M. Gasbarrini, G. O-'morain, C. Garcia, J. Quina, M. Tytgat et al., Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases Diagnosis of Helicobacter pylori infection with a new non-invasive antigen-based assay. HpSA European study group, Cell Research Lancet, vol.183, issue.109172, p.354, 1999.

P. Coulter, ). Annales, H. Tanaka, Y. Oqura, T. Inoue et al., Serial changes in leukocyte deformability and whole blood rheology in patients with sepsis or trauma Analyzing shear stress-induced alignment of actin filaments in endothelial cells with a microfluidic assay Connectiones between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells Sickle cell biomechanics, the HematoFlow (TM) system, pp.617-6311425, 2005.

O. David, S. Mercereau-puijalon, S. Bonnefoy, and . Suresh, Effect of plasmodial resa protein on deformability of human red blood cells harboring plasmodium falciparum, Proc Natl Acad Sci, vol.104, issue.22, pp.9213-9217, 2007.

G. Tomaiuolo, Biomechanical properties of red blood cells in health and disease towards microfluidics, Biomicrofluidics, vol.63, issue.1, p.51501, 2014.
DOI : 10.1172/JCI58753

M. Kaibara, Rheology of blood coagulation, Biorheology, vol.33, issue.4, pp.101-117, 1996.

I. Gamaleldin and . Harisa, Blood viscosity as a sensitive indicator for paclitaxel induced oxidative stress in human whole blood, Saudi Pharmaceutical Journal, vol.23, issue.1, pp.48-54, 2015.

E. Evans and Y. Fung, Improved measurements of the erythrocyte geometry, Microvascular Research, vol.4, issue.4, pp.335-347, 1972.
DOI : 10.1016/0026-2862(72)90069-6

C. Kohler, Les cellules sanguines, 2011.

N. Mohandas and E. Evans, Mechanical Properties of the Red Cell Membrane in Relation to Molecular Structure and Genetic Defects, Annual Review of Biophysics and Biomolecular Structure, vol.23, issue.1, pp.787-818, 1994.
DOI : 10.1146/annurev.bb.23.060194.004035

Y. Kim and K. Kim, Measurement Techniques for Red Blood Cell Deformability: Recent Advances, Blood Cell-An Overview, issue.1, p.2012
DOI : 10.5772/50698

URL : http://www.intechopen.com/download/pdf/39123

P. Bassereau, . Ohayon, . Gallet, F. Perzynski, and . Amblard, Thèse de Doctorat de l ?Äô Université Paris VI Physique des Liquides Guillaume Lenormand Élasticité du squelette du globule rouge humain -une étude par pinces optiques, 2001.

E. Samuel and . Lux, Anatomy of the red cell membrane skeleton: unanswered questions, Blood, vol.127, issue.2, pp.187-199, 2016.

A. Frans and . Kuypers, Hemoglobin S polymerization and red cell membrane changes, Hematology/Oncology Clinics of North America, vol.28, issue.2, pp.155-179, 2014.

R. Hochmuth and R. Waugh, Erythrocyte membrane elasticity and viscosity. Annual review of physiology, pp.209-219, 1987.
DOI : 10.1146/annurev.ph.49.030187.001233

W. Rawicz, K. Olbrich, . Mcintosh, E. Needham, and . Evans, Effect of Chain Length and Unsaturation on Elasticity of Lipid Bilayers, Biophysical Journal, vol.79, issue.1, pp.328-339, 2000.
DOI : 10.1016/S0006-3495(00)76295-3

R. Hochmuth, P. Worthy, and E. Evans, Red cell extensional recovery and the determination of membrane viscosity, Biophysical Journal, vol.26, issue.1, pp.101-114, 1979.
DOI : 10.1016/S0006-3495(79)85238-8

R. Waugh and E. Evans, Thermoelasticity of red blood cell membrane, Biophysical Journal, vol.26, issue.1, pp.115-131, 1979.
DOI : 10.1016/S0006-3495(79)85239-X

E. Evans, New Membrane Concept Applied to the Analysis of Fluid Shear- and Micropipette-Deformed Red Blood Cells, Biophysical Journal, vol.13, issue.9, pp.941-954, 1973.
DOI : 10.1016/S0006-3495(73)86036-9

S. Hénon, . Lenormand, F. Richert, and . Gallet, A New Determination of the Shear Modulus of the Human Erythrocyte Membrane Using Optical Tweezers, Biophysical Journal, vol.76, issue.2, pp.1145-1151, 1999.
DOI : 10.1016/S0006-3495(99)77279-6

G. Crandall and A. Critz, Influence of pH on elastic deformability of the human erythrocyte membrane, American Journal of Physiology-Cell Physiology, vol.46, issue.5, 1978.
DOI : 10.1073/pnas.73.11.3891

G. Nash and H. Meiselman, Alteration of red cell membrane viscoelasticity by heat treatment: Effect on cell deformability and suspension viscosity, Biorheology, vol.22, issue.1, p.73, 1985.
DOI : 10.3233/BIR-1985-22106

E. A. Evans, N. Mohandas, and . Leung, Static and dynamic rigidities of normal and sickle erythrocytes. Major influence of cell hemoglobin concentration., Journal of Clinical Investigation, vol.73, issue.2, pp.477-488, 1984.
DOI : 10.1172/JCI111234

E. Evans, Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests, Biophysical Journal, vol.43, issue.1, pp.27-30, 1983.
DOI : 10.1016/S0006-3495(83)84319-7

E. Evans and R. Hochmuth, Membrane viscoelasticity, Biophysical Journal, vol.16, issue.1, pp.1-11, 1976.
DOI : 10.1016/S0006-3495(76)85658-5

URL : https://doi.org/10.1016/s0006-3495(76)85658-5

A. Farutin, C. Misbah, and L. Bureau, Viscoelastic transient of confined Red Blood Cells, pp.1-11
URL : https://hal.archives-ouvertes.fr/hal-01064782

T. Betz, M. Lenz, J. Joanny, and C. Sykes, ATP-dependent mechanics of red blood cells, Proceedings of the National Academy of Sciences, vol.77, issue.24, pp.15320-15325, 2009.
DOI : 10.1063/1.2356852

M. Quan and T. Mod, Modélisation microm écanique et simulation numérique du fluage des bétons avec prise en compte de l'endommagement et des effets thermo-hydriques, 2012.

L. Dintenfass, Internal Viscosity of the Red Cell and a Blood Viscosity Equation, Nature, vol.32, issue.5157, pp.956-958, 1969.
DOI : 10.1016/S0140-6736(64)90627-0

H. Schmid, J. Gosen, H. Heinich, E. Klose, and . Volger, A counter-rotating ???rheoscope chamber??? for the study of the microrheology of blood cell aggregation by microscopic observation and microphotometry, Microvascular Research, vol.6, issue.3, pp.366-376, 1973.
DOI : 10.1016/0026-2862(73)90086-1

N. Mohandas, M. Clark, M. Jacobs, and S. Shohet, Analysis of factors regulating erythrocyte deformability., Journal of Clinical Investigation, vol.66, issue.3, pp.563-573, 1980.
DOI : 10.1172/JCI109888

K. E. Bremmell, A. Evans, and C. A. Prestidge, Deformation and nano-rheology of red blood cells: An AFM investigation, Colloids and Surfaces B: Biointerfaces, vol.50, issue.1, pp.43-48, 2006.
DOI : 10.1016/j.colsurfb.2006.03.002

S. Suresh, Biomechanics and biophysics of cancer cells???, Acta Materialia, vol.55, issue.12, pp.3989-4014, 2007.
DOI : 10.1016/j.actamat.2007.04.022

J. Shelby, J. White, K. Ganesan, K. Pradipsinh, . Rathod et al., A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes, Proceedings of the National Academy of Sciences, vol.89, issue.2, pp.14618-14622, 2003.
DOI : 10.1016/S0092-8674(00)80207-X

H. Schmid-schönbein, . Von-gosen, H. J. Heinich, E. Klose, and . Volger, A counter-rotating ???rheoscope chamber??? for the study of the microrheology of blood cell aggregation by microscopic observation and microphotometry, Microvascular Research, vol.6, issue.3, pp.366-376, 1973.
DOI : 10.1016/0026-2862(73)90086-1

S. P. Sutera, V. Seshadri, P. Croce, and R. M. Hochmuth, Capillary blood flow, Microvascular Research, vol.2, issue.4, pp.420-433, 1970.
DOI : 10.1016/0026-2862(70)90035-X

G. M. Artmann, Microscopic photometric quantification of stiffness and relaxation time of red blood cells in a flow chamber, Biorheology, vol.32, issue.5, pp.553-570, 1995.
DOI : 10.3233/BIR-1995-32504

M. Bessis and M. , Automated Ektacytometry: A New Method of Measuring Red Cell Deformability and Red Cell Indices, Blood cells, vol.6, pp.315-327, 1980.
DOI : 10.1007/978-3-642-67756-4_13

O. K. Baskurt and H. J. Meiselman, Determination of Red Blood Cell Shape Recovery Time Constant in a Couette System by the Analysis of Light Reflectance and Ektacytometry, Biorheology, vol.33, issue.6, pp.489-503, 1997.
DOI : 10.3233/BIR-1996-33607

E. A. Evans and P. Celle, Intrinsic Material Properties of the Erythrocyte Membrane Indicatedby Mechanical Analysis of Deformation, Blood, vol.45, issue.1, 1975.

F. K. Glenister, R. L. Coppel, A. F. Cowman, N. Mohandas, and B. M. Cooke, Contribution of parasite proteins to altered mechanical properties of malaria-infected red blood cells, Blood, vol.99, issue.3, pp.1060-1063, 2002.
DOI : 10.1182/blood.V99.3.1060

S. Chien, L. Kl, R. Sung, . Skalak, . Usami et al., Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane, Biophysical Journal, vol.24, issue.2, pp.463-87, 1978.
DOI : 10.1016/S0006-3495(78)85395-8

G. Binnig and C. F. Quate, Atomic Force Microscope, Physical Review Letters, vol.39, issue.9, pp.930-933, 1986.
DOI : 10.1016/0021-9797(72)90039-2

R. Bosch and G. , Fabrication and characterization of planar Gunn diodes for Monolithic Microwave Integrated Circuits . Herstellung und Charakterisierung planarer Gunn-Dioden für monolitisch Controlled Oscillator Monolithic Microwave Integrated Circuit, Physics

I. Dulinska, . Targosz, . Strojny, . Lekka, . Czuba et al., Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy, Journal of Biochemical and Biophysical Methods, vol.66, issue.1-3, pp.1-11, 2006.
DOI : 10.1016/j.jbbm.2005.11.003

K. M. Weisenhorn, Deformation and height anomaly of soft surfaces studied with an AFM, Nanotechnology, vol.4, issue.2, 1993.
DOI : 10.1088/0957-4484/4/2/006

A. Fery and R. Weinkamer, Mechanical properties of micro- and nanocapsules: Single-capsule measurements, Polymer, vol.48, issue.25, pp.7221-7235, 2007.
DOI : 10.1016/j.polymer.2007.07.050

M. C. Audry, Private communication, 2017.

. Ashkin, Acceleration anf trapping of particles by radiation pressure, 1970.

C. Coirault, J. Pourny, F. Lambert, and Y. Lecarpentier, Les pinces optiques en biologie et en m??decine, m??decine/sciences, vol.19, issue.3, pp.364-367, 2003.
DOI : 10.1051/medsci/2003193364

URL : http://www.medecinesciences.org/articles/medsci/pdf/2003/03/medsci2003193p364.pdf

J. Guck, . Ananthakrishnan, T. Mahmood, C. Moon, J. Cunningham et al., The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells, Biophysical Journal, vol.81, issue.2, pp.81767-784, 2001.
DOI : 10.1016/S0006-3495(01)75740-2

B. Chen, F. Guo, and H. Xiang, Visualization study of motion and deformation of red blood cells in a microchannel with straight, divergent and convergent sections, Journal of Biological Physics, vol.19, issue.4, pp.429-440, 2011.
DOI : 10.1016/0026-2862(80)90082-5

P. Mishra, M. Hill, and P. , Deformation of red blood cells using acoustic radiation forces, Biomicrofluidics, vol.5, issue.9, p.34109, 2014.
DOI : 10.1161/01.HYP.10.6.603

N. Wang, J. Butler, and D. Ingber, Mechanotransduction across the cell surface and through the cytoskeleton, 1993.

M. Puig-de-morales-marinkovic, T. Kevin, . Turner, P. James, . Butler et al., Viscoelasticity of the human red blood cell, American Journal of Physiology-Cell Physiology, vol.293, issue.2, pp.597-605, 2007.
DOI : 10.1016/S0301-0104(02)00548-7

G. Popescu, T. Ikeda, R. Ramachandra, . Dasari, S. Michael et al., Diffraction phase microscopy for quantifying cell structure and dynamics, Optics Letters, vol.31, issue.6, pp.775-777, 2006.
DOI : 10.1364/OL.31.000775

. Feld, Coherence properties of red blood cell membrane motions, Physical Review E -Statistical, Nonlinear, and Soft Matter Physics, vol.76, issue.3, pp.28-32, 2007.

E. Ben-isaac, Y. Park, G. Popescu, L. Frank, N. S. Brown et al., Effective Temperature of Red-Blood-Cell Membrane Fluctuations, Physical Review Letters, vol.1, issue.23, pp.1-5, 2011.
DOI : 10.1039/c0sm00925c

Y. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld et al., Measurement of the nonlinear elasticity of red blood cell membranes, Physical Review E, vol.27, issue.5, pp.1-11, 2011.
DOI : 10.1016/S0006-3495(83)84319-7

Y. Park, C. A. Best, K. Badizadegan, R. Ramachandra, . Dasari et al., Measurement of red blood cell mechanics during morphological changes, Proceedings of the National Academy of Sciences, vol.105, issue.37, pp.6731-6736, 2010.
DOI : 10.1073/pnas.0806100105

G. Gass, L. Chernomordik, and L. Margolis, Local deformation of human red blood cells in high frequency electric field, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1093, issue.2-3, pp.162-167, 1991.
DOI : 10.1016/0167-4889(91)90118-H

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert et al., Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence, Biophysical Journal, vol.88, issue.5, pp.3689-3698, 2005.
DOI : 10.1529/biophysj.104.045476

. Kaminskia, Detection of plasmodium falciparum-infected red blood cells by optical stretching

H. Engelhart and E. Sackmann, On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields, Biophysical Journal, vol.54, issue.3
DOI : 10.1016/S0006-3495(88)82982-5

E. Evans, R. Skalak, L. A. Macqueen, M. D. Buschmann, and M. R. Wertheimer, Mechanics and thermodynamics of biomembranes Mechanical properties of mammalian cells in suspension measured by electro-deformation, Boca Raton J Micromech Microeng, vol.20, 1980.

I. Doh, W. C. Lee, Y. H. Cho, .. P. Pisano, and F. , Deformation measurement of individual cells in large populations using a single-cell microchamber array chip, Applied Physics Letters, vol.53, issue.17, pp.173702-1737023, 2012.
DOI : 10.1039/c0lc00139b

G. Du, A. Ravetto, Q. Fang, and J. Toonder, Cell types can be distinguished by measuring their viscoelastic recovery times using a micro-fluidic device, Biomedical Microdevices, vol.38, issue.1, pp.29-40, 2010.
DOI : 10.1146/annurev.biophys.050708.133724

M. Gnerlich, S. F. Perry, and S. Tatic-lucic, A submersible piezoresistive mems lateral force sensor for a diagnostic biomechanics platform. Sensor Actuat A-Phys, pp.111-119, 2012.

B. Barazani, S. Warnat, A. Fine, and T. Hubbard, MEMS squeezer for the measurement of single cell rupture force, stiffness change, and hysteresis, Journal of Micromechanics and Microengineering, vol.27, issue.2, 2017.
DOI : 10.1088/1361-6439/27/2/025002

N. Lafitte, H. Guillou, M. Kumemura, L. Jalabert, T. Fujii et al., Integrated MEMS platform with silicon nanotweezers and open microfluidic device for real-time and routine biomechanical probing on molecules and cells, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.148-151, 2013.
DOI : 10.1109/EMBC.2013.6609459

A. M. Forsyth, J. Wan, W. D. Ristenpart, and H. A. Stone, The dynamic behavior of chemically ???stiffened??? red blood cells in microchannel flows, Microvascular Research, vol.80, issue.1, pp.37-43, 2010.
DOI : 10.1016/j.mvr.2010.03.008

S. S. Lee, Y. Yim, K. H. Ahn, and S. J. Lee, Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel, Biomedical Microdevices, vol.37, issue.5, pp.1021-1027, 2009.
DOI : 10.1007/978-1-4615-9738-4_6

D. R. Gosset, T. Htk, A. S. Lee, Y. Ying, A. G. Lindgreen et al., Hydrodynamic stretching of single cells for large population mechanical phenotyping, Proceedings of the National Academy of Sciences, vol.113, issue.1, pp.7630-7635, 2012.
DOI : 10.1083/jcb.113.1.155

G. Tomaiuolo and S. Guido, Start-up shape dynamics of red blood cells in microcapillary flow, Microvascular Research, vol.82, issue.1, pp.35-41, 2011.
DOI : 10.1016/j.mvr.2011.03.004

G. Tomaiuolo, M. Barra, V. Preziosi, A. Cassinese, B. Rotoli et al., Microfluidics analysis of red blood cell membrane viscoelasticity, Lab Chip, vol.71, issue.3, pp.449-454, 2011.
DOI : 10.1016/S0006-3495(96)79311-6

G. Tomaiuolo, L. Lanotte, G. Ghigliotti, C. Misbah, and S. Guido, Red blood cell clustering in Poiseuille microcapillary flow, Physics of Fluids, vol.24, issue.5, pp.24-2012, 2012.
DOI : 10.1103/PhysRevLett.97.054502

URL : https://hal.archives-ouvertes.fr/hal-00909443

G. Tomaiuolo, M. Simeone, V. Martinelli, B. Rotoli, and S. Guido, Red blood cell deformation in microconfined flow, Soft Matter, vol.33, issue.15, p.3736, 2009.
DOI : 10.1039/b904584h

G. Prado, A. Farutin, C. Misbah, and L. Bureau, Viscoelastic Transient of Confined Red Blood Cells, Biophysical Journal, vol.108, issue.9, pp.2126-2136, 2015.
DOI : 10.1016/j.bpj.2015.03.046

URL : https://hal.archives-ouvertes.fr/hal-01064782

J. Picot, S. D. Papa-alioune-ndour, . Lefevre, H. Nemer, J. Tawfik et al., A biomimetic microfluidic chip to study the circulation and mechanical retention of red blood cells in the spleen, American Journal of Hematology, vol.5, issue.4, pp.339-345, 2015.
DOI : 10.3389/fimmu.2014.00148

URL : https://hal.archives-ouvertes.fr/hal-01113050

H. Bow, V. Igor, M. Pivkin, . Diez-silva, J. Stephen et al., A microfabricated deformability-based flow cytometer with application to malaria, Lab on a Chip, vol.105, issue.6, pp.1065-1073, 2011.
DOI : 10.1073/pnas.0806100105

S. Huang, A. Undisz, M. Diez-silva, H. Bow, M. Dao et al., Dynamic deformability of Plasmodium falciparum-infected erythrocytes exposed to artesunatein vitro, Integr. Biol., vol.37, issue.2, pp.414-422, 2013.
DOI : 10.1128/AAC.37.5.1108

S. Braunmüller, . Schmid, T. Sackmann, and . Franke, Hydrodynamic deformation reveals two coupled modes/time scales of red blood cell relaxation, Soft Matter, vol.10, issue.1, p.11240, 2012.
DOI : 10.1038/nrm2593

M. Abkarian, M. Faivre, and H. A. Stone, High-speed microfluidic differential manometer for cellular-scale hydrodynamics, Proceedings of the National Academy of Sciences, vol.23, issue.1, pp.538-542, 2006.
DOI : 10.1146/annurev.bb.23.060194.004035

URL : http://www.pnas.org/content/103/3/538.full.pdf

M. Horton, R. Smistrup, K. Best-popescu, C. A. Abkarian, M. Faivre et al., Cellular-scale hydrodynamics, Biomed Mater, vol.3, 2008.

Z. S. Khan and S. A. Vanapalli, Probing the mechanical properties of brain cancer cells using a microfluidic cell squeezer device, Biomicrofluidics, vol.37, issue.1, 2013.
DOI : 10.1016/0306-9877(92)90146-4

Q. Guo, S. J. Reiling, P. Rohrbach, and H. Ma, Microfluidic biomechanical assay for red blood cells parasitized by Plasmodium falciparum, Lab on a Chip, vol.296, issue.6, p.1143, 2012.
DOI : 10.1152/ajpcell.00105.2008

M. Myrand-lapierre, X. Deng, R. R. Ang, K. Matthews, A. T. Santoso et al., Multiplexed fluidic plunger mechanism for the measurement of red blood cell deformability, Lab on a Chip, vol.1792, issue.1, pp.159-167, 2015.
DOI : 10.1016/j.bbadis.2008.11.001

B. M. Cooke, N. Mohandas, and R. L. , The malaria-infected red blood cell: Structural and functional changes, Adv Parasit, vol.50, pp.1-86, 2001.
DOI : 10.1016/S0065-308X(01)50029-9

Q. Guo, S. P. Duffy, K. Matthews, A. T. Santoso, M. D. Scott et al., Microfluidic analysis of red blood cell deformability, Journal of Biomechanics, vol.47, issue.8, pp.471767-1776, 2014.
DOI : 10.1016/j.jbiomech.2014.03.038

J. Marchalot, J. F. Chateaux, M. Faivre, H. C. Mertani, R. Ferrigno et al., Dielectrophoretic capture of low abundance cell population using thick electrodes, Biomicrofluidics, vol.9, issue.5, pp.1-13, 2015.
DOI : 10.1016/0168-1656(94)90117-1

URL : https://hal.archives-ouvertes.fr/hal-01489381

A. L. Rakow and R. M. Hochmuth, Effect of heat treatment on the elasticity of human erythrocyte membrane, Biophysical Journal, vol.15, issue.11, pp.1095-1100, 1975.
DOI : 10.1016/S0006-3495(75)85885-1

F. Quemeneur, Relationship between mechanical parameters and behaviour under external stresses in lipid vesicles with modified membranes, 2010.
URL : https://hal.archives-ouvertes.fr/tel-00615938

M. Mohri, H. Kakinuma, M. Sakamoto, and H. Sawai, Gas Mixture, Japanese Journal of Applied Physics, vol.29, issue.Part 2, No. 10, pp.1932-1935, 1990.
DOI : 10.1143/JJAP.29.L1932

M. Ju, B. Swe-soe-ye, S. Namgung, H. T. Cho, H. L. Low et al., A review of numerical methods for red blood cell flow simulation, Computer Methods in Biomechanics and Biomedical Engineering, vol.46, issue.2, pp.130-140, 2015.
DOI : 10.1209/epl/i2004-10527-4

F. Yc, Biomechanics: mechanical properties of living tissues, 1993.

H. Noguchi and G. Gompper, Shape transitions of fluid vesicles and red blood cells in capillary flows, Proceedings of the National Academy of Sciences, vol.22, issue.4, pp.14159-14164, 2005.
DOI : 10.1103/PhysRevE.64.011916

D. A. Fedosov, B. Caswell, and K. Ge, A Multiscale Red Blood Cell Model with Accurate Mechanics, Rheology, and Dynamics, Biophysical Journal, vol.98, issue.10, pp.982215-2225, 2010.
DOI : 10.1016/j.bpj.2010.02.002

J. Li, M. Dao, C. T. Lim, and S. Suresh, Spectrin-Level Modeling of the Cytoskeleton and Optical Tweezers Stretching of the Erythrocyte, Biophysical Journal, vol.88, issue.5, pp.3707-3719, 2005.
DOI : 10.1529/biophysj.104.047332

O. Y. Zhongcan and W. Helfrich, Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders, Physical Review A, vol.45, issue.10, pp.5280-5288, 1989.
DOI : 10.1016/S0006-3495(84)84235-6

Z. G. Zhang and X. W. Zhang, Mechanical behavior of the erythrocyte in microvessel stenosis, Science China Life Sciences, vol.71, issue.5, pp.450-458, 2011.
DOI : 10.1016/S0006-3495(96)79311-6

A. Ni, T. A. Cheema, and C. Park, Numerical Study of RBC Motion and Deformation through Microcapillary in Alcohol Plasma Solution, Open Journal of Fluid Dynamics, vol.05, issue.01, pp.26-33, 2015.
DOI : 10.4236/ojfd.2015.51004

H. Engelhardt, H. Gaub, and E. Sackmann, Viscoelastic properties of erythrocyte membranes in high-frequency electric fields, Nature, vol.36, issue.5949, pp.378-80, 1984.
DOI : 10.1051/jphys:0197500360110103500

A. Herbert and . Pohl, The motion and precipitation of suspensoids in divergent electric fields, Journal of Applied Physics, vol.22, issue.7, pp.869-871, 1951.

N. Swami, C. Chou, V. Ramamurthy, and V. Chaurey, Enhancing DNA hybridization kinetics through constriction-based dielectrophoresis, Lab on a Chip, vol.3, issue.22, pp.3212-3220, 2009.
DOI : 10.1016/S1525-1578(10)60655-1

R. Pethig, Dielectrophoresis: Status of the theory, technology, and applications, Biomicrofluidics, vol.4, issue.2, pp.1-35, 2010.
DOI : 10.1002/9781118671443

I. Cheng, H. Chang, D. Hou, and H. Chang, An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting, Biomicrofluidics, vol.64, issue.2, p.21503, 2007.
DOI : 10.1063/1.2723669.3

G. W. Leung, F. T. Lau, S. L. Leung, and W. J. Li, Formation of Au Colloidal Crystals for Optical Sensing by DEP-Based Nano-Assembly, 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp.922-926, 2007.
DOI : 10.1109/NEMS.2007.352169

I. Cima, C. Wen-yee, F. S. Iliescu, W. M. Phyo, C. Kiat-hon-lim et al., Label-free isolation of circulating tumor cells in microfluidic devices: Current research and perspectives, Biomicrofluidics, vol.40, issue.4, p.2013
DOI : 10.1039/c2lc40072c

H. Engelhardt and E. Sackmann, On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields, Biophysical Journal, vol.54, issue.3, pp.495-508, 1988.
DOI : 10.1016/S0006-3495(88)82982-5

E. Du, M. Dao, and S. Suresh, Quantitative biomechanics of healthy and diseased human red blood cells using dielectrophoresis in a microfluidic system, Extreme Mechanics Letters, vol.1, issue.1, pp.35-41, 2014.
DOI : 10.1016/j.eml.2014.11.006

O. Ezekiel, S. K. Adekanmbi, and . Srivastava, Dielectrophoretic applications for disease diagnostics using lab-on-a-chip platforms, Lab Chip, vol.16, pp.2148-2167, 2016.

P. Michael and . Hughes, Fifty years of dielectrophoretic cell separation technology, Biomicrofluidics, vol.10, issue.3, pp.1-9, 2016.

A. Mortadi, A. Melouky, E. G. Chahid, R. Moznine, and O. Cherkaoui, Studies of the clausius?ÄìMossotti factor, Journal of Physical Studies, vol.20, issue.4, pp.4001-4002, 2016.

S. Dash and S. Mohanty, Dielectrophoretic separation of micron and submicron particles: A review, ELECTROPHORESIS, vol.15, issue.52, pp.2656-2672, 2014.
DOI : 10.1007/s10404-013-1175-z

W. Carlo, Microtechnology for cell manipulation and sorting, 2017.

J. Gimsa, P. Marszalek, U. Loewe, and T. Y. Tsong, Dielectrophoresis and electrorotation of neurospora slime and murine myeloma cells, Biophysical Journal, vol.60, issue.4, pp.749-760, 1991.
DOI : 10.1016/S0006-3495(91)82109-9

P. Gascoyne, R. Pethig, J. Satayavivad, F. F. Becker, and M. Ruchirawat, Dielectrophoretic detection of changes in erythrocyte membranes following malarial infection, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1323, issue.2, pp.240-252, 1997.
DOI : 10.1016/S0005-2736(96)00191-5

L. Vladimir, G. Sukhorukov, M. Meedt, U. Kürschner, and . Zimmermann, A singleshell model for biological cells extended to account for the dielectric anisotropy of the plasma membrane, Journal of Electrostatics, vol.50, issue.3, pp.191-204, 2001.

E. A. Evans, P. L. , and C. , ntrinsic material properties ofbthe erythrocyte membrane indicated by mechanical analysis of deformation, 1975.

S. Sakuma, K. Kuroda, C. Tsai, W. Fukui, F. Arai et al., Red blood cell fatigue evaluation based on the close-encountering point between extensibility and recoverability, Lab on a Chip, vol.8, issue.6, p.1135, 2014.
DOI : 10.1039/c2sm26513c

G. Renaud, Approches microfluidiques pour la séparation de cellules parasitées, pp.1-167, 2015.

K. D. Nyberg, M. B. Scott, S. L. Bruce, A. B. Gopinath, D. Bikos et al., The physical origins of transit time measurements for rapid, single cell mechanotyping, Lab on a Chip, vol.1, issue.17, pp.163330-3339, 2016.
DOI : 10.1021/bm005583j

T. C. Fisher, F. J. Van-der-waart, and H. J. Meiselman, The Influence of Suspending Phase Viscosity on the Passage of Red Blood Cells Through Capillary-Size Micropores, Biorheology, vol.33, issue.2, pp.153-168, 1996.
DOI : 10.3233/BIR-1996-33204

M. Yamada, M. Nakashima, and M. Seki, Pinched Flow Fractionation:?? Continuous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel, Analytical Chemistry, vol.76, issue.18, pp.5465-5471, 2004.
DOI : 10.1021/ac049863r