Skip to Main content Skip to Navigation

La réponse souterraine à une sécheresse accentuée dans un écosystème de garrigue méditerranéenne

Abstract : Longer drought periods and/or overall less precipitation are thought to be major consequences of ongoing climate change in the Mediterranean region. These changes in the water regime will likely affect community composition, biodiversity and ecosystem processes, but very little is known about how biodiversity and changes in precipitation interactively affect ecosystem functioning. In my PhD thesis, I aimed to quantify the role of plant diversity in the response of Mediterranean shrubland ecosystem to a decrease in water availability, with a particular interest in belowground processes, such as soil microbial community functioning and functional responses in plant roots.I used a rhizotron approach under partially controlled conditions to study plant growth responses to repetitive severe droughts, with a particular focus on root growth. Two individuals of the same species or in all possible combinations of the three dominating species at our field site (Quercus coccifera, Cistus albidus, Brachypodium retusum) were grown together in a rhizotron. Repetitive severe droughts had a negative effect on survival of the two woody species (Q. coccifera, C. albidus), but not of the grass B. retusum. Interspecific competition generally increased survival of C. albidus and B. retusum compared to monospecific competition. Conversely, interspecific competition decreased the survival of Q. coccifera. Likewise, I found that root morphological traits were mostly affected by the neighbor species identity rather than by severe drought. The community level physiological profiles (CLPPs) of root associated soil microbial communities did not differ between drought treatments and were also not affected by plant species identity. However, CLPPs changed towards more total microbial activities but less diverse resource use at increasing soil depth. Collectively these results suggest that plant species composition of the studied Mediterranean shrubland has a stronger effect on growth, intraspecific variability in root traits and survival than repetitive severe droughts.In the context of a larger collaborative project (CLIMED), I used a natural gradient of shrub species diversity in a Mediterranean shrubland ecosystem (garrigue) to which a permanent partial rain exclusion treatment (12% less precipitation) was added. This field experiment allowed me to study the responses of soil microbial community level physiological profiles (CLPPs) to reduced precipitation and to a change plant-produced leaf litter material decomposing on the ground as a key resource for heterotrophic soil microorganisms over two years. While rain exclusion had only a minor impact on the diversity of substrates metabolized by the microbial communities, litter species richness promoted global soil microbial activity by increased catabolic diversity of the soil microbial community. These results suggest that indirect climate change effects on plant species composition and richness might have more important consequences for soil microbial functioning than reduced precipitation in the studied Mediterranean shrubland ecosystem.Both, the field study of soil microbial functioning and the rhizotron study of plant growth and survival clearly showed that plant species identity and diversity may be more important for the functioning of these Mediterranean shrublands than increased drought. I conclude that climate change induced shifts in plant species composition and diversity may have more important consequences for the functioning of Mediterranean shrublands than the direct effects of altered precipitation.
Document type :
Complete list of metadatas
Contributor : Abes Star :  Contact
Submitted on : Thursday, February 8, 2018 - 3:04:07 PM
Last modification on : Wednesday, October 14, 2020 - 3:44:37 AM


Version validated by the jury (STAR)


  • HAL Id : tel-01704508, version 1


Ammar Shihan. La réponse souterraine à une sécheresse accentuée dans un écosystème de garrigue méditerranéenne. Biologie végétale. Université Montpellier, 2017. Français. ⟨NNT : 2017MONTT110⟩. ⟨tel-01704508⟩



Record views


Files downloads