Optimisation de dispositifs médicaux thérapeutiques implantables pour l'ingénierie tissulaire osseuse et cartilagineuse - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2017

Implantable therapeutic medical device optimisation for bone and cartilage tissue engineering

Optimisation de dispositifs médicaux thérapeutiques implantables pour l'ingénierie tissulaire osseuse et cartilagineuse

Résumé

Our team optimized the formulation of implantable medical devices for bone and cartilage tissue engineering. To that end, we based our work on nanostructured implants, either natural or synthetic, made in the laboratory by electrospinning process, to mimic bone extracellular matrix, and hydrogel of alginate/hyaluronic acid to mimic cartilage extracellular matrix. First, concerning bone regeneration, we optimized the formulation of a nanostructured scaffold composed of natural chitosan to enhance bone regeneration. This was made possible by doping this implantable medical device with silica nanoparticles, offering this nanocomposite better mechanical properties, and excellent biocompatibility with host tissue. Another study with the same aim allowed elaborating a new cell seeding strategy, to seed these implantable medical devices with cell microtissues instead of single cells, offering higher mineralisation efficiencies within the implant. Consequently, for the regeneration of the osteochondral unit, we proposed two compartmented and hybrid implants comprising mesenchymal stem cells microtissues. Those implants are made of a hydrogel containing the stem cells, allowing the regeneration of cartilage, and a membrane, either natural (collagenic Bio-Gide®) or synthetic (electrospun polycaprolactone) equipped with nanoreservoirs (technology patented by the laboratory) of osteogenic growth factor (BMP-7) for the regeneration of osseous stand (the subchondral bone) of the bone-cartilage unit. Finally, to study the improvement in vascular recruitment, we proposed a new strategy combining the modification of an implantable device with angiogenic growth factor (VEGF), prior to its sequential seeding with mesenchymal cells “human osteoblasts” and human endothelial cells (HUVECs). This strategy allowed higher recruitment and structuration of endothelial cells within the implant. To conclude, the implant optimisation strategies developed in the laboratory will certainly allow proposing in the near future new combined Advanced Therapy Medicinal Products (ATMPs) and Implantable Medical Device for bone and cartilage regeneration, in particular in the field of osteoarticular regenerative nanomedicine.
Notre équipe a optimisé la formulation de dispositifs médicaux implantables pour l’ingénierie tissulaire osseuse et cartilagineuse. A ces fins, nous nous sommes basés sur des implants nanostructurés d’origine naturelle ou synthétique conçus au sein du laboratoire par la méthode d’électrospinning, pour imiter la matrice extracellulaire du compartiment osseux, et un hydrogel composé d’alginate et d’acide hyaluronique imitant la composition du compartiment cartilagineux. Dans une première partie de mon travail, pour la régénération osseuse, nous avons optimisé la formulation d’un implant nanostructuré à base de chitosane pour une accélération de cette régénération. Ceci a été possible en rendant actif ce dispositif médical implantable par incorporation de nanoparticules de silice, conférant à la construction nanocomposite des propriétés mécaniques accrues, et une excellente biocompatibilité avec le tissu hôte. Une autre étude pour la même visée a permis d’élaborer une nouvelle stratégie d’ensemencement de dispositif implantable synthétique et nanostructuré par des microtissus cellulaires, remplaçant un ensemencement de cellules isolées et permettant des performances de minéralisation accrues à l’intérieur de l’implant. Dans un deuxième temps, pour la régénération de l’unité ostéoarticulaire, nous avons proposé deux implants bi-compartimentés et hybrides comportant des microtissus de cellules souches mésenchymateuses. Ces implants sont composés d’un hydrogel contenant les cellules souches permettant la régénération du cartilage, et d’une membrane collagénique naturelle (Bio-Gide®) ou synthétique (membrane de polycaprolactone), dotée de nanoréservoirs (technologie brevetée par le laboratoire) de facteur de croissance ostéogénique (BMP-7) pour une régénération du socle osseux (os sous-chondral) de l’unité os-cartilage. La troisième partie de mon travail a concerné la vascularisation des implants osseux et particulièrement l’accélération du recrutement vasculaire. Dans ce cadre plus vasculaire, nous avons proposé une stratégie qui vise à doter un implant synthétique nanostructuré de facteur de croissance angiogénique (VEGF), puis à lui appliquer un ensemencement séquentiel de cellules mésenchymateuses adultes « ostéoblastes humains» et de cellules endothéliales humaines (HUVECs). Cette stratégie a permis un recrutement et une hiérarchisation accrue des cellules endothéliales dans l’implant. En conclusion, l’optimisation des implants développés au laboratoire permettra sans nul doute de proposer dans un futur proche de nouveaux dispositifs médicaux implantables (DMI) thérapeutique combinés de type DMI-MTI (Médicaments de Thérapie Innovante) pour l’ingénierie tissulaire osseuse et cartilagineuse en particulier en médecine régénérative ostéo-articulaire.
Fichier principal
Vignette du fichier
WAGNER_Quentin_2017_ED414.pdf (19.38 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-01709945 , version 1 (15-02-2018)

Identifiants

  • HAL Id : tel-01709945 , version 1

Citer

Quentin Wagner. Optimisation de dispositifs médicaux thérapeutiques implantables pour l'ingénierie tissulaire osseuse et cartilagineuse. Rhumatologie et système ostéo-articulaire. Université de Strasbourg, 2017. Français. ⟨NNT : 2017STRAJ114⟩. ⟨tel-01709945⟩

Collections

STAR SITE-ALSACE
514 Consultations
67 Téléchargements

Partager

Gmail Facebook X LinkedIn More