R. Alur and D. L. Dill, A theory of timed automata, Theoretical Computer Science, vol.126, issue.2, pp.183-235, 1994.
DOI : 10.1016/0304-3975(94)90010-8

C. André, Synccharts : A visual representation of reactive behaviors, 1995.

D. Andreu, D. Guiraud, and G. Souquet, A distributed architecture for activating the peripheral nervous system, Journal of Neural Engineering, vol.6, issue.2, p.26001, 2009.
DOI : 10.1088/1741-2560/6/2/026001

URL : https://hal.archives-ouvertes.fr/lirmm-00361686

T. Aura and J. Lilius, Time processes for time Petri nets, 1997.
DOI : 10.1007/3-540-63139-9_34

URL : http://research.microsoft.com/users/tuomaura/Publications/HUT-TCS-A38.ps

S. Balaguer, T. Chatain, and S. Haar, A concurrencypreserving translation from time Petri nets to networks of timed automata . Formal Methods in System Design, pp.330-355, 2012.
URL : https://hal.archives-ouvertes.fr/inria-00504058

D. Bender, B. Combemale, X. Crégut, J. Farines, B. Berthomieu et al., Ladder Metamodeling and PLC Program Validation through Time Petri Nets, Model Driven Architecture?Foundations and Applications, pp.121-136, 2008.
DOI : 10.1007/978-3-540-69100-6_9

J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi, Partial order reductions for timed systems, CONCUR'98 Concurrency Theory, pp.485-500, 1998.
DOI : 10.1007/BFb0055643

URL : http://www.it.uu.se/research/group/darts/papers/texts/bjly-concur98.pdf

B. Bérard, F. Cassez, S. Haddad, D. Lime, and O. H. Roux, Comparison of the Expressiveness of Timed Automata and Time Petri Nets, Proc. of the Third International Conference in Formal Modeling and Analysis of Timed Systems, FORMATS 2005, pp.211-225, 2005.
DOI : 10.1007/11603009_17

B. Berard, F. Cassez, S. Haddad, D. Lime, and O. H. Roux, The expressive power of time Petri nets, Theoretical Computer Science, vol.474, pp.1-20, 2013.
DOI : 10.1016/j.tcs.2012.12.005

URL : https://hal.archives-ouvertes.fr/hal-00925765

B. Berthomieu and M. Diaz, Modeling and verification of time dependent systems using time Petri nets, IEEE Transactions on Software Engineering, vol.17, issue.3, pp.259-273, 1991.
DOI : 10.1109/32.75415

B. Berthomieu, D. Lime, O. H. Roux, and F. Vernadat, Reachability problems and abstract state spaces for time Petri nets with stopwatches. Discrete Event Dynamic Systems, pp.133-158, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00489016

B. Berthomieu and M. Menasche, An enumerative approach for analyzing time Petri nets, Proceedings IFIP. Citeseer, 1983.

B. Berthomieu, S. Vernadat, and . Zilio, Tina : Time Petri net analyzer

B. Berthomieu and F. Vernadat, State Class Constructions for Branching Analysis of Time Petri Nets, TACAS, pp.442-457, 2003.
DOI : 10.1007/3-540-36577-X_33

B. Berthomieu and F. Vernadat, Time Petri nets analysis with tina, Third International Conference on, pp.123-124, 2006.

H. Boucheneb and K. Barkaoui, Covering Steps Graphs of Time Petri Nets, Electronic Notes in Theoretical Computer Science, vol.239, pp.155-165, 2009.
DOI : 10.1016/j.entcs.2009.05.037

URL : https://hal.archives-ouvertes.fr/hal-01125690

H. Boucheneb, K. Barkaoui, and K. Weslati, Delaydependent partial order reduction technique for time Petri nets, Formal Modeling and Analysis of Timed Systems, pp.53-68, 2014.
DOI : 10.1007/978-3-319-10512-3_5

URL : https://hal.archives-ouvertes.fr/hal-01126438

H. Boucheneb, G. Gardey, and O. H. Roux, TCTL Model Checking of Time Petri Nets, Journal of Logic and Computation, vol.1, issue.6, pp.1509-1540, 2009.
DOI : 10.1093/logcom/exp036

URL : https://hal.archives-ouvertes.fr/hal-00489070

H. Boucheneb and H. Rakkay, A more efficient time Petri net state space abstraction useful to model checking timed linear properties, Fundamenta Informaticae, vol.88, issue.4, pp.469-495, 2008.

J. Boussin, Synthesis and Analysis of Logic Automation Systems, IFAC Proceedings Volumes, vol.11, issue.1, pp.1527-1535, 1978.
DOI : 10.1016/S1474-6670(17)66115-9

M. Boyer and O. H. Roux, On the compared expressiveness of arc, place and transition time Petri nets, Fundam. Inform, vol.88, issue.3, pp.225-249, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00489072

U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and S. Marshall, GraphML Progress Report Structural Layer Proposal, International Symposium on Graph Drawing, pp.501-512, 2001.
DOI : 10.1007/3-540-45848-4_59

URL : http://www.inf.uni-konstanz.de/algo/publications/behhm-gprsl-01.ps.gz

E. Randal and . Bryant, Graph-based algorithms for boolean function manipulation . Computers, IEEE Transactions on, vol.100, issue.8, pp.677-691, 1986.

J. Byg, M. Jacobsen, L. Jacobsen, K. Y. Jørgensen, M. H. Møller et al., TCTL-preserving translations from timed-arc Petri nets to networks of timed automata, Theoretical Computer Science, vol.537, pp.3-28
DOI : 10.1016/j.tcs.2013.07.011

F. Cassez and O. H. Roux, Structural translation from Time Petri Nets to Timed Automata, Journal of Systems and Software, vol.79, issue.10, pp.1456-1468, 2006.
DOI : 10.1016/j.jss.2005.12.021

URL : https://hal.archives-ouvertes.fr/inria-00363025

T. Chatain and S. Balaguer, Avoiding shared clocks in networks of timed automata, Logical Methods in Computer Science, vol.9, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00776574

S. Tsun and . Chow, Testing software design modeled by finite-state machines, IEEE transactions on software engineering, issue.3, pp.178-187, 1978.

F. Chu, Conception des systèmes de production à l'aide des réseaux de Petri : vérification incrémentale des propriétés qualitatives, 1995.

M. Edmund, E. Clarke, and . Emerson, Design and synthesis of synchronization skeletons using branching time temporal logic, Workshop on Logic of Programs, pp.52-71, 1981.

M. Edmund and . Clarke, Orna Grumberg, and Doron Peled. Model checking, 1999.

D. Davide, S. Aprile, A. Donatelli, J. Sangnier, and . Sproston, From time Petri nets to timed automata : An untimed approach, Proc. of the 13th International Conference of Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2007, pp.216-230, 2007.

R. David and H. Alla, Petri nets and grafcet. Tools for modelling discrete event systems, 1992.

R. David and H. Alla, Discrete, continuous, and hybrid Petri nets, 2010.
DOI : 10.1007/978-3-642-10669-9

URL : https://hal.archives-ouvertes.fr/hal-00495611

M. Diaz, Vérification et mise en oeuvre des réseaux de Petri, Hermès Science, 2003.

P. Daniel, . Dolata, E. Robert, and . Carter, Wizard : applications of expert system techniques to conformational analysis. 1. the basic algorithms exemplified on simple hydrocarbons, Journal of chemical information and computer sciences, vol.27, issue.1, pp.36-47, 1987.

F. Dormoy, Scade 6 : a model based solution for safety critical software development, Proceedings of the 4th European Congress on Embedded Real Time Software (ERTS'08), pp.1-9, 2008.

C. Dufourd, A. Finkel, and P. Schnoebelen, Reset nets between decidability and undecidability, Automata, Languages and Programming, pp.103-115, 1998.
DOI : 10.1007/BFb0055044

URL : http://www.lsv.ens-cachan.fr/Publis/PAPERS/DFS-icalp98.ps

E. Allen, E. , and C. Lei, Modalities for model checking (extended abstract) : branching time strikes back, Proceedings of the 12th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pp.84-96, 1985.

M. Esmaili, R. Entezari-maleki, and A. Movaghar-rahimabadi, Improved Region-Based TCTL Model Checking of Time Petri Nets, Journal of Computing Science and Engineering, vol.9, issue.1, pp.9-19, 2015.
DOI : 10.5626/JCSE.2015.9.1.9

G. Frey and L. Litz, Verification and validation of control algorithms by coupling of interpreted Petri nets, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218), pp.7-12, 1998.
DOI : 10.1109/ICSMC.1998.725375

G. Gardey, D. Lime, and M. Magnin, Romeo: A Tool for Analyzing Time Petri Nets, International Conference on Computer Aided Verification, pp.418-423, 2005.
DOI : 10.1007/11513988_41

URL : https://hal.archives-ouvertes.fr/hal-00523596

G. Gardey, O. Roux, and O. Roux, Using zone graph method for computing the state space of a time Petri net. Formal modeling and analysis of timed systems, pp.246-259, 2004.

G. Gardey, H. Olivier, . Roux, F. Olivier, and . Roux, Using zone graph method for computing the state space of a time Petri net. In Formal modeling and analysis of timed systems, pp.246-259, 2003.

P. Godefroid, Using partial orders to improve automatic verification methods, Computer-Aided Verification, pp.176-185, 1990.
DOI : 10.1007/bfb0023731

P. Godefroid, . Van-leeuwen, . Hartmanis, P. Goos, and . Wolper, Partial-order methods for the verification of concurrent systems : an approach to the state-explosion problem, volume 1032, 1996.
DOI : 10.1007/3-540-60761-7

I. Grobelna and M. Adamski, Control Interpreted Petri Nets - Model Checking and Synthesis, Proc. of the 18th Int. Conf. Mixed Design of Integrated Circuits and Systems, 2011.
DOI : 10.5772/47797

URL : http://www.intechopen.com/download/pdf/38494

I. Grobelna and M. Adamski, Control Interpreted Petri Nets - Model Checking and Synthesis, 18th International Conference Mixed Design of Integrated Circuits and Systems, 2011.
DOI : 10.5772/47797

URL : http://www.intechopen.com/download/pdf/38494

S. Haddad, F. Kordon, and L. Petrucci, Méthodes formelles pour les systèmes répartis et coopératifs, 2006.

R. Hadjidj and H. Boucheneb, On-the-fly <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>T</mml:mi><mml:mi>C</mml:mi><mml:mi>T</mml:mi><mml:mi>L</mml:mi></mml:math> model checking for time Petri nets, Theoretical Computer Science, vol.410, issue.42, pp.4241-4261, 2009.
DOI : 10.1016/j.tcs.2009.06.019

J. Håkansson and P. Pettersson, Partial Order Reduction for Verification of Real-Time Components, 2007.
DOI : 10.1007/978-3-540-75454-1_16

D. Harel and M. Politi, Modeling reactive systems with statecharts : the STATEMATE approach, 1998.

F. Lom-messan-hillah, L. Kordon, N. Petrucci, and . Treves, Pnml framework : An extendable reference implementation of the Petri net markup language, Petri Nets, pp.318-327, 2010.

P. Huber, A. M. Jensen, L. O. Jepsen, and K. Jensen, Reachability trees for high-level Petri nets, High-Level Petri Nets, pp.319-350, 1986.
DOI : 10.1007/978-3-642-84524-6_11

J. Jézéquel, B. Combemale, and D. Vojtisek, Ingénierie Dirigée par les Modèles : des concepts à la pratique, 2012.

Z. Jiang, M. Pajic, R. Alur, and R. Mangharam, Closed-loop verification of medical devices with model abstraction and refinement, International Journal on Software Tools for Technology Transfer, vol.100, issue.1, pp.191-213, 2014.
DOI : 10.1109/SSIRI.2010.28

P. Jordan, Standard IEC 62304 - Medical device software - Software lifecycle processes, IET Seminar on Software for Medical Devices, 2006.
DOI : 10.1049/ic:20060141

A. Karatkevich, STUBBORN SET METHOD FOR INTERPRETED PETRI NETS, IFAC Proceedings Volumes, pp.227-232, 2006.
DOI : 10.3182/20060926-3-PL-4904.00038

A. Karatkevich, Dynamic analysis of Petri net-based discrete systems, 2007.

K. G. Larsen, P. Pettersson, and W. Yi, Uppaal in a nutshell, International Journal on Software Tools for Technology Transfer, vol.1, issue.1-2, pp.134-152, 1997.
DOI : 10.1007/s100090050010

H. Leroux, Méthodologie de conception d'architectures numériques complexes : du formalisme à l'implémentation en passant par l'analyse, préservation de la conformité. Application aux neuroprothèses, 2014.

H. Leroux, D. Andreu, and K. Godary-dejean, Handling Exceptions in Petri Net-Based Digital Architecture: From Formalism to Implementation on FPGAs, IEEE Transactions on Industrial Informatics, vol.11, issue.4, pp.897-906, 2015.
DOI : 10.1109/TII.2015.2435696

URL : https://hal.archives-ouvertes.fr/lirmm-01241168

H. Leroux, K. Godary-dejean, and D. Andreu, Complex Digital System Design: A Methodology and Its Application to Medical Implants, Proc. of the International Workshop on Formal Methods for Industrial Critical Systems, FMICS 2013, pp.94-107, 2013.
DOI : 10.1007/978-3-642-41010-9_7

URL : https://hal.archives-ouvertes.fr/lirmm-01064165

H. Leroux, K. Godary-dejean, and D. Andreu, Integrating implementation properties in analysis of Petri nets handling exceptions, IFAC Proceedings Volumes, pp.406-411, 2014.
DOI : 10.3182/20140514-3-FR-4046.00032

URL : https://hal.archives-ouvertes.fr/lirmm-01064146

H. Leroux, K. Godary-dejean, G. Coppey, and D. Andreu, Automatic Handling of Conflicts in Synchronous Interpreted Time Petri Nets Implementation, 2014 IEEE Computer Society Annual Symposium on VLSI, pp.100-105, 2014.
DOI : 10.1109/ISVLSI.2014.44

URL : https://hal.archives-ouvertes.fr/lirmm-01064174

J. Lilius, Efficient State Space Search for Time Petri Nets, Electronic Notes in Theoretical Computer Science, vol.18, pp.113-133, 1998.
DOI : 10.1016/S1571-0661(05)80254-3

D. Lime, H. Olivier, C. Roux, L. Seidner, and . Traonouez, Romeo: A Parametric Model-Checker for Petri Nets with Stopwatches, International Conference on Tools and Algorithms for the Construction and Analysis of Systems, pp.54-57, 2009.
DOI : 10.1007/11513988_41

D. Lime and O. H. Roux, State class timed automaton of a time Petri net, 10th International Workshop on Petri Nets and Performance Models, 2003. Proceedings., pp.124-133, 2003.
DOI : 10.1109/PNPM.2003.1231549

URL : https://hal.archives-ouvertes.fr/hal-00523588

M. Magnin and D. Lime, Symbolic State Space of Stopwatch Petri Nets with Discrete-Time Semantics (Theory Paper), International Conference on Applications and Theory of Petri Nets, pp.307-326, 2008.
DOI : 10.1007/978-3-540-68746-7_21

M. Magnin, P. Molinaro, and O. , Roux. Expressiveness of Petri nets with stopwatches. discrete-time part, Fundam. Inf, vol.97, issue.1 2, pp.139-176, 2009.

A. Mazurkiewicz, Trace theory In Petri nets : applications and relationships to other models of concurrency, pp.278-324, 1986.

L. Kenneth and . Mcmillan, Symbolic model checking, Symbolic Model Checking, pp.25-60, 1993.

P. Merlin and D. Farber, Recoverability of Communication Protocols--Implications of a Theoretical Study, IEEE Transactions on Communications, vol.24, issue.9, pp.1036-1043, 1976.
DOI : 10.1109/TCOM.1976.1093424

M. Moalla, J. Pulou, and J. Sifakis, Synchronized petri nets : A model for the description of non-autonomous sytems, Mathematical Foundations of Computer Science, pp.374-384, 1978.
DOI : 10.1007/3-540-08921-7_85

F. Moutinho and L. Gomes, Distributed embedded controller development with Petri nets : application to globally-asynchronous locallysynchronous systems, 2015.
DOI : 10.1007/978-3-319-20822-0

P. Muller and N. Gaertner, Modélisation objet avec UML, 2000.

T. Murata, Petri nets: Properties, analysis and applications, Proceedings of the IEEE, pp.541-580, 1989.
DOI : 10.1109/5.24143

Y. Okawa and T. Yoneda, Symbolic computation tree logic model checking of time Petri nets. Electronics and Communications in Japan (Part III : Fundamental Electronic Science, pp.11-20, 1997.

L. James and . Peterson, Petri nets, ACM Computing Surveys (CSUR), vol.9, issue.3, pp.223-252, 1977.

C. Adam and P. , Communication with automata, 1966.

L. Popova-zeugmann, On time Petri nets, Elektronische Informationsverarbeitung und Kybernetik, vol.27, issue.4, pp.227-244, 1991.

L. Popova-zeugmann, Essential states in time Petri nets

L. Popova-zeugmann, Time Petri nets, Time and Petri Nets, pp.31-137, 2013.

J. Queille and J. Sifakis, Specification and verification of concurrent systems in CESAR, International Symposium on programming, pp.337-351, 1982.
DOI : 10.1007/3-540-11494-7_22

A. Ramírez-treviño, I. Rivera-rangel, and E. López-mellado, Observability of discrete event systems modeled by interpreted petri nets, IEEE Transactions on Robotics and Automation, vol.19, issue.4, pp.557-565, 2003.
DOI : 10.1109/TRA.2003.814503

L. Recalde and M. Silva, Pn fluidification revisited : Semantics and steady state Automation of Mixed Processes : Hybrid Dynamics Systems, J. Zaytoon S. Engell, pp.279-286, 2000.

H. Olivier, D. Roux, P. Delfieu, and . Molinaro, Discrete time approach of time Petri nets for real-time systems analysis, Emerging Technologies and Factory Automation Proceedings. 2001 8th IEEE International Conference on, pp.197-204, 2001.

O. Henri, R. , and C. Jard, Approches formelles des systèmes embarqués communicants, 2008.

J. Rumbaugh, I. Jacobson, and G. Booch, Unified modeling language reference manual, the. Pearson Higher Education, 2004.

M. Shahdad, R. Lipsett, E. Marschner, K. Sheehan, and H. Cohen, VHSIC Hardware Description Language, Computer, vol.18, issue.2, pp.94-103, 1985.
DOI : 10.1109/MC.1985.1662802

M. Silva, J. Manuel-colom, J. Julvez, C. Mahulea, J. H. Van-schuppen et al., On modelling of hierarchical and distributed discrete-event systems, p.85, 2007.

M. Silva and L. Recalde, On fluidification of Petri Nets: from discrete to hybrid and continuous models, Annual Reviews in Control, vol.28, issue.2, pp.253-266, 2004.
DOI : 10.1016/j.arcontrol.2004.05.002

H. Robert, U. Sloan, and . Buy, Reduction rules for time Petri nets, Acta Informatica, vol.33, issue.7, pp.687-706, 1996.

G. Souquet, D. Andreu, and D. Guiraud, Petri nets based methodology for communicating neuroprosthesis design and prototyping, ISABEL'08 : 1st International Symposium on Applied Sciences in Biomedical and Communication Technologies, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00320485

D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF : eclipse modeling framework. Pearson Education, 2008.

P. Tabuada, J. George, and . Pappas, Linear Time Logic Control of Discrete-Time Linear Systems, IEEE Transactions on Automatic Control, vol.51, issue.12, pp.1862-1877, 2006.
DOI : 10.1109/TAC.2006.886494

Y. Thierry-mieg, B. Bérard, F. Kordon, D. Lime, H. Olivier et al., Compositional analysis of discrete time Petri nets, 1st workshop on Petri nets compositions, pp.17-31, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01282489

P. Kimon and . Valavanis, On the hierarchical modeling analysis and simulation of flexible manufacturing systems with extended Petri nets, IEEE Transactions on Systems, Man, and Cybernetics, vol.20, issue.1, pp.94-110, 1990.

A. Valmari, Error detection by reduced reachability graph generation, Proceedings of the 9th European Workshop on Application and Theory of Petri Nets, pp.95-112, 1988.

A. Valmari, Stubborn sets for reduced state space generation, International Conference on Application and Theory of Petri Nets, pp.491-515, 1989.
DOI : 10.1007/3-540-53863-1_36

URL : http://www.informatik.uni-freiburg.de/~ki/teaching/ws0910/readinggroup/valmari-apn1989.pdf

Y. Moshe and . Vardi, Branching vs. linear time : Final showdown, TACAS, pp.1-22, 2001.

F. Vernadat, P. Azéma, and F. Michel, Covering step graph, Application and theory of Petri nets 1996, pp.516-535, 1996.
DOI : 10.1007/3-540-61363-3_28

F. Vernadat and F. Michel, Covering step graph preserving failure semantics, Application and Theory of Petri Nets 1997, pp.253-270, 1997.
DOI : 10.1007/3-540-63139-9_40

URL : http://www.laas.fr/~poribet/./PUBLICATIONS/vernadat_1997_pn.ps

I. Virbitskaite and E. Pokozy, A partial order method for the verification of time Petri nets, Proc. of the 12th International Symposium in Fundamentals of Computation Theory, FCT'99, pp.547-558, 1999.
DOI : 10.1007/3-540-48321-7_46

L. Vogel, Eclipse rcp tutorial, 2012.

F. Wagner, P. Münch, S. Liu, and G. Frey, DEVELOPMENT PROCESS FOR DEPENDABLE HIGH-PERFORMANCE CONTROLLERS USING PETRI NETS AND FPGA TECHNOLOGY, 1st IFAC Workshop on Dependable Control of Discrete Systems, pp.139-144, 2007.
DOI : 10.3182/20070613-3-FR-4909.00026

F. Wagner, P. Münch, S. Liu, and G. Frey, DEVELOPMENT PROCESS FOR DEPENDABLE HIGH-PERFORMANCE CONTROLLERS USING PETRI NETS AND FPGA TECHNOLOGY, 1st IFAC Workshop on Dependable Control of Discrete Systems, pp.139-144, 2007.
DOI : 10.3182/20070613-3-FR-4909.00026

J. Wang, Time Petri Nets, Timed Petri Nets, pp.63-123, 1998.
DOI : 10.1007/978-1-4615-5537-7_4

J. Weber and I. Perseil, Foundations of Health Information Engineering and Systems : Second International Symposium, 2012.
DOI : 10.1007/978-3-642-39088-3

P. Wolper and P. Godefroid, Partial-order methods for temporal verification, CONCUR'93, pp.233-246, 1993.
DOI : 10.1007/3-540-57208-2_17

T. Yoneda and H. Ryuba, Ctl model checking of time Petri nets using geometric regions, IEICE Transactions on Information and Systems, vol.81, issue.3, pp.297-306, 1998.