
HAL Id: tel-01705061
https://theses.hal.science/tel-01705061

Submitted on 9 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Elicitation and planning in Markov decision processes
with unknown rewards

Pegah Alizadeh

To cite this version:
Pegah Alizadeh. Elicitation and planning in Markov decision processes with unknown rewards. Com-
puters and Society [cs.CY]. Université Sorbonne Paris Cité, 2016. English. �NNT : 2016USPCD011�.
�tel-01705061�

https://theses.hal.science/tel-01705061
https://hal.archives-ouvertes.fr

Université Paris 13

École Doctorale Galilée

THÈSE

présentée par

Pegah ALIZADEH

pour obtenir le grade de

DOCTEUR D’UNIVERSITÉ
Spécialité: INFORMATIQUE

Elicitation and Planning in Markov Decision Processes

with Unknown Rewards

soutenue publiquement le 09 Décembre 2016 devant le jury :

Nicolas MAUDET Rapporteur
Bruno ZANUTTINI Rapporteur
Jérôme LANG Examinateur
Henry SOLDANO Examinateur
Paolo VIAPPIANI Examinateur
Yann CHEVALEYRE Directeur de thése

RÉSUMÉ

Les processus décisionnels de Markov (MDPs) modélisent des problèmes de décisions
séquentielles dans lesquels un utilisateur interagit avec l’environnement et adapte son
comportement en prenant en compte les signaux de récompense numérique reçus. La so-
lution d’un MDP se ramène à formuler le comportement de l’utilisateur dans l’environnement
à l’aide d’une fonction de politique qui spécifie quelle action choisir dans chaque situa-
tion. Dans de nombreux problèmes de décision du monde réel, les utilisateurs ont des
préférences différentes, donc, les gains de leurs actions sur les états sont différents et de-
vraient être re-décodés pour chaque utilisateur. Dans cette thèse, nous nous intéressons
à la résolution des MDPs pour les utilisateurs ayant des préférences différentes.

Nous utilisons un modèle nommé MDP à Valeur vectorielle (VMDP) avec des récom-
penses vectorielles. Nous proposons un algorithme de recherche-propagation qui permet
d’attribuer une fonction de valeur vectorielle à chaque politique et de caractériser chaque
utilisateur par un vecteur de préférences sur l’ensemble des fonctions de valeur, où le
vecteur de préférence satisfait les priorités de l’utilisateur. Etant donné que le vecteur
de préférences d’utilisateur n’est pas connu, nous présentons plusieurs méthodes pour
résoudre des MDP tout en approximant le vecteur de préférence de l’utilisateur.

Nous introduisons deux algorithmes qui réduisent le nombre de requêtes nécessaires
pour trouver la politique optimale d’un utilisateur: 1) Un algorithme de recherche-
propagation, où nous propageons un ensemble de politiques optimales possibles pour
le MDP donné sans connaître les préférences de l’utilisateur. 2) Un algorithme interactif
d’itération de la valeur (IVI) sur les MDPs, nommé algorithme d’itération de la valeur
basé sur les avantages (ABVI) qui utilise le clustering et le regroupement des avantages.
Nous montrons également comment l’algorithme ABVI fonctionne correctement pour
deux types d’utilisateurs différents: confiant et incertain.

Nous travaillons finalement sur une méthode d’approximation par critére de regret mini-
max comme méthode pour trouver la politique optimale tenant compte des informations
limitées sur les préférences de l’utilisateur. Dans ce système, tous les objectifs possibles
sont simplement bornés entre deux limites supérieure et inférieure tandis que le système

i

ne connaît pas les préférences de l’utilisateur parmi ceux-ci. Nous proposons une méth-
ode heuristique d’approximation par critère de regret minimax pour résoudre des MDPs
avec des récompenses inconnues. Cette méthode est plus rapide et moins complexe que
les méthodes existantes dans la littérature.

ABSTRACT

Markov decision processes (MDPs) are models for solving sequential decision problems
where a user interacts with the environment and adapts her policy by taking numerical
reward signals into account. The solution of an MDP reduces to formulate the user
behavior in the environment with a policy function that specifies which action to choose in
each situation. In many real world decision problems, the users have various preferences,
and therefore, the gain of actions on states are different and should be re-decoded for
each user. In this dissertation, we are interested in solving MDPs for users with different
preferences.

We use a model named Vector-valued MDP (VMDP) with vector rewards. We propose a
propagation-search algorithm that allows to assign a vector-value function to each policy
and identify each user with a preference vector on the existing set of preferences where
the preference vector satisfies the user priorities. Since the user preference vector is not
known we present several methods for solving VMDPs while approximating the user’s
preference vector.

We introduce two algorithms that reduce the number of queries needed to find the op-
timal policy of a user: 1) A propagation-search algorithm, where we propagate a set
of possible optimal policies for the given MDP without knowing the user’s preferences.
2) An interactive value iteration algorithm (IVI) on VMDPs, namely Advantage-based
Value Iteration (ABVI) algorithm that uses clustering and regrouping advantages. We
also demonstrate how ABVI algorithm works properly for two different types of users:
confident and uncertain.

We finally work on a minimax regret approximation method as a method for finding
the optimal policy w.r.t the limited information about user’s preferences. All possible
objectives in the system are just bounded between two higher and lower bounds while the
system is not aware of user’s preferences among them. We propose an heuristic minimax
regret approximation method for solving MDPs with unknown rewards that is faster and
less complex than the existing methods in the literature.

iii

Contents

Contents iv

List of Figures vi

List of Tables viii

Abbreviations ix

Notations x

1 Introduction 1

2 Preliminaries 5
2.1 Markov Decision Processes . 5

2.1.1 Primal Formulation . 9
2.1.2 From Primal to Dual Formulation 13

2.2 MDPs with Unknown Rewards . 15
2.2.1 General Setting . 16

2.2.1.1 Robust Objective Functions 20
2.2.2 Reward Vectors . 21
2.2.3 Multi-Objective MDPs with Linear Scalarization 22

2.2.3.1 Categorized rewards . 24
2.2.4 Non-dominated Policies . 25

2.3 Conclusion . 26

3 A Survey of Problems and Algorithms in IRMDPs 28
3.1 Choosing a Robust Policy under Uncertainty 29
3.2 Learning from Observed Behaviours . 35
3.3 Preference Elicitation . 38

3.3.1 Elicitation Based on Minimax Regret 39
3.3.2 Accelerate Minimax Regret Elicitation Method 40
3.3.3 Reward Elicitation with Policy Iteration 45
3.3.4 Reward Elicitation with Value Iteration 47

3.4 Conclusion . 50

4 Elicitation Methods with Iteration Based Approaches 51
4.1 VMDP General Properties . 52
4.2 Comparing Policies Produces Cuts on Polytope ⇤ 53
4.3 Advantages . 54

iv

Contents v

4.4 Propagation-Search Algorithm for VMDPs 56
4.4.1 Describing ¯V Members Using Advantages 58
4.4.2 How to approximate ¯V with ✏ precision 60
4.4.3 Searching Optimal V ⇤ by Interaction with User 64
4.4.4 Theoretical implications . 67
4.4.5 Experimental Evaluation . 68

4.4.5.1 Simulation domains: random MDPs 69
4.5 Advantage Based Value Iteration Algorithm for VMDPs 72

4.5.1 ABVI Algorithm . 73
4.5.2 Experimental Evaluation . 79

4.5.2.1 Simulation Domains: Random MDPs with Confident User 80
4.5.2.2 Simulation Domains: Random MDPs with Uncertain User 83

4.6 Conclusion and Discussion . 85

5 Computing Robust Policies with Minimax Regret Methods 86
5.1 Selected Random Points Method . 87
5.2 Experimental Results . 89

5.2.1 Simulation Domains . 90
5.3 Conclusion and Discussion . 91

6 Conclusions and Perspectives 92
6.1 Reward Weight Elicitation . 93
6.2 Solve VMDP with Polytope ⇤ approximately 94
6.3 Long Term Perspective and Applications 95

A Some Robust Approaches in MDPs with Ambiguous Transition Prob-
abilities 97

Bibliography 101

List of Figures

2.1 City divisions into 8 location areas . 7
2.2 Mobility graph on location areas . 7
2.3 Movement on four states {A,B,C,D}. 8

3.1 An MDP for comparing Minimax regret and Maximin solutions 31
3.2 Illustration of value as a linear function of reward 41

4.1 An example of polytope ⇤ for VMDP with reward vectors of dimension 2

(d = 2). 52
4.2 An example of ¯V polytope including vector-valued functions for VMDPs

with two objectives. 52
4.3 Structure tree of ¯V exploration. 59
4.4 ¯V

t+1 vectors selection after tree extension of ¯V
t

. 63
4.5 Generated non-dominated vectors for an MDP with 128 states, 5 actions,

d = 3 and ✏ = 0.01 (Algorithm 12) . 63
4.6 Average cardinal of non-dominated vectors generated by Algorithm 12 . . 70
4.7 These graphs illustrate how algorithm 12 behaves on MDPs with 5 actions

and two different number of states 128 and 256. Also d = 4 and ✏ precision
is 0.05 . 70

4.8 Error and number of non-dominated vector-valued functions v.s. iterations
in Algorithm 12 . 70

4.9 An example of small VMDP with 2 states and 6 actions. 75
4.10 Plotted Advantages in 2-dimensional space including sportive and artistic

activities. 75
4.11 Clustering on advantages for a given VVMDP with 2-dimensional ¯�s. Each

different group points constitutes a cluster and each vector is equivalent
to the sum of ¯�s in the corresponding cluster. 78

4.12 These graphs illustrate errors vs the number of queries answered by a
confident user where |S| = 128 and m = 5 for d = 4, 5, 6, 7, 8, 9 80

4.13 These graphs illustrate errors vs the number of queries answered by a
confident user where |S| = 256 and d = 3, 4, 5, 6 81

4.14 number of queries vs number of states for ivi and three different ABVI
with various value of parameter � for clustering advantages. 83

4.15 number of queries vs dimension d for ivi and three different ABVI with
various value of parameter � for clustering advantages. 83

vi

List of Figures vii

4.16 These graphs illustrate errors vs the number of queries answered by con-
fident user and uncertain user where |S| = 128 and d = 4. The upper
left figure illustrates the performance of algorithms for confident user
while the rest of figures are for uncertain user with ✓ = 0.001, 0.01 and
0.1 respectively for top-right, bottom-left and bottom-right. 84

5.1 Changing of states and actions vs calculation time for minimax regret. . . 90
5.2 Scaling of ICG algorithm, number of states vs time [Regan and Boutilier,

2008] . 90
5.3 Scaling of minimax regret computation (line plot on left y-axis) and non-

dominated policies (scatter plot on right y-axis) w.r.t. number of states
[Regan and Boutilier, 2010] . 90

List of Tables

2.1 probability distribution function T for cab driver. 8

4.1 |V
✏

| as a function of precision ✏. Results are averaged on 10 random MDPs
with |A| = 5. 69

4.2 Average results on 5 iterations of MDP with |S| = 128, |A| = 5 and
d = 2, 3, 4. The Propagation algorithm accuracy is ✏ = 0.2 . The results
for the Search algorithm have been averaged on 50 random ¯� 2 ⇤ (times
are in seconds). 71

4.3 Average results on 5 iterations of MDP with |S| = 128, |A| = 5 and
d = 2, 3, 4. The Propagation algorithm accuracy is ✏ = 0.1 . The results
for the Search algorithm have been averaged on 50 random ¯� 2 ⇤ (times
are in seconds). 72

4.4 A table for advantages ¯A(s, a) . 74

viii

Abbreviations

ABVI Advantage Based Value Iteration

CS Current Solution

HLG Halve Largest Gap

IRL Inverse Reinforcement Learning

IRMDP Imprecise Reward Markov Decision Process

IVI Interactive Value Iteration

LP Linear Programming

MDP Markov Decision Process

MMR MiniMax Regret

MOMDP Multi Objective Markov Decision Process

ND Non-Dominated

PAPI Preference-based Approximate Policy Iteration

PBDP Preference-Based Decision Process

PBPI Preference-based Policy Iteration

PBRL Preference-based Reinforcement Learning

PSVI Propagation-Search Value Iteration

RL Reinforcement Learning

SRPM Selected Random Points Method

SRSA State Action Reward State Action

VMDP Vector-valued Markov Decision Process

ix

Notations

Vectors ¯ x̄ = (x1, . . . , x
d

) = [x1, . . . , x
d

]

T (dimension d)

P-norm || ||
p

||x̄||
p

=

p

qP
d

i=1 x
p

i

|| ||1 ||x̄||1 =
P

d

i=1 |xi|

|| ||1 ||x̄||1 = max
i

|x
i

|

CH-vertices(c) CH � vertices(c) the set of vertices of the convex hull built on the cluster c

x

Chapter 1

Introduction

Suppose Bob is a taxi driver, he drives in a city with several area zones. He can start

his work from any area zone in the city and he picks up many clients during a day while

moving among area zones. Suppose his goal is to increase his income by maximizing his

total rout length during the day. Assume that he uses a computer which has also access

to some statistics about traffic like, for example, for each road, it knows what is the

probability of being slowed down. With this new information, the environment may now

be modeled as a stochastic Markov Decision Process (MDP) and Bob’s optimal strategy

can be explored using MDP.

On the other hand, suppose that a generic taxi driver follows several goals at the end

of the day, such as maximizing the average speed, minimizing the fuel consumption,

minimizing the latency and so on. With this new information, the long term effectiveness

of each decision in each area zone have several aspects regarding to the defined objectives

in the environment. For instance by being in a junction T , an action like turning to the

right can be evaluated as a good action w.r.t minimizing the fuel consumption while it

is a bad action w.r.t maximizing the average speed. Then, instead of defining one single

value for every state and decision, we assign several values for effect of one decision in

one situation. By supposing d objectives in the environment, effects of decisions can be

defined as d dimensional vectors.

Moreover, assume each driver has different types of preferences among objectives. For

instance, Bob may prefer to minimize the fuel consumption more than maximizing the

average speed or his colleague may prefer to maximize the average speed and minimize

1

Chapter 1. Introduction 2

the latency while he does not care about fuel consumption. Thus, the best strategy for

Bob, is not the best for his colleague. Recall that, in the taxi driver’s mind, preferences

on objectives are ordinal rather than cardinal. It means that they can not evaluate

routes with a single number, but for the two given routes A and B, they can naturally

tell which one they prefer. Thus to find the most satisfying rout plan during the day

for each given driver, the computer will have to ask each driver many queries in order

to elicit his preferences. These queries might be of the form “do you prefer route A to

route B ?”. Based on these queries, the computer will build a compact model of driver’s

preferences, and it will then compute the driver’s preferred routes.

Markov decision process (MDP) is a model for solving sequential decision problems where

a user like Bob interacts with environment and adapts his policy by taking numerical

reward signals into account. Typically, these models include the states of environment,

the possible actions that agent can perform in each state, and the efficacy of each action

in each state w.r.t performing a task in the environment. The effect of states on the

environment should be specified as numerical feedback, namely rewards. The solution of

decision theoretic model as MDP is to formulate the user behavior in the environment

with a function, namely policy that specifies which action to choose in each state. If

MDP parameters are given numerically, most reinforcement learning (RL) agent can

autonomously learn any task. In this dissertation, we focus on MDPs with infinite size,

i.e. MDPs without any final states such as the taxi driver example who starts in a start

state and continues driving for a whole day.

In most of the research on planning in decision problems, the effects of actions in each

state are codified in scalar rewards. Therefore, the solution is the policy with the max-

imum expected sum of rewards. There are many real world decision problems like taxi

driver’s problem that users have various preferences, and therefore, effect of actions on

states are different and should be re-decoded for each user. To solve these kinds of prob-

lems, it is required to model MDP while reward values are unknown. More specifically,

we assume MDPs with not-given rewards; the only information on rewards is that they

are bounded in some intervals. A typical method for finding the optimal policy is us-

ing the optimization solution with respect to bounded polytope of all unknown rewards.

Therefore our first approach is a robust approach; i.e. what can we say about optimal

solutions, if we have a few information about rewards. In this part, we try to answer

Chapter 1. Introduction 3

these questions: Is it possible to reduce complexity of optimization calculation?, Can we

find a faster and more precise method rather than existed approaches in the literature?.

There are many tasks that are more naturally described in terms of multiple, possibly

conflicting objectives, e.g., a traffic control system should minimize both travel time

and fuel costs for a car [Roijers et al., 2013]. For these cases, it is more convenient

to define rewards as vectors. It means, effect of each action in any state should be

defined as vector such that each element of vector represents the action effect w.r.t

one of objective in the system. If rewards are vectors, the value of each policy will be

vectors too. This form of MDP with vector rewards is known as Vector-valued MDP

(VMDP). Technically, if the preferences of the user among objectives are not known,

finding a policy maximizing objectives is not neither possible nor satisfying for different

users with different preferences. One idea is to assign a weight vector to each user w.r.t

her preferences among the objectives. For instance, for traffic control system, if the

selected driver prefers to only minimize her fuel consumption, the vector weight on two

objectives including the travel time and the fuel costs is (0, 1). In fact, rewards are

linear combination of objective rewards. Another question regarding this part is that

is it possible to approximate each user weight vector on objectives?, except optimization

solutions, is there another method to find the optimal policy with respect to the unknown

bounded reward weight vector?

Any optimization method on MDPs with unknown rewards depends on our information

about rewards. If there isn’t enough information, the optimal solution will not be precise

enough. To gain more information on rewards, it is required to communicate with users.

A user’s response to only one question on preferences between objectives can give us lots

of information about the reward values. Therefore, another part of this thesis concen-

trates on the communication with user by generating various types of queries. This part

can be implemented on two different views: MDPs with unknown rewards and VMDPs

with unknown weight vectors. Thus, for two different models we are looking for answers

to these questions: Which type of queries should be proposed to the user in each model?,

how to generate queries heuristically or precisely, when each query should be proposed to

the user inside different policy calculation methods? and is it possible to reduce number

of queries as small as possible?

Chapter 1. Introduction 4

This thesis is divided into four main chapters. In chapter 2, we present a general back-

ground on Markov Decision Processes with unknown rewards. We introduce various

structures of MDPs that have been used in the literature. In chapter 3, we review the

work done so far in the field of sequential decision making under uncertainty. We first

present some approaches that learn from observing an expert behavior in performing a

task that should be learned by the system. Second, we introduce some methods in the

literature that learn the optimal solution of MDPs by comparing preferences of user on

various trajectories. And finally, we illustrate some settings to learn the optimal solution

using communicating with users and preference elicitation during the optimal solution

computation process.

Chapter 4 presents our two main contributions; In the first approach we present how

to propagate all possible optimal policies without knowing user preferences. It means,

for each user with different list of preferences, her optimal solution should be contained

inside the set of explored optimal policies. Since this set includes all required information

for finding optimal policies, we do not require MDPs anymore. Our second contribution

of this chapter is communicating with user and learning her best satisfied policy from

the small explored set of optimal policies. It means, the system carries the huge part

of calculations on its part and consequently asks a few number of questions to the user.

Another contribution is to reduce the prepossessing computation complexity. For this

reason we modify interactive value iteration algorithm by clustering advantages. This

method is supposed to converge faster to the optimal policy after asking fewer number

of queries.

Our final contribution of this thesis in Chapter 5 is to propose a faster and less compli-

cated approximation method for solving MDPs with unknown rewards using minimax

regret method.

Chapter 2

Preliminaries

Foreword

Markov Decision Processes (MDPs) [Puterman, 2005] have proven to be successful in

many systems that are controlled by sequential decisions, as game playing [Fearnley,

2010], robotics [Girard, 2014] and finance [Bäuerle and Rieder, 2011] among other models.

They propose suitable frameworks for decision-making and optimally acting in stochas-

tic environments. They generally assume a complete and correct world model, with

stochastic state transitions and reward functions. This chapter first establishes the ba-

sic terminology and essential concepts related to MDPs (section 2.1), and then reviews

different types of MDPs that have been proposed to model the environment in case of

uncertainty in this modeling and some related definitions (section 2.2).

2.1 Markov Decision Processes

Formally, a discrete-time Markov Decision Process (MDP) is defined by a tuple of 6

quantities, (S,A, p, r, �,�). These characteristics are :

• States. The finite set of all states is denoted by S = {s1, s2, · · · , sn}. The States

are completely observable. The number of states is denoted by n or |S|.

5

Chapter 2. Preliminaries 6

• Actions. The agent has the opportunity to interact with the environment by exe-

cuting an action from the finite set of actions denoted by A = {a1, a2, · · · am}. The

number of actions is denoted by m or |A|.

• State Transition Probability Distribution. p(s0|s, a) encodes the probability of going

to state s0 when the agent is in state s and chooses action a. Since p is a conditional

probability distribution, one has 8(s, a),
P

s

02S p(s0|s, a) = 1 (In literature, the

state transition probability function has been represented with transition table T

too).

• Reward (cost) Function. r : S ⇥ A �! R, quantifies the utility of performing

action a in state s. There exist other formulation for reward functions e.g. r :

S ⇥A⇥ S �! R or S �! R.

• Discount Factor. � 2 [0, 1) indicates how less important are future rewards com-

pared to the immediate ones.

• Initial States Distribution. �(s) : S �! [0, 1] indicates that the probability the

agent starts her1 interactions with the environment in state s is �(s). Since � is a

probability distribution on S,
P

s2S �(s) = 1.

We consider infinite horizon processes where the future rewards are exponentially dis-

counted with �. We illustrate the MDP model with a navigation problem for a cab driver

[Bhattacharya and Das, 2002, Ziebart et al., 2008] as below.

Example 2.1. We consider a cab driver in a city that is divided into 8 location areas

(LAs) {A,B,C,D,E, F,G,H} (See Figure 2.1). The accessibility among LAs is illus-

trated in Figure 2.2. In each area, the driver can decide moving to another area in four

directions North, East, South and West or staying in the same area. The observation

of the history of residents movements [Bhattacharya and Das, 2002] from 9 a.m. to 9

p.m. allows us to define for each zone, the probability of being visited by residents. The

results indicate that zones E,F,G and H are never visited by residents and hence they

can be excluded from our analysis. In Figure 2.3 is presented the MDP associated to

the possible movements of the taxi. We suppose that the action “stay” fails in 10% of

the cases and does not stay in the same zone. All together, the four “move” actions re-

sult in a change of zone with a probability of 90% according to Figure 2.3 and 10% in
1we will refer to the agent as ‘she’

Chapter 2. Preliminaries 7

h a

g

b c

d

ef

H A

B

G

C

D

F E

Figure 2.1: City divisions into 8 lo-
cation areas

a b c

d

ef

gh

A B C

D

H G

F E

Figure 2.2: Mobility graph on loca-
tion areas

other possible zones. The transition probabilities among the zones are given in Table 2.1.

Therefore, the behavior of the cab driver can be modeled as an MDP:

• S = {A,B,C,D}

• A = {North,East, South,West, Stay}. Note that the effect of actions in states

are not deterministic.

• T is illustrated in Table 2.1. As an example the probability of moving to state B

from state C after choosing action move West is 0.9 i.e. p(B|C,West) = 0.9. In

the table, the acronyms St, N, E, S, W represent respectively Stay, North, East,

South and West in the table.

• r gives a negative feedback to each action that is not compliant with the the goal of

the driver, the start zone and destination zone of the cab driver. For example if the

driver goal is to always drive in zone A and staying in the same zone regardless of

Chapter 2.Preliminaries 8

Figure 2.3:Movement on four states{A,B,C,D}.

p(s0|s, a) A B C D

s0 s St N E S W St N E S W St N E S W St N E S W

a 0.9 - - - - 0.033 0.9 0.05 0.05 - - - - - - - - - - -
b 0.1 - - 1 - 0.9 - - - - 0.05 - - 0.1 0.9 0.05 0.5 - - -
c - - - - - 0.033 0.05 0.9 0.05 - 0.9 - - - - 0.05 0.5 - - -
d - - - - - 0.033 0.05 0.05 0.9 - 0.05 - - 0.9 0.1 0.9 - - - -

Table 2.1:probability distribution functionTfor cab driver.

her start point, the feedback of going to zonesB, CandDare� 1while going to

zoneAhas reward1.

•� has a value between0and1. We select it equal0.9in this example.

•� should be defined according to the probability of starting the process in a given

state. For instance in our case the taxi driver drives all the time (thehorizonis infi-

nite). Thus, she can initiate the process in any state, i.e.8s2{A,B,C,D},� (s)=

0.25.

After modeling the problem, the problem should be solved. An MDP can be executed

for a given number of steps (finite horizon) or endlessly (infinite horizon). To execute an

MDP, we need an elementary policy⇡. An elementary policy for an MDP selects actions

according to the state:

•⇡can bedeterministic:⇡:S�! Ais a function from the set of statesSinto the

set of actionsA.

Chapter 2. Preliminaries 9

• stochastic: ⇡ : S �! P(A) is a function from the set of states S into the set of prob-

ability distributions over actions. For any s, a , this function can be demonstrated

as ⇡(s, a) too.

There are potentially two sources of randomness on the actions selection2 which combine

freely in MDPs: the non-determinism of effect of actions is coded in the State Transition

table T (the image of an action is a probability distribution over states), while the non-

determinism of choice of actions is coded in the stochastic elementary policies. Any one

of these sources has the full expressive power of both combined.

Definition 2.1. A policy ⇡ at a finite horizon h is a sequence of h elementary policies,

⇡ = (⇡1,⇡2, · · ·⇡
h

) where each ⇡
i

is used once in turn.

When all the ⇡
i

are identical, the policy is said stationary. This is the only case considered

when the horizon is unbounded. Strictly speaking, at the infinite horizon a policy is

an infinite sequence of identical elementary policies ; in practice, it is noted as single

elementary policy.

The set of deterministic policies at horizon h for a MDP (resp. stochastic policies) is

indicated ⇧

D

h

(resp. ⇧

S

h

). The set of deterministic policies (resp. stochastic policies)

with infinite horizon is indicated ⇧

D

1 (resp. ⇧S

1). Recall that the polices studied in this

thesis have an infinite horizon, hence are stationary. They are also deterministic, while

actions have stochastic effects. The set of all stationary policies for an MDP is noted ⇧

and has cardinality |A||S|.

In order to compare policies and find the policy which is best compliant to the MDP

goal, it is required to assign a real value to each policy. Techniques of policy evaluation

and comparison are presented in the following sections.

2.1.1 Primal Formulation

For each state s, the utility of a stationary policy ⇡ is the expected discounted sum of

rewards starting in state s. The evaluation function of each policy is called its Value

function and it is defined by V ⇡

: S �! R:
2Because there is a third potential source of randomness in MDPs, namely, stochastic rewards.

Chapter 2. Preliminaries 10

V ⇡

(s) = E
⇡

" 1X

t=0

�tr(s
t

, a
t

)|s0 = s

#
(2.1)

It is known that V ⇡ satisfies the following recursive equation:

8 s, V ⇡

(s) = r(s,⇡(s)) + �
X

s

02S
p(s0|s,⇡(s))V ⇡

(s0) (2.2)

As r(s,⇡(s)) is bounded and � < 1 , V ⇡

(s) is a solution of the fixed-point equation 2.2.

Equation 2.2 is called Bellman Equation [Bellman, 1957].

Value functions on states induce a partial ordering over policies, i.e., ⇡ is better than or

equal to ⇡0 if and only if its value is greater for all states:

⇡ ⌫ ⇡0 , 8 s, V ⇡

(s) � V ⇡

0
(s)

For an MDP, there is always at least one optimal policy ⇡, s.t., 8 ⇡0
: ⇡ ⌫ ⇡0. Referring

to Bellman Equation 2.2, we note that the optimal solution depends on any state s 2 S

and it is optimal regardless of the initial state distribution �. Using �, the value function

on states 2.1 can be translated into the state-independent value function:

V ⇡

�

= E
s⇠�

[V ⇡

(s)] =
X

s2S
�(s)V ⇡

(s) = � · V ⇡ (2.3)

In the MDP setting, several functions are refereed to vectors too. By assuming an

arbitrary order on the state set S, several function notations are referred to vectors in

Rd including �, V ⇡.

The solution of the MDP is an optimal policy ⇡⇤, i.e. one with the greatest expected

value among all possible values of the MDP.

⇡⇤
= argmax

⇡2⇧� · V ⇡ (2.4)

Example 2.2. Returning to Example 2.1, assume the taxi driver goal is to increase her

incomes at the end of each day. If the north of city is the wealthy part of the area,

Chapter 2. Preliminaries 11

then ⇡0 can be an example of optimal policy: ⇡0
(a) = Stay, ⇡0

(b) = North, ⇡0
(c) =

West, ⇡0
(d) = North which conducts the driver to the north (zone a).

Several algorithms are commonly used to find the optimal policy ⇡⇤ exactly: Value

Iteration (VI) [Bellman, 1957] and Policy Iteration (PI) [Howard, 1960]. For controlling

these algorithms, it is better to consider the value of different actions: the Q-Value

Function maps each state-action pair into R. Q⇡

(s, a) is the value of each state s after

executing action a and then following policy ⇡.

Q⇡

(s, a) = r(s, a) + �
X

s

02S
p(s0|s, a)V ⇡

(s0), 8 s, a (2.5)

The value function Q⇡ is related to value V ⇡ because V ⇡

(s) = Q⇡

(s,⇡(s)). Many

Reinforcement Learning algorithms select Q-value functions instead of V value functions,

because they allow to calculate a greedy policy associated to the value function directly.

As an example, the greedy policy ⇡0 regarding the already calculated value function Q⇡

is any policy satisfying:

⇡0
(s) 2 argmax

a2AQ
⇡

(s, a) (2.6)

The Policy Improvement Theorem [Sutton and Barto, 1998] assures that ⇡0 improves on

⇡, unless it has the same values as ⇡. In this case, they are both optimal. For each s 2 S:

V ⇡

0
(s) � Q⇡

(s,⇡0
(s)) = Q⇡

(s, argmax
a

Q⇡

(s, a)) = max
a

Q⇡

(s, a) � Q⇡

(s,⇡(s)) = V ⇡

(s)

(2.7)

Definition 2.2. [Baird, 1993, Kakade, 2003] For an infinite horizon MDP, the advantage

of a policy ⇡ in state s and action a is defined as

A⇡

(s, a) = Q⇡

(s, a)� V ⇡

(s). (2.8)

The advantage A⇡

(s, a) is the amount by which V ⇡

(s) , the value function at state s

increases or decreases if action a is taken in state s instead of following ⇡(s). The idea

is the following: if ⇡ does not have any large advantage, then there is not much space to

improve ⇡. When searching for a policy ⇡ that competes against the optimal policy ⇡⇤,

an algorithm need to minimize the advantages of ⇡.

Chapter 2. Preliminaries 12

By taking initial distributions on starting states � into account, the advantage in pair

(s, a) is modified as:

A⇡

�

(s, a) = �(s)(Q⇡

(s, a)� V ⇡

(s))

The advantages of ⇡ indicate if ⇡ can be improved in state s. A classical method for

finding the optimal policy is Value Iteration Algorithm [Sutton and Barto, 1998] (given

in Algorithm 1). The value iteration algorithm aims at calculating the optimal value

function V ⇡

⇤ (or, for simplicity of notation, V ⇤). The value iteration algorithm applies

an iterative approach until the value improvement is under a given threshold ✏ (a user

defined parameter). The smaller ✏, the higher the precision of the predicted policy.

Algorithm 1 Value Iteration

Input: an MDP, ✏ precision
Output: optimal value function V ⇤ according to ✏ precision
1: t � 0

2: V0 � 0 vector of dimension |S|
3: repeat
4: t � t+ 1

5: for each s do
6: V

t

(s) � max
a

{r(s, a) + �
P

s

0 p(s0|s, a)V
t�1(s0)}

7: until ||V
t

� V
t�1||1  ✏

8: ⇡
t

(s) � argmax
a

{r(s, a) + �
P

s

0 p(s0|s, a)V
t�1(s0)}

9: return ⇡
t

All states are updated during each iteration until the stopping criteria is satisfied. An

upper bound is imposed on the distance between V ⇤ and the final V
t

(the one that

satisfies in stopping criteria) [Bertsekas and Tsitsiklis, 1996]:

||V
t

� V ⇤||1 
�

1� �
✏

It has been observed that the policy often becomes an optimal one long before the value

function estimates converge to their optimal values. In the value iteration method, to

get an optimal policy with ✏ precision can be obtained in a number of iteration that is

polynomial in n, m and 1
�

[Littman et al., 1995].

The policy Improvement theorem (prooved in Equation 2.7) inspires another algorithm

to solve MDPs called policy iteration (PI) (presented in Algorithm 2). The PI algorithm

Chapter 2. Preliminaries 13

starts with an initial arbitrary policy, takes rewards of states as their initial Q-values, i.e.

8 s, a Q0(s, a) = r(s,⇡0(s)), and computes a policy according to the maximum principle

Q-value function. Then, it iteratively performs two steps: the policy improvement step

(line 7 in Algorithm 2) which updates the current policy if any improvement is possible,

and the policy evaluation step (line 8 in Algorithm 2), which updates the value of each

state given the current policy. Moreover, the stopping criteria relies on policy change

rather than value change.

Algorithm 2 Policy Iteration

Input: an MDP, ✏ precision
Output: optimal value function V ⇤ according to ✏ precision
1: t � 0

2: ⇡0 � arbitrary function defined on S ! A
3: for all s 2 S V ⇡0

(s) � Q0(s,⇡0(s))
4: repeat
5: t � t+ 1

6: for all s, a Q
⇡t(s, a) � r(s, a) + �

P
s

02S p(s0|s, a)V ⇡t�1
(s0)

7: for all s 2 S ⇡
t

(s) � argmax
a2AQ⇡t(s, a)

8: for all s 2 S V
⇡t(s) � Q

⇡t(s,⇡t(s))
9: until ⇡

t

= ⇡
t�1

10: return ⇡
t

Besides the Value Iteration and the Policy Iteration algorithms there are more general

algorithms to solve MDP problem such as TD(�), Q-learning [Watkins, 1989] and State

Action Reward State Action (SARSA) algorithms. Q-Learning algorithm directly ap-

proximates the optimal Q⇤-value function without following the policy. This enables an

early convergence of algorithm to the optimal policy.

2.1.2 From Primal to Dual Formulation

Referring to Equation 2.2, the optimal policy is a fixed point solution of Bellman equa-

tions. This can be calculated as the following linear program [Puterman, 1994]:

Minimize
X

s2S
�(s)V (s)

subject to:

V (s) � r(s, a) + �
X

s

02S
p(s0|s, a)V (s0) 8 s 2 S, 8a 2 A

(2.9)

Chapter 2. Preliminaries 14

The dual of 2.9 is:

Maximize
X

s2S

X

a2A
r(s, a)f(s, a)

subject to:
X

a2A
f(s, a) = �(s) + �

X

s

02S

X

a

02A
p(s|s0, a0)f(s0, a0) 8 s 2 S

f(s, a) � 0 8s, a

(2.10)

where f : S ⇥ A �! R represents the |S| ⇥ |A| variables of the linear program; the

first |S| constraints of 2.10 are the flow constraints3. These constraints define the set of

admissible values f ,namely F . In the rest of the thesis, we will use the notation f 2 F

in linear programs, as a shortcut instead of rewriting the set of flow constraints defining

F . Thus, with this notation, the linear program 2.10 simply becomes:

Maximize
f2F

X

s,a

r(s, a)f(s, a) (2.11)

Intuitively, f(s, a) can be viewed as the total discounted probability of being in state s

and taking action a. In the definition below f(s, a) is defined more precisely.

Definition 2.3. A State Occupancy Function f⇡

: S �! R is the total discounted

probability of being in a state s w.r.t policy ⇡:

f⇡

(s) =
X

s02S
�(s)

1X

t=0

�tp⇡(s
t

= s|s0)

where p⇡(s
t

= s|s0) is the probability of being in state s by starting in state s0 and

following policy ⇡.

Definition 2.4. An Occupancy function f⇡

: S ⇥ A �! R is the total discounted

probability of being in a state and taking an action. Each policy ⇡ induces a unique

occupancy function, f⇡

(s, a) defined by4:

f⇡

(s, a) = f⇡

(s)⇡(s, a)
3As it will be explained in the rest of this section, 8 s

P
a f(s, a) = 1. Thus, the dual LP 2.10 has a

bounded objective.
4Note that ⇡ induces a unique f⇡ only for fixed � which is defined in a given MDP.

Chapter 2. Preliminaries 15

Note that f⇡

(s, a) is not a real probability because
P

s

P
a

f⇡

(s, a) =

1
1��

. Each f⇡

belongs to the set F of visitation frequencies, which are feasible solutions of the dual

linear problem 2.10 [Puterman, 1994]. If f⇡ is a solution of the dual program 2.10, the

policy ⇡ related to the occupancy function f⇡ can be obtained from this formulation:

⇡(s, a) =
f⇡

(s, a)P
a

02A f⇡

(s, a0)
(2.12)

By abuse of notation, we use f instead of f⇡, if we know this occupancy function is

related to which policy ⇡. Referring to Definition 2.4 and value function property in

equation 2.3, we can see that the value function of policy ⇡ can be computed as follows:

� · V ⇡

=

X

s2S
�(s)V ⇡

(s) =
X

s2S

X

a2A
r(s, a)f(s, a) = f · r

where f and r are two vectors of dimension |S||A|. Since the optimal value function V ⇤
�

is sup
⇡2⇧

P
s2S �(s)V ⇡

(s), it satisfies the previous equation, i.e.:

� · V ⇤
=

X

s2S

X

a2A
r(s, a)f⇤

(s, a) (2.13)

where f⇤
= argmax

f2F
P

s2S
P

a2A r(s, a)f(s, a)5. In this dual method, to find the opti-

mal policy [Puterman, 1994], occupancy functions facilitate optimal policy computation

because they are independent of reward values and can be calculated from dual linear

program 2.11.

2.2 MDPs with Unknown Rewards

The algorithms presented in section 2.1.1 solve the optimal policy problems in MDPs di-

rectly by using Bellman equation. These methods essentially require the full observation

of states S and actions A, the full knowledge of the reward functions r(s, a) in each state

and action, and the transition probability model p(.|s, a). In real cases, specifying the

reward function is generally a problem (assuming at least that the transition function can
5f⇤ and V ⇤ represent respectively f⇡⇤ and V ⇡⇤

such that ⇡⇤ is the founded optimal policy

Chapter 2. Preliminaries 16

be computed). To relax the reward knowledge requirements, there are various structures

on MDPs that only need to know that bounds on the rewards. Thus, the mentioned

approaches rely on the assumption that, from a modeling point of view, dealing with

bounded rewards might be more convenient than dealing with exact numerical ones.

This section first establishes the general setting of MDPs without knowing the exact

specification of reward values, and then from that it introduces a different formulation of

MDPs with reward vectors. Next, it illustrates how several problems can be formulated

with reward vectors MDPs. Afterward, the classic planning algorithms in MDPs are

reviewed with respect to the new formulation.

2.2.1 General Setting

In many cases, obtaining a reward function can be difficult, because it requires human

judgments of preferences and trade-offs, this is the case of cognitive assistance technolo-

gies [Boutilier et al., 2006a], or expensive computation such as computing a function of

resource availability in autonomic computing [Boutilier et al., 2003]. Another case that

makes numerical specification of rewards difficult is when there is no unique objective to

be optimized and the models potentially depend on multiple objectives. For example, a

taxi driver who should minimize travel time and should also minimize the fuel cost. Or,

in designing computer systems, one client is interested not only in maximizing perfor-

mances but also in minimizing power. Therefore, a usual MDP model is not sufficient to

express these natural problems.

In Example 2.1, rewards have been specified precisely according to the final goal, namely

finding the shortest trajectory that will result in the location area a. In this example, the

system has an optimal trajectory solution which is the same for all drivers, regardless

of different preferences or various objectives for various drivers. But if the model is

required to account for the preferences of specific users on dissimilar objectives, the

presented reward function is not adequate.

Example 2.3. In the taxi driver example, we assume that drivers drive in the city

during a day without choosing an area zone as final destination. Instead, they select

their trajectories according to various objectives; such as:

• minimizing the travel time

Chapter 2. Preliminaries 17

• reducing the fuel usage

• maximizing the average speed 6

• minimizing the number of direction changes 7

According to the listed objectives, a satisfying algorithm is the one that suggests different

trajectories to different drivers. This means that the algorithms that proposes the same

optimal solution for all drivers can not be reliable in this setting.

Example 2.4. Assume that there are 1000 drivers with various preferences on the given

objectives list. As an example, we take two drivers as driver 1 and driver 2 and try

to find the optimal policy for each one. Suppose that the driver 1 prefers to reduce

fuel consumption and to maximize the average speed while the driver 2 intends to follow

trajectories with a small number of direction changes and she does not care about the

rest of objectives. If we know how to define any 20 effects of (state, action) pairs for

each user, the classical methods for solving MDPs can be implemented to find the optimal

trajectory for each driver.

The issue is that determining rewards for huge MDPs with many number of states actions

or solving MDP for enormous number of drivers is problematic. In addition, translation

of user preferences like “good", “bad" or “do not care", into precise numerical rewards is

difficult. For instance in the given example, it is not clear for us how to specify rewards

numerically for each user to support her preferences in the system.

Moreover, there are two types of users, confident user and uncertain user. The former

user replies all comparison questions correctly regarding her final goal, while the latter

one responds some queries with few percentages of error. It means for any two com-

parison query, the certain user answers the question all the time correctly regarding her

preferences. On the other hand, the uncertain user sometimes can not give an exact

answer to the query regarding her final priorities on the objectives. This is because of

several reasons:

• Either the comparison questions are not easy to be answered by users
6That is result of less stops and no stuck in heavy traffics
7For taxi drivers, it is easier to remember the trajectories with less direction changes, for instance

going to the north all the time and once turning to the west is easier to handle than go to north go to
west go to north go to east and then go to the north.

Chapter 2. Preliminaries 18

• Or the user is not certain about preference of some objectives rather that some

other objectives

To solve this problem, the simplest solution is to assume that rewards are unknown and

are considered as some bounded variables. As the simplest consideration, we can say all

20 rewards in taxi driver example are unknown and bounded between 0 and 1.

In literature on preference elicitation, there are many studies that do not require full

specification of the utility functions — either value functions or Q-value functions in our

case — to make optimal or near optimal decisions [Boutilier et al., 2006a, Chajewska

et al., 2000]. There are various optimization solutions for narrowing the set of preferred

policies by knowing the bounds on rewards. Those bounds allow to confirm dominance of

some policies over some other ones. To narrow more closely the set of optimal solutions,

preference elicitation methods can be used. It means shrinking some reward bounds and

eliciting part of them gives more information and finally gets a better approximation of

the optimal policy.

A general formulation of MDP with partial knowledge of reward function takes as input

a set of reward functions. Regan and Boutilier [2012] defined an Imprecise Reward MPD

(IRMDP) by replacing rewards r by a set of feasible reward functions R. Assuming

rewards are bounded under some constraints, R will be a convex polytope defined by

these constraints. These bounds can be defined either by a user or a domain expert or

they can be concluded from observation of user behaviors such as in inverse reinforcement

learning [Ng and Russell, 2000]. In our case, those rewards can be confined between 0

and 1 as a general case.

Definition 2.5. An Imprecise Reward MDP (IRMDP) is an MDP (S,A, p,R, �,�) in

which the reward function has been replaced by a bounded polytope R of so called

admissible reward functions. This convex polytope can be defined by a linear constraints

set R = {r|Ar  b}. where |R| denotes the number of constraints in the polytope.

Since rewards are not given numerically, they should be assigned by variables and they

should be approximated using optimization techniques. This means that an IRMDP is

an MDP with reward variables and a given polytope of rewards R.

Example 2.5. In the taxi Driver example, we need 20 variables for the unknown and

bounded rewards, namely r(a, Stay), r(a,North), r(a,Eest), r(a, South), r(a,West),

Chapter 2. Preliminaries 19

· · · , r(d, s), r(d,North), r(d,East), r(d, South) and r(d,West). This means that the

reward functions are embedded in a polytope in 20 dimensional space.

As the MDP works for all users and the unknown rewards are restricted to the polytope

R, referring to the dual formulation of MDP (given in Equation 2.11), the MDP solution

can be computed optimistically from the following problem w.r.t f and r:

f⇤
= Argmax

f2F ,r2R
X

s2S

X

a2A
r(s, a)f(s, a) (2.14)

This program maximizes the value function for the most favorable reward function r.

Note that a reward function is a real function on the set of reward variables, so each

reward function can be viewed as a vector with coordinates indexed by: r = (r(s1, a1),

r(s1, a2), · · · , r(s1, am), · · · , r(s
n

, a1), r(sn, a2), · · · , r(sn, am))

8. If rewards are given

precisely, the optimal solution for MDP would be calculable with the following linear

program:

Maximize
X

s2S

X

a2A
r(s, a)f(s, a)

subject to:
X

a2A
f(s, a) = �(s) +

X

a2A

X

s

02S
p(s0|s, a)f(s, a) 8s 2 S

f(s, a) � 0 8s, a

(2.15)

However, the probabilities of rewards are unknown, we are in decision under uncer-

tainty setting problem. Several methods are available for solutions for decision making

under uncertainty [Pažek and Rozman, 2009] including optimistic approach(maxmax),

pessimistic approach (maxmin), coefficient of optimistic approach (hurwicz criterion) or

Savage’s and Laplace’s criterion.
8Hence r 2 Rmn and R ⇢ Rmn. When a function is considered as a vector, the standard ¯ notation

in the name of vectors is not used.

Chapter 2. Preliminaries 20

2.2.1.1 Robust Objective Functions

A well known approach of solving MDPs with respect to polytope R (See 2.14) is the

minimax regret method. To explain it we need to introduce the following functions:

Definition 2.6. Given an IRMDP(S,A, p,R, �,�) such that R is a bounded polytope

of unknown reward functions. Let r 2 R be a reward function. The Regret of a policy

⇡ 2 ⇧ with respect to r is defined as:

Regret(⇡, r) = max
⇡

02⇧ {V ⇡

0
r

� V ⇡

r

}

This regret is the performance gap between the policy ⇡ and the optimal policy assuming

r function is the actual one. Since the actual reward is unknown, an adversary player

can choose any reward function r 2 R and vary the regret of decision maker. Hence the

following definitions:

Definition 2.7. The MaxRegret of policy ⇡ with respect to feasible set of reward R is:

MaxRegret(⇡,R) = max
r2RRegret(⇡, r) = max

r2R max
⇡

02⇧ {V ⇡

0
r

� V ⇡

r

}

Definition 2.8. The MiniMax Regret (MMR) of a feasible set of reward R is:

min
⇡2⇧MaxRegret(⇡,R) = min

⇡2⇧max
r2Rmax

⇡

02⇧ {V ⇡

0
r

� V ⇡

r

}

The minimax regret provides worst-case bounds on missed opportunities. Specifically,

let ⇡ be a policy supporting the minimax regret and let � be the max regret achieved by

⇡. Then, given any instantiation of r, no policy has expected value greater than � more

than that of ⇡ [Regan and Boutilier, 2008].

Any presented solutions on this formulation can be applied on small MDPs with few

states and actions. In order to deal with the curse of dimensionality, we will explain

another formulation of IRMDP with a smaller dimension of space and consequently with

a simpler calculation methods.

Chapter 2. Preliminaries 21

2.2.2 Reward Vectors

In the previous section, we have introduced a new formulation of MDPs when reward

values are unknown or partially known. In this section, we will introduce an MDP with

vector rewards, namely Vector-valued MDP (VMDP). While various types of problems

that can use VMDPs can be introduced [Akrour et al., 2012, Roijers et al., 2013, Viappiani

and Boutilier, 2010, Weng, 2011], we illustrate how the presented problems transform to

VMDPs.

Definition 2.9. [Wakuta, 1995] A Vector-valued MDP (VMDP) is defined by a tu-

ple (S,A, r̄, p, �,�) where the vector-valued reward function r̄ is defined on S ⇥ A and

r̄(s, a) = (r1(s, a), · · · , r
d

(s, a)) 2 Rd is the vector-valued reward defined by r̄ in (s, a).

Recall that a scalarizable VMDP is a special case of IRMDP. Concurrently with VMDP

the term Multi-Objective MDPs (MOMDPs) is also used when several objectives are

considered together and these objectives are not directly comparable [Roijers et al.,

2013]. In this case, each r
i

: |S|⇥ |A| �! R is defined according to the i-th objective in

the MDP.

Example 2.6. Referring to the taxi driver example, the vector-valued reward function has

dimension d = 4, due to the four different objectives given in Example 2.3 (minimizing

the travel times, reducing the fuel usage, maximizing the average speed and minimizing the

number of direction changes). A driver having a vector of rewards (1, 0, 0, 0) only wants

to minimize his travel time. On the other hand, a driver having a vector of rewards

(0, 1, 0.5, 0) wants to reduce fuel usage and thinks about maximizing average speed.

Similarly to MDPs, a value function ¯V ⇡ in a VMDP specifies the expected cumulative

discounted reward vector:

¯V ⇡

(s) = E
⇡

" 1X

t=0

�tr̄(s
t

, a
t

)|s0 = s

#
(2.16)

Basic techniques of MDPs can be applied component-wise to vector-valued functions.

For instance, in each state the discounted sum of reward vectors can be computed from

the Bellman Equation:

Chapter 2. Preliminaries 22

¯V ⇡

(s) = r̄(s,⇡(s)) + �
X

s

02S
p(s0|s, a) ¯V ⇡

(s0) (2.17)

Finally by taking the initial distribution � into account, we have:

¯V ⇡

�

= E
s⇠�

[

¯V ⇡

(s)] =
X

s2S
�(s) ¯V ⇡

(s) (2.18)

where ¯V ⇡

�

is a vector of length d.

Pointwise domination does not ensure the existence of an optimal policy ⇡⇤ in VMDP.

Indeed, defining the policy with the greatest vector-valued ¯V yields:

8⇡ 2 ⇧ 8s 2 S ¯V ⇡

⇤
(s) � ¯V ⇡

(s) (2.19)

But two pointwisely maximal vectors may be pointwisely uncomparable, preventing to

decide which one is optimal without additional information. Such information can be

provided in the form of a scalarization function which we will discuss in the following.

In the following subsections, we introduce problems that can be transformed to VMDP

and we illustrate how this transformation happens. There are several problems modeled

in VMDP formulation including inverse reinforcement learning, sensori motor states,

preference learning and so on. These techniques are introduced in Section 3.

2.2.3 Multi-Objective MDPs with Linear Scalarization

There are several approaches in the literature for solving multi-objective MDPs (MOMDPs)

such as using Pareto-dominance policies [Moffaert and Nowé, 2014] or using scaliraztion

function [Roijers et al., 2013]. In this section ,we concentrate on linear scalarization

function and we will show how to solve MOMDPs by generating a linear scalarization

function.

A general technique to transform a VMDP into an MDP is scalarization, i.e. providing

a function from the vector-valued reward space to the real numbers. Linear scalarization

is almost universally used: a scalar reward function is computed by r(s, a) = ¯� · r̄(s, a)

where ¯� = (�1, · · · ,�
d

) is a weight vector scalarizing r̄s. Using this new reward function

Chapter 2. Preliminaries 23

¯� · r̄, the VMDP will change to the ordinary Markov decision process MDP(¯�) depending

on ¯� weight. For the sake of abbreviation ¯� is called preference vector in the rest of this

manuscript. Now, the total discounted reward in ⇡ is defined as:

V ⇡

(s) = E
⇡

" 1X

t=0

�t¯� · r̄(s
t

, a
t

)|s0 = s

#
=

¯� · ¯V ⇡

(s) (2.20)

Finally:

V ⇡

�

=

¯� · ¯V ⇡

�

(2.21)

As can be seen, for a given VMDP changing ¯� weight, will change policy value functions

and consequently will change the optimal policy regarding to ¯� vector.

Providing a weight for objectives in MOMDP is a particular case of scalarization. An-

other case is when, in the general setting, the states are defined as a set of features and

reward functions are given or computed separately for different features, then combined

for each set according to its features.

We present two scenarios from a survey of multi-objective MDPs (MOMDP) [Roijers

et al., 2013], for modeling MDPs with unknown rewards. Note that, as each objective

has its own reward, only the relative weight ¯� of rewards is a question in this case:

• unknown weight scenario occurs when ¯� is unknown only at the moment when

planning or learning happen.

• decision support scenario occurs when ¯� is unknown through the entire decision-

making process.

This thesis deals with the case where weights are not known and they will be explored

using a decision support scenario. In this case, without specifying the ¯� vector, finding

a solution for MDP (planning or learning phase) is impossible.

Example 2.7. Referring to Example 2.3 for the sake of simplicity, assume there are

only two objectives in the system : minimizing fuel consumption and minimizing latency

(i.e., the time that driver need to reach her destination). For the VMDP, reward vectors

Chapter 2. Preliminaries 24

r̄(s, a) = (r1(s, a), r2(s, a)) are given, involving two reward functions r
i

: S ⇥ A �!

R i = 1, 2.

For vector ¯V ⇡

= (

¯V ⇡

latency

, ¯V ⇡

energy

), the user assigns a weight vector ¯� = (�
latency

,�
energy

)

to objectives according to her preference. Thus, we have 8⇡ V ⇡

=

¯� · ¯V ⇡.

In fact, approximating user preferences and finding the ¯� 2 ⇤ weight vector satisfying

user priorities in VMDP problems is an issue and will be studied in the rest of this thesis.

2.2.3.1 Categorized rewards

Weng [2011] technique for defining a VMDP structure with bounded polytope ⇤ is based

on classifying reward values in several categories. Contrary to MOMDPs, one single

objective is initially defined, and rewards for this single objective are not known. A

simplifying modeling decision is made: using a qualitative set E of reward values. Hence

the reward function is defined as r : S ⇥ A �! E and each reward can be seen as a

categorical variable (in the sense used by statistics).

Assume there are d qualitative rewards E = {�1,�2, · · · ,�
d

}. Then, for each state s and

each action a, r(s, a) takes one value from E. For an MDP with |S||A| unknown rewards

there are d total unknown values, and in most examples d < |S||A|. It means also that,

in the model, several rewards on different pairs of (state, action) are known to have the

same symbolic value, whatever numeric mapping is used for these symbolic values.

Example 2.8. Consider a single objective “maximizing average speed”. More, E includes

three qualitative values: �1 = “low”, �2 = “normal”, and �3 = “high”. While a numeric

reward function for this objective may involves 20 different values, the qualitative one

only involves 3 different values.

It is initially only known that E is the set of all unknown reward values for the MDP9.

Without loss of generality, we can confine � variables in a d dimensional hyper-cube that

is indicated as ⇤ = {¯� = (�1, · · ·�
d

)| 0  I¯�  1}. Where I is a unit matrix of dimension

d⇥ d and 0 and 1 are respectively 0 and 1 vectors of length d.
9Weng added another characteristic on unknown weights [Weng, 2012, Weng and Zanuttini, 2013].

He assumed that E is an ordered set (E,>), so his rewards are in fact ordinal variables, and the order
is such that �1 >,�2 >, · · · , > �d.

Chapter 2. Preliminaries 25

To transform the initial qualitative MDP into a VMDP, a reward vector r̄ : S⇥A �! Rd

is defined for each pair (s, a) :

if r(s
i

, a
j

) = �
k

then r̄(s
i

, a
j

) = e
k

(2.22)

where e
k

denotes the d dimensional vector (0, · · · , 0, 1, 0, · · · , 0) having a single 1 in k-

th element. Note that the reward r(s, a) is a dot product between two d-dimensional

vectors:

r(s, a) = ¯� · r̄(s, a) (2.23)

By considering the r̄(s, a) vectors, we have an MDP with vector-valued reward function.

2.2.4 Non-dominated Policies

An intermediate situation is when weights are not exactly known, but are nevertheless

restricted to a feasible set of weights. This allows to reduce the search space of policies

to non-dominated policies, which are defined bellow [Regan and Boutilier, 2010].

Definition 2.10. An uncertain reward MDP with feasible set of reward weights ⇤ being

given, policy ⇡ is non-dominated in ⇧ with respect to ⇤ if and only if

9 ¯� 2 ⇤ s.t. 8⇡0 2 ⇧

¯� · ¯V ⇡

�

� ¯� · ¯V ⇡

0
�

In other words, a non-dominated policy is optimal for some feasible rewards. LetND⇤(⇧)

denotes the set of nondominated policies w.r.t ⇤. Since the optimal policy is the policy

that should be dominating the other policy values with respect to one special � satisfying

user priorities, the optimal policy is inside ND(⇧). In fact computing the ND(⇧) set can

help us to reduce the complexity of searching optimal solution for MDPs with uncertain

rewards.

As explained in the previous sections, the set of all possible weight vectors ¯� for the

VMDP is noted as ⇤ and the set of all possible policies as ⇧. In VMDP to each policy

⇡ a d-dimensional vector ¯V ⇡

�

is assigned. By knowing all policies, the set of their vector

Chapter 2. Preliminaries 26

value functions is showed by ¯V (¯V = { ¯V ⇡

�

: ⇡ 2 ⇧}). According to equations 2.20

and 2.21, finding an optimal policy for a VMDP with unknown reward weights ⇤ can

be boils down to explore the interaction between two separate d-dimensional admissible

polytopes: ¯V and ⇤.

Suppose each vector inside the ⇤ polytope represents a user and her priorities on objec-

tives. Preferences of a given user can be approximated by asking questions to the user

regarding her preferences between two reward-vectors and pruning accordingly part of

the ⇤ polytope. Preference elicitation methods and related approaches will be introduced

in Section 3.3.

Finally, in Chapter 4, we will work on the ¯V set and its characteristics. In order to solve

the difficulty of ¯V generation, we will require to use the concept, namely Convex Hull.

We define convex hull here and will give more details and explanations in Chapter 4.

Definition 2.11. convex set :A set of vectors S in a d-dimensional vector space is said

to be convex if for any two vectors ā,¯b 2 S and any t 2 [0, 1], the vector tā+ (1� t)¯b is

also in S. That means the line segments connecting ā and ¯b should be contained in S

too10.

Definition 2.12. The convex hull of a set of vectors S in a d-dimensional vector space

is the smallest convex set in the same space that contains S.

2.3 Conclusion

In this chapter, we have presented an overview of typical Markov Decision Processes

and their required definitions and theories at the beginning. Thus, we have introduced

various structures of MDPs under uncertainty. Since MDPs do not own know reward

functions, we presented some structures that produce a vector valued MDP with vector

reward functions. To make MDPs scalar, we have defined a weight vector on rewards

that should be predicted according to the user behaviors and expectations.

In particular, VMDP with unknown bounded polytope ⇤ seems a suitable framework

for solving MDPs with uncertain rewards. Because it predicts the optimal policy using

optimization approaches directly w.r.t polytope ⇤. To increases accuracy of optimal
10Utah university lecture notes. http://www.cs.utah.edu/ suresh/compgeom/convexhulls.pdf

Chapter 2. Preliminaries 27

solutions using optimization algorithms, we can query a question to the user in order to

get more information on reward weights and shrink the ⇤ polytope.

Chapter 3

A Survey of Problems and

Algorithms in IRMDPs

Foreword

The problems of sequential decision-making under uncertainty have been widely studied

in the recent years. In many approaches, these problems have been presented as Markov

Decision Processes. In the classical setting, each action selected by the agent in a state

has a stochastic outcome in MDP environment and should be assigned as a numerical

value known as its reward. The MDP solution is a policy function with the highest sum

of rewards and defines which action to chose in each state.

In our case, rewards are not given precisely while they have been confined in a bounded

polytope. In fact, MDPs with reward vectors (VMDPs) or MDPs with imprecise rewards

(IRMDPs) are suitable models for sequential decision making under uncertainty. On the

other hand, if the system is aware of user preferences on uncertainty, it can transform

VMDPs or IRMDPs to classical MDPs with known reward values.

Example 3.1. For a public transport system that aims to minimize latency (i.e., the

time that commuters need to reach their destinations) and pollution cost, we have an

MDP model with unknown rewards. Because, reward definition considering precisely is

not possible considering two objectives latency and pollution cost. Thus, the optimal

solution for various users are not the same [Roijers et al., 2013]. For instance, the

28

Chapter 3. A Survey on MDPs with Unknown Parameters 29

optimal solution for a user with pollution cost minimization tendency is different from a

user who prefers to reduce the latency.

In order to deal with this problem, we intend to approximate a reward function concern-

ing a given user with various types of preferences. Defining a reward function means

approximating a weight vector ¯� or reward function r 2 R respectively for VMDP or

IRMDP models. After specifying the reward function, the optimal sequence can be found

using classical search algorithms on MDPs. These parameters are unknown because the

user can not define her preference weights on objectives as scalar values, instead she can

answer preference questions in several forms:

1- comparison among the trajectories,

2- comparing several selected actions in one state or

3- comparison among the states, atomic transitions and so on.

In this chapter we are considering MDPs for which those rewards are not defined or are

not available. We take a closer look at different approaches used to solve the decision

making problem in uncertain dynamic environments. In section 3.1, robust methods for

solving uncertain MDP problems are presented, which attempt to define the optimal

policy in presence of uncertainty. Section 3.2 presents another learning method that

concentrate on learning rewards by observing the expert performance. After learning

the reward function, any typical algorithm on MDPs can return back the optimal policy.

Finally Section 3.3 considers solutions where a user or an expert tutor interacts with the

system to bring more preference information on demand.

3.1 Choosing a Robust Policy under Uncertainty

The robust solutions for MDPs with imprecisely known rewards or transition probabilities

are policies that are as good as possible according to all possible values of unknown

parameters. In this section we concentrate on MDPs with unknown rewards. To avoid

widening the state of the art, some interesting methods for solving MDPs with unknown

transition probabilities are presented in Appendix A.

Chapter 3. A Survey on MDPs with Unknown Parameters 30

In this section, we observe some studies so far in literature to solve MDPs with unknown

rewards with respect to bounded set of possible rewards without modifying the imprecise

reward set. They restrict the admissible set of rewards to a polytope while they approx-

imate the optimal policy by solving a set of linear programming problems. This means,

these approaches never attempt to extract more information on rewards by asking a new

query to the user during the computation process.

Early methods for solving an IRMDP with polytope of unknown rewards R are the

optimistic and pessimistic approaches [Givan et al., 2000, McMahan et al., 2003]). An

example of pessimistic approach is the Maximin criterion [McMahan et al., 2003]. In

the Maximin criterion a conservative policy is chosen by optimizing against the worst

possible instantiation of reward function r. This is like a game between two players such

that one player tries to choose a policy with maximum value, while the adversary selects

the worst possible value of rewards inside R to minimize the first player result. The

general formulation is as below:

Maximin(R) = max
⇡2⇧min

r2R V ⇡

r

(3.1)

where V ⇡

r

is the expectation of sum of discounted rewards with respect to reward function

r 2 R i.e.

V ⇡

r

= E{
1X

i=0

�i�1r(s
i

, a
i

)}

This formulation can be written on VMDPs as well:

⇡⇤
= argmax

⇡2⇧min
�̄2⇤

¯� · ¯V ⇡ (3.2)

On the other hand, Givan et al. [2000] introduce the maxmax method as an optimistic

approach for computing the optimal policy.

⇡⇤
= argmax

⇡2⇧max
�̄2⇤

¯� · ¯V ⇡

In [McMahan et al., 2003] the problem 3.2 is solved with a Bender’s decomposition

approach. The model will be defined clearly in the rest of this section. The Interesting

Chapter 3. A Survey on MDPs with Unknown Parameters 31

Figure 3.1: An MDP for comparing Minimax regret and Maximin solutions

part of their work is that, they observe a running example to study Maximin computation

method. They consider a robot path planning problem where rewards are influenced by

some sensors. The sensors have been placed by an adversary player in the environment

(For more information refer to Section 2.2 in [McMahan et al., 2003]). The explored

strategy is the best, if the sensor selector player is omniscient.

The maximin criterion is a conservative setting for finding the optimal policy of IR-

MDPs. There is another approach that despite of maximin criterion, the agent does

not want to miss too many opportunities and accepts some risk to gain better results.

The corresponding criterion is Minimax Regret following [Xu and Mannor, 2009] and

[Regan and Boutilier, 2009], provides more accurate policies for IRMDPs. It determines

a policy with the minimum regret or loss with respect to the exact optimal policy, if the

rewards had been known. In general, Minimax regret method can be implemented on

MDPs with unknown rewards . Afterwards, it is possible to implement this technique on

various structures such as VMDPs with an unknown polytope of weights ⇤. Minimax

regret definition is given precisely in Section 2.2.1.1.

To see the difference between Minimax Regret and Maximin performance, consider the

following example similar to the one in [Xu and Mannor, 2009].

Example 3.2. Figure 3.1 represents an MDP with three states and two actions and a

bounded set of rewards R = [0, 3] ⇥ [1, 2]. That means r(s1, a1) 2 [0, 3] and r(s1, a2) 2

[1, 2]. By implementing MaxMin method, the optimal policy proposes a2 for state s1 be-

cause its minimal performance is equal 1. On the other side, the minimax regret criterion

Chapter 3. A Survey on MDPs with Unknown Parameters 32

find both actions a1 and a2 with a maximum regret equal 2. So, the optimal policy se-

lects either action a1 or a2 in state s1. If the optimal policy selects the a1 action with p

probability, it can select action a2 with probability 1� p.

This example illustrates how different criterion can find different policies for the same

IRMDP problem. The following theorem is proven in [Xu and Mannor, 2009]:

Theorem 3.1. Let R be a polytope defined by a set of |R| linear inequalities1. Then

evaluating the minimax regret for an MDP with unknown rewards is NP-hard with respect

to |S|, |A| and |R|.

A variety of methods have been developed for computing the minimax regret value (the

definition is given in 2.8). To the best of our knowledge, the majority of the methods in

the literature optimize this value using series of linear programmings or mixed integer

programs. Considering the equivalence between a policy and its occupancy function (see

Definition 2.4 and Equation 2.12), we have:

V ⇡

=

X

s

X

a

r(s, a)f⇡

(s, a)

The most exploited solutions assume that the feasible set of rewards R is a convex

polytope and is given by Ar  b, where A is a matrix that has the same number of

rows as number of bounds on rewards. And b is a vector of the same dimension. Thus,

the minimax regret computation can be done by the following optimization problem

[Boutilier et al., 2006b, Regan and Boutilier, 2009, Xu and Mannor, 2009] (see dual

formulation 2.11):

min
f2F max

g2Fmax
r2R

X

s2S

X

a2A
[r(s, a)g(s, a)� r(s, a)f(s, a)] (3.3)

This problem is a min-max quadratic program. So to solve it, we need to reformulate

this problem such that it becomes more tractable. Regan and Boutilier [2009] show that

it is equivalent to the following quadratic program, with a linear objective:
1|R| represents the umber of constraints restricting the R polytope

Chapter 3. A Survey on MDPs with Unknown Parameters 33

minimize
f2F ,�

�

subject to :

X

s2S

X

a2A
[r(s, a)g(s, a)� r(s, a)f(s, a)]  � for each < g, r >2 F ⇥R

(3.4)

This quadratic program has unfortunately an infinite number of constraints, because

the set F ⇥ R is infinite. To cope with that, Regan and Boutilier [2009] use Bender’s

Decomposition [Benders, 2005]. The idea of bender’s Decomposition is to replace the

infinite set F ⇥R by a finite set, which we will call the GEN set. Then, two problems

are defined : the master problem and the sub-problem. The task of the master problem

is to compute the solution to 3.4, but with the constraint < g, r >2 GEN instead of

< g, r >2 F ⇥R. The task of the sub-program is to compute the relevant (f, r) pairs to

be added to the GEN. The master problem can be formulated as a linear program and

the sub-problem as a quadratic program, as described below. The algorithm 3 is used

to call iteratively both linear programs, in order to compute an ✏-approximation of the

min-max regret policy.

Algorithm 3 Master problem and sub-problem algorithm
� �1
GEN � ;
while � > ✏ do

f, �
master

:= solve master-problem(GEN) . minimax regret
< g, r >, �

sub

:= solve subproblem(f) . max regret
GEN � GEN [{< g, r >} . add constraint for < g, r > to master
� = �

sub

� �
master

. �
master

= max regret - minimax regret

The algorithm is an iterative approach on two linear programs: master problem and sub-

problem. The master problem — originally the problem 3.4 without constraints — starts

with an empty set of constraints, namely GEN set. In each iteration, it first solves the

master problem with respect to the GEN set. After, the solution of master problem f is

sent to the sub-problem. The sub-problem generates the maximum violated constraints

in the master problem. This constraint is added to the GEN set for the next iteration

step. This process continues until the solution to the master problem and sub-problem

converge.

The master problem on a GEN set of constraints is as following:

Chapter 3. A Survey on MDPs with Unknown Parameters 34

minimize
f2F ,�

�

subject to
X

s2S

X

a2A
r
i

(s, a)g
i

(s, a)� r
i

(s, a)f(s, a)  � for each < g
i

, r
i

>2 GEN

And the sub-problem to find maximally violated constraints of master problem is defines

as:

max
r2R,g2F

X

s

X

a

[r(s, a)g(s, a)� r(s, a)f(s, a)]

The sub-problem uses the current solution f of master problem and computes the policy

g and reward function r that maximizes regret of f .This sub-problem is itself a quadratic

program. Recall that to solve the overall problem, we now need to iteratively solve the

master problem (a linear program) and this sub-problem (which is a quadratic program).

Note that the original formulation was a min-max quadratic program, so the current for-

mulation is much more tractable. Regan and Boutilier [2009] add another reformulation

step, writing this sub-problem as a mixed-integer linear program, which they solve with

CPLEX.

[Xu and Mannor, 2009] introduces two other approaches for computing Minimax regret

solution 3.4. One is a sub-gradient descent algorithm that iterates on a master problem

and a sub-problem. This algorithm gives a solution worse than the one based on Bender’s

decomposition. In their second approach, they solve the curse of dimensionality of R

polytope constraints by supposing that R is a convex hull such that:

R = convex-hull{r1, · · · , rt} = {
tX

i=1

c
i

r
i

|
tX

i=1

c
i

= 1; c
i

� 0}

It means the R polytope has a small number of vertices while each r 2 R can be

written as a linear combination of these vertices. Optimizing optimal solutions w.r.t a

bounded polytope of unknown rewards does not get a precise response. Thus, we will

Chapter 3. A Survey on MDPs with Unknown Parameters 35

present some approaches to extract more information on reward sets and to yield a better

approximation of the optimal policy.

3.2 Learning from Observed Behaviours

When specifying rewards is difficult, another alternative is letting an expert to demon-

strate her optimal behavior and then the agent should reproduce the behavior demon-

strated by the expert. It means, the system attempts to learn the optimal policy after

receiving the experts’ preferred trajectories or her preferred actions in any given state.

This subject area is not directly related to our work, although getting a set of user’s pref-

erences and attempting to find the optimal policy can be considered as closely related

to our work.

Example 3.3. Giving driving lessons is an example where demonstrating a good driver

performance is easier than assigning a reward to each couple of (state, action) of the RL

model [Abbeel and Ng, 2004].

Another interesting example of driving learning is conducting autonomous helicopter

which is implemented by [Abbeel et al., 2007].

In this section, we will present two different approaches including Inverse Reinforcement

Learning (IRL) and Apprenticeship Learning (AL) for solving these types of problems.

Second, we will demonstrate various methods in the literature of solving IRL and AL.

Although too many number of researches have been done in IRL, we are going to present

some works that have been cited more than the rest.

Considering learning policies in an MDP where reward functions are not given explicitly,

there exist two main approaches for learning the optimal policy:

• Inverse Reinforcement Learning (IRL) that finds a reward function that explain the

behavior of the expert as close as possible [Abbeel and Ng, 2004, Ng and Russell,

2000, Pietquin, 2013]. Using the extracted reward function, the optimal policy can

be computed with the help of classical methods in Reinforcement learning.

• Apprenticeship learning (AL) that learns the optimal policy directly without ex-

tracting the unknown rewards [Abbeel and Ng, 2004].

Chapter 3. A Survey on MDPs with Unknown Parameters 36

Learning from demonstrations is like learning an optimal policy with respect to a set of

examples. If the set of examples are given, one obvious idea is using Supervised Learning

(SL) techniques to find the optimal policy w.r.t the given set. In the literature, there are

some regression methods implemented on similar problems for autonomous navigation

[Pomerleau, 1991] and human robot interaction [Grudic and Lawrence, 1996].

Moreover, there are several algorithms in AL that use supervised learning methods to

directly mimic the expert’s behavior [Boularias et al., 2011, Klein et al., 2012]. As an

example, Lagoudakis and Parr [2003] learn the optimal trajectory using Least Square

Policy Iteration (LSPI) technique. But, the supervised learning solutions are not reliable

because sometimes the gathered examples of expert’s performance are not sufficient or

general enough for the learning.

Precisely the IRL problem can be defied as an RL problem owning an expert’s policy

⇡E , while the objective is to find a reward function such that its solution is almost the

same as the expert’s policy ⇡E :

1. Given parameters

• VMDP(S,A, p, r̄, �,�) with bounded polytope ⇤ on weight vectors

• and expert policy ⇡E (preferences can be extracted from the expert’s policy)

2. Goal: determine a set of possible reward weight ¯�⇤ such that ⇡E is the optimal

policy for the result MDP (S,A, p, ¯�⇤ · r̄, �,�).

We first describe the equations stating how to find a set of possible solutions for ¯� 2 ⇤

producing a given policy ⇡E .

Let a finite state space S, a set of actions A = {a1, · · · , am}, transition probabilities p,

a discount factor � 2 (0, 1) and a policy ⇡E be given. Then, if ¯� is known, according to

the Bellman Equation (regarding Equations 2.5 and 2.6) [Ng and Russell, 2000] we have:

V ⇡

E
(s) � Q⇡

E
(s, a) =) ¯� · ¯V ⇡

E
(s) � ¯� · ¯Q⇡

E
(s, a) 8 a 2 A\⇡E

(s), s 2 S (3.5)

One natural way to choose rewards ¯� is to first demand that it makes ⇡E optimal. And

make any single step deviation from ⇡E as costly as possible. Ng and Russell [2000]

choose the reward weight vector ¯� such that:

Chapter 3. A Survey on MDPs with Unknown Parameters 37

max
�̄2⇤

X

s2S
min

a2A\⇡E(s)

⇣
¯� · ¯V ⇡

E
(s)� ¯� · ¯Q⇡

E
(s, a))

⌘
(3.6)

It means maximizing the sum of the differences between the quality of the optimal action

and the quality of the next-best action. For more information about the linear program,

we invite readers to see [Ng and Russell, 2000]. After adding a reward function r =

¯�⇤ · r̄

satisfying Equation 3.6 to the given MDP with imprecise reward, the solution of MDP

should be the ⇡E policy.

If VMDP is a huge with large set of states, the idea is to maximize a summation on

a subset of S like S0 ⇢ S [Ng and Russell, 2000]. Therefore, problem 3.6 should be

rewritten as:

max
�̄2⇤

X

s2S0

min
a2A\⇡E(s) q

⇣
¯� · ¯V ⇡

E
(s)� ¯� · ¯Q⇡

E
(s, a))

⌘
(3.7)

where q is a penalty function with a positive constant c2

q(x) =

8
<

:
x if x � 0

cx if x < 0

It penalizes the violation of ¯� · ¯V ⇡

E � ¯� · ¯Q(s, a). The c parameter reduces the sensitivity

of this maxmin problem considering the number of states. It means, it gets a similar

answer with moderately larger number of states [Ng and Russell, 2000].

Despite IRL, in AL, the apprentice is observing the expert behaving optimally with

respect to an unknown reward function in an MDP. In this case, the environment can be

modeled as a VMDP(S,A, p, r̄, �,�) with unknown weight ¯� 2 ⇤ while there is no expert

policy ⇡E except the expert demonstration. The goal of the apprentice is — via some

demonstrations or trajectories of the expert — to learn the expert policy or a policy

which is as good as the expert policy relatively to the unknown reward directly.

Abbeel and Ng [2004] have proposed another version of IRL based on learning from

trajectories. First, they require to compute an approximation of ¯V ⇡

E

that can be done by

averaging K iterations of demonstrations of expert’s performance. It means, to compute
2[Ng and Russell, 2000] have selected c = 2.

Chapter 3. A Survey on MDPs with Unknown Parameters 38

the ¯V ⇡

E , they demonstrate the expert performance K times. For each demonstration,

they calculate its observed return value ¯V and finally they make average on the results.

In this case, the optimal policy is computed according to the following maxmin problem:

max
�̄2⇤min{⇡ s.t. V̄

⇡ 6=V̄

⇡E }
¯� · (¯V ⇡

E � ¯V ⇡

) (3.8)

This problem is similar to problem 3.6, except that ¯Q⇡

E
(s, a) 8s, a have been replaced

by set of value functions for all policies ⇧. Since the expert policy ⇡E is not given in AL

setting, its value has been compared with the rest of policies’ values.

Abbeel and Ng [2004] propose an algorithm to solve this problem. They introduce

a method similar to Benders Decomposition (given in 3). Except that GEN set is a

subset of {⇡ s.t. ¯V ⇡ 6= ¯V ⇡

E} and the iteration continues until there is no more new

policy ⇡ violating the program. Afterward, they can find the optimal policy from the

approximated GEN set.

3.3 Preference Elicitation

In the previous sections, all presented methods develop exact or approximate algorithms

for solving MDPs with imprecise reward values. All mentioned approaches attempt to

solve the MDP with unknown rewards problem w.r.t the available polytope of feasible

rewards R. It means either they approximate the optimal policy w.r.t bounded polytope

R or they attempt to find it based on a given set of user’s preferences on trajectories.

During or at the end of the process, they have no more connections with users. How-

ever, by pruning part of feasible rewards, we can get a better result using the same

approximation methods. The problem of specifying more accurately rewards can be cast

as preference elicitation so as to get an optimal policy as close as possible to the ex-

act solution. In short, if there is an oracle, expert or user, who prefers a subset of R

polytope, then we have more information about rewards and consequently can better

approximate the optimal solution. Recall that for the user case, there is type of users

who are uncertain about their preferences. It means, they sometimes give false responses

to preference elicitation questions regarding their real preferences and their final goal. In

Chapter 3. A Survey on MDPs with Unknown Parameters 39

general, solving IRMDPs with polytope R using preference elicitation includes several

parts:

• How to compute the optimal policy w.r.t uncertain rewards R,

• How to generate the queries that should be proposed to the tutor,

• What type of queries we need and

• When ask the queries to the user.

This section summarizes some researches in specifying rewards by preference elicitation

methods and improving optimal solution in the same time for IRMDP with unknown

polytope R for rewards or VMDP with unknown polytope ⇤ for reward weights. Some

of the previously described methods will be used for policy exploration w.r.t the feasible

set of rewards.

3.3.1 Elicitation Based on Minimax Regret

In this section, we study some approaches in the literature and present their approaches

considering reward elicitation methods [Regan and Boutilier, 2008, 2009]. First we

demonstrate how the generated regret from minimax regret criterion methods can be

reduced by efficiently eliciting reward information using bound queries. We will show

how the queries are generated regarding minimax regret criterion.

If the minimax regret problem (explained in Section 3.1) does not have enough informa-

tion about reward preferences of the user, it can give a solution considerably far from the

exact optimal policy [Regan and Boutilier, 2009]. To increase accuracy of minimax regret

computations, Algorithm 4 should be used to generate queries and weave the minimax

regret calculation. It is an interactive algorithm between the user and the optimal policy

calculator.

The query is generated by function SelectAndAskQuerys. This function generates the

queries of the type “Is r(s, a) � d ?". Regan and Boutilier [2009] have presented

two main heuristic methods to make these queries regarding function SelectAndAsk-

Querys(f, g, r,R
t

):

Chapter 3. A Survey on MDPs with Unknown Parameters 40

Algorithm 4 interactive algorithm for reward elicitation and minimax regret computa-
tion
Inputs: IRMDP(S,A, p,R, �,�), ✏
Outputs: the optimal policy ⇡⇤

1: mmr �1
2: R0 � R
3: while mmr > ✏ do
4: mmr, f, g, r � ComputeMMR(R

t

) . It is computed from linear program 3.3

5: response � SelectAndAskQuery(f, g, r,R
t

)
6: R

t+1 � refine(response, R
t

)
7: ⇡⇤ � f
8: Return ⇡⇤

first- Halve Largest Gap (HLG): It selects the pair (s, a) as the following:

(s⇤, a⇤) = argmax
a2A,s2S (max

r

02Rtr
0
(s, a)�min

r2Rtr(s, a))| {z }
�(s,a)

(3.9)

second- Current Solution (CS): It uses the minimax optimal visitation frequencies f to

weight each gap. It selects the pair (s⇤, a⇤) such that:

(s⇤, a⇤) = argmax
a

⇤2Aargmax
s

⇤2S f(s⇤, a⇤)�(s⇤, a⇤) (3.10)

Now the question is, if r(s⇤, a⇤) is greater than the half of its gap b = min
r2Rtr(s, a) +

�(s⇤,a⇤)
2 or not.

In Algorithm 4 ComputeMMR(R
t

) computes the minimax regret of given IRMDP with

respect to feasible polytope of rewards R. After querying to the user and asking her

opinions through function SelectAndQuery, the added bound on R
t

should elicit part of

the polytope using the refine function.

The iterative generation approach between master problem and subproblem for comput-

ing exact minimax regret is only possible for small size of MDPs. Therefore, to solve

this problem, Regan and Boutilier [2010, 2011a] have done an extensive research based

on using non-dominated policies (given in Definition 2.10).

3.3.2 Accelerate Minimax Regret Elicitation Method

Recalling the minimax regret formulation (given in 3.3):

Chapter 3. A Survey on MDPs with Unknown Parameters 41

va
lu
e
fu
nc
ti
on

indicates which part
of f is nondominated
w.r.t the R set.

f1

f3f2 f4 f5

rewards

Figure 3.2: Illustration of value as a linear function of reward

min
f2F max

g2Fmax
r2R

X

s2S

X

a2A
[r(s, a)g(s, a)� r(s, a)f(s, a)] (3.11)

algorithm 4 using this calculation is complex and is not applicable for even the medium

size MDPs. Thus, there exist some other approaches that intend to reduce the complexity

[Regan and Boutilier, 2010, 2012].

Rewriting the same definition 2.10 on occupancy functions introduce non-dominated

occupancy functions as well as non-dominated policies. It means they can be used

instead of each other:

Definition 3.2. An uncertain reward MDP with feasible set of reward weights R being

given, policy f is non-dominated with respect to ⇤ if and only if

9 r 2 R s.t. 8f 0 2 F
X

s

X

a

r(s, a)f(s, a) �
X

s

X

a

r(s, a)f 0
(s, a)

It is more convenient to write non-dominated definition in the vector form:

9 r 2 R s.t. 8f 0 2 F r · f � r · f 0

where functions r, f and f 0 are viewed as three |S||A| dimensional vectors. The set of

non-dominated policies with respect to R is noted as NDR(⇧) or equivalently NDR(F)

(⇧ / F are the set of all policies / occupancy functions). Using the non-dominated

policies set simplifies the minimax regret computation in IRMDPs.

Chapter 3. A Survey on MDPs with Unknown Parameters 42

Observation 3.1. For any IRMDP and policy f , argmax
g2F Regret(f, r) 2 ND(F)

[Regan and Boutilier, 2010].

Using the vector form, we have argmax
g2Fmax

r2R r · g � r · f 2 ND(F). That means,

the policy g that maximizes the regret of f should be inside ND(F). With a slight abuse

of notation, the set of non-dominated policies can be written as ND(⇧), if the bounded

polytope of rewards R is known.

Example 3.4. Figure 3.2 illustrates a set of 5 given policies on a given IRMDP. Policies

are two dimensional while one dimensional unknown rewards are given on the x-axis. In

this figure, ND(⇧) = {f1, f2, f4, f5} is the set of non-dominated policies. Policy f3 is

dominated because there is no reward (on the horizontal axis) that makes f3 an optimal

policy with respect to ⇧\f3. [Regan and Boutilier, 2010].

This observation indicates that instead of solving a minimax regret problem as given

in 3.11 and maximizing regrets on the whole policies F , the problem can be solved

on the set of non-dominated policies. The ND(F) set is smaller than F while the

dominated polices are useless for minimax regret computation. Thus, The corresponding

optimization problem is:

min
f2F max

g2ND(F)max
r2R

X

s2S

X

a2A
[r(s, a)g(s, a)� r(s, a)f(s, a)] (3.12)

There are some works in the literature so far that study various approaches for exploring

non-dominated policies. Regan and Boutilier [2010, 2011a] introduced two important

algorithms to find the set of nondominated policies:

1- Witness algorithm, inspired by POMDP methods.

2- Region Vertex algorithm, inspired by Classic linear support methods for POMDPs.

The witness algorithm is presented in Algorithm 5. It starts with a set of non-dominated

policies ND (the set has a single element at the beginning). At each iteration, it checks

if there is an improvement of f 2 ND or not. It means, a policy that is different in only

one (state,action) than f , namely fs:a such that f s:a · r > f 0 · r for all f 0 2 ND. This

Chapter 3. A Survey on MDPs with Unknown Parameters 43

Algorithm 5 ⇡ witness Algorithm

Inputs: MDP(S,A, p,R, �,�)
Outputs: set of non-dominated policies ND(⇧)

1: r � an arbitrary r 2 R
2: f � findBest(r)
3: ND � {f}
4: agenda � {f}
5: while agenda 6= ; do
6: f � next item in agenda
7: for each s, a do
8: rw � findWitnessReward(f s:a, ND)
9: while witness found do

10: f
best

 � findBest(rw)
11: add f

best

to ND
12: add f

best

to agenda
13: rw � findWitnessReward(f s:a, ND)

Return ND

iteration continues until the algorithm finds no more improvement for the explored set

ND.

For the sake of abbreviation, we use vector notation for the rest of this section. In the

algorithm, function findBest finds the optimal policy for any given reward r i.e.,

findBest(r) = argmax
f2F

X

s

X

a

f(s, a)r(s, a) = argmax
f2Ff · r

Suppose f s:a 2 F is an occupancy function related to policy ⇡0 such that ⇡0 policy is

defined as the following w.r.t the given policy ⇡.

⇡0
(s0) =

8
<

:
⇡(s0) if s0 6= s

a if s0 = s

They use occupancy functions in their calculations instead of policies directly. The reason

of using this definition is that, if f (the occupancy function of policy ⇡) is given, f s:a can

be computed easily with few calculations. In fact findWitnessReward(f s:a, ND) attempts

to find an r for which f s:a has higher value than any f inside the current explored set of

non-dominated policies ND by solving the following LP:

Chapter 3. A Survey on MDPs with Unknown Parameters 44

Algorithm 6 online adjustment during elicitation

Inputs: IRMDP(S,A, p,R, �,�)
Outputs: optimal policy
1: R0 � initial reward polytope
2: �0 � initial non-dominated policies (computing offline) . like generating 100

non-dominated policies from Algorithm 5
3: ✏ � level of regret
4: for each step t � 1 do . Elicitation part
5: mmr, f, g, r � ComputeMMR(R

t�1,�t�1)
6: response � SelectAndAskQuery(f, g, r,R

t�1)

7: R
t

 � Refine(response, R
t�1)

8: �

t�1 � Prune(R
t

,�
t�1) [Add(R

t

,�
t�1)

9: if mmr < ✏ then
10: terminate and return minimax optimal policy f

maximize
�,r

�

subject to:

�  f s:a · r � f 0 · r 8f 0 2 ND

Ar  d

The run-time of the ⇡-Witness algorithm is polynomial in inputs |S|, |A|, |R|3 and output

|ND(⇧)|4 [Regan and Boutilier, 2010].

Since non-dominated policies with respect to unknown reward polytope R include too

many elements, Regan and Boutilier [2011a] propose another method for exploring non-

dominated policies. This process is based on Algorithm 6. This algorithm is an iterative

alternation between minimax regret computation of optimal policy and reward eliciting

by proposing a query to the user.

Iteration starts with a set of nondominated policies �0 as a small subset of all nondomi-

nated policies. Then, in each iteration ComputeMMR finds a solution for minimax regret

as min
f2Fmax

r2Rtmax
g2�t g · r � f · r.

The difference between this new method and simple interactive algorithm 4 lies in the

two functions Prune and Add. One major issue with Algorithm 4 is that it includes a

minimax regret calculation in every iteration, which is memory and time consuming. On
3as mentioned in Chapter 2 |R| is the number of constraints on polytope R
4set of all non-dominated policies

Chapter 3. A Survey on MDPs with Unknown Parameters 45

the other hand, extracting all non-dominated policies once is computationally complex

(as in Algorithm 5). For these reasons, Regan and Boutilier [2011a] suggest to update

the set of non-dominated policies �

t

in each iteration. It should be updated because

some policies inside �

t

become dominated after querying the user and updating the R

polytope.

In fact, the Prune function receives the updated polytope R
t

and the old subset of non-

dominated policies �
t�1, and removes new dominated policies from the old set w.r.t the

new feasible set of rewards. On the other hand, new non-dminated policies are added

after updating R and getting more information about unknown rewards, which is done

by the function Add. Regan and Boutilier [2011b] have introduced an algorithm, namely

non-dominated region vertex for finding new non-dominated policies for function add

(see page 4 in [Regan and Boutilier, 2011b] for more information).

3.3.3 Reward Elicitation with Policy Iteration

Since the previous query selection methods are not precise, in this chapter we present how

to ask queries systematically using a policy iteration based approach [Fürnkranz et al.,

2012]. This algorithm will success, if it receives a response for all pairwise comparisons

during the policy iteration process. For this reason, it should query to an oracle or a

user who have an answer for all state action comparison questions.

Fürnkranz et al. [2012] introduce an approach based on the policy iteration method for

MDPs [Fürnkranz et al., 2012]. According to the Policy Iteration algorithm (given in

Section 2), in each iteration, it is required to find the best action in each state using:

⇡
t+1(s) = argmax

a2AQt

(s, a) 8s (3.13)

In both approaches, the Q-value function is not computed directly. They assume that,

Q(s, a) induces an ordering on the actions a in each state. Algorithm 7 describes the

Preference-based Approximate Policy Iteration (PAPI), introduced in [Fürnkranz et al.,

2012]. The algorithm starts with a random policy ⇡0. In each iteration, it improves

policy ⇡ by modifying its information on pairwise comparisons of (state, action) pairs

Chapter 3. A Survey on MDPs with Unknown Parameters 46

Algorithm 7 Preference-based Approximate Policy Iteration

Inputs: Sample states S0 ⇢ S, initial random policy ⇡0, maximum number of policy
iterations p, procedure

1: ⇡0 � ⇡0, i � 0

2: repeat
3: ⇡ � ⇡0, E � ;
4: for each s 2 S0 do
5: for each (a

k

, a
j

) 2 A⇥A do
6: EvaluatePreference(s, a

k

, a
j

,⇡)
7: if a

k

⌫ a
j

then
8: E � E [{a

k

⌫ a
j

,⇡}
9: ⇡0 � LearnLabelRanker(E), i � i+ 1

10: until StoppingCriterion(⇡,⇡0, p, i)
11: Return ¯V

t

w.r.t the policy ⇡. This iteration continues until the algorithm meets its stopping criteria

based on similarity of policies.

Two functions are used in Algorithm 7: EvaluatePreference and LearnLableRanker. The

combination of these two functions plays a role similar to Equation 3.13. The Eval-

uatePreference(s, a
k

, a
j

,⇡) function determines the preference between two actions a
k

and a
j

for a given policy ⇡ on state s. The LearnLableRanker function finds the policy

⇡0 regarding an explored set of preferences between actions on states produced by the

EvaluatePreference function. It attempts to select the most preferred action for each

state.

The PAPI Algorithm has been originally implemented for completely known MDPs.

Fürnkranz et al. [2012] use this approach for the case of long distance trajectories while

they have reward values r as well. In comparison with our problem, the PAPI approach

can deal with VMDPs with given polytope ⇤. This is due to the fact that theEvalu-

atePreference function does not depend on the reward values. Considering our problem,

the EvaluatePreference function can be re-defined in two ways: it can either communicate

with the user to know her preferences among state action pairs or it can approximate

the preference vector ¯� 2 ⇤ using the inequalities induced by the evaluated preferences.

Considering the PAPI method, there is a compact representation for the preferences of

action for each state. This implies that it can be used only for solving VMDPs of small

size. The algorithm complexity depends on |S| and on the average number of observed

preferences per state m i.e. O(m|S|).

Chapter 3. A Survey on MDPs with Unknown Parameters 47

3.3.4 Reward Elicitation with Value Iteration

A problem with heuristic querying to the user is that sometimes the query could be

answered without interaction, or it adds very few information to the system. In this

section we introduce a value iteration approach on VMDPs with reward weights polytope

⇤ which interweaves the reward elicitation and optimization phases [Weng and Zanuttini,

2013]. They have shown that their method asks less number of queries to get the optimal

policy with the same precision than other similar works. Because they introduce a new

approach for asking more informative questions. This algorithm is implemented on a

VMDP with bounded reward vectors ⇤.

In Algorithm 8, there are d unknown rewards {�1, · · · ,�
d

}, and K denotes a set of

constraints defining the polytope ⇤. The initial information is that the �
i

are confined

between 0 and 1 i.e. K = {�
i

� 0, �
i

 1 for i = 1, · · · , d} at the beginning.

In order to implement the value iteration method on the VMDP, they have two separate

parts: the VMDP with vector reward functions r̄ and unknown bounded reward weights
¯�s inside the polytope ⇤ (see Sections 2.2.3.1 and 2.2.4).

Each iteration of the value iteration method must compare two vectors, say ¯V
best

and
¯Q(s, a). From the user point of view, the comparison amounts to deciding “which of
¯V
best

or ¯Q(s, a) is the highest?”. If the system could predict the user preferences exactly,

it would assign a reward weight ¯�⇤ to the user. Then the question is equivalent to

deciding the sign of ¯�⇤ · (¯V
best

� ¯Q(s, a)). But as ¯�⇤ is unknown, the algorithm is going

to approximate its numerical value inside the ⇤ polytope and define the equation sign in

the same time.

Since Weng and Zanuttini [2013] goal is to find the optimal policy while asking less

questions to the user, they first utilize several possible comparison methods to compare

any two vectors w.r.t the ⇤ polytope without imposing too much pressure to the users.

In detail, the algorithm uses three types of vector comparison methods, which are tested

in the given order until any of them gives an answer. The first two methods provide an

answer when the vectors can be compared relying on the restrictions of ⇤ as is. When

they fail, the third comparison makes a query to the user, which refines our knowledge

about user preferences and prunes the ⇤ polytope [Weng and Zanuttini, 2013].

Chapter 3. A Survey on MDPs with Unknown Parameters 48

Algorithm 8 Interactive Value Iteration

Inputs: MDP(S,A, p, r̄, �,�), ⇤, ✏
Outputs: optimal ¯V ⇤

(s) for each s

1: t � 0

2: 8s ¯V0(s) � (0, .., 0): zero vector of d dimension
3: K � set of constraints on ⇤

4: repeat
5: t � t+ 1

6: for each s do
7: ¯V

best

 � (0, .., 0)
8: for each a do
9: ¯Q(s, a) r̄(s, a) + �

P
s

0 p(s0|s, a) ¯V
t�1(s0)

10: (

¯V
best

,K) � getBest(¯V
best

, ¯Q(s, a),K)

11: ¯V
t

(s) ¯V
best

12: until ||E
s⇠�

[

¯V
t

]� E
s⇠�

[

¯V
t�1]|| < ✏

13: Return ¯V
t

1. Pareto dominance is a partial preference relation which is the least expensive

method. It is defined as:

Definition 3.3.1. For two given vectors ¯A = (a1, · · · , a
d

) and ¯B = (b1, · · · , b
d

) in

Rd we have:
¯A <

P

¯B , 8i a
i

� b
i

2. KDominance comparison succeeds when all ¯� of ⇤ verify ¯� · ¯V
best

� ¯� · ¯Q(s, a) or

when they all verify ¯� · ¯Q(s, a) � ¯� · ¯V
best

. It is the second least expensive test. It

can be formulated as a linear program [Weng and Zanuttini, 2013]:

min
�̄2⇤

¯� · (¯V
best

� ¯Q(s, a))

¯V
best

⌫
K

¯Q(s, a), if the above LP has a non-negative solution.

3. Ask the query to the user: “ ¯V
best

⌫ ¯Q(s, a)?”. This query proposes a cut w.r.t

unknown reward weights ¯� as “Is ¯� · ¯V
best

� ¯� · ¯Q(s, a)?”

The final solution is the most expensive and less desired option, because the algorithm

aim is finding the optimal solution with less interactions and interruptions with the user.

In fact this last option devolves answering to the user. Note that for any two vectors ¯V
i

and ¯V
j

, the certain user answers the comparison question ¯V
i

⌫ ¯V
j

all the time correctly

regarding her preferences. On the other hand, the uncertain user sometimes can not give

an exact answer to the query regarding her final priorities on the objectives.

Chapter 3. A Survey on MDPs with Unknown Parameters 49

Algorithm 9 getBest(¯V , ¯V 0,K)

Inputs: ¯V , ¯V 0, K
Outputs: The most preferred vector between ¯V and ¯V 0 and modified constraints K
1: if ParetoDominates(¯V , ¯V 0) then
2: Return (

¯V ,K)

3: if ParetoDominates(¯V 0, ¯V) then
4: Return (

¯V 0,K)

5: if KDominates(¯V , ¯V 0,K) then
6: Return (

¯V ,K)

7: if KDominates(¯V 0, ¯V ,K) then
8: Return (

¯V 0,K)

9: (

¯V
best

,K) � query(¯V , ¯V 0,K)

10: Return (

¯V
best

,K)

Algorithm 10 query(¯V , ¯V 0,K)

Inputs: ¯V , ¯V 0, K
Outputs: The most preferred vector between ¯V and ¯V 0 and modified constraints K
1: Build query q for ¯V ⌫ ¯V 0

2: if answer to q from user is yes then
3: Return (

¯V ,K [{(¯V � ¯V 0
) · ¯� � 0})

4: else
5: Return (

¯V 0,K [{(¯V 0 � ¯V) · ¯� � 0})

Definition 3.3. ⌫
�̄⇤ is used as a comparison relation for two given vectors ¯V

best

and
¯Q(s, a) with respect to the given preference vector ¯�⇤ satisfying the user’s preferences.

It is defined as:
¯V
best

⌫
�̄

⇤ ¯Q(s, a), ¯�⇤ · ¯V
best

� ¯�⇤ · ¯Q(s, a)

The getBest function compares ¯V
best

and ¯Q(s, a) according to the three listed comparison

methods and modifies K if the method involves a new constraint on ⇤. getBest is

presented in Algorithms 9 and 10 [Weng and Zanuttini, 2013].

Since the goal is to reduce the number of queries, there is another approach that modifies

Algorithm 8 by searching how and when asking the queries inside the Interactive Value

Iteration (IVI) algorithm [Gilbert et al., 2015]. Their method does not ask the query

immediately after dealing with a new one. Instead, they delay the question as much

as possible. They gather queries and determine an order on them, avoiding asking

unnecessary ones. Because some queries can resolve some other queries, if they are asked

sooner that the others.

Chapter 3. A Survey on MDPs with Unknown Parameters 50

3.4 Conclusion

In this chapter we have presented a survey of methods for solving MDPs with unknown

rewards. In the first part of this section, we have discussed several robust methods for

solving MDPs with unknown rewards. Sometimes these solutions are not enough precise

because the systems do not have enough information on bounded rewards. Using the

robust approaches on a set of general information about rewards can not explore a precise

solution.

In the second part, we studied some methods that explores the optimal policy by ob-

serving the expert behaviors. It means, they receive the experts’ preferences among

trajectories or actions of each state from the expert performance observation. After they

approximate the reward function with respect to the given preferences. After exploring

the exact reward and gaining a completely known MDP, finding the optimal policy can

be done using classical algorithms in RL.

Sometimes the expert does not know which performance is the optimal one or which

trajectory is the best one. But she can compare trajectories with each other and signals

back the system which one is preferred to another one in order to do a task in the perfect

way. Thus, another existed methods in the literature attempt to discover the optimal

policy by observing expert performance without approximating the reward function.

They compute the optimal policies directly from a set of comparisons among trajectories.

There are many useless questions or comparisons in each system for exploring the optimal

policy. Therefore, another approach is to approximate the optimal policy while asking

necessary comparison questions during the process. These methods are effective, because

they can manage type of queries, number of asked queries to the user and complexity of

computations. In the final section, we have presented some reward elicitation methods

so far in the literature and we have explained how do they deal with this problem.

Chapter 4

Elicitation Methods with Iteration

Based Approaches

Forward

Vector-valued MDPs (VMDPs) offer a rich framework to optimize the optimal strategy

in dynamic environments under uncertainty. This setting allows us to measure rewards

as vectors, while each reward element has a weight regarding user priorities. Since user

preferences are not known, we can assign a vector to any policy in the environment by

adding expectation of sum of rewards. Thus, each policy is assigned with its vector value

function. MDP solution is the policy with the maximum value among all existing policies

in the model, while in the VMDP case we should find the policy with maximum value

vector. Since comparing value vectors does not have any solution in several situations,

it is needed to communicate with the user and query her about her preferences among

several policies. These informative queries reveal more information on reward weights

and elicit useless information on set of unknown reward weights. Thus, there are two

main aspects that need to be considered when designing an algorithm for this setting:

its computational complexity and the number of interactions with the user generated by

such an algorithm.

In this Chapter we present two new techniques that allow to reduce the number of queries

to the users. In Section 4.4 we present an algorithm that compile all information in a

51

Chapter 4. Elicitation Methods with Iteration Based Approaches 52

small set of non-dominated policies to find out the optimal one from that small set by

querying the user.

4.1 VMDP General Properties

In the last paragraph of Chapter 2 we briefly illustrated how VMDP problems can be

divided into two separate polytopes. Assume a VMDP(S, A, p, r̄, �, �) with admissible

polytope ⇤ is given. If the reward vectors are d-dimensional vectors, then the reward

weight vectors ¯� 2 ⇤ have also dimension d. This means that the reward vectors r̄s

and the rewards weight vectors ¯� are both located in Rd. Without loss of generality, we

assume that the ⇤ polytope is inside a d-dimensional unit cube:

8i = 1, · · · , d 0  �
i

 1

This polytope represents all the knowledge so far about user’s preferences. In Figure 4.1

we provide an example of a VMDP with 2 objectives, namely objective1 and objective2.

The system supposes that all vector preferences are inside the given square.

For instance, a user with vector preference ¯� = (1, 0) is the one who prefers objective1

than objective2 in all situations.

Figure 4.1: An example of polytope
⇤ for VMDP with reward vectors of

dimension 2 (d = 2).
Figure 4.2: An example of ¯V poly-
tope including vector-valued func-
tions for VMDPs with two objectives.

For a given VMDP (or MDP in general), we indicate by ⇧ the set of possible policies,

with |⇧| = |A||S| We know that for any policy ⇡ 2 ⇧, there exists a vector-valued

Chapter 4. Elicitation Methods with Iteration Based Approaches 53

function that can be calculated from Equation 2.16 (For more details we refer the reader

to Section 2.2.2).

The vector-valued functions related to the ⇧ members, induce the following set: { ¯V ⇡

�

:

⇡ 2 ⇧}. Since the vector-valued functions ¯V ⇡

�

can not be represented compactly, we

define a polytope ¯V including vector-valued functions related to the members of ⇧ mem-

bers. Figure 4.2 presents an example of the ¯V polytope, including some vector-valued

functions. The ¯V polytope alone has all the information needed to evaluate the best

policy associated to any preference vector. In other words, the VMDP can be replaced

by the ¯V polytope.

Suppose ¯V and ⇤ are given. Our aim is to explore the optimal value function as: ¯�⇤ · ¯V ⇤
�

such that ¯V ⇤
�

2 ¯V is the optimal vector-valued function for the VMDP (given in 2.19),

and ¯�⇤ 2 ⇤ is the preference vector. To tackle this problem, several types of questions

must be handled:

• How to compute the ¯V members.

• Which members of ¯V are more effective to be explored.

• How to approximate ¯�⇤ 2 ⇤ satisfying the user preferences.

• Which vector pairs from ¯V should be compared with each other for exploring ¯�⇤

such that it is close enough to the user preferences.

The last option is especially important because it produces the queries that should be

proposed to the user. More precisely, comparing any two vectors ¯V ⇡i
�

and ¯V
⇡j

�

inside
¯V creates a cut for the polytope ⇤. The user opinion regarding this comparison prunes

part of the ⇤ polytope.

4.2 Comparing Policies Produces Cuts on Polytope ⇤

Comparing two vectors ¯V ⇡i
�

, and ¯V
⇡j

�

means deciding “which of ¯�⇤. ¯V ⇡i
�

or ¯�⇤. ¯V
⇡j

�

is the

highest?”. Since the user preferences are not given, ¯�⇤ is unknown and hence it could be

not possible to compare the two vectors, unless a query is asked to the user. Comparing

two vectors produces the following hyper-plane:

Chapter 4. Elicitation Methods with Iteration Based Approaches 54

⇡
i

is prefered to ⇡
j

) ¯�⇤ · ¯V ⇡i
�

� ¯�⇤ · ¯V ⇡j

�

(4.1)

If the hyper plane does not intersect the ⇤ polytope, an interaction with the user is

not required. Otherwise, we should find a response for the comparison question with the

procedure presented in Algorithm 9, if neither the Pareto dominance or the KDominance

are able to provide an answer, a query to the user is required to decide which side of

the hyper-plane should be kept. In fact, each query generates a cuts on the ⇤ polytope

where all ¯� such that ¯� · (¯V ⇡i
�

� ¯V
⇡j

�

)  0 will be discarded (because they correspond to

region of the polytope that represents not preferred parts), decreasing the volume of the

⇤ polytope.

The types of queries, when to perform a query and which queries should be proposed

to the users are three important issues. In the following sections we will introduce new

approaches that allows to better answer to the listed questions.

4.3 Advantages

According to the basic definition of advantages given in Definition 2.2, we introduce

the vector advantages on VMDPs and we study some of their useful characteristics and

properties.

Definition 4.1. A VMDP with a finite set of states S and actions A, a vector reward

function r̄ and the initial distribution on states � is given. Vector-valued advantage of

a policy ⇡, namely vector Advantage with respect to the VMDP on state s and action a

is defined as follows:

¯A⇡

(s, a) = ¯Q⇡

(s, a)� ¯V ⇡

(s) (4.2)

Similarly, by taking the initial distributions on state s into account, the weighted advan-

tage vector is defined as

¯A⇡

�

(s, a) = �(s)(¯Q⇡

(s, a)� ¯V ⇡

(s))

Chapter 4. Elicitation Methods with Iteration Based Approaches 55

Referring to the policy iteration Algorithm 2 and to the policy improvement theorem

(given in Equation 2.6), to find the optimal policy for each MDP we are interested in

improving a policy ⇡ to the policy ⇡0 such that: ⇡0
(s) 2 argmax

a2AQ
⇡

(s, a).

Since in VMDPs with bounded polytope ⇤, the preference vector ¯� is not given, we are

looking for approaches that allow to improve the policies regardless of the ¯� vectors.

In the VMDP setting, the value function V and the Q-value function will be considered

as vector functions. Considering Equation 2.21, if preference vector ¯� is known, we have:

⇡0
(s) 2 argmax

a2A¯� · ¯Q⇡

(s, a) (4.3)

Definition 4.2. For a policy ⇡, ⇡ŝ"â represents the same policy as ⇡, except from the

fact that it chooses the action â in state ŝ instead of choosing the action ⇡(ŝ) following

policy ⇡ [Baird, 1993, Kakade and Langford, 2002]:

⇡ŝ"â
(s) =

8
<

:
⇡(s) if s 6= ŝ

â if s = ŝ

Assuming that for a given policy ⇡, ⇡ŝ"â
(s) has an higher value than policy ⇡. Since ⇡

and ⇡ŝ"â policies only differ in the ŝ state, we have:

¯� · ¯Q⇡

(ŝ,⇡ŝ"â
(ŝ)) = ¯� · ¯V ⇡

ŝ"â
(ŝ) � ¯� · ¯V ⇡

(ŝ) (4.4)

In the light of Equation 4.4, we analyze the advantage of ⇡ŝ"â over ⇡ by taking the initial

states distribution � into account, i.e. the difference of vectors ¯V ⇡

ŝ"â
�

and ¯V ⇡

�

. Since the

only difference between ⇡ and ⇡ŝ"â is the state ŝ, we have:

¯V ⇡

ŝ"â
�

� ¯V ⇡

�

=

X

s

�(s) ¯V ⇡

ŝ"â
(s)�

X

s

�(s) ¯V ⇡

(s)

= �(ŝ){ ¯V ⇡

ŝ"â
(ŝ)� ¯V ⇡

(ŝ)} = �(ŝ)(¯Q⇡

(ŝ,⇡ŝ"â
(ŝ))� ¯V ⇡

(ŝ)) = ¯A⇡

�

(ŝ, â)

This reminds us that we can explore new policies with more than one advantage vector

differences from policy ⇡. Let ⇡00
= ⇡ŝ1"â1,··· ,ŝk"âk be the policy that differs from ⇡ in

Chapter 4. Elicitation Methods with Iteration Based Approaches 56

the state-action pairs {(ŝ1, â1), · · · , (ŝ
k

, â
k

)}. Assuming that each â
i

is chosen such that
¯Q⇡

(ŝ
i

, â
i

) � ¯V ⇡

(ŝ
i

), then we have:

¯� · ¯V ⇡

00
�

� ¯� · ¯V ⇡

ŝ1"â1
�

� ¯� · ¯V ⇡

�

¯� · E
s⇠�

[

¯V ⇡

00
(s)] � ¯� · E

s⇠�

[

¯V ⇡

ŝ1"â1
(s)] � ¯� · E

s⇠�

[

¯V ⇡

(s)]

The change in E
s⇠�

[

¯V ⇡

(s)] can be analyzed more precisely:

E
s⇠�

[

¯V ⇡

00
(s)]� E

s⇠�

[

¯V ⇡

(s)] = E
s⇠�

[

¯Q⇡

(s,⇡00
(s))]� E

s⇠�

[

¯V ⇡

(s)]

=

kX

i=1

�(ŝ
i

){ ¯Q⇡

(ŝ
i

,⇡00
(ŝ

i

))� V ⇡

(ŝ
i

)} =

kX

i=1

¯A⇡

�

(ŝ
i

,⇡00
(ŝ

i

))

meaning that several vectorial advantages are additive. In particular, we can say:

if ¯� · E
s⇠�

[

¯V ⇡

00
(s)]� ¯� · E

s⇠�

[

¯V ⇡

(s)] � 0 then ¯� ·
kX

i=1

¯A⇡

�

(ŝ
i

,⇡00
(ŝ

i

)) � 0

Therefore, for an arbitrarily selected policy ⇡, we are interested in finding a large values

of ¯� ·
P

¯A⇡

�

(s, a) w.r.t ¯� 2 ⇤. Based on this objective, we concentrate on the advantage

sets A = { ¯A⇡

�

(s, a)|s 2 S, a 2 A} and their characterizations.

4.4 Propagation-Search Algorithm for VMDPs

The method proposed in this section for finding the optimal strategies uses extensively

the two following independent polytopes: the set of admissible vector-valued functions
¯V and the ⇤ polytope of admissible reward weight vectors (Explained in Section 4.1).

In contrast with the majority of the existing algorithms for reward-uncertain MDPs,

our approach does not require interactions with the user during the optimal policies

generation.

Any user’s optimal policy is a non-dominated policy (the definition is given in 2.10

and they will be explained in detail in next section). Thus, since computing the exact
¯V polytope is not tractable, we approximate a subset of its non-dominated vectors ¯V

✏

with ✏ precision. Once we build the set of non-dominated policies, we do not need the

Chapter 4. Elicitation Methods with Iteration Based Approaches 57

VMDPs anymore and this allows us to speed up the optimal policy search. Afterward,

it is sufficient to find the optimal policy complying the given user from the ¯V
✏

set by

querying comparison questions to the user.

Recall that a polytope has two presentations, the H-representation (including set of

hyper-planes) and V-representation (including set of vertices). We build an approximated

set of non-dominated policies ¯V
✏

that is a V-representation of the ¯V .

Thus, to solve a VMDP problem:

1- we first propose an algorithm for discovering the approximated set of non-dominated

policies with precision ✏, namely Propagation Algorithm,

2- second, we introduce an approach for searching the (nearly) optimal policy accord-

ing to the user priorities from the set of approximated non-dominated policies, in

parallel with interactively narrowing the ⇤ polytope. This algorithm is called the

Search Algorithm.

¯V is built with the help of classification methods on advantages adapted to VMDPs (see

Section 4.3). The idea is to generate vector-valued functions first by generating a tree of

advantages. Since the advantage tree expansion grows exponentially, we will reduce tree

size by clustering advantages in each level (see Section 4.4.1). Although clustering ad-

vantages reduce the computation complexity, this method is still computationally heavy.

Therefore, by defining a precision ✏, we reduce the calculation complexity and we produce

an ✏ approximate subset of non-dominated vectors, namely ¯V
✏

(see Section 4.4.2).

After approximately knowing the set of non-dominated ¯V
�

vectors, the next point is

to find the optimal ¯V ⇤
�

according to the user preferences. Our approach allows the

interaction with the user in order to compare two ¯V
�

vectors and find the optimal one

according to the user priorities.

Regan and Boutilier [2010] propose an exact method, the ⇡-witness algorithm, for gen-

erating non-dominated policies. The algorithm attempts to explore all non-dominated

policies by solving thea very elevated number of linear programming problems. This

method is a complex method and it is based on the minimax regret computation idea.

However, Since they are forced to generate all non-dominated policies, they can not

Chapter 4. Elicitation Methods with Iteration Based Approaches 58

define when to stop the generation of non-dominated to have a according to a desired

precision for their optimal policy response.

Another work of [Regan and Boutilier, 2011b] is an online generation method that queries

the user during the generation process. It allows to shrink the ⇤ polytope, and it reduces

the non-dominated policies search complexity. They then use minimax regret compu-

tation method on the non-dominated policies to explore the optimal one. The second

part of our algorithm (search) is easier than theirs method because it compares policies

pairwise, instead of using minimax regret calculation. We believe that using the idea

of leveraging the user preferences during non-dominated policies generation can improve

our propagation search method. We will implement this idea in our algorithm in the

future.

4.4.1 Describing V̄ Members Using Advantages

Following the non-dominated policy definition 2.10, a non-dominated vector-valued func-

tion with respect to ⇤ is defined:

Definition 4.3. A VMDP with a feasible set of weights ⇤ being given, ¯V
�

2 ¯V is

non-dominated (in ¯V w.r.t ⇤) if and only if:

9 ¯� 2 ⇤ s.t. 8 ¯U
�

2 ¯V, ¯� · ¯V
�

� ¯� · ¯U
�

Suppose that ¯V is given while we are looking for the optimal vector ¯V ⇤
�

satisfying a

user with preference vector ¯�⇤. According to the latter definition, this vector is a non-

dominated vector-valued function i.e. ¯V ⇤
�

2 ND(

¯V). This means that we should find an

approximation of non-dominated vector-valued functions.

Since each ¯V
�

2 ¯V should be computed for a selected policy ⇡ 2 ⇧, our idea is to

generate (some of) the ¯V
�

vectors using advantages. According to Section 4.3, for each
¯V ⇡

�

vector, there exist |S||A| advantages { ¯A
�

(s1, a1), ¯A
�

(s1, a2), · · · , ¯A
�

(s|S|, a|A|)}. This

implies that if we start with a given vector and we continue the exploration for each new

generated ¯V ⇡

�

+

¯A
�

(s
i

, a
j

), the total number of generated vectors increases exponentially

after few layers of advantage generation.

Chapter 4. Elicitation Methods with Iteration Based Approaches 59

(⇡0, ¯V0)

¯A
�

(s1, a1) ¯A
�

(s
n

, a
m

)

level = 1

level = 0

· · · · · ·

(⇡t

1, ¯V
t

1) (⇡t

n

, ¯V t

n

)

Figure 4.3: Structure tree of ¯V exploration.

In order to reduce the exponential growth of ¯V
�

vectors generation while keeping non-

dominated vectors, our new algorithm suggests grouping several advantages in each it-

eration. In fact, in place of adding each ¯A
�

(s, a) to the ¯V ⇡

�

vector, we group several

advantages and make a new equivalent vector from them. We implement that strategy

with the help of the same clustering method on advantages explained in Section 4.5.

Classifying the advantages allows us to decrease the number of new explored vectors.

If a cluster c includes k advantages ¯A
�

(s
i1 , ai1), .., ¯A�

(s
ik , aik), the new explored vector

becomes ¯V ⇡

0
�

=

¯V ⇡

�

+

P
k

j=1
¯A
�

(s
ij , aij)

1. Classifying the advantages in |C| clusters

enables us to generate less ¯V
�

vectors and more useful (policy, vector-valued function)

pairs.

Figure 4.3 illustrates a tree with a root including policy ⇡0 and its related vector-valued

function ¯V0. Taking ¯V0 and computing ¯Q-function produce |S||A| advantages. Without

clustering on the advantages, the root will have |S||A| children nodes in the first ex-

pansion level while the total number of nodes increase exponentially by expanding the

tree levels. Clustering the advantages allows us to have significantly less nodes in the

advantage tree, while keeping only the more effective and useful nodes. If we cluster the

generated advantages at each node, we can still assign a pair (⇡t

i

, ¯V t

i

) to each node. ⇡t

i

and ¯V t

i

are computed according to the latter explanations after classifying the advan-

tages. We can say that an effective classification of each iteration (i.e. level of tree) is the
1If there are several advantages with the same state ŝ, we randomly select one of them

Chapter 4. Elicitation Methods with Iteration Based Approaches 60

one including policies (i.e. nodes) with great vector values with approximately the simi-

lar directions. Because the assigned vector to a class of vectors with different directions

may have a smaller size in comparison with the other classes of the same level. In the

following section we will discuss how to generate an approximate set of non-dominated

vector-valued functions using a clustered advantages tree.

4.4.2 How to approximate V̄ with ✏ precision

Even if, after the clustering, the number of generated children in each level decreases,

the total number of nodes in the tree remains exponential. To further reduce this size

we use two methods: 1) we work with the convex hull of the generated vector-valued

functions after each extension level and 2) we introduce a stopping criteria dependent on

a given precision ✏. The advantage of working at each step withconvex-hull is to reduce

the total number of vectors generated in each step.

More precisely, this method allows us to keep only the greatest vector among several

vectors with the same direction after each tree expansion. Therefore, appending the

advantages will converge faster to the optimal vectors in the following levels. Moreover,

the ✏ parameter allows us to limit the number of extended vectors at the end of the

propagation setting.

This section introduces an algorithm to generate an approximation of the non-dominated

vector-valued functions set ¯V
✏

. This approximation at ✏ precision is a subset of ¯V such

that

8 ¯V
�

2 ¯V 9 ¯V 0
�

2 ¯V
✏

s.t. || ¯V 0
�

� ¯V
�

||  ✏ (4.5)

Recall that the ¯V
✏

set is an approximated set of non-dominated vector-valued functions

including all possible optimal policies for different users. For the sake of simplicity we do

not write the � index of ¯V vectors in the rest of this chapter. Vector ¯V is a d-dimensional

vector representing a policy with initial state distribution �; i.e. ¯V
�

.

better explain the propagation algorithm we introduce a tree structure (see Figure 4.3).

Each node n in tree is indicated with a pair (⇡, ¯V) of a policy ⇡ and its related vector-

valued function ¯V . In order to explore a set of non-dominated vectors first the tree is

initialized with a random policy ⇡0 2 ⇧ and a d-dimensional ¯V0. The ¯V0 vector is the

Chapter 4. Elicitation Methods with Iteration Based Approaches 61

vector-valued function of policy ⇡0 that can be calculated using classical methods such

as value iteration. Before introducing our main algorithm (Algorithm 12), we present

some preliminary functions and algorithms.

Essential to the algorithm is the function expand, described in Algorithm 11. It takes

a node n = (⇡, ¯V) and returns back a set of new pairs (policy, vector-valued function).

It computes first the full set of advantages A. This set has |S||A| nodes of the form

(⇡
s,a

, ¯V
s,a

): ⇡
s,a

only differs from ⇡ in ⇡
s,a

(s) = a and ¯V
s,a

=

¯V +

¯A
�

(s, a). Then the

algorithm calls the Cluster-Advantages function. This function takes as input a node n

and a set of advantages A. the Node n includes a policy ⇡ and its related vector-valued

function ¯V . The function first classifies the advantages set A and produces a set of

clusters C = {c1, .., c
k

}. Then, it returns back the set of n node’s children in the tree.

This set is indicated with N and is defined as follows:

N =

(
(⇡

j

, ¯V
j

)

���������

¯V
j

=

¯V +

P
Ā�(s,a)2cj

¯A
�

(s, a)

⇡
j

(s) =

⇢
a if ¯A

�

(s, a) 2 c
j

⇡(s) otherwise

9
>>>=

>>>;

If several ¯A
�

(s, a) 2 c
j

are associated to the same state s, we randomly select one of

them to produce the policy ⇡
j

. Afterwards, ¯V
j

considers only the selected advantage

from several advantages with the same sate s.

Algorithm 11 expand: Expand Children for given node n

Inputs: node n = (⇡, ¯V) and VMDP(S,A, p, r̄, �,�)
Outputs: N is set of n’s children
1: A � {}
2: for each s, a do
3: Add A

s,a

to A
4: N � Cluster-Advantages(A, n)
5: return N

In spite of classification, adding all the nodes generated by the Expand function remains

exponential with respect to time and space. For this reason, we look for an approach that

avoids expanding unnecessary nodes of the search tree and rolls up more non-dominated
¯V s of ¯V .

Chapter 4. Elicitation Methods with Iteration Based Approaches 62

Algorithm 12 Propagation: Generate approximation of non-dominated vectors ¯V
✏

using Advantages for a given VMDP

Inputs: VMDP(S,A, p, r̄, �,�), {(⇡0
i

, ¯V 0
i

)}0id

2, K set of constraints of polytope ⇤, ✏
Outputs: set ¯V

✏

1: N � {(⇡0
0, ¯V

0
0), .., (⇡

0
d

, ¯V 0
d

)}
2: ¯Vold � ConvexHull(getVectors(N))

3: do
4: N � {}
5: C � {}
6: for n 2 ¯Vold do
7: add expand(n) to C
8: for n 2 C do
9: if CheckImprove(n, ¯Vold,K, ✏) then

10: add n to N
11: ¯Vnew � ConvexHull(¯Vold [getVectors(N))

12: ¯Vold � N
13: while ¯Vnew 6= ¯Vold

14: return ¯Vnew

If we use the expand function on each generated node in each iteration, the clustering

on advantages does not reduce enough the size of the tree. Because of that, we compute

the convex hull3 of the set of generated nodes from one level to another. Suppose that,

in the t-th step of the node expansion, we have the set of the n generated nodes in

N
t

= {(⇡t

1, ¯V
t

1), · · · , (⇡t

n

, ¯V t

n

)} and the set ¯V
t

, containing the vector-valued functions of

the N
t

elements, i.e. ¯V
t

= { ¯V t

1 , .., ¯V
t

n

}. The expand function on N
t

will produce a new

set of nodes. In fact, due to the convexity of ¯V , the vertices of the convex hull of ¯V
t

are

enough to describe ¯V . This means that to build N
t+1 from the given set of nodes N

t

,

we can compute the union of N
t

and its expanded children. In other words, only the

children nodes that have a vector-valued function coordinates outside the convex hull of

the father node are useful, all the other nodes can be discarded.

For instance, in Figure 4.4, the square points represent the vectors obtained after the

t-th iteration and the dashed polygon represents their convex hull. The red round points

are the expanded nodes obtained after applying the Expand function on the points of the

t-th iteration. The polygon with straight lines represents the convex hull at the t+ 1-th

iteration and ¯V
t+1 contains only the vertices of this polygon.

Two remarks show that this strategy does not prune optimal points. First, the fact that

an optimal solution of a linear function over a polytope is always attained on one of its
3the convex hull definition is given in Definition 2.12

Chapter 4.Elicitation Methods with Iteration Based Approaches 63

�̄
V̄better

ū

Figure 4.4: V̄t+1 vectors selec-
tion after tree extension of̄Vt

Figure 4.5: Generated non-
dominated vectors for an MDP
with128states,5actions,d=3
and✏=0.01(Algorithm12)

vertices. Second, the interior set of theV̄tpolytope is increasing witht, so an interior

point ofV̄tcannot be a vertex ofV̄t+1. It shows that the proposed strategy does not

prune any optimal point.

Using the previous ideas and observations, we propose to use Algorithm12to identify

V̄✏, a non-dominated subset of̄V. This algorithm uses four main functions:ConvexHull,

CheckImprove,expandandgetVectors.

ConvexHullgets a set ofd-dimensional vectors, and generates its convex hull. This

function returns the vertices of the convex hull. Functionexpandhas just been described

(Algorithm11).getVectorssimply gets a set of nodes and returns back the set of their

value vectors.

Finally,CheckImprovechecks if a candidate node should be added to the current convex

hull or not. It receives as arguments a candidate vectorV̄, an old set of selected vectors

V̄oldand the✏precision. Its return value is defined below:

CheckImprove(̄V,V̄old,K,✏)=

8
>>>>>><

>>>>>>:

falseif

8
>>><

>>>:

V̄2ConvexHull(̄Vold)

or9Ū2V̄olds.t||̄V� Ū||✏

orKDominates(̄U,V̄,K)

true o.w.

If the candidate vector-valued function is inside the old convex hull or if there is a

vector in the old set that is✏-close to the candidate (in terms of Euclidean or kdominate

distance), this last vector will not be considered in the future calculations.

Chapter 4. Elicitation Methods with Iteration Based Approaches 64

Algorithm 12 inputs a VMDP, a set of d initial nodes, a stopping threshold ✏ and a

set of linear constraints representing the ⇤ polytope. Since the given ⇤ polytope is a

unit hyper-cube in d dimensional space, we select d unit vectors in Rd as preference

vectors � for the extreme users. The selected ¯�s inside ⇤ polytope are e1, .., e
d

such that

e
i

= (0, .., 0, 1, 0, ..., 0) is a d-dimensional vector with all element equal 0 except the i-th

element. This yields d scalar MDP’s where the VI method [Sutton and Barto, 1998] can

discover the optimal policy and related vector-valued function ¯V
i

for any 1  i  d. The

goal of using d initial nodes related to the d extreme users is to explore optimal policies

in d various directions and to speed up the algorithm convergence.

In each iteration, the algorithm generates all children of any given ¯Vold member and

makes a ¯Vnew set of them using the CheckImprove function. The final solution is a set of

non-dominated ¯V vectors which are each optimal for one or several ¯� vectors inside the

⇤ polytope. Recall that the final error between our prediction of optimal policy — which

will be a vector inside set ¯V
✏

— and the exact optimal policy is not ✏, because the utilized

precision ✏ is a criterion for stopping non-dominated vectors generation algorithm.

Applicability of Algorithm12 depends on the size of the studied MDP. Practically speak-

ing, it is useful for IRMDPs with average dimension d. For MDPs with high dimension

of d, the number of non-dominated vector-valued functions becomes too elevated and

exploring all these points becomes too time and memory consuming. Figure 4.5 gives an

example of the vectors generated by Algorithm 12 for an MDP with d = 3, 128 states and

an average precision ✏ = 0.01. In this figure every point is an explored non-dominated ¯V

vector. It depicts how this algorithm generates considerable number of non-dominated

vectors for the small dimension d = 3.

4.4.3 Searching Optimal V ⇤ by Interaction with User

After discovering (offline and regardless of the user preferences) an approximated set of

all possible optimal ¯V vectors for a given VMDP, we intend to find the optimal policy

in the ¯V
✏

set with respect to a given user and her preferences. In this section we propose

an approach to find the optimal ¯V ⇤ 2 ¯V
✏

and an approximation of the vector ¯�⇤ 2 ⇤

embedding the user priorities. In fact, by asking queries to the user when the algorithm

cannot decide otherwise, we approximate the maximum of ¯�⇤ · ¯V ⇤ for ¯V ⇤ 2 ¯V
✏

w.r.t the

given user.

Chapter 4. Elicitation Methods with Iteration Based Approaches 65

At the beginning, the ⇤ polytope is a unit cube of dimension d while K is its set of

constraints. As detailed in Section 2.2.2, there are three types of comparisons to explore

the optimal ¯V ⇤ inside ¯V
✏

. Since KDominance and Pareto comparisons are partial prefer-

ences, if two vectors are not comparable by any of them, the final solution is delegating

the vectors comparison to the user. Recall that ⌫
P

indicates the comparison regarding

the Pareto dominance, ⌫
K

verifies only the Kdominance comparison and ⌫ is the user’s

preference.

Algorithm 13 Half-⇤-Query: Select a pair from a set of ambiguous pairs T such that
their concluded cut divides the ⇤ polytope almost in half.

Inputs: T a set of not comparable pairs using Pareto nor Kdominance comparisons, K
set of constraints of polytope ⇤

Outputs: selected pair (¯V
i

, ¯V
j

) that should be proposed to the user.
1: for (

¯V
i

, ¯V
j

) in T do
2: c

i,j

= c
j,i

= 0

3: repeat
4: choose random ¯� 2 ⇤(K)

5: for (

¯V
i

, ¯V
j

) in T do
6: if ¯� · ¯V

i

> ¯� · ¯V
j

then
7: c

i,j

= c
i,j

+ 1

8: until 1000 times
9: (

¯V
i

, ¯V
j

) = argmin(V̄i,V̄j)2T (|ci,j � 500|)
10: return (

¯V
i

, ¯V
j

)

Algorithm 16 is proposed as an approach for finding the optimal ¯V ⇤ from an approxi-

mated set of non-dominated vector-valued functions ¯V
✏

according to the user preferences.

The main characteristic of this algorithm is that, ¯V ⇤ (and consequently the optimal policy

⇡⇤) is explored by querying few number of pairs (¯V
i

, ¯V
j

) 2 ¯V
✏

to the user.

Before presenting the main algorithm of this section, we are going to introduce some

algorithms, functions and notations. Let T be the set of ambiguous pairs (To be deter-

mined pairs). Here, a pair of vectors is ambiguous if it is neither comparable by Pareto

nor by Kdominance comparisons. D is the set of compared pairs (Determined pairs).

Each pair (¯V
i

, ¯V
j

) inside the determined set D has a label. The label is defined as below:

label(¯V
i

, ¯V
j

) =

8
<

:
1 if ¯V

i

⌫
P

¯V
j

or ¯V
i

⌫
D

¯V
j

or ¯V
i

⌫ ¯V
j

�1 if ¯V
i

�
P

¯V
j

or ¯V
i

�
D

¯V
j

or ¯V
i

� ¯V
j

Chapter 4. Elicitation Methods with Iteration Based Approaches 66

Algorithm 13 (Halve-⇤-Query) gets a set of ambiguous pairs T and bounded reward

weights polytope ⇤. It searches for the pair (¯V
i

, ¯V
j

) 2 T which would cut the ⇤ polytope

in half as much as possible. This query is the most informative one because despite of

user’s response, it will eliminate half of the ⇤ polytope. For each pair of T , the algorithm

randomly selects 1000 values ¯� inside the ⇤ polytope, and counts how many of these tests

prefer ¯V
i

or ¯V
j

. The random ¯� points are generated as a linear combination of ⇤ polytope

vertices 4.

In fact, the algorithm relies on a Monte-Carlo method to estimate the ambiguity of a

pair (

¯V
i

, ¯V
j

) with respect to the given ⇤ [Gilbert et al., 2015]. It returns (

¯V
i

, ¯V
j

) 2 T

such that Pr
�̄⇠⇤(

¯V
i

⌫
�̄

¯V
j

) is as close to 1
2 as possible5.

Algorithm 14 RemovePair: takes pair of not-ambiguous vectors (¯V
j

, ¯V
i

) and updates
To be determined set T and the determined set D.
Inputs: ¯V

i

, ¯V
j

, T,D
Outputs: T,D

1: remove (

¯V
i

, ¯V
j

) and (

¯V
j

, ¯V
i

) from T
2: add (

¯V
i

, ¯V
j

) to D
3: return T,D

Algorithm 15 RemoveDominatedPairs: Updates two sets T and D by removing
comparable pairs from ambiguous set T and adding them to the determined set D by
defining their labels.

Inputs: T,D
Outputs: T,D

1: for (

¯V
i

, ¯V
j

) in T do
2: if ¯V

i

⌫
P

¯V
j

or ¯V
i

⌫
K

¯V
j

then
3: T,D � RemovePair(¯V

i

, ¯V
j

, T,D)
4: return T,D

The two algorithms 14 and 15 are used for updating the T and the D set. RemovePair

receives a pair of comparable pairs and updates the two sets according to this new

comparable pair. RemoveDominatedPairs updates the same sets T and D by removing

comparable pairs. Note that we do not communicate with users in this algorithm, so we

can test comparable pairs just by applying the Pareto dominance or the KDominance

methods. In both algorithms, each appended pair (¯V
i

, ¯V
j

) to the D set should be marked

with its label.
4Each pair comparison (V̄i, V̄j) generates a cut that passes through the origin on the ⇤ polytope.

So, this type of random point generation does not make any problem for our method. There are more
reliable method such as Hit and run method [Ya and Kane, 2015] that will be considered in our future
work.

5⌫�̄ has been defined in Definition 3.3

Chapter 4. Elicitation Methods with Iteration Based Approaches 67

Function Query receives a pair of vectors ¯V
i

, ¯V
j

and a set of constraints K on ⇤ polytope.

This function proposes the query like “is ¯V
i

⌫ ¯V
j

?” to the user and appends a new cut

to set K regarding the user preferences while assigning a label to this pair.

Algorithm 16 Search: Find Optimal ¯V ⇤ in ¯V
✏

Inputs: ¯V
✏

an approximation of non-dominated ¯V vectors and K a constraints set defin-
ing ⇤ as a unit cube
Outputs: ¯V ⇤

1: T � {(¯V
i

, ¯V
j

) 2 ¯V2
✏

|i < j}
2: D � {}
3: K � {0  x

i

 1 s.t. 0  i  d}
4: while T 6= ; do
5: T,D � RemoveDominatedPairs(T,K)
6: ¯V

i

, ¯V
j

 � Halve-⇤-Query(T,K)
7: K, ans � Query(¯V

i

, ¯V
j

,K)
8: if ans = yes then
9: T,D � RemovePair(¯V

i

, ¯V
j

, T,D)
10: else
11: T,D � RemovePair(¯V

j

, ¯V
i

, T,D)
12: return FindBest(D)

Finally, Algorithm 16 ranks objects using pairwise comparisons. It starts with a set of

vector pairs in ¯V
✏

set, i.e., T = {(¯V
i

, ¯V
j

) 2 ¯V2
✏

|i < j}. It removes all comparable pairs

from set T , and it finds the most informative query using the Halve-⇤-Query function.

Then, It continues by asking this question to the user and updating the ⇤ polytope, T

and D sets based on the user’s response.

This iterative algorithm continues until the T set (set of To be Determined pairs) is

empty, and all pairs are comparable inside set D. Knowing the labeled elements in set

D, the FindBest algorithm can compute the most preferred vector ¯V ⇤ in a linear time.

It first assign a counter to each ¯V 2 ¯V
✏

, i.e. c
i

= 0 8i 2 {1, · · · , | ¯V
✏

|}. For any ¯V
i

2 ¯V
✏

,

this factor increases when (

¯V
i

, ¯V
j

) 2 D. At the end, the most preferred vectors ¯V
i

’s are

those with c
i

= 0.

4.4.4 Theoretical implications

Number of vectors in ¯V
✏

: In Section 4.4.2, we have shown how to find an approximated

subset of optimal policies. This is because computing all the vector-valued functions

(equally vector values of all policies) is not feasible. Therefore, we have tried to find a

subset of non-dominated policies ND(

¯V) with respect to a given ⇤ polytope.

Chapter 4. Elicitation Methods with Iteration Based Approaches 68

According to the three suggested comparisons methods (given in Section 3.3.4), if a

vector-valued function ¯V
�

is non-dominated with respect to the ⇤ polytope, it should be

non-dominated with respect to the Pareto comparison, i.e.:

If ¯V
�

2 ND(

¯V)6 then ¯V
�

⌃
P

¯U
�

8 ¯U
�

2 V\ ¯V
�

.

In fact, ND(

¯V) ⇢ ND
Pareto

(

¯V). The advantage of using the ✏ precision for computing

an approximate subset of ND(

¯V) is based on the results of Perny et al. [2013] work on

✏-covering concept and on Papadimitriou and Yannakakis [2000] results.

Observation 4.1. For a given number of objectives d and for any precision ✏ > 0, the

size of non-dominated vectors with precision ✏ i.e. ¯V
✏

is exponential w.r.t d. It implies

that if V
max

= max
V̄�2V̄ || ¯V

�

||1 then |¯V
✏

| ⇠ d(V
max

/✏)d

This bound does not depend on the MDP parameters or on its size. This observation

indicates how the size of non-dominated vector-valued functions changes exponentially

with respect to d. This shows how increasing the d parameter makes the non-dominated

vectors exploration more difficult. Another parameter that plays a significant role in our

calculation is the ✏ precision. The size of ¯V
✏

changes with respect to O(

1
✏

d), showing that

the proposed method for searching non-dominated vector-valued functions depends on

the size of d while it has no dependency on the size of the MDP.

Note that an alternative way of defining an ✏-covering (see [Perny et al., 2013]) would be

a logarithmic bound in 1
✏

that is not different from our ✏ precision s-assumptions.

4.4.5 Experimental Evaluation

Our experimental results include two parts: the first part analyzes the Propagation

Algorithm (algorithm 12), while the second part focuses on the Propagation-Search Value

Iteration algorithm (algorithm 12 and algorithm 16) and it compares it with the IVI

algorithm, an existing interactive value iteration method for exploring the optimal policy

regarding agent preferences Weng and Zanuttini [2013]). All experiments have been

implemented with Python version 2.7 and CPLEX has been used as a solver for the

linear programming problems.
6For more information see Definition 4.3

Chapter 4. Elicitation Methods with Iteration Based Approaches 69

4.4.5.1 Simulation domains: random MDPs

A random MDP model is the same defined in Section 4.5.2.1. Recall that the weight

polytope ⇤ is initialized as a unite d-dimensional hyper-cube.

|S| = 128 ✏ = 0.5 ✏ = 0.2 ✏ = 0.1 ✏ = 0.05
d = 3 3.0 18.89 105.4 212.59
d = 4 4.0 4.0 29.8 timeout
d = 5 5.0 5.0 5.0 timeout

|S| = 256 ✏ = 0.5 ✏ = 0.2 ✏ = 0.1 ✏ = 0.05
d = 3 3.0 6.59 98.2 209.2
d = 4 4.0 4.0 4.0 timeout
d = 5 5.0 5.0 5.0 5.0

Table 4.1: |V✏| as a function of precision ✏. Results are averaged on 10 random MDPs
with |A| = 5.

Table 4.1 indicates how the number of non-dominated vector-valued functions changes

with respect to the accuracy ✏ (refer to Algorithm 12). V
✏

is a polytope on a finite number

of states. This table demonstrates —as expected— that |V
✏

| increases when the precision

increases. when |V
✏

| = d we have that the algorithm stops after only one iteration As

expected, the algorithm converges quickly for greater values of ✏. This is due to the fact

that increasing the precision produces too many non-dominated vector-valued functions.

we have noted with «timeout» the cases where the algorithm is not able to converge.

To better understand the behaviour of our algorithm, we study more in details one of the

setting that reached the timeout. The two graphs in Figures 4.6 and 4.7 compare two

random MDPs with |A| = 5, d = 4, ✏ = 0.05 and different number of states (|S| = 128

and |S| = 256). The results have been averaged on 10 different MDPs. Diagram 4.7

indicates how the number of non-dominated vectors generated changes at each iteration

of Algorithm 12. Also, diagram 4.6 shows the time elapsed at each iteration (in minutes)

when generating non-dominated vectors. Graph 4.6 indicates that the propagation algo-

rithm is computationally expensive and time consuming, but Figure 4.7 illustrates how

|V
✏

| converges to a constant number after a small number of iterations. This part is a

pre-processing stage of MDPs and we believe that it is possible to significantly speed up

this process in the future.

Our approximation method of the optimal policy exploration involves two parts: the

technique for propagating optimal policies ¯V
✏

at an ✏ precision with respect to unknown

rewards and the algorithm for extracting the best optimal policy from ¯V
✏

according

Chapter 4. Elicitation Methods with Iteration Based Approaches 70

to each agent. The former provides an approximation for the set of non-dominated

vector-valued functions and the latter supplies the ability to discover the optimal policy

compatible with user preferences during query elicitation of unknown rewards.

To examine the search of the optimal policy (Algorithm 16) on the results of the propa-

gating algorithm, we try to explore the optimal policies of 20 different users. Each user

is displayed as a ¯� inside the ⇤ polytope and the results have been averaged on ran-

dom selection of agents. That means that the error of our approach ¯V ⇡

⇤ is an average

Figure 4.6: Average cardinal of
non-dominated vectors generated

by Algorithm 12

Figure 4.7: These graphs illus-
trate how algorithm 12 behaves on
MDPs with 5 actions and two dif-
ferent number of states 128 and
256. Also d = 4 and ✏ precision

is 0.05

Figure 4.8: Error and number of non-dominated vector-valued functions v.s. itera-
tions in Algorithm 12

Chapter 4. Elicitation Methods with Iteration Based Approaches 71

on error of all 20 selected users. Recall that the error for each user ¯� is computed as:

||¯�T . ¯V ⇡

⇤
exact� ¯�T . ¯V ⇡

⇤ ||1 (It is assumed that the exact optimal policy of MDP is ¯V ⇡

⇤
exact).

Figure 12 indicates how the error and the number of generated vectors change after each

iteration on non-dominated vectors generation. Note that the generated vectors during

generation are not all non-dominated after any iteration step, but the algorithm converges

to the set of non-dominated vectors at the end. The propagation algorithm generates

a finite number of non-dominated vectors at each iteration. This figure illustrates how

the number of generated vectors increases iteration after iteration. To calculate the error

after each iteration, the search algorithm (Algorithm 16) gets the set of generated vectors

and finds the optimal policy satisfying the user preferences. The demonstrated errors

have been averaged for 20 users as explained in the previous paragraph. The graph

shows how the error reduces after several iterations of the algorithm. This result has

been tested on an MDP with 128 states 5, actions d = 3 and ✏ = 0.05 in the propagation

algorithm. The results have been averaged on 10 random MDPs.

Table 4.2: Average results on 5 iterations of MDP with |S| = 128, |A| = 5 and
d = 2, 3, 4. The Propagation algorithm accuracy is ✏ = 0.2 . The results for the Search

algorithm have been averaged on 50 random ¯� 2 ⇤ (times are in seconds).

Methods parameters d = 2 d = 3 d = 4

PSVI

|¯V
✏

| 8.4 43.3 4.0
Queries 3.27 12.05 5.08
error 0.00613 0.338 0.54823
propagation time 33.6377 170.1871 3.036455
exploration time 1.20773 36.4435 6.022591

IVI
Queries 17.38 41.16 69.18
error 0.0058 0.319 0.5234
IVI time 9.8225060 5.57657 5.30287

PSVI total time 94.0242 10501.7171 304.166
IVI total time 491.1253 278.8285 265.1435

Finally, Tables 4.2 and 4.3 compare two algorithms based on several measures, on MDPs

with 128 states, 5 actions and d dimensions 2, 3 and 4. The ✏ accuracy is 0.2 and 0.1

respectively for the two tables. |¯V| is the number of generated vector-valued functions for

each dimension using our propagation algorithm (Algorithm 12) while the propagation

time is the time of accomplishing this process in seconds. To examine the search optimal

policy method (Algorithm 16) on results of the first algorithm, we try to explore the

optimal policies of 50 different users. In these tables, we have compared our method

with the interactive value iteration in two measures: number of queries asked to the

user, and computing time.

Chapter 4. Elicitation Methods with Iteration Based Approaches 72

Table 4.3: Average results on 5 iterations of MDP with |S| = 128, |A| = 5 and
d = 2, 3, 4. The Propagation algorithm accuracy is ✏ = 0.1 . The results for the Search

algorithm have been averaged on 50 random ¯� 2 ⇤ (times are in seconds).

Methods parameters d = 2 d = 3 d = 4

PSVI

|¯V
✏

| 7.79 154.4 32.2
Queries 2.52 15.99 15.7
error 0.0035 0.14914 0.519
propagation time 57.530 3110.348 893.4045
exploration time 0.8555 229.134 95.90481

IVI
Queries 17.8 42.15 67.79
error 0.0033 0.142 0.493
IVI time 10.0345 6.99638 5.309833

PSVI total time 100.305 14567.048 4795.2405
IVI total time 501.725 349.819 265.49165

These results indicate that though our algorithms take more time to produce all optimal

policies list, it proposes considerably less questions to the user in comparison with the

IVI algorithm in order to find the optimal policy with the same accuracy. For instance,

regarding Table 4.3, both algorithms find the optimal policy with an error around 0.1

after asking 16 and 42 queries respectively for PSVI and IVI algorithms. The most

striking advantage of our method is that it reduces by about one half the number of

queries by generating all possible optimal policies before starting any interaction with

the user. Recall that the results for d = 4 and ✏ = 0.2 are not reliable here, because

the selected precision is too small for generating new vector-valued functions using the

advantages.

4.5 Advantage Based Value Iteration Algorithm for VMDPs

Since the propagation-search value iteration method has a time consuming and some-

times complex pre-processing part on MDPs, in this section we present a new algorithm,

namely Advantage-Based Value Iteration (ABVI), to find an approximation of the op-

timal policy for a given VMDP with bounded polytope of reward weights ⇤. In this

approach processing the MDPs and communicating with the users are done in the same

time. For this reason we are not obliged to finish a long pre-processing stage before find-

ing the optimal policy. Instead, the optimal policy can be found during the processing

phase by asking effective queries to the user.

Chapter 4. Elicitation Methods with Iteration Based Approaches 73

4.5.1 ABVI Algorithm

The advantage based value iteration algorithm is inspired by the interactive value itera-

tion (IVI) algorithm [Weng and Zanuttini, 2013]. It attempts to improve IVI’s drawbacks

by reducing number of queries to the user and speeding up the algorithm convergence.

To achieve this goal, it regroups similarly close policies in one group. Comparing group

of policies instead of policies reduces the total number of comparisons. That allows the

iterative method converges earlier to its stopping criteria. In the rest of this chapter,

we explain first how to regroup policies using advantages in each iteration part of IVI

algorithm and second we will present the ABVI algorithm in detail.

Regarding the IVI algorithm, there is an iterative part inside Algorithm 8 that has been

repeated here:

Algorithm 17 iterative part inside IVI algorithm
for each state s do

¯V
best

 � (0, · · · , 0)
for each action a do

¯Q(s, a) � r̄(s, a) + �
P

s

0 p(s0|s, a) ¯V
t�1(s0)

¯V
best

 � getBest(¯V
best

, ¯Q(s, a))

The getBest function (given in Algorithm 9) compares ¯V
best

and ¯Q(s, a) according to the

three comparison methods listed in section 3.3.4: Pareto dominance, Kdominance and

querying the user.

Considering the function getBest and the iterative step in IVI, in each inner loop two

d-dimensional vectors should be compared. Remind that each vector represents the

value function of a policy. As an example, suppose in getBest(¯V
best

, ¯Q(ŝ, â)), the two

vectors ¯V
best

and ¯Q(ŝ, â) represent two policies ⇡ and ⇡ŝ"â respectively. According to

Algorithm 17, the equivalent policies of any two comparable vectors are different from

each other only in one (state, action) pair. Here ⇡ and ⇡ŝ"â are different from each other

only in state ŝ and action â, i.e. ⇡(ŝ) = a and ⇡ŝ"â
(ŝ) = â, while in the rest of states

s 2 S � {ŝ} they are exactly the same.

In our setting, a learning agent is acting in the environment and she gets a d-dimensional

vector reward feedback from the environment after any interaction. MDP goal is to ap-

proximate the optimal policy with the highest vector-valued function for each state. Ac-

cording to IVI algorithm, to select the action with the highest vector-value (max
a

¯Q(s, a))

Chapter 4. Elicitation Methods with Iteration Based Approaches 74

our learning system should be aware of comparison over vector rewards (has been im-

plied in Algorithm getBest). We assume that our learning system can query the tutor,

whenever it does not know which vector is preferred for the given pair.

Since querying the user or the expert is expensive, we intend to keep number of asked

queries as minimum as possible. To delay communication with the user and avoid to ask

unnecessary questions to her, our idea is to generate more informative queries in each

iteration. In Algorithm 17 as an iterative part of Algorithm 8, each state s generates |A|

different increments of the form ¯A(s, a) = ¯Q(s, a) � ¯V
t�1(s) in every iteration. In order

to find a solution for function getBest on each state s, ¯V
t�1(s) is compared with the set

of new vectors { ¯V
t�1(s)+ ¯A(s, a1), . . . , ¯Vt�1(s)+ ¯A(s, a

m

)} (where A = {a1, .., am} is the

set of actions for the given VMDP). Therefore, the Algorithm 17 can be written as:

for each s do
¯V
best

 � (0, · · · , 0)

for each a do
¯V
best

 � getBest(¯V
best

, ¯V
t�1(s) + ¯A(s, a)) 7

Note that, there are |S|⇥|A| total number of comparisons among vectors in each iteration.

The worst case is that all these comparisons should be compared using the Kdominance

comparison method as a linear programming problem. It means, |S|⇥ |A| number of LP

problems should be solved.

Example 4.5.1. Suppose Figure 4.9 as a VMDP with two states {hometown, beach} and

six actions {swimming, reading book, going to exhibition, biking, wait,move}. Reward

vectors are such that the first element represents “sportive” coefficient of activity, while

the second one shows its “artistic” value. For instance, in r̄(hometown, biking) vector

the second element is zero, because biking is not an artistic activity. Suppose each

aaaaaaaaaaa
states

actions
going to
exhibition wait biking move reading

book swimming

hometown (0, 1) (0, 0) (0.3, 0) (0, 0) - -
beach - (0, 0) - (0, 0) (0, 0.5) (1, 0)

Table 4.4: A table for advantages ¯A(s, a)

state has the initial value (0, 0): ¯V (hometown) =

¯V (beach) = (0, 0). Using interactive

value iteration, in every state the vector value should be compared set of vectors in each
7Q̄(s, a) � V̄t�1(s) + Ā(s, a)

Chapter 4.Elicitation Methods with Iteration Based Approaches 75Elicitation Methods with Iteration Based Approaches

Figure 4.9:An example of small VMDP with2states and6actions.

Figure 4.10:Plotted Advantages in2-dimensional space including sportive and artis-
tic activities.

iteration. Regarding to table4.5.1, for example in state “home town",(0,0)vector is

compared to4new vectors related to “going to exhibition",“move", “biking" and “wait"

(respectively{(0,0)+(0,1),(0,0)+(0,0),(0,0)+(0.3,0),(0,0)+(0,0)}). Similarly in state

“beach",̄V(beach)=(0,0)should be compared with4vectors{(0,0) + (0,0.5),(0,0) +

(0,0),(0,0)+(1,0),(0,0)+(0,0)}.

In order to accelerate value iteration, diminish number of generated queries and reduce

the IVI algorithm complexity, we do clustering on the advantages setAat each iteration.

Aggregation of advantages based on their classification is our basic idea to accelerate the

value iteration method. ABVI also takes initial state distributions into account to assign

a single advantage vector to all MDP states. Instead of comparingV̄t(s)withV̄t(s)+̄As,a

for eachs, a, we try to comparēVt(s)with groups of state-action pairs representing vector

V̄t(s)+
P
(s,a)2groupĀs,a.

Chapter 4. Elicitation Methods with Iteration Based Approaches 76

Example 4.5.2. Following example 4.5.1, regrouping advantages reduces the number of

total comparisons among vectors. Regarding Figure 4.10, we can regroup all advantages

(illustrated in table 4.5.1) in two groups. Unlike the previous example that includes 8

vectors to be compared, regrouping advantages produce only two vectors. One group

generates vector (0, 1.5) representing all artistic activities and the other one (1.3, 0)

proposes just the sportive activities. Note that each group can indicate a policy for

instance, (0, 1.5) is a policy ⇡ such that ⇡(hometown) = going to exhibition and ⇡(beach)

= reading book.

Algorithm 18 cluster advantages and returns back a set of vector-valued functions and
their related policies

Inputs: set of advantages A
adv

, vector-valued function ¯V , policy ⇡
Outputs: S⇧ set of policies and their equivalent vector-valued functions
1: S⇧ � {}
2: C � cluster A

adv

using cosine similarity metrics
3: for c 2 C do
4: ⇡

c

 � makePolicy(c,⇡)
5: value(⇡

c

) �
P

s

�(s) ¯V (s) +
X

Ā2c

¯A

6: S⇧ � S⇧ [(⇡
c

,value(⇡
c

))

7: return S⇧

Algorithm 19 implements this idea. For the sake of simplicity, we first introduce function

Cluster-Advantages given in Algorithm 18. It takes a set of advantages A
adv

, a policy ⇡

and its equivalent vector-valued function ¯V . It first clusters the A
adv

set. Then ,for each

cluster c it produces a new policy ⇡
c

w.r.t the given policy ⇡. It is done by makePolicy

function as below:

⇡
c

(s) =

8
<

:
a such that ¯A

�

(s, a) 2 c

⇡
best

(s) if no such a exist.

If there are several ¯A
s,a

2 c for the same state s, the algorithm randomly selects one of

them, say ¯A
s,a

0 , and assigns action a0 to ⇡
c

(s). The equivalent vector-valued function of

the new policy ⇡
c

should be computed too, i.e. :

value(⇡
c

) =

X

s

�(s) ¯V (s) +
X

Ā2c

¯A

To summarize, each cluster c produces a (policy, vector-valued function) pair (⇡
c

,value(⇡
c

))

Chapter 4. Elicitation Methods with Iteration Based Approaches 77

Algorithm 19 receives a VMDP, a d-dimensional unit cube ⇤ and a precision ✏ as input. In

this algorithm we start with a random policy ⇡
best

2 ⇧ and as IVI algorithm we suppose

8s 2 S, ¯V0(s) = 0; 0 is a zero vector of dimension d as the number of preferences or

objectives in MDP with unknown reward values.

In each iteration, the algorithm generates |S||A| advantages and keeps them in the A
adv

set. Then the Cluster-Advantages function gets the advantages in A
adv

and classifies

them. The classification criterion is discussed at the end of this section. In the following,

C denotes the set of clusters generated from A
adv

.

After having stored all new pairs (⇡
c

, value(⇡
c

)) in the set S⇧, the algorithm is ready

to compare the newly explored policies with the best policy from the previous iteration.

value(⇡) is the vectorial value function of dimension d for policy ⇡.

Algorithm 19 Value Iteration Algorithm with Advantages

Inputs: MDP(S,A, p, r̄, �,�), ⇤, ✏
Outputs: optimal policy ⇡

best

1: t � 0

2: ⇡
best

 � choose random policy
3: 8s ¯V0(s) � (0, .., 0): zero vector of d dimension
4: K � set of constraints on ⇤

5: repeat
6: A

adv

 � ;
7: for each s, a do
8: ¯Q

t

(s, a) � r̄(s, a) + �
P

s

0 p(s0|s, a) ¯V
t

(s0)
9: ¯A

�

(s, a) � �(s){ ¯Q
t

(s, a)� ¯V
t

(s)}
10: A

adv

 � Add ¯A
�

(s, a) to A
adv

11: S⇧ � Cluster-Advantages(A
adv

, ¯V
t

,⇡
best

)

12: for (⇡
c

,value(⇡
c

)) 2 S⇧ do
13: (⇡

best

,K) getBest(value(⇡
c

),value(⇡
best

),K)

14: for each s do
15: ¯V

t+1(s) = r̄(s,⇡
best

(s)) + �
P

s

0 p(s0|s,⇡
best

(s)) ¯V
t

(s0)

16: t � t+ 1

17: until ||
P

s

�(s) ¯V
t�1 � value(⇡

best

)||  ✏

Assume getBest receives two vectors value(⇡
i

) =

¯V
i

and value(⇡
j

) =

¯V
j

. If Pareto

dominance and Kdominance could not decide for vectors comparison, a query of form “is
¯V
i

preferred to ¯V
j

?” will be proposed to the tutor. User’s reply introduces a new cut on

the ⇤ polytope as ¯� · (¯V
i

� ¯V
j

) � 0 or ¯� · (¯V
i

� ¯V
j

)  0 and upgrades our knowledge about

user’s preferences by pruning part of ⇤ polytope. Note also that colinear advantages

induce the same cut.

Chapter 4. Elicitation Methods with Iteration Based Approaches 78

¯V
t

matrix is updated according to the best policy ⇡
best

at the end of each iteration (lines

14 and 15). This iteration continues until vector-valued functions converge.

To do classification on advantages, we use hierarchical clustering with CosineSimilarity

norm. Selecting a convenient norm is important, because each norm yields different

clustering results on our data set. The CosineSimilarity norm is based on colinearity,

so we get an equivalent vector for each cluster by summing its members. Allocating a

threshold � for clustering will define the final number of classified vectors. Suppose a

threshold of �, meaning that clusters satisfy

8c 2 C, 8 ¯Ai

�

, ¯Aj

�

2 c d
cosine-similarity

(

¯Ai

�

, ¯Aj

�

)  � (4.6)

Definition 4.4. For two given vectors ā and ¯b, the cosine similarity is represented as:

similarity(ā,¯b) =
ā · ¯b

||ā||||¯b||

This threshold defines a maximum angle between any two vectors of each cluster. For

instance in Figure 4.11, 2-dimensional vectors have been classified. Each different group

of points represents a cluster, while each vector is the equivalent of the corresponding

cluster: the equivalent vector is the sum of vectors belonging to the cluster. The number

of clusters is determined by the selected threshold �. Larger � gives fewer clusters and

hence less comparisons or queries.

Figure 4.11: Clustering on advantages for a given VVMDP with 2-dimensional ¯�s.
Each different group points constitutes a cluster and each vector is equivalent to the

sum of ¯�s in the corresponding cluster.

In Algorithm 19, there are |S⇧| comparisons in each iteration (see line 13. |S⇧| is the

number of clusters on advantages). In comparison, Algorithm 8 uses |S||A| comparisons.

Chapter 4. Elicitation Methods with Iteration Based Approaches 79

It means that the presented algorithm has less Kdominance comparisons and finally has

to solve a smaller number of Linear Programming problems in any iteration.

As an example, Figure 4.11 shows the generated advantages for a MDP with 30 sates,

5 actions and d = 2, in one iteration of the value iteration algorithm. Each single point

represents a vector that is assigned to ¯A
s,a

. Clustering on advantages returns 13 clusters.

This allows us to compare
P

s

�(s) ¯V
t

(s) with 13 vectors instead of comparing it with 150

vectors for the IVI algorithm.

4.5.2 Experimental Evaluation

ABVI algorithm targets querying more informative questions and reducing computa-

tional complexity. It is another form of IVI that computes vector values of policies iter-

atively and communicates with user whenever it fails to compare two vectors with each

other. IVI method enumerates all policies and compares their equivalent vector-values

without skipping less informative comparisons, while ABVI selects more informative

vectors by classifying advantages. It means comparing two clusters in ABVI finds an

answer for several queries in IVI by asking only one query. ABVI is also tolerant toward

inconsistent and unreliable user feedback. It means this algorithm can find the correct

solution for uncertain users who make mistakes in their comparisons some few times. Or

the users who do not know answer of some comparison questions regarding their final

goal.

This section evaluates empirical performance of ABVI algorithm on several models with

two types of users. First one is a confident user who answers all queries correctly,

and the second one is an uncertain user who makes mistakes in answering comparison

questions few times. All experiments in this section have been implemented with Python

version 2.7. We have used “CPLEX" solver to solve linear programming problems and

scipy.cluster package to do hierarchical clustering on advantages. Results have been

averaged on 10 iterations.

In the following, we will test the ABVI approach on random MDPs with different number

of states, actions and parameter d. The results have been tested on two types of users

including confident and uncertain users.

Chapter 4. Elicitation Methods with Iteration Based Approaches 80

4.5.2.1 Simulation Domains: Random MDPs with Confident User

This section demonstrates the performance of ABVI algorithm (given in Algorithm 19)

on some simulated random MDPs for confident users who answer all queries correctly.

It also includes a comparison between ABVI performance and IVI algorithm (algorithm

8).

Figure 4.12: These graphs illustrate errors vs the number of queries answered by a
confident user where |S| = 128 and m = 5 for d = 4, 5, 6, 7, 8, 9 .

Chapter 4. Elicitation Methods with Iteration Based Approaches 81

Definition 4.5. A random VMDP is defined by several parameters including its number

of states n, its number of actions m and its weight space dimension d. Real parameters

have several properties:

• All rewards are bounded between 0 and 1.

• From any state s transitions only reach dlog2(n)e states.

• For each pair (s, a), reachable states are drawn based on uniform distribution over

the set of states.

• For drawn states, transition probabilities are formed based on Gaussian distribution

with mean 0.5 and variance 0.5.

• The initial state distribution � is uniform

• The discount factor is chosen � = 0.95.

Remind that weight polytope ⇤ is initialized as a unite d-dimensional hyper-cube.

Figure 4.13: These graphs illustrate errors vs the number of queries answered by a
confident user where |S| = 256 and d = 3, 4, 5, 6

Chapter 4. Elicitation Methods with Iteration Based Approaches 82

To simulate the user and her answers to queries, a ¯� vector is chosen embedding her

particular priorities. So the exact vector-valued function is obtainable, and assigned as
¯V exact

�

. Thus, demonstrated error in these section’s figures is defined as the difference

between the exact vector and the vector obtained at the end of each iteration for meth-

ods IVI and ABVI. For instance, assume value(⇡⇤
) =

¯V exact

�

is the exact answer, and

value(⇡0
) =

¯V
t

is the result obtained after t-th iteration for a given VMDP. The exact

error w.r.t the given ¯� is calculated by ¯� · ¯V ⇡

0
�

� ¯� · ¯V exact

�

. But, the exact value of ¯� is

not known and we use the following formula to calculate the errors approximately:

error = || ¯V ⇡

0
�

� ¯V exact

�

||1

Our experiments have been done on a random MDP with 5 actions and two various

number of states 128 and 256. In Figure 4.12, the number of states is n = 128 and the

error is compared to the number of asked queries for d = 4, 5, 6, 7, 8. The figure displays

that errors in ABVI algorithm are always less than IVI algorithm for small d-dimensions.

For example when d = 5 , after proposing 90 queries to user, ABVI error falls down to 0.4,

while IVI algorithm still has an error around 1.1. For higher d dimensions such as 6, 7, 8

and 9, error in ABVI reduces quicker than in IVI , except to gain the optimal solution

with error 10�4, in which case ABVI asks more queries to the user. The reason is that,

clustering on advantages has less importance at the end of value iteration. For higher d

dimensions, if we look for an optimal policy with less precision, ABVI will converge to

the optimal solution by asking less number of queries.

Similarly, Figure 4.13 compares number of required queries with respect to the error for

both approaches where |S| = 256 and d = 3, 4, 5, 6. Considering these figures for all given

dimensions d, ABVI converges faster that IVI approach, but the difference between two

generated errors reduces for higher dimensions.

The series of Figures 4.12 and 4.13 indicate that clustering advantages is less effective

on higher dimension d and at the end of ABVI algorithm. The reason is that closer

to the convergence point, advantages size reduce and this decrease the general vector

growth. Thus our idea is to focus on clustering parameters. Referring to Equation 4.6,

the � parameter determines clusters measure. Higher value of � gather more number of

points in the same cluster and reduce number of new generated vectors. Figures 4.14

Chapter 4. Elicitation Methods with Iteration Based Approaches 83

Figure 4.14: number of queries
vs number of states for ivi and
three different ABVI with various
value of parameter � for clustering

advantages.

Figure 4.15: number of queries
vs dimension d for ivi and three
different ABVI with various value
of parameter � for clustering ad-

vantages.

and 4.15 investigate � changing efficiency on clustering advantages. As can be observed

in Figure 4.14, for random MDPs with 5 actions and d = 5, ABVI approach with � = 0.5

asks less number of queries for various number of states.

On the other hand, Figure 4.15 illustrates how the number of queries changes with respect

to the d dimension for random MDP with 5 actions and 50 states. This figure shows

that ABVI with � = 0.5 has better results than other approaches until d = 10. By rising

dimensions d, the IVI method will produce less number of queries to find the optimal

policy. In two given Figures 4.14 and 4.15 number of queries indicate the total number

of asked queries to the user until reaching a convergence with precision ✏ = 10

�4.

According to these results and Section 4.4.5 similar to IVI method, we expect that ABVI

approach queries more number of questions than Propagation-search algorithm (given

in Section 4.4). It also will find an optimal policy with higher accuracy than the PSVI

response. Comparing two algorithms PSVI and ABVI on two different types of users

(confident and uncertain users) will be one of future work as well.

4.5.2.2 Simulation Domains: Random MDPs with Uncertain User

This section studies the performance of ABVI algorithm in comparison with IVI for

random MDPs with uncertain users who answer some comparison questions wrong con-

sidering their final goal. An uncertain user replies back queries with a noise generated

Chapter 4. Elicitation Methods with Iteration Based Approaches 84

with respect to parameter ✓. It means for an uncertain user, her preferences on objectives

is defined by reward weight ¯�0 vector8, therefore for comparing two given vectors ¯U and
¯V the uncertain user response will be defined as the following comparison:

Figure 4.16: These graphs illustrate errors vs the number of queries answered by
confident user and uncertain user where |S| = 128 and d = 4. The upper left
figure illustrates the performance of algorithms for confident user while the rest of
figures are for uncertain user with ✓ = 0.001, 0.01 and 0.1 respectively for top-right,

bottom-left and bottom-right.

is ¯�0 · ¯U � ¯�0 · ¯V + noise?

where noise is randomly selected from a normal distribution N (0, ✓). Consider if the user

was confident, her response would be the exact comparison between two scalars ¯�0 · ¯V

and ¯�0 · ¯U .

Figures 4.16 examine ABVI and IVI performance for |S| = 128, |A| = 5 and d = 4 for

various noise parameters ✓. In these figures clustering parameter � has been selected
8The �̄0 vector is unknown to our learning system

Chapter 4. Elicitation Methods with Iteration Based Approaches 85

equal 0.01. They demonstrates ABVI is more robust for uncertain users rather than

confident users.

Based on our experimental results, unlike IVI algorithm that requires reliable users who

answer comparison queries without any mistakes, clustering advantages gives an approx-

imated solution for VMDPs and it has a better performance for unreliable users with a

slight percentage of mistakes in answering comparison questions.

4.6 Conclusion and Discussion

In this chapter we have proposed a novel methods for the preference-based sequential

decision problems using vector-valued MDPs with unknown reward weights bounded in

a polytope, namely ⇤ using interactions with users. First, we proposed a propagation-

search method that is able to ask a reduced number of queries to the user. Second, we

indicated how to tackle Interactive Value Iteration method drawbacks — IVI is given

in [Weng and Zanuttini, 2013] — by reducing the calculation time and the number of

interactions with the user.

Concerning the propagation-search method, we have shown that it is possible to explore

the set of non-dominated policies using the clustering advantages. We have shown that

the number of explored non-dominated policies are exponentially related to the number

of preferences d and the ✏ precision of the environment. After exploring non-dominated

policies, we have explained how to communicate with user to ask less possible number of

queries in order to find the optimal policy from satisfying her preferences and priorities.

We showed that if the number of non-dominated policies increases exponentially w.r.t d

and ✏, the number of communications with users are very few. We have compared our

result with the IVI algorithm as a proof of this claim.

For tackling IVI flaws, we have presented ABVI algorithm based on clustering advantages.

In this iterative approach regrouping advantages accelerate the value iteration algorithm

and produces queries that answers some less informative queries generated inside IVI.

Therefor in comparison with IVI, ABVI algorithm converges faster with proposing less

number of queries to the user. The only problem with this algorithm is that at the end

of its convergence, it converges slower because of the regrouping of some advantages in

the opposite direction of convergence.

Chapter 5

Computing Robust Policies with

Minimax Regret Methods

In previous chapters, we designed algorithms able to find good policies by querying the

user repeatedly. The more queries are asked to the user, the smaller the ⇤ polytope

becomes, and the better the policy is. In case we are not allowed to ask too many

queries to the user, the ⇤ polytope at the end of the elicitation process might still be

big. Intuitively, this means that there are still a lot of uncertainty about the user’s

preferences. Thus, we need a criteria to select a policy which is robust with respect

to this uncertainty. As discussed in the earlier chapters, the min-max regret criteria

allows us to choose a policy in such a way that even if the user’s preferences is not

precisely known, the chosen policy will still be acceptable. There are many existing

algorithms to compute an approximation of the min-max regret optimal policy [Regan

and Boutilier, 2011b, 2012], but these algorithms are often intractable for large MDPs

[Xu and Mannor, 2009]. In this chapter, we propose a new algorithm able to quickly

compute approximately optimal policies w.r.t. the min-max regret criterion.

In this chapter, we present an heuristic method, namely selected random points method,

to solve the minimax regret problem. An advantage of this method is that it approxi-

mates the optimal policy forMDPs with higher size without requiring many queries. In

Section 5.1, we introduce our new approach and in Section 5.2 we will provide some

experimental results.

86

Chapter 5. Computing Robust Policies with Minimax Regret Methods 87

5.1 Selected Random Points Method

The exact existing methods for the minimax regret computation are complex and can

not be applied on large scale MDPs with unknown set of rewards [Regan and Boutilier,

2008, 2009]. To overcome this problem, we propose an heuristic method for solving the

minimax regret problem called Selected Random Points Method (SRPM). The SRPM is

applicable to VMDPs where the weight reward is defined by a bounded polytope ⇤.Recall

that a VMDP can be transformed into an MDP, if the vector ¯� is given. Thus, we have:

8 s, a r(s, a) = ¯� · r̄(s, a), where ¯� and r̄ are d-dimensional vectors.

The SRPM is inspired by Algorithm 3 in Section 3.1. Algorithm 3 consists of a master

problem and a sub-problem. At each iteration, after the master problem is solved, the

sub-problem generates constraints that improves the current solution. The iteration

between two linear programs continues until the optimal solution (or a given stopping

criterion) is found. SRPM uses a new approach for generating constraints in the sub-

problem and, to be able to solve instances of bigger size, it relies on one single iteration

between master and sub-problem.

SRPM is examined on a VMDP(S,A, p, r̄, �,�)with a feasible polytope of reward weights

given by a convex polytope ⇤ = {¯� | C¯�  d} (|S| = m and |A| = n). This setting can

be also implemented on IRMDPs as it has been introduced in Section 2.2.1.

The optimal policy ¯f⇤1 can be computed from Equation 3.3, after replacing the rewards

r(s, a) with r(s, a) = ¯� · r̄(s, a):

f⇤
= argmin

f2Fmax
�̄2⇤max

g2F
X

s

X

a

�
¯� · r̄(s, a)

�
f(s, a)�

X

s

X

a

�
¯� · r̄(s, a)

�
g(s, a)

(5.1)

Referring to linear program 2.11, set of all occupancy functions is calculable using set of

inequalities. It means, any f 2 F satisfies in the following set of constraints:
1the equivalent policy ⇡⇤ to occupancy function f⇤ can be obtained from Equation 2.12

Chapter 5. Computing Robust Policies with Minimax Regret Methods 88

X

a2A
f(s0, a)�

X

s

X

a

�p(s0|s, a)f(s, a) = �(s0) 8 s0 2 S

f(s, a) � 0 8s, a

Model 5.1 can be written as the following linear program (similar to Equation 3.4):

minimize
f,�

�

subject to

� �
X

s,a

(

¯� · r̄(s, a))g(s, a)�
X

s,a

(

¯� · r̄(s, a))f(s, a) for all pairs g 2 F , ¯� 2 ⇤

f 2 F

(5.2)

Model 5.2 is a linear program with an infinite number of constraints (due to the infinite

number of � vectors). To solve it, we start with a master problem that does not contain

the first series of constraints. We use a sub-problem to separate a subset of constrains

� �
P

s,a

(

¯� · r̄(s, a))g(s, a) �
P

s,a

(

¯� · r̄(s, a))f(s, a) for all pairs g 2 F , ¯� 2 ⇤. Our

goal is to deal with a sub set of all the possible (¯�
i

, g
i

) pairs, called generating set (GEN

set) in the following. To obtain the GEN set, we first randomly generate the ¯�
i

points

from the polytope ⇤. The procedure used to calculate the g
i

associated to a given ¯�
i

presented in Algorithm 20, where the associated g
i

is computed as follows:

g
i

= Maximize
g2F

X

s,a

(

¯�
i

· r̄(s, a))g(s, a) (5.3)

Algorithm 20 Find-g(¯�
i

)

Require: ¯�
i

Ensure: g
i

1: g
i

 � Maximize
g2F

P
s,a

¯�
i

· r̄(s, a)g
2: return g

i

The SRPM is presented in Algorithm 22. As already mentioned, since the number of

constraints is infinite, it is needed to generate an approximated finite set of constraints.

This set is the generation set GEN and is computed by the function Calculate-GEN-set

(given in Algorithm 21). This method heuristically produces N constraints by choosing

Chapter 5. Computing Robust Policies with Minimax Regret Methods 89

Algorithm 21 Calculate-GEN-set(N,⇤)

Require: let N be the number of randomly selected points from polytope ⇤

Ensure: GEN set is including constraints for master problem
1: ⇤

random

 � ; random selected points from polytope ⇤

2: GEN � ;
3: for i = 1 to i  N do
4: choose ¯�

i

randomly in ⇤

5: ⇤

random

 � ⇤

random

[¯�
i

6: for ¯�
i

2 ⇤

random

do
7: g

i

 � find-g(¯�
i

)
8: GEN � GEN [{(¯�

i

, g)}
9: return GEN

Algorithm 22 SRPM Calculate f⇤ for a given polytope ⇤ = {¯�|C¯�  d}
Require: N is the number of selected points from polytope ⇤

Ensure: f⇤

1: Constraint � ;
2: GEN � Calculate-GEN-set(N,⇤)
3: for i = 1 to N do
4: Choose (

¯�
i

, g) 2 GEN
5: Constraint � Constraint [{

P
s,a

¯�
i

· r̄(s, a)g
i

(s, a)�
P

s,a

¯�
i

· r̄(s, a)f(s, a)  �}
6: Constraint � Constraint [constraints of F
7: f⇤ �Min

�,f̄

�
8: subject to : Constraint
9: return f⇤

N random ¯� 2 ⇤ and, for each selected ¯�, it finds the optimal policy g 2 Fwith the

Algorithm 20.

The use of Algorithm 22 allows us to changed from a linear program with an infinite

number of constraints (Equation 5.1) to a linear programming with |S|.|A| + 1 number

of variables and N + |S| number of constraints (where N is the number of randomly

selected points from ⇤ polytope). However, every constraint is obtained after solving an

LP with |S|.|A| number of variables and |S| number of constraints.

5.2 Experimental Results

The experimental results have been done with R version 3.0.1 and “lp- SolveAPI" package

to solve the linear programs. All tests has been averaged on 10 times iteration.

Chapter 5. Computing Robust Policies with Minimax Regret Methods 90

Algorithm 4 Find-Query()
Input: C���  d polytope and ✏ constant are given
Output: we look for W ����� a� plane
1: (W ����� a�)first � 0
2: x � choose a random point 2 vertices(C���  d)
3: y � choose a random point 2 vertices(C���  d)
4: (W ����� a�)final � Find-Normal-Vector(x, y)
5: � � ||(W ����� a�)final � (W ����� a�)first||
6: while � > ✏ do
7: x, y � Find-Pair(W �

final)

8: (W ����� a�)first � (W ����� a�)final
9: (W ����� a�)final � Find-Normal-Vector(x, y)
10: � � ||(W ����� a�)final � (W ����� a�)first||
11: end while
12: return (W ����� a�)final

V. EXPERIMENTS

We will examine performance of our Minimax Regret
calculation from two points of view including: Number of all
possible value of rewards (⇤ polytope dimension), and MDP
size. Afterwards, we will investigate effectiveness of minimax
regret as a conductor of reward elicitation.
Since this work is preliminary and we would like to compare
our results with whole previous approaches, we used a set
of randomly generated MDPs to evaluate our approach6.
A random MDP is defined by several parameters including
number of states n, number of actions k and number of
possible value of rewards d. We utilize normalized set of
feasible reward functions for each MDP, where the reward for
each pair s, a is bounded between 0 and 1. We implement
some structure on MDP with making a semi sparse transition
function. From any state s restrict transitions to reach
dlog2(n)e other states. For each pair of (s, a) draw reachable
states based on uniform distribution over the set of states.
For drawn states, transition probabilities are formed based
on Gaussian distribution. For the rest of states transition
probabilities are equal to 0. The initial state distribution �
is a uniform distribution over states and we choose discount
factor � = 0.95. Remind that in the first step polytope of
rewards is a unite d-dimensional cube. To have more effective
results, we average the numeric results for computations over
10 times and we choose 1000 number of random �s for every
iteration.

A. Computation efficiency

To measure the performance of our minimax regret
computation method (selected random points method), we
display the change of average minimax regret computation
time with respect to MDP size. Figure 1 indicates how
calculation time changes as a function of number of states or
number of actions. In one of the diagrams, we fixed number
of actions at 5 and varied the number of states while in the
other one we fixed number of states at 10 and altered action
numbers. Additionally, the Number of unknown rewards (d)

6We did these experimental results with R version 3.0.1 and ”lp-
SolveAPI” package to solve LPs. We used lrslib Ver 4.3 as a li-
brary of the reverse search algorithm for vertex enumeration/convex
http://cgm.cs.mcgill.ca/ avis/C/lrs.html.

100

1000

0 100 200 300
number of states/number of actions

Ti
m

e
(s

ec
)−

lo
gs

ca
le

dataset

 varying the
 number of states
 varying the
 number of actions

Fig. 1. Changing of states and actions vs calculation time for minimax regret.

4 5 6 7 8 9 10 11

Number of states

10

100

1000

10000

100000

T
im

e
 (

m
s
)

-
lo

g
 s

c
a
le

Number of states vs. Time

Figure 3: Scaling of ICG algorithm: number of states

vs time

imax regret computation has very favorable anytime be-

haviour, as exhibited in Figure 2. During the iterative

constraint generation procedure the regret gap shrinks

extremely quickly at the beginning and slow progress

is made near the end. If one does not need an exact

measure of minimax regret, this anytime property may

allow for fast approximations. This is especially true

given that we want to use minimax regret to suggest

queries (especially early on); robust decisions are made

only at the end of the elicitation process. Detailed ex-

amination of anytime schemes is an important next step

in this work.

5.2 Elicitation E�ectiveness

We analyzed the e�ectiveness of our regret-based elici-

tation procedure by comparing it with the maximin cri-

terion. We implemented a variation of the Double Ora-

cle maximin algorithm developed by McMahan, Gordon

& Blum (2003). The computation time for maximin

is significantly less the that of minimax regret—this is

expected since maximin requires only the solution of a

pair of linear programs.

We used both maximin and minimax regret to as-

sess each step of the preference elicitation procedure

and paired each with the current solution and halve

the largest gap query strategies. Thus we essentially

have four algorithms: MMR-HLG, where policies are

computed using regret and queries by HLG; MMR-CS,

regret-based policies and queries using current solution;

and MM-HLG and MM-CS, in which policies are com-

puted using maximin and queries using HLG and cur-

rent solution, respectively. We compare each of these

strategies using three criteria, and show their perfor-

mance after each elicitation query to see how e�ective

the queries are. We measure the performance of each

policy using: (a) its maximin value given the current

(remaining) uncertainty in the reward function (b) its

max regret value given the current (remaining) uncer-

tainty in the reward function; (c) its true regret (i.e.,

loss relative to the optimal policy for the underlying

true reward function r, where r is used to generate

query responses). The minimax regret measure is the

most critical since it provides the strongest guarantees;

but we compare to maximin value as well, since max-

imin policies are optimizing against a very di�erent ro-

bustness measure. True regret is not available in re-

alistic settings; but this gives us an indication of how

good the resulting policies actually are (as opposed to

a worst-case bound).

Figure 4: Preference Elicitation Comparison: Maximin

Value

Figure 5: Preference Elicitation Comparison: Minimax

Regret

Figures 4, 5 and 6 show the results of the compar-

ison on each measure. The minimax regret criterion

with the current solution selection heuristic performs

extremely well on all measures. Somewhat surprisingly,

it even outperforms the maximin criterion with respect

to maximin value (except at the very early stages).

Even though maximim is optimizing maximin value,

Fig. 2. The ICG can not see beyond 11 states [3]

is equal 10. Figure 2 and 3 are two results from Regan and
Boutilier work. The former shows minimax calculation time
using integer linear programming method namely ICG in
[3] and the latter indicates minimax calculation time using
nondominated policies [5]. Both of these methods are not
able to do calculations for huge size of MDPs because
of complexity of their calculations, while our method is
applicable for very huge MDPs (Figure 1). For instance,
we can calculate minimax regret for a MDP with 200 states,
while previous approaches don’t have any results more than
10 states. Therefore, our approach is significant for MDPs
with too many states and actions and few number of different
reward values.

Figure 5.1: Changing of states and actions vs calculation time for minimax regret.

4 5 6 7 8 9 10 11

Number of states

10

100

1000

10000

100000

T
im

e
 (

m
s
)

-
lo

g
 s

c
a
le

Number of states vs. Time

Figure 3: Scaling of ICG algorithm: number of states

vs time

imax regret computation has very favorable anytime be-

haviour, as exhibited in Figure 2. During the iterative

constraint generation procedure the regret gap shrinks

extremely quickly at the beginning and slow progress

is made near the end. If one does not need an exact

measure of minimax regret, this anytime property may

allow for fast approximations. This is especially true

given that we want to use minimax regret to suggest

queries (especially early on); robust decisions are made

only at the end of the elicitation process. Detailed ex-

amination of anytime schemes is an important next step

in this work.

5.2 Elicitation E�ectiveness

We analyzed the e�ectiveness of our regret-based elici-

tation procedure by comparing it with the maximin cri-

terion. We implemented a variation of the Double Ora-

cle maximin algorithm developed by McMahan, Gordon

& Blum (2003). The computation time for maximin

is significantly less the that of minimax regret—this is

expected since maximin requires only the solution of a

pair of linear programs.

We used both maximin and minimax regret to as-

sess each step of the preference elicitation procedure

and paired each with the current solution and halve

the largest gap query strategies. Thus we essentially

have four algorithms: MMR-HLG, where policies are

computed using regret and queries by HLG; MMR-CS,

regret-based policies and queries using current solution;

and MM-HLG and MM-CS, in which policies are com-

puted using maximin and queries using HLG and cur-

rent solution, respectively. We compare each of these

strategies using three criteria, and show their perfor-

mance after each elicitation query to see how e�ective

the queries are. We measure the performance of each

policy using: (a) its maximin value given the current

(remaining) uncertainty in the reward function (b) its

max regret value given the current (remaining) uncer-

tainty in the reward function; (c) its true regret (i.e.,

loss relative to the optimal policy for the underlying

true reward function r, where r is used to generate

query responses). The minimax regret measure is the

most critical since it provides the strongest guarantees;

but we compare to maximin value as well, since max-

imin policies are optimizing against a very di�erent ro-

bustness measure. True regret is not available in re-

alistic settings; but this gives us an indication of how

good the resulting policies actually are (as opposed to

a worst-case bound).

0 50 100 150 200 250 300

Query Number

70

75

80

85

90

95

100

M
a
x
im

in
 V

a
lu

e

Maximin Value vs. Number of Queries

Maximin - HLG
Minimax - HLG
Maximin - CS
Minimax - CS

Figure 4: Preference Elicitation Comparison: Maximin

Value

0 50 100 150 200 250 300

Query Number

0

5

10

15

20

25

30

35

M
a
x
 R

e
g
re

t

Max Regret vs. Number of Queries

Maximin - HLG
Minimax - HLG
Maximin - CS
Minimax - CS

Figure 5: Preference Elicitation Comparison: Minimax

Regret

Figures 4, 5 and 6 show the results of the compar-

ison on each measure. The minimax regret criterion

with the current solution selection heuristic performs

extremely well on all measures. Somewhat surprisingly,

it even outperforms the maximin criterion with respect

to maximin value (except at the very early stages).

Even though maximim is optimizing maximin value,

Figure 2: Scaling of MMR computation w.r.t. nondominated
policies

MIP-approach of Regan and Boutilier (2009) (ICG-MIP), on
very small, randomly generated IRMDPs. We fix |A| = 5

and vary the number of states from 3 to 7. A sparse transition
model is generated (each (s, a)-pair has min(2, log2(|S|))
random, non-zero transition probabilities). An imprecise re-
ward model is generated by: i) random uniform selection
of each r(s, a) from a predefined range; ii) random gener-
ation of an uncertain interval whose size is normally dis-
tributed; and iii) then uniform random placement of the in-
terval around the “true” r(s, a). A random state is chosen as
the start state (point distribution). We generate 20 MDPs of
each size.

Fig. 2 shows the computation time of the different algo-
rithms as a function of the number of nondominated poli-
cies in each sampled MDP. LP-ND1 (Xu and Mannor 2009)
performs poorly, taking more than 100s. to compute mini-
max regret for MDPs with more than 1000 nondominated
policies. Our modified LP, LP-ND2, performs only slightly
better. The most effective approach is our LP-based con-
straint generation procedure, ICG-ND, in which nondom-
inated policies are exploited to determine maximally vio-
lated constraints. While |�| LPs must be solved at each it-
eration, these are extremely small. ICG-ND is also more
effective than the original MIP model ICG-MIP (Regan and
Boutilier 2009), which does not make use of nondominated
policies. This is seen in Fig. 3, which shows average com-
putation time (lines) and number of nondominated vectors
(scatterplot) for each MDP size. We see that, while ICG-
MIP performs reasonably well as the number of states grows
(eventually outperforming LP-ND1 and LP-ND2), the ICG-
ND approach still takes roughly an order of magnitude less
time than ICG-MIP. As a result, we focus on ICG-ND below
when we investigate larger MDPs.

Generating Nondominated Policies

While the effectiveness of ICG-ND in exploiting the non-
dominated set � seems evident, the question remains: how
to identify �? The PWLC nature of the function V (r) is

Figure 3: Scaling of MMR computation (lineplot on left y-
axis) and nondominated policies (scatterplot on right y-axis)
w.r.t. number of states

analogous to the situation in POMDPs, where policy value
is linear in belief state. For this reason, we adapt a well-
known POMDP algorithmWitness (Kaelbling, Littman, and
Cassandra 1998) to iteratively construct the set of nondomi-
nated policies. As discussed below, other POMDP methods
can be adapted to this problem as well.

The ⇡Witness Algorithm
Let f be the occupancy frequencies for policy ⇡. Suppose,
when starting at state s we take action a rather than ⇡(s)
as prescribed by ⇡, but follow ⇡ thereafter. The occupancy
frequencies induced by this local adjustment to ⇡ are given
by:

fs:a = �(s)(es:a + �
�

s�

Pr(s0|s, a)f [s0]) + (1� �(s))f

where es:a is an S⇥A vector with a 1 in position s, a and
zeroes elsewhere. It follows from standard policy improve-
ment theorems (Puterman 1994) that if f is not optimal for
reward r, then there must be a local adjustment s, a such that
fs:a · r > f · r.1 This gives rise to a key fact:

Theorem 1. Let �� � � be a (strictly) partial set of non-
dominated policies. Then there is an f 2 �

�, an (s, a), and
an r 2 R such that fs:a · r > f � · r, 8 f � 2 �

�

This theorem is analogous to the witness theorem for
POMDPs (Kaelbling, Littman, and Cassandra 1998) and
suggests a Witness-style algorithm for computing �. Our
⇡Witness algorithm begins with a partial set � consisting
of a single nondominated policy optimal for an arbitrary
r 2 R. At each iteration, for all f 2 �, it checks whether
there is a local adjustment (s, a) and a witness reward r s.t.
fs,a · r > f � · r for all f � 2 � (i.e., whether fs,a offers an
improvement at r). If there is an improvement, we add the
optimal policy f�r for that r to �. If no improvement exists
for any f , then by Thm. 1, � is complete. The algorithm

1We assume � is strictly positive for ease of exposition. Our
definitions are easily modified if �(s) = 0 for some s.

Figure 5.2: Scaling of ICG al-
gorithm, number of states vs time

[Regan and Boutilier, 2008]

Figure 5.3: Scaling of mini-
max regret computation (line plot
on left y-axis) and nondominated
policies (scatter plot on right y-
axis) w.r.t. number of states [Re-

gan and Boutilier, 2010]

5.2.1 Simulation Domains

In this section, the experiments are based on the Random MDP models presented in

Section 4.5.2.1. To measure the performance of our SRPM, we first show how the average

minimax regret computation time varies with respect to the MDP size. Figure 5.1 shows

how the computing time as function of the number of states or the number of actions.

In all the experiment we have d = 10. To obtain the states-dependent curve we fixed the

Chapter 5. Computing Robust Policies with Minimax Regret Methods 91

number of actions at 5 and we varied the number of states, while in the actions-dependent

curve we fixed the number of states at 10 and we changed the number of actions.

Figures 5.2 and 5.3 show two results from Regan and Boutilier work. The former shows

minimax calculation time using an integer linear programming method named ICG pro-

posed in [Regan and Boutilier, 2008] and the latter indicates the minimax calculation

time using non-dominated policies. Both methods are computationally heavier than

SRPM and hence they are not able to deal with MDPs of huge size, while our method is

applicable on larger MDPs (Figure 5.1). For instance, we can calculate minimax regret

for an MDP with 200 states, while the previous approaches do not have any results with

more than 10 states. Therefore, our approach is effective for MDPs with an high number

of states and actions.

5.3 Conclusion and Discussion

This chapter presents our modification on Bender’s decomposition method for solving

the minimax regret method [Regan and Boutilier, 2009]. We presented a new technique

to generate the inequalities in the subproblem, it starts with a random generation of

the ¯�s from polytope ⇤ and then it finds the best possible g
i

by solving a sub-problem.

In our approach we showed how to reduce the time calculation and the complexity by

generating the master problem constraints only once. In this wey we are able to handle

instances of bigger size in comparison to the other methods present in the literature.

Chapter 6

Conclusions and Perspectives

Sequential decision-making under uncertainty is relevant to a large number of fields, from

manufacturing to robotics to medical diagnosis and economics. In majority of areas, it

means to learn a policy that defines which action to select in any state in order to

perform a task correctly. These actions should be robust toward noises in the system.

As an example Boger et al. [2006] have designed an assistant robot that should select

its action regarding to the dilemma patient behavior and accompany her to wash her

hands1.

The basic model of this dissertation has been based on an MDP with unknown rewards

under uncertainty. A first model is fully general: the uncertainty produces an MDP

with imprecise rewards (IRMDP) where acceptable reward functions are defined as a

set. Then, we have presented a vector valued MDP with vector rewards (VMDP) where

the uncertainty is put on unknown weights on rewards that should be predicted during

the computation approaches. In fact, this weight is a key point of VMDP model and

if it was given, the problem could be transformed to a classical MDP. Therefore, it can

be solved easily using classical algorithms on MDPs. A VMDP model with bounded

polytope ⇤ of reward weights provides an imprecise knowledge of the rewards which

entails a partial ordering of policies.

This second model enables us to compare policies with respect to the ⇤ polytope using

optimization techniques, while submitting to the user unsolved comparisions between

policies, states or (state , action) pairs prunes part of ⇤ and improves further accuracy
1This paragraph has been inspired by Pineau [2004].

92

Chapter 6. Conclusions and Perspectives 93

of optimization solution. Thus querying users to shrink the ⇤ polytope and attaining

more information about uncertain reward weights have been important issues in this

dissertation. Our goal has been to:

• ask less and more effective questions to the user,

• And find optimization methods to solve higher size of VMDPs with respect to

polytope ⇤.

This goal has been pursued along two lines: reward weight elicitation and computation

methods.

6.1 Reward Weight Elicitation

Since reward weights ¯� 2 ⇤ (embedding user preferences) are not known, we have pre-

sented several techniques to optimize optimal solution for VMDPs by approximating ¯�

close enough to the user preferences. For this reason in our approaches we required to

querying users.

Our first technique includes two parts: propagation and research. In propagation part,

we have presented a method for computing an approximate set of non-dominated policies.

Recall that non-dominated policies are the policies that are at least optimal for one value

of preferences (each ¯� represent a value of preferences). The propagation part does not

require to communicate with users and all computation is carried by the system. We

have shown that it generates an approximate set of non-dominated policies pretty well for

VMDP with small dimension d. We have proved theoretically that number of generated

optimal policies does not depend on MDP sizes such as number of sates or actions. This

is interesting because, the d parameter is actually the number of objectives/preferences

in the model; it means this method is not suitable for too many objectives in the system.

Research part as the second part of our method is completely independent from propa-

gation. It finds the optimal policy satisfying user preferences from the propagated set of

non-dominated policies. Regarding this part, we showed that approximating the set of

optimal policies offline, allows us to discover the optimal policy by asking a considerably

lesser number of questions to the user. Our experimental results demonstrate the value

Chapter 6. Conclusions and Perspectives 94

of our approach and show how we ask less queries in comparison with other settings in

literature so far. In order to compare less number of pairs from the explored set of non-

dominated policies, our algorithm searches the more informative ones. Since, comparing

each pair produce a cut on polytope ⇤, the algorithm attempts to chooses the cuts that

divide a given reward polytope into two almost equal parts. To fulfill this goal, our

Monte-Carlo based technique generate many random points inside the ⇤ polytope. We

believe that the time for generating these random points could be reduced in a different

approach as dividing polytope ⇤ in approximately equal parts. Another idea is to use

hit and run method to select completely random points inside the ⇤ polytope [Ya and

Kane, 2015].

Another algorithm presented in this thesis, ABVI, addresses differently the question of

optimal policy for an MDP with a polytope ⇤ of admissible reward weights. We follow

a vector form of Value Iteration method as long as ⇤ allows to decide the necessary

comparisons, and start an interaction with user when an undecided comparison is met.

To reduce the number of vector comparisons, our approach computes advantages in

each iteration, classifies and regroups them, and performs comparisons on groups of

advantages. Experiments have indicated how classification technique accelerates our

iteration method and converges faster to the optimal solution. This method is also more

robust with respect to ’uncertain’ users that make mistakes in answering queries. One

drawback of this method is that at the end of the iterative algorithm, convergence speed

reduces because negative advantages are produced. To improve the tail convergence

speed, we must find a solution to get rid of negative advantages during the clustering

process.

6.2 Solve VMDP with Polytope ⇤ approximately

We have presented a robust policy computation method extended to VMDP with un-

known reward weights ⇤ by using minimax regret criterion. The robust approach at-

tempts to find an optimal policy with respect to the bounded ⇤ polytope. Our new

computation method is less complicated and computationally faster than previous works.

The minimax regret calculation is based on Bender’s decomposition method and includes

two linear programs master-problem and sub-problem. The sub-problem generates some

constraints for the master problem and it continues until the difference between two

Chapter 6. Conclusions and Perspectives 95

regrets generated by sub-problem and master problem reaches a give precision ✏. In

our presented method, constraints have been generated by selecting random points from

polytope ⇤. Despite of previous approach in literature, this method does not iterate

between two LPs (master problem and sub-problem), instead the master-problem is

computed only once. In comparison with Bender’s decomposition approach, the number

of constraints for master problem are higher while master problem should be solved just

once. For this reason, our method is faster and applicable on higher sizes of MDPs. On

the other hand the final solution is less precise than the previous methods because this

approach can not receive a precision parameter as ✏.

6.3 Long Term Perspective and Applications

In this section we describe our perspectives related to this dissertation in the future.

A problem with ABVI algorithm (given in Section 4.5) is that for kdominance comparison

methods, our algorithm adds each new constraint to the linear programming problem.

All the added constraints are not necessary while they nevertheless increase complexity

of algorithm. We have an idea based on machine learning methods — such as k nearest

neighbors — for working on the added bound and verify them before being added to the

linear program. This allows us to reduce the number of unnecessary constraints and will

accelerate computation time drastically.

Another remark considers the non-dominated vectors generation (see section 4.4.2). In

our setting, we have generated all non-dominated vectors offline. A first idea is to elimi-

nate some of useless non-dominated vectors after any iteration during offline generation

method. Another idea is to do generation online while communicating with users. Be-

cause having more information on reward weights helps us to update explored set of

non-dominated vectors after any iteration. In fact, after eliminating part of polytope

⇤, there are many explored vectors that are not non-dominated anymore and there are

some new non-dominated vectors that should be added to the explored set. In the other

hand, this technique can cause a reduction in the computation complexity.

Another worthwhile direction of this thesis is working on the query types proposed to the

user. This means, refining our query formulation algorithms to make simpler answerable

queries by users. For instance, comparing two objectives in one state is understandable

Chapter 6. Conclusions and Perspectives 96

by user, while asking a user if she prefers 0.2 times of one objective rather than 0.35 times

of another objective is not easy to be replied back. In our experiments we have simulated

user responses automatically but for implementing our approach in communication with

real users, we need to work on this part.

Our next idea is to work on theoretical aspect of non-dominated vector-valued functions

research (see Section 4.4.4) such as finding more theoretical and reliable proofs.

Another question is whether we can implement our algorithms on situations with more

than one user. What about a group of users who attempt to find a common decision

and common optimal policy. If our algorithms are applicable on social choice concept,

we think that it can be a good direction of continuing research after finishing this thesis.

Appendix A

Some Robust Approaches in MDPs

with Ambiguous Transition

Probabilities

The State of the Art of this thesis considers models where the ambiguity is represented

by ambiguous reward functions. At least one other approach has been considered. In this

Appendix, we introduce a few methods in the literature that solve MDPs with ambiguous

transition probabilities using the robust approaches. It means, these methods look for

an optimal solution w.r.t. bounded probability transitions among states and actions in

the MDP.

In general, a solution of an MDP (either all parameters are known or they are partially

known) is to find a policy with the greatest expectation of sum of rewards i.e.

⇡⇤
= argmax

⇡2⇧ E
⇡,p

[

X

t

�tr(s)] (A.1)

This expectation value also depends on transition probabilities between states and ac-

tions. Generally, probability functions p is not mentioned as a parameter of the expecta-

tion of rewards in Equation A.1, but we append it in the formula because p happens not

to be given. In many practical problems, the transition matrices should be estimated

97

Appendix A. A Survey of MDPs with Unknown Transition Probabilities 98

from data and sometimes it is not possible in practice. On the other hand, planning in

MDPs sensitively relies on the transition probabilities, so that a slight error in defining

probabilities may have a huge impact on final results. An example of this problem has

been given by [Chades et al., 2012] w.r.t. managing a population of threatened Goldian

finch birds. The response of the bird population with different management actions is

uncertain and this leads to uncertain probabilities in the model.

One proposed solution in the literature to solve this problem is to find the actions that

perform well on all models in the set of uncertain transition probabilities. To compute

the stationary policy, the model compares the policies relying on the minimal expected

reinforcement received by each policy [Bagnell et al., 2001, Nilim and El Ghaoui, 2004]:

⇡⇤ s.t. V ⇡

⇤
= max

⇡2⇧min
p2P E

p,⇡

[

X

t

�tr(s
t

)]

Finding policies that are good respecting the unrestricted sets is computationally com-

plex.

Proposition A.1. Finding the stationary infinite policy that maximizes the least expected

reward over an uncertainty set of MDP is NP-hard [Bagnell et al., 2001, Nilim and El

Ghaoui, 2004].

After choosing a robust computation method such as the minmax method, the issue

is how to define the set of uncertain transition probabilities. Can we assume all the

p(s0|s, a) are confined in a polytope? Bagnell et al. [2001] consider this set as a compact

and convex polytope, while Nilim and El Ghaoui [2004] take just the convex property

into account. Because they claim that choosing a polytope model for the uncertainty

often incurs an additional computational effort to handle the uncertainty. An exception

is the Bagnell et al. [2001] work because they have described the uncertainty by an

interval matrix intersected by the constrained with probabilities sum to one [Nilim and

El Ghaoui, 2004].

Since an exact computation is out of reach, both Bagnell et al. [2001] and Nilim and

El Ghaoui [2004] propose a robust approximation. First, Bagnell et al. [2001] have

restricted ambiguous transition functions to a convex set and their reason is tractability

Appendix A. A Survey of MDPs with Unknown Transition Probabilities 99

of this structure. They proposes a Robust Value Iteration algorithm on MDPs with a

compact and convex uncertainty set P . This value iteration algorithm is as below:

Enumerate Algorithm 1.

1- Initialize ¯V to zero vector of |S|1 size

2- Repeat until ¯V converges

3- For each s 2 S, a 2 A

Q
min(s,a) = min

p2P(.|s,a)Ep

[

¯V (s) + r̄(s)]

4- update ¯V by maximizing over actions |A|:

¯V (s) = max
a2AQ

min(s,a)

Recall that r̄2 is a reward vector of dimension |S| and Q has a scalar value. They claim

the minimization problem in Algorithm 1 (step 3) on uncountable set of probability

distributions is computable and also tractable. They indicated that this algorithm solves

MDPs with a convex and compact set of uncertain probabilities in a polynomial time. On

the other hand, Nilim and El Ghaoui [2004] demonstrate that this algorithm is NP-hard

on their MDP model with a convex set on unknown probability functions P .

Another similar approach has been examined by [Nilim and El Ghaoui, 2004]. They

consider transition matrices P a on S, indexed by the chosen action a. For sake of

clarity, for a given state s 2 S, action a 2 A, and transition matrix P a, the next state

distribution p(.|s, a) is the row related to state s in matrix P a. Now, for each action a, a

set Pa of admissible transition matrices is provided, so the full set of transition matrices

is T = (⌦
a2A Pa

).

The defined robust value iteration on infinite horizon MDPs with partially known prob-

ability functions is a different formulation of maximin method too [Nilim and El Ghaoui,

2004]:

Enumerate Algorithm 2.
1size of the sate space
2in this model reward function is defined only on state r : S �! R

Appendix A. A Survey of MDPs with Unknown Transition Probabilities 100

1. set ✏ > 0, the initial value vector3 ¯V1 = 0 and iteration counter k = 1

2. (a) For each s, a compute the V (s, a) using the given maximization problem such

that

V (s, a)� �  min
p2P(.|s,a) ¯Vk

· p  V (s, a)

where � =

(1��)✏
2�

(b)For each s, a compute the ¯V (s):

¯V
k+1(s) = max

a2A(r(s, a) + �V (s, a))

3. If || ¯V
k+1 � ¯V

k

|| < (1��)✏
2� go to 4

Otherwise, k � k + 1 and go to 2

4. For each s 2 S the optimal policy is

⇡⇤
(s) = argmax

a2A{r(s, a) + �V (s, a)} 8 s 2 S

The interesting remark of their approach considering this manuscript is that they have

transformed the problem to the inner scalar product between two vectors p 2 P(.|s, a)

and ¯V (vector value at some given stage in value iteration algorithm). p and ¯V are two

|S| dimensional vectors such that i-th element in p 2 P(.|s, a) represents p(s
i

|s, a), thus

we have:

V (s, a) = ¯V · p

The presented ✏ precision defines an ✏-suboptimal policy in at most O(|S| |A| log(1/✏)2)

iterations. These methods sometimes give very pessimistic results because they search

for the optimal policy satisfying all possible cases on partially known MDPs. The worst-

case complexity of the robust algorithm is the same as the original Bellman recursion.

Hence, robustness can be added at practically no extra computing cost.

3it has dimension |S|

Bibliography

Abbeel, P., Coates, A., Quigley, M., and Ng, A. Y. (2007). An application of rein-

forcement learning to aerobatic helicopter flight. In Schölkopf, B., Platt, J. C., and

Hoffman, T., editors, Advances in Neural Information Processing Systems 19, pages

1–8. MIT Press.

Abbeel, P. and Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement

learning. In In Proceedings of the Twenty-first International Conference on Machine

Learning. ACM Press.

Akrour, R., Schoenauer, M., and Sebag, M. (2012). APRIL: active preference-learning

based reinforcement learning. CoRR, abs/1208.0984.

Bagnell, J. A. D., Ng, A. Y., and Schneider, J. (August, 2001). Solving uncertain markov

decision problems. Technical Report CMU-RI-TR-01-25, Robotics Institute, Carnegie

Mellon University.

Baird, L. C. (1993). Advantage updating. Technical report. WL-TR-93-1146, Wright-

Patterson Air Force Base.

Bäuerle, N. and Rieder, U. (2011). Markov Decision Processes with Applications to

Finance. Springer Berlin Heidelberg.

Bellman, R. (1957). A Markovian Decision Process, volume 6. Indiana Univ. Math. J.

Benders, J. F. (2005). Partitioning procedures for solving mixed-variables programming

problems. Computational Management Science, 2(1):3–19.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena

Scientific, 1st edition.

101

Bibliography 102

Bhattacharya, A. and Das, S. K. (2002). Lezi-update: An information-theoretic frame-

work for personal mobility tracking in pcs networks. Wirel. Netw., 8(2/3):121–135.

Boger, J., Hoey, J., Poupart, P., Boutilier, C., Fernie, G., and Mihailidis, A. (2006). A

planning system based on markov decision processes to guide people with dementia

through activities of daily living. Trans. Info. Tech. Biomed., 10(2):323–333.

Boularias, A., Kober, J., and Peters, J. (2011). Relative Entropy Inverse Reinforce-

ment Learning. In Proceedings of the 14th International Con- ference on Artificial

Intelligence and Statistics, volume 15, pages 182–189.

Boutilier, C., Das, R., Kephart, J. O., Tesauro, G., and Walsh, W. E. (2003). Cooperative

negotiation in autonomic systems using incremental utility elicitation. In Proceedings

of the Nineteenth Conference on Uncertainty in Artificial Intelligence, UAI’03, pages

89–97. Morgan Kaufmann Publishers Inc.

Boutilier, C., Patrascu, R., Poupart, P., and Schuurmans, D. (2006a). Constraint-based

optimization and utility elicitation using the minimax decision criterion. Artif. Intell.,

170:686–713.

Boutilier, C., Patrascu, R., Poupart, P., and Schuurmans, D. (2006b). Constraint-based

optimization and utility elicitation using the minimax decision criterion. Artif. Intell.,

170(8-9):686–713.

Chades, I., Carwardine, J., Martin, T. G., Nicol, S., Sabbadin, R., and Buffet, O. (2012).

Momdps: A solution for modelling adaptive management problems. In Proceedings

of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July 22-26, 2012,

Toronto, Ontario, Canada.

Chajewska, U., Koller, D., and Parr, R. (2000). Making rational decisions using adaptive

utility elicitation. In Proceedings of the Seventeenth National Conference on Artificial

Intelligence and Twelfth Conference on on Innovative Applications of Artificial Intel-

ligence, July 30 - August 3, 2000, Austin, Texas, USA., pages 363–369.

Fearnley, J. (2010). Strategy iteration algorithms for games and markov decision pro-

cesses.

Bibliography 103

Fürnkranz, J., Hüllermeier, E., Cheng, W., and Park, S.-H. (2012). Preference-based

reinforcement learning: A formal framework and a policy iteration algorithm. Machine

Learning, 89(1-2):123–156. Special Issue of Selected Papers from ECML PKDD 2011.

Gilbert, H., Spanjaard, O., Viappiani, P., and Weng, P. (2015). Reducing the num-

ber of queries in interactive value iteration. In Algorithmic Decision Theory - 4th

International Conference, ADT 2015, Lexington, KY, USA, September 27-30, 2015,

Proceedings, pages 139–152.

Girard, J. (2014). Concurrent markov decision processes for robust robot team learning

under uncertainty.

Givan, R., Leach, S. M., and Dean, T. L. (2000). Bounded-parameter markov decision

processes. Artif. Intell., 122(1-2):71–109.

Grudic, G. Z. and Lawrence, P. D. (1996). Human-to-robot skill transfer using the spore

approximation. In In Proc. IEEE Int. Conf. Robot. Autom. (ICRA, pages 2962–2967.

Howard, R. A. (1960). Dynamic programming and markov processes. MIT Press, 69:296–

297.

Kakade, S. and Langford, J. (2002). Approximately optimal approximate reinforcement

learning. In Machine Learning, Proceedings of the Nineteenth International Conference

(ICML 2002), University of New South Wales, Sydney, Australia, July 8-12, 2002,

pages 267–274.

Kakade, S. M. (2003). On the sample complexity of reinforcement learning.

Klein, E., Geist, M., PIOT, B., and Pietquin, O. (2012). Inverse Reinforcement Learn-

ing through Structured Classification. In Advances in Neural Information Processing

Systems (NIPS 2012).

Lagoudakis, M. G. and Parr, R. (2003). Least-squares policy iteration. Journal of

Machine Learning Research, 4:1107–1149.

Littman, M. L., Dean, T. L., and Kaelbling, L. P. (1995). On the complexity of solving

markov decision problems. In IN PROC. OF THE ELEVENTH INTERNATIONAL

CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, pages 394–

402.

Bibliography 104

McMahan, H. B., Gordon, G. J., and Blum, A. (2003). Planning in the presence of

cost functions controlled by an adversary. In Machine Learning, Proceedings of the

Twentieth International Conference (ICML 2003), August 21-24, 2003, Washington,

DC, USA, pages 536–543.

Moffaert, K. V. and Nowé, A. (2014). Multi-objective reinforcement learning using sets

of pareto dominating policies. Journal of Machine Learning Research, 15:3663–3692.

Ng, A. Y. and Russell, S. (2000). Algorithms for inverse reinforcement learning. In in

Proc. 17th International Conf. on Machine Learning, pages 663–670. Morgan Kauf-

mann.

Nilim, A. and El Ghaoui, L. (2004). Robustness in markov decision problems with

uncertain transition matrices. NIPS.

Papadimitriou, C. H. and Yannakakis, M. (2000). On the approximability of trade-offs

and optimal access of web sources. In Proceedings of the 41st Annual Symposium on

Foundations of Computer Science, FOCS ’00, pages 86–.

Pažek, K. and Rozman, Č. (2009). Decision making under conditions of uncertainty in

agriculture: a case study of oil crops. Poljoprivreda, 15(1):45–50.

Perny, P., Weng, P., Goldsmith, J., and Hanna, J. (2013). Approximation of lorenz-

optimal solutions in multiobjective markov decision processes. CoRR.

Pietquin, O. (2013). Inverse reinforcement learning for interactive systems. In Proceedings

of the 2Nd Workshop on Machine Learning for Interactive Systems: Bridging the Gap

Between Perception, Action and Communication, MLIS ’13, pages 71–75. ACM.

Pineau, J. (2004). Tractable planning under uncertainty: Exploiting structure. PhD

Thesis.

Pomerleau, D. A. (1991). Efficient training of artificial neural networks for autonomous

navigation. Neural Comput., pages 88–97.

Puterman, M. L. (1994). Markov decision processes: discrete stochastic dynamic pro-

gramming. Wiley.

Puterman, M. L. (2005). Markov decision processes : discrete stochastic dynamic pro-

gramming. Wiley series in probability and mathematical statistics. J. Wiley & Sons,

Hoboken (N. J.).

Bibliography 105

Regan, K. and Boutilier, C. (2008). Regret-based reward elicitation for markov deci-

sion processes. NIPS-08 workshop on Model Uncertainty and Risk in Reinforcement

Learning, 1.

Regan, K. and Boutilier, C. (2009). Regret-based reward elicitation for markov decision

processes. In UAI 2009, Proceedings of the Twenty-Fifth Conference on Uncertainty

in Artificial Intelligence, Montreal, QC, Canada, June 18-21, 2009, pages 444–451.

Regan, K. and Boutilier, C. (2010). Robust policy computation in reward-uncertain mdps

using nondominated policies. In Proceedings of the Twenty-Fourth AAAI Conference

on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010.

Regan, K. and Boutilier, C. (2011a). Eliciting additive reward functions for markov

decision processes. In IJCAI 2011, Proceedings of the 22nd International Joint Con-

ference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages

2159–2164.

Regan, K. and Boutilier, C. (2011b). Robust online optimization of reward-uncertain

mdps. In IJCAI 2011, Proceedings of the 22nd International Joint Conference on

Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages 2165–

2171.

Regan, K. and Boutilier, C. (2012). Regret-based reward elicitation for markov decision

processes. CoRR, abs/1205.2619.

Roijers, D. M., Vamplew, P., Whiteson, S., and Dazeley, R. (2013). A survey of multi-

objective sequential decision-making. J. Artif. Intell. Res. (JAIR), 48:67–113.

Sutton, R. S. and Barto, A. G. (1998). Introduction to Reinforcement Learning. MIT

Press, Cambridge, MA, USA, 1st edition.

Viappiani, P. and Boutilier, C. (2010). Optimal bayesian recommendation sets and

myopically optimal choice query sets. In Lafferty, J. D., Williams, C. K. I., Shawe-

Taylor, J., Zemel, R. S., and Culotta, A., editors, Advances in Neural Information

Processing Systems 23, pages 2352–2360. Curran Associates, Inc.

Wakuta, K. (1995). Vector-valued markov decision processes and the systems of linear

inequalities. Stochastic Processes and their Applications, 56:159 – 169.

Bibliography 106

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis, King’s College,

Cambridge, UK.

Weng, P. (2011). Markov decision processes with ordinal rewards: Reference point-

based preferences. In Proceedings of the 21st International Conference on Automated

Planning and Scheduling, ICAPS 2011, Freiburg, Germany June 11-16, 2011.

Weng, P. (2012). Ordinal Decision Models for Markov Decision Processes. In European

Conference on Artificial Intelligence, volume 242, pages 828–833.

Weng, P. and Zanuttini, B. (2013). Interactive Value Iteration for Markov Decision Pro-

cesses with Unknown Rewards. In Proc. 23th International Joint Conference Artificial

Intelligence (IJCAI2013), Beijing, China.

Xu, H. and Mannor, S. (2009). Parametric regret in uncertain markov decision processes.

In CDC, pages 3606–3613. IEEE.

Ya, A. and Kane, D. (2015). walkr: Mcmc sampling from nonnegative convex polytopes.

Ziebart, B. D., Maas, A. L., Dey, A. K., and Bagnell, J. A. (2008). Navigate like a

cabbie: Probabilistic reasoning from observed context-aware behavior. In Proceedings

of the 10th International Conference on Ubiquitous Computing, UbiComp ’08, pages

322–331. ACM.

	Contents
	List of Figures
	List of Tables
	Abbreviations
	Notations
	1 Introduction
	2 Preliminaries
	2.1 Markov Decision Processes
	2.1.1 Primal Formulation
	2.1.2 From Primal to Dual Formulation

	2.2 MDPs with Unknown Rewards
	2.2.1 General Setting
	2.2.1.1 Robust Objective Functions

	2.2.2 Reward Vectors
	2.2.3 Multi-Objective MDPs with Linear Scalarization
	2.2.3.1 Categorized rewards

	2.2.4 Non-dominated Policies

	2.3 Conclusion

	3 A Survey of Problems and Algorithms in IRMDPs
	3.1 Choosing a Robust Policy under Uncertainty
	3.2 Learning from Observed Behaviours
	3.3 Preference Elicitation
	3.3.1 Elicitation Based on Minimax Regret
	3.3.2 Accelerate Minimax Regret Elicitation Method
	3.3.3 Reward Elicitation with Policy Iteration
	3.3.4 Reward Elicitation with Value Iteration

	3.4 Conclusion

	4 Elicitation Methods with Iteration Based Approaches
	4.1 VMDP General Properties
	4.2 Comparing Policies Produces Cuts on Polytope
	4.3 Advantages
	4.4 Propagation-Search Algorithm for VMDPs
	4.4.1 Describing Members Using Advantages
	4.4.2 How to approximate with precision
	4.4.3 Searching Optimal V* by Interaction with User
	4.4.4 Theoretical implications
	4.4.5 Experimental Evaluation
	4.4.5.1 Simulation domains: random MDPs

	4.5 Advantage Based Value Iteration Algorithm for VMDPs
	4.5.1 ABVI Algorithm
	4.5.2 Experimental Evaluation
	4.5.2.1 Simulation Domains: Random MDPs with Confident User
	4.5.2.2 Simulation Domains: Random MDPs with Uncertain User

	4.6 Conclusion and Discussion

	5 Computing Robust Policies with Minimax Regret Methods
	5.1 Selected Random Points Method
	5.2 Experimental Results
	5.2.1 Simulation Domains

	5.3 Conclusion and Discussion

	6 Conclusions and Perspectives
	6.1 Reward Weight Elicitation
	6.2 Solve VMDP with Polytope approximately
	6.3 Long Term Perspective and Applications

	A Some Robust Approaches in MDPs with Ambiguous Transition Probabilities
	Bibliography

