]. G. Boon-]-a and . Gale, An Overview of Hemostasis Current Understanding of Hemostasis, Toxicol. Pathol. Toxicol. Pathol, vol.213, issue.39 1, pp.170-179, 1993.

J. M. Byers, Rudolf Virchow--father of cellular pathology, Am. J. Clin. Pathol, vol.92, issue.4

D. R. Kumar, E. Hanlin, I. Glurich, J. J. Mazza, S. H. Yale5-]-g et al., Virchow's Contribution to the Understanding of Thrombosis and Cellular Biology Pathophysiology of venous thrombosis, thrombophilia, and the diagnosis of deep vein thrombosis-pulmonary embolism in the elderly Venous Thrombosis: An Overview Intrinsic Pathway of Coagulation and Arterial Thrombosis, Clin. Med. Res. Clin. Geriatr. Med. Pharmacother. J. Hum. Pharmacol. Drug Ther. Arterioscler. Thromb. Vasc. Biol, vol.88, issue.27 12, pp.2-8, 1986.

J. E. Dalen, C. I. Haffajee, J. S. Alpert, J. P. Howe, I. S. Ockene et al., Pulmonary Embolism, Pulmonary Hemorrhage and Pulmonary Infarction, New England Journal of Medicine, vol.296, issue.25, 2009.
DOI : 10.1056/NEJM197706232962503

G. W. Reed, J. E. Rossi, and C. P. Cannon, Acute myocardial infarction, The Lancet, vol.389, issue.10065, pp.197-210, 2017.
DOI : 10.1016/S0140-6736(16)30677-8

M. E. Raichle, The pathophysiology of brain ischemia, Annals of Neurology, vol.328, issue.1, pp.2-10, 1983.
DOI : 10.1161/01.STR.5.1.32

T. G. Walker, Acute Limb Ischemia, Techniques in Vascular and Interventional Radiology, vol.12, issue.2, pp.117-129, 2009.
DOI : 10.1053/j.tvir.2009.08.005

P. B. Østergaard, B. Nilsson, D. Bergqvist, U. Hedner, and P. C. Pedersen, The effect of low molecular weight heparin on experimental thrombosis and haemostasis - the influence of production method, Thrombosis Research, vol.45, issue.6, pp.739-749, 1987.
DOI : 10.1016/0049-3848(87)90084-3

R. D. Lopes, Stroke Prevention in Atrial Fibrillation, MD): Agency for Healthcare Research and Quality (US), 2013.

K. Werdan, R. Braun-dullaeus, and P. Presek, Anticoagulation in Atrial Fibrillation: NOAC's the Word, Dtsch. Ärztebl. Int, vol.110, pp.31-32, 2013.

N. B. Norgard, J. J. Dinicolantonio, T. J. Topping, and B. Wee, Novel anticoagulants in atrial fibrillation stroke prevention, Therapeutic Advances in Chronic Disease, vol.95, issue.3, pp.123-136, 2012.
DOI : 10.1016/j.bmcl.2009.02.111

D. Collen and H. R. Lijnen, Thrombolytic agents, Thrombosis and Haemostasis, vol.93, issue.4, pp.627-630, 2005.
DOI : 10.1160/TH04-11-0724

G. The and . Investigators, An International Randomized Trial Comparing Four Thrombolytic Strategies for Acute Myocardial Infarction, N. Engl. J. Med, vol.329, issue.10, pp.673-682, 1993.

S. Vedantham, G. Piazza, A. K. Sista, and N. A. Goldenberg, Guidance for the use of thrombolytic therapy for the treatment of venous thromboembolism, Journal of Thrombosis and Thrombolysis, vol.8, issue.3, pp.68-80, 2016.
DOI : 10.1111/j.1538-7836.2009.03726.x

I. K. Jang, Differential sensitivity of erythrocyte-rich and platelet-rich arterial thrombi to lysis with recombinant tissue-type plasminogen activator. A possible explanation for resistance to coronary thrombolysis, Circulation, vol.79, issue.4, pp.920-928, 1989.
DOI : 10.1161/01.CIR.79.4.920

V. J. Marder, The Use of Thrombolytic Agents: Choice of Patient, Drug Administration, Laboratory Monitoring, Annals of Internal Medicine, vol.90, issue.5, p.802, 1979.
DOI : 10.7326/0003-4819-90-5-802

S. Schulman, R. J. Beyth, C. Kearon, and M. N. Levine, Hemorrhagic Complications of Anticoagulant and Thrombolytic Treatment, Chest, vol.133, issue.6, pp.257-298, 2008.
DOI : 10.1378/chest.08-0674

K. Peter-rentrop, M. Cohen, H. Blanke, and R. A. Phillips, Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects, Journal of the American College of Cardiology, vol.5, issue.3, pp.587-592, 1985.
DOI : 10.1016/S0735-1097(85)80380-6

P. W. Serruys, A Comparison of Balloon-Expandable-Stent Implantation with Balloon Angioplasty in Patients with Coronary Artery Disease, New England Journal of Medicine, vol.331, issue.8, pp.489-495, 1994.
DOI : 10.1056/NEJM199408253310801

F. Ikeno, M. Buchbinder, and A. C. Yeung, Novel stent and delivery systems for the treatment of bifurcation lesions: porcine coronary artery model, Cardiovascular Revascularization Medicine, vol.8, issue.1, pp.38-42, 2007.
DOI : 10.1016/j.carrev.2006.10.003

B. Hiebl, E. Nennig, S. Schiestel, A. Kovacs, F. Jung et al., Biocompatibility of a novel zinc stent with a closed-cell-design, Clinical Hemorheology and Microcirculation, vol.104, issue.8, pp.205-211, 2015.
DOI : 10.1017/S0007114510001893

R. B. Rutherford, Clinical Staging of Acute Limb Ischemia as the Basis for Choice of Revascularization Method: When and How to Intervene, Seminars in Vascular Surgery, vol.22, issue.1, pp.5-9, 2009.
DOI : 10.1053/j.semvascsurg.2008.12.003

M. J. Sharafuddin and M. E. Hicks, Current Status of Percutaneous Mechanical Thrombectomy. Part II. Devices and Mechanisms of Action, Journal of Vascular and Interventional Radiology, vol.9, issue.1, pp.15-31, 1998.
DOI : 10.1016/S1051-0443(98)70477-4

S. Goldman, Improvement in early saphenous vein graft patency after coronary artery bypass surgery with antiplatelet therapy: results of a Veterans Administration Cooperative Study, Circulation, vol.77, issue.6, pp.1324-1332, 1988.
DOI : 10.1161/01.CIR.77.6.1324

S. Sarkar, H. J. Salacinski, G. Hamilton, and A. M. Seifalian, The Mechanical Properties of Infrainguinal Vascular Bypass Grafts: Their Role in Influencing Patency, European Journal of Vascular and Endovascular Surgery, vol.31, issue.6, pp.627-636, 2006.
DOI : 10.1016/j.ejvs.2006.01.006

S. Sarkar, T. Schmitz-rixen, G. Hamilton, and A. M. Seifalian, Achieving the ideal properties for vascular bypass grafts using a tissue engineered approach: a review, Medical & Biological Engineering & Computing, vol.12, issue.4, pp.327-336, 2007.
DOI : 10.1002/jbm.a.30595

S. M. Seedial, Local drug delivery to prevent restenosis, Journal of Vascular Surgery, vol.57, issue.5, pp.1403-1414, 2013.
DOI : 10.1016/j.jvs.2012.12.069

URL : https://doi.org/10.1016/j.jvs.2012.12.069

F. Varray, Simulation in nonlinear ultrasound : application to nonlinear parameter imaging in echo mode configuration, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00751417

J. G. Lynn, R. L. Zwemer, A. J. Chick, and A. E. Miller, A NEW METHOD FOR THE GENERATION AND USE OF FOCUSED ULTRASOUND IN EXPERIMENTAL BIOLOGY, The Journal of General Physiology, vol.26, issue.2, pp.179-193, 1942.
DOI : 10.1085/jgp.26.2.179

W. J. Fry, Ultrasound in Neurology, The Journal of the Acoustical Society of America, vol.27, issue.5, pp.998-998, 1955.
DOI : 10.1121/1.1917959

S. Westermark, H. Wiksell, H. Elmqvist, K. Hultenby, and H. Berglund, Effect of externally applied focused acoustic energy on clot disruption in vitro, Clinical Science, vol.97, issue.1, pp.67-71, 1999.
DOI : 10.1042/cs0970067

R. H. Liu, J. Yang, M. Z. Pindera, M. Athavale, and P. Grodzinski, Bubble-induced acoustic micromixing, Lab on a Chip, vol.2, issue.3, pp.151-157, 2002.
DOI : 10.1039/b201952c

A. Ooi, P. Tho, and R. Manasseh, Cavitation microstreaming patterns in single and multiple bubble systems, The Journal of the Acoustical Society of America, vol.122, issue.5, pp.3051-3051, 2007.
DOI : 10.1121/1.2942876

J. Collis, Cavitation microstreaming and stress fields created by microbubbles, Ultrasonics, vol.50, issue.2, pp.273-279, 2010.
DOI : 10.1016/j.ultras.2009.10.002

O. A. Sapozhnikov, A. D. Maxwell, B. Macconaghy, and M. R. Bailey, A mechanistic analysis of stone fracture in lithotripsy, The Journal of the Acoustical Society of America, vol.121, issue.2, pp.1190-1202, 2007.
DOI : 10.1121/1.2404894

P. Riesz, D. Berdahl, and C. L. Christman, Free radical generation by ultrasound in aqueous and nonaqueous solutions, Environmental Health Perspectives, vol.64, pp.233-252, 1985.
DOI : 10.1289/ehp.8564233

K. S. Suslick, The Chemical Effects of Ultrasound, Scientific American, vol.260, issue.2, pp.80-86, 1989.
DOI : 10.1038/scientificamerican0289-80

V. S. Moholkar and A. B. Pandit, Bubble behavior in hydrodynamic cavitation: Effect of turbulence, AIChE Journal, vol.43, issue.6, pp.1641-1648, 1997.
DOI : 10.1002/aic.690430628

D. Hsieh and M. S. Plesset, Theory of Rectified Diffusion of Mass into Gas Bubbles, The Journal of the Acoustical Society of America, vol.33, issue.2, pp.206-215, 1961.
DOI : 10.1121/1.1908621

S. F. Jones, G. M. Evans, and K. P. Galvin, Bubble nucleation from gas cavities ??? a review, Advances in Colloid and Interface Science, vol.80, issue.1, pp.27-50, 1999.
DOI : 10.1016/S0001-8686(98)00074-8

M. Plesset and A. Prosperetti, Bubble Dynamics and Cavitation, Annual Review of Fluid Mechanics, vol.9, issue.1, pp.145-185, 1977.
DOI : 10.1146/annurev.fl.09.010177.001045

A. Prosperetti, L. A. Crum, and K. W. Commander, Nonlinear bubble dynamics, The Journal of the Acoustical Society of America, vol.83, issue.2, pp.502-514, 1988.
DOI : 10.1121/1.396145

A. Eller and H. G. Flynn, Generation of Subharmonics of Order One???Half by Bubbles in a Sound Field, The Journal of the Acoustical Society of America, vol.46, issue.3B, pp.722-727, 1969.
DOI : 10.1121/1.1911753

J. B. Keller and M. Miksis, Bubble oscillations of large amplitude, The Journal of the Acoustical Society of America, vol.68, issue.2, pp.628-633, 1980.
DOI : 10.1121/1.384720

L. A. Crum, SURFACE OSCILLATIONS AND JET DEVELOPMENT IN PULSATING BUBBLES, Le Journal de Physique Colloques, vol.40, issue.C8, pp.8-285, 1979.
DOI : 10.1051/jphyscol:1979849

URL : https://hal.archives-ouvertes.fr/jpa-00219555

W. Kreider, L. A. Crum, M. R. Bailey, and O. A. Sapozhnikov, Observations of the collapses and rebounds of millimeter-sized lithotripsy bubbles, The Journal of the Acoustical Society of America, vol.130, issue.5, pp.3531-3540, 2011.
DOI : 10.1121/1.3626157

M. S. Longuet-higgins, Bubble noise spectra, The Journal of the Acoustical Society of America, vol.87, issue.2, pp.652-661, 1990.
DOI : 10.1121/1.398934

J. Frohly, S. Labouret, C. Bruneel, I. Looten-baquet, and R. Torguet, Ultrasonic cavitation monitoring by acoustic noise power measurement, The Journal of the Acoustical Society of America, vol.108, issue.5, pp.2012-2020, 2000.
DOI : 10.1121/1.1312360

URL : https://hal.archives-ouvertes.fr/hal-00159071

T. G. Leighton, Bubble population phenomena in acoustic cavitation, Ultrasonics Sonochemistry, vol.2, issue.2, pp.123-136, 1995.
DOI : 10.1016/1350-4177(95)00021-W

D. Miller, N. Smith, G. Bailey, K. Czarnota, I. Hynynen et al., Overview of Therapeutic Ultrasound Applications and Safety Considerations, Journal of Ultrasound in Medicine, vol.51, issue.(suppl), pp.623-634, 2012.
DOI : 10.1088/0031-9155/51/4/003

V. J. Robertson and K. G. Baker, A Review of Therapeutic Ultrasound, Journal of Women??s Health Physical Therapy, vol.34, issue.3, pp.1339-1350, 2001.
DOI : 10.1097/JWH.0b013e318200897a

S. Maluta, Regional hyperthermia added to intensified preoperative chemo-radiation in locally advanced adenocarcinoma of middle and lower rectum, International Journal of Hyperthermia, vol.355, issue.1, pp.108-117, 2010.
DOI : 10.1056/NEJMoa060829

C. C. Coussios, C. H. Farny, G. T. Haar, and R. A. Roy, Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU), International Journal of Hyperthermia, vol.32, issue.2, pp.105-120, 2007.
DOI : 10.1016/S0022-5347(05)00141-2

C. R. Hill and G. R. Ter-haar, High intensity focused ultrasound???potential for cancer treatment, The British Journal of Radiology, vol.21, issue.816, pp.1296-1303, 1995.
DOI : 10.1001/archsurg.1991.01410320088012

L. Mearini and M. Porena, Transrectal high-intensity focused ultrasound for the treatment of prostate cancer: Past, present, and future, Indian Journal of Urology, vol.26, issue.1, pp.4-11, 2010.
DOI : 10.4103/0970-1591.60436

L. Poissonnier, Control of Prostate Cancer by Transrectal HIFU in 227 Patients, European Urology, vol.51, issue.2, pp.381-387, 2007.
DOI : 10.1016/j.eururo.2006.04.012

URL : https://hal.archives-ouvertes.fr/hal-00397445

K. Fischer, N. J. Mcdannold, C. M. Tempany, F. A. Jolesz, and F. M. Fennessy, Potential of minimally invasive procedures in the treatment of uterine fibroids: a focus on magnetic resonance-guided focused ultrasound therapy, Int. J. Womens Health, vol.7, pp.901-912, 2015.

J. Aubry, The road to clinical use of high-intensity focused ultrasound for liver cancer: technical and clinical consensus, Journal of Therapeutic Ultrasound, vol.1, issue.1, p.13, 2013.
DOI : 10.1148/radiol.2352030916

URL : https://hal.archives-ouvertes.fr/inserm-00851863

J. E. Lingeman, J. A. Mcateer, E. Gnessin, and A. P. Evan, Shock wave lithotripsy: advances in technology and technique, Nature Reviews Urology, vol.181, issue.12, pp.660-670, 2009.
DOI : 10.1121/1.4785012

H. Liang, J. Tang, and M. Halliwell, Sonoporation, drug delivery, and gene therapy, Proc. Inst, pp.343-361, 2010.
DOI : 10.1016/S0002-9440(10)65006-7

Z. Fan, R. E. Kumon, and C. X. Deng, Mechanisms of microbubble-facilitated sonoporation for drug and gene delivery, Therapeutic Delivery, vol.279, issue.2, pp.467-486, 2014.
DOI : 10.1016/j.crad.2010.03.011

W. G. Pitt, G. A. Husseini, and B. J. Staples, Ultrasonic drug delivery ??? a general review, Expert Opinion on Drug Delivery, vol.18, issue.4, pp.37-56, 2004.
DOI : 10.1016/j.jconrel.2004.03.002

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1361256/pdf

J. M. Tsutsui, F. Xie, and R. T. Porter, The use of microbubbles to target drug delivery, Cardiovascular Ultrasound, vol.22, issue.1, p.23, 2004.
DOI : 10.1016/0301-5629(96)00083-X

J. T. Sutton, K. J. Haworth, G. Pyne-geithman, and C. K. Holland, Ultrasound-mediated drug delivery for cardiovascular disease, Expert Opinion on Drug Delivery, vol.74, issue.3, pp.573-592, 2013.
DOI : 10.1161/01.STR.29.1.4

E. Unger, T. Porter, J. Lindner, and P. Grayburn, Cardiovascular drug delivery with ultrasound and microbubbles, Advanced Drug Delivery Reviews, vol.72, pp.110-126, 2014.
DOI : 10.1016/j.addr.2014.01.012

Z. Xu, Controlled Ultrasound Tissue Erosion, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.51, issue.6, pp.726-736, 2004.
DOI : 10.1109/TUFFC.2004.1308731

W. W. Roberts, Focused ultrasound ablation of renal and prostate cancer: Current technology and future directions, Urologic Oncology: Seminars and Original Investigations, vol.23, issue.5, pp.367-371, 2005.
DOI : 10.1016/j.urolonc.2005.05.022

G. E. Owens, Therapeutic ultrasound to noninvasively create intracardiac communications in an intact animal model, Catheterization and Cardiovascular Interventions, vol.18, issue.4, pp.580-588, 2011.
DOI : 10.1053/j.semvascsurg.2005.04.006

X. Zhang, G. E. Owens, H. S. Gurm, Y. Ding, C. A. Cain et al., Noninvasive thrombolysis using histotripsy beyond the intrinsic threshold (microtripsy), IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.62, issue.7, pp.1342-1355, 2015.
DOI : 10.1109/TUFFC.2015.007016

G. Trübestein, C. Engel, F. Etzel, A. Sobbe, H. Cremer et al., Thrombolysis by Ultrasound, Clinical Science, vol.51, issue.s3, pp.697-698, 1976.
DOI : 10.1042/cs051697s

W. Steffen, High intensity, low frequency catheter-delivered ultrasound dissolution of occlusive coronary artery thrombi: An in vitro and in vivo study, Journal of the American College of Cardiology, vol.24, issue.6, pp.1571-1579, 1994.
DOI : 10.1016/0735-1097(94)90157-0

S. Atar, H. Luo, T. Nagai, and R. J. Siegel, Ultrasonic thrombolysis: catheter-delivered and transcutaneous applications, European Journal of Ultrasound, vol.9, issue.1, pp.39-54, 1999.
DOI : 10.1016/S0929-8266(99)00007-5

A. Amaral-silva, S. Piñeiro, and C. A. Molina, Sonothrombolysis for the treatment of acute stroke: current concepts and future directions, Expert Review of Neurotherapeutics, vol.24, issue.2, pp.265-273, 2011.
DOI : 10.1161/STROKEAHA.107.483131

Y. Chuang, P. Cheng, P. D. Li-]-r, D. B. Shlansky-goldberg, C. M. Cines et al., Combining radiation force with cavitation for enhanced sonothrombolysis Catheter-delivered Ultrasound Potentiates in Vitro Thrombolysis, IEEE Trans. Ultrason. Ferroelectr. Freq. Control J. Vasc. Interv. Radiol, vol.60, issue.7 3, pp.313-320, 1996.

R. J. Siegel, Noninvasive Transcutaneous Low Frequency Ultrasound Enhances Thrombolysis in Peripheral and Coronary Arteries, Echocardiography, vol.18, issue.3, pp.247-257, 2001.
DOI : 10.1046/j.1540-8175.2001.00247.x

T. R. Porter, R. F. Leveen, R. Fox, A. Kricsfeld, and F. Xie, Thrombolytic enhancement with perfluorocarbon-exposed sonicated dextrose albumin microbubbles, American Heart Journal, vol.132, issue.5, pp.964-968, 1996.
DOI : 10.1016/S0002-8703(96)90006-X

Y. Birnbaum, Noninvasive In Vivo Clot Dissolution Without a Thrombolytic Drug : Recanalization of Thrombosed Iliofemoral Arteries by Transcutaneous Ultrasound Combined With Intravenous Infusion of Microbubbles, Circulation, vol.97, issue.2, pp.130-134, 1998.
DOI : 10.1161/01.CIR.97.2.130

U. Rosenschein, Shock-wave thrombus ablation, a new method for noninvasive mechanical thrombolysis, The American Journal of Cardiology, vol.70, issue.15, pp.1358-1361, 1992.
DOI : 10.1016/0002-9149(92)90775-T

U. Rosenschein, V. Furman, E. Kerner, I. Fabian, J. Bernheim et al., Ultrasound Imaging-Guided Noninvasive Ultrasound Thrombolysis : Preclinical Results, Circulation, vol.102, issue.2, pp.238-245, 2000.
DOI : 10.1161/01.CIR.102.2.238

A. D. Maxwell, C. A. Cain, A. P. Duryea, L. Yuan, H. S. Gurm et al., Noninvasive Thrombolysis Using Pulsed Ultrasound Cavitation Therapy ??? Histotripsy, Ultrasound in Medicine & Biology, vol.35, issue.12, pp.1982-1994, 2009.
DOI : 10.1016/j.ultrasmedbio.2009.07.001

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796469/pdf

A. D. Maxwell, G. Owens, H. S. Gurm, K. Ives, D. D. Myers et al., Noninvasive Treatment of Deep Venous Thrombosis Using Pulsed Ultrasound Cavitation Therapy (Histotripsy) in a Porcine Model, Journal of Vascular and Interventional Radiology, vol.22, issue.3, pp.369-377, 2011.
DOI : 10.1016/j.jvir.2010.10.007

C. Wright, K. Hynynen, and D. Goertz, In Vitro and In Vivo High-Intensity Focused Ultrasound Thrombolysis, Investigative Radiology, vol.47, issue.4, pp.217-225, 2012.
DOI : 10.1097/RLI.0b013e31823cc75c

URL : http://europepmc.org/articles/pmc3302946?pdf=render

K. Lin, Histotripsy beyond the intrinsic cavitation threshold using very short ultrasound pulses: microtripsy, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.61, issue.2, pp.251-265, 2014.
DOI : 10.1109/TUFFC.2014.6722611

URL : http://europepmc.org/articles/pmc3966303?pdf=render

I. Saletes, In Vitro Demonstration of Focused Ultrasound Thrombolysis Using Bifrequency Excitation, BioMed Res. Int, vol.2014, p.518787, 2014.

A. Sabraoui, C. Inserra, B. Gilles, J. Béra, and J. Mestas, Feedback loop process to control acoustic cavitation, Ultrasonics Sonochemistry, vol.18, issue.2, pp.589-594, 2011.
DOI : 10.1016/j.ultsonch.2010.07.011

C. Desjouy, A. Poizat, B. Gilles, C. Inserra, and J. Bera, Control of inertial acoustic cavitation in pulsed sonication using a real-time feedback loop system, The Journal of the Acoustical Society of America, vol.134, issue.2, pp.1640-1646, 2013.
DOI : 10.1121/1.4812973

A. Poizat, C. Desjouy, C. Inserra, B. Gilles, and J. C. Bera, Regulation of cavitation activity in pulsed sonication with a real-time feedback loop system, 2013.

A. Poizat, Contrôle temporel de la cavitation ultrasonore : application à la thrombolyse ultrasonore extracorporelle, 2016.

K. R. Gorny, N. J. Hangiandreou, G. K. Hesley, B. S. Gostout, K. P. Mcgee et al., MR guided focused ultrasound: technical acceptance measures for a clinical system, Physics in Medicine and Biology, vol.51, issue.12, pp.3155-3173, 2006.
DOI : 10.1088/0031-9155/51/12/011

B. D. De-senneville, C. Mougenot, B. Quesson, I. Dragonu, N. Grenier et al., MR thermometry for monitoring tumor ablation, European Radiology, vol.6, issue.6, pp.2401-2410, 2007.
DOI : 10.1097/01.RVI.0000121408.46920.F1

URL : https://hal.archives-ouvertes.fr/hal-01503897

S. Vaezy, Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging, Ultrasound in Medicine & Biology, vol.27, issue.1, pp.33-42, 2001.
DOI : 10.1016/S0301-5629(00)00279-9

B. A. Rabkin, V. Zderic, and S. Vaezy, Hyperecho in ultrasound images of HIFU therapy: Involvement of cavitation, Ultrasound in Medicine & Biology, vol.31, issue.7, pp.947-956, 2005.
DOI : 10.1016/j.ultrasmedbio.2005.03.015

T. Yu and C. Xu, Hyperecho as the Indicator of Tissue Necrosis During Microbubble-Assisted High Intensity Focused Ultrasound: Sensitivity, Specificity and Predictive Value, Ultrasound in Medicine & Biology, vol.34, issue.8, pp.1343-1347, 2008.
DOI : 10.1016/j.ultrasmedbio.2008.01.012

M. Gyöngy and C. Coussios, Passive cavitation mapping for localization and tracking of bubble dynamics, The Journal of the Acoustical Society of America, vol.128, issue.4, pp.175-180, 2010.
DOI : 10.1121/1.3467491.1

C. C. Coussios, M. Gyongy, M. Arora, and R. A. Roy, Mapping and characterization of cavitation activity, 2011.

K. J. Haworth, Passive imaging with pulsed ultrasound insonations, The Journal of the Acoustical Society of America, vol.132, issue.1, pp.544-553, 2012.
DOI : 10.1121/1.4728230

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3407164/pdf

M. Fink, Time reversal of ultrasonic fields. I. Basic principles, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.39, issue.5, pp.555-566, 1992.
DOI : 10.1109/58.156174

S. Kim, W. A. Kuperman, W. S. Hodgkiss, H. C. Song, G. F. Edelmann et al., Robust time reversal focusing in the ocean, The Journal of the Acoustical Society of America, vol.114, issue.1, pp.145-157, 2003.
DOI : 10.1121/1.1582450

A. Derode, A. Tourin, J. De-rosny, M. Tanter, S. Yon et al., Taking Advantage of Multiple Scattering to Communicate with Time-Reversal Antennas, Physical Review Letters, vol.27, issue.1, p.14301, 2003.
DOI : 10.1109/JOE.2002.1040942

M. Fink, G. Montaldo, and M. Tanter, Time-Reversal Acoustics in Biomedical Engineering, Annual Review of Biomedical Engineering, vol.5, issue.1, pp.465-497, 2003.
DOI : 10.1146/annurev.bioeng.5.040202.121630

J. Aubry and M. Tanter, MR-Guided Transcranial Focused Ultrasound, Therapeutic Ultrasound, pp.97-111
DOI : 10.1007/978-3-319-22536-4_6

N. Chakroun, M. A. Fink, and F. Wu, Time reversal processing in ultrasonic nondestructive testing, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.42, issue.6, pp.1087-1098, 1995.
DOI : 10.1109/58.476552

M. Pernot, G. Montaldo, M. Tanter, and M. Fink, ???Ultrasonic stars??? for time-reversal focusing using induced cavitation bubbles, Applied Physics Letters, vol.88, issue.3, p.34102, 2006.
DOI : 10.1016/0301-5629(95)00015-J

J. L. Thomas, F. Wu, and M. Fink, Time Reversal Focusing Applied to Lithotripsy, Ultrasonic Imaging, vol.18, issue.2, pp.106-121, 1996.
DOI : 10.1109/58.9333

J. Gâteau, L. Marsac, M. Pernot, J. Aubry, M. Tanter et al., Transcranial Ultrasonic Therapy Based on Time Reversal of Acoustically Induced Cavitation Bubble Signature, IEEE Transactions on Biomedical Engineering, vol.57, issue.1, pp.134-144, 2010.
DOI : 10.1109/TBME.2009.2031816

L. Marsac, optimisation of a heterogeneous speed of sound model of the human skull for non-invasive transcranial focused ultrasound at 1???MHz, International Journal of Hyperthermia, vol.33, issue.6, pp.635-645, 2017.
DOI : 10.1088/0031-9155/60/3/1069

C. Prada, F. Wu, and M. Fink, The iterative time reversal mirror: A solution to self???focusing in the pulse echo mode, The Journal of the Acoustical Society of America, vol.90, issue.2, pp.1119-1129, 1991.
DOI : 10.1121/1.402301

M. Fink and C. Prada, Acoustic time-reversal mirrors, Inverse Problems, vol.17, issue.1, p.1, 2001.
DOI : 10.1088/0266-5611/17/1/201

M. Fink, Time-Reversed Acoustics, Scientific American, pp.91-97, 1999.
DOI : 10.1088/0034-4885/63/12/202

B. E. Treeby and B. T. Cox, k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields, Journal of Biomedical Optics, vol.15, issue.2, pp.21314-021314, 2010.
DOI : 10.1117/1.3360308

M. Gyongy and C. Coussios, Passive Spatial Mapping of Inertial Cavitation During HIFU Exposure, IEEE Transactions on Biomedical Engineering, vol.57, issue.1, pp.48-56, 2010.
DOI : 10.1109/TBME.2009.2026907

S. J. Norton and I. J. Won, Time exposure acoustics, IEEE Transactions on Geoscience and Remote Sensing, vol.38, issue.3, pp.1337-1343, 2000.
DOI : 10.1109/36.843027

C. Coviello, Passive acoustic mapping utilizing optimal beamforming in ultrasound therapy monitoring, The Journal of the Acoustical Society of America, vol.137, issue.5, pp.2573-2585, 2015.
DOI : 10.1121/1.4916694

J. Camacho, M. Parrilla, and C. Fritsch, Phase Coherence Imaging, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.56, issue.5, pp.958-974, 2009.
DOI : 10.1109/TUFFC.2009.1128

P. Tortoli, L. Bassi, E. Boni, A. Dallai, F. Guidi et al., Figure 9, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.56, issue.10, pp.2207-2216, 2009.
DOI : 10.1109/TUFFC.2009.1303/mm4

M. R. Bailey, Use of overpressure to assess the role of bubbles in focused ultrasound lesion shape in vitro, Ultrasound in Medicine & Biology, vol.27, issue.5, pp.695-708, 2001.
DOI : 10.1016/S0301-5629(01)00342-8

M. Gyöngy and C. M. Coviello, Passive cavitation mapping with temporal sparsity constraint, The Journal of the Acoustical Society of America, vol.130, issue.5, pp.3489-3497, 2011.
DOI : 10.1121/1.3626138

]. S. Lu, A. Shi, B. Jing, X. Du, and M. Wan, Real-time monitoring of controllable cavitation erosion in a vessel phantom with passive acoustic mapping, Ultrasonics Sonochemistry, vol.39, pp.291-300, 2017.
DOI : 10.1016/j.ultsonch.2017.03.060

J. J. Kwan, Ultrasound-Propelled Nanocups for Drug Delivery, Small, vol.24, issue.39, pp.5305-5314, 2015.
DOI : 10.1021/la802782w

URL : http://onlinelibrary.wiley.com/doi/10.1002/smll.201501322/pdf

J. A. Jensen, Figure 15, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.60, issue.9, pp.1838-1852, 2013.
DOI : 10.1109/TUFFC.2013.2770/mm2

L. Petrusca, A New High Channels Density Ultrasound Platform for Advanced 4D Cardiac Imaging, 2017 IEEE International Ultrasonics Symposium (IUS), 2017.
URL : https://hal.archives-ouvertes.fr/hal-01599683

E. Roux, A. Ramalli, M. C. Robini, H. Liebgott, C. Cachard et al., Spiral array inspired multi-depth cost function for 2D sparse array optimization, 2015 IEEE International Ultrasonics Symposium (IUS), 2015.
DOI : 10.1109/ULTSYM.2015.0096

URL : https://hal.archives-ouvertes.fr/hal-01265828

E. Roux, A. Ramalli, P. Tortoli, C. Cachard, M. C. Robini et al., 2-D Ultrasound Sparse Arrays Multidepth Radiation Optimization Using Simulated Annealing and Spiral-Array Inspired Energy Functions, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.63, issue.12, pp.2138-2149, 2016.
DOI : 10.1109/TUFFC.2016.2602242

URL : https://hal.archives-ouvertes.fr/hal-01438338

E. Roux, A. Ramalli, H. Liebgott, C. Cachard, M. C. Robini et al., opti256_TUFFC2016.mp4, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.64, issue.1, pp.108-125, 2017.
DOI : 10.1109/TUFFC.2016.2614776/mm1

E. Boni, ULA-OP 256: A 256-Channel Open Scanner for Development and Real-Time Implementation of New Ultrasound Methods, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.63, issue.10, pp.1488-1495, 2016.
DOI : 10.1109/TUFFC.2016.2566920

E. Lyka, C. Coviello, R. Kozick, and C. Coussios, Sum-of-harmonics method for improved narrowband and broadband signal quantification during passive monitoring of ultrasound therapies, The Journal of the Acoustical Society of America, vol.140, issue.1, p.741, 2016.
DOI : 10.1121/1.4958991

C. Arvanitis, N. Mcdannold, and G. Clement, Fast passive cavitation mapping with angular spectrum approach, The Journal of the Acoustical Society of America, vol.138, issue.3, pp.1845-1845, 2015.
DOI : 10.1121/1.4933873

C. D. Arvanitis, C. Crake, N. Mcdannold, and G. T. Clement, Passive Acoustic Mapping with the Angular Spectrum Method, IEEE Transactions on Medical Imaging, vol.36, issue.4, pp.983-993, 2017.
DOI : 10.1109/TMI.2016.2643565

J. Gateau, J. Aubry, M. Pernot, M. Fink, and M. Tanter, Combined passive detection and ultrafast active imaging of cavitation events induced by short pulses of high-intensity ultrasound, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.58, issue.3, pp.517-532, 2011.
DOI : 10.1109/TUFFC.2011.1836

URL : https://hal.archives-ouvertes.fr/inserm-00607669