.. General-procedure, 88 5.2.1 Search space and evaluation function 88 5.2.2 Top Move and restricted neighborhood 90 5.2.4 Generation of initial solution, 88 5.2.3 Heap structure, p.92

C. Cbts-?-1 and C. , Comparison between three different versions of the Constraint-Based Tabu Search procedure, p.70

. References and . Abello, Massive quasi-clique detection, Proceedings of the Latin American Symposium on Theoretical Informatics, pp.598-612, 2002.

J. Michael, H. Brusco, and . Köhn, Clustering qualitative data based on binary equivalence relations: neighborhood search heuristics for the clique partitioning problem ] Stanislav Busygin. A new trust region technique for the maximum weight clique problem, Psychometrika Discrete Applied Mathematics, vol.74, issue.9515, pp.685-99, 2006.

. Cai, . Lin, J. Cai, and . Lin, Fast solving maximum weight clique problem in massive graphs, Proceedings of the 25th International Joint Conference on Artificial Intelligence, IJCAI'16, pp.568-574, 2016.

2. Cai and . Cai, Local search for minimum vertex cover in massive graphs Carraghan and Pardalos, 1990 ] Randy Carraghan and Panos M Pardalos. An exact algorithm for the maximum clique problem Irène Charon and Olivier Hudry. The noising methods: A generalization of some metaheuristics Noising methods for a clique partitioning problem, Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI'15, pp.747-753, 1990.

J. Hao, Iterated responsive threshold search for the quadratic multiple knapsack problem, Annals of Operations Research, vol.226, issue.1, pp.101-131, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392206

M. George and . Church-cramton, Biclustering of expression data, Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology Yoav Shoham, and Richard Steinberg. Combinatorial Auctions, pp.93-103, 2000.

. Dawande, On Bipartite and Multipartite Clique Problems, Journal of Algorithms, vol.41, issue.2, pp.388-403, 2001.
DOI : 10.1006/jagm.2001.1199

. Amorim, Clustering and clique partitioning: simulated annealing and tabu search approaches Dijkhuizen and Faigle, 1993 ] G Dijkhuizen and U Faigle. A cutting-plane approach to the edge-weighted maximal clique problem Dorndorf and Pesch, 1994 ] Ulrich Dorndorf and Erwin Pesch. Fast clustering algorithms Erwin Pesch. Modelling robust flight-gate scheduling as a clique partitioning problem, Tuvi Etzion and Patric RJ Ostergard. Greedy and heuristic algorithms for codes and colorings. IEEE Transactions on Information Theory, pp.17-41, 1992.

. Fahle, Simple and Fast: Improving a Branch-And-Bound Algorithm for Maximum Clique, Proceedings of the 10th European Symposium on Algorithms (Algorithms ? ESA 2002), pp.485-498, 2002.
DOI : 10.1007/3-540-45749-6_44

URL : http://www.upb.de/cs/ag-monien/PUBLICATIONS/POSTSCRIPTS/tef_esa02.ps.gz

. Fang, An exact algorithm based on maxsat reasoning for the maximum weight clique problem Hardness of approximation of the balanced complete bipartite subgraph problem, Journal of Artificial Intelligence Research Weizmann Inst. Sci, vol.55, issue.26, pp.799-833, 2004.

R. Feo, A. Thomas, . Feo, G. Mauricio, and . Resende, Greedy Randomized Adaptive Search Procedures, Journal of Global Optimization, vol.68, issue.2, pp.109-133, 1995.
DOI : 10.1002/j.1538-7305.1989.tb00322.x

R. Feo, A. Thomas, . Feo, G. Mauricio, and . Resende, Greedy Randomized Adaptive Search Procedures, Journal of Global Optimization, vol.68, issue.2, pp.109-133, 1995.
DOI : 10.1002/j.1538-7305.1989.tb00322.x

H. Fu, . Zhang-hua, J. Fu, and . Hao, A three-phase search approach for the quadratic minimum spanning tree problem, Engineering Applications of Artificial Intelligence, vol.46, pp.113-130, 2015.
DOI : 10.1016/j.engappai.2015.08.012

H. Galinier, J. Galinier, and . Hao, Hybrid evolutionary algorithms for graph coloring, Journal of Combinatorial Optimization, vol.3, issue.4, pp.379-397, 1999.
DOI : 10.1023/A:1009823419804

J. Garey, R. Michael, D. S. Garey, and . Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, 1979.

L. Glover, F. Glover, and M. Laguna, Tabu Search, pp.42-63, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01412610

. Grosso, Simple ingredients leading to very efficient heuristics for the maximum clique problem, Journal of Heuristics, vol.21, issue.5, pp.587-612, 2008.
DOI : 10.1007/s10732-007-9055-x

W. Grötschel, Y. Grötschel, and . Wakabayashi, A cutting plane algorithm for a clustering problem, Mathematical Programming, vol.7, issue.1-3, pp.59-96, 1989.
DOI : 10.1007/BF01589097

W. Grötschel, Y. Grötschel, and . Wakabayashi, Facets of the clique partitioning polytope, Mathematical Programming, pp.367-387, 1990.
DOI : 10.1007/BF01580870

. Gujjula, A hybrid metaheuristic for the maximum k-plex problem, Examining Robustness and Vulnerability of Networked Systems. NATO Science for Peace and Security Series -D: Information and Communication Security, pp.83-92, 2014.

. Gutierrez-rodríguez, Mining patterns for clustering on numerical datasets using unsupervised decision trees. Knowledge-Based Systems, pp.70-79, 2015.

K. Hardiman, J. Stephen, L. Hardiman, and . Katzir, Estimating clustering coefficients and size of social networks via random walk, Proceedings of the 22nd international conference on World Wide Web, WWW '13, pp.539-550, 2013.
DOI : 10.1017/CBO9780511815478

. Hutter, Algorithm runtime prediction: Methods & evaluation, Artificial Intelligence, vol.206, pp.79-111, 2014.
DOI : 10.1016/j.artint.2013.10.003

. Jaehn, F. Pesch, E. Jaehn, and . Pesch, New bounds and constraint propagation techniques for the clique partitioning problem, Discrete Applied Mathematics, vol.161, issue.13-14, pp.2025-2037, 2013.
DOI : 10.1016/j.dam.2013.02.011

J. , M. Ji, E. John, and . Mitchell, Branch-and-price-and-cut on the clique partitioning problem with minimum clique size requirement, Discrete Optimization, vol.4, issue.87, pp.87-102, 2007.

H. Jin, Y. Jin, and J. Hao, General swap-based multiple neighborhood tabu search for the maximum independent set problem, Engineering Applications of Artificial Intelligence, vol.37, issue.40, pp.20-33, 2015.
DOI : 10.1016/j.engappai.2014.08.007

F. Jones, S. Jones, and . Forrest, Fitness distance correlation as a measure of problem difficulty for genetic algorithms, Proceedings of the 6th International Conference on Genetic Algorithms, pp.184-192, 1995.

M. Richard, W. Karp-]-brian, . Kernighan, . Shen-lin, and . Kirkpatrick, Reducibility among combinatorial problems An efficient heuristic procedure for partitioning graphs Optimization by simulated annealing Deniss Kumlander. A new exact algorithm for the maximum-weight clique problem based on a heuristic vertex-coloring and a backtrack search Konect: The koblenz network collection Snap: A general-purpose network analysis and graph-mining library, Complexity of Computer Computations Proceedings of the 5th International Conference on Modelling, Computation and Optimization in Information Systems and Management Sciences Proceedings of the 22nd International Conference on World Wide Web, WWW '13 Companion Leskovec and Sosi?, 2016 ] Jure Leskovec and Rok Sosi? ACM Transactions on Intelligent Systems and Technology (TIST), pp.36-291, 1970.

. Li, C. M. Quan, Z. Li, and . Quan, An efficient branch-and-bound algorithm based on MaxSAT for the maximum clique problem, Proceedings of the 24th AAAI Conference on Artificial Intelligence, AAAI'10, pp.128-133, 2010.

. López-ibánez, The irace package, iterated race for automatic algorithm configuration Noël Malod-Dognin, Rumen Andonov, and Nicola Yanev. Maximum cliques in protein structure comparison, Proceedings of the International Symposium on Experimental Algorithms, pp.106-117, 2010.

S. Mannino, E. Mannino, . Stefanutti-]-benjamin, . Mcclosky, V. Illya et al., An augmentation algorithm for the maximum weighted stable set problem Combinatorial algorithms for the maximum k-plex problem An exact branch and bound algorithm with symmetry breaking for the maximum balanced induced biclique problem Cluster detection in largescale social networks using k-plexes [ Moradi and Balasundaram, 2015 ] Esmaeel Moradi and Balabhaskar Balasundaram. Finding a maximum k-club using the k-clique formulation and canonical hypercube cuts. Optimization Letters Exact combinatorial algorithms and experiments for finding maximum k-plexes, DIMACS series in discrete mathematics and theoretical computer science Proceedings of the International Conference on AI and OR Techniques in Constriant Programming for Combinatorial Optimization Problems Proceedings of the IIE Annual Conference, page 1. Institute of Industrial and Systems Engineers (IISE) Properties of vertex packing and independence system polyhedra. Mathematical Programming, pp.205-219, 1974.

. Neveu, A candidate list strategy with a simple diversification device Maarten Oosten, Jeroen HGC Rutten, and Frits CR Spieksma. The clique partitioning problem: facets and patching facets, Proceedings of the International Conference on Principles and Practice of Constraint Programming, pp.423-437, 2001.
DOI : 10.1007/978-3-540-30201-8_32

Ö. Patric, R. Östergård, R. Patric, . Östergård, W. Manfred et al., A fast algorithm for the maximum clique problem On the facial structure of set packing polyhedra Mathematical programming A branch-andbound approach for maximum quasi-cliques Gintaras Palubeckis, Armantas Ostreika, and Ar¯ unas Tomkevi?ius. An iterated tabu search approach for the clique partitioning problem Clique relaxation models in social network analysis On the maximum quasi-clique problem On clique relaxation models in network analysis, Electronic Notes in Discrete Mathematics Handbook of Optimization in Complex Networks 2013b ] Jeffrey Pattillo, Nataly Youssef, and Sergiy Butenko, pp.153-156, 1973.

H. Pullan, . Pullan, H. Holger, . Pullan, M. William et al., Dynamic local search for the maximum clique problem Approximating the maximum vertex/edge weighted clique using local search Objective criteria for the evaluation of clustering methods Identification of a 5-protein biomarker molecular signature for predicting alzheimer's disease, Journal of Artificial Intelligence Research Journal of Heuristics Journal of the American Statistical Association PloS One, vol.25, issue.39 6, pp.159-185, 1971.

L. S. Ravi, E. L. Ravi, and . Lloyd, The Complexity of Near-Optimal Programmable Logic Array Folding, SIAM Journal on Computing, vol.17, issue.4, pp.696-710, 1988.
DOI : 10.1137/0217045

. Rebennack, A tutorial on branch and cut algorithms for the maximum stable set problem, International Transactions in Operational Research, vol.46, issue.4, pp.161-199, 2012.
DOI : 10.1002/net.20088

S. Segundo, An exact bit-parallel algorithm for the maximum clique problem, Computers & Operations Research, vol.38, issue.2, pp.571-581, 2011.
DOI : 10.1016/j.cor.2010.07.019

S. Seidman, F. Stephen, B. Seidman, L. Brian, and . Foster, Algorithm for optimal winner determination in combinatorial auctions A graph-theoretic generalization of the clique concept, Artificial Intelligence Journal of Mathematical sociology, vol.135, issue.7, pp.1-54139, 1978.

. Shahinpour, . Butenko, S. Shahinpour, and . Butenko, Algorithms for the maximum k-club problem in graphs, Journal of Combinatorial Optimization, vol.218, issue.11, pp.520-554, 2013.
DOI : 10.1016/j.ejor.2011.10.027

G. Singh, A. Singh, and . Gupta, A hybrid heuristic for the maximum clique problem, Journal of Heuristics, vol.24, issue.5, pp.5-22, 2006.
DOI : 10.4153/CJM-1965-053-6

. Soto, Three new upper bounds on the chromatic number, Discrete Applied Mathematics, vol.159, issue.18, pp.2281-2289, 2011.
DOI : 10.1016/j.dam.2011.08.005

URL : https://hal.archives-ouvertes.fr/hal-00648347

B. Mehdi and . Tahoori, Application-independent defect tolerance of reconfigurable nanoarchitectures, ACM Journal on Emerging Technologies in Computing Systems (JETC), vol.2, issue.57, pp.197-218, 2006.

B. Mehdi and . Tahoori, Low-overhead defect tolerance in crossbar nanoarchitectures, ACM Journal on Emerging Technologies in Computing Systems (JETC), vol.5, issue.2 9, p.11, 2009.

K. Tomita, T. Tomita, and . Kameda, An Efficient Branch-and-bound Algorithm for Finding a Maximum Clique with Computational Experiments, Journal of Global Optimization, vol.21, issue.1, pp.95-111, 2007.
DOI : 10.1007/978-1-4757-3023-4_1

S. Tomita, T. Tomita, and . Seki, An Efficient Branch-and-Bound Algorithm for Finding a Maximum Clique, Discrete Mathematics and Theoretical Computer Science, pp.278-289, 2003.
DOI : 10.1007/3-540-45066-1_22

. Trukhanov, Algorithms for detecting optimal hereditary structures in graphs, with application to clique relaxations, Computational Optimization and Applications, vol.22, issue.7, pp.113-130, 2013.
DOI : 10.1093/bioinformatics/btl014

B. Veremyev, A. Veremyev, and V. Boginski, Identifying large robust network clusters via new compact formulations of maximum k-club problems, European Journal of Operational Research, vol.218, issue.2, pp.316-326, 2012.
DOI : 10.1016/j.ejor.2011.10.027

. Veremyev, Exact MIP-based approaches for finding maximum quasi-cliques and dense subgraphs, Computational Optimization and Applications, vol.22, issue.7, pp.177-214, 2016.
DOI : 10.1093/bioinformatics/btl014

. Verma, Solving the Maximum Clique and Vertex Coloring Problems on Very Large Sparse Networks, INFORMS Journal on Computing, vol.27, issue.1, pp.164-177, 2015.
DOI : 10.1287/ijoc.2014.0618

Y. Wakabayashi and . Wakabayashi, Aggregation of binary relations: algorithmic and polyhedral investigations, 1986.

. Wang, Solving group technology problems via clique partitioning, International Journal of Flexible Manufacturing Systems, vol.24, issue.2, pp.77-97, 2006.
DOI : 10.1007/s10696-006-9011-3

URL : http://leeds-faculty.colorado.edu/glover/xQx - group technology - clique partitioning.pdf

. Wang, Solving the maximum vertex weight clique problem via binary quadratic programming, Journal of Combinatorial Optimization, vol.1, issue.1, pp.531-549, 2016.
DOI : 10.1016/S0377-2217(02)00129-7

URL : https://hal.archives-ouvertes.fr/hal-01412535

H. Warren, S. Jeffrey, . Warren, V. Illya, and . Hicks, Combinatorial branch-and-bound for the maximum weight independent set problem, Relatório Técnico, vol.9, p.17, 2006.

H. David, . Wolpert, G. William, and . Macready, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation, vol.1, issue.1, pp.67-82, 1997.

P. Wu, X. Wu, and . Hao, A parallel algorithm for enumerating all the maximal k-plexes Coloring large graphs based on independent set extraction, Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp.476-483, 2007.

H. Wu, J. Wu, and . Hao, An adaptive multistart tabu search approach to solve the maximum clique problem, Journal of Combinatorial Optimization, vol.39, issue.7, pp.86-108, 2013.
DOI : 10.1016/j.cor.2011.09.010

H. Wu, J. Wu, and . Hao, A hybrid metaheuristic method for the Maximum Diversity Problem, European Journal of Operational Research, vol.231, issue.2, pp.452-464, 2013.
DOI : 10.1016/j.ejor.2013.06.002

H. Wu, J. Wu, and . Hao, A review on algorithms for maximum clique problems, European Journal of Operational Research, vol.242, issue.3, pp.693-709
DOI : 10.1016/j.ejor.2014.09.064

H. Wu, J. Wu, J. Wu, and . Wu, A clique-based exact method for optimal winner determination in combinatorial auctions Multi-neighborhood tabu search for the maximum weight clique problem Predicting interactions in protein networks by completing defective cliques A low time complexity defect-tolerance algorithm for nanoelectronic crossbar, Proceedings of the 2011 International Conference on Information Science and Technology (ICIST), pp.355-365, 2006.

L. Yuan, B. Yuan, and B. Li-yuan, A fast extraction algorithm for defect-free subcrossbar in nanoelectronic crossbar A new evolutionary algorithm with structure mutation for the maximum balanced biclique problem, ACM Journal on Emerging Technologies in Computing Systems (JETC) IEEE Transactions on Cybernetics, vol.10, issue.83, pp.25-661040, 2014.

. Zhi-xiao, Ding Xiao-fang, and Tang Jin-hui. Overlapping community detection based on node location analysis. Knowledge-Based Systems, pp.225-235, 2016.

H. Zhou, Y. Zhou, and J. Hao, Combining tabu search and graph reduction to solve the maximum balanced biclique problem, 2017.

H. Zhou, Y. Zhou, and J. Zhou, Frequency-driven tabu search for the maximum s -plex problem, Computers & Operations Research, vol.86, issue.322 2, pp.65-78, 2016.
DOI : 10.1016/j.cor.2017.05.005

URL : https://hal.archives-ouvertes.fr/hal-01532909

. Zhou, PUSH: A generalized operator for the Maximum Vertex Weight Clique Problem, European Journal of Operational Research, vol.257, issue.1, pp.41-54, 2017.
DOI : 10.1016/j.ejor.2016.07.056

URL : https://hal.archives-ouvertes.fr/hal-01426414