spectral resolution of these images is mitigated by their lower
spatial resolution in remote sensing applications. Current HS sensors used in remote sensing applications present a spatial
resolution from 0.5 m to 20 m. This limitation, combined with possibly complex interactions between the incident light
and the observed materials, implies that the observed spectra are mixtures of several signatures corresponding to distinct
materials. Spectral unmixing then consists in identifying a limited number of reference spectral signatures composing the
data — referred to as endmembers — and their abundance fractions in each pixel according to a predefined mixture model.
The choice of a specific model generally reflects any prior knowledge on the environmental factors possibly affecting the

data, such as declivity or multiple reflections.
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Figure I.1.: Hyperspectral unmixing: an illustration (illustration taken from [Bio+12]).

Traditionally, a linear mixing model (LMM) is adopted when the declivity of the scene and microscopic interactions
between the observed materials are negligible [Bio+12]. Each spectrum associated with a pixel of the image is represented
as a convex combination of R signatures m, corresponding to distinct materials. More explicitly, the LMM can be

expressed as

R
Yn = Z Gy o 1MLy + bn (Il)
r=1
forn =1,..., N, where N is the number of pixels composing the HS image of interest, R is the number of endmembers

contained in the image, y,, denotes the nth image pixel, m,. is the rth endmember and a,,, is the proportion of the rth
endmember in the nth pixel. Throughout this work, the number of endmembers R is assumed to be a priori known or
estimated by any state-of-the-art method (e.g., [BNOS; Hal+16b]). Its choice drastically alters the representation of the

imaged scene, and thus remains a crucial step to the endmember identification and the subsequent abundance estimation
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[BNO8; Bio+12; Hal+16b]. Finally, b,, represents an additive noise resulting from the data acquisition and the modeling

errors. The LMM can be written in matrix form as
Y=MA+B (1.2)

where Y = [y1,...,yn] is an L x N matrix containing the pixels of the image, M denotes an L x R matrix containing
the endmembers, A is an R x N matrix composed of the abundance vectors a,, and B is a noise matrix. Since the
analysis is generally conducted on reflectance data, the following constraints are usually considered to allow a physical
interpretation of the results

A>=0pyn, A"lg=1y, M»>»0rr 1.3)

where >~ denotes a term-wise inequality. Given the mixture model (I.2) and the constraints (I.3), the unmixing problem
consists in inferring the abundances A and the endmembers M. As such, spectral unmixing (SU) is an instance of a
matrix factorization problem, subject to application-specific constraints.

To address the limitations of the LMM occurring in specific applications, e.g., to unmix vegetated [Dob+14a] or urban
areas [Meg+14], various models have been investigated to capture higher order interactions (i.e., nonlinearities) between
the incident light and the observed materials. We may mention the extensively used bilinear models based on the LMM,
which present an additional term whose expression is mainly derived from physical considerations [Fan+09; NB09;
Hal+11; Alt+12; Meg+14; ADT14]. This residual term is expressed as a function of the endmembers and the abundance
coefficients from the LMM, and explicitly determines the type of interaction captured by the model. Different approaches
also investigate the use of reproducing kernel Hilbert spaces to represent the nonlinearities resulting from the interactions
between different materials [CRH13; Amm+17]. Since the present work does not specifically focus on this issue, the
reader is referred to [Dob+14b; HPG14] for recent reviews on this topic.

Both linear and non-linear unmixing methods rely on the implicit assumption that a given material is represented by a
single spectral signature. However, this assumption may present severe limitations in practice, as detailed in the following

section.

I.2. Spatial endmember variability

In practice, varying acquisition conditions, such as local illumination variations or the natural evolution of the scene, may
significantly alter the shape and the amplitude of the acquired signatures [Som+11; ZH14], thus affecting the extracted
endmembers. This phenomenon, illustrated in Fig. [.2(a), is generally referred to as spectral variability. In the rest of this
manuscript, we will refer to spatial endmember variability whenever it results from local variations within a single HS
image (see Fig. 1.2(b)). This terminology is introduced to make a distinction with the problem investigated in the next
section, which involves different images of the same scene acquired at different time instants.

Since the endmember signatures contained in a given image can vary spatially due to varying acquisition conditions,
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Figure [.2.: An illustration of spectral variability (Fig. 1.2(a) is taken from [Gad+13]). Each spectrum in Fig. 1.2(a) corre-
sponds to an acquisition made for a given material, where each material is represented with a different color.
The signature corresponding to a given material may vary locally (Fig. 1.2(b)).

resorting to a traditional LMM may result in the propagation of significant estimation errors during the SU process.
Various models have been proposed in the literature to address this issue, either derived from a statistical or a deterministic
point of view [ZH14; DCJ16]. More precisely, a first class of methods assumes that the endmember signatures can be
considered as realizations of random vectors described by multivariate probability distributions. Within the second class
of methods, several procedures consider the endmember spectra as members of spectral libraries associated with each

material (bundles). These different approaches, illustrated in Fig. 1.3, are further detailed in the following paragraphs.
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Figure 1.3.: Different representations of endmember variability within the simplex enclosing the data (illustration taken
from [HDT15]) [from left to right: classical LMM (single endmembers), endmember bundles and endmem-
bers as realizations of a mutivariate probability distribution].

I.2.1. Statistical approaches

The statistical approaches previously proposed in the literature implicitly account for endmember variability by consid-
ering endmembers are realizations of multivariate probability distributions. Among these approaches, the most popular

models are the normal compositional model (NCM) [Ech+10] and the beta compositional model (BCM) [Du+14].
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Normal compositional model (NCM) The NCM [Ech+10] represents each pixel as a convex combination of realiza-

tions of Gaussian random vectors. This model can be expressed as

R
Yn - Z a7-7nmr,'rl7 Wlth m'r,n ~ N(m7”7 dlag(ag)) (14)

r=1

A recently proposed variant of the NCM, denoted as the generalized NCM (GNCM) [HDT15], allows spatial variability
to be more explicitly represented. More precisely, this model considers band-dependent variances in the endmember prior

distribution, as well as an additive noise term. The GNCM can be written

R

Yn = Z Qp XMy + bna
< L5)

my p ~ N(mr,diag(af)), b, ~ N (0, ¢$LIL)'

In practice, endmember variability is expected to represent a more significant fraction of the observed spectra than
the noise [HDT15]. The variances 2 are thus assigned an exponential prior whose parameter has a large value, which
ensures the variances 12 are of limited amplitude. When compared to the original NCM, this formulation allows spectral

variations to be captured for each element of interest in each spectral band.

Beta compositional model (BCM) For some materials, such as the grass, the beta distribution has been observed to
provide a better fit of the reflectance histogram than the Gaussian distribution [Du+14]. A mixture model involving

realizations of beta distributed vectors has been consequently proposed in [Du+14]

R
Yn = Zar,nmrv with my . ~ Be(aﬁ,rvﬁl,r) 1.6)

r=1

where Be denotes the beta distribution, and the parameters (v, B¢,-) are learnt from the data prior to the unmixing

procedure.

1.2.2. Deterministic approaches

Deterministic approaches proposed in the literature essentially rely on the use of an appropriate endmember dictionary,
referred to as endmember bundle. Composed of multiple candidate endmembers for each material, the dictionary is either
a priori available (e.g., composed of signatures acquired in a controlled environment), or directly extracted from the data
[Rob+98; Som+12]. Other recent approaches consider extensions of the LMM to capture potential sources of variability

within the image under study [Dru+16].

Endmember bundle extraction. Endmember bundles is a widely used solution aimed at exploiting the diversity of dif-
ferent signatures to better represent a given material [Rob+98]. Extracting a representative dictionary is thus a preliminary

step before applying these unmixing techniques. An automatic extraction procedure, namely the automated endmember
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bundle (AEB) [Som+12], has been notably proposed for this purpose. This technique consists in decomposing the image
into randomly selected subsets of pixels, to which an endmember extraction algorithm (EEA) is individually applied. A
clustering algorithm is finally used on the collection of the extracted signatures to recover meaningful material classes.

Another recent contribution in this context includes [Uez+16a].

Unmixing techniques based on endmember bundles. Once a suitable dictionary is available, an extensive number
of methods has been proposed to estimate meaningful abundance coefficients. For instance, the Fisher discriminant
null space (FDNS) [JWZ10] is aimed at estimating a transformation projection matrix to project the hyperspectral data
into a space minimizing the variability impact. More precisely, this method is aimed at estimating a subspace in which
the intra-class variability of the bundle is minimized, whereas the inter-class variability is maximized. The abundance
coefficients may then be estimated by any state-of-the-art optimization technique, such as [BF10] in the context of HS
unmixing. Other methods include the use of sparse unmixing [IBP11; Mey+16], Gaussian processes [Uez+16b; Uez+16c¢]
or endmember selection procedures [Rob+98; Hey+16]. Given the significant number of methods proposed in this context,
the reader is referred to the recent reviews [Som+11; ZH14; DCJ16] for further details. One may nevertheless note that

the performance of these methods is essentially conditioned by the quality of the dictionary.

Explicit variability models. A recent class of approaches, including the model introduced in chapter 1, consists in
introducing an explicit variability model whose additional parameters are intended to capture the observed variability. An
alternative model has been proposed by [Veg+14; Dru+16], in which the variability is assumed to exclusively result from
scaling factors, based on a simplification of the Hapke model [Hap81; Hap93] and on considerations on the influence of

the geometry of the scene [NBO5b; NBO5a]. The model is expressed in [Dru+16] as
Y=MToA)+B @L.7)

where ® denotes the Hadamard (term-wise) product. The matrix ¥ € RT*Y represents the scaling factors locally
affecting the endmembers composing the data. The authors then proposed to estimate the parameters of this model by
resorting to an algorithm similar to the one proposed in chapter 1. The scaling indeterminacy introduced by the presence
of W is partly addressed in the estimation algorithm proposed in [Dru+16] by minimizing the cost function

N
JT(AM, W) = =3 "(|lyn — Myay | + A M, — Mo, [£) + g(A) + h(®) (1.8)
n=1

DN | =

where M denotes the collection of the matrices M,,, 1,, denotes the nth column of ¥, M denotes a reference endmember

matrix and g, h are appropriate penalization functions.
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1.3. Towards the unmixing of multi-temporal hyperspectral images

While spatial endmember variability has hitherto been extensively considered in the literature, fewer works have con-
sidered temporal variability by exploiting the possibilities offered by multitemporal HS (MTHS) images. For unmixing
applications, such data have been notably used in the context of change detection between two HS images [EP15; Liu+16],
or in the perspective of improving unmixing results by incorporating data acquired at different time instants by possibly
different sensors [YZP17]. Indeed, the use of such data is particularly appealing to improve the unmixing results, espe-
cially when the observed materials are not jointly well represented in a single image, but in different images of the scene
of interest (see Fig. 1.4). The results obtained by such unmixing strategies are consequently expected to outperfom those
relying on an individual analysis of each image [Goe+13]. As for temporal variability, the recent contributions [Hal+15;
HCJ16] are among the first to specifically address this issue in hyperspectral unmixing problems. In a slightly different

context (i.e., multi-angular HS images), we may also mention the algorithms recently proposed in [Veg+15a; Veg+15b].
I'!'t !
%)

i

However, the use of MTHS data raises two main practical limitations.

(a) 04/10/2014 (b) 06/02/2014 (c) 09/19/2014 (d) 11/17/2014 (e) 04/29/2015

Figure [.4.: An example of a sequence of real HS images, acquired at different time instants over the same area.

* Abrupt spectral variations: even though the unmixing approaches [Hal+15; HCJ16] enable smooth variations of
some of the mixture parameters to be accounted for, they remain sensitive to the presence of abrupt spectral varia-
tions. Such variations are commonly observed in sequences of real hyperspectral data, either due to the presence of
outliers or to possibly significant time intervals between consecutive acquisitions. In the latter situation, the natural
evolution of the scene may induce significant changes, e.g., when water or vegetation is present in the observed
scene, as illustrated in Fig. 1.4. Unless specifically accounted for, these variations have a significant impact on the

recovered endmembers. This issue is specifically addressed in Chapter 2.

* Size of the data: HS unmixing of a significant number of images, or several large images, may preclude the use of
batch estimation procedures as in [Hal+15; HCJ16; YZP17] due to limited memory and computational resources.
Since online estimation procedures enable data to be sequentially incorporated into the estimation process without
the need to simultaneously load all the data into memory, Chapter 3 will be focused on the design of an online HS
unmixing method accounting for temporal variability. Furthermore, the development of unmixing procedures based

on [CPR16] will be shown to be particularly relevant for MTHS unmixing. From a complementary point of view,

11
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the development of a distributed asynchronous unmixing algorithm is investigated in Chapter 4.

1.4. Measures of unmixing quality

The performance of the unmixing strategies compared in this manuscript is evaluated on synthetic data in terms of the
quality of the recovered abundance, endmember and variability estimates, as well as the reconstruction error. More

explicitly, quality assessment is conducted in terms of the following criteria.

(i) Average spectral angle mapper (aSAM). The endmember estimation is evaluated through the average spectral
angle mapper (aSAM), which is particularly relevant to evaluate the similarity between the shape of the true and the

recovered endmembers

m!m
aSAM(M arccos( - ) ; (1.9)
"R Z ([ ||2[Jm [[2

(ii) Global mean square errors (GMSEs). The abundance and variability estimations are evaluated through the global

mean square errors (GMSEs)

1 —~
GMSE(A) = JTN”A — A} (1.10)

1 —
GMSE(dM) = ﬁ||olM — dM|3; (L.11)

(iii) Reconstruction error (RE). The accuracy of the reconstructed data is assessed in terms of the quadratic recon-

struction error (RE)
1 S
RE = ﬁ”Y -Y|;g (1.12)

where Y is the matrix composed of the pixels reconstructed with the estimated parameters.

The reconstruction error RE must be carefully interpreted depending on the context of the study, since this criterion does
not provide a sufficient information to assess the unmixing performance. Indeed, a low value of the RE may correspond to
a trivial representation of the data (i.e., when the noise is captured by the unmixing procedure), and significantly depends
on the number of degrees of freedom introduced in the model. As such, this criterion must be systematically interpreted

in conjunction with other sources of information available on the data:

* for synthetic data, the RE provides a complementary information in terms of the algorithm convergence when
coupled with the RMSEs computed for the different parameters. It also provides a useful indication against the risk
of overfitting. Ideally, the performance of the algorithms should be exclusively compared in terms of the RMSEs

for a given RE;

* for real data, the interpretation of the RE must be conducted in association with a semantic analysis of the results

(e.g., consistency of the extracted endmembers and abundances, spatial distribution of the estimated variability),

12



Introduction

especially in the absence of ground truth.

In both cases, the RE is not sufficient to properly quantify the unmixing performance of an algorithm, and should be

systematically related to complementary sources of information available on the data under study.

Structure of the manuscript

Chapter 1 introduces an explicit model to account for spatial endmember variability, i.e., locally occurring within a
single image. Reminiscent of the total least squares problem [GL80], the observations are modeled as a linear mixture
of perturbed endmembers, in the sense that they are affected by a spatially varying additive perturbation to account
for endmember variability. The parameters of this model are estimated using an optimization algorithm based on the
alternating direction method of multipliers (ADMM) [Boy+10], showing promising results. An alternative estimation
strategy based on the proximal alternating linearized minimization (PALM) [BST13] algorithm is also reported. The
performance of the proposed unmixing method is evaluated on synthetic and real data. A comparison with state-of-the-art
algorithms designed to model and estimate endmember variability allows the interest of the proposed unmixing solution

to be appreciated.

Chapter 2 introduces a robust unmixing model inspired by [Hal+15; AMH15], specifically designed to address multi-
temporal hyperspectral images of moderate spatial and temporal dimensions. More specifically, HS images are likely to
simultaneously exhibit moderate endmember variability and abrupt spectral changes either due to outliers or to significant
time intervals between consecutive acquisitions. Unless properly accounted for, these two perturbations can significantly
affect the unmixing process. In this context, we propose a new unmixing model for multitemporal hyperspectral images,
accounting for smooth temporal variations — construed as spectral variability — and abrupt spectral changes interpreted as
outliers. The parameters involved in the proposed hierarchical Bayesian model are inferred using a Markov chain Monte-
Carlo (MCMC) method, which enables the posterior of interest to be sampled and Bayesian estimators to be approximated.
A comparison with unmixing techniques from the literature illustrates the interest of the proposed approach on synthetic

and real data.

Chapter 3 investigates an online unmixing algorithm to address the estimation of temporal endmember variability
potentially affecting multitemporal hyperspectral images, i.e., sequence of images acquired over the same area at different
time instants. In this context, the observations are likely to be composed of the same materials. In addition, the possibly
significant size of the data under study may preclude the use of traditional batch estimation techniques to jointly estimate
the mixture parameters. The online hyperspectral unmixing problem is formulated as a two-stage stochastic program
[RX11; Mai+10], which can be solved using a stochastic approximation. The performance of the proposed method is
evaluated on synthetic and real data. A comparison with different unmixing algorithms finally illustrates the interest of
the proposed strategy. The results obtained in this chapter suggest that this analysis enables the endmembers of the scene

to be tracked and the corresponding endmember variability to be consistently characterized.

13
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Chapter 4 focuses on the applicability of asynchronous distributed optimization techniques to estimate the mixture
parameters involved in the model considered in the preceding chapters. Complementary to online estimation algorithms
from a computational point of view, distributed optimization techniques appear as a relevant alternative given the in-
crease in the number of image acquisitions, and the fact that the data may be distributed between different computational
nodes. In this context, we propose an asynchronous distributed unmixing algorithm based on recent advances in asyn-
chronous non-convex optimization [PR15; Sra+16; Cha+16; Scu+17; Dav16; HY16; Can+16]. The gain brought by the

asynchronous algorithm, when compared to its synchronous counterpart, is illustrated on synthetic and real data.

Main contributions

Chapter 1. The contribution of this chapter lies in the introduction of an explicit parametric variability model. A block
coordinate descent algorithm is first proposed to estimate the parameters of interest, which consists in solving strongly
convex subproblems by ADMM. The proposed approach yields competitive reconstruction performance and consistent
variability estimates on both synthetic and real data. The performance of the proximal algorithm [BST13; CPR16] is

finally evaluated for variability estimation.

Chapter 2. A hierarchical Bayesian model is introduced to analyze multitemporal hyperspectral images. This contribu-
tion to robust unmixing accounts for smooth temporal variations — construed as spectral variability — and abrupt spectral
changes interpreted as outliers. The parameters of this model are inferred using an MCMC method, which allows the
posterior of interest to be sampled and Bayesian estimators to be approximated. The encouraging results obtained on real
data lead to the conclusion that MTHS images can provide improved unmixing performance when compared to methods

analyzing the images independently.

Chapter 3. An online unmixing algorithm is proposed to analyze MTHS images, whose size may preclude the use of
batch unmixing procedures. Based on a modified version of the model introduced in Chapter 2, the problem is formulated
as a two-stage stochastic program, which is solved using a stochastic approximation. The results obtained on real data

show the interest of considering several HS images to improve the unmixing results.

Chapter 4. The main practical contribution of this chapter results from the application of a recent asynchronous dis-
tributed algorithm to hyperspectral unmixing. The gain in terms of computational time brought by the asynchronous
algorithm considered, when compared to its synchronous counterpart, is appreciable in the experiments conducted on

synthetic and real data.
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CHAPTER

Hyperspectral unmixing with spectral variability

using a perturbed linear mixing model

This chapter has been adapted from the journal paper [TDT16a].
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1.1. Introduction (in French)

Ce premier chapitre introduit un modele paramétrique visant a prendre en compte la variabilité spatiale des spectres purs.
Dans la mesure ou les signatures qui composent les acquisitions peuvent étre intréprétées comme autant de réalisations
de spectres de références (caractéristiques de matériaux distincts), nous proposons une extension du modele de mélange
linéaire communément adopté. Tandis que la variabilité est exclusivement traduite en termes de facteurs d’échelle spatiale-
ment variables dans [Veg+14], le modele proposé s’appuie sur une formulation inspirée du probleme de moindres carrés
totaux [GL80] et d’un modele proposé dans un autre contexte [JJ13]. Chacune des signatures composant un pixel donné
est représentée par un spectre pur, uniforme sur I’ensemble de I’'image, affecté par une perturbation additive spatialement

variable pour rendre compte de sa variabilité.
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Chapter 1. Hyperspectral unmixing with spectral variability using a perturbed linear mixing model

Les résultats prometteurs obtenus ces derniéres années par la méthode des multiplicateurs de Lagrange (ADMM),
aussi bien en imagerie hyperspectrale [Bio09] qu’en analyse ou débruitage d’images [ABF10; ABF11; AF13a; AF13b;
MRF13], nous a dans un premier temps conduit a envisager une technique d’estimation basée sur cette méthode. De
fait, nous considérons un algorithme de descente par coordonnée (BCD), dont les différents sous-problémes fortement
convexes sont résolus par la méthode ADMM. Par la suite, les performances de 1’algorithme de minimisation proximale
décrit dans [BST13; CPR16] sont évaluées dans le cadre du probleme d’intérét.

Le présent chapitre est organisé comme suit. Le modele de mélange proposé est introduit dans un premier temps dans
la section 1.3. La section 1.4 est consacrée a la description des deux algorithmes précédemment évoqués pour estimer
les parametres du modele considéré. Les résultats de simulations sur données synthétiques et réelles sont respectivement
rapportés dans les sections 1.5 et 1.6. Les résultats obtenus y sont systématiquement comparés a ceux d’autres algorithmes
issus de 1’état de 1’art, comprenant deux méthodes de démélange linéaire (VCA/FCLS [NBO5b; BF10] et SISAL/FCLS
[Bio09]), et trois méthodes prenant en compte la variabilité spatiale des sources (AEB [Som+12], FDNS [JWZ10], et

ELMM [Dru+16]). La section 1.7 permet enfin de conclure 1’étude menée dans ce chapitre.

1.2. Introduction

In this chapter, an explicit model is introduced to address the question of spatial endmember variability. Since the iden-
tified endmembers can be construed as different instances of reference endmembers, we introduce an extended version
of the classical LMM to explicitly model the observed variability. In [Veg+14], the variability is assumed to exclusively
result from scaling factors. Resorting to an alternative interpretation of the problem, the proposed model is reminiscent of
the total least squares (TLS) problem [GL80], and inspired by a model designed in [JJ13]. Each endmember is represented
by a “pure” spectral signature, corrupted by an additive perturbation accounting for its variability. In the following, this
model will be referred to as a perturbed linear mixing model (PLMM).

The promising results obtained with the alternating direction method of multipliers (ADMM) in hyperspectral imagery
[Bio09] and in image deblurring [ABF10; ABF11; AF13a; AF13b; MRF13] serve as an incentive to apply a similar
framework to estimate the parameters of the proposed model. To this end, a block coordinate descent (BCD) algorithm is
first considered, whose strictly convex sub-problems are solved by ADMM. The performance of the proximal alternating
linearized minimization (PALM) [BST13; CPR16] is also investigated for this problem.

This chapter is organized as follows. The PLMM accounting for spatial endmember variability is introduced in sec-
tion 1.3. Section 1.4 first describes an ADMM-based algorithm to solve the resulting optimization problem, and then
investigates the application of a PALM algorithm to the problem under study. Experimental results obtained on synthetic
and real data are reported in section 1.5 and 1.6 respectively. The results obtained with the proposed algorithm are sys-
tematically compared to those of the vertex component analysis / fully constrained least squares (VCA/FCLS) [NBO5b;
BF10], the simplex identification via split augmented Lagrangian (SISAL) [Bio09] coupled with FCLS, the automated
endmember bundles (AEB) [Som+12], the Fisher discriminant null space (FDNS) from [JWZ10], and the extended linear
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model (ELMM) introduced in [Dru+16]. Section 1.7 provides preliminary conclusions on this study.

1.3. Problem statement

1.3.1. A perturbed linear mixing model (PLMM)

In absence of specific prior knowledge on the variability nature, we propose to explicitly model endmember variability
as an additive, spatially varying endmember perturbation. Reminiscent of the total least squares problem [GL80], this
choice combines simplicity with a sufficient flexibility to account for the observed phenomenon. Assuming the number
of endmembers R is known, the proposed PLMM differs from the classical LMM insofar as each pixel y,, is represented
by a linear combination of the R endmembers — denoted by m,. — affected by a perturbation vector dm,. ,, accounting for

endmember variability. The resulting PLMM can be written

R
Yn = arn(m, +dm,,)+b,forn=1,...,N (1.1)

r=1

where y,, denotes the nth image pixel, m, is the rth endmember, a, ,, is the proportion of the rth endmember in the
nth pixel, and dm,. ,, denotes the perturbation of the rth endmember in the nth pixel. Finally, b,, is a zero-mean white
Gaussian noise resulting from the data acquisition and modeling errors. In absence of variability, the PLMM reduces to

the LMM. The PLMM (1.1) can be written in matrix form

Y = MA + [dMja,...,dMyay| +B (1.2)

A

where Y = [y1,...,yn] is an L X N matrix containing the image pixels, M is an L x R matrix composed of the
endmembers, A is an R x N matrix composed of the abundance vectors a,,, dM,, is an L x R matrix whose columns
are the perturbation vectors associated with the nth pixel, and B is an L x N matrix accounting for the noise. To reflect

physical considerations, the following non-negativity and sum-to-one constraints are considered

A =0pNn, ATlp=1y
(1.3)
MEOL,Ra M+dMntOL7R,Vn:1,...,N

where > denotes a term-wise inequality. When compared to other approaches previously proposed in the literature
[ZH14], the model (1.1) presents the advantage of explicitly addressing spectral variability in terms of an additive per-
turbation. As illustrated in the experiments reported in section 1.6, this perturbation accounts for any deviation from the
linear mixing model. In the following paragraphs, we propose an unsupervised algorithm to estimate the endmembers,
the abundances and the endmember variability for each pixel composing the image of interest using the model (1.1) with
the constraints (1.3).

Using an alternative approach, another recently proposed model explicitly represents endmember variability in terms
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of spatially varying scaling factors [Dru+16]. Note that the model used in practice in [Dru+16] can be reformulated
as a linear unmixing problem without the abundance sum-to-one constraint (more precisely, the sum of the abundance
coefficient of each pixel is equal to the corresponding unknown scale coefficient, see (I.7) in the preliminary chapter).
In practice, the resulting scale indeterminacy is partly addressed by considering an additional term, which penalizes the

distance between reference endmembers and the signatures estimated for each pixel (see (I.8)).

Remark 1.1. The proposed model exhibits similarities with the NCM introduced in [Ech+10] and its generalization, the

GNCM, proposed in [HDT15]. The GNCM is expressed as

Yn = Z Gy n XMy + e, €p ~ N(O, 1/)7211), Spn ™~ N(mr7 diag(02)) (U2 € Ri)

T

The PLMM and the GNCM are equivalent by setting 1,, = 0, and considering m, ,, = m, + dm, ,, with dm, , ~
N (0, diag(o?)). The distinction between the work proposed in this chapter and [HDT15] lies in the estimation approach
developed in the following section, and in the nature of the parameter estimators. More precisely, the approach proposed

in [HDT15] directly considers the likelihood function

_1
2

L
p(yn ‘ A M, 3, ‘Il) X (H AZ,n) exp{_%<diag(An)<yn - Man)ayn - Man>}
=1

R —1
Af,n = (Z az,naz,é + wi) ’ A” = [Aévn}é € RL
r=1

where the variability does not explicitly appear (since contained in m,. ,,). On the contrary, we propose to explicitly

estimate the variability present in the scene to characterize its spatial distribution within the scene under study.

1.3.2. Problem formulation

The PLMM (1.1) and the constraints (1.3) can be combined to formulate a constrained optimization problem expressed as

(M*,dM*, A*) € arg min {j(M, dM, A) s.t. (1.3)}. (1.4)
M,dM,A

Assuming the signal is corrupted by a zero-mean white Gaussian noise, the objective function can be defined as
J(M,dM, A) = F(M,dMA) + a®(A) + U (M) + Y (dM) (1.5)

1
F(M,dM,A) =Y f(M,dM,,a,) = 5 IIY —MA - Alf, A=[dMa,,...,dMyay] (1.6)

where the expression of the data fitting term F', given by the Frobenius distance between the acquisitions Y and the
reconstructed data MA + A, results from the assumption on the noise statistical distribution. The penalization functions
®, U and T reflect any a priori knowledge related to the mixture parameters M, A and dM, whereas the hyper-parameters

«, [3, v control the trade-off between the data fitting and the penalization terms. We further assume that the penalization
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functions are separable as follows

N L N
O(A) = day), T(M)=Y ¢(m,), Y(dM)=> ov(dM,) (1.7)
n=1 n=1

(=1

where my denotes the ¢th row of M, and ¢, ¢ and v are non-negative differentiable convex functions. In the follow-
ing, this assumption is notably used to decompose (1.4) into a collection of simpler sub-problems, further described in

section 1.4.1. The penalization functions considered in this chapter are introduced in the next paragraphs.

Abundance penalization. To promote spatially smooth abundances as in [CRH14], we consider a penalization function
® expressed as

1
o(A) = 5 |AH|? (1.8)

where H is an operator computing the differences between the abundances of a given pixel and those of its 4 nearest

neighbors. The resulting expression of ¢ is detailed in Appendix A.1.

Endmember penalization. The choice of VU is based on classical penalization functions found in the literature, which
essentially consist in constraining the volume of the simplex whose vertices are the endmembers. Notably, the penaliza-
tion used in [MQO7; Cha+11] enables the volume exactly occupied by the (R — 1)-simplex formed by the endmembers
to be penalized. Another approach consists in approximating this volume by the mutual distance between the endmem-
bers [Ber+04; ASLI11]. Finally, if the endmembers are a priori expected to be close to reference spectral signatures, a
penalization on the distance between the endmembers and these signatures can be considered. In the following lines, the
expression of these three penalization terms is recalled, and the expression of the corresponding functions v is given in

Appendix A.1.

1. The distance between the endmembers and reference spectral signatures IM can be expressed as

1
W(M) = o [|M ~ M. (1.9)

2. The mutual distance between the endmembers is expressed in matrix form as

W(M) =

DN | =

R
Z( lm; — mJ‘%)- (1.10)
Jj=1

i=1

J#i

3. Under the pure pixel and linear mixture assumptions, the data points are enclosed in an (R — 1)-simplex whose

vertices are the endmembers [Cha+11]. Let E be the projection of M on the subspace spanned by the R — 1
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principal components of Y. The expression of the volume of this subspace is

To ensure the differentiability of the penalization term with respect to E, we propose to consider

U(M) = %VQ(E). (1.11)

Variability penalization. Finally, the variability penalizing function T has been chosen to limit the norm of the captured
variability. Indeed, endmember variability is expected to represent a limited fraction of the signal’s energy. The following

penalty function, which has the advantage to be differentiable with respect to dM,,, has thus been selected
1 X
_ 2
T (dM) = 5 E_l IldM, ||z (1.12)

To the best of our knowledge, no specific information regarding the spatial distribution of the variability is available in
the remote sensing literature. Consequently, no specific regularization has been considered on dM. However, any spatial
penalization satisfying the assumptions given in paragraph 1.3.2 can be considered if necessary (e.g., a group-Lasso £5 ;
penalization to promote spatial sparsity of the variability term dM).

Note that an alternative choice of T has been considered in section 1.4.2 by defining v(dM,,) = ¢ <v} (dM,),
where s denotes the indicator function of a given set S and v > 0 is a user-defined constant. In practice, the choice of v
results from a compromise between the amount a variability captured by the model, and the risk to capture noise into the

unmixing process.

1.4. Parameter estimation

The parameters involved in the model (1.1) can be estimated by different algorithms. Paragraph 1.4.1 is focused on a
block coordinate descent (BCD) algorithm, leveraging the solutions to simpler strongly convex subproblems obtained by

the ADMM. An application of the PALM algorithm is then investigated in paragraph 1.4.2.

1.4.1. An ADMM-based algorithm

Given the non-convexity of the problem (1.4), an alternating minimization strategy similar to [AF13a] has been adopted.
Precisely, the cost function J is successively minimized with respect to each variable A, M and dM until a stopping
criterion is satisfied. The assumptions made on the penalization functions ®, ¥, Y in section 1.3.1 allow the optimization
problems described in Algo. 1 to be divided into a collection of strictly convex sub-problems. These sub-problems involve

differentiable functions, thus simplifying their resolution. Having introduced appropriate splitting variables to account for
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Algorithm 1: PLMM-unmixing: a BCD/ADMM algorithm. Each sub-problem resulting from the decomposition of
the optimization steps (a), (b), and (c) is solved by ADMM.

Data: Y, A°, M, dM°

begin
k + 0;
while stopping criterion not satisfied do
@ AR = arg minJ(Mh dM*, A) :
A
®) MFH = arg min J (M dM*, Ak+1) :
M
© dM**! = arg min J (Mk“, dM, Ak+1) :
dM
B k+k+1;

Result: A%, M*, dM*

the constraints, these sub-problems are finally solved using ADMM steps, which admit closed-form expressions due to
the separability assumption. The three minimization steps considered in this algorithm present a highly similar structure.

The details are reported in Appendix A.3 for the sake of brevity.

Abundance estimation (A). With the assumptions made in paragraph 1.3.2, optimizing the cost function 7 with respect

to A under the constraints (1.3) is equivalent to solving the following problems

%HYn - (M + dMn)anH% + agp(ay)
a’ = argmin ) (1.13)

o st. a,=0gr, a'lp=1
Introducing the splitting variables WSLA ) e RE forn = 1,..., N suchthata, = ngA ), the resulting scaled augmented
Lagrangian is expressed as
1 )
Lo (a7taW£LA)v )\%A)’ /\n) = Sllyn — M+ dM,)a,[l5 + ——la, — ngA) + )‘ng)Hg
Hon 2 2 (1.14)

+ /\n(lfzan —1) +ag(an) + t{-0x} (wglA))

with /,L%A) > (. The resulting algorithm (step (a) of Algo. 1) is detailed in Algo. 2, and the solution to each sub-problem

is given in Appendix A.3.

Endmember estimation (M). Similarly to the previous paragraph, optimizing .7 with respect to M under the constraint

(1.3) is equivalent to solving

. N S 3 _ .
m; = arg min {2|yz — myA — 8|3 + Bip(my), s.t.my = c@} (1.15)

my

23



Chapter 1. Hyperspectral unmixing with spectral variability using a perturbed linear mixing model

Algorithm 2: ADMM optimization w.r.t. A (step ((a)) of Algo. 1).

Data: Y, Aks Mk, Epri’ Edual» Tincr’ Tdecr’ {,uglA)(O) }ij:l
begin
forn =1to N do
q <+ 0;

ABO _ g
WO _ (k0),

while stopping criterion not satisfied do

a£f7q+1) = arg min EH(A)(Q) (an7 wg,A)(q)7 )\;A)(‘I)) ;

an
wi Y — argmin £ a0 (a%k’qﬂ), wit, A%A)(Q)) ;
w1

AWM+ — (A (@) af,k’qﬂ) _ W%A)(qﬂ) .

Update 1$™? using (A.20) ;

L g q+1;
ak+l :aﬁf’q);

Result: AFt!

where m, denotes the ¢th row of M, ¢, = max{OE, maxn{—a;lg,n}} and the max operations are applied term-wise.
Introducing the splitting variables WEM) € R guch that WEM) =my for{ = 1,..., L leads to consider the following

scaled augmented Lagrangian

M) (M) ~on|?
A 9

(M)
~ o~ 1 ~ = 1% ~ ~ (M
EME;M) (me,W Ay ) = 5”3%*11’1@1&*5(”%4’72 ngw§ ) + A

2 (1.16)
+ ﬁzﬂ(ﬁlé) + L{.ta} (‘XIEM))

with 1™ > 0. The resulting algorithm (step (b) of Algo. 1) is similar to Algo. 2. The solution to these optimization prob-
Hy galg Y g g P P

lems, which depends on the selected penalizing function ¥ introduced in paragraph 1.3.2, is reported in Appendix A.3.

Variability estimation (dM). Finally, optimizing J with respect to dM under the constraint (1.3) is equivalent to

solving the sub-problems

1
dM? = arg min {2||yn — (M +dM,)a, |2 + yu(dM,,), s.t. M + dM,, > oL,R}. (1.17)
dM,
Introducing the splitting variables ngd M) dM,, forn = 1,..., N, the resulting scaled augmented Lagrangian is

given by

1
L (AM,, WM AAM)) = lyn — M+ dM,,)an|3 + y0(dM,) + ¢ ny (WMD)

an (1.18)
+ B
2

HdMn — WEM) | A (M) H2
F
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Algorithm 3: PALM algorithm to solve the unmixing problem (1.4).

Data: Y, A, M©, aM©

begin

k <+ 0;

while stopping criterion not satisfied do
// Abundance update

forn =1to N do

@ L aptt = prox, (ajg - %Vanf<af” Mk,amﬁ)) : // (1.19)

n

// Endmember update

(b) MFk+1 — proX, .. (Mk _ 1 VMF(AIH-I’MK’de)) ; // (1.21)

a

// Variability update
forn =1to N do

() L deﬁl = proxl{uﬂllpév}"""{.gfmkﬂ} <dMi€z — V%ile\/[mf(afLJﬂ7 Mk+1’ dMZ)) ; // (1.23)
k+—k+1,

Result: A*, M, dM*

with ,ugldM) > 0. The resulting algorithm (step (c) of Algo. 1) is similar to Algo. 2. The solution to these sub-problems is

given in Appendix A.3.
The optimization procedures detailed above are performed sequentially until the stopping criterion is satisfied. The
next sections evaluate the performance of the resulting unmixing strategy via several experiments conducted on synthetic

and real data.

Convergence and computational cost. The BCD proposed in Alg. 1 is guaranteed to converge to a stationary point of
the objective function J as long as each sub-problem is exactly minimized [Ber99, Proposition 2.7.1]. Besides, the sub-
problems tackled in the preceding paragraphs are strongly convex, ensuring the convergence of the ADMM steps toward
the unique minimum of each independent sub-problem when the augmented Lagrangian parameter has a constant value
(see for instance [Boy+10]). The same convergence result applies to the ADMM with the parameter adjustment reported
in Appendix A.2 as long as the parameter is updated finitely many times [Boy+10]. Considering the significant number
of unknown parameters and the simple expression of the ADMM updates detailed in Appendix A.3, we can note that the
computational cost is dominated by matrix products, yielding an overall computational cost of the order O(LR?N).

We may however mention that the proximal alternating linearized minimization (PALM) [BST13] can also be directly
applied to the considered problem, thus allowing a rigorous convergence result based on the Kurdyka-t.ojasiewicz property

to be obtained. This alternative approach is investigated in the following section.

1.4.2. Parameter estimation based on the PALM algorithm

A direct application of [BST13, Remark 4 (iv)] leads to the proximal gradient descent detailed in Algo. 3. The following

lines give further details on the expressions used to update the different parameters of interest.
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Abundance update (A). Updating the abundance coefficients in the absence of any penalization reduces to the following

proximal gradient step

1
al*! = prox, <a,’3 - kvanf(a,’g,Mk,dMﬁD, k= [[(VF 4 amb)T vt 4 ana) (1.19)
in F
When considering the spatial smoothness regularization introduced on section 1.3.2, the update step becomes
1
AN = prox, , (Ak - —kVAF<A’“, MF, de)>
" (1.20)

i = max{ H(Mk +dME)T(MF + dMF)

o+ |[HHT]

Indeed, a Lipschitz constant can be explicitly computed for V AF(A’“, MF, de> by observing that, for two given

matrices A1, Ao,

2
| MM 0 ) MM || = 3 MM, 0 =)
n
< D7 IMIML [ [y, &%

< (max || MM [3) 141 = Asll.

Endmember update (M). Considering the constraints (1.3), the endmember update reduces to the following projected

gradient step

1 .
ML — prox, . (Mk _ kVMF(Ak+17M/€7de)>
- H (1.21)
ct = max{0y, g, max —dMﬁ}
where the expression of ;¥ depends on the penalization function considered
| AR (ARTT| (no penalization)
ph = |AFFHAMT + BGGT||, (mutual distance) (1.22)

HA’“*1 (AFFDT 4 ﬁIRHF (distance to a reference Mj).

Variability update (dM). Similarly, the variability update step can be written

1
dM; ! = prox dM;, — ykvdMnf(aZHkaHadMﬁ))’ U = ”aﬁﬂ(aﬁﬂ)THF' (1.23)

n

ey Tl —mk+1} (
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The above proximal operator can be easily computed as (see Appendix A.4)

prox (X) = (prox o prox )(X). (1.24)

Ll g} T Mkt Ll psv} RS VUSE

Convergence and computational cost. The problem (1.4) satisfies the conditions of [BST13, Theorem 1] for the objec-
tive function (1.5) (e.g., as a special case of [BST13, Section 4.1]). Consequently, the sequence of iterates {IM¥, dM*, ARY,
is guaranteed to converge to a critical point of the unmixing problem (1.4). Dominated by matrix products, the per iteration

complexity of the PALM algorithm is of the order of O(LRN), since R < L < N in practice.

1.5. Experiments with synthetic data

The performance of the proposed method is assessed on four images of size 128 x 64, composed of 413 bands. Each
image corresponds to a mixture of R endmembers in presence or absence of pure pixels, with R € {3,6}. The data have
been further corrupted by an additive white Gaussian noise to ensure a signal-to-noise ratio (SNR) of 30 dB.

Since no commonly accepted variability model is available in the literature, we propose the following procedure to gen-
erate controlled variability. The perturbed endmembers involved in the mixture have been generated using the component-
wise product of reference endmembers with randomly drawn piece-wise affine functions, providing realistic perturbed
endmembers as illustrated in Fig. 1.1. This choice allows the shape and amplitude of the reference endmembers to be
easily modified in different spectral bands, while generating satisfactory perturbed endmembers when compared to the
variability observed in real data (see Fig. .2(a) in the preliminary chapter). For simplicity, we consider piece-wise affine
functions composed of two parts delimited by the band index Ly,x, where a parameter cy,, controls the amplitude of the
extreme points composing each of the two functions (see Fig. 1.2).

For a given variability coefficient ¢y, > 0 fixed by the user, the parameters &;, i € {1,2,3} and Ly € {1,...,L}

introduced in Fig. 1.2 have been independently drawn as follows

§i ~Un—cp /2,142 1 € 11,2,3} (1.25)

Liweac = |L/2+ | LU/3]), U ~ N(0,1) (1.26)

where | -] denotes the floor function. The synthetic data used in the proposed experiments have been generated with a
value of cy,, that is lower in the upper half of the image (cyar = 0.1) than in the lower half (cyor = 0.25). Note that different

affine functions have been considered in each pixel for each endmember.

1.5.1. State-of-the-art methods

The results of the proposed algorithms, evaluated in terms of the performance measures introduced in the preliminary
chapter (see section 1.4), have been compared to those obtained with two classical linear unmixing methods (VCA/FCLS,

SISAL/FCLS) and three variability accounting algorithms (AEB, FDNS, ELMM). These methods are recalled below with
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Figure 1.1.: Reference endmembers (red lines) and 20 corresponding instances under spectral variability (cyan lines)
involved in the synthetic data experiments.
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Figure 1.2.: Example of a randomly-generated affine function used to generate the synthetically perturbed endmembers.
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their most relevant implementation details.

* Classical unmixing methods (no variability)

1. VCA/FCLS: the endmembers are first extracted using the vertex component analysis [NBO5b]. The abun-
dances are then estimated for each pixel using the fully constrained least squares (FCLS) algorithm [HCOO;

BF10]);

2. SISAL/FCLS: the endmembers are first extracted using the simplex identification via split augmented La-
grangian [Bio09]. The tolerance for the stopping rule has been set to 10~2 and VCA has been used as an

initialization step. The abundances are then estimated for each pixel using FCLS.

* Variability accounting methods

3. AEB [Som+12; Rob+98; Goe+13]: the size of the bundles is equal to 25% of the total pixel number. The

endmembers and abundance are estimated using VCA/FCLS;
4. FDNS [JWZ10]: the endmembers and abundances are first estimated by VCA/FCLS;

5. ELMM [Dru+16]: initialized with VCA/FCLS, a slightly modified version of the BCD algorithm proposed
in [Dru+16] has been applied (essentially to correct the update equation [Dru+16, (12)]). The algorithm is
stopped when the relative difference between two successive values of the objective function is less than
10~4, with a maximum of Ny, = 100 iterations. To allow a better comparison with the proposed methods,
the variability captured by the ELMM is interpreted in Fig. 1.4 as the deviation of each spectral signature from

its average;

6. Proposed method (BCD/ADMM): endmembers and abundances have been initialized with VCA/FCLS es-
timates. Note that VCA/FCLS is a method assuming that there are pure pixels in the image, which can be
problematic if the imaged scene does not satisfy this assumption. The variability matrices have been initialized
with all their entries equal to 0. The algorithm is stopped when the relative difference between two successive

values of the objective function is less than 10~4, with a maximum of N, = 100 iterations.
7. Proposed method (PALM): the algorithm is stopped when the relative difference between two successive

values of the objective function is less than 1075, with a maximum of Ny, = 500 iterations.

In the following, only the results obtained with a combination of the abundance spatial smoothness (abbreviated as
ss in the following) and the endmember mutual distance (md) regularizations are reported for BCD/ADMM and PALM.
Different regularization combinations (i.e., with the regularization based on the minimum volume or the distance to

reference endmembers) were not found to bring any significant improvement over the reported results.

1.5.2. Results

The parameters used for the ADMM algorithms are detailed in Table 1.1, and the values chosen for «, 3, v and v (for

BCD/ADMM and/or PALM) are reported in Table 1.2 and 1.3. The values for these parameters have been chosen using
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Table 1.1.: ADMM parameters.
Synthetic data Moffett scene  Cuprite scene
iner 1.1 1.1 1.1

deer 1.1 1.1 1.1
10 10 10

SASY 100 100 100
M) 10! 1 10!
,UrELdM)(O) 1071 1 1071
g20s 102 1072 1072
erel 104 104 104
Nier 100 100 100

a grid of values successively tested for each parameter, while the others are fixed. The value selected for each parameter
corresponds to the one minimizing the reconstruction error RE. The values taken to initialize this procedure ensure that
each penalization term has a weight corresponding to a predefined fraction of the initial data fitting term (typically 10 to
20 %).

The performance measures returned by the unmixing methods, provided in Table 1.2 for the datasets containing pure

pixels and in Table 1.3 for datasets without pure pixels, led to the following conclusions.
» The proposed method is robust to the absence of pure pixels;

* The proposed method provides competitive results in terms of aSAM while allowing endmember variability to be

estimated for each endmember in each pixel;

» For most simulation scenarii, the abundance GMSEs and the REs are better or comparable to those resulting from
state-of-the-art methods. More specifically, the ELMM yields satisfactory performance resulting from the spatial
prior considered in [Dru+16]. In addition, AEB and SISAL/FCLS lead to satisfactory performances in presence of

pure pixels, which partly results from the underpinning use of VCA/FCLS (which is a pure-pixel based methods);

* The proposed method is computationally more expensive than existing algorithms,, which results in part from the

number of additional parameters considered in the PLMM.

We can note that the smoothness penalization on the abundances proves to be particularly appropriate in this experiment.
Moreover, an increasing number of endmembers implies a loss of estimation performance. This result can be expected
since the VCA/FCLS algorithm is used as an initialization step.

Finally, the variability captured by ELMM and the proposed model is presented in Figs. 1.4 and 1.6 for one of the
synthetic datasets (no pure pixels, R = 3). The difference between the variability intensities detected in the upper and the
lower part of the scene is due to the different variability coefficients used to generate these areas. A similar observation
can be made on the scaling factors estimated by ELMM, thus illustrating the consistency of the results obtained with the

ELMM and the proposed approach.
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Table 1.2.: Simulation results on synthetic data in presence of pure pixels (GMSE(A)x 1072, GMSE(dM)x10~4, RE
x10™%), [(a, B) = (1.35,1.15 x 107°) for R = 3, (o, ) = (3.7 x 1071,4.9 x 107°) for R = 6].

aSAM(M) (°) GMSE(A) GMSEdM) RE time (s)

VCA/FCLS 6.38 3.80 / 7.56 1
SISAL/FCLS 5.27 3.08 / 3.35 2
» FDNS 6.00 3.79 / 7.56 4
I AEB 5.70 2.07 / 3.50 52
= ELMM 5.93 2.69 7.15 0.58 390
ssmdBCD/ADMM (v = 1) 5.10 2.56 4.46 143 729
ssmdPALM (v = 1073) 5.30 3.51 341 3.63 307
VCA/ECLS 6.33 2.24 / 2.92 1
SISAL/FCLS 3.84 3.05 / 2.25 3
© FDNS 6.33 2.22 / 2.92 5
Il AEB 5.70 1.31 / 2.40 142
= ELMM 6.26 0.84 4.18 042 501
ssmdBCD/ADMM (v = 1) 5.48 1.54 2.88 077 224
ssmdPALM (v = 7.2 x 107%) 4.84 1.99 2.74 190 457

Table 1.3.: Simulation results on synthetic data in absence of pure pixels (GMSE(A)x10~2, GMSE(dM)x10~%, RE
x10™) [(a, B) = (2.1 x 1071,7.7 x 107°) for R = 3, (o, B) = (7.1 x 1071,4.3 x 107°) for R = 6].

aSAM(M) (°) GMSE(A) GMSEdM) RE time (s)

VCA/FCLS 5.06 2.07 / 2.66 1
SISAL/FCLS 4.43 2.16 / 2.56 2
» FDNS 5.06 2.06 / 2.66 3
I AEB 5.11 2.11 / 2.66 33
= ELMM 5.05 1.78 6.86 434 329
ssmdBCD/ADMM (y = 10~ 1) 4.56 1.49 6.21 0.08 285
ssmdPALM (v = 5 x 1072) 4.51 1.54 5.24 0.60 314
VCA/FCLS 6.55 2.52 / 2.82 4
SISAL/FCLS 6.04 1.63 / 2.02 5
©© FDNS 6.55 2.53 / 2.82 7
I AEB 6.00 1.78 / 1.85 208
= ELMM 6.54 1.98 4.13 0.60 555
ssmdBCD/ADMM (v = 1) 6.19 2.19 2.89 0.81 618
ssmdPALM (v = 2 x 10~1) 6.05 2.21 2.73 1.82 449
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Figure 1.3.: Estimated abundance maps obtained from the synthetic dataset in absence of pure pixels, composed of R = 3
endmembers.
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Figure 1.4.: Spatial distribution of the estimated variability with respect to each endmember, presented in terms of its
energy (||dm,.,,||2/v/L for the rth endmember in the nth pixel).
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Material 1 Material 2 Material 3

Figure 1.5.: Scaling coefficients recovered by the ELMM algorithm [Dru+16].
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Figure 1.6.: Endmembers recovered from the synthetic dataset with R = 3 in absence of pure pixels. The estimated
endmembers (red lines) are given with typical examples of the estimated variability (cyan lines). The VCA

endmembers are given in black for comparison.
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1.6. Experiments with real data

1.6.1. Description of the datasets

The proposed algorithm has been applied to the following real AVIRIS datasets'.

* Moffett scene: acquired over Moffett Field (CA) in 1997, this 50 x 50 scene is partly composed of a lake and a
coastal area. Unmixing procedures are conducted with 189 out of the the 224 available spectral bands due to the
presence of water absorption bands. The scene has been unmixed with R = 3 endmembers based on prior studies

conducted on this dataset [Dob+09; Hal+11; EDT11].

* Cuprite scene: the second scene is a 190 x 250 image extracted from the extensively studied Cuprite dataset, for
which reference abundance maps are available from the literature. The unmixing procedure has been conducted
with R = 10 endmembers based on the results obtained in prior studies [NB05b; MQO7]. Removing the water-

absorption and low SNR bands leads to exploit 189 out of the 224 available spectral bands.

The parameters used for the proposed approach are identical to those used in the experiments with synthetic data (see
Table 1.1). The values selected by a procedure similar to the one described in the previous section for «, 5 and ~y for the

BCD/ADMM algorithm (v for the PALM algorithm) are given in Table 1.4.

1.6.2. Results

The unmixing performances reported in Table 1.4 lead to the following comments.

Moffett scene. The estimated abundance maps and endmembers are reported in Figs. 1.7 and 1.8, whereas the variability
detected by the different algorithms is displayed in Figs. 1.9. The variability captured by the proposed methods seems
to be more significant on the coastal area where the mixture is not appropriately described by a linear model. The
potential non-linearities usually observed close to the coastal area [ADT11; FD15; Hal+11] are interpreted as variability
in the proposed method, which tends to corroborate its consistency. For this specific scene, the ELMM does not lead to
conclusive results in terms of variability energy, and in terms of the recovered scaling factors (see Fig. 1.10). In addition,
the level of variability estimated by ELMM for the different endmembers suggests that some noise has been captured by
the estimated perturbed endmembers (see e.g. Fig. 1.8(a)), which partly explains the lower RE and aSAM obtain with
this approach. Note that the proposed method and ELMM do not require to consider a sophisticated non-linear model
accounting for interactions between the different endmembers as in [ADT11; Hal+11; Dob+14b], which is an undeniable
advantage. Conversely, all deviations from the LMM are contained in the variability components dm,. ,, of the PLMM.
We can also note that the variability peaks observed in Fig. 1.8 are a clear indication that several corrupted spectral bands

(i.e., low SNR bands) have not been removed prior to the unmixing process.

IThe Moffett and Cuprite images are available at http://www.ehu.es/ccwintco/index.php?title=Hyperspectral_ Remote_
Sensing_Scenes,and http://aviris. jpl.nasa.gov/
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Table 1.4.: Simulation results on real data (RE x10~%) [(«, 8) = (2.5 x 1075,1.2 x 107) for Moffett, (c, 3) = (9 x
1072,5.2 x 1079) for Cuprite].

Algorithm RE aSAM(Y) (°) time (s)
__ VCA/FCLS 2.50 7.31 0.4
°|’|’ SISAL/FCLS 1.12 4.93 30
= FDNS 2.69 7.33 1
= AEB 6.25 6.93 10
£ ELMM 0.29 245 64
< ssmdBCD/ADMM (y = 1072) 0.45 2.65 102
ssmdPALM (v = 2 x 10~ 1) 0.48 1.58 72
= VCA/FCLS 3.69 1.39 9.9
= SISAL/FCLS 2.16 1.33 15
Q! FDNS 3.69 1.40 11
<~ AEB 0.40 0.90 615
£ ELMM 0.15 0.49 2455
§ ssmdBCD/ADMM (y = 10~ 1) 0.02 0.19 1749
ssmdPALM (v = 5 x 101) 1.53 x10~2 0.03 2034
Water Soil Vegetation
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o
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Figure 1.7.: Abundance maps estimated for the Moffett scene.
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Figure 1.8.: Endmembers estimated by ELMM, BCD/ADMM and PALM for the Moffett scene. Each endmember esti-
mated by ELMM, BCD/ADMM and PALM (red lines) is plotted with the corresponding VCA endmember
(in black lines), and typical examples of the estimated variability are given in cyan dotted lines.
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Figure 1.9.: Spatial distribution of the variability with respect to each endmember estimated for the Moffett dataset. The

maps are presented in terms of the variability energy for visualization purpose (||dm,., ||2/v/L for the rth
endmember in the nth pixel). To allow a better comparison with the proposed methods, the variability cap-
tured by the ELMM is interpreted as the deviation of each corrupted spectral signature m,. ,, (see (1.7)) from
its (spatial) average m,..
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Figure 1.10.: Scaling coefficients recovered by the ELMM algorithm [Dru+16] from the Moffett dataset.
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Cuprite scene. The results obtained for the Cuprite scene are reported in Figs. 1.11 to 1.16. Comparing our results with
those of [NB05b], we visually found out that similar endmembers that were identified as different signatures by VCA for
R = 14 [NBO5b] are interpreted as multiple instances of single endmembers in our setting (R = 10). The identification is
notably given in Fig. 1.11. Fig. 1.12 shows that the algorithms captured a significant variability level in the pixels where
many different endmembers are detected, which reveals that the spectral mixture may not be strictly linear in these pixels.
The maps of the scaling factors recovered by ELMM, reported in Fig. 1.13, mainly exhibit variations in area where the

other methods captured a significant variability contribution.

Sph. Alun.  Dumort. Montmo. Andra. Pyrope Budd. Muscov. Nontron. Kaolin.
1
ZE) 0.5
g .
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= . e !
= j 0.5
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z(l 0.5
o
0

Figure 1.11.: Abundance maps estimated by ELMM, BCD/ADMM and PALM for the Cuprite scene. The given identifi-
cation is based on a visual comparison with the results obtained in [NBO5b] [Sphene, Alunite, Dumortierite,
Montmorillonite, Andradite, Pyrope, Buddingtonite, Muscovite, Nontronite, Kaolinite].
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Figure 1.12.: Spatial distribution of the estimated variability for the Cuprite dataset, presented in terms of energy
(|[dm,. ,, ||2/V/L for the rth endmember in the nth pixel).
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Figure 1.14.: Endmembers estimated by ELMM for the Cuprite scene. The given identification is based on a visual
comparison with the results obtained in [NBO5b].
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1.7. Conclusion and future work

This chapter introduced a new linear mixing model accounting for spatial endmember variability. The proposed model
extends the classical LMM by including an additive spatially varying perturbation matrix that can capture endmember
variabilities. The resulting unmixing problem was solved by alternating minimization of an appropriately regularized cost
function, each minimization being performed by an appropriate ADMM algorithm. Another estimation strategy based on
the PALM algorithm was also investigated. Simulations conducted on synthetic and real data enabled the interest of the
proposed solution to be appreciated. Indeed, the recovered results compared favorably with state-of-the-art approaches
while providing a relevant variability estimation.

The choice of the penalization parameters «, 5 and y (or /), performed by trying different values on a predefined grid
of values, would deserve to be automated in the future. Finally, due to the significant number of unknown parameters, the
proposed method is not intended to be applied to large images. This approach can be applied as a complementary tool to
analyze small hyperspectral images a priori believed to be affected by a non-negligible variability level. Decreasing the
computational complexity of the algorithm introduced in this chapter is another interesting prospect.

With a first chapter focused on the representation of spatial endmember variability (i.e., within a single image), the next
chapter addresses temporal endmember variability when unmixing a sequence of HS images — acquired over the same

area at different time instants.

Main contributions. The contribution of this chapter lies in the introduction of an explicit parametric variability model.
A block coordinate descent algorithm is first proposed to estimate the parameters of interest, which consists in solving
strongly convex subproblems by ADMM. The proposed approach yields competitive reconstruction performance and
consistent variability estimates on both synthetic and real data. The performance of the proximal algorithm [BST13;

CPR16] is finally evaluated for variability estimation.

1.8. Conclusion (in French)

Un nouveau modele de démélange a été introduit dans ce chapitre pour rendre compte de la variabilité spatiale des spectres
purs. Ce modele étend le modele linéaire communément adopté, dans la mesure ol il comporte un terme de perturbation
additif spatialement variable pour représenter la variabilité spatiale des sources. Le probleme de démélange obtenu a été
résolu a I’aide de deux algorithmes de minimisation alternée, I’un basé sur 1’algorithme ADMM, 1’autre sur une descente
proximale linéarisée. Les résultats des simulations conduites sur données synthétiques et réelles ont montré 1’intérét du
modele proposé pour rendre compte du phénomene de variabilité spatiale, notamment sur données réelles.

Le choix des parametres de régularisation du modele, effectué jusqu’ici en parcourant une grille de valeurs prédéfinies,
nécessiterait le développement de procédures automatiques. Enfin, le nombre conséquent de degrés de liberté supplé-
mentaires introduit par le modele limite de fait son application a des images de taille modérée. Cette approche reste

envisageable en tant qu’outil d’analyse complémentaire, pour une application a des images de taille limitée, a priori
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affectées par un niveau non-négligeable de variabilité. Enfin, réduire le cofit calculatoire engendré par les approches
considérées constitue une derniere perspective qu’il conviendrait d’approfondir.

Tandis que ce premier chapitre a permis de rendre compte de la variabilité spatiale des spectres purs au sein d’une
unique image, le chapitre suivant propose de caractériser la variabilité temporelle des spectres purs lors du démélange

d’une série multi-temporelle d’images hyperspectrales.

Contributions principales. Un modele explicite de variabilité spatiale est proposé dans le cadre du démélange d’images
hyperspectrales. Un permier algorithme d’optimisation, qui consiste a résoudre une séquence de sous-problemes stricte-
ment convexes par la méthode des multiplicateurs de Lagrange (ADMM) dans un algorithme de descente par coordonnées,
permet d’estimer les parametres du modele. Les performances de 1’algorithme PALM [BST13; CPR16] sont également
évaluées dans ce contexte. Ces deux algorithmes permettent d’obtenir des résultas de reconstruction compétitifs, tout en

donnant une représentation satisfaisante de la variabilité.
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CHAPTER 2

A Bayesian model accounting for endmember

variability and abrupt spectral changes to unmix

multitemporal hyperspectral images.

This chapter has been adapted from the submitted journal paper [TDT17a].
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2.1. Introduction (in French)

En pratique, la forme et I’amplitude des signatures acquises sont particulierement affectées par la variation des conditions

d’acquisition, telles que I’illumination de la scéne ou 1’évolution naturelle du milieu observé. Ainsi, un spectre pur extrait
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pour un matériau donné peut présenter une variabilité significative d’une image a I’autre. A ce titre, le démélange simul-
tané de plusieurs images hyperspectrales — acquises au-dessus d’une mé€me scene a différents instants — présente un intérét
notable. En effet, I’utilisation simultanée de plusieurs images s’avere particulierement pertinente en vue d’améliorer la
qualité des résultats de démélange, notamment lorsque les matériaux observés sont correctement représentés non pas
dans une seule, mais dans différentes images en fonction de leur date d’acquisition. Les résultats obtenus par de telles
procédures doivent permettre d’améliorer les résultats par rapport a une analyse indépendante de chacune des images

disponibles [Goe+13], tout en permettant de caractériser 1’évolution temporelle des spectres purs.

Tandis que la variabilité spatiale des spectres purs a déja fait I’objet d’un trés grand nombre de publications (voir
chapitre 1), un nombre comparativement plus faible de travaux est consacré a 1’étude de la variabilité temporelle des
sources dans une image hyperspectrale multi-dates. Dans le cadre du démélange hyperspectral, on peut noter que des
séquences d’images hyperspectrales multi-temporelles ont été utilisées pour la détection de changements [EP15; Liu+16],
ou dans la perspective d’améliorer les résultats de démélange en considérant des données multi-capteurs [YZP17]. Con-
cernant la variabilité temporelle, les articles [Hal+15; HCJ16] comptent parmi les premieres contributions liées plus
particulierement au probleme de démélange. Bien que certaines approches de la littérature permettent d’exploiter une
variation temporelle modérée de certains des parametres du mélange [HCJ16; Hal+15], celles-ci ne rendent pas compte
de variations spectrales abruptes, telles que générées par la présence de données aberrantes ou un intervalle de temps
significatif entre deux acquisitions consécutives. De telles variations sont communément rencontrées lors de I’analyse de
données réelles, en fonction de la date d’acquisition et de I’évolution naturelle de la scéne (notamment en présence d’eau
ou de végétation dans la scéne). A moins d’étre spécifiquement prises en compte, ces variations abruptes peuvent avoir

un impact significatif sur le démélange d’images hyperspectrales.

Inspirés par les travaux [Hal+15; AMHI15; CBRI15] et dans le cadre d’une interprétation originale du probleme de
démélange, nous proposons de rendre simultanément compte de variations modérées des spectres purs — interprétées
en termes de variabilité — et de variations spectrales abruptes — décrites comme des données aberrantes (résultant par
exemple d’une variabilité importante des sources ou liées a la présence de non-linéarités). En particulier, la méth-
ode proposée s’avere particulierement adaptée a 1’analyse de scénes pour lesquels les mémes matériaux sont observés
dans plusieurs images hyperspectrales acquises a des instants différents. Notre approche s’appuie sur des résultats de
démélange obtenus pour une scene de référence issue de la séquence étudiée, utilisés ensuite comme point de départ
pour démélanger I’ensemble des images de la séquence. Par ailleurs, les signatures identifiées dans chacune des images
peuvent étre considérées comme la réalisation de signatures de référence communes a I’ensemble des images, ce qui jus-
tifie ’utilisation d’une variante du modele introduit au chapitre 1. A cet égard, les signatures associées a des matériaux
qui n’apparaissent pas dans la scéne de référence peuvent étre interprétées comme des données aberrantes vis-a-vis des

signatures communes a I’ensemble de la séquence.

A la différence du chapitre précédent, nous introduisons un modele bayésien visant a représenter simultanément la
variabilité temporelle des sources et la présence éventuelle de données aberrantes lors du démélange d’images hyperspec-

trales multi-temporelles. La procédure de démélange est conduite a ’aide d’un algorithme de Monte-Carlo par chaine de
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Markov, qui permet de contruire des estimateurs des parametres du modele.

La suite de ce chapitre est organisée comme suit. Le modele de mélange est introduit dans la section 2.3, tandis que le
modele bayésien associé est développé dans la section 2.4. Un échantillonneur de Gibbs hybride est étudié en section 2.5
afin d’estimer les parametres du modele considéré, qui comporte a la fois des variables discretes (binaires) et continues.
Les performances de 1’approche proposée sont évaluées sur données synthétiques et réelles dans les sections 2.6 et 2.7, et
sont comparées a celles obtenues par plusieurs algorithmes de la littérature (VCA/FCLS [NBO5b; BF10], SISAL/FCLS
[Bio09], RLMM [FD15] et le démélange en ligne du chapter 3). Les conclusions et perspectives de recherche sont enfin

présentées dans la section 2.8.

2.2. Introduction

Varying acquisition conditions, such as illumination variations or the natural evolution of the scene, may significantly
alter the shape and the amplitude of the acquired spectral signatures. Consequently, the endmembers extracted for a
given material may vary significantly from an image to another. In this context, sequences of HS images acquired over
the same area at different time instants can be of interest to exploit information redundancy between consecutive images
(e.g., through features exhibiting moderate or smooth temporal variations [HMT15; Hal+16a]). Indeed, the use of several
images is particularly appealing to improve the unmixing results when all the observed materials are not well represented
in each image. The results obtained by such unmixing strategies are consequently expected to outperfom those relying on
an individual analysis of each image [Goe+13].

Whereas spatial endmember variability has been extensively considered in the literature (see chapter 1), fewer works
have considered the question of temporal variability in multitemporal HS (MTHS) images. MTHS images have been
used to improve endmember unmixing results in [HCJ16; Hal+15; YZP17], or in the context of change detection in
[EP15; Liu+16]. As for temporal variability, [Hal+15; HCJ16] are among the first to specifically address this issue in
hyperspectral unmixing. Even though the approaches proposed in [HCJ16; Hal+15] allow smooth temporal variations of
some of the mixture parameters to be exploited, they do not account for abrupt spectral changes, either due to outliers or
to possibly significant time intervals between consecutive images. In practice, such situations can be reasonably expected,
depending on the acquisition dates and possible climatic hazards, e.g., when vegetation or water is present in the observed
scene. Unless specifically accounted for, this situation frequently observed in real datasets can have a significant impact
on the recovered endmembers.

Inspired by [Hal+15; AMH15; CBR15] and based on an original interpretation of the unmixing problem under study, we
propose to jointly account for smooth endmember variations — construed as temporal endmember variability — and abrupt
changes interpreted as outliers (e.g., significant variability within a single image or presence of non-linearities). More
precisely, the proposed analysis is focused on scenes in which mostly the same materials are expected to be observed
from an image to another. Taken as a starting point, the results obtained from a reference scene can be reasonably

extended to the whole MTHS image in this context. On the one hand, the endmembers identified in each single image
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can in fine be considered as time-varying instances of reference signatures shared by the different images, thus justifying
the use of a modified version of the perturbed linear mixing model (PLMM) proposed in the previous chapter. This
formulation notably allows smooth spectral variations occurring over time to be captured. On the other hand, the signatures
corresponding to materials appearing in only a few images, inducing abrupt spectral changes, can be regarded as outliers
with respect to the commonly shared endmembers.

This chapter studies a new Bayesian model allowing both the spectral variability and the presence of outliers to be
considered in the unmixing of MTHS images. The resulting unmixing task is solved using a Markov chain Monte-
Carlo (MCMC) method, which allows the posterior distribution of interest to be sampled and Bayesian estimators to be
constructed.

The rest of this chapter is organized as follows. The mixing model considered is introduced in section 2.3, and the asso-
ciated hierarchical Bayesian model is developed in section 2.4. Section 2.5 investigates an hybrid Gibbs sampler to solve
the resulting problem, which involves both discrete and continuous variables. The performance of the proposed approach
on synthetic and real data is assessed in sections 2.6 and 2.7. In particular, the results obtained with the proposed method
are compared to those of the VCA/FCLS algorithm [NB05b; BF10], the SISAL/FCLS algorithm [Bio09], the algorithm
associated with the robust LMM (RLMM) proposed in [FD15], the Dynamic spectral unmixing (DSU) introduced in
[HCJ16] and the online unmixing algorithm introduced in the next chapter (see chapter 3). The comparison with this last
method notably allows the robustness of the approach investigated in this chapter to be better appreciated. Conclusions

and related research perspectives are finally given in section 2.8.

2.3. Problem statement

Throughout this chapter, we consider a sequence of HS images acquired at 7' different time instants over the same area. We
further assume that the reference image is composed of R endmembers — where R is a priori known — which are likely to
be shared with the 7" — 1 remaining images. Since the signature of a given endmember can be reasonably expected to vary
from an image to another, we propose to account for smooth endmember temporal variations via a modified version of the
perturbed linear mixing model (PLMM) introduced in chapter 1. In practice, the PLMM model shows notable limitations
when the vector y,,  is affected by abrupt changes. Consequently, a new unmixing model is investigated to jointly account
for endmember variability and abrupt changes possibly affecting MTHS images. To this end, an additional term x,, ¢ is
considered to capture significant deviations from the PLMM, i.e., significant spatial variability or non-linearities within

each image [FD15; AMH15]. The resulting observation model can thus be written

R
Vi = (mT + me,t) +Xpt +bpg, Ve {l,...,N}, te{l,....T} 2.1)

r=1

where y,, ; denotes the nth image pixel within the image ¢, m,. is the rth endmember, a,.,, ; is the proportion of the rth
endmember in the nth pixel at time ¢, dm,.;, denotes the perturbation of the rth endmember at time ¢, and x,, ; denotes

the contribution of outliers in the nth pixel at time ¢. Finally, b,, ; represents an additive noise resulting from the data
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acquisition and the modeling errors. In the following, the outliers x,, ; are assumed to be spatially sparse, which will
allow their contribution to be discriminated from the noise. The proposed model (2.1) can be compactly written in matrix
form as

Y, = (M +dM,)A, + X, + B, 2.2)

where Y; = [y14,...,Yn~,) is an L x N matrix containing the pixels of the ¢th image, M denotes an L x R matrix
containing the endmembers that are common to all the images of the sequence, A, is an R x N matrix composed of the
abundance vectors a,, ;, dM; is an L x R matrix whose columns contain the variability inherent to the ¢th image, X, is
an L x N matrix whose columns are the outliers present in the image ¢, and B; is an L x N matrix accounting for the

noise at time ¢. The constraints considered to reflect physical considerations are

A, = Opn, Aflp=1y
M>0.r, M+dM;>0rr (2.3)

Xy =0p N, Ve {l,...,T}

where > denotes a term-wise inequality. More precisely, the abundance sum-to-one constraint will be relaxed in the
following for pixels containing outliers, as detailed in section 2.4.2. Note that the outlier term X} is intended to describe
abrupt changes due to the apparition of new endmembers that were not present in the reference image. This justifies the
corresponding non-negativity constraint, similar to the one imposed on the other endmembers. Given the model (2.2), the
unmixing problem considered in this work consists in inferring the abundances A, the endmembers M, the variability
dM, and the outliers X; from the observations Y = [Y1,...,Yr]. In the next section, this problem is tackled in a

Bayesian framework to incorporate prior knowledge specific to each mixture parameter.

2.4. Bayesian model

2.4.1. Likelihood

Assuming the additive noise b,, ; is distributed according to a Gaussian distribution b,, ; ~ N(0g, J?I 1), the observation
model (2.2) leads to
Yo | M, dM;, Ay, Xy, 02 ~ N((M +dMy)an. + Xp i, JEIL).

In addition, assuming prior independence between the images Y, and between the pixels within each image, the likeli-

hood function of the image sequence Y is

T
1
p(Y | M,dM, A, X,0?) o [[(o7)"V"/2 exp(—ﬁ Y: — (M +dM,)A; — thli) (24)
t

t=1

where ||-|| is the Frobenius norm, and the underline notation stands for the overall set of the corresponding parameters. In

the context under study, the prior independence assumption is justified by the image acquisition process, which has been
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conducted with possibly different sensors at different time instants. Appropriate prior distributions are associated to each
parameter and hyperparameter in the following paragraphs, thereby defining the proposed hierarchical Bayesian model.

To alleviate notations, dependencies with respect to constant parameters have been omitted.

2.4.2. Parameter priors

Abundances (A). To exploit possible information redundancy, we propose to promote smooth temporal variations of
the abundances between successive time instants for pixels that are not classified as outliers. To this end, we introduce an

abundance prior defined forn € {1,..., N} as

an1 | Xpt =0p ~Usy (2.5)
an’t‘Xn}t#OLNu§£7te{1,...,T} (26)

1
P(ans [ Xne = 00, A\ga, ) exp{—%g (1720 # Ollans = an 72 13) }nsR (an). t>2  @7)

where Us,, denote the uniform distribution on the set Sg, 15, is the indicator function of the set Sg, [#?] denotes the

Iverson bracket applied to the logical proposition &7, i.e.,

1, if & is true;

(7] =
0, otherwise

and

Srp={x R |Vi,z; >0and x"1 = 1}
Sp={x R |Vi,z; >0andx 1y < 1}

ynlt ={r <t|x,,=0}, T,lLt = max T.
? ’ 7'69”{,,

By convention, we define ,7”11 = (). To be more explicit about the prior defined in (2.5) to (2.7), consider an image at time
t and a pixel n within this image which is not corrupted by outliers (i.e., x,, + = 0r). For ¢ = 1, a uniform distribution
defined in the unit simplex is selected to reflect the absence of specific prior knowledge while accounting for the related
constraints specified in (2.3). For ¢ > 1, smooth variations of a,, ; are promoted via a one-dimensional Gaussian Markov
field [Maz+15; HMT15], which penalizes the Euclidean distance between a,, ; and the abundance of the last outlier-free
pixel, i.e., at time instant T,{’t. On the contrary, when outliers are present in the pixel (n,t) (x,+ # 0r), the usual
abundance sum-to-one constraint is relaxed (ag;tl r < 1) so that the prior allows cases in which the linear model does

not exhaustively describe the data to be addressed. The joint abundance prior can be written

In

N JIn
p(AX)zﬂ[ | p(an,tjxn,tﬂéomH Pans,

n=1 =1 i=1
tjiXn,t; 70L tiXn,t;=0L

an,ti,1 ) Xn,ti = OL)
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where I,, = #{t : x,; =0r}, J, =T — I, and { denotes the cardinal operator.

Outliers and labels (X, Z). Similarly to [AMHI15], outliers are a priori assumed to be spatially sparse. This prior
knowledge has been addressed in the literature via different approaches, either relying on the ¢; penalty (such as the
LASSO [Tib96]) or on mixtures of probability distributions involving a Dirac mass at zero and a continuous probabil-
ity distribution [VS13] (such as Bernoulli-Laplace [DHT09] or Bernoulli-Gaussian distributions [KM82; Lav93; BCO05;

BDT11; CTC15]). In this chapter, we propose to assign the following spatial sparsity promoting prior to the outliers x,, ;
p(xn,t | Zn,ts 5?) = (1 - Zn,t)(s(xn,t) + Zn,t N]Ri (OLa 53) (28)

where NRJLr denotes a Gaussian distribution truncated to the set RZ, and the latent variables zn,¢ Tepresent the outliers’

support (z,; = 1 if an outlier is present in the corresponding pixel, O otherwise).

The prior (2.8) allows outliers to be a priori described by a truncated Gaussian distribution when z, ; = 1, since the
outliers x,, ; are assumed to mainly result from the apparition of new endmembers (i.e., that were not present in the refer-
ence image). With this context in mind, we further propose to promote spatial correlations between the outliers’ support,
since new materials are likely to appear in several contiguous pixels. The binary label maps z; € RY (¢t = 1,...,7)
are consequently modeled as Ising-Markov random fields [EDT11; Alt+14; HMT15], for which the Hammersley-Clifford

theorem yields

Pz; = Zto | Bt] =

; exP [@ Z >, - A t)}

n=1keV(n)
where C(;) is the partition function [Gio10] and V(n) denotes the 4-neighbourhood of the pixel n. Under appropriate

prior independence assumptions with respect to the labels z; and the outliers x,, ;, we obtain
p(X | Z,s?) prnt\znt,st)
p(Z]B) = HP z¢ | Bt)

with Z € R¥*T and B8 € R”. Note that the prior (2.8) leads to the following result, which will be useful to sample the

label maps in section 2.5.1

1

p(xn,t | Z\n,ta S%, 61&) = Zp(xn,t | Znt = iv S?)]P)[Zn,t =1 ‘ Z\n,ta ﬂt]
=0

= (1~ wnt)0(%n,t) +wnt Nar Oz, 5711) (2.9)
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where z, ,, ; denotes the label map z; whose nth entry has been removed, and

1
Wit =Plant = 1| 2\ny, Be] = - &P [Bt Z o(1— Zk,t)] (2.10)
keVv(n)
C = exp [@ 3 s zkyt)} + exp [ﬂt 3 50~ zk,t)} 2.11)
keV(n) kev(n)

Remark 2.1. An asymmetric prior could have been used to represent the fact that outliers are a priori less likely to be
observed, e.g., by considering an Ising Markov random field with a nonzero external magnetic field. To this end, the prior

can be defined as

N
Plz; =z | B1, &) = % exp {ﬁt Z Z 5(22,15 - Zg,t) + ft%g,t}

n=1keV(n)

1
Plant =1 2z\ne, Brs &) = o &P [log& + B Z 6(1— Zkt)}
kev(n)

C = expllog&+ B Y. 61— z0)| +exp[Br D 50— 2xs)]
kev(n) kev(n)
where §, € RY fort € {1,...,T}. The parameter {;, set a priori or estimated from the data, directly controls the
probability of observing outliers in the absence of any spatial regularization term. However, the partition function C'(5;)
does not admit an analytical expression in this setting, hence the need to resort to a different approach to estimate the

granularity parameter 3; (see for instance [Per+13]).

Endmembers (M). The endmembers can be a priori assumed to live in a subspace of dimension K = R — 1 [Dob+09],
which can be determined in practice by a principal component analysis (PCA) or a robust PCA (rPCA) [Can+09]. The

PCA applied to the original data Y leads to a decomposition which can be expressed as [Dob+09]

m, =Ue, +y, y=(I,-UU)y, U'U=Ig (2.12)

where U denotes a basis of the subspace of dimension K, and y denotes the average spectral signature obtained from Y.
The projected endmembers e, are then assigned the following truncated Gaussian prior, which ensures the non-negativity
of the endmembers m,.

e, ~Ng (0k,&lk), forr € {1,..., R} (2.13)

with
& =leT el ] x ... x [e;(,T,e}“w]

( Ye+ D 2k U&ﬂ]’#)

€k = max
’ ceut U,k
n . < e+ D e, W,jejm>
ek = min —
’ Leu;; Ug K
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U; ={re{l,....R} rup, <0}, U ={re{l,...,R}:u, >0}

Endmember variability (dM). To promote smooth temporal variations of the endmember variability while accounting
for the term-wise non-negativity of the observed endmembers (i.e., m, + dm,; > O, r), we propose to assign the

following prior to the variability vectors dm,. ¢

dm,; | m, ~ N7, (0p,v1I), forr=1,...,R (2.14)
r=1,...,R
dméﬂ‘,t | my r, dml,r,(tfl)a wzr ~ NILT (dmé,r,(tfl)v ’(/}Zr) 3 for ! = 1, N L (215)
t=1,...,T
and Z, , = [—my,,+00). Assuming prior independence between the variability vectors finally leads to the following
joint prior
R T
p(dM | M, ¥?) =] [p(dmr,l | m,) [ p(dm,.; | m,, dm, 1), 7)
r=1 t=2

where ¥ € RX* contains the variability variances 17 .

Noise variances (?). A non-informative inverse-gamma conjugate prior is selected for the noise variance
0? ~TG(ay,b,), Yt € {1,...,T} (2.16)

with a, = b, = 1073 in order to ensure a weakly informative prior. Assuming the noise variances are a priori independent

for different time instants finally leads to
p(e®) = [Ip(e?)
t

where 02 € R¥ contains the noise variances o2.

2.4.3. Hyperparameters

In order to complete the description of the proposed hierarchical Bayesian model, we consider the following generic priors

for the different hyperparameters.

(i) Non-informative conjugate inverse-gamma priors have been adopted for the variability variances 2 € RZ* % and

the outlier variances s? € R, i.e., for (¢,7,t) € {1,..., L} x {1,..., R} x {1,...,T}
U7, ~IG(aw,bw), si ~ZIG(as,bs) (2.17)

where ZG (ay, by) denotes the inverse gamma distribution and ay = by = as = bs = 1073 (in order to obtain flat
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distributions). Appropriate independence assumptions lead to

=[Ip@?,). »6*) =]]p(s?)
L,r

t

where s? € R” is composed of the outlier variances s?.

(i) Previous studies have shown that the granularity parameter of a Potts-Markov random field (a fortiori of an Ising-
Markov random field) can be reasonably constrained to the interval [0, 2] [Giol1]. Consequently, a uniform prior

on the interval [0, 2] has been adopted
ﬂt NZ/{[QQ], Vte {1,7T} (218)

Assuming the granularity parameters are a priori independent for different time instants finally yields
= H p(B)
t

where B € R” is composed of the granularity parameters j3;.

The resulting hierarchical Bayesian model is summarized in the directed acyclic graph of Fig. 2.1, where fixed param-

eters appear in boxes.
VR

RGEEEE

M - dM A — )_(
l/

Figure 2.1.: Directed acyclic graph associated with the proposed Bayesian model (fixed parameters appear in boxes).

2.4.4. Joint posterior distribution

According to Bayes’ theorem, the joint posterior distribution of the parameters of interest © is given by

p(© 1Y) < p(Y | ©)p(A | X)p(X | Z,5%)p(s*)p(Z | B)p(B) 219

p(dM | M, ¥°)p(M)p(¥?)p(c?).

where © = {©,,0;,} and
@p = {M7dM7A7X7U2:Z}7 ®h = {‘I’Q,S2,ﬂ}
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denote the parameters and hyperparameters to be inferred. The complexity of the posterior density (2.19) does not allow
maximum a posteriori (MAP) or minimum mean square (MMSE) estimators to be easily derived. For instance, the
optimization problem associated with the determination of the MAP estimator of © is difficult to be solved, since the
negative log-posterior is non-convex and parameterized by continuous and discrete variables. An MCMC method is
consequently adopted to sample the posterior (2.19), thus allowing appropriate estimators of the parameters of interest to

be computed from the generated samples.

2.5. Hybrid Gibbs sampler

This section studies an hybrid Gibbs sampler, which is guaranteed to produce samples asymptotically distributed accord-
ing to the target distribution (2.19). This sampler — described in Algo. 4 — consists in generating samples distributed
according to the conditional distribution of each parameter of interest. Section 2.5.2 introduces the proposed sampling

method, whereas the conditional distributions of all the parameters of interest are detailed in the following paragraphs.

Algorithm 4: Proposed hybrid Gibbs sampler.

Input: Nyi, Nyc, ©©), ¢, ay, by, as, bs, ao, be, v, €2.
for ¢ = 1 to Nyc do
for (n,t) = (1,1) to (N, T) do

L Draw a,(iq’i ~ p(an,t | ¥n,ts 9\{an,t}) ;
forr = 1to R do

L Draw e&q) ~p(er Y, 9\{er}) >
fort =1toT do

L Draw dME") Np(th IYu@\{th}> ;
for (n,t) = (1,1) to (N, T) do

Draw sz,g ~ ]P’[zn,t | ¥t 6\{zn7t}} ;

Draw x,(nq% ~ p(Xnat I @\{xn,t}) ;

fort =1to T do

L Draw sf(‘” Np(sf | 9\{5%}) ;
fort =1toT do

L Drawof(Q) Np(af | 9\{03}) H
for (¢,r) = (1,1) to (L, R) do

L Draw wz(f) ~ p(’t/ig,r | 9\{1/’?,,}) ;

Sample the granularity parameters (3 (9 see §2.5.1;

Nwmc

R;sult: {(9(‘1) }q71

2.5.1. Parameter sampling

Sampling the abundances (A). The likelihood function (2.4) combined with the prior given in section 2.4.2 leads to

the following conditional distribution

nt | Yt Znt = 0,0\ a1y ~ Nisg (1, Apr) (2.20)
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Bt | Yot 2ne = 1,O\(a, 0y ~ Na (0, A ) (2.21)
1 1
Ani = MMy + ([ 7, # 0+ 77 # 0))Te, M, 2 M+ dM, (222)
t n
(A) _ A iMT _ 1 gl £ T2 £
Kyt = Ang o2 t(ynyt Xn,t) + 22 ([ n,t 7£ ]an,'r,ll’t +[ n,t # ]anﬁzyt) (2.23)
t n

where Ns,, (1, A) denotes a Gaussian distribution truncated to the set Sg and

Fhi={r>t]2,=0}, 72,= miy 7 (2.24)
TCI

with the convention sz = (). Samples distributed according to the above truncated multivariate Gaussian distributions
can be generated by the Gibbs sampler described in [DTO7, section IV.B.] [AMD14], by an Hamiltonian Monte-Carlo
procedure [ADT14; PP14] or by the general method recently proposed in [Bot16]. In this work, the Gibbs sampler [DTO07,
section IV.B.] has been adopted to sample the parameters of interest. Note that the abundance vectors a,, ; can be sampled

in parallel to accelerate the algorithm.

Sampling the projected endmembers (E). Combining (2.4) and the prior given in section 2.4.2, the conditional distri-

butions of the projected endmembers e,., for r € {1,..., R}, can be shown to be
e | Y, 0\, ~ Ne, (ui®, A,) (2.25)

with, for k € {1,..., K}

gr = [CLT?dLT] X ... X [CK,radK,r] (2.26)
Zj‘i’ : .U,,'e',r“i’b,,r
Ck,r = Max <— ¢ Zﬁék L% ‘ ) 2.27)
ceut Ug,k
Uo + D izp, Ue,j€jr + by
di. = min <W 2 Uea s 1 b ) (2.28)
e, g,k
b = min{ 0, min(d At |2 Tt 2.29
o fmm{ ,mtln( mgmt)}, = g-i-z; p R-1 (2.29)
1 .
“SE) = AT'UT |:Z ? (Yn,t — Xn,t — than,t —Yarnt — Z aj,n,tmj)ar,n,t] . (2.30)
tn j#r

Samples distributed according to the above truncated Gaussian distributions can be efficiently generated with the algo-

rithm described in [Chol1].

Sampling the variability (dM). Similarly, the likelihood function (2.4) and the prior given in section 2.4.2 lead to

dM
A~ Nicm, o) (g 0 11) 2.31)
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with
1 1 ) 1 1
=Y dl o[t =1 +—(1+ 1<t<T) (2.32)
n?,r,t Ut2 n ot V[ } wl?,'r [ :I
@wp _ [ L o= . T
Hort = 52 (yh —dmy )\, Ay —mpan — Xé’n,t)ant
t

1 (2.33)
+ oz ([t < Tldmy 441) + [t > 1]dmé,'r',(t—1)):| %t

L,r
where 361@7\,.,t denotes the /th row of dM; whose rth element has been removed, my is the /th row of M and A\, ;

is the matrix A; without its rth row. The rows of each variability matrix dM; can be sampled in parallel to reduce the

computational time required by the sampler.

Sampling the label maps and the outliers (Z and X). According to (2.4) and section 2.4.2, the outliers admit the

following conditional distributions
p(xnvt ‘ yn7t’ 6\{Zn,t7xn,t}) = (1 - wnyt)a(xnat) + wn7t NRi (“’E’I),(t)? 7‘9$IL) (2'34)

which are mixtures of a Dirac mass at 0 and of truncated multivariate Gaussian distributions, where

~ 2.2
Wt 5 ofs;

it = ————2 Yy = 2.35
Ot Bt (L—wng) 0 0Pt s (23
= Wt 2\L/2 1 (X)12

nt = ¥ — 2.36
Wn,¢ (S%)L/Q( t) exp <219t2||p’n,t ”2) ( )

2

X) — 5 Iy, — (M+dM 2.37

o, ¢ PR [Yn,t (M + t)an,t]~ (2.37)

In practice, the labels z,, ; are first sampled according to a Bernoulli distribution to select one of the two models for x,, ¢,
with probability P[zmt =1 Yn,ts 8\{Zn.t7xn,t}] = wp,¢. The labels z,, ; can be sampled in parallel using a checkerboard

scheme. Finally, the outliers x,, ; can be sampled in parallel to decrease the computational time.

Sampling the outlier variances (s*). According to section 2.4.3 and (2.19), the conditional law of s?,¢ € {1,...,T},

can be easily identified as the following inverse gamma distribution

n:zpt = 1ML 1
210\ a2y ~ Ig(as + % bs + 3 ||Xt|\§). (2.38)
Sampling the noise variances (0-?). Using section 2.4.3 and (2.19), we obtain for t € {1,...,T}
LN 1
02 | Y1, 0\ (2) ~ IG (ag + b+ 5 Ve — (M4 dM)A, - xtui). (2.39)
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Sampling the variability variances (¥?). Similarly, section 2.4.3 and (2.19) lead to

T
U3, 1Oy ) ~ Ig(aq; TR Z (dimg.rs — dimgrs 1)2). (2.40)
t 2

Sampling the granularity parameters (3). Provided square images are considered, the partition functions C(3;) admit

the following closed-form expressions [Ons44; Giol0]

N

C(B) = log(2 sinh f3;) —|— = Z acosh A, (B:) + Bt

cosh Bt

Ay (Br) = v(Bi) = Cn, v(Br) = sinh 5,

C(B) = 1055, Cr = cos (2’;]; lw) .

In this case, the exact partition function can be used to sample the parameters ; using Metropolis-Hastings steps. In

this chapter, new values of the granularity parameters have been proposed by the following Gaussian random walk
Bt =B e, e~ N(0,03(t)) (2.41)

where the parameters ag (t) are adjusted during the burn-in iterations to yield acceptance rates in the interval [0.4, 0.6].

More precisely, the acceptance rates p; are given by

_ B p2(5;) { ) }
pt—max<1, C(8) ]1[0’2](@5(]))6)( Z Z O(2n,t — 2i,t)

n=1keV(n)

2.5.2. Bayesian inference and parameter estimation

Similarly to [AMH15], the sequence {(9(‘1)}(]1\[:1“5\,bi 1 generated by the proposed sampler (i.e., after Ny; burn-in iterations)
is used to approximate the MMSE estimators of the different unknown parameters M, A,, dM, and X, by replacing the

expectations by empirical averages, i.e.

MMMSE 1 % M@
Nye — Ny o= N1
AMMSE 1 %:MC A
Nuc — Noi a=Nyi+1
= MMSE 1 Noac (@)
M, o P %;HdM
Xlt\/IMSE ~ 1_ ¥ = XELZ)
MC bi Ny
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where only the samples associated with the marginal MAP (mMAP) estimator of the label maps have been used for the

estimation. Finally, the following mMAP estimator is considered for the latent labels

?r?,l\t/lAP = argmax p (Zn,t | Yn,t, @\{z",t})
Zn,:€{0,1}
which is approximated by
AP 0, if #{g > Ny : 209 = 0} < Mue—Nu

1, otherwise.

The main steps of the proposed sampler are summarized in Algo. 4.

2.5.3. Computational complexity

Assuming elementary scalar arithmetic and pseudo-random number generation are O(1) operations, the overall computa-
tional complexity is dominated by matrix products involved in the computation of the variability conditional distribution.
Since R < L < N and T < L, the per-iteration computational cost of the proposed algorithm is O(LR?NT). As
detailed in the previous paragraphs, many parameters can be sampled in parallel to reduce the computational time of the
proposed algorithm. In comparison, the computational complexity of VCA is O(R2N) [NB05b] per image, and the per
iteration complexity of the others algorithms for a single image is respectively: O(N?) for FCLS [BF10], O(RN) for
SISAL [Bio09], O(LRN) for RLMM [FD15] and O(R?(L + N))) for the online unmixing (OU) introduced in the next

chapter (see section 3.4.4).

2.6. Experiments with synthetic data

The proposed method has been applied to different MTHS images, for which a new material appears in specific regions
of a few images. To this end, less than one half of the images composing the sequence have been corrupted by spatially
sparse outliers, which correspond to a new endmember taken from a spectral library. Note that all the images of this
experiment do not satisfy the pure pixel assumption to assess the proposed method in challenging situations. A detailed
description of the generation procedure is given in the following paragraphs, and the characteristics of each dataset are

given in Table 2.1 (in terms of image size, number of endmembers and number of corrupted images).

First scenario. The MTHS images considered in the first scenario reflect the apparition of a new material in half of the
images composing the sequences. Each image within a given sequence corresponds to a linear mixture affected by smooth
time-varying variability, where the abundances vary smoothly from one image to another. In addition, controlled spectral
variability has been introduced by using the product of reference endmembers with randomly generated piecewise-affine
functions (as in chapter 1). Different affine functions have been generated for each endmember at each time instant.
Typical instances of the signatures used in this experiment are depicted in Fig. 2.2. Finally, the mixtures have been

corrupted by an additive white Gaussian noise to ensure a resulting signal-to-noise ratio (SNR) between 25 and 30 dB.
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Figure 2.2.: Endmembers (m,., red lines) and their variants affected by variability (m, + dm, ;, blue dotted lines) used
to generate the synthetic mixtures of R = 3 endmembers. Signatures corresponding to different time instants
are represented in a single figure to better appreciate the variability introduced in the data.

Second scenario. The second scenario is similar to the first one, except that moderate spatial variability (i.e., occurring
within single images) has been additionally introduced in a limited region within each image. In this case, the robustness
of the proposed method to moderate spatial variability has been evaluated on two datasets whose characteristics can be

found in Table 2.1. To ease the reading of this chapter, these complementary results and the associated comments are

deferred to Appendix B.2.

Table 2.1.: Configuration of the synthetic datasets used in the experiments.

1% scenario 2" scenario
Dataset id. g1 2 #3 #4 £5
R 3 6 9 3 9
T 10 5 5 10 5
Number of corrupted images 4 2 2 4 2
Size (spatial) 50 x 50 100 x 100 100 x 100 | 50 x 50 100 x 100

2.6.1. Compared methods

The results of the proposed algorithm have been compared to those of several unmixing methods from the literature, some

of which are specifically designed to unmix a single HS image. In the following lines, the most relevant implementation

details specific to each method are briefly recalled.

1. VCA/FCLS (no variability): the endmembers are first extracted on each image using the vertex component analysis
(VCA) [NBO5b], which requires pure pixels to be present. The abundances are then estimated for each pixel by

solving a fully constrained least squares problem (FCLS) using the Alternating Direction Method of Multipliers

(ADMM) [BF10];

2. SISAL/FCLS (no variability): the endmembers are extracted on each image by the simplex identification via split

augmented Lagrangian (SISAL) [Bio09], and the abundances are estimated for each pixel by FCLS. The tolerance

for the stopping rule has been set to 10~3;
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3. Robust linear mixing model (RLMM) of [FD15] (no variability): the unmixing method proposed in [FD15] has
been independently applied to each image of the series. The algorithm has been initialized with SISAL/FCLS, and

the regularization parameter specific to this method is set as suggested in [FD15];

4. Dynamic spectral unmixing (DSU) [HCJ16]: the BCD/ADMM algorithm proposed in [HCJ16], which is based on
the ELMM [Dru+16] briefly discussed in the first chapter, has been applied to the entire dataset. The endmembers
used to unmix the complete MTHS image are first initialized by VCA applied to the first image of the sequence,
and the abundances are initialized with FCLS. To ensure an appropriate comparison with the other methods, the
variability extracted at time instant ¢ is interpreted as the deviation of the endmember matrix extracted for the image

t from the endmember temporal average;

5. Online unmixing (OU, introduced in the next chapter): the endmembers used to unmix the complete MTHS image
are initialized by VCA applied to the first image of the sequence. The abundances are then initialized by FCLS,
and the variability matrices are initialized with all their entries equal to 0. The other parameters are set to the same

values as those given in the next chapter in Table 3.1;

6. Proposed approach: the endmembers are initialized with VCA applied to the first image of the sequence. The
abundances are initialized with FCLS, the variability matrices and label maps are initialized with all their entries
equal to O (i.e., the images are a priori assumed to contain no outlier). The values chosen for the other parameters

are summarized in Table 2.2. Further details related to the choice of these values can be found in Appendix B.1;

The performance of the unmixing strategies has been assessed in terms of abundance, endmember and variability
estimation errors based on the quality measures given in the preliminary chapter (see section 1.4). The results are reported

in Table 2.3.

2.6.2. Results

The endmembers estimated by the proposed algorithm are compared to those of VCA/FCLS, SISAL/FCLS, RLMM, DSU
and OU in Fig. 2.3, whereas the corresponding abundance maps are displayed in Figs. 2.4 to 2.6. Note that the abundance
maps and the endmembers obtained for the dataset 14 (in presence of spatial variability) are deferred to the Appendix B.2.
The unmixing performance of each method, reported in Table 2.3 for the first scenario and in Appendix B.2 for the second

scenario, leads to the following conclusions.

* Endmember estimation: the proposed method shows an interesting robustness with respect to spatially sparse
outliers in the sense that the estimated signatures (Figs. 2.3(p) to 2.3(r)) are very close to the corresponding ground
truth (Fig. 2.2). In comparison, the shape of the endmembers recovered by VCA, SISAL and RLMM and the vari-
ability extracted by the DSU and OU algorithms are significantly affected by outliers, as exemplified in Figs. 2.3(b),
2.3(e), 2.3(h), 2.3(k) and 2.3(n) respectively. These qualitative results are confirmed by the quantitative performance

measures of each method provided in Table 2.3. Note that the endmembers recovered by the SISAL and RLMM
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methods are very sensitive to the VCA initialization, as illustrated by the similarity between the signatures estimated

by these methods (Figs. 2.3(a) to 2.3(i)).

¢ Abundance estimation: the abundance maps estimated by FCLS, RLMM and SISAL reflect the high sensitivity of
VCA (used to initialize SISAL and RLMM) to the presence of outliers (see the figures delineated in red in Fig. 2.4).
On the contrary, the abundances recovered by OU and the proposed approach are much closer to the ground truth.

These observations are confirmed by the abundance estimation performance reported in Table 2.3.

* Overall performance: the performance measures reported in Table 2.3 are globally favorable to the proposed
approach. It is important to mention that the price to pay with the good performance of the proposed method is its

computational complexity, which is common with MCMC methods.

As a complementary output, the proposed algorithm is able to recover the location of the outliers within each image, as

illustrated in Fig. 2.7. Up to a few false alarms, the estimated labels are very close to the ground truth.

Table 2.2.: Fixed parameters, and initial values associated in the experiments to parameters later inferred from the model.

Parameters Synthetic data Real data

w cn 1073 1072
3 ¢ 1 1
5 v 10-3 105
a s, AV, Og 10_3 10_3
B bsa b\I/a bo 1073 1073
5 Ny 350 450
Nyc 400 500
g of 1074 10~
R 5% 1073 5% 1073
2 43, 10~ 102
s B 1.7 1.7
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Table 2.3.: Simulation results on synthetic multi-temporal data (GMSE(A)x 1072, GMSE(dM)x10~4, RE x10~%).
aSAM(M) (°) GMSE(A) GMSE(dM) RE time (s)

VCA/FCLS 6.07 2.32 / 391 1
= SISAL/FCLS 5.07 1.71 / 2.28 2
= RLMM 5.13 2.04 / 0.31 463
I DSU 5.18 0.53 11.5 2.21 8
& OU 1.90 0.42 3.22 2.61 98
Proposed 2.03 0.15 1.85 2.00 2530
VCA/FCLS 3.81 1.57 / 3.09 2
& SISAL/FCLS 5.76 0.91 / 4.49 3
= RLMM 2.73 1.26 / 0.29 1453
I DSU 4.54 1.27 4.34 0.62 22
= ou 2.74 0.38 3.70 1.13 420
Proposed 1.48 0.16 2.84 0.51 8691
VCA/FCLS 3.74 0.65 / 6.83 4
@ SISAL/FCLS 591 0.36 / 5.56 5
= RLMM 2.48 0.54 / 0.31 1447
I DSU 1.96 0.18 2.20 0.85 12
= Oou 6.08 0.47 2.19 0.89 1024
Proposed 2.23 0.15 8.38 0.82 17151
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Endmembers (m,, red lines) and their variants affected by variability (m, + dm,.;, blue dotted lines) re-
covered by the different methods from the synthetic dataset 1. Signatures corresponding to different time
instants are represented on a single figure to better appreciate the variability recovered from the data. The

spectra represented in black correspond to signatures significantly affected by outliers.

Figure 2.3.:
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Figure 2.4.: Abundance map of the first endmember recovered by the different methods (in each row) at each time instant
(given in column) for the experiment f1 [the different rows correspond to the true abundances, VCA/FCLS,
SISAL/FCLS, RLMM, DSU, OU and the proposed method]. The images delineated in red show that several
methods are highly sensitive to the presence of outliers, and the time instants represented with * indicate
images containing outliers.
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Figure 2.5.: Abundance map of the second endmember recovered by the different methods at each time instant for the
experiment 1. The images delineated in red show that several methods are highly sensitive to the presence
of outliers, and the time instants represented with * indicate images containing outliers.
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Figure 2.6.: Abundance map of the third endmember recovered by the different methods at each time instant for the
experiment 1. The images delineated in red show that several methods are highly sensitive to the presence
of outliers, and the time instants represented with * indicate images containing outliers.
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Figure 2.7.: Outlier labels z; estimated for each image of the synthetic dataset with 3 endmembers [0 in black, 1 in white].
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2.7. Experiments with real data

2.7.1. Description of the dataset

We consider a real sequence of HS images acquired by the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) over
the Lake Tahoe region (Mud Lake, California, United States of America) between 2014 and 2015'. The scene of interest
(100 x 100), composed of a lake and a nearby field, has been unmixed with R = 3 endmembers based on the results
of the noise-whitened eigengap algorithm (NWEGA) [Hal+16b] applied to each image of the series (see Table 2.4). For
R = 4 and R = 5, the signatures of water, soil and vegetation were split into two or more components by the different
algorithms, suggesting R = 3 is more appropriate for this study. A careful inspection of the data reveals that this dataset
contains outliers (area delineated in red in Fig. 2.8(e)). After removing the seemingly corrupted bands and the water
absorption bands, 173 out of the 224 spectral bands were finally exploited. The initial parameters used for the proposed

algorithm are given in Table 2.2, while the other methods have been run with the same parameters as in section 2.6.

(a) 10/04/2014 (b) 02/06/2014 (c) 19/09/2014 (d) 17/11/2014 (e) 29/04/2015 (f) 16/10/2015

Figure 2.8.: Scenes used in the experiment, given with their respective acquisition date. The area delineated in red in
Fig. 2.8(e) highlights a region known to contain outliers.

Table 2.4.: Endmember number R estimated by NWEGA [Hal+16b] on each image of the real dataset.
04/10/2014  06/02/2014  09/19/2014  11/17/2014  04/29/2015  10/13/2015
NWEGA 3 3 3 4 3 4

2.7.2. Results

Given the absence of ground truth, the performance of the unmixing methods is assessed in terms of RE (Table 2.5) while
taking into account the consistency of the estimated abundance maps reported in Figs. 2.9, 2.10 and 2.11. More precisely,
the abundances associated with the vegetation area are expected to be very high for ¢ = 1, 3, 5 (corresponding to Figs.
2.8(a), 2.8(c) and 2.8(e)) where the vegetation visually appears to be sufficiently irrigated (hence well represented). On
the contrary, the abundance coefficients are supposed to be much lower for ¢ = 2, 4, 6 (corresponding to Figs. 2.8(b),

2.8(d) and 2.8(f)), where the vegetation is visually drier or almost absent. Concerning the presence of water in the bottom

IThe images used in this experiment are freely available from the online AVIRIS flight locator tool at http://aviris. jpl.nasa.gov/alt_
locator/.
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left-hand corner of the images, the latent variables introduced in section 2.4.2 are expected to reflect the abrupt variations
in the presence of water observed at ¢ = 3, 4 and 5. These observations, combined with the extracted signatures (Fig. 2.12)

and the estimated abundances (Figs. 2.9 to 2.11) lead to the following comments.

¢ Endmember estimation: the signature recovered for the soil by VCA, SISAL and RLMM at time ¢ = 5 shows
an amplitude which is significantly larger than the other signatures, and a shape incompatible with what can be
expected based on physical considerations (see the black signatures in Figs. 2.12(a), 2.12(d) and 2.12(g)). This
is a clear indication that outliers are present in the corresponding image. A similar observation can be made for
the vegetation signature obtained by VCA, SISAL and RLMM at time ¢ = 5. On the contrary, the endmembers

recovered by DSU, OU and the proposed approach are much more consistent from this point of view.

* Abundance estimation: the estimated abundances globally reflect the previous comments made on the extracted
endmembers. Notably, the abundance coefficients estimated at £ = 5 by VCA, SISAL and RLMM (delineated in
red in Figs. 2.9 to 2.11) are visually inconsistent with the temporal evolution of the materials observed in the true
color composition given in Fig. 2.8. More explicitly, the soil is not supposed to be concentrated on a few pixels as
suggested by the corresponding abundance maps in Fig. 2.9. Similarly, the water is not supposed to be present in
high proportions in all the pixels of the image as indicated in Fig. 2.10. These results, in contradiction with Fig. 2.8,
suggest that outliers are present at ¢ = 5. In addition, the abundance maps estimated at ¢ = 4 and 6 by FCLS
for the soil and the water (delineated in green in Figs. 2.9 and 2.10) suggest that the water contribution has been
split into two spectra. The corresponding signatures are represented in green in Figs. 2.12(a) and 2.12(c). On the
contrary, the results reported for DSU, OU and the proposed method are consistent with the expected evolution of
water and vegetation over time (abundance values close to 1 at time ¢t = 1, 3, 5, lower values at time ¢t = 2, 4, 6).
Finally, the vegetation abundance maps estimated by the proposed method globally presents a better contrast than

those obtained with DSU and OU (Fig. 2.11).

Table 2.5.: Simulation results on real data (RE x10~%).

RE  time (s)
VCA/FCLS 45.05 1
- SISAL/FCLS  1.65 2
| RLMM 2.51 390
~ DSU 6.03 26
ou 2.50 508
Proposed 0.34 23608

The previous comments, along with the lower reconstruction error reported in Table 2.5, suggest that the proposed
approach is robust to spatially sparse outliers while allowing smooth temporal variations to be exploited. Indeed, the
pixels corresponding to abrupt variations of the water signature have been properly detected. Furthermore, the outliers
detected in this dataset for ¢ = 5 (highlighted in red in Fig. 2.8(e)) are well captured by the latent variables Z (see

Fig. 2.13). In addition, the spatial distribution of the estimated outlier labels (Fig. 2.13) is in agreement with the results of
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Figure 2.9.: Soil abundance map recovered by the different methods (in each row) at each time instant (given in column)
for the experiment on the real dataset. On the one hand, the images delineated in red suggest that some of
the methods are particularly sensitive to the presence of outliers. On the other hand, the images delineated in
green represent the abundance maps associated with signatures which have been split into two components
by the corresponding unmixing procedures.

the RLMM (in terms of the spatial distribution of the outlier energy) and with the non-linearity detector [Alt+13] applied
to each image of the sequence with the SISAL-estimated endmembers (see Fig. 2.14). Concentrated on regions where
non-linear effects can be reasonably expected, the active latent variables Z tend to capture the spatial distribution of the

non-linearities possibly occurring in the observed scene.
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Figure 2.10.: Water abundance map recovered by the different methods (in each row) at each time instant (given in column)
for the experiment on the real dataset. The images delineated in red suggest that some of the methods are
particularly sensitive to the presence of outliers.

t=2
<
)
>
. -
<
7]
?
s -
>
-
x .
S -
%)
°
-
[¢)
A
9]
=
)
=

Figure 2.11.: Vegetation abundance map recovered by the different methods at each time instant for the experiment on the
real dataset. On the one hand, the images delineated in red suggest that some of the methods are particularly
sensitive to the presence of outliers. On the other hand, the images delineated in green represent the abun-
dance maps associated with signatures which have been split into two components by the corresponding
unmixing procedures.
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Endmembers (m,, red lines) and their variants affected by variability (m, + dm, ;, blue dotted lines)
recovered by the different methods from the real dataset depicted in Fig. 2.8. Signatures corresponding to

different time instants are represented in a single figure to better appreciate the variability recovered from
the data. The spectra represented in black correspond to signatures corrupted by outliers, while those given
in green represent endmembers which have been split into several components by the associated estimation

procedure.
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Figure 2.13.: mMAP estimates of the label maps recovered by the proposed approach, displayed at each time instant (the
different rows correspond to: the estimated label map (pixels detected as outliers appear in white), the outlier
energy map re-scaled in the interval [0, 1] obtained by the proposed method, and by RLMM).

Figure 2.14.: Non-linearity maps estimated by the detector [Alt+13] applied to each image with the SISAL-extracted
endmembers, with a probability of false alarm of 10~2 (pixels detected as non-linearities appear in white).

71



Chapter 2. A hierarchical model accounting for variability and abrupt spectral variations

2.8. Conclusion and future work

This chapter introduced a new Bayesian model accounting for both smooth and abrupt variations possibly occurring in
MTHS images. In particular, the adopted model was designed to handle datasets in which mostly the same materials are
expected to be observed at different time instants, thus allowing information redundancy to be exploited. An MCMC
algorithm was investigated to solve the resulting unmixing problem in order to precisely assess the performance of the
proposed approach on MTHS images of moderate size (i.e., moderate spatial and temporal dimensions). This algorithm
was used to sample the posterior of the proposed hierarchical Bayesian model, thus allowing estimators of the unknown
model parameters to be built. Future research perspectives include the use of relaxation methods to the Ising field [MSBO03;
BCK14; BF16] to tackle similar problems with online optimization techniques.

However, a major issue results from the possibly significant dimension of MTHS data. In this context, the next chapter

is devoted to the design of an online unmixing algorithm to efficiently address endmember temporal variability.

Main contributions. A hierarchical Bayesian model was introduced to analyze multitemporal hyperspectral images.
This model accounts for smooth temporal variations — construed as spectral variability — and abrupt spectral changes
interpreted as outliers. The parameters of this model are inferred using a Markov chain Monte-Carlo (MCMC) method,
which allows the posterior of interest to be sampled and Bayesian estimators to be approximated. The encouraging
results obtained on real data lead to the conclusion that MTHS images can provide improved unmixing performance when

compared to methods analyzing the images independently.

2.9. Conclusion (in French)

Ce chapitre a étudié un modele bayésien hiérarchique pour prendre en compte des variations spectrales aussi bien mod-
érées qu’abruptes lors du démélange d’image hyperspectrales multi-temporelles. Le modele proposé est plus particuliere-
ment adapté a I’analyse de données pour lesquelles les mémes matériaux sont observés de facon récurrente. Un algorithme
de Monte-Carlo par chaine de Markov a permis de résoudre le probleme de démélange issu de ce modele, conduisant a
des performances satisfaisantes ausis bien sur données synthétiques que réelles. En particulier, cette approche a permis
d’obtenir une estimation cohérente du support des données aberrantes sur données réelles, en lien avec la connaissance
disponible a priori sur ces données.

Au vue de la dimension importante des données hyperspectrales multi-temporelles, le développement d’une procédure
de démélange en ligne fait 1’objet du chapitre suivant. Une perspective de recherche a court terme consisterait a relacher
I’utilisation du champ d’Ising comme proposé dans [MSB03; BCK14; BF16] pour pouvoir appliquer une procédure

d’estimation en ligne similaire a celle décrite au chapitre suivant.

Contributions principales. Un modele bayésien hiérarchique est proposé pour le démélange robuste d’images hyper-

spectrales multi-temporelles. Ce modele de mélange rend compte d’une variation temporelle modérée des spectres purs

72



Chapter 2. A hierarchical model accounting for variability and abrupt spectral variations

— décrite en termes de variabilité — et de changements spectraux abrupts — interprétés en termes de données aberrantes.
Le modele proposé s’avere particulierement pertinent pour 1’analyse de données réelles, notamment lorsque 1’intervalle
de temps entre deux acquisitions est important. Dans un tel cas, 1’apparition d’un matériau non présent dans la scene de

référence induit par exemple des variations spectrales abruptes pouvant étre interprétées comme des données aberrantes.
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3.1. Introduction (in French)

D’apres I’étude menée au chapitre précédent, les images hyperspectrales multi-temporelles — composées de plusieurs
images hyperspectrales acquises pour une méme région a différents instants — présentent un intérét notable dans la mesure
ou elles permettent d’exploiter une certaine redondance de I’information apportée par des images consécutives (grace aux
variations temporelles modérées de certains des parametres du mélange [HMT15; Hal+16a]). En particuler, le précédent
chapitre a illustré la pertinence des données multi-temporelles lorsque les spectres purs sont correctement représentés dans

différentes images. Par ailleurs, elles ont permis d’obtenir une caractérisation satisfaisante de la variabilité temporelle.
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Toutefois, I’utilisation de données multi-temporelles peut compromettre 1’utilisation de procédures de démélange né-
cessitant d’exploiter directement 1’ensemble des données [Hal+15; HCJ16; YZP17], notamment en raison de contraintes
matérielles (e.g., ressources calculatoires limitées). Ce chapitre est ainsi consacré a la mise en ceuvre d’un algorithme
de démélange en ligne, i.e., qui permet d’incorporer progressivement les données disponibles de fagon séquentielle dans
la procédure de démélange. Comme les spectres purs extraits a une date donnée peuvent &tre in fine considérés comme
la réalisation de spectres de référence, une variante du modele introduit dans le chapitre 1 est utilisée pour prendre en
compte la variabilité temporelle des sources. Inspiré par les travaux [RX11; Mai+10], la formulation du probléme est pro-
posée sous la forme d’un probleme d’optimisation stochastique avec recours. Une deuxiéme interprétation de I’algorithme
proposé est également envisagée dans le cadre des travaux présentés dans [CPR16].

Ce chapitre s’organise de la facon suivante. Le modele considéré dans ce chapitre est en premier lieu décrit dans la
section 3.3. La section 3.4 se concentre sur la formulation du probleéme, ainsi que la description de 1’algorithme en ligne
envisagé. Une interprétation du probléme dans le cadre de 1’algorithme d’optimisation introduit dans [CPR16] y est par
ailleurs proposée. Les résultats numériques obtenus sur données synthétiques et réelles sont respectivement rapportés
dans les sections 3.5 et 3.6. A ce titre, les résultats sont comparés a ceux de quatre méthodes de la littérature appliquées
a chacune des images de facon indépendante (VCA [NBO5b] / FCLS [HCO1; BF10]), SISAL [Bio09] / FCLS, ¢; /2-NMF
[Qia+11] et ’algorithme BCD/ADMM introduit au chapitre 1), ainsi qu’a I’algorithme DSU [HCJ16] et PALM [BST13]
appliqués (des que possible) a I’ensemble des données disponibles. La section 3.7 vient finalement conclure I’ étude menée

dans ce chapitre.

3.2. Introduction

Following the study conducted in the previous chapter, sequences of HS images acquired over the same area at different
time instants can be of interest to exploit information redundancy between consecutive images (e.g., through features
exhibiting moderate or smooth temporal variations [HMT15; Hal+16a]). More precisely, chapter 2 has shown that the use
of several images is particularly appealing to improve the unmixing results when all the observed materials are not well
represented in each image. The results obtained on real datasets outperformed those relying on an individual analysis of

each image [Goe+13], while allowing the endmembers temporal evolution to be characterized.

However, the use of MTHS data may preclude the application of batch unmixing techniques, such as the method
considered in the preceding chapter or in [Hal+15; HCJ16; YZP17]. Indeed, the large size of these data can lead to
several issues, related to limits in the available memory or computational resources. This chapter focuses on the design of
an online unmixing algorithm, which allows data to be sequentially incorporated into the estimation process without the
need to simultaneously load all the data into memory. Since the identified endmembers can be considered as time-varying
instances of reference endmembers, we consider the perturbed linear mixing model (PLMM) introduced in chapter 1 to
account for spectral variability. However, inspired by the works presented in [RX11; Mai+10], the unmixing problem

is formulated as a two-stage stochastic program. A different formulation of the problem, based on the optimization
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framework considered in [CPR16], is also investigated.

The present chapter is organized as follows. The proposed PLMM accounting for temporal variability is introduced in
section 3.3. Section 3.4 describes an online algorithm to solve the resulting optimization problem. Another formulation
of the problem, considered as an application of [CPR16], is also investigated. Experimental results obtained on synthetic
and real data are reported in sections 3.5 and 3.6 respectively. The results obtained with the proposed algorithm are
systematically compared to those obtained with VCA [NBO05b] / FCLS [HCO1; BF10]), SISAL [Bio09] / FCLS, the ¢; /2
non-negative matrix factorization (NMF) [Qia+11] and the BCD/ADMM algorithm introduced in chapter 1, each method
being independently applied to each image of the sequence. A comparison with the DSU [HCJ16] approach and a batch
PALM [BST13] algorithm is also proposed whenever possible. Section 3.7 provides preliminary conclusions on this

chapter, and highlights future research perspectives.

3.3. Problem statement

3.3.1. Perturbed linear mixing model (PLMM)

Throughout this chapter, we consider a multitemporal hyperspectral (MTHS) image, composed of 7' HS images acquired
over the same area at different time instants. In the following, at most R endmembers are assumed to be present in — and
common to — the different images. In fact, each endmember does not need to be present in each image, but at least in one
image of the time series. In practice, the unmixing results first obtained from a reference image are used as a starting point
to unmix the whole sequence. The proposed model addresses the case where the variability essentially results from the
global acquisition conditions or from the evolution of the scene between consecutive images. As a first approximation,

the variability is thus assumed to be constant within each image as in the previous chapter. The resulting model can thus

be written
R
Yt =D arpt(my +dm,;) + by, 3.1)
r=1
forn=1,...,Nandt =1,...,T, where y,,; denotes the nth image pixel at time ¢, m, is the rth endmember, a, ,, ; is

the proportion of the rth endmember in the nth pixel at time ¢, and dm.,. ; denotes the perturbation of the rth endmember
at time ¢. Finally, b,, ; models the noise resulting from the data acquisition and the modeling errors. In matrix form, the

model (3.1) can be expressed as

Y, = (M+dM,A, + B, (3.2)

where Y = [y1t,...,¥ne) is an L X N matrix containing the pixels of the ¢th image, M denotes an L x R matrix
containing the endmembers, A, is an R x N matrix composed of the abundance vectors a,;, dM, is an L x R matrix
whose columns are the perturbation vectors associated with the ¢th image, and B, is an L x N matrix accounting for the

noise at time instant ¢. The non-negativity and sum-to-one constraints usually considered to reflect physical considerations
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are
M>=0rr A;>=0gNn, Allg=1y,Vt=1,...,T (3.3)

where > denotes a component-wise inequality. We additionally consider the following assumptions on the inherent

variability of the observed scenes

dM,|. <v, fort=1,...,T (3.4)
F

T
Z dM,
t=1

<k (3.5)
F

1
T

where v and & are fixed positive constants, and ||-||. denotes the Frobenius norm. To highlight their practical interest, the
two preceding constraints can be interpreted in terms of the feasible domain of M and dM;. Introducing the perturbed

endmembers M; £ M + dM,, the constraint (3.4) can be reformulated as

T
e, [ dM[lp = |M — My|lp < v M€ [ Be(M,,v)

t=1

where Bp(My, v) is the ball of center M, and of radius v. This reformulation shows that the number of constraints
imposed on the endmembers increases with 7', i.e., the more images are processed, the more information can be extracted
in terms of endmember signatures. On the other hand, (3.5) constrains the perturbed endmembers to be distributed around
the true endmembers (since the average of the different variabilities is small), i.e., the endmember signatures M should
reflect the average behavior of the perturbed endmembers IM,. In practice, setting v to a reasonable value is desirable
from a modeling point of view. Indeed, large perturbations are usually interpreted as outliers that can be removed prior to
the unmixing process, or which should be specifically captured as in chapter 2. Note however that the algorithm proposed

in section 3.4.2 is independent from any consideration on the values of v and «.

Remark 3.1. Since HS unmixing is performed on reflectance data, Y; € [0, 12>~

, and the abundance sum-to-one and
non-negativity constraints further imply M € [0, 1]Z* . In fact, the compactness of both the data support and the space
associated with the endmember constraints — denoted by ) and M respectively — is crucial to the convergence result given

in paragraph 3.4.3. In addition, the images Y can be assumed to be independent and identically distributed (i.i.d.) since

these images have been acquired by possibly different sensors at different time instants.

3.3.2. Problem formulation

To estimate the endmembers composing the image sequence, the model (3.1) and the constraints (3.3)—(3.5) can be
combined to formulate a two-stage stochastic program, leading to the design of an online estimation algorithm. Since
only the endmembers are supposed to be commonly shared by the different images, we propose to minimize a marginal

cost function obtained by marginalizing an instantaneous cost function over the abundances and the variability terms, so
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that the resulting function only depends on the endmembers. Assuming the expectations are well-defined, we consider

the following optimization problem

i g(M) = Ey A am [f(Y,M,A,dM)], M = [0,1]"*". (3.6)

The function f is defined as
1
F(Y,M,A,dM) = 3 Y — (M + dM)A||12; +a®(A) + fI(M) + 1Y (dM) (3.7)
whereas @, ¥ and T denote appropriate penalization terms on the abundances, the endmembers and the variability, with

AcAp={AeR"N|a, eS8z n=1,...,N} (3.8)

dM € D = Bg(0,v) N {dM | |E[dM]| < k} . (3.9)

The parameters «, $ and -y ensure a trade-off between the data fitting term and the penalization functions ®, ¥, Y. In

practice, g is approximated at time ¢ by an upper bound §; given by a stochastic approximation [Mai+10]

t

1
G (M) = o> Vi = (M + dM) Asfg + 5% (M)
i=1
I (1 )
-7 Z (2 IMA[[g — (Yi — dM;A;, MAJ) + ¥ (M) +¢
i=1
= % B Tr(M'MC,) + Tr(MTDt)} + BU(M) + ¢ (3.10)

where (X, Y) = Tr(X"Y), cis a constant independent from M and

t t

Ci=> AA], D,=) (dM;A; — Y;)A]. (3.11)

i=1 i=1

Besides, D is approximated by

Dy = Be(0,v) N {dM | |[dM + E;_ ||z < tk} (3.12)
with

t
E, =) dM,. (3.13)
i=1

Examples of penalizations considered in this study are detailed in the following paragraphs.

Abundance penalization. The abundance penalization ¢ considered in this chapter has been chosen to promote tem-

porally smooth abundances — in the ¢5-norm sense — between two consecutive images

1
B(A) = 5 1AL~ Arallp- (3.14)

79



Chapter 3. Online unmixing of multitemporal hyperspectral images

As long as @ satisfies the regularity condition given in paragraph 3.4.3, any other type of prior knowledge relative to the

abundances can be incorporated into the proposed method.

Endmember penalization. Classical endmember penalizations found in the literature consist in constraining the size of
the (R — 1)-simplex whose vertices are the endmembers. In this chapter, we consider the mutual distance between each

endmember introduced in [Ber+04; ASL11], defined as

R R
B 1 2\ 1 2
U(M) = 2;(;|mimj||2> = §;IIMG7-IIF (3.15)
i
where

and e, denotes the rth canonical basis vector of R,

Variability penalization. Assuming that the spectral variation between two consecutive images is a priori temporally

smooth, we consider the following ¢5-norm penalization
1 2
T(dM,) = 3 |[dM; — dM,;_ ||z (3.17)

Similarly, any other type of prior knowledge relative to the variability can be considered as long as Y satisfies the regularity

condition given in paragraph 3.4.3.

3.4. A two-stage stochastic program

3.4.1. General principle of a two-stage stochastic program

The following lines briefly recall the main ideas presented in the introduction of [RX11]. A two-stage stochastic program
is generally expressed as

ml\idnEy,z [f(Y,M,Z)] st MeM, Ze Z. (3.18)

At the first stage, M must be chosen before any new data Y is available. At the second-stage, when M has been fixed
and a new data is acquired, the second-stage variable Z is computed as the solution (if it is unique and well defined) to the
optimization problem

min f(Y, M, Z). (3.19)
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Given an independent and identically distributed (i.i.d) T-sample (Y1, ..., Yr), problem (3.18) can be approximated by

the sample average approximation (SAA)

T
i Y M, Z M Z Z. 2
M,Zml,l.l.l.,z Z: £ t , S.t eEM,Z; € (3.20)

Moreover, when the second-stage (3.19) admits a unique solution, (3.20) can be rewritten as

= h(Y 3.21
in, Z t, M (3.21)
€
which is the SAA corresponding to
in Ey |h(Y,M 3.23
min By [A(Y, M)] (3.23)
h(Y,M) = Iznelg f(Y,M7 Z) (3.24)

where the two stages explicitly appear. However, f defined in (3.7) is non-convex with respect to Z = (A, dM), where
Z = Agr x D. Thus, problem (3.19) does not necessarily admit a unique global minimum, and existing algorithms will at
most provide a critical point of (Y, M, ) +¢z, where ¢z denotes the indicator function of the set Z. In this specific case,
a new convergence framework based on a generalized equation has been developed in [RX11]. This framework enables
a convergence result in terms of a critical point {M, Z1, ..., Zr} of (3.20) to be obtained. However, the significant size
of the SAA problem (3.20) in our case is generally too expensive from a computational point of view. To address this
issue, we propose to slightly adapt the work developed in [Mai+10] to propose an online estimation algorithm described in
Algo. 5. This algorithm has the same convergence property as [Mai+10] provided the non-convex function f(Y, M, -)+¢z

exclusively admits locally unique critical points. Further details are given in paragraph 3.4.3.

Algorithm 5: Online unmixing algorithm.
Data: M(9, Ag, dMo, a > 0,3 > 0,v > 0, £ €]0,1]

begin
Co < ORr,R;
Do < 0L R
Eo < 0p r;
fort =1toT do
a Random selection of an image Y (random permutation of the image sequence);
// Abundance and variability estimation by PALM [BST13], cf. §3.4.2
b (A¢,dM;) €  argmin  f(Y;, M® A dM);
(A, dM)EAR XDy
Ci « £Cy_1 + AAT;
Dt <~ Ethl + (thAt — Yt)A—tF,
E; <+ §Et—1 +dMy;
// Endmember update [Mai+10, Algo. 2], cf. §3.4.2
c M « argmin §:(M);
L MeM

Result: M(T), {(A;,dM)}41,... T
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3.4.2. Parameter estimation

Whenever an image Y has been received, the abundances and variability are estimated by the PALM algorithm [BST13],
which is guaranteed to converge to a critical point (A;,dM;) of f(Y+,M,-,*) + t4r xp,. The endmembers are then
updated by proximal gradient descent steps, similarly to [Mai+10]. Further details on the projections involved in this

section are given in Appendix C.1.

Abundance and variability estimation. A direct application of [BST13] under the constraints (3.3) leads to the fol-

lowing abundance update rule

1 ,
A,Ek—H) = prox, . (Agk) — WVAf(YtaM(t), Az(fk)a dMﬁ“)) (3.25)
Ay

where LX? is the Lipschitz constant of V a f(Y¢, M® .. dM*)) and

Vaf(Ye, MO A dM,) = a(Ay — A1) + (MDD +dM,)"[(M® + dM,)A, — Y], fort =1 (3.26)

Vaf(Ye, MDA dM,) = a(2A; — Aoy — Ayy) + (MY +dM,)T[(M® + dM,)A, - Y] for, 1<t <T

(3.27)
Vaf(Ye, MO A dM,) = a(Ay — A1) + (MY +dM)"[(M®D +dM)A; — Y], fort =T (3.28)
L8] = | M + amP)TL + aMiP) + a1+ [ <t < T])Ia| (3.29)

where [-] is the Iverson bracket introduced in the previous chapter. Note that the projection prox, 4, Can be exactly

computed using the algorithms proposed in [Duc+08; Conl15]. Similarly, the update rule for the variability terms is

1

(k)
Lan,

dM* Y = prox, (dMgk> — —Van f (Yo, MO, AP, dME’“))) (330)

where Lfﬁ\)/lt is the Lipschitz constant of Vang f (Y, M®) Agkﬂ), -) and

Vam[(Ye, MY, Ay dM,) = v(dM; — dM11) + [(MY + dM;)A, — Y| A7, fort =1 (3.31)

Vanf(Ye, MY, Ay dMy) = 7(2dM; — dM;—; — dMy4q) + [(M® + dM)A; — Y, ]A], forl <t <T

(3.32)
Vamf(Ye, MY Ay dM,) = y(dM; — dM,_1) + [(M® + dM,)A, — Y,]AT, fort =T (3.33)
L = HAi’““)AE’““)T +r(1+1<t< T])IRHF. (3.34)

Note that the projection prox,, - can be efficiently approximated using the Dykstra algorithm (see [BD86; BCGl11;

HAS13]). The resulting algorithm is summarized in Algo. 6.
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AlgOl‘ithm 6: Abundance and variability estimation using PALM.

pata: Y, M® A am¥ E, ,

begin

k <+ 0;

while stopping criterion not satisfied do
// Abundance update

AFTY  Update (A(M): /] cf. (3.25)
// Variability update

aM T « Update (aMM); // cE.  (3.30)
k+—k+1;

| A AM am, « amV;
Result: (A¢,dM;)

Endmember estimation. Similarly, a direct application of the method detailed in [Mai+10; BST13] yields

. 1 ~
M(t7k+1) = prOXL{,>0} <M(t’k) - mVMgt (M(tﬁk))) (335)
> t

where Ly ; denotes the Lipschitz constant of Vagg: (M%) and

R
R 1 T\ 1
Vmi: (M) = M (tct +5 zl GTGr> - th (3.36)
1 T
Ly = ;Ct +p ET G, G, F. (3.37)

The resulting algorithm is summarized in Algo. 7.

Algorithm 7: Endmember estimation.
Data: M*.0) = M(¢-1 C,, D,
begin
k < 0O;
while stopping criterion not satisfied do
// Endmember update

M(®F4D)  Update (M(®:4)); // cf. (3.35)
k+—k+1;
M®) MR,
Result: M(?)

3.4.3. Convergence guarantee

To ensure the convergence of the generated endmember sequence {M ()}, towards a critical point of the problem (3.18),

we make the following assumptions.

Assumption 1. The quadratic functions §; are strictly convex, twice continuously differentiable, and admit a Hessian

matrix lower-bounded in norm by a constant ppg > 0.

Assumption 2. The penalty functions ®, ¥ and T are gradient Lipschitz continuous with Lipschitz constant ¢, cg and

cy respectively. In addition, ¢ and Y are assumed to be twice continuously differentiable.
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Assumption 3. The function f(Y, M, -,-) is twice continuously differentiable. The Hessian matrix of f(Y, M, -, ) -

denoted by H(a anr) f — is invertible at each critical point (A}, dM;) € Q(Y,,M).

In practice, Assumption 1 may be enforced by adding a penalization term #3* HMHg to the objective function §;, where
pw is a small positive constant. Note that png is only a technical guarantee used in the convergence proof reported in
Appendix C.3, which should not be computed explicitly to be able to run the algorithm. Assumption 2 is only included
here for the sake of completeness, in case other penalizations than those given in section 3.3 are considered. Indeed,
this assumption is obviously satisfied by the penalizations mentioned in this chapter. Assumption 3, which is crucial to
Proposition 1, is further discussed in Appendix C.2 to ease the reading of this chapter.

Adapting the arguments used in [Mai+10], the convergence property summarized in Proposition 1 can be obtained.

Proposition 1 (Convergence of {M(t)}t, [Mai+10]). Under the assumptions 1,2 and 3, the distance between M® and

the set of critical points of the hyperspectral unmixing problem (3.6) converges almost surely to 0 when t tends to infinity.

Proof. See sketch of proof reported in Appendix C.3. O

Remark 3.2. The proposed algorithm can be analyzed within the general framework introduced in [CPR16]. Indeed,
the implementation of Algo. 5 can be seen as a particular case of [CPR16], since the inner iterations lead to an essen-
tially cyclic update rule of the mixture parameters. Indeed, all the mixture parameters are updated at least once every

K = max(2N{,

iter

+ 1, Nyer + 2) iterations, where NI

iier and N, denote the number of iterations used by Algo. 6 and

7 respectively. This analysis, which requires weaker assumptions on the problem structure (satisfied for the unmixing

problem under study), allows a deterministic convergence guarantee to be recovered (see [CPR16, Theorem 3.1]).

3.4.4. Computational complexity

Dominated by matrix-product operations, the per image overall complexity of the proposed method is of the order
O{[LR(N + N2) + FA(L + V)| NE, + Nuw LR}

where N2 NFE | Ny, denote the numbers of iterations for the Dykstra algorithm involved in the variability projection
(3.30)), the PALM algorithm and the endmember update respectively. To be more explicit, the computation time for one
image of size 100 x 100 composed of L = 173 bands is approximately 6 s for a MATLAB implementation with an Intel(R)
Core(TM) 15-4670 CPU @ 3.40GHz. Note that the PALM iterations (Algo. 6) and the endmember updates (Algo. 7) can

be parallelized if needed due to the separability of the objective function f considered (separability with respect to the

column of the abundance matrix, and with respect to the rows of the endmember and variability matrices).

3.5. Experiments with synthetic data

The performance of the proposed method has been evaluated on three image sequences composed of 10 images of size

98 x 102, with 173 bands. The images of the different sequences correspond to linear mixtures of R € {3,6,10}
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endmembers affected by smooth time-varying variability. The abundance maps associated with these simulation scenarii
vary smoothly from one image to another, and do not necessarily satisfy the pure pixel assumption. The synthetic linear
mixtures have been finally corrupted by an additive white Gaussian noise to ensure a resulting signal-to-noise ratio of
SNR = 30dB.

As in chapter 2, the perturbed endmembers involved in the mixtures have been generated using the product of reference
endmembers with randomly generated piecewise-affine functions. Some instances of the signatures used in the experi-

ments are depicted in Fig. 3.1. Note that different affine functions have been considered at each time instant for each

endmember.
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Figure 3.1.: Reference endmembers (red lines) and the corresponding instances under spectral variability (blue lines)
involved in the synthetic HS images.

3.5.1. Compared methods

The results of the proposed algorithm have been compared to those obtained with classical linear unmixing methods
individually applied to each image of the time series. The DSU [HCJ16] and PALM [BST13], which are batch algorithms,
have been used as a reference whenever they were applicable. The methods compared in this chapter are recalled below
with their most relevant implementation details. Note that the VCA/FCLS algorithm has been systematically used to

initialize the compared methods when necessary.

1. VCA/FCLS (no variability): for each image, the endmembers are first extracted using the vertex component analysis
(VCA) [NBO5b] which requires pure pixels to be present in the analyzed images. The abundances are then estimated

for each pixel by solving a Fully Constrained Problem (FCLS) by ADMM [BF10];

2. SISAL/FCLS (no variability): the endmembers are first extracted using the simplex identification via split aug-
mented Lagrangian (SISAL) [Bio09]. Note that the pure pixel assumption is not required by this method. The

tolerance for the stopping rule has been set to 10~3. The abundances are then estimated for each pixel by FCLS;

3. £1/2 NMF (no variability): the algorithm described in [Qia+11] is applied to each image, with a stopping crite-
rion set to 10~ and a maximum of 300 iterations. The regularization parameter has been set according to the

recommendation given in [Qia+11];

4. PLMM: the BCD/ADMM algorithm described in chapter 1 is applied to each image with a stopping criterion set

to 10~%. The endmember regularization recalled in (3.15) has been used, with a parameter set to the same value as
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Table 3.1.: Parameters used in the experiments.

(a) OU parameters. (b) ADMM parameters used for the DSU method [HCJ16] on the
Synthetic data  Real data synthetic data.
l/ .
K2 0.1 0.01 Thner 1.1 1.1 1.1
o 1074 0 rler 1.1 1.1 1.1
B 1073 10~ % 10 10 10
~ 3% 105 0 p 100 10-1 107°
NP 50 50 g 1072 1072 1072
ner rel 10—4 10—4 10_4
NP e
w0 >0 Nier 100 20 20
Niter 50 50
Nepochs 10 10
13 0.98 0.98

the one used for the proposed method. The abundance regularization parameter (spatial smoothness) has been set

to 10~4, and the variability regularization parameter has been set to 1;

5. Proposed online unmixing (OU): endmembers are initialized with VCA applied to the union of the pixels belonging

to the R — 1 convex hull of each image. The abundances are initialized by FCLS, and the variability matrices are

initialized with all their entries equal to 0. Algo. 6 (inner PALM algorithm) is stopped after N iterations and the

iter

Dykstra algorithm used to compute the projection in (3.30) is iterated Nigr times. Moreover, Algo. 7 is stopped

after N, iterations. Finally, Algo. 5 is stopped after Nepochs Cycles — referred to as epochs — on the randomly

permuted training set to approximately obtain i.i.d. samples [Mai+10]. In particular, the number of cycles Nepochs

and sub-iterations Ny, have been empirically chosen to obtain a compromise between the estimation accuracy and

the implied computational cost. We also included a constant forgetting factor & € (0,1) in order to slowly forget

the past data. The closer to one £ is, the more slowly the past data are forgotten;

6. PALM [BST13]: a batch PALM algorithm has been applied to the synthetic datasets to obtain a reference in the

ideal situation where all the data fit in memory. This algorithm is based on the model used in the previous chapter, in

which the outlier term is omitted. The method has been initialized with the same initial points as the OU algorithm,

for the same abundance, endmember and variability penalizations. The algorithm has been stopped when the relative

difference of the objective function between two iterations is lower than 1075, with a maximum of 500 iterations;

7. DSU [HCJ16]: the DSU algorithm (considered in chapter 2) has been applied to the entire dataset with the same

initialization as the batch PALM. The parameters used for this method are given in Table 3.2b. To ensure a fair

comparison with the other methods, the variability extracted at time instant ¢ is interpreted as the deviation of the

endmember matrix extracted for the image ¢ from the endmember temporal average.

The performance of the compared methods, which has been assessed in terms of the criteria introduced in the prelimi-

nary chapter (see section 1.4), is reported in the following section.
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3.5.2. Results

The values for the parameters of the proposed approach have been chosen using a grid of values successively tested for
each parameter while the others are fixed (as in chapter 1). The value selected for each parameter corresponds to the one
minimizing the reconstruction error RE. The values taken to initialize this procedure ensure that each penalization term
has a weight corresponding to a predefined fraction of the initial data fitting term (typically 10 to 20 %). A more detailed
study of the influence of these parameters on the reconstruction error can be found in Appendix C.4.

The values selected for the parameters involved in the proposed algorithm are given in Table 3.1. For the dataset
associated with mixtures of R = 3 endmembers, the abundance maps obtained by the proposed method are compared to
those of the other unmixing methods in Figs. 3.2 to 3.4, whereas the corresponding endmembers are displayed in Fig. 3.5.

The performance of the different algorithms, reported in Table 3.3, leads to the following conclusions.

* The proposed method is more robust to the absence of pure pixels in some images than both VCA/FCLS and
SISAL/FCLS. Note that £, ;, NMF and PLMM converge to poor local optima, which directly results from the poor
performance of VCA in this specific context. On the contrary, the estimated abundances obtained with the proposed
method (last line of Figs. 3.2 to 3.4) are closer to the ground truth (first line) than VCA/FCLS (third line). This

observation is confirmed by the results given in Table 3.3;

» The proposed method provides competitive unmixing results while allowing temporal endmember variability to be
estimated for each endmember (see Fig. 3.5). Since the problem considered is not convex, we can observe that the
results obtained by the batch PALM algorithm and the DSU method are not systematically better than those of the

online algorithm;

* The abundance GMSEs and the REs estimated with the proposed method are lower or comparable to those obtained
with VCA/FCLS and SISAL/FCLS applied to each image individually (see Table 3.3), without introducing much

more degrees of freedom into the underlying model when compared to PLMM;

» Even though the performance of the proposed method degrades with the number of endmembers, the results remain

better than, or comparable to, those of the other methods.

Whenever an endmember is scarcely present in one of the images, the proposed method outperforms VCA/FCLS as
can be seen in Figs. 3.2 to 3.4. Note that the maximum theoretical abundance value and the number of pixels whose
abundances are greater than 0.95 are mentioned on the top line of Figs. 3.2 to 3.4, to assess the difficulty of recovering

each endmember in each image. This result was expected, since VCA is a pure pixel-based unmixing method.
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Table 3.3.: Simulation results on synthetic data (GMSE(A)x10~2, GMSE(dM)x 1074, RE x10™%).
aSAM(M) (°) GMSE(A) GMSE(M) RE  aSAM(Y)(°) time (s)

VCA 16.8 4.20 / 0.37 2.81 1.4
SISAL 16.5 3.83 / 0.35 2.75 3
® {15 NMF 19.4 7.39 / 0.77 3.1 189
I PLMM 17.2 422 0.65 0.12 1.53 380
= ou 4.70 0.27 2.07 0.34 2.75 156
PALM 5.02 9.67x103 1.81 0.34 2.75 37
DSU [HCJ16] 2.87 0.35 1.74 3.57 2.76 24
VCA 2.50 0.08 / 1.89 2.09 5
SISAL 2.46 0.76 / 1.32 1.82 6
© {15 NMF 2.15 0.07 / 1.38 1.85 402
I PLMM 2.43 0.10 2.85 0.57 1.19 783
= ou 2.44 0.22 8.67 1.33 1.83 315
PALM 2.47 6.21 x1073 10.04 1.33 1.82 367
DSU [HCJ16] 2.25 0.43 4.09 11.84 1.82 10
VCA 3.82 2.72 / 386.0 4.6 5
SISAL 10.0 3.43 / 462.0 16.3 8
S (15 NMF 5.36 2.88 / 422.0 5.95 254
I PLMM 5.72 1.92 6.51 382.0 4.68 3567
X ou 3.32 0.47 13.00 1.98 2.11 191
PALM 2.89 7.19 x103 13.59 1.93 2.10 218
DSU [HCJ16] 3.99 1.47 7.11 14.75 1.97 52

1.00 / 36 097 /12

SISAL VCA TRUE

NMF

PLMM

ou

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t =10

Figure 3.2.: Abundance maps of the first endmember used in the synthetic mixtures. The top line indicates the theoretical
maximum abundance value and the true number of pixels whose abundance is greater than 0.95 for each time
instant.
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Figure 3.3.: Abundance maps of the second endmember used in the synthetic mixtures. The top line indicates the theoret-
ical maximum abundance value and the true number of pixels whose abundance is greater than 0.95 for each
time instant.
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Figure 3.4.: Abundance maps of the third endmember used in the synthetic mixtures. The top line indicates the theoretical
maximum abundance value and the true number of pixels whose abundance is greater than 0.95 for each time
instant.
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Figure 3.5.: Estimated endmembers on the synthetic hyperspectral time series (extracted endmembers are represented in
red, variability in blue dotted lines).
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3.6. Experiments with real data

3.6.1. Description of the dataset

The proposed algorithm has been applied to real AVIRIS HS images acquired over the Mud Lake located in the Lake
Tahoe region (California, United States of America) between 2014 and 2015'. Water absorption bands were removed
from the 224 spectral bands, leading to 173 exploitable bands. In absence of any ground truth, the sub-scene of interest
(150 x 110), partly composed of a lake and a nearby field, has been unmixed with R = 3, 4 and 5 endmembers to obtain a
compromise between the results of HySime [BNOS], those of the recently proposed eigen-gap approach (EGA) [Hal+16b]
(see Table 3.4), and the consistency of the resulting abundance maps. The parameters used for the proposed approach are
given in Table 3.1, and the other methods have been run with the same parameters as in section 3.6. Note that a 4 x 4 patch
composed of outliers has been manually removed from the last image of the sequence prior to the unmixing procedure
(see Fig. 3.6(e)). For this dataset, no comparison can be made with the batch PALM and the DSU algorithms, since the

whole dataset does not fit in the memory of the computer used for the following experiments.

(a) 04/10/2014 (b) 06/02/2014 (c) 09/19/2014 (d) 11/17/2014 (e) 04/29/2015

Figure 3.6.: Scenes used in the experiment, given with their respective acquisition date. The area delineated in red in
Fig. 3.6(e) highlights a region known to contain outliers, which has been removed prior to the unmixing
procedure (this observation results from the analysis conducted in chapter 2).

Table 3.4.: Endmember number R estimated on each image of the real dataset by HySime [BNOS] and EGA [Hal+16b].
04/10/2014  06/02/2014  09/19/2014  11/17/2014  04/29/2015

HySime [BNO8] 16 21 19 21 22
EGA [Hal+16b] 3 5 4 3 3

3.6.2. Results

Since no ground truth is available, the algorithm performance is evaluated in terms of the reconstruction error defined in
section 1.4. Only the more consistent abundance maps and endmembers obtained for R = 3 are presented in Figs. 3.7 to
3.10. The proposed method provides comparable reconstruction errors (see Table 3.5), yields more consistent abundance
maps when compared to VCA/FCLS and SISAL/FCLS especially for the soil and the vegetation for a somewhat reason-

able computational cost. In particular, note that the estimated vegetation abundance map of the fourth image depicted in

!The scene under study is located in the same area as the real dataset used in the experiments reported in chapter 2.
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Fig. 3.9 (area delineated in red) presents significant errors when visually compared to the corresponding RGB image in
Fig. 3.6(d). These errors can be explained by the fact that the water endmember extracted by VCA has been split into two
parts as can be seen in Figs. 3.10(a) and 3.10(c) (see signatures given in black). Indeed, the VCA algorithm cannot detect
the scarcely present vegetation. On the contrary, the joint exploitation of multiple images enables the faint traces of dry
vegetation to be captured. Albeit impacted by the results of VCA/FCLS (used as initialization), the performance of the
£, /2 NMF and PLMM remains satisfactory on each image of the sequence since they tend to correct the endmember errors
induced by VCA. However, £, ,, NMF produces undesirable endmembers with an amplitude significantly greater than 1
on the 4th image (Fig. 3.6(d)). Besides, PLMM yields very low reconstruction errors at the price of a computational cost
which may become prohibitive for extended image sequences.

Furthermore, the instantaneous variability energy (computed as ||[dm,.||3/L forr = 1,...,Rand t = 1,...,T)
can reveal which endmember deviates the most from its average spectral behavior. In this experiment, the soil and the
vegetation signatures — which seem to vary the most over time (see Fig. 3.6) — are found by the proposed method to
be affected by the most significant variability level (see Table 3.6). In this experiment, a significant increase can be
observed in the endmember variability energy over the last three images of the sequence (see Table 3.6), suggesting that
the endmembers are apparently better represented in the two first images of the sequence (see Fig. 3.6). This observation
suggests the proposed method captures the average endmember spectral behavior and enables the time at which the
greatest spectral changes occur to be identified. However, a detailed analysis of this observation is out of the scope of the

present study.

Table 3.5.: Simulation results on real data (RE x10~%).

RE time (s)

VCA/FCLS 12.7 2

= SISAL/FCLS  0.87 3
I ¢,/ NMF 3.83 156
< PLMM 0.37 2449
Proposed (OU)  1.04 134
VCA/FCLS 43.8 2

< SISAL/FCLS  0.35 3
I ¢,/ NMF 16.0 163
S pPLMM 027 4396
Proposed (OU)  0.76 126
VCA/FCLS 63.9 2

v  SISAL/FCLS  0.17 4
I ¢,/ NMF 14.6 174
% pLMM 0.098 12511

Proposed (OU)  0.17 128
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Table 3.6.: Experiment with real data for R = 3: energy of the variability captured for each endmember at each time
instant (||dm,;||, /L x 107 forr =1,..., Rt =1,...,T).

Water Vegetation  Soil

04/10/2014  1.22 9.68 11.51
06/02/2014  1.44 11.85 38.37
09/19/2014  7.29 11.41 9.30
11/17/2014  2.77 21.73 16.55
04/29/2015  0.58 106.03 26.19

PLMM NMF SISAL VCA

ou

Figure 3.7.: Water abundance maps.
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t=1 t= t=3
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SISAL VCA

NMF
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ou

VCA

PLMM NMF SISAL

ou

Figure 3.9.: Vegetation abundance maps. The region delineated in red, where almost no vegetation is supposed to be
present, reveals that the water endmember extracted by VCA has been split into two parts. This endmember
identification error has an influence on £ /, NMF and PLMM, but the error is relatively well corrected by the
abundance sparsity prior used in £; /o NMEF, at the price of signficantly degraded endmember estimation (see

Fig. 3.10(i)). This observation is further confirmed in Figs. 3.10(a) and 3.10(c). The results obtained by ¢4 /2
NMF and PLMM are similarly affected, since initialized with VCA.
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Figure 3.10.: Endmembers (m,., red lines) and their variants affected by variability (m, + dm, ;, blue dotted lines)
recovered by the different methods from the real dataset depicted in Fig. 3.6. Signatures corresponding to
different time instants are represented in a single figure to better appreciate the variability recovered from
the data. The spectra represented in black correspond to signatures identified by VCA on the image 3.6(d),
where the water endmember has been split into two parts (see Figs. 3.10(a) and 3.10(c)). Note that the
estimation of the vegetation signature by £; ,, NMF is relatively poor (signature of amplitude significantly
larger than 1) for the image 3.6(d), as illustrated in Fig. 3.10(i).
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3.7. Conclusion and future work

This chapter introduced an online unmixing procedure based on the perturbed linear model developed in chapter 1. The
underlying unmixing problem, formulated as a two-stage stochastic program, was solved by an online algorithm. The
proposed algorithm was designed to unmix multiple HS images of moderate dimensions, potentially affected by smoothly
varying endmember perturbations. Indeed, the adopted cost function presents a number of spurious local optima which
can significantly increase with the size of the images and the number of endmembers considered. This problem is however
common to many blind-source separation problems.

Simulations conducted on synthetic and real data enabled the interest of the proposed approach to be appreciated.
Indeed, the proposed method compared favorably with established approaches performed independently on each image
of the sequence while providing a relevant variability estimation.

Assessing the robustness of the proposed technique with respect to estimation errors on the endmember number R
and applying the proposed method to real dataset composed of a larger number of endmembers are interesting prospects
for future work. Possible perspectives also include the extension of the method to account for spatial variability and
applications to change detection problems.

In this respect, the last chapter of this manuscript investigates the implementation of a partially asynchronous unmixing

algorithm, thus offering a complementary point of view to the question addressed in this chapter.

Main contributions. An online unmixing algorithm has been proposed to analyze multi-temporal hyperspectral images,
whose size may preclude the use of batch unmixing procedures. Based on a modified version of the model introduced in
chapter 1, the problem is formulated as a two-stage stochastic program, which is solved using a stochastic approximation.

The results obtained on real data show the interest of considering several HS images to improve the unmixing results.

3.8. Conclusion (in French)

Ce chapitre a permis d’introduire un algorithme de démélange en ligne, basé sur une variante du modele introduit au
chapitre 1 et formulé sous la forme d’un probléme d’optimisation stochastique avec recours. L’algorithme proposé est
destiné a I’analyse de plusieurs images hyperspectrales de dimension modérée, affectées par une variabilité temporelle
qui évolue lentement au cours du temps. En effet, la fonction cofit adoptée en pratique comporte un nombre d’extrema
locaux qui peut augmenter de facon significative avec la dimension du probléme considéré. Ce probleme est néanmoins
commun a un grand nombre de méthodes de séparation de sources de la littérature. Les simulations numériques, conduites
sur données synthétiques et réelles, ont permis d’évaluer la pertinence de 1’approche proposée, en comparaison avec une
analyse individuelle de chacune des images a disposition.

Par la suite, il conviendrait d’évaluer la robustesse de la technique proposée a I’égard d’une erreur d’estimation du
nombre de source R, supposé fixé a priori. Une application de cette approche a des données réelles composées d’un plus

grand nombre de sources, ou la prise en compte simultanée de la variabilité spatiale et temporelle pour des problemes de
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détection de changements, constituent d’autres perspectives de recherche a court terme.
A ce titre, le développement d’un algorithme de démélange asynchrone est envisagé dans le chapitre suivant, offrant

ainsi un point de vue complémentaire a celui développé dans ce chapitre.

Contributions principales. Une stratégie de démélange en ligne est proposée pour analyser une collection d’images
hyperspectrales, acquises au-dessus d’une méme scene d’intérét a différents instants. Basé sur une variante du modele
introduit dans le permier chapitre, le probleme de démélange est formulé sous la forme d’un probleme d’optimisation
stochastique avec recours. Les résultats obtenus sur données synthétiques et réelles montrent 1’intérét d’utiliser plusieurs

images hyperspectrales pour améliorer les résultats du démélange.
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CHAPTER

A partially asynchronous distributed unmixing

algorithm

This chapter has been adapted from the submitted journal paper [TDT17b] .
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4.1. Introduction (in French)

Les chapitres 2 et 3 ont permis d’illustrer I’'intérét de considérer plusieurs images hyperspectrales pour analyser une méme
scene d’intérét. A ce titre, un algorithme de démélange en ligne a été proposé au chapitre 3 pour estimer les paramétres
d’un modele de mélange en présence de variabilité temporelle. En complément de cette approche, ce chapitre s’intéresse
a la mise en ceuvre d’une procédure distribuée pour traiter des images (ou une séquence d’images) de grande dimension.

Les algorithmes distribués, synchrones ou (partiellement) asynchrones, s’averent particulierement adaptés a la résolu-
tion de problemes de grande dimension [BJ13; Lia+14; CTS15; LS15; FSS15; Scu+17; Yan+16; PR15; CE16]. Pour un

grand nombre d’applications, les tiches sont réparties par une unité de calcul maitre (ou processus maitre) entre plusieurs
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noeuds de calculs qui lui sont subordonnés. Dans le cas synchrone (Fig. 4.1(a)), le maitre attend 1’ensemble des informa-
tions traitées par les noeuds de calcul avant de les aggréger et de procéder a une nouvelle répartition des tiches. Dans le
cas asynchrone, certains problemes permettent de se dispenser d’une hiérachie entre les différentes unités disponibles :
chacun des noeuds effectue une tiche donnée en synchronisant régulierement ses résultats avec ceux de ses voisins dans
le cadre d’un systeme de voisinage prédéfini [BHI16; Dav16; Can+16]. Pour d’autres applications (telles que celle traitée
dans ce chapitre), le cas asynchrone permet de s’affranchir en partie de la contrainte de synchronisation en exploitant au
mieux la vitesse de calcul relative de chacun des noeuds, ce qui permet de réduire leurs périodes d’inactivité [Pen+16;
Dav16; Can+16]. De fait, I'unité maitre assigne une nouvelle tiche a un noeud des qu’il a terminé ses calculs (voir
Fig. 4.1(b)). Dans ce contexte partiellement asynchrone, 1’information disponible en chacun des noeuds ne présente pas
forcément un méme niveau de traitement [CE16].

Ce dernier chapitre est organisé comme suit. Le probleme d’optimisation traité dans ce chapitre ainsi que la procédure
distribuée retenue pour le probleme de démélange sont introduits de facon générale dans la section 4.3, avec 1’ensemble
des hypotheses qui permettront de bénéficier de résultats de convergence établis dans la littérature. Une application
au probleme de démélange linéaire, en présence ou non de variabilité, est proposée dans le section 4.4. Les résultats
de simulation sur données synthétiques et réelles, rapportés aux sections 4.5 et 4.6, permettent d’évaluer I’apport de
I’asynchronicité par rapport a une version synchrone de 1’algorithme considéré. La section 4.7 permet de conclure cette

étude et d’y apporter plusieurs perspectives de recherche.

4.2. Introduction

The preceding chapters have shown the interest of unmixing multiple HS images to better characterize the scene under
study, and an online unmixing algorithm has been proposed to address the resulting optimization problem. In this chapter,
a complementary approach to the study presented in chapter 3 is considered. More precisely, a distributed procedure is
investigated to estimate the mixture parameters when considering large — or sequences of — HS images.

In practice, distributed algorithms are of a particular interest to address large scale optimization problems [BJ13;
Lia+14; CTS15; LS15; FSS15; Scu+17; Yan+16; PR15; CE16]. In the case of synchronous distributed procedures (see
Fig. 4.1(a)), a master node waits for the completion of operations conducted by several independent computation nodes
(workers) before proceeding to the next iteration. More precisely, each iteration of the master consists in aggregating
information received from the workers, and then assigning a new task to each worker.

Asynchronous algorithms offer more flexibility in terms of synchronization requirement. Indeed, they exploit the
difference in the computation time required by each worker, thus reducing idleness periods [Pen+16; Dav16; Can+16].
For some applications, there is no hierarchy between the computation nodes, and each worker can be triggered at any time,
independently from the other nodes [BHI16; Dav16; Can+16]. In the partially asynchronous setting considered in this
chapter, a master node first assigns different tasks to all the available workers, then aggregates information from a given

node as soon as it receives its information. The master finally relaunches a task on the node it has received information
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Worker 3 - Worker 3 -
Worker 2 - Worker 2 -
Worker 1 - Worker 1 -
Master ‘ - Master ‘ -
L I > L 1 1 1 >
0 1 Iteration & 0 1 2 3 Tteration k
(a) Synchronous distributed system (b) Asynchronous distributed system

Figure 4.1.: Illustration of a synchronous and an asynchronous distributed mechanism (idle time in white, transmission
delay in light gray, computation delay in gray). In the synchronous configuration, the master is triggered
once it has received information from all the workers. In the asynchronous case, the master node is triggered
whenever it has received information from K workers (X = 1 in the illustration).

from (see Fig. 4.1(b)). In this setting, the workers may make use of out-of-date information to perform their local update

[CEl6].

The literature devoted to distributed optimization methods includes a wide variety of approaches for both convex and
non-nonconvex problems. Consequently, an exhaustive list of the existing methods is out of the scope of the present study.
The emphasis will be specifically put on recently proposed asynchronous algorithms which can be of interest to matrix
factorization problems, and more precisely to hyperspectral unmixing. In this perspective, we focus more specifically on

non-convex problems of the form

(x*,2%) € argmin ¥(x, z)

X)z J I 4.1)
U(x,2z) £ Z {ft(xt,z) + Zgjt(xjt)} + Zri(zi), X; = [Xj,t]j
t=1 =1 i=1

whose resolution is conducted by (partially) asynchronous optimization algorithms.

The problem structure defined in (4.1) encompasses many problems, which can be efficiently distributed in terms of
the local cost functions f;. Each of these functions depends on a local variable x;, and a global variable z shared between
the different functions f;. Depending on the expression of f;, the problem might be further decomposed into several
blocks (i.e., x;,; and z;). Hereafter, f; represents a smooth (non-necessarily convex) data fitting term, whereas g;; and
r; are penalizations whose expression is problem-dependent. To address matrix factorization problems, we propose to
consider a centralized computing architecture as in [Cha+16], in which a master unit is in charge of the shared variable z,
and supervises 1" workers which have access to a variable x; and a (possibly out-of-date) copy of z. This setting can be

notably seen as a particular instance of the general framework described in [Can+16].

Several asynchronous methods recently proposed in the literature are adapted to the problem of interest [Lia+15;
Cha+16; Pen+16; Dav16; Can+16], at least in theory. In particular, Gauss-Seidel optimization schemes appear as a
convenient technique to decompose the original problem into a collection of simpler optimization tasks, which can be
conducted and distributed efficiently [Boy+10; WYZ15]. We can mention the partially asynchronous ADMM proposed
in [Cha+16], used to solve a similar problem reformulated as a consensus optimization task. However, hyperspectral
unmixing in particular does not lend itself well to such approaches, since most of the involved subproblems require the

use of iterative solvers. In this case, the proximal alternating linearized minimization (PALM) [BST13] and its extensions
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Figure 4.2.: Tllustration of the master-slave architecture considered for the problem (4.2) with T = 3 workers (the function
and variables available at each node are given in light gray rectangles).

[FGP15; CPR16] offer the advantage to benefit from appropriate convergence guarantees in non-convex settings while
allowing parts of the computations to be easily distributed. In addition, recent works have investigated the development
of an asynchronous version of the PALM algorithm [Dav16]. However, the descent steps prescribed in [Dav16] to ensure
the algorithm convergence explicitly depend on a maximum allowable delay 7, which is generally unknown and system-
dependent. Besides, the residual terms resulting from the allowed asynchronicity lead to extremely small admissible
step-sizes, and do not result in any practical improvement in terms of convergence speed (see for instance [Can+16] and
the numerical experiments reported in section 4.5). From this point of view, [Cha+16] appears more convenient in the
sense that the maximum allowable delay is explicitly controlled. However, resorting to an ADMM algorithm suffers from
the previously mentioned drawback, and does not ensure that the constraints imposed on the variables are satisfied at each
iteration. Finally, the strategy in [Can+16] allows more flexibility in the step-size when compared to [Dav16].

Given the preceding remarks, the framework introduced in [Can+16] appears as one of the most flexible to address
matrix factorization problems. We consequently propose to resort to the framework introduced in [Can+16], which
encompasses the structure described in [Cha+16], to address hyperspectral unmixing, i.e., a particular matrix factorization
problem. This choice is partly justified by the possible connections between the PALM algorithm and [Can+16]. Indeed,
the PALM algorithm enables a synchronous distributed algorithm to be easily derived for the problem studied in chapter 1,
which then offers an appropriate reference to precisely evaluate the relevance of the asynchronicity tolerated by [Can+16].

The rest of this chapter is organized as follows. The assumptions on the problem structure are introduced in section 4.3.
The expression of this problem essentially reflects the perspective of solving matrix factorization tasks. Numerical ex-
periments conducted on hyperspectral unmixing problems is then proposed in section 4.4. Simulation results associated
with this scenario illustrate the performance of the proposed approach on synthetic and real data in sections 4.5 and 4.6.

Conclusions and future reasearch perspectives are outlined in section 4.7.

4.3. Proposed algorithm

Without loss of generality and to alleviate notations, we address the following optimization problem instead of (4.1)

(x*,2*) € argmin ¥(x,z) £ F(x,z) + G(x) + r(z) 4.2)

X,z
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with

T T
F(x,2) =Y fi(xe,2), G(x) =) gi(xs). (4.3)

In particular, the problem discussed in section 4.4 can be expressed under the form (4.2). With these notations, x; denotes
alocal variable (i.e., which will be accessed in practice by a single worker), and z is a global variable (i.e., shared between
the different workers, see Fig. 4.2). In fact, a convergence analysis for (4.1) can be easily derived from the analysis of (4.2)
by induction on the number of blocks I and J. In the following, f; denotes a (non-necessarily convex) smooth function
in the sense precised in Assumption 5 (see section 4.3.2 below). Furthermore, g; and r are assumed to be convex lower
semi-continuous (non-necessarily smooth) functions whose proximal operator can be easily computed (i.e., no iterative
solver is needed to approximate their computation). In practice, f; plays the role of a data fitting term, whereas g, and
r can be regarded as regularizers or constraints. The structure of the algorithm investigated in this chapter, inspired by

[Can+16], is briefly described in the following paragraph.

4.3.1. Algorithm description

Reminiscent of [Cha+16], the algorithm investigated in this chapter relies on a star topology configuration in which a
master node supervises an optimization task distributed between several workers. The master node also updates and
transmits a set of variables shared by the different workers. In fact, the computation time of synchronous algorithms
is essentially conditioned by the speed of the slowest worker (see Figs. 4.1(a) and 4.1(b)). Consequently, relaxing the
synchronization requirements (by allowing bounded delays between the information brought by each worker) allows
a significant decrease in computation time to reach convergence, which can scale almost linearly with the number of
workers [Cha+16; Dav16]. Note that, even though asynchronous optimization schemes may require more iterations than
their synchronous counterparts to reach a given precision, allowing more frequent updates generally compensates this

drawback in terms of computation time [Cha+16].

In the partially asynchronous setting, the master node updates the variables shared by the workers once it has received
information from at least K < T" workers. The new state of the shared variable z is then transmitted to the K available
workers, which can individually proceed to the next step. As in [Can+16], a relaxation step with decreasing step-sizes
ensures the convergence of the algorithm (see Algo. 8). To alleviate notations and make clear to which extent the con-
vergence analysis introduced in [Can+16] is applicable, we consider K = 1 in the rest of this chapter. Details on the

operations performed by the master node and each worker are detailed in Algos. 8 and 9 respectively.

Note that a synchronous distributed counterpart of Algo. 8 can be easily derived for the problem (4.2), which partly
justifies the form chosen for Algo. 8. This version consists in setting vy, = 1, and waiting for the updates performed by
all the workers (K = T, see Step 1 of Algo. 8) before updating the shared variable z. This implementation will be taken

as a reference to evaluate the computational efficiency of the proposed algorithm in sections 4.5 and 4.6.
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Algorithm 8: Algorithm of the master node.

Data: x(9, y(© 20 ~4 € (0,1], p € (0,1), Niter, K.
Broadcast z(9 to the T workers ;
k+0;
Tr <0
while £ < N, do

Step 1 Wait for )A(f}c from any worker ;

T =Te U{t'};

JhH _{ 0ift € Ty

¢ dF + 1 otherwise ~

k i

Xk+1= Xf‘i”'}/k(fit*xf)iften .
¢ x; otherwise

if (7, < K) then
L Go to step Step 1 ; // wait until 7 > K

else
1
2 ¢ proxckr(zk + —szF(ka,zk));
5 ck
zk+tl — 5k + ’yk(ik _ zk);
Ye+1 = V(1 — p);

77c+1<—®;
k+—k+1,

Result: X]Vilcr, y]Vitcr’ ZNitcr'

4.3.2. Convergence analysis

Based on the convergence results [BST13, Theorem 1] and [Can+16, Theorem 1], the proposed algorithm requires the

following assumptions.

Assumption 4 (Algorithmic assumption). Let (t, dfk) e {1,...,T} x {1,...,7} denote the couple composed of the
index of the worker transmitting information to the master at iteration k, and the delay between the (local) copy Z* of the
shared variable z and the current state z* (i.e., ¥ 2 z"~%*). The allowable delays d¥, are assumed to be bounded by
a constant 7 € N*. In addition, each couple (¢, dfk) represents a realization of a random vector within the probabilistic

model introduced in [Can+16, Assumption C].

Assumption 5 (Inherited from PALM [BST13]). (i) Forany ¢ € {1,...,T}, g+ : R — (—o00,+00] and r : R™ —

(=00, +00] are proper, convex lower semi-continuous (l.s.c.) functions;

(i) Fort € {1,...,T}, fi : R® x R™ — R is a C! function, and is convex with respect to each of its variables when

the other is fixed;

(iii) W, ft, g+, and r are lower bounded, i.e., infgn ygm ¥ > —00, infgrn ygm fi > —o00, infgn g; > —o0, and infgm r >

—o0;
(iv) W is a coercive semi-algebraic function (see [BST13]);

(v) Forallt € {1,...,T},z € R™, x; — f;(x,z)isaC! function, and the partial gradient Vy, f(-,z) is Lipschitz

continuous with Lipschitz constant Ly, (z). Similarly, z — f;(x;,2) is a C! function, and the partial gradient
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Algorithm 9: Algorithm of the ¢th worker (since the shared variable z may have been updated by the master node
in the meantime, Z corresponds to a possibly delayed version of the current z*. From the master’s point of view,
7= zh i,
Data: z, x;.
begin

Wait for (2, %) from the master node;

N - 1 L.
Xt € ProxXe, g, (Xt - cfvxt ft (Xt7 Z));
Xt

Transmit X; to the master node;

Result: x¢.

V. fi(x¢,-) is Lipschitz continuous, with constant L, ,(x;);
(vi) the Lipschitz constants used in the algorithm, i.e., Ly, (zF) and L, 4, (X%,) (denoted by Lf{,:k and L}, in the

following) are bounded, i.e. there exists appropriate constants such that for all iteration index k

0< Ly <Ly <Li, 0<L,<L}.<L}.

(vii) VF' is Lipschitz continuous on bounded subsets.

Assumption 6 (Additional assumptions). (i) For all t € {1,...,T}, x4 € R™, Vy, ft(X¢, ) is Lipschitz continuous

with Lipschitz constant Ly, ,(x:);
(ii) The Lipschitz constants Ly, Z(fcfk) (denoted by Lﬁtk  in the following) is bounded, i.e. there exists appropriate
positive constants such that for all £ € N:

- k +
0< Lx,z < Lx,,k ,Z < Lx,z'

Assumption 4 summarizes standard algorithmic asumptions to ensure the convergence of Algo. 8. Besides, Assump-
tion 5 gathers requirements of the traditional PALM algorithm [BST13], under which the distributed synchronous version
of the proposed algorithm can be ensured to converge.

Under Assumptions 4 to 6, the analysis led in [Can+16] allows the following convergence result to be recovered.

Proposition 2 (adapted from [Can+16] ). Suppose that Problem (4.2) satisfies the requirements specified in Assumptions

4 to 6. Define the sequence {v*}en of the iterates generated by Algos. 8 and 9, with vF 2 (x*,z*) and the parameters

in Algo. 9 chosen as

Then, the following convergence results are obtained:
(i) the sequence {¥(v*)}en converges almost surely;
(ii) every limit point of the sequence {v*}vcn is a critical point of ¥ almost surely.

Proof. See the sketch of proof proposed in Appendix D. O
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The convergence analysis is conducted using an auxiliary function (introduced in Lemma 3 in Appendix) to handle
asynchronicity [Dav16]. This analysis of this function finally allows convergence results associated with the original
problem (4.2) to be recovered.

Besides, the following result ensures a stronger convergence guarantee for the synchronous counterpart of Algo. 8.

Proposition 3 (Finite length property, following from [BST13]). Suppose that Problem (4.2) satisfies the requirements
specified in Assumptions 5 to 6. Define the sequence {v*}.cn of the iterates generated by the synchronous version of

Algo. 8, with v¥ & (x*, z*) and

C

Mo

=’ =Lk =1 K=T

thk Xk

Then, the following properties can be proved:

(i) the sequence {v*}ycn has finite length;

“+o0
ZHV’“Jr1 —v*|| < 4o0;
k=1

(ii) the sequence {v*},cn converges to a critical point of U.

Proof. These statements result from a direct application of [BST13, Theorem 1, Theorem 3] and [BST13, Remark 4

@iv)]. O

4.4. Application to hyperspectral unmixing

The approach described in the previous section is particularly adapted to address matrix factorization problems, and a
fortiori hyperspectral unmixing. After briefly describing the application and notations used in the rest of this chapter, we
introduce the optimization problem to be solved, and finally apply the algorithms described in the previous sections to

estimate the parameters of interest.

4.4.1. Problem statement

Linear mixing model (LMM). For this study, we first consider the standard LMM introduced in paragraph 1.2, where

the data are divided into T blocks composed of N pixels'
Yt:MAt+Bt, tG{l,,T} (44)

subject to the constraints

A, =Opn, Aflg=1y, M»>0p 5. 4.5)

!'Note that each block can be composed of a different number of pixels if needed.
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Assuming the data are corrupted by a white Gaussian noise leads to the following data fitting term
1 2
fr(Ay, M) = 3 Y, — MA||;. 4.6)
In addition, the constraints summarized in (4.5) are taken into account by defining

9t(Ar) = tay (A¢)
Axy = {X S RRXN | XT]_R = ]_N,X - OR,N}

(M) = t{.-0;(M)

leading to the optimization problem

(A*,M") € argmin U(A,M). 4.7
AM

The non-convex problem (4.7) satisfies Assumptions 5 to 6 (as a particular instance of the problem addressed in [BST13,

Section 4]).

Perturbed LMM (PLMM). A similar application can be proposed with the variablity accounting model introduced in
the first chapter. However, the non-negativity constraints imposed on the perturbed endmembers M + dM,, should be
removed in this context, since the workers do not have access to the latest version of the variable M when performing

their local updates. The associated model is consequently defined as

Yt = MAt + [dMLtaLt, NN 7d].\/.[[\/'ﬂt/a]\/'7t] +Bt (48)

Ay

subject to

A, = OpN, Aflgp=1y
4.9)

M= 0L 5, [[dAM, . <, V¥(n,t) € {l,...,N} x {1,...,T}.

The optimization problem (4.2) can be easily adapted to this setting by defining

(A, M,dM) = F(A,M,dM) + r(M) + > ge(Ay) + Y o (dM,, )

n,t

1
Ji(Ay, M, dM,) = 3 1Y — MA; — Alp

9i(Ar) = tay (Ay)

hn,t (dMn,t) = L\|~\|F§V(dMn,t)
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.AN = {X c RRXN | XTlR = 1N7X >~ OR,N}

T‘(M) = ’/{~§O}(M)-

Remark 4.1. In the initial formulation of the mixing model (4.4), the indexes ¢ and T refer to subsets of pixels. A direct
interpretation of this statement can be obtained by dividing a unique (and possibly large) hyperspectral image into 7" non-
overlapping tiles of smaller (and possibly different) sizes. In this case, each tile is individually unmixed by a given worker.
Another available interpretation allows multitemporal analysis to be conducted. Indeed, in practice, distributed unmixing
procedures are of a particular interest when considering the unmixing of a sequence of several HS images, acquired by
possibly different sensors at different dates, but sharing the same materials [HCJ16; YZP17]. In this case, ¢ and T" could
refer to time instants. Each worker ¢ is then dedicated to the unmixing of a unique HS image acquired at a particular
time instant. The particular applicative challenge of distributed unmixing of multitemporal HS images partly motivates

the numerical experiments on synthetic (yet realistic) and real data presented hereafter.

4.4.2. Parameter estimation

A direct application of [BST13] leads to the following update rule for the abundance matrix A;« of the model (4.4)

~ 1 B
Afi =prox, (Af — ——Va, fi(Af, M* dfk)) (4.10)
A,
with
Va, fi(A;, M) = M"(MA; - Y;) 4.11)
c’th = Lgtk — H(Mkfdfk )TMkfdfk ) (412)

Note that the projection prox, 4, Can be exactly computed (see [Duc+08; Conl5] for instance). Similarly, the update rule

for the endmember matrix M is

by 1
k _ k k+1 k
M" = prox, ., (M - %VMF(A 1M )) (4.13)
with
VMF (A, M) =Y (MA; — Y/)A] (4.14)
t
chr = Lig = || > AT (AT (4.15)
t F

Note that similar update rules can be derived for the model (4.9).
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4.5. Experiments with synthetic data

To illustrate the interest of the allowed asynchronicity, we compare the estimation performance of Algo. 8 to the per-
formance of its synchronous counterpart (described in section 4.3), and evaluate the resulting unmixing performance in
comparison with three unmixing methods proposed in the literature. We propose to consider the context of multitemporal
HS unmixing, which is of a particular interest for recent remote sensing applications [HCJ16; YZP17]. In this particular
case, a natural way of distributing the data consists in assigning a single HS image to each worker. To this end, we gener-
ated synthetic data composed of T' = 3 HS images resulting from linear mixtures of R € {3,6,9} endmembers acquired
in L = 413 bands, with and without spectral variability (see chapter 1). The generated abundance maps vary smoothly
over time (i.e., from one image to another) to reproduce a realistic evolution of the scene of interest. Each image, com-
posed of 10, 000 pixels, was then corrupted by an additive white Gaussian noise whose variance ensures a signal-to-noise
ratio (SNR) of 30 dB.

Note that the distributed methods were run on a single computer for illustration purposes. In this case, the workers are

independent processes.

4.5.1. Compared methods

The estimation performance of the proposed algorithm has been compared to those of several unmixing methods from the
literature. Note that only the computation time associated with the Algo. 8 and its synchronous version (both implemented
in Julia [Bez+17]) can lead to a consistent comparison in this experiment. Indeed, some of the other unmixing methods
have been implemented in MATLAB by their respective authors. In the following lines, implementation details specific to

each of these methods are given.

1. VCA/FCLS: the endmembers are first extracted on each image using the vertex component analysis (VCA) [NBO5b],
which requires pure pixels to be present. The abundances are then estimated for each pixel by solving a fully con-

strained least squares problem (FCLS) using the ADMM proposed in [BF10];

2. SISAL/FCLS: the endmembers are extracted on each image by the simplex identification via split augmented La-
grangian (SISAL) [Bio09], and the abundances are estimated for each pixel by FCLS. The tolerance for the stopping

rule has been set to 10~%;

3. Proposed method (referred to as ASYNC): the endmembers have been initialized with the signatures obtained by
VCA on the first image of the sequence, and the abundances have been initialized by FCLS. The synchronous
and asynchronous algorithms have been stopped when the relative decrease of the objective function between two
consecutive iterations is lower than 10~%, with a maximum of 100 and 500 iterations respectively. Its synchronous

counterpart is referred to as SYNC;

4. DAVIS [Dav16]: this asynchronous algorithm only differs from the previous algorithm, in that no relaxation step is

considered, and in the expression of the descent stepsize used to ensure the algorithm convergence. To ensure a fair
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comparison, it has been run in the same setting as the proposed asynchronous method;

5. DSPLR [TRB17]: the DSPLR algorithm has been run with the stopping criterion proposed in [TRB17] (set to
e = 10™%), for a maximum of 100 iterations. The same initialization as the two previous distributed algorithms has

been used.

The estimation performance reported in Table 4.1 are evaluated in terms of the performance measures introduced in the

preliminary chapter (see section 1.4).

4.5.2. Results in absence of variability (LMM)

* Endmember estimation: the proposed asynchronous algorithm leads to competitive endmember estimation on the
three synthetic datasets (in terms of aSAM and RE), notably in comparison with its synchronous counterpart. We
can note that the DSPLR algorithm yields interesting estimation results for R = 3, which however significantly
degrades as R increases. This partly results from the matrix inversions involved in the update steps of [TRB17],
which remains relatively sensitive to the conditioning of the involved matrices, and consequently to the choice of
the regularization parameter of the augmented Lagrangian. The endmembers extracted from the dataset composed

of R = 3 endmembers are reported in Fig. 4.3.

¢ Abundance estimation: the synchronous PALM algorithm leads to the best abundance estimation results, even
in the absence of any additional regularization on the spatial distribution of the abundances. In this respect, we
can note that the performance of PALM and its asynchronous version are relatively similar, which consistently
outperform the other unmixing methods. The abundance maps recovered from the dataset composed of R = 3

endmembers are reported in Fig. 4.4 for illustration.

¢ Overall performance: the performance measures reported in Table 4.1 show that the proposed distributed algo-
rithm yields competitive estimation results, especially in terms of the required computational time when compared
to its synchronous counterpart. To be more explicit, the evolution of the objective as a function of the computation
time shows the interest of the allowed asynchronicity to speed up the unmixing task, as illustrated in Fig. 4.5 (the

computation time required by Algo. 8 is almost 4 times lower than the one of its synchronous counterpart).
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Table 4.1.: Simulation results on synthetic data without variability (GMSE(A)x 1073, RE x 107%).

Algorithm aSAM(M) (°) GMSE(A) RE aSAM(Y) (°) time (s)
VCA/FCLS  [NBO5b] 1.82 1.27 0.64 1.45 1
.. SISAL/FCLS  [Bio09] 1.55 0.94 0.62 1.43 2
| DSPLR [TRB17] 0.84 2.76 0.59 1.41 139
= DAVIS [Dav16] 1.44 0.92 0.63 1.45 10
SYNC 0.76 0.33 0.60 1.41 197
ASYNC 0.85 0.38 0.60 1.41 101
VCA/FCLS  [NBO5b] 2.55 1.08 1.11 1.64 1
o SISAL/FCLS  [Bio09] 1.65 0.50 0.91 1.53 2.5
| DSPLR [TRB17] 3.64 4.65 773 145 116
&= DAVIS [Dav16] 1.87 1.22 0.96 1.58 45.3
SYNC 0.63 0.28 0.78 145 462
ASYNC 1.09 0.59 0.81 1.48 46
VCA/FCLS  [NBO5b] 3.07 2.59 6.75 2.37 2
_, SISAL/FCLS  [Bio09] 2.17 1.77 5.11 2.14 4
| DSPLR [TRB17] 8.52 6.53 1.48 1.56 153
«= DAVIS [Dav16] 1.57 1.27 1.98 1.69 84
SYNC 0.87 0.40 1.50 1.57 762
ASYNC 0.88 0.54 1.52 1.58 170
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Figure 4.3.: Endmembers (red lines) recovered by the different methods from the synthetic dataset composed of R = 3
endmembers. The true endmembers are given in each figure in blue dotted lines for comparison.
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Figure 4.5.: Evolution of the objective function for the synthetic datasets, obtained for Algo. 8 and its synchronous version

until convergence (LMM).
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4.5.3. Results in presence of variability (PLMM)

In this preliminary experiment, only the VCA/FCLS, SYNC and ASYNC algorithms are compared to illustrate the limits

of the distributed unmixing strategy investigated in this chapter.
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Figure 4.6.: Evolution of the objective function for the synthetic datasets, obtained for Algo. 8 and its synchronous version
until convergence (PLMM).

Table 4.2.: Simulation results on synthetic data with variability (GMSE(A)x 1073, GMSE(dM)x 105, RE x107?).

Algorithm aSAM(M) (°) GMSE(A) GMSE(dM) RE aSAM(Y) (°) time (s)
» VCA/FCLS [NBO05b] 1.19 1.40 / 12.72 1.38 0.94
Il SYNC 1.19 0.80 0.55 5.00 1.26 308
& ASYNC 1.33 0.98 0.97 3.58 1.05 563
©© VCA/FCLS [NBO5b] 2.33 1.70 / 10.67 1.48 0.80
I SYNC 0.81 0.82 1.09 7.25 1.36 227
& ASYNC 1.12 1.22 1.26 6.20 1.24 650

Overall performance: the performance measures reported in Table 4.2 and the evolution of the objective function
(Fig. 4.6) show that the proposed distributed algorithm does not yield the expected acceleration in terms of computation
time. On the one hand, the SYNC and ASYNC algorithms converge to points whose cost can be significantly differ-
ent. On the other hand, in comparison with the situation described in the model 4.4, a larger amount of data has to be
communicated from a worker node to the master process. This observation, coupled with the increase in the amount of
operations performed by the master node to update all the parameters of interest in this context, partly explains the limits
of the distributed unmixing approach reported in Fig. 4.6. Parameter updates allowing different network configurations
(i.e., as proposed in [PR15; BHI16]) and implementations improvement (data distribution between the workers) should
allow a notable acceleration in comparison with the currently proposed method. Given these observations, only the results

associated with the model 4.4 are reported for the experiments with real data in the following paragraphs.
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4.6. Experiments with real data

In practice, distributed unmixing procedures are of a particular interest when considering the unmixing large HS images,
or of a sequence of HS images acquired by possibly different sensors at different time instants [HCJ16; YZP17]. The
unmixing of two large real HS images is first proposed, whereas the latter application to MTHS images motivates the last

example addressed in the present section.

4.6.1. Description of the datasets

Houston dataset (single HS image). The first dataset considered hereafter has been acquired over the campus of the
University of Houston, Texas, USA, in June 2012 [Deb+14]. The 152 x 108 scene of interest is composed of 144 bands
acquired in the wavelength range from 380 nm to 1050 nm. An equal number of pixels has been assigned to each of the

3 workers used in this experiment.

Cuprite dataset (single HS image). The second dataset considered in this work consists in a 190 x 250 subset extracted
from the extensively studied Cuprite dataset. In this case, reference abundance maps are available from the literature (see
for instance [NBO5b; MQO7]. After removing water-absorption and low SNR bands, 189 out of the 224 spectral bands
initially available were exploited in the subsequent unmixing procedure. The data have been unmixing with R = 10 based
on prior studies conducted on this dataset [NB05b; MQO7]. The data have been unmixing with R = 4 endmembers as in

chapter 1. The same number of pixels has been assigned to each of the 3 workers used in this experiment.

Mud lake dataset (MTHS images). We finally consider a real sequence of AVIRIS HS images acquired between 2014
and 2015 over the Mud Lake, located in the Lake Tahoe region (California, United States of America)’. The 100 x 100
scene of interest is in part composed of a lake and a nearby field. The images have been unmixed with R = 3 endmembers
based on results obtained from the prior studies conducted on these data in chapters 2 and 3, further confirmed by the the
results of the noise-whitened eigengap algorithm (NWEGA) [Hal+16b] reported in Table 4.3. After removing the water
absorption bands, 173 out of the 224 available spectral bands were finally exploited. The pixels corresponding to 2 out of

the 6 images have been assigned to each of the 3 available workers.

Table 4.3.: Endmember number R estimated by NWEGA [Hal+16b] on each image of the Mud lake dataset.
04/10/2014  06/02/2014  09/19/2014  11/17/2014  04/29/2015 10/13/2015
NWEGA 3 3 3 4 3 4

2The images from which the interest of interest is extracted are freely available from the online AVIRIS flight locator tool at http://aviris.
jpl.nasa.gov/alt_locator/.
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Figure 4.7.: Mud lake dataset used in the MTHS experiment, given with their respective acquisition date. The area de-
lineated in red in Fig. 4.7(e) highlights a region known to contain outliers (this observation results from the
analysis led on this dataset in chapter 2).

4.6.2. Results

Given the absence of ground truth for the different datasets (except the indications available in the literature for the Cuprite
scene [NB0O5b; MQO7]), the estimation results obtained by the proposed algorithms are compared to the other unmixing
procedures in terms of the RE and the aSAM (see Table 4.4) introduced in section 1.4 of the preliminary chapter. The
consistency of the estimated abundance maps, reported in Figs. 4.9 to 4.13, is also considered when analyzing the different

results.

Houston. The distributed algorithms yield abundance maps in agreement with the VCA/FCLS and SISAL algorithms
(see Fig. 4.10). We can note that the algorithms SYNC, ASYNC and DSPLR provide a more contrasted abundance map
for the concrete than VCA/FCLS, SISAL/FCLS and DAVIS.

Cuprite. Except for the DSPLR algorithm, whose scale indeterminacy leads to results somewhat harder to interpret for
this dataset, the results obtained by the different methods are relatively similar for the different datasets, be it in terms of

the estimated abundance maps or the recovered endmembers.

Mud lake. The algorithms SYNC, DAVIS [Dav16] and ASYNC lead to particularly convincing abundance maps, in the
sense that the abundances of the different materials (containing soil, water and vegetation) are consistently estimated (see
Figs.4.11t04.13). Att = 5, VCA/FCLS and SISAL, which have been applied individually to each image of the sequence,
appear to be particularly sensitive to the presence of outliers in the area delineated in red in Fig. 4.7(e) (see chapter 2).
This observation is further confirmed by the endmembers reported in Fig. 4.14, whose amplitude is significantly greater
than 1. This sensitivity notably results from the fact that each scene has been analyzed independently from the others in

this specific context (note that the results would have been worse if these methods were applied to all the images at once).

Global reconstruction performance. The performance measures reported for the different datasets in Table 4.4 confirm
the interest of the PALM algorithm and its asynchronous variant for unmixing applications. The asynchronous variant
can be observed to lead to a notable reduction of the computation time (see also Fig. 4.8), while allowing a reconstruction

performance similar to the classical PALM algorithm to be obtained.
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Figure 4.8.: Evolution of the objective function for the synthetic datasets, obtained for DAVIS [Dav16], Algo. 8 and its
synchronous version until convergence (model (4.4)).

Table 4.4.: Simulation results on real data (RE x10~%).

Algorithm RE  aSAM(Y) (°) time (s)
VCA/FCLS  [NBO5b]  0.51 0.96 2
» SISAL/FCLS [Bio09]  0.47 0.92 6
‘g DSPLR [TRB17] 1.25 1.42 20.2
& DAVIS [Davl6]  0.33 0.79 64.0
SYNC 0.15 0.55 1290
ASYNC 0.30 0.77 134
VCA/FCLS  [NBO5b] 225 331 0.1
< SISAL/FCLS [Bio09]  21.3 2.01 0.6
£ DSPLR [TRB17] 0.3 0.99 51.5
§ DAVIS [Davi6]  14.9 2.44 223
SYNC 0.21 1.14 84.6
ASYNC 0.24 1.17 24.9
VCA/FCLS  [NBO5b] 237 13.23 1
©  SISAL/FCLS  [Bio09]  1.65 3.09 2
=  DSPLR [TRB17] 1.93 10.9 99.6
E  DAVIS [Davi6] 17.61 6.27 58.9
= SYNC 5.05 5.88 70.4
ASYNC 5.13 5.88 35.0
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Figure 4.9.: Abundance maps recovered by the different methods (in each row) for the Cuprite dataset.
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Figure 4.10.: Abundance maps recovered by the different methods (in each row) for the Houston dataset.
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Figure 4.11.: Soil abundance map recovered by the different methods (in each row) at each time instant (given in column)
for the experiment on the Mud lake dataset [the different rows correspond to VCA/FCLS, SISAL/FCLS,
DSPLR [TRB17], ASYNC [Dav16], SYNC and ASYNC methods].
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Figure 4.12.: Water abundance map recovered by the different methods (in each row) at each time instant (given in column)
for the experiment on the Mud lake dataset [the different rows correspond to VCA/FCLS, SISAL/FCLS,
DSPLR [TRB17], ASYNC [Dav16], SYNC and ASYNC methods].
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VCA
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Figure 4.13.: Vegetation abundance map recovered by the different methods (in each row) at each time instant (given
in column) for the experiment on the Mud lake dataset [the different rows correspond to VCA/FCLS,
SISAL/FCLS, DSPLR [TRB17], ASYNC [Dav16], SYNC and ASYNC methods].
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Figure 4.14.: Endmembers (m,., red lines) recovered by the different methods from the real dataset depicted in Fig. 4.7.

500 1000 1500 2000
A {nm)
(2) Soil (DSPLR)

¥

) "
500 1000 1500 2000
A {nm)

(p) Soil (ASYNC)

06 [["“' '\.”ll 2 2
8 |l g 1 —
%0'4 [ H ol e e
:‘g |I ?: 1
€02 | ~ & '2
| / ~ 4
e o Y N
0 e — -3 v
500 1000 1500 2000 500 1000 1500 2000
. (nm) . (nm)
(b) Water (VCA) (c) Veg. (VCA)
3 "..-'ﬂ| f— ..I'_"-\-I
05 |[ |_. £ 15 | |
go3 | fo0s e
Eo.z i Ia E Py ;' g R
ki y -y
e a A 0.5 .
ol —— —" . sl . LN
500 1000 1500 2000 500 1000 1500 2000
. (nm) * {nm}
(e) Water (SISAL) (f) Veg. (SISAL)
ooz, 1 o6 [ |
g o0 g il =
@ ® 0.4 |
,E -0.02 ,E ,
& €02 | ~
-0.04 Ir %
i S e IR
500 1000 1500 2000 500 1000 1500 2000
4 (nm) * (nm)
(h) Water (DSPLR) (i) Veg. (DSPLR)
06 o
004, IIr.| I',f '.
W | L
8003 | 804 |
& l & |
& | goz | N\
001 | |'
; LY e " 2N
M. " N
O500 1000 1500 2000 %500 1000 1500 2000
 (nm) * (nm)
(k) Water (DAVIS) (1) Veg. (DAVIS)
0.04 || 08 //‘"'r".
i [|' e
30.03 8
& | 504 |
Booz | g .
g ., L oz | /%
: .'r J
0 -\.. 1 - pr—— 0 --.I\.' 1 L /,\\
500 1000 1500 2000 500 1000 1500 2000
. (nm) (nm)
(n) Water (SYNC) (0) Veg. (SYNC)
0.04 | I| 08 ' /‘"'ﬂ'.
WA [|I L9
80.03] | 8
& | 504 |
Booz | g .
& L oz | /%
0.01 |' ¥

0 W | WL |
500 1000 1500 2000
A (nm)

(q) Water (ASYNC)

122

f P
M

%500 1000 1500 2000
A {nm)

(r) Veg. (ASYNC)



Chapter 4. A partially asynchronous distributed unmixing algorithm

4.7. Conclusion and future work

This chapter was focused on the design of a partially asynchronous algorithm based on [Can+16; Cha+16; Dav16], which
proves particularly adapted to address large scale matrix factorization problems. Under relatively standard conditions, the
proposed approach inherits from the convergence guarantees studied in [Can+16], and from the traditional PALM algo-
rithm [BST13; CPR16] for its synchronous counterpart. Evaluated on a hyperspectral unmixing problem, the proposed
approach provided competitive estimation results in absence of variability, while significantly reducing the computation
time to reach convergence.

Future research perspectives include the extension to different network topology as can be used in [PR15; BHI16], or

the use of variable metrics as described in [RCP14; CPR14; CPR16; FGP15].

4.8. Conclusion (in French)

Ce chapitre a permis d’étudier un algorithme de démélange partiellement asynchrone basé sur de récentes contributions
en analyse non-convexe [Can+16; Cha+16; Dav16], particulierement adapté a la résolution de problemes de factorisation
matricielle en grande dimension. Sous un ensemble d’hypotheses standards, 1’approche proposée hérite des garanties de
convergences de I’algorithme proposé par [Can+16], et de celles de 1’algorithme PALM [BST13; CPR16] pour sa version
synchrone. Evalué dans le cadre du démélange hyperspectral, 1’algorithme asynchrone présente des résultats d’estimation
satisfaisants en I’absence de variabilité par rapport a une version synchrone du méme algorithme, tout en réduisant de
facon significative le temps de calcul nécessaire pour parvenir a convergence.

L’ajout de métriques variables, telles que décrites dans [RCP14; CPR14; CPR16; FGP15], ou I'utilisation d’une
topologie différente du réseau de calcul [BHI16; PR15] comptent parmi les perspectives de recherche qu’il conviendrait

d’approfondir.
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Context

Acquired in hundreds of contiguous spectral bands, hyperspectral images present a comparatively more limited spatial
resolution in specific remote sensing applications. In this case, the observations are represented as the mixture of several
signatures corresponding to distinct materials, which have to be estimated. Though each observed material is traditionally
assumed to be characterized by a single spectrum, varying acquisition conditions can induce a notable variability in the
extracted signatures, both locally and temporally (depending on the acquisition date). Unless specifically accounted for,
this phenomenon can result in severe estimation errors, particularly in the case of unsupervised unmixing procedures. An
additional computational hurdle arises from the possibly significant size of the data, especially when analyzing multi-
temporal hyperspectral images.

To address these issues, the present manuscript has first investigated a new explicit mixture model to represent spatial
endmember variability, later extended to account for temporal variability. Based on this model, different algorithmic
approaches have been considered to efficiently solve the resulting high dimensional estimation problems, involving single
or multitemporal hyperspectral images. The study conducted in this manuscript has allowed the following conclusions to

be drawn.

Conclusions

Chapter 1 has introduced a new explicit mixture model inspired from the total least squares problem, referred to as
perturbed linear mixture model (PLMM), to account for spatial endmember variability within a single hyperspectral
(HS) image. The parameters of the proposed model have been estimated by a first algorithm based on the ADMM
method, and a second algorithm based on a proximal alternating linearized minimization (PALM) [BST13; CPR16]. The
results obtained on real data have notably exemplified the relevance of the proposed model to handle scenes of moderate
size, a priori affected by an appreciable level of variability. In practice, the proposed approach has provided a relevant
source of information on the spatial distribution of the variability within the scene under study. In comparison to the
ELMM described in [Dru+16, (4)], the PLMM has additionally allowed information on the variability level affecting each
spectral band to be captured. Determining which spectral bands are affected by spectral variability can be of interest to

the practitioner, e.g., to characterize the source of the observed variability, or to determine whether spectral bands with a
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low SNR have not been removed prior to the unmixing process.

Chapter 2 has investigated a robust variant of the model considered in chapter 1 to represent temporal endmember
variability and abrupt spectral changes commonly observed in multitemporal HS (MTHS) images. Starting from the
results obtained on a reference HS image, the observations are likely to be composed of the same materials, except in a
few pixels of the time series where new materials may have appeared. In this context, the proposed approach consists in
interpreting smooth spectral variations in terms of endmember variability, while allowing the influence of abrupt spectral
changes induced by outliers (or new endmembers) to be mitigated. In practice, a variant of the PLMM has allowed
information redundancy to be exploited, while reducing the impact of significant spectral changes induced by outliers. A
Markov chain Monte-Carlo method has been proposed to precisely assess the performance of the model on synthetic and
real data, yielding encouraging results in the latter case. More precisely, the PLMM has provided a fine characterization of
the evolution of the materials observed in the reference image, and has captured outliers in pixels known to be corrupted by
a sensor defect. Moreover, the joint analysis of several HS images has been shown to significantly improve the unmixing

results when compared to methods analyzing the images independently.

An online unmixing algorithm has been considered in chapter 3 to address large datasets which cannot be loaded in
memory at once. In contrast with the approach described in the previous paragraph, the data are progressively incorporated
into the unmixing process, thus reducing the memory requirements. This type of approach is particularly relevant to
analyze MTHS images, as those considered in chapter 2. Experiments conducted on synthetic data have illustrated the
competitiveness of the proposed online unmixing algorithm with respect to two reference batch algorithms (i.e., when
the data can be exploited by a batch or an online algorithm). In agreement with the conclusions drawn in chapter 2,
the experiments conducted on both synthetic and real data have shown the relevance of exploiting several images to
improve the unmixing performance. In addition, the energy of the instantaneous endmember variability has provided a
complementary information to identify at which time instant a given endmember has deviated the most from its average

spectral signature.

In order to provide a complementary approach to the study conducted in chapter 3, chapter 4 has illustrated the in-
terest of the asynchronicity allowed by recent distributed algorithms to decrease the computation time required to reach
convergence. The relevance of asynchronicity for unmixing applications is evaluated in comparison with a synchronous
distributed version of the same algorithm. Evaluated on the linear mixture model (LMM), the asynchronous unmixing
procedure has led to a notable acceleration, at the price of a slightly degraded precision in the parameter estimation.
The current limitations of the distributed strategy used in this work has been illustrated on synthetic data when using the

PLMM. Finally, several experiments conducted on real datasets have illustrated the performance of this approach.

Perspectives and future work

The present study has raised several research perspectives summarized in the following lines.
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Variability modeling

From a modeling point of view, the PLMM considered in chapter 1 does not address the semantic ambiguity resulting
from the physical nature of the observed variability. Whereas the ELMM introduced in [Dru+16] has a clear interpreta-
tion in terms of illumination variations, the PLMM does not lead to a clear distinction between the potential sources of
variability, e.g., illuminations variations or non-linearities. As such, the design of physically inspired algorithms, which
possibly preserve a distinction between the different sources of variability, can be further investigated to capture as much
information as possible with respect to the observed materials.

From a different perspective, the use of different priors on the variability structure may reduce the indeterminacy
inherent to the model proposed in chapter 1, i.e., between the endmembers and the captured variability. In practice,
endmember variability can be expected to affect only a few pixels within the image under study, e.g., when resulting from

non-linearities. In this case, a spatial sparsity-promoting prior defined as

T(dM) = Z’Yr,n”dmr,n”% Yron > 0

n

can be easily addressed by the PALM algorithm described in section 1.4.2. The only modification appears in the proximal
operator involved in the update equation 1.23, which can be easily computed by using (1.24) and [CP11], [Yul3, Theorem
4]. The problem then consists in designing appropriate strategies to automatically select the value of the regularization
parameters ;. », Which is currently under study. A complementary study can be conducted on real data to assess the
relevance of applying sparsity promoting priors to endmember variability in a transformed domain [Rap+14], e.g., by

defining

R
Y(AM) => [A© ([dm,;,...,dm, y]®")[1, A=Ork, ,®cRN 0 =1Ik

r=1

where ® is an appropriate transform domain, and A denote the associated regularization parameters. On the other hand,
the concept of morphological diversity [Bob+07] would deserve to be explored to further discriminate the contribution of

endmember variability from the signal of interest.

Computational aspects

Hyperparameter selection. The unmixing problems formulated in chapters 1 and 3 depend on several hyperparameters
whose value has been chosen by testing several values on a predefined grid. In practice, the use of automatic estimation
strategies within the algorithms developed in this manuscript remains to be studied. For instance, the applicability of
approaches based on the Stein’s unbiased risk estimate [Ste81; Del+14] can be first explored. Alternatively, the methods
developed in [PBF15; Hal+17] assign appropriate priors to the hyperparameters (typically gamma priors), which are
then estimated along the other parameters of interest. The resulting non-convex problem is then solved by an alternating

optimization algorithm, such as a block coordinate descent [Wril5]. Another possibility may consist in adopting a two
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step strategy as proposed in [Fre+17].

Computational improvements.

* Variable metrics [CPR14; CPR16; FGP15] can be used to extend the algorithms proposed in chapters 1 and 4. This
extension is expected to allow a more efficient estimation of the parameters (in terms of convergence speed) when
compared to the standard PALM [BST13] used in this manuscript (see [RCP14] for instance). In particular, this
acceleration may prove beneficial to mitigate the limitations observed with the asynchronous distributed unmixing

algorithm studied in chapter 4.

* Relaxations to the Ising field used in chapter 2 could be contemplated to estimate the parameters of the Bayesian
model developed in section (2.4). This modification would notably allow the development of an online unmixing
algorithm as the one discussed in chapter 3, thus reducing the memory requirements when compared to the initial
formulation of the problem. In this perspective, replacing the discrete labels by continuous latent variables as

proposed in [MSBO03; BCK14; BF16] can be investigated to describe the outliers’ support.

* Complementary simulations on larger datasets (possibly running on several machines) would allow the interest of
the distributed approach considered in chapter 4 to be better characterized in the context of hyperspectral unmixing.
In particular, a finer analysis of the computational bottlenecks arising in the context of the PLMM is needed to
overcome the algorithmic limitations currently observed in chapter 4. This study will be essential to ensure the
characterization of spatio-temporal variability within the numerous multi-temporal images that will be regularly
acquired in the coming years (by the European Space agency' for instance). In addition, several distributed primal-
dual algorithms from the literature [PR15; BHI16] can be compared to assess the interest of several distributed

optimization architectures for remote sensing applications.

Application-oriented developments

The model introduced in chaper 1 can be used in different contexts, e.g., in medical imagery [Cav+17]. More precisely,
the work presented in [Cav+17] for positron emission tomography (PET) resorts to a PLMM-based unmixing approach to
model the time-activity curves associated with the concentration evolution of a radiotracer in the body. Besides, the use
of a spatially varying dictionary to analyze astronomical data [Rap+14; CBR15; CB17] might provide a complementary
information with respect to the spatial evolution of the sources of interest, which have to be estimated.

In addition, the relevance of the approaches proposed in chapters 2 and 3 could be evaluated in the context of change
detection problems involving images acquired with possibly different imaging modalities [Pre+16; YZP17; Fer+17]. For
this application, the resulting unmixing problem can be formulated as a joint fusion and unmixing problem [Wei+16],

where the LMM underpinning the approach described in [Wei+16] is replaced by the PLMM.

"http://www.esa.int/Our_Activities/Observing_the_Earth/Proba-1/Going_hyperspectral
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Contexte

Acquises dans plusieurs centaines de bandes spectrales contigué€s avec une résolution spectrale fine, les images hyper-
spectrales présentent une résolution spatiale moins fine pour certaines applications en télédétection. Dans ce cas, les
acquisitions sont représentées par un mélange de plusieurs signatures caractéristiques des différents matériaux observés
(spectres purs) qu’il convient d’estimer. Bien qu’il soit d’usage de supposer qu’une unique signature permet de carac-
tériser un matériau donné, la variation des conditions d’acquisition peut induire une variabilité notable des signatures
extraites. A défaut d’étre prise en compte, cette source de variabilité peut induire d’importantes erreurs d’estimation, no-
tamment dans le cas de procédures de démélange non-supervisées. A cette problématique viennent s’ajouter différentes
limitations calculatoires liées a la dimension des données a exploiter, notamment dans le cas d’images hyperspectrales
multitemporelles.

Pour aborder ces deux problématiques, un nouveau modele de mélange a tout d’abord été introduit pour représenter
explicitement la variabilité spatiale et temporelle des acquisitions. Différentes approches algorithmiques ont ensuite
été proposées pour aborder les problemes d’estimation résultant, dans le cas d’images hyperspectrales mono- et multi-

temporelles. L’étude présentée dans ce manuscrit, et résumée ci-apres, a permis de formuler les conclusions suivantes.

Conclusions

Le premier chapitre a permis d’introduire un modele de mélange visant a représenter explicitement la variabilité spa-
tiale des spectres purs au sein d’une image hyperspectrale. Inspiré du probleme des moindres carrés totaux [GL80], les
parametres de ce modele ont été estimés a 1’aide d’un premier algorithme basé sur 1’algorithme ADMM, et d’un second
basé sur I’algorithme PALM. Les résultats obtenus sur données réelles ont illustré la pertinence de I’approche proposée
pour rendre compte de la variabilité observée dans des images de taille modérée, affectées par un niveau appréciable de
variabilité. Par ailleurs, cette approche a permis de cartographier la distribution spatiale de la variabilité au sein de la
scene, ainsi que d’identifier les bandes spectrales principalement affectées par la variabilité. Ces informations peuvent
permettre de caractériser les causes de la variabilité spectrale observée, et de déterminer si certaines bandes a faible rapport
signal-sur-bruit n’ont pas été exclues des données traitées.

Le deuxieéme chapitre a étudié une variante du modele considéré au chapitre 1 pour représenter la variabilité temporelle
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des spectres purs dans une série d’images hyperspectrales. Partant d’une scéne de référence, les autres images de la série
sont consituées en majeure partie des mémes matériaux, hormis en un nombre limité de pixels en lesquels des nouveaux
matériaux peuvent étre observés. Dans ce contexte, I’approche proposée consiste a interpréter les variations modérées
des spectres purs en termes de variabilité, et a considérer les changements abrupts comme des données aberrantes. Un
algorithme de Monte-Carlo par chaine de Markov a permis d’estimer les parametres du modele, qui a conduit a des
résultats encourageants sur données réelles. De fait, ce modele a permis d’obtenir une caractérisation relativement fine de
I’évolution des matériaux présents dans la scene de référence, tout en traduisant la présence de données aberrantes pour
des pixels en lesquels un défaut du capteur a été identifié a priori. Ce chapitre a notamment attesté la pertinence d’une
analyse conjointe de plusieurs images hyperspectrales pour améliorer les résultats du démélange, comparée a une analyse

individuelle de chacune des images disponibles.

Une procédure de démélange en ligne a été étudiée au chapitre 3 dans la perspective de traiter des problemes de
grande dimension, pour lesquels I’ensemble des données ne peut étre simultanément chargé en mémoire. Contrairement
a I’approche considérée au chapitre précédent, les données sont progressivement intégrées au processus de démélange, ce
qui permet de réduire le colit mémoire engendré. Ce type d’approche s’avere particulierement pertinent pour 1’analyse
d’images hyperspectrales multitemporelles (voir chapitre 2). Des simulations conduites sur données synthétiques et réelles
ont permis d’illustrer I’intérét d’une approche en ligne par rapport a un algorithme traitant I’ensemble des données simul-
tanément (pour des données pouvant étre traitées indifféremment par I’une ou 1’autre des deux approches). Par ailleurs,
les résultats sur données réelles ont montré 1’intérét de considérer plusieurs images pour le démélange, en accord avec les

conclusions du chapitre 2.

Enfin, le chapitre 4 a étudié la mise en ceuvre d’une procédure de démélange asynchrone, apportant un point de vue
complémentaire sur le probleme traité au chapitre 3. En particulier, le chapitre 4 a illustré la contribution apportée
par 1’asynchronie autorisée par de récents algorithmes distribués, dans le but de réduire le temps de calcul requis pour
parvenir a convergence. Comparé a une version synchrone du méme algorithme pour un probleme de démélange linéaire,
I’approche considérée a permis d’obtenir une réduction notable du temps de calcul sur données synthétiques et réelles, au
prix du’une légere dégradation des performances d’estimation. Les limites de cet algorithme ont par ailleurs été mises en
évidence sur données synthétiques lors de I’estimation des parametres du modele de mélange en présence de variabiltié

spatiale.

Perspectives de recherche

L’étude menée dans ce manuscrit a conduit a proposer plusieurs perspectives de recherche, résumées dans les paragraphes

suivants.
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Représentation de la variabilité

En ce qui concerne 1la modélisation de la variabilité, le modele introduit au chapire 1 ne permet pas de résoudre 1’ambiguité
sémantique qui persiste quant a la nature de la variabilité capturée par ce modele. Tandis que le modele linéaire étendu pro-
posé dans [Dru+16] présente une interprétation explicite en termes de variation des conditions d’illumination, le modele
introduit au premier chapitre ne permet pas de préserver une nette distinction entre différentes sources de variabilité (e.g.,
conditions d’illumination et non-linéarités). De ce point de vue, d’autres modeles explicites fondés sur des considérations
physiques restent a proposer, afin de caractériser au mieux les matériaux observés.

Dans une toute autre perspective, 1’utilisation d’informations a priori complémentaires quant a la structure de la vari-
abilité peuvent permettre de pallier I’ambiguité inhérente au modele de mélange perturbé du premier chapitre. De fait, la
variabilité spatiale n’affecte qu’un nombre de pixels a priori restreint lorsqu’elle résulte de non-linéarités. Ces considéra-

tions peuvent conduire a utiliser une pénalité spatiale définie par

T(dM) = Z’Yr7n||dmr,n||27 Trn >0

n

facilement prise en compte dans le cadre de 1’algorithme PALM décrit dans la section 1.4.2. La seule modification
apportée concerne 1’opérateur proximal impliqué dans I’équation 1.23, qui peut étre calculé facilement a partir de (1.24)
et [CP11], [Yul3, Theorem 4]. La problématique d’intérét concerne la définition d’une procédure automatique de choix
des pondérations -, ,, ce qui est actuellement a I’étude. De plus, une étude complémentaire peut étre menée afin d’évaluer

la pertinence d’une pénalité spatiale dans un domaine transformé [Rap+14], obtenue par exemple en considérant

R
Y(AM) => [A© ([dm,,,...,dm, y]® )1, A=Ork, @RV 0 =1k

r=1

ou ® constitue un domaine transformé approprié. Par ailleurs, il conviendrait d’étudier le concept de diversité mor-

phologique [Bob+07] dans la perspective de mieux discriminer les sources de variabilité spectrale.

Aspects calculatoires

Sélection des hyperparametres. Les problemes de démélange formulés aux chapitres 1 et 3 font intervenir plusieurs
hyperparametres, dont la valeur a été fixée en testant plusieurs valeurs prises sur une grille prédéfinie. La mise en place
de procédures de choix automatisées de ces parametres reste a étudier dans le cadre des algorithmes présentés jusqu’ici.
Une approche fondée sur [Ste81; Del+14] pourrait notamment étre envisagée. Une alternative peut également consister
a assigner une information a priori au hyperparametres, puis a les estimer conjointement avec les parametres d’intéréts
a la maniere de [PBF15; Hal+17]. Une autre possibilité serait d’adopter une procédure en deux étapes, telle que celle

proposée par les auteurs de [Fre+17].

Améliorations et extensions des algorithmes proposés.
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* L’ajout de métriques variables, telles que proposées dans [RCP14; CPR14; CPR16; FGP15] devraient permettre
une estimation plus efficace des parametres du modele introduit au chapitre 1, notamment en termes du nombre
d’itérations nécessaires pour parvenir a convergence. En particulier, une telle accélération pourrait permettre de

corriger en partie les limitations de 1’algorithme asynchrone proposé au chapitre 4.

* Une relaxation du modele de champ d’Ising considéré au chapitre 2 pourrait étre envisagée dans le but de mettre en
ceuvre une procédure de démélange en ligne similaire a celle du chapitre 3. Suivant I’exemple de [MSB03; BCK14;
BF16], une premiere approche pourrait consister a remplacer les variables discretes du modele hiérachiques par des

variables continues afin de décrire le support des données aberrantes.

* Des simulations complémentaires, conduites sur de plus grands jeux de données (notamment sur plusieurs machines
distantes), devraient permettre de mieux caractériser les avantages et limites de la procédure de démélange distribuée
étudiée au chapitre 4. En particulier, une analyse détaillée du coiit calculatoire engendré par chacune des étapes
de I’algorithme (lors de son implantation) s’avere essentiel dans la perspective de traiter les nombreuses images
hyperpectrales qui seront régulierement acquises dans les prochaines années (notamment par 1’ Agence spatiale
européenne'). Enfin, différents algorithmes distribués primaux-duaux de la littérature [PR15; BHI16] pourront
&tre comparés afin évaluer ’intérét de différentes architectures d’optimisation distribuées pour des problemes de

démélange.

Applications pratiques

Le modele du chapitre 1 peut présenter un intérét dans le cadre d’autres applications, par exemple dans le cadre de
la tomographie par émission de positron (TEP) en imagerie médicale [Cav+17]. En particulier, 1’étude présentée dans
[Cav+17] s’appuie sur un modele de mélange inspiré de celui introduit dans le premier chapitre pour représenter les
courbes d’activité associées a 1’évolution de la concentration de radio-traceurs dans le corps. Par ailleurs, 1’utilisation d’un
modele de variabilité spatiale devrait permettre d’apporter une infromation complémentaire quant aux sources étudiées en
astrophysique ([Rap+14; CBR15; CB17]).

De plus, I’approche proposée au chapitre 2 pourrait &tre évaluée dans le contexte d’un probleme de détection de change-
ment, impliquant des images issues de différentes modalités d’acquisition [Pre+16; YZP17; Fer+17]. Dans ce dernier cas,
le probleme pourrait étre formulé sous la forme d’un probléme conjoint de démélange et de fusion de données [Wei+16]

basé sur le modele considéré dans le premier chapitre.

"http://www.esa.int/Our_Activities/Observing_the_Earth/Proba-1/Going_hyperspectral
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APPENDIX AI

Appendix to chapter 1

A.1. Constraints and penalization terms

A.1.1. Abundance penalization: spatial smoothness

The abundance smoothness is expressed in matrix form as

1
o(A) = 5 |AH|? (A1)

where H denotes the matrix computing the differences between the abundances of a given pixel and the respective abun-

dances of its 4 neighbors

H=|H_ H_, H;H | RV
For h =1,..., H, we introduce
0 -1 0 0 1 0 0
0 1 -1 1
H), = 0| ERVWY, H,=| o e RWW,
1 -1 1 0
0 0 1 0 0 -1 0
Hence
H. =Diag(H,,...,Hy) and H_, = Diag(Hy,...,Hy).

In addition

H; = |:ON,W;Hu:| and H = [HdaON,W]
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with
1 0 0
1%
H, = ! sv cRVXN-W) 1~ H,.
0o - -1
N-W
0 0 1

The only terms in ®(A) related to a,, are

N 3
(Z h n+kN> |an||2 <Z Z n n+thi,n+kNaZ'T> a,. (A.2)

i=1 k=0
i#n

Cn

T
rn

More explicitly, for a 4-neighborhood, the only terms in ®(A) related to a,, can be expressed as

1
dan) =5 ([ +W <nf+[n - W =0]+ [w# 0]+ [w#1]) (W[5
o ; (A.3)
-2 ([n + W <nlagtw + [n—W > 0la,—w + [w # 0lay+1 + [w # l]an_l) a,,
where [Z?] corresponds to Iverson brackets of the logical expression &2, and
n=hW+w, he{0,...,H}, we{0,...,W —1}. (A4)

A.1.2. Endmember penalization

Distance between the endmembers and reference signatures. The distance between the endmembers and the avail-

able reference signatures is

L
1 5 1 ~ . 2
T(M) = 5 M~ Moz = §Z|\me—mz,o||2~ (A.5)
=1

As a consequence, the penalty for the /th band is
~ ]. ~ ~ 2
d(me) = 5 flme —myol;- (A.6)

Mutual distance between the endmembers. The distance between the different endmembers can be expressed as

follows
R
=52

i=1

u 18 1
2 2 2
(Xt ) = 3 )
r=1

l\D\F—‘

J#i
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with

G = {Gl,...,GR} € REXF

andforr=1,... R

G, =-Ir+ Crl—lr;{

where ¢, denotes the rth vector in the canonical basis of R. Hence
— 1, . 9
P(my) = 3 [lm,G|5 . (A.8)

Volume penalization function. The volume penalization is expressed in terms of the projected endmembers E, hence
the need to find a condition equivalent to the positivity of both M and M + dM,, (see [Dob+09]). We will first analyze
the expression of the volume penalization with respect to €y, and then give a condition on E ensuring the positivity of M
(respectively M + dM,, when endmember variability is considered). We first observe that the determinant of a matrix

X € REXE can be developed along its ith row, yielding

R

det(X) = Y _(=1)"ay; det(Xy,\;) = Kifi, with f; = [(—1)" det(Xy;\5)] _, € R
J
Consequently, fort =1,..., K
E ~
det =¢e;f;
1
Using the previous developments
1
€;) = éif)”. A.
V(&) = g e &) (A9)
Positivity constraints and volume penalization. Using the fact that
M = UE +ylp, with UTU =1
one has
Mer = Y ugitje + Ge- (A.10)
J

The positivity constraints (1.3) on my,. can then be expressed as

Yo+ D ik ejejr + bey

Uek

€kr = — ) bﬂ,'r' = min{oa mgn{dmf,r,n}}-

Introducing the two sets of integers

U;j = {ljugr > 0}, U, = {l|uge <0}
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the previous equation implies that e, € [ef. ., e}, ], with

Yo+ D o Ugi€ir + by
€., = max v 2k UiCir T be (A.11)
ceu;t Ugk
Uy + o Upi€ir + by
& = min| - 2 eiyr +ber ) (A.12)
eeu; Ugk
A.1.3. Variability penalization
The variability energy penalty introduced in (1.12) is given by
1 2 1 2
T (dM) = 3 [dM|z = v (dM,,) = 3 [dM,, || - (A.13)

A.2. ADMM: general principle

The ADMM is a technique combining the benefits of augmented Lagrangian and dual decomposition methods to solve
constrained optimization problems [Boy+10]. More precisely, the method consists of solving the original optimization
problem by successively minimizing the cost function of interest with respect to each variable. The following elements
(extracted from [Boy+10]) recall a general formulation of the problem. Given f : R? — R*, g € R™ — R*, A € R"*?P

and B € R™*™, consider the general optimization problem
Izcuzn{f(x) +9(z) | Ax+ Bz = c}. (A.14)
The scaled augmented Lagrangian associated with this problem can be written
£, (x.2,u) = f(x) + g(z) + £]|Ax + Bz — c + ul}

where p > 0. Denote as x9+1, 297! and u?*! the primal variables and the dual variable at iteration ¢ + 1 of the algorithm

xat1

m

argmin £, (x,z7%,u?)
X
2 e argminﬁp(xq+1,z7uq)
z

witl = u?4 Ax? 4Bz —c.

The ADMM consists in successively minimizing £, with respect to x,z and u. A classical stopping criterion involves

the primal and dual residuals at iteration k£ + 1 (see [Boy+10, p. 19]): the procedure is iterated until

[r?ly <™ and [|s9)ly < ™ (A.15)
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where the primal and dual residuals at iteration g + 1 are respectively given by

rit = Axit L Bzt _ ¢ (A.16)
sitl = p)ATB (zq+1 _ Zq) (A.17)

and
e = /pe™ + e max{ || Ax |2, [|B2 |2, lel]> } (A.18)
gdual — | fpcabs 4 ErelpHATuqHz. (A.19)

Finally, the parameter p can be adjusted using the rule described in [Boy+10, p. 20]

gt e > st
pit = P/t if [|s9HL |y > pf|ra |, (A.20)

p? otherwise.

Note that this parameter adjustment does not alter the ADMM convergence as long as it is performed finitely many times.

A.3. Solutions to the ADMM optimization sub-problems

In the following paragraphs, the index k& denotes the current iteration of the BCD algorithm (outer loop), whereas q refers

to the iteration index of the ADMM algorithm considered (inner loops).

A.3.1. Abundance estimation

Using (A.3), the scaled augmented Lagrangian (1.14) becomes

(A)
1 .
£y (AP ) = Ly — (M4 aMEa 13 + 2, - wiA) A3

+ M(1ka, — 1)+ ad(a,) + L{0g} (w,(lA))

Thus, introducing

-1

B! = |(ME)™™E + (ack + uP)1g| , MF =MF +dMk (A21)
ul = My, +ark + u(® (W@ - AP (A.22)

forn =1,..., N, and using the fact that

(A.23)
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leads to

17 (B9)~1u? — 1
a(k,q+1) — (B%)fl <u<7]L _ R( n)q u, 1R> (A.24)
R

n

The update of the splitting variable is finally given by

n n

wA@+D) — max (agf’ﬁl) +wi@) OR> (A.25)

where the max must be understood as a term-wise operator. In the absence of any penalization, the solution is obtained

by taking oo = 0 in the previous equations.

A.3.2. Endmember estimation

Distance between the endmembers and reference spectral signatures. Using (A.6), the scaled augmented Lagrangian

(1.16) is
BV Y N AT w2 s e s
e | O R e |
B m ol ~ (@
§||m£ my |, L{.tc(}(we )
Thus
. ~k ~(M -1
ﬁlye,q-l—l) _ [(372 75£> (Ak+1)T+6ﬁl£70+ﬂgM) (WEM)(Q)—AE )(q))} [AkH(AkH)TJr (uéM) Jrﬂ)IR} (A.26)
and
~(M
GG _ (Iﬁgc,qﬂ) Y ><Q>’E[>. (A27)

In the absence of any endmember penalization, the solution is obtained by making 5 = 0 in the previous equation.

Mutual distance between the endmembers. Using (A.8), the scaled augmented Lagrangian (1.16) is

o 0D, L w2 ™ML ~v ||

£, (g, %, X ):gHye*meA’““*ﬁgHﬁ“‘T m, — W™ 4 X, 2
B~ 2 (M
+§||meG||2—|—L{ta}(wé ).

Thus
~ (k, ~ K ~ T M)(q) . -1
iy [(w =8 ) (AT = M (M0 X )] (A AT 4 5GGT +pMTa|  (A28)

with WM given by (A.27).
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Volume penalization. Since the penalty is expressed with respect to the projected endmembers E, the optimization

sub-problems related to the endmembers have to be re-written accordingly. We first note that

IY - MA - A = |[Y - (UE - y1r)A - A}
— |UEA|? —2(UEA,Y + §1zA — A) + |[Y + y1zA — A|?

= |EA|; - 2(E, UT(Y + y1rA — A)AT) + |Y + y1gA — A7, (since UTU = I).

S

Since (S, E) = ZiKzl(svi,éﬁ the resulting sub-problems for i = 1,. .., K are given by

~ 1. e~ ~
e = arg;ﬂn {2 ||eiAk+1||§ — (k&) + 2(R‘i1)!2(eifi)2, s.t. e € [€; eZT] forr € {1,... ,R}}
where €; denotes the ith row of E. Introducing the splitting variables {TVEE) such that e; = VTIEE) fori =1,..., K, the

scaled augmented Lagrangian is

(T) 2
~ ® ®\ 1 .. 2k~ B N L | UG o B ¢ )
L 1 (ei,ng),)\i ) =_[[&AF] — &% &) + = (&f)* + T |lg, — W+
=~ (E) =~ (E)
ey (W) +epgn (W)
The update of the primal variable €; is consequently given by
~(k, . IO B -1
e = [P0 5P [aar e e P a0
Finally, the splitting variable is given forr = 1,..., R by
~(E
FEEH {max {Aégk,tﬁl) Y )(q)@}ﬁf}- (A31)

A.3.3. Variability estimation

Using (A.13), the scaled augmented Lagrangian (1.18) is

1
£, gamn) (M, W, AT = Cly, — (M + dM)ag |3 + y0(dMa) + 1o -aaey (W)

(dM)

n MnQ HdMn ~ WM +A£ldM)H

2
o
Hence

QM |y, = M) @b+ 8N (W0 - A ) [kl i )1

(A.32)
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and

WSLdM)(q) — max(dM&k’l’q“) + A,(ldM)(q), ka).

A.4. Proof of (1.24)

The following proposition (essentially adapted from [BST13]) can be easily adapted to the matrix functions considered in

(1.24).

Proposition 4. Lera € R™ and € € R, Then

PIOX, |\ hisa (y) = prox, ... (a +y— a]+). (A.33)

Proof. We first note that

PYOX, <oy +ipray (y)=a+ PrOX, ) tap<ey+ig-0) (y o a) (A.34)

Denoting u = y — a, the problem of interest then reduces to the computation of prox u). To this end,

t{ll-+allg<e} T{-z0} (

we adopt the notations and the proof introduced in [BST13, Proposition 4]. Given x € R", let us consider

)2 =" a2, x[2 =) a? (A.35)

€Lt i€l
where
It ={ie{l,...,n}:2; 20}, I~ ={ie{l,...,n}:a; <0} (A.36)

Note that (see [BST13])

@ 1[5 = [Ix[1% + lI=]12

(i) fx —ulld + [x]2 =[x = [u]+[13;

(i) |x]|2 =0& 2, =0Vie I .
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With the above notations, the preceding remarks lead to

_ . 1 2
X € argmin < | 4a, <} (X) + §Hx —ull5, x>0

. 1 . .
= arg min {L{| tala<e} (X) + §(||x —uli+x—ul?), x= 0} (according to (i))
. 1
= arg min {L{| +a||2<s} x) + 3 (”X — 11”3r + HXHQ, -2 Z xiui), X = 0} (A.37)
* €T~
1
:argmin{L{| +a||2<s} x) + §||X—UH%F, r;,=0vieZI , x~»r 0} (A.38)
. 1 2 2 .
= argmin q t{||.4al,<e} (X) + §||X —ulZ, |x[[Z =0 (according to (iii))
. 1 2 2
= argmin § () raj,<e} (%) + 5 (Ix —ulf +[Ix]2)

) 1
—arganin {1 satocar () + g~ ol

= prox, . ([u]+) (according to (i) (A.39)

where the equality between (A.37) and (A.38) results from the following considerations. We first note that any solution
to the problem (A.38) is a solution to (A.37). The converse implication follows by a contradiction argument. Let X be a

solution to (A.37), but not to (A.38). Then,

VX0 tral<ey®) 3 (IR =R+ IRIZ 4 Lier Bin) < tgiragazey (00 + 5 (Il — w3+ X2 + Tiez- @)

x=0: (VieZ, z;=0), L{H~+a\|2§6}()~() + %Hi — u||%r < L{H.+a‘|2§5}(x) + %Hf( — u||%r
(A.40)

In particular, (A.40) implies

1 N 1 _
itz 00+ 5 (K=l + IR + 3 Zi00) < opatazey (09 + 5 1% — uld < % +all2 + o l1% — 2
i€l

=||x—ull3

leading to the following contradiction

I — ull? < % — ul.

To conclude, we note that

prox = prox x+a)—a (A.41)

t{ll-+allz<e} (X) L{II-H2SE}(

and combine (A.34), (A.39) and (A.41) to obtain

PYOX, () <oy +ig ma) (y) = POX, 1 jp<ey (a +ly - a]+).
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Remark A.1. Note that [Yul3, Theorem 4] was not directly applicable in this context, since t{.»-5} is not positively

homogeneous (up to a constant term).
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B.1. Details on the values chosen in Table 2.2

The initial values chosen for the parameters in Table 2.2 are based on the following considerations.

(a) The initial noise variance o7 reflects a typical order of magnitude of the SNR (HS images are typically known to

have an SNR between 30 and 35 dB).

(b) The initial outlier variance s? has been taken an order of magnitude greater than o to ensure outlier contributions

that can be captured by the algorithm.

(c) The initial variability variance ¢?w which controls the temporal smoothness of the variability term, can be a priori

chosen of the same order of magnitude as s7.

(d) The granularity parameters [5; were initially selected to reflect the practitioner’s prior knowledge on the smoothness
of the outlier spatial support. A value between 1 and 2 (i.e., above the phase-transition temperature of the Ising
MREF [Per+14]) is particularly appropriate for natural scenes, in which the observed materials exhibit a relatively

smooth spatial distribution.
Similarly, the values of the fixed parameters given in Table 2.2 are selected as follows.

(a) 5%, which controls the confidence given to the abundance smoothness prior, has been fixed by cross-validation (i.e.,

based on the estimation results obtained by multiple runs for different values);

(b) since no specific prior knowledge is available on the endmembers, the endmember variance £ is chosen sufficiently

large (typically equal to 1) to ensure the endmember prior is weakly informative;
(c) v, which controls the energy of the variability captured by the algorithm, has been set by cross validation;

(d) given the absence of specific prior knowledge on the outlier variances s7, the variability variances 17, and the
noise variances o2, the hyperparameters as, ay, a, bs, by, b, are set to a small value (typically 10~2) to ensure the

chosen conjugate inverse-gamma priors are uninformative [AMH15];

(e) the number of Monte-Carlo and burn-in iterations, respectively denoted by Nyc and Ny, are set according to a

classical convergence diagnosis, namely the potential scale reduction factor (PSRF) [GR92].
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B.2. Results for the the second scenario (datasets 14 and £5)

The synthetic datasets 4 and #5 are affected by moderate spatial variability (i.e., variability within each image of the

sequence, generated in the bottom left-hand corner of each image) and outliers (see Fig. B.2). An example of the spatial

variability considered in these datasets is reported in Fig. B.1. The data have been further corrupted by an additive white

Gaussian noise to ensure a resulting SNR between 30 and 35 dB. In the following paragraphs, only the results obtained

for the mixtures composed of R = 3 endmembers are commented (Table B.1 and Figs. B.3 to B.6). Similar comments

can be made for the case R = 9. Illustrations related to this latter case are omitted for the sake of brevity.

* Endmember estimation: the proposed method shows an interesting robustness with respect to spatially sparse

outliers and moderate spatial variability, in the sense that the estimated signatures (Figs. B.6(p) to B.6(r)) are very
close to the corresponding ground truth (Fig. B.1). In comparison, the shape of the endmembers recovered by
VCA, SISAL and RLMM and the variability extracted by OU are significantly affected by outliers, as exemplified
in Figs. B.6(e), B.6(h), B.6(k) and B.6(n) respectively. These qualitative results are confirmed by the quantitative

performance measures reported in Table B.1.

* Abundance estimation: the abundance maps estimated by FCLS, RLMM and SISAL reflect the high sensitivity of
VCA (used to initialize SISAL and RLMM) to the presence of outliers (see the figures delineated in red in Figs. B.3
to B.5). On the contrary, the abundances recovered by OU and the proposed approach are much closer to the ground

truth. These observations are confirmed by the abundance estimation performance reported in Table B.1.

Overall performance: the performance measures reported in Table B.1 are globally favorable to the proposed
approach. It is important to mention that the price to pay with the good performance of the proposed method is its

computational complexity, which is common with MCMC methods.

We finally observed that spatial variability has an influence on the outlier maps estimated by the algorithm (Fig. B.2): as

naturally expected, more pixels tend to be detected as corrupted by outliers. Indeed, for a given time instant ¢, spatial

variability induces local deviations from the linear model (M + dM;)A,, which are then captured as outliers or noise

by the proposed model. Note however that this phenomenon does not significantly affect the recovered abundances and

endmembers, as illustrated in Figs. B.3-B.5 and B.6.

Reflectance

0.5
04 -
0.35 0.4
’ s ©0.3
0.25 803 \ 2
< | =02
02 £02 || &

0.15 0.1 ."\.' \/\ o J/’f

0.5 1 1.5 2 0.5 1 1.5 2 0.5 1 1.5 2
A (pm) A (pm) A (pm)
(a) True endmember 1 (b) True endmember 2 (¢) True endmember 3

Figure B.1.: True endmembers (in red) and spatial variability (in cyan) used for the synthetic dataset with R = 3.
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Table B.1.: Simulation results on synthetic data affected by moderate spatial variability (GMSE(A)x1072,
GMSE(dM)x 104, RE x10~%).

aSAM(M) (°)  GMSE(A) GMSE(M) RE time ()

& VCA/FCLS 4.83 2.10 / 2.39 1
*  SISAL/FCLS 4.71 1.55 / 0.82 2
«  rLMM 3.92 1.68 / 0.22 655
D“L ou 1.46 0.35 3.22 0.95 113
Proposed (MCMC) 1.31 0.09 0.33 0.65 2425
o VCA/FCLS 2.93 3.12 x1071 / 20.1 5
& SISAL/FCLS 5.89 4.67 x1071 / 0.87 6
< LMM 2.74 2.83 x107! / 0.38 1498
Q! ou 248 1.63 x10~1 2.81 1.20 379
Proposed (MCMC) 1.60 2.00 x1071 5.65 0.84 8926

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10
=
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=
c
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S , , .
0} ~ ~ !
o
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o
S
s b , . .
- y ™
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>
o

Figure B.2.: mMAP estimates of the label maps recovered by the proposed approach, displayed at each time instant (the
different rows correspond to the true label map where outliers appear in white, the estimated map and the
areas where spatial variability is present). The influence of spatial variability can be seen on the outlier map
estimated for the first image.
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Figure B.3.: Abundance map of the endmember 1 recovered by the different methods (in each row) at each time instant
(given in column) for the experiment with R = 3. The images delineated in red show that several methods
are highly sensitive to the presence of outliers.
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Figure B.4.: Abundance map of the endmember 2 recovered by the different methods (in each row) at each time instant
(given in column) for the experiment with R = 3. The images delineated in red show that several methods
are highly sensitive to the presence of outliers.
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t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10
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Figure B.5.: Abundance map of the endmember 3 recovered by the different methods (in each row) at each time instant
(given in column) for the experiment with R = 3. The images delineated in red show that several methods
are highly sensitive to the presence of outliers.
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Figure B.6.: Endmembers (m,., red lines) and their variants affected by variability (m, 4+ dm,. 4, blue dotted lines) recov-
ered by the different methods from the synthetic dataset corrupted by spatial variability (R = 3). Signatures
corresponding to different time instants are represented on a single figure to better appreciate the variability
recovered from the data. The spectra represented in black correspond to signatures significantly affected by
outliers.
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Appendix to chapter 3

C.1. Projections involved in the parameter updates

The projections involved in the PALM algorithm [BST13] described in Algo. 6 are properly defined, since the associated

constraint spaces are closed convex sets. More precisely,

* Dy is closed and convex as the (non-empty) intersection of two closed balls. The projection onto D, can be ap-

proximated by the Dykstra algorithm [BD86; HAS13]. Besides, the projection on a Frobenius ball is given by

[PB14]
r
Pax.m(Y) =X + min (1,) (Y — X); (C.1)
Ko Y X[
* projecting M onto Rf_XR is explicitly given by
P+ (M) = maX(OL,R, M) (C.2)
where the max is taken term-wise.
C.2. Discussion on Assumption 3
The Hessian matrix of f(Y, M, -, -), denoted by Ha qwm)f, is given by
H, H,
Haam f = (C.3)
H; H,
M = (M + dM) (C.4)
H, =Iy®(M'™), H;=(AA") I, (C.5)
ngHg:{IRQ@ [—Y—&-MA]}SR)N—F[A@M] (C.6)

where Sg 1, is the perfect shuffle matrix. The block matrix H(a anp) f is invertible if, for instance, H; and its Schur

complement S = Hy — H3Hf1H2 are invertible. In practice, H; is generally invertible since M + dM is full column
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rank. The Schur complement of H; can be computed more explicitly, leading to

H, - H3H;'H, = [(AAT) © (I, — M")]
— [(M™) ' @ (Y - MA)(Y - MA)"] (C.7)

+27 (Spo[(Y —- MA)AT 2 MT])

where . (X) denotes the symmetric part of the square matrix X, M is the pseudo-inverse of M and S R, 1s the perfect

shuffle matrix defined by
SrL = § j§ Ei;j(R,L)E;;(R,L)" (C.8)
i J

where E;;(R, L) is the element (i, j) of the canonical basis of R**. The invertibility of the Schur complement S can be
ensured via an appropriate regularization term 4 ||AH§ added to the original objective f. Indeed, we first note that such a
perturbation regularizes the Hessian by modifying its diagonal block H, replaced by H4 + ul.

Denote by A\; > A2 > ... > )\, the ordered eigenvalues of S, where r denotes the number of distinct eigenvalues.
By the spectral theorem, there exists an orthogonal matrix (with respect tothe canonical euclidean inner product) Q such
that S = QTDQ, where D is a diagonal matrix composed of the \j. Note that each eigenvalue may have a multiplicity
order greater than 1 with the adopted notations. If there exits k& such that A\, = 0, then A\, y; < 0. Adding & HA||§ to the

original objective function, with ©1 < |Ag41/, is then sufficient to ensure the invertibility of the Schur complement

(Hy — H3H{ 'Hy) + pI = Q'DQ + puI = QT(D + 1I1)Q

associated to the new Hessian matrix, thus ensuring its invertibility.

C.3. Convergence proof

Largely adapted from [Mai+10], the following sketch of proof reduces to an adaptation of [Mai+10, Lemma 1, Proposition
1]. From this point, our problem exactly satisfies the assumptions required to apply the same arguments as in [Mai+10,

Proposition 2, Proposition 3], leading to the announced convergence result.

Lemma 1 (Asymptotic variations of M; [Mai+10]). Under Assumptions 1 and 2, we have
1
HM(HU - M® H =0 (t) almost surely (a.s.). (C.9)
F

Proof. According to Assumption 1, g, is strictly convex with a Hessian lower-bounded by a scalar uns > 0. Consequently,

gy satisfies the second-order growth condition

3 (M) — (MO) >y [ - M|

) (C.10)
F

Besides, since M € [0, 1]%* %, we have | M||. < vLR. Hence ; is Lipschitz continuous with constant ¢, = 1 (HDtHF + VLR ||Ct||F)
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cw. Indeed, given two matrices M, My € [0, 1]1X* %, we have
B g ; ;

N N 1)1
19:(M1) = 9:(M)] < B[U(M) = ¥(Mg)| + 5|5 (MIM; — MMy, Cy) — (My — My, Dy)
1
< Bew [Miy = Mol + - [My = Mo D¢l (C.11)
1
+ 57 MMy — MM,

g 1Cell

where C; and D, are defined in (3.11). In addition

1
HM¥M1 — MgMQHF = §||(M1 =+ MQ)T(Ml — Mg) + (Ml — MQ)T(Ml + M2)||F

(C.12)
< 2VLR|M; — Ma||g
hence
9¢(M1) = §:(M2)| < ¢ [M1 — Ma|g. (C.13)
Combining (C.10) and (C.13), we have
HM@H) MO < & (C.14)
F UM

Since the data, the abundances and the variability are respectively contained in compact sets, C; and D, are (almost

surely) bounded, thus: ¢; = O (1) a.s. O

In the rest of this appendix, the following compact notation will be used to denote the following Jacobian matrices of a
function f : R™M1X"1 x R™M2XN2 x RM3XN3 5 R:
def af

JIFX,Y,2) = ) (X,Y,Z) e RT*™Mm

~ af
IXYx vz X.Y,Z) € Rmenexman
i (XY, Z) 8(VecTX)8(VeCTY)( Y.Z) €

Proposition 5 (Adapted from [Mai+10]). We assume that the requirements in Assumption I to 3 are satisfied. Let (Y, M)

be an element of Y x M. Let us define

Zt :AR X Dt (CIS)
(A}, dMy) €Q(Y¢, M) (C.17)
v(Y, M) =f (Y, M, A}, dMy). (C.18)

Then

1. the function v(Yy,-) is continuously differentiable with respect to M on a neighborhood V' of M. Furthermore, if

(AF,dM}) € int 2, then Vao(Ye, M) = Vi f(Ye, M, AF, dMY});
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2. g defined in (3.6) is continously differentiable and Vy1g(M) = Evy, [VMU(Yh M)] ;

3. V'mg is Lipschitz continuous.

Proof. The existence of local minima of f(Y;, M, -, ) on Z; follows from the continuity of f(Y;, M, -, ) and the com-
pactness of Z;. This ensures the non-emptiness of Q('Y,, M) and justifies the definition of (A¥, dM¥).
In practice, the PALM algorithm used in Algo. 5 yields a point (A%, dM,’f ) such that

1

0 € Viaam f(Ye, M, A}, dMy) + (Zt)(A;c’de) (C.19)

€

swhere (Z;) (Ak aME)

is the cone normal to Z; at (AF, dM,’f ). In the following paragraphs, two cases are separately

addressed.

First case. If (A}, dM}) € int Z;, we have (Z;) (LAiﬁ,de = {0}. Thus, V(a an f(Y:, M, AF,dM}) = 0. Using
Assumption 3, the first statement then follows from the implicit function theorem [Lan99, Theorem 5.9 p.19]: there exists

two open subsets V' C M, W C Z, and a continuously differentiable function ¢ : V' — W such that
() (M, (A}, dM})) € V x W C M x Z4;

(i) forall (M, (A,dM)) € V x W, we have

Va,am) f(Ye, M, A, dM) = 0] = [(A,dM) = p(M)]; (C.20)
(iif)
Jo(Y0, M) = —H g (Yo, M, p(V) 33D (v, NI (1)), (21

[(L+N)Rx(L+N)R] [(L+N)RxLR]

Consequently, the function v(Yy,-) is C!, and

‘]'L)M (Yta M) = J?/I (Yt; M? QD(]'\N/‘[)) + J;A,dM) (Yt7 M7 SD(M)) J@(Yta M) . (C22)
[1XLR] [1x(L+N)R] [(L+N)RxLR]

The equation (C.22) finally leads to the conclusion that v(Yy,-) is C!. The second part of the first claim follows by
observing that

[V(AydM)f(Yt, M, A, dM) = 0 & I ™M (v, M, p(M)) = 0} = IM(Y;, M) = TV (Y3, M, p(M)).

The second statement follows from the continuous differentiability of v(Yy, -), which is defined on a compact set.
To prove the third claim, it is sufficient to show that JY (Y, -, ¢(-)) (or equivalently Var f (Y, -, ¢(-))) is Lipschitz
continuous on V. To this end, we first observe that J,, (Y, M) is upper-bounded by a constant independent from Yy,

which implies that ¢ is Lipschitz continuous. Let M; and M5 be two elements in V', and define (A;,dM;) = ¢(M;)
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for ¢ = 1,2. Then

||va(Yta M, @(Ml)) - VMf(thM% @(M2)) HF
= [|(M; + dM;) A AT — (M + dMs) A2 AT — Yi(A; — Ay,
= [|[(My — My) + (dM; — dMy)] A; AT + (M, + dM;)(A; — Ag)A]

+ (My + dM;) Ay (A — Ag)" — Yi(Ar — Ay)T||
Since ¢ is Lipschitz continuous, there exists £ > 0 such that

[A1 — Asllp < [lo(M1) — o(Maz)l|p <&My — Malp

[dM; — dMy||p < [[o(Mi) — ¢(Ma)|| < £ [|M; — Ma||g.
In addition, (M) € Z;. Thus, there exists x > 0 such that
[Vaaf (Yo, My, (M) = Vaaf (Yi, Ma, o(Ms)) || < 5 [ My — Myl

which concludes the proof in this first case.

Second case. If (AF,dMF) ¢ int Z;, the implicit function theorem can be applied to the auxiliary function f defined

as

F(Ye, M, A,dM) = f(Y;,M,A,dM) + (R, (A,dM))

(C.23)

where Ry = (=Vaf(Ye, M, A, dM}), —Vamf(Y:, M, Af,dM})) is a constant. Similarly to the previous para-

graph, there exists a neighborhood V x W of (M, (AF,dM})) and a continuously differentiable function ¢ : V — W

such that
() (M, (AF,dM})) €V x W C M x Z4;
(ii) forall (M, (A,dM)) € V x W, we have
[Via,am f(Ye, M, A, dM) = 0] = [(A,dM) = p(M)];

(iii)

~ _ z ~ ~ M,(A,dM =~ -~
T (Yo, M) = —H g F (Yo, ML o (M) I3 (v ML (M),

[(L+N)Rx(L+N)R] [(L+N)RxLR]

Consequently, the function #(Y,, ) = f (Y, () isCt on V, and

IV (Y0, M) = JY (Yo, M, (M) + 3 (Y, M, p(M)) 3, (Y4, M) .

[1XLR] (1% (L+N)R] [(L+N)RxLR]
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The differentiability of v(Y,,-) = (Y, ) — (R, ¢(:)) on V directly follows, with
IM(Y,, M) = IM(Y,, M) — (vecR)TT (Y, M). (C.27)

As in the previous paragraph, the second claim is a consequence from the continuous differentiability of v(Y¢, -), defined
on a compact set.

Finally, the Lipschitz continuity of Vg on V results from the following observations.

* [T, (Y, M)|| is bounded by a constant independent from Y; and M, which implies that ¢ is Lipschitz continuous

onV;
_ 5 ~ - A, dM .
. ‘H(Al,dM)f(Yt,M, ©(M)) . IR|g [lo(M)|l and HJ} )HF are upper-bounded by constants independent
from Yy,
p . . M, (A,dM) S .
* Proceeding as in the first case, J,(Y¢, ") and J; (Y4, -, ¢(+)) can be shown to be Lipschitz continuous on

V. Introducing M, My € V, and (A;,dM;) = ¢(M;) fori = 1,2, we have

[Vamf(Ye, M1, o(My)) = Van f(Ye, M1, (M) ||
= ||[(M; = M,) + (dM; — dM3)] A, AT + (M + dM,)(A; — Ag)AT

+ (M3 + dM;) A (A — Ag)" — Yi(A1 — Ay)T|,

[VAf(Ye, M1, 0(M1)) = Vaf(Ye, My, o(Mi)) ||
= ||(My + dM,y)"[(M; + dM;)A; — Y] — (M + dMa) " [(M; + dMa)As — Y] ||,
= ||[(M; — My) + (dM; — dM2)]TYt + (M{M; +dMdM;)(A; — Ag) 4+ [M](M; — M,)

+ (M; — M)"™™; + dMj (dM; — dMy) + (dM; — dMy)"dM] A, ||,

HJ?A’(A’dM) (Y¢, My, p(My)) — Jl}/I’(A’dM) (Y, Mz, o(My)) HF
- H{IR ® [(M; + dM;)A; — (M + dMy)As] }SR,N +[Ar® (M +dMy)] — [Ay ® (M + dM,)] HF
- H{IR ® [(My — My)Ay + (dM; — dM)A; + (A; — Ay)(M; + dMQ)]}

+ [A1 — Ay ® (M +dMy)] + [Az ® (M; — My)| + [Az ® (dM; — dMy)] }H

These expressions, along with the observations from the previous lines, show that J, (Y, -) and J ?A’(A’dM) (Ym g 90())
are Lipschitz continuous on V.
The preceding remarks finally lead to the conclusion that JM (Y, -) is Lipschitz continuous, which is sufficient to prove

the third claim. O
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C.4. Impact of the hyperparameters on the reconstruction error

Considering the significant number of hyper-parameters to be tuned (i.e., «, 8,7, v, k), a full sensitivity analysis is
a challenging task, which is further complexified by the non-convex nature of the problem considered. To alleviate
this issue, each parameter has been individually adjusted while the others were set to a priori reasonable values (i.e.,
(o, B,7, %, k%) = (1072,1074,107%, »2,10~2), where #> = 0.0372 denotes the theoretical average energy of the vari-
ability introduced in the synthetic dataset used for this analysis). The appropriateness of a given range of values has been
evaluated in terms of the RE of the obtained solutions. The results reported in Fig. C.1 suggest that the proposed method
is relatively robust to the choice of the hyper-parameters. More precisely, as can be seen in Figs. C.1(b) and C.1(c), only
£ and v may induce oscillations (of very small amplitude) in the RE. Based on this analysis, it is interesting to note that
the interval [2 x 1073, 1072] can be chosen in practice to obtain reasonable reconstruction errors.

To conclude this section, the two following remarks can be made on the choice of v and «:

e the value chosen for v results from an empirical compromise between the risk to capture noise into the variability
terms (v too large) and the risk to lose information (v too small). The sensitivity analysis conducted in Fig. C.1(d)

shows that 2 € [10~1, 1] provides interesting results for this experiment;

*  should be set to a value ensuring that M reflects the average spectral behavior of the perturbed endmembers.

Fig. C.1(e) shows that s € [1073, 1] provides interesting results for the synthetic dataset used in the experiment.
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Figure C.1.: Sensitivity analysis of the reconstruction error RE with respect tothe tuning of the algorithm hyper-parameters

(2% = 0.0372 denotes the theoretical average energy of the variability introduced in the synthetic dataset used
for this analysis).
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Appendix to chapter 4

Algorithm convergence: sketch of proof

The proposed sketch of proof adapts the first arguments developed in [Can+16], in order to make clear that the proposed
algorithm fits within this general framework. Note that a similar proof can be obtained by induction when .J blocks have

to be updated by each worker, and I blocks by the master node (corresponding to the situation described in (4.1)).

Lemma 2. Under Assumptions 4 to 6, there exists two pisitive constants cx and c, such that

Tk sk Yk X
UM M) < w(xk, 2b) - 7(cx — L+ L)) 1% — x|1® — g(cz —wLf) 2" —2"|?
1 k
+ 5T(L;z +Ly,) > 2=z (D.1)
g=k—71+1

Proof. Assumption 5(v) allows the descent lemma [Ber99, p. 683] to be applied to z — F'(x,y, z), leading to

. Lk
F(xFL 2R < p(xMHL 2F) + szkH —2F|? + (V,F(x", 2¥), 2" — 2F). (D.2)

Thus,

\Il(xk+17zk+1) < F(X]H_l,zk) + G(Xk—i-l) + T(Zk+1) + <VZF(Xk+1,Zk)7Zk+1 _ Zk>
Lk .
+ 2 - 2P

. Lk
= ff,k(Xflj_l’zk) + gir (xfk“'l) + 7zHZk+1 _ ZkH2<VZF(Xk+1,Zk),Zk+1 _ Zk>

+ Z fe(xF 2R 4+ g (xF) 4 r(2"). (D.3)
t#t),

In addition, the optimality of z* implies

Ck
2|28 - 2"|* < r(2") (D.4)

r(zF) + <VzF(xk+1, zh), 2k — zk> + 5

and the convexity of r leads to
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r(zF) < r(2%) + v (r(27) — r(zY)). (D.5)

Combining (D.3), (D.4) and (D.5) then results in

W(x"H, ) < L (it 2b) + g () ) D Sl 2E) + gu(x)
t#tr
k A
- B L2t - 2 o

Similar arguments lead to

Vi N
ftk( k+1 ) + gtk( ) < fik (thazk) - ?(Cit,@ - 'Ykactk)”ka - ka ||2 + gtk(ka)

(Vo for (e, 2°) = Vi fin (3, 2°), x5 — X ). (D.7)
Since Vi, ft(xXt, ) is assumed to be Lipschitz continuous (see Assumption 6(ii))
(Vi for (xpis %) = Ve fo (x5, 27), 357 = ) < L5 ll2" — 2P| x5t — x|

we obtain from (D.7)

Jer(x k+1> ) + gtk( ) < ftk(xt’w )+ Li,zHZ kH”XkJrl - kaH +9tk(xfk)

L
-5 (%,

(D.8)
— Ly ) IR — x|

From this point, the product involving ||z* — Z*|| in (D.8) can be bounded as proposed in [Dav16, Proof of Theorem 5.1].

We first note that

k k+1 . k Li .
L Jlla — 2 It = | < T3 2 — 22+ S & — bl (D.9)
Besides, using Assumption 4
k k
A e I S L e A N A A [ (D.10)
q=k—dfk+1 q=k—7+1
Combining (D.8), (D.9), and (D.10) then leads to
Yk o
for(x k+17 )+9tk( ) <ftk(xtk,zk)—?( ; _’Vk(L +Lk ))Hxﬁk _ka”Q
k (D.11)
+TLE, D> 2 =2+ g ().
q=k—71+1
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Combining (D.6), (D.11) and using the bounds on the different Lipschitz constants introduced in Assumptions 5(vi) and

6(ii) finally leads to the announced result. O]

According to Lemma 2, the objective function ¥ is not necessarily decreasing from an iteration to another due to
the presence of a residual term involving 7 past estimates of z. From this observation, an auxiliary function (whose
derivation is reproduced in Lemma 3 for the sake of completeness) has been proposed in [Dav16]. The introduction of
such a function, which is eventually non-increasing between two consecutive iterations, is of a particular interest for the
convergence analysis. This function finally allows convergence guarantees related to the original problem (4.2) to be

recovered.

Lemma 3 (Auxiliary function definition, adapted from [Dav16, Proof of Theorem 5.1]). Under the same assumptions as

in Lemma 2, let ® be the function defined by

/B T
®(x(0),2(0),(1),...,2(7)) = ¥(x(0),2(0)) + 5 > (r—q+1)z(q) — z(g - 1)|? (D.12)
g=1
with
B =1L+ Ly,)-
Let wh = (xF, 2%, 2%) and 2% = (z"~1,... 2"~ ") for any iteration index k € N (with the convention z¢ = z° if ¢ < 0).
Then,
D(wH) < D(wh) = T (e — (L + L)) I1%f — xi?
— ey — i (Lf +72LEL)I2F — 24| (D.13)

Proof. The expression of the auxiliary function proposed in [Dav16] results from the following decomposition of the

. k _ . . .
residual term Y, ||z9 — 297 "||*. Introducing the auxiliary variables

k
aF = N (q—k+7)|z -2
q=k—7+1
we can note that
k
af —aft = N 2 = 2P = 72 - R (D.14)
q=k—71+1

Thus, using the upper bound Lk < L;z (Assumption 6(ii)) and replacing (D.14) in (D.1) yields

X,z —

T(xF1, M) 4 Bab ! < U(xF, ) + Bk — %(Cx — w(LE + L,fz))chfk —xk |2

2
R (o (LF 4+ 2L V) IgE — 2F |12
D) (Cz ’Yk( z +7 x7z>)||z z H .
Observing that ®(w*) = W(x*, z*) + o finally leads to the announced result. O
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The previous lemma makes clear that the proposed algorithm can be studied as a special case of [Can+16]. The rest
of the convergence analysis, which involves somewhat convoluted arguments, exactly follows [Can+16] up to minor

notational modifications.
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