Transferts de chaleur et de masse lors de l’impact d’une goutte sur une paroi chaude en régime d’ébullition en film : application de diagnostics optiques et modélisation - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2017

Heat and mass transfert at the impact of a droplet in the film boiling regime : Application of optical diagnostics and modelling

Transferts de chaleur et de masse lors de l’impact d’une goutte sur une paroi chaude en régime d’ébullition en film : application de diagnostics optiques et modélisation

Résumé

The understanding of phenomena occurring at the impact of a droplet onto a hot wall is crucial for the optimization of spray cooling systems. When the temperature of the wall is high, a vapor layer appears quasi-instantaneously between the droplet and le wall. This film of vapor modifies the hydrodynamic behavior of the droplet and highly reduce the heat and mass transfers in comparison with a wetting impact. Modelling these phenomena is complex because of the numerous coupling between the heat and mass transfers and the fluids dynamic. To get some insights into this phenomenon, optical diagnostic techniques have been developed. Two color planar laser induced fluorescence imaging allows characterizing the distribution of the temperature inside the droplet. Images of the temperature fields, resolved both spatially and temporally, are recorded thanks to the use of a couple of fluorescent dyes keeping a high temperature sensitivity even when they are excited by a nanosecond pulsed laser with and an energy of hundreds m J. In parallel, the infrared thermography is used to determine the temperature of the impinged surface made of sapphire. For that, this surface is coated with a thin film (about 300 nanometers) of TiAlN, highly emissive in the IR domain as opposed to the sapphire which is transparent in it. High frame rate image sequences are analyzed thanks to an analytical inversion model, taking into account the thermal conduction in the sapphire, in order to estimate the heat flux density at the impact surface. The thickness of the vapor layer was also deduced from this measurements thanks to the hypothesis of a dominant thermal conduction in the vapor layer. A study of water drop impact was performed with different impact speeds, wall temperatures and different drop injection temperatures. In most of the cases, the heat flux extracted from the wall in close to the flux transferred to the liquid phase of the droplet. When the wall temperature approaches or exceeds the Leidenfrost temperature, the transfers become more sensitive to the Weber number and less sensitive to the wall temperature. The vapor layer thickness is affected by instabilities whose caracteristics (wavelengths, amplitude) were investigated from the IR images. Eventually, a 1-Dsemi-empirical model is given for describing the heating of the liquid part of the droplet and the growth of vapor layer. The effect of the pressure exerted by the droplet onto the vapor film rapidly decreases during the impact process, so that the growth of the vapor film is only driven by the heat transferred by conduction to the droplet and not by dynamical parameters such as the impact velocity
La compréhension des phénomènes se déroulant lors de l’impact d’une goutte sur une paroi chaude est essentielle à l’optimisation des systèmes de refroidissement par sprays. Lorsque la température de paroi est élevée, un film de vapeur se forme quasi-instantanément entre la goutte et la paroi chaude. Ce film modifie le comportement hydrodynamique des gouttes et réduit considérablement les échanges de chaleur et de masse par rapport à un impact mouillant. La modélisation de ces phénomènes est complexe en raison des nombreux couplages entre les transferts de chaleur et de masse et la dynamique d’impact de la goutte. Pour aborder ce sujet, des techniques de mesure optiques ont été développées spécifiquement. L’imagerie de fluorescence induite par plan laser à deux couleurs permet de caractériser la distribution de la température à l’intérieur des gouttes. Des images du champ de température, résolues à la fois spatialement et temporellement, sont rendues possible grâce à l’utilisation d’un nouveau couple de colorants fluorescents conservant une grande sensibilité à la température quand ils sont excités par un laser pulsé nanoseconde d’une énergie de plusieurs centaines de mJ. En parallèle, la thermographie infrarouge a été utilisée pour déterminer la température de la surface d’impact en saphir. Pour cela, cette dernière est recouverte d’une couche de quelques centaines de nanomètres de TiAlN, émissif dans l’IR alors que le saphir est transparent. Les images haute cadence sont analysées par un modèle d’inversion, prenant en compte la conduction thermique dans le saphir, afin d’estimer la densité de flux thermique au niveau de la surface d’impact. L’épaisseur du film de vapeur est également déduite de ces mesures sous l’hypothèse, justifiée a posteriori, d’une conduction thermique prépondérante dans le film de vapeur. Une étude de l’impact de gouttes d’eau est réalisée en faisant varier la vitesse d’impact et la température des gouttes avant impact, ainsi que la température de paroi. Dans la plupart des cas, la chaleur extraite à la paroi est comparable à celle transférée au liquide pour l’échauffer. Lorsque la température de paroi se rapproche et dépasse la température de Leidenfrost, les transferts de chaleur deviennent de plus en plus sensibles au nombre de Weber, et de moins en moins dépendant de la température de paroi. L’épaisseur du film de vapeur est affectée par des instabilités, dont les caractéristiques (longueur d’onde, amplitude) sont étudiées à partir des images IR. Finalement, un modèle 1D semi empirique est proposé pour décrire l’échauffement des gouttes et la croissance du film de vapeur. La pression exercée par la goutte sur le film de vapeur se dissipe très vite à l’impact, si bien que la croissance du film de vapeur est gouvernée par la conduction de la chaleur vers la goutte et non par la dynamique de l’impact
Fichier principal
Vignette du fichier
DDOC_T_2017_0290_CHAZE.pdf (19.38 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-01705075 , version 1 (09-02-2018)

Identifiants

  • HAL Id : tel-01705075 , version 1

Citer

William Chaze. Transferts de chaleur et de masse lors de l’impact d’une goutte sur une paroi chaude en régime d’ébullition en film : application de diagnostics optiques et modélisation. Milieux fluides et réactifs. Université de Lorraine, 2017. Français. ⟨NNT : 2017LORR0290⟩. ⟨tel-01705075⟩
281 Consultations
86 Téléchargements

Partager

Gmail Facebook X LinkedIn More