
HAL Id: tel-01699569
https://theses.hal.science/tel-01699569

Submitted on 2 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neural-Symbolic Learning for Semantic Parsing
Chunyang Xiao

To cite this version:
Chunyang Xiao. Neural-Symbolic Learning for Semantic Parsing. Computation and Language [cs.CL].
Université de Lorraine, 2017. English. �NNT : 2017LORR0268�. �tel-01699569�

https://theses.hal.science/tel-01699569
https://hal.archives-ouvertes.fr

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de
soutenance et mis à disposition de l'ensemble de la
communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l'auteur. Ceci
implique une obligation de citation et de référencement lors de
l’utilisation de ce document.

D'autre part, toute contrefaçon, plagiat, reproduction illicite
encourt une poursuite pénale.

Contact : ddoc-theses-contact@univ-lorraine.fr

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4
Code de la Propriété Intellectuelle. articles L 335.2- L 335.10
http://www.cfcopies.com/V2/leg/leg_droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

École doctorale IAEM Lorraine

Neural-Symbolic Learning for Semantic

Parsing

THÈSE

présentée et soutenue publiquement le

pour l’obtention du

Doctorat de l’Université de Lorraine

(Mention Informatique)

par

Chunyang Xiao

Composition du jury

Rapporteurs : Anette Frank Professeur, Heidelberg University, Germany

Mark Steedman Professeur, University of Edinburgh, UK

Examinateurs : Jonathan Berant Professeur Assistant, Tel-Aviv University, Israël

Miguel Couceiro Professeur, LORIA, Nancy, France

Invités : Katja Filippova Chercheur, Google, Zurich, Switzerland

Eric Gaussier Professeur, Laboratoire d’Informatique de Grenoble, France

Directrice de thèse : Claire Gardent Directrice de Recherches CNRS, LORIA, Nancy, France

CoDirecteur de thèse : Marc Dymetman Chercheur, Naver Labs Europe, Grenoble, France

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

Acknowledgements

i

Résumé

Notre but dans cette thèse est de construire un système qui réponde à une question en

langue naturelle (NL) en représentant sa sémantique comme une forme logique (LF) et

ensuite en calculant une réponse en exécutant cette LF sur une base de connaissances. La

partie centrale d'un tel système est l'analyseur sémantique qui transforme les questions en

formes logiques.

Notre objectif est de construire des analyseurs sémantiques performants en apprenant à

partir de paires (NL, LF). Nous proposons de combiner des réseaux neuronaux récurrents

(RNN) avec des connaissances préalables symboliques exprimées à travers des grammaires

hors-contexte (CFGs) et des automates. En intégrant des CFGs contrôlant la validité des

LFs dans les processus d'apprentissage et d'inférence des RNNs, nous garantissons que les

formes logiques générées sont bien formées; en intégrant, par le biais d'automates pondérés,

des connaissances préalables sur la présence de certaines entités dans la LF, nous améliorons

encore la performance de nos modèles. Expérimentalement, nous montrons que notre ap-

proche permet d'obtenir de meilleures performances que les analyseurs sémantiques qui

n'utilisent pas de réseaux neuronaux, ainsi que les analyseurs à base de RNNs qui ne sont

pas informés par de telles connaissances préalables.

Abstract

Our goal in this thesis is to build a system that answers a natural language question

(NL) by representing its semantics as a logical form (LF) and then computing the answer

by executing the LF over a knowledge base. The core part of such a system is the semantic

parser that maps questions to logical forms.

Our focus is how to build high-performance semantic parsers by learning from (NL, LF)

pairs. We propose to combine recurrent neural networks (RNNs) with symbolic prior knowl-

edge expressed through context-free grammars (CFGs) and automata. By integrating CFGs

over LFs into the RNN training and inference processes, we guarantee that the generated

logical forms are well-formed; by integrating, through weighted automata, prior knowledge

over the presence of certain entities in the LF, we further enhance the performance of our

models. Experimentally, we show that our approach achieves better performance than pre-

vious semantic parsers not using neural networks as well as RNNs not informed by such

prior knowledge.

Contents

Introduction 1

I Background 7

1 Executable Semantic Parsing Systems 8

1.1 Early Developments . 9

1.2 Machine Learning Approaches 18

1.3 New Challenges . 35

2 Automata and Grammars 51

2.1 Automata and Context-Free Grammars 51

2.2 Intersection between a WCFG and WFSA(s) 54

3 Neural Networks 61

3.1 Multilayer Perceptrons . 61

3.2 Recurrent Neural Networks . 64

3.3 Recurrent Neural Network Variants 69

II Contributions 72

4 Orthogonal Embeddings for the Semantic Parsing of Simple

Queries 73

4.1 Introduction . 73

4.2 The ReVerb Question Answering Task 75

4.3 Embedding model . 75

4.4 Experiments . 78

iv

4.5 Related Work . 79

4.6 Conclusion . 81

5 Neural Semantic Parsing under Grammatical Prior Knowledge 82

5.1 Introduction . 83

5.2 Background on SPO . 84

5.3 Neural Approach Integrating Grammatical Constraints 85

5.4 Experiments . 92

5.5 Related Work and Discussion . 95

5.6 Conclusion . 98

6 Automata as Additional, Modular, Prior Knowledge Sources 99

6.1 Introduction . 100

6.2 Background on Grammars and Automata 102

6.3 Symbolic Background Neural Model 103

6.4 Experiments . 108

6.5 Related Work . 111

6.6 Conclusion . 112

7 Conclusion and Perspectives 113

7.1 Summary . 113

7.2 Perspectives . 114

Bibliography 116

v

Analyse Sémantique avec

Apprentissage Neuro-Symbolique

Le but de l'analyse sémantique est de convertir un texte en langue naturelle (NL) en

une représentation sémantique (MR) qui peut être utilisée ou non dans une tâche en

aval. Selon le contexte applicatif ou formel, il existe de nombreux types de représen-

tations sémantiques.

La Fig. 1 montre quelques exemples de paires (NL, MR) à partir de di�érents jeux

de données existants. En haut à gauche, nous montrons un exemple tiré de [Reddy et

al., 2014] où une phrase de NL est associée à un lambda-terme. Comme l'illustre cet

exemple, de telles MR peuvent être obtenues en analysant les phrases NL avec une

grammaire catégorielle combinatoire (CCG) [Steedman, 1996]. En haut à droite se

trouve un exemple tiré de l'ensemble de données Geoquery [Zelle and Mooney, 1996]

où la sémantique d'une question NL est représenté par une requête Prolog qui peut

être exécutée à partir d'une base de données logique pour obtenir la réponse. En bas à

gauche se trouve un exemple tiré de l'ensemble de données Wikianswers [Fader et al.,

2013] où une question NL est associée à un triplet qui contient à la fois la sémantique

Sentence: What year did minnesota become part of US ?
(minnesota.e become-state-on.r may-11-1858.e)

Sentence: What is the religious celebration of christians ?
(easter.e be-most-important-holiday.r christian.e)

NL: article published in 1950
LF: get[[lambda,s,[filter,s,pubDate,=,1950]],article]

Figure 1: Exemples de paires (NL, MR) avec types de MR.

vi

et la réponse à la question NL. En�n, en bas à droite se trouve un exemple tiré de

l'ensemble de données SPO (Semantic Parsing Overnight) [Wang et al., 2015] où la

MR est une requête complexe exécutable sur la base de connaissances associée (KB).

La recherche sur la construction d'analyseurs sémantiques a une longue histoire.

Par exemple, LUNAR [Woods et al., 1972], un système qui répond aux questions

en langue naturelle sur les roches lunaires a été développé au début des années 70,

parmi beaucoup d'autres systèmes similaires dont on trouvera un survol dans [An-

droutsopoulos, 1995]. Ces systèmes réussissaient à traiter des questions dans leurs

domaines limités, mais comme ils étaient construits sur la base de règles spéci�ées

manuellement, ils étaient di�ciles à appliquer à d'autres domaines.

Pour surmonter les limites des systèmes fondés sur des règles, les chercheurs

ont commencé à étudier des systèmes d'apprentissage qui peuvent être entrainés sur

des exemples, en particulier des paires annotées (NL, LF) [Zelle and Mooney, 1996;

Wong and Mooney, 2006; Kate and Mooney, 2006; Zettlemoyer and Collins, 2005;

Zettlemoyer and Collins, 2007; Kwiatkowski et al., 2013]. Les approches proposées

utilisent souvent des connaissances préalables (ou hypothèses linguistiques plausi-

bles) pour réduire le nombre de candidats LF puis apprennent un classi�cateur (e.g.

modèle log-linéaire, SVM) pour sélectionner ces candidats. Les systèmes développés

ont atteint de bonnes performances sur plusieurs ensembles de données di�ciles à

l'époque, comme Geoquery [Zelle and Mooney, 1996] et ATIS [Dahl et al., 1994].

Dans cette thèse, nous nous concentrons sur un cas spéci�que d'analyse séman-

tique, appelée �analyse sémantique exécutable� dans la littérature [Liang, 2016], qui

correspond à l'analyse de questions NL pour les convertir en requêtes sur une KB.

Dans ce contexte, les représentations sémantiques sont des requêtes KB formelles et

les résultats sont évalués en exécutant ces requêtes sur le KB cible et en comparant

la ou les valeurs renvoyées avec la ou les réponses attendues. La �g. 2 illustre un

tel processus. La phrase �Which university did Obama go to ?� est transformé en la

représentation sémantique Type.University u Education.BarackObama qui,

lorsqu'elle est exécutée sur la KB fournit la réponse �Occidental College, Columbia

University�' .

Nous considérons deux types distincts de requêtes KB, à savoir (i) les requêtes

simples telles que (1a) dont les réponses sont contenues dans une très grande KB tel

que Reverb [Fader et al., 2011] et (ii) les requêtes complexes sur les KBs de petites

et moyennes tailles [Wang et al., 2015] telles que (1b).

(1) a. What is the main language in Hong Kong ?

(cantonese.e, be-major-language-in.r, hong-kong.e)

vii

Figure 2: Exemple de transformation entre une question NL et une requête KB.

b. How many fouls were played by Kobe Bryant in 2004?

count(R(fouls).(player.KobeBryant u season.2004))

Dans le premier cas, la requête est structurellement simple et la sémantique est

un fait qui peut être représenté par un triplet. La di�culté réside dans la corre-

spondance appropriée entre mots NL et symboles KB. Par contre, dans le second

cas, la requête peut être structurellement complexe et comporter un certain degré

de compositionnalité.

Pour les requêtes simples, [Bordes et al., 2014b] propose une approche d'apprentissage

de la représentation qui apprend à la fois des représentations vectorielles de phrases/triplets

KB et une fonction de score entre elles ce qui permet d'obtenir des résultats compéti-

tifs. Nous suivons leur approche mais proposons certaines connaissances préalables

que nous pouvons ajouter pour améliorer la performance. Dans le chapitre 4, nous

montrons ainsi que la performance peut être améliorée en ajoutant un régularisateur

d'orthogonalité qui distingue entre les entités et les relations.

Pour les requêtes plus complexes, à la suite de travaux réalisés par [Sutskever et

al., 2014; Bahdanau et al., 2015] démontrant la capacité des réseaux neuronaux récur-

rents (RNN) en traduction automatique, nous proposons d'adapter les approches

basées sur les RNNs à l'analyse sémantique. En d'autres termes, au lieu de faire

correspondre une phrase à sa traduction, nous proposons d'utiliser les RNNs pour

transformer une requête NL en sa représentation de sémantique (linéarisée). Dans ce

contexte, la principale question de recherche abordée dans cette thèse est la suivante:

viii

Question de recherche 1: Dans quelle mesure les modèles fondés sur

les RNNs peuvent-ils calculer la correspondance entre une requête de NL

et sa MR?

Nous commençons par appliquer un modèle basé sur les RNNs à des requêtes

NL relativement complexes et trouvons qu'il améliore les résultats par rapport à un

système d'analyse sémantique plus traditionnel basé sur des traits [features] dé�nis

manuellement [Wang et al., 2015].

Toutefois, avec une quantité limitée de données, il est possible d'améliorer davan-

tage la performance des modèles RNN en intégrant des connaissances préalables dans

ces modèles. Une question importante lors de l'utilisation des RNNs pour l'analyse

sémantique est qu'ils n'incluent pas de notion explicite de syntaxe et ne garantissent

donc pas la bonne formation des représentations sémantiques obtenues, ni ne four-

nissent un support direct pour la compositionnalité. Autrement dit, les RNNs pour

l'analyse sémantique soulèvent la question de recherche suivante:

Question de recherche 1.1: Comment un modèle de séquence à séquence

peut-il être contraint de respecter la compositionnalité et de garantir la

bonne forme syntaxique des représentations sémantiques produites?

Nous abordons cette question au chapitre 5. Tout d'abord, nous remarquons

que la bonne forme de la MR de sortie peut être assurée par une grammaire connue

a priori. Sur la base de cette grammaire, nous proposons d'utiliser notre modèle

basé sur les RNNs pour prédire les séquences de dérivation (DS) qui correspondent

aux étapes de dérivation par rapport à la grammaire sous-jacente. La prédiction

de DS facilite l'intégration des connaissances grammaticales préalables et garantit

ainsi que la DS produite est toujours bien formée. Nous montrons empiriquement

qu'un modèle basé sur les RNN intégrant ce type de connaissances grammaticales

antérieures permet d'obtenir de meilleures performances que les méthodes RNN de

base qui n'intègrent pas ces connaissances préalables.

Certains analyseurs sémantiques traditionnels (e.g. [Liang et al., 2011; Berant et

al., 2013]) identi�ent les entités nommées en premier et utilisent les entités identi�ées

comme connaissances préalables pour ensuite rechercher la MR tout entière. Nous

examinons comment nous pouvons intégrer des connaissances préalables similaires,

dans notre modèle basé sur les RNNs, qui garantissent la bonne formation des DS

produites:

Question de recherche 1.2: Comment traiter les entités nommées

ix

comme des connaissances préalables supplémentaires dans notre modèle

basé sur les RNNs?

Dans le chapitre 6, nous proposons d'aborder cette question en modélisant la

probabilité que certaines règles correspondant à des entités nommées soient présentes,

à travers l'utilisation d'automates pondérés (WFSA). Ces WFSAs permettent de

fournir un biais à notre analyseur sémantique en favorisant ou désavantageant la

présence de certaines règles lors de la prédiction. L'un des avantages de la modélisa-

tion de ce type de connaissances préalables par les WFSAs est qu'elles peuvent être

combinées e�cacement avec la WCFG que nous utilisons pour assurer la grammati-

calité. Le résultat de la combinaison (qui est encore une WCFG) est utilisé comme

`Background' pour guider les prédictions de la séquence dérivationnelle par le RNN.

Nous montrons empiriquement que cette approche RNN plus Background peut at-

teindre de meilleures performances que notre analyseur sémantique précédent, qui

n'avait pas de connaissances préalables sur les entités nommées.

En conclusion, nous proposons d'utiliser les RNNs pour construire des systèmes

d'analyse sémantique exécutables, comme l'ont aussi proposé d'autres chercheurs [Dong

and Lapata, 2016; Jia and Liang, 2016; Xiao et al., 2016b], et nous observons que

bien que ces modèles puissent être bien adaptés à la tâche d'analyse sémantique,

leurs performances peuvent être encore améliorées en incorporant des connaissances

préalables dans le modèle. Nous proposons ainsi de construire des analyseurs sé-

mantiques "neuro-symboliques" car ces connaissances préalables peuvent souvent

être exprimées de manière appropriée sous certaines formes symboliques à travers

l'utilisation d'automates et de grammaires.

Feuille de route

Nous divisons notre thèse en deux parties. Dans la première partie, nous présen-

tons l'arrière-plan des outils qui seront utiles pour les analyseurs sémantiques que

nous construirons dans les chapitres 5 et 6; cette première partie contient une revue

historique des systèmes d'analyse sémantique et une introduction aux aspects des

réseaux neuronaux et des automates/grammaires qui seront nécessaires plus tard.

Dans la deuxième partie, nous décrivons les contributions principales de la thèse,

à savoir la manière dont nous incorporons les connaissances préalables symboliques

dans des modèles basés sur les réseaux neuronaux a�n d'améliorer leurs performances

pour l'analyse sémantique. Dans ce qui suit, nous résumons les di�érents chapitres.

x

Partie I Arrière-plan

Le chapitre 1 (Systèmes d'analyse sémantique exécutables) donne un aperçu

de ces systèmes. Suivant le développement historique, nous présentations dans ce

chapitre des analyseurs sémantiques classiques basés sur des règles (par exemple,

[Woods et al., 1972]), puis des analyseurs statistiques qui peuvent apprendre à par-

tir de données constituées de paires annotées (NL, LF) (par exemple, [Wong and

Mooney, 2006; Zettlemoyer and Collins, 2005]); puis, nous discutons de quelques

directions de recherche récentes sur les analyseurs sémantiques visant à réduire les

e�orts d'annotation (e.g. [Liang et al., 2011]) et/ou à réduire les e�orts d'ingénierie

en utlisant des modèles plus puissants (e.g. [Bordes et al., 2014a]).

Le chapitre 2 (Réseaux neuronaux) traite de plusieurs architectures de réseaux

neuronaux (i.e. Perceptrons multicouches (MLPs) et RNNs) qui sont largement

utilisées actuellement pour l'apprentissage d'analyseurs sémantiques (e.g. [Dong and

Lapata, 2016; Xiao et al., 2016b]. Ces réseaux sont importants pour nous car il s'agit

de modèles paramétriques expressifs que l'on peut apprendre à partir des données.

Nous utilisons largement ces réseaux neuronaux dans les contributions présentées

aux chapitres 5 et 6.

Chapitre 3 (Automates et grammaires) propose une brève introduction aux

automates et grammaires hors-contexte (CFGs) et à leurs versions pondérées. Nous

discutons également de l'algorithme d'intersection entre un automate pondéré et une

CFG pondérée. Nous utilisons ces objets symboliques pour exprimer des connais-

sances préalables pour des tâches d'analyse sémantique. 1

Partie II Contributions

Le chapitre 4 (Plonglements Orthogonaux pour l'Analyse Sémantique de

Requêtes Simples) discute d'une tâche d'analyse sémantique où pour répondre à

la question, il faut trouver un triplet correct de la forme (e1, r, e2) où e1, e2 sont des

entités et r est une relation. Comme nous l'avons mentionné plus haut, dans cette

tâche, la principale di�culté réside dans l'identi�cation correcte de la transformation

entre les mots NL et les symboles KB. Sur la base des méthodes de plongements

[embeddings] proposées par [Bordes et al., 2014b], nous montrons que l'intégration

des connaissances préalables qui sépare les plongements d'entités et les plongements

de relations, améliore les résultats antérieurs.
1Les algorithmes d'intersection sont utiles lorsque nous combinons les connaissances préalables

de di�érentes sources.

xi

Le chapitre 5 (Analyse Sémantique Neuronale sous Connaissances Gram-

maticales Préalables) se concentre sur l'analyse sémantique de requêtes NL plus

complexes. Nous proposons d'utiliser une architecture basée sur les RNNs pour

apprendre un analyseur sémantique et montrer qu'il est plus performant que les

analyseurs sémantiques basés sur des techniques d'apprentissage plus traditionnelles.

Nous montrons également que les performances peuvent être encore améliorées en

intégrant une CFG a priori sur les LFs. En intégrant cette CFG, nous garantissons

que les LFs produits par notre système sont grammaticalement correctes.

Le chapitre 6 (Automates en tant que Sources de Connaissances Addition-

nelles, Modulaires, A Priori) propose une extension par rapport à l'analyseur

sémantique décrit au Chapitre 5 où nous ajoutons des connaissances préalables sup-

plémentaires sur certaines entités présentes dans la LF, basées sur la NL observée; ces

connaissances préalables sont exprimées à l'aide d'automates qui peuvent être com-

binés e�cacement avec la CFG que nous utilisions précédemment, via l'algorithme

d'intersection dont nous avons parlé au Chapitre 3. Nous montrons que l'analyseur

sémantique étendu de cette façon améliore les performances.

Dans le chapitre 7, nous tirons les conclusions de ce travail et proposons des

perspectives et des indications pour des travaux futurs.

xii

List of Figures

1 Examples of (NL, MR) pairs with types of MR. 1

2 Examples of mapping an NL question to a KB query. 3

1.1 LUNAR question answering system with its main components. . . . 9

1.2 Syntactic Tree produced by LUNAR for the sentence �Chomsky wrote

Syntactic Structures�. 10

1.3 Semantic rule pattern matched for �Chomsky wrote Syntactic Struc-

tures�. 10

1.4 An example of the c-structure and the f-structure in LFG for �Sam

greeted Terry�. 13

1.5 Comparison of CCG and CFG for parsing the sentence �Mary likes

musicals�. 14

1.6 Semantics construction for the sentence �Mary likes musicals�. 15

1.7 Annotations for the sentence �When do the �ights that leave from

Boston arrive in Atlanta�. 16

1.8 Examples of (NL,LF) in the Geoquery dataset. 19

1.9 Examples of (NL,LF) in the ATIS dataset. 20

1.10 Examples of (NL,LF) in the Robocup dataset. 21

1.11 An SCFG example which can generate synchronously the NL part `if

our player 4 has the ball' and the LF part bowner our 4. 22

1.12 Output rule generalizing on two NL strings with the same LF produc-

tion (penalty-area TEAM). 23

1.13 A derivation tree that correctly parses the NL. 25

1.14 An example of alignment between words and CFG rules in [Wong and

Mooney, 2006]. 26

1.15 An example of alignment between words and CFG rules in [Wong

and Mooney, 2006] where no rule can be extracted for REGION →
penalty-area TEAM. 27

xiii

1.16 All the CCG rules used in [Zettlemoyer and Collins, 2005]. 29

1.17 ATIS annotated with concept sequences. 31

1.18 An example of a derivation tree for the sentence `Where was Obama

born' using a �exible grammar; the derivation steps are each labeled

with the type of rule (in blue) and the logical form (in red). 38

1.19 An example where the binary predicate `Education' is generated on

the �y while obeying type constraints (i.e `bridging'). 40

1.20 The annotation process proposed by [Wang et al., 2015]. 42

1.21 Steps involved in converting a natural language sentence to a Freebase

grounded query graph [Reddy et al., 2014]. 43

1.22 CCG derivation containing both syntactic and semantic construction. 44

1.23 Illustration of the subgraph embedding model scoring a candidate an-

swer [Bordes et al., 2014a]. 46

1.24 The Freebase graph representation for the question `Who �rst voiced

Meg on Family Guy?'. 48

1.25 The subgraph search procedure for mapping a natural language ques-

tion into a KB subgraph in [Yih et al., 2015]. 49

1.26 The convolutional neural networks (CNN) used to score the match

between the question and the core chain (a sequence of predicates). . 50

2.1 Some examples of semirings. 52

2.2 A WFSA example with weight δ � 1. 52

2.3 The derivation tree producing the string (id+id)*id. 54

2.4 The bottom up procedure of the intersection algorithm. Inputs are

WCFG G = (V,Σ, R, S, µ) and WFSA M = (Q,Σ, δ, i, f, ν). 58

3.1 RNN computational graph that maps an input sequence x to a cor-

responding sequence of output o values. L stands for the loss compu-

tation, which computes ŷ = softmax(o) before comparing this with

target y. The RNN has input-to-hidden connections parametrized by a

weight matrix U , hidden-to-hidden recurrent connections parametrized

by a weight matrixW , and hidden-to-output connections parametrized

by a weight matrix V . On the left we draw the RNN with recurrent

connections that we unfold on the right. Figure taken from [Goodfel-

low et al., 2016]. 66

3.2 An RNN that generates a distribution over sequences Y conditioned

on a �xed-length vector input c. Figure taken from [Goodfellow et al.,

2016]. 67

xiv

4.1 Some examples for which our system di�ers from [Bordes et al., 2014b].

Gold standard answer triples are marked in bold. 80

5.1 Example of natural language utterance (NL) from the SPO dataset

and associated representations considered in this work. CF: canonical

form, LF: logical form, DT: derivation tree, DS: derivation sequence. 83

5.2 Some general rules (top) and domain-speci�c rules (bottom) in DCG

format. 85

5.3 A derivation tree. Its leftmost derivation sequence is [s0, np0, np1,

typenp0, cp0, relnp0, entitynp0]. 86

5.4 Projection of the derivation tree nodes into (i) a canonical form and

(ii) a logical form. 86

5.5 Our neural network model which is shared between all the systems

where we illustrate its use for CFP. An MLP encodes the sentence

in unigrams and bigrams and produces ub. An LSTM encodes the

pre�x of the predicted sequence generating ul,t for each step t. The

two representations are then fed into a �nal MLP to predict the next

choice of the target sequence. 90

5.6 Neural network architecture of [Dong and Lapata, 2016] for predicting

LFs. 97

6.1 Some general rules (top) and domain-speci�c rules (bottom) of the

Overnight in DCG format. 102

6.2 Three WFSA's for handling di�erent types of prior information. Edge

labels are written in the form symbol : weight. The initial state is 0.

Final states are indicated by a double circle and their exit weight is

also indicated. 105

xv

List of Tables

1.1 Results on the Geoquery dataset for systems learning to predict a

Prolog query. 33

1.2 Results on the Geoquery dataset for systems learn to predict a FunQL

query. 34

1.3 Results on ATIS dataset, note that the results of [Zettlemoyer and

Collins, 2007] is tested only on the Nov93 dataset while other systems

are tested both on the Nov93 and the Dec94 dataset. 34

4.1 Experimental results on toy example. 79

4.2 Performance for re-ranking question answer pairs of test set for di�er-

ent systems on Wikianswers . 79

5.1 Characteristics of di�erent target sequences. 90

5.2 Test results over di�erent domains on SPO dataset. The numbers

reported correspond to the proportion of cases in which the pre-

dicted LF is interpretable against the KB and returns the correct

answer. LFP = Logical Form Prediction, CFP = Canonical Form

Prediction, DSP = Derivation Sequence Prediction, DSP-C = Deriva-

tion Sequence constrained using grammatical knowledge, DSP-CL =

Derivation Sequence using a loss function constrained by grammatical

knowledge. 93

5.3 Grammatical error rate of di�erent systems on test. 94

xvi

6.1 Test results over all the domains on Overnight+. The numbers re-

ported correspond to the proportion of cases in which the predicted

LF is interpretable against the KB and returns the correct answer.

DSP-CL is the model introduced in chapter 5 that guarantees the

grammaticality of the produced DS. BDSP-CL is our model integrat-

ing various factors (e.g WCFG, WFSA) into the background. SPO

(no-lex) is a feature-based system [Wang et al., 2015] where we desac-

tivate alignment features. SPO* is the full feature-based system but

with unrealistic alignment features (explained in subsection 6.4.3) and

thus should be seen as an upper bound of full SPO performance. . . 110

6.2 Some prediction examples of BDSP-CL, DSP-CL and SPO (no-lex).

For readability, instead of showing the predicted LF, we show the

equivalent CF. Correct predictions are noted in italics. 110

6.3 Average KL-divergence to the uniform distribution when models pre-

dict rules corresponding to named entities. 111

xvii

Introduction

The aim of semantic parsing is to convert Natural Language (NL) into a meaning

representation (MR) which may or not be used in a downstream task. Depending

on the applicative or formal context, there are many di�erent types of meaning

representations.

Fig. 1 shows some examples of (NL, MR) pairs from di�erent existing datasets.

On the top left is an example taken from [Reddy et al., 2014] where an NL sentence is

mapped to a lambda term. As shown in this example, such MRs can be obtained by

parsing NL sentences with a combinatorial categorical grammar (CCG) [Steedman,

1996]. On the top right is an example taken from the Geoquery dataset [Zelle and

Mooney, 1996] where the meaning of an NL question is represented by a Prolog

query which can be executed against a Prolog database to obtain the answer. On

the bottom left is an example from the Wikianswers dataset [Fader et al., 2013] where

an NL question is associated with a single triple that contains both the meaning and

the answer to the NL question. Finally, on the bottom right is an example from the

Semantic Parsing Overnight (SPO) dataset [Wang et al., 2015] where the MR is a

complex query executable against the associated knowledge base (KB).

Sentence: What year did minnesota become part of US ?
(minnesota.e become-state-on.r may-11-1858.e)

Sentence: What is the religious celebration of christians ?
(easter.e be-most-important-holiday.r christian.e)

NL: article published in 1950
LF: get[[lambda,s,[filter,s,pubDate,=,1950]],article]

Figure 1: Examples of (NL, MR) pairs with types of MR.

1

Research on building semantic parsers has a long history. For example, LU-

NAR [Woods et al., 1972], a system that answers natural language questions about

moon rocks was developped in the early 70's amongst many other similar systems

for which a review can be found in [Androutsopoulos, 1995]. Those systems are suc-

cessful at handling questions within their limited domains, however, as the systems

were built on manually speci�ed rules, they were di�cult to apply to other domains.

To overcome the limitations of rule-based systems, researchers started to investi-

gate machine learning systems that can learn from examples such as annotated (NL,

LF) pairs [Zelle and Mooney, 1996; Wong and Mooney, 2006; Kate and Mooney, 2006;

Zettlemoyer and Collins, 2005; Zettlemoyer and Collins, 2007; Kwiatkowski et al.,

2013]. The approaches proposed �rst use prior knowledge (or linguistic plausible

hypotheses) to reduce the number of LF candidates and then learn a classi�er (e.g

log-linear model, SVM) over those candidates. The systems developped achieved

good performance on several challenging datasets at the time such as Geoquery [Zelle

and Mooney, 1996] and ATIS [Dahl et al., 1994].

In this thesis, we focus on a speci�c case of semantic parsing dubbed �executable

semantic parsing� in the literature [Liang, 2016], which is the parsing of NL questions

into KB queries. In that setting, meaning representations are formal KB queries and

results are evaluated by executing these queries on the target KB and comparing the

returned value(s) with the expected answer(s). Figure 2 illustrates such a process.

The sentence �Which college did Obama go to?� is mapped to the meaning represen-

tation Type.University u Education.BarackObama which, when executed on

the KB yields the answer �Occidental College, Columbia University�.

We consider two distinct types of KB queries namely, (i) simple queries such as

(2a) whose answers are contained in a very large KB such as Reverb [Fader et al.,

2011] and (ii) complex NL queries on small to medium size KBs [Wang et al., 2015]

such as (2b).

(2) a. What is the main language in Hong Kong ?

(cantonese.e, be-major-language-in.r, hong-kong.e)

b. How many fouls were played by Kobe Bryant in 2004?

count(R(fouls).(player.KobeBryant u season.2004))

In the �rst case, the query is structurally simple and the semantics is a fact which

can be represented by a single triple. The di�culty resides in appropriately mapping

NL words to KB symbols. In the second case, the query can be structurally complex

involving a fair amount of compositionality.

2

Figure 2: Examples of mapping an NL question to a KB query.

For simple queries, [Bordes et al., 2014b] propose a representation learning ap-

proach that learns both vectorial representations of sentences/KB triples and a scor-

ing function between them, which achieves competitive results. We follow their

approach and consider the prior knowledge we can add to further improve the per-

formance. In Chapter 4, we show that the performance can be improved by adding

an orthogonality regularizer that distinguishes KB entities from relations.

For the more complex queries, following work by [Sutskever et al., 2014; Bah-

danau et al., 2015] demonstrating the ability of recurrent neural networks (RNNs) to

translate sentences, we propose to adapt RNN-based approaches to semantic parsing.

That is, instead of mapping a sentence to its translation, we propose to use RNNs

to map an NL query to its (linearized) meaning representation. In this context, the

main research question addressed in this thesis is the following:

Research Question 1: To what extent can RNN-based models capture

the mapping between an NL query and its MR?

We start by applying an RNN-based model to fairly complex NL queries and

�nd that it can improve over a more traditional semantic parsing system based on

handcrafted features [Wang et al., 2015].

However, with limited amount of data, the performance of RNN models can be

further enhanced by incorporating prior knowledge into RNNs. An important issue

when using RNNs for semantic parsing is that they do not include any explicit notion

of syntax and therefore neither guarantee the well-formedness of the output meaning

3

representations nor provide clear support for compositionality. In other words, RNNs

for semantic parsing raise the following research question:

Research Question 1.1: How can a sequence-to-sequence model be

constrained to support compositionality and guarantee the syntactic well-

formedness of the output meaning representations ?

We address this issue in Chapter 5. First we note that the well-formedness of

the output MR is ensured by a grammar which is known a priori. Based on this

grammar, we propose to use our RNN-based model to predict derivation sequences

(DS) that are derivation steps relative to the underlying grammar. Predicting DS

eases the task of integrating grammatical prior knowledge thus guarantees that the

produced DS is always grammatically correct. We show empirically that an RNN-

based model integrating grammatical prior knowledge achieves better performance

than various RNN baselines that do not integrate this prior knowledge.

Some traditional semantic parsers (e.g. [Liang et al., 2011; Berant et al., 2013])

often identify named entities �rst and use identi�ed entities as prior knowledge to

then search for the whole MR. We examine how we can additionally integrate similar

prior knowledge into our RNN-based model that guarantees the well-formedness of

produced DS:

Research Question 1.2: How can named entities be handled as addi-

tional prior knowledge by our RNN-based model ?

In Chapter 6, we propose to address this issue by modeling the probability of

certain rules corresponding to named entities being present, using weighted au-

tomata (WFSAs). These WFSAs can provide a bias to our semantic parser by

favoring/disfavoring the presence of certain rules during DS prediction. An advan-

tage of modelling this kind of prior knowledge by WFSAs is that they can be com-

bined e�ciently with a WCFG that we use to ensure grammaticality. The result of

the combination (which is still a WCFG) is used as `Background' to guide RNN DS

predictions. We empirically show that our Background RNN approach can achieve

better performance than our previous semantic parser that did not have the prior

knowledge over named entities.

In conclusion, we propose to use RNNs to build executable semantic parsing

systems, along with other researchers [Dong and Lapata, 2016; Jia and Liang, 2016;

Xiao et al., 2016b] and see that although these models can be well adapted for the

4

semantic parsing task, their performance can be further enhanced by incorporating

prior knowledge into the model. In this thesis, we focus on prior knowledge of

various sources that can be combined with RNN models; we propose to build `neural-

symbolic' semantic parsers as we often �nd that our prior knowledge can be expressed

appropriately in some symbolic forms by using automata and grammars.

Roadmap

We divide our thesis into two parts. In the �rst part, we introduce some background

information that will be useful for the semantic parsers that we build in Chapter 5

and 6; the background part contains a historical review of semantic parsing systems

and an introduction to aspects of neural networks and of automata/grammars that

are needed later. In the second part, we describe the contributions of the thesis

concerning how we incorporate symbolic prior knowledge into neural-network based

models to enhance their performance for semantic parsing. In what follows, we

summarize the di�erent chapters.

Part I Background

Chapter 1 (Executable Semantic Parsing Systems) gives a review of these

systems. Following the historical timeline, we discuss in this chapter rule-based

semantic parsers (e.g. [Woods et al., 1972]), then statistical ones that can learn

from data consisting of annotated (NL, LF) pairs (e.g. [Wong and Mooney, 2006;

Zettlemoyer and Collins, 2005]); then, we discuss some current research directions

on semantic parsers aiming at reducing annotation e�orts (e.g. [Liang et al., 2011])

and/or reducing engineering e�orts by using more powerful learning machines (e.g.

[Bordes et al., 2014a]).

Chapter 2 (Neural Networks) discusses several neural network architectures

(i.e. Multilayer Perceptrons (MLPs) and RNNs) that are widely used for learning

semantic parsers these days (e.g. [Dong and Lapata, 2016; Xiao et al., 2016b]).

These networks are important for us as they are expressive parametric models that

can be learned from data. We largely use these neural networks in the contributions

presented in Chapters 5 and 6.

Chapter 3 (Automata and Grammars) gives a brief introduction to automata

and context-free grammars (CFGs) and their weighted versions. We also discuss the

5

intersection algorithm between a weighted automaton and a weighted CFG. We use

those symbolic objects to express prior knowledge for semantic parsing tasks.2

Part II Contributions

Chapter 4 (Orthogonal Embeddings for the Semantic Parsing of Simple

Queries) discusses a semantic parsing task where to answer the question, one has

to �nd a correct triple of the form (e1, r, e2) where e1, e2 are entities and r is a relation.

As mentioned above, in that task, the main di�culty resides in correctly identifying

the mapping between NL tokens and KB symbols. Based on the embedding methods

proposed by [Bordes et al., 2014b], we show that integrating prior knowledge which

separates entity embeddings and relation embeddings, improves over previous results.

The content of this chapter is reported in [Xiao et al., 2016a].

Chapter 5 (Neural Semantic Parsing under Grammatical Prior Knowl-

edge) focuses on the semantic parsing of more complex NL queries. We propose

to use an RNN-based architecture to learn a semantic parser and show that it can

perform better than semantic parsers based on more traditional learning machines.

We also show that its performance can be further enhanced by integrating the CFG

known a priori over LFs. By integrating this CFG, we guarantee that the LFs

produced by our system are grammatically correct. The content of this chapter is

reported in [Xiao et al., 2016b].

Chapter 6 (Automata as Additional, Modular, Prior Knowledge Sources)

proposes an extension over the semantic parser described in Chapter 5 where we add

additional prior knowledge about certain entities being present in the corresponding

LF based on the observed NL; the prior knowledge is expressed using automata that

can be combined e�ciently with the CFG that we used previously, via the inter-

section algorithm we discussed in Chapter 3. We show that the extended semantic

parser improves in performance. The content of this chapter is reported in [Xiao et

al., 2017].

In Chapter 7 we draw conclusions and give perspectives and pointers for future

work.

2Intersection algorithms are useful when we combine the prior knowledge of di�erent sources.

6

Part I

Background

7

Chapter 1

Executable Semantic Parsing

Systems

Contents

1.1 Early Developments 9

1.1.1 LUNAR . 9

1.1.2 Grammar formalisms dealing with both syntax and

semantics . 12

1.1.3 Early executable semantic parsing systems learned from

Data . 15

1.2 Machine Learning Approaches 18

1.2.1 Datasets . 18

1.2.2 Semantic Parsing systems with linguistic hypothesis

about NL . 21

1.2.2.1 SCFG based approaches 22

1.2.2.2 CCG based approaches 28

1.3 New Challenges . 35

1.3.1 Reduce annotation e�orts 35

1.3.1.1 Learning with QA pairs 35

1.3.1.2 Smart Annotations 41

1.3.1.3 Using Free Texts 42

1.3.2 Reduce engineering e�orts 45

1.3.2.1 Matching answer subgraphs 46

1.3.2.2 Matching sentence semantic subgraphs 48

8

1.1. Early Developments

Figure 1.1: LUNAR question answering system with its main components.

1.1 Early Developments

The history of executable semantic parsing systems is rich and a survey of the early

systems can be found in [Androutsopoulos, 1995]. In this section, we brie�y review

one speci�c, probably the best known, early executable semantic parsing system,

namely LUNAR [Woods et al., 1972]. LUNAR is a prototype which allows English

language access to a large database of lunar sample information. The system is rule-

based and is one of the earliest systems designed to handle natural language queries

formulated by real users. LUNAR will also serve as a motivating example for us

in this section to discuss two important developments around executable semantic

parsing systems, namely powerful grammar formalisms that can take into account

syntax and semantics at the same time and executable semantic parsing systems that

can be learned from data.

1.1.1 LUNAR

To answer a natural language query (NL) formulated by a user, LUNAR proposes

a design consisting of three components. The �rst component (PARSER) syntacti-

cally analyses the input query NL and assigns it a parse tree. The second compo-

nent (SEMANTIC INTERPRETER) uses this parse tree to produce the LF which

is the semantic interpretation of the input utterance.3 The third component (RE-

TRIEVAL COMPONENT) directly executes the LF output from the SEMANTIC

INTERPRETER, similar to the process where an SQL query (or other query lan-

3While the SEMANTIC INTERPRETER is dependent on the KB and its speci�ed query lan-
guage, the PARSER is more domain independent and can hopefully be easily adapted to other
executable semantic parsing tasks.

9

1.1. Early Developments

Figure 1.2: Syntactic Tree produced by LUNAR for the sentence �Chomsky wrote Syntactic
Structures�.

Figure 1.3: Semantic rule pattern matched for �Chomsky wrote Syntactic Structures�.

guages such as SPARQL etc.) is executed over an SQL database, then return the

execution results to the user.

Fig. 1.1 shows the major components of LUNAR. As the design of RETRIEVAL

COMPONENT is more related to research �elds such as database and query language

while we focus on semantic parsing in this thesis, in the following, we only describe the

process of mapping NL to LF and do not discuss the RETRIEVAL COMPONENT

further.

We will use the sentence �Chomsky wrote Syntactic Structures� as an illustration

and show how LUNAR deals with this example to parse this sentence into a logical

form (LF).

When receiving the input sentence, LUNAR will �rst call a syntactic parser

(PARSER) which analyses the sentence using a phrase structure grammar and pro-

duces the phrase structure tree shown in Fig. 1.2. Note that the terminals are

numbered according to the convention de�ned in LUNAR. This parse tree will be

passed to the next component to produce the LF.

The SEMANTIC INTERPRETER relies on semantic rules to extract the LF

from the parse tree. Semantic rules consist of rules whose left-hand side (LHS)

is a template composed of elements in the parse tree involving both terminals and

nonterminals and whose right-hand side (RHS) is the semantic interpretation of such

10

1.1. Early Developments

templates. For example, consider the rule in Fig. 1.3.

On its LHS, the rule speci�es a template consisting of a tree fragment plus addi-

tional semantic conditions on the numbered nodes of the fragment. More precisely,

the above LHS has two components: the �rst component is an NP nonterminal and

the second component is a V-OBJ nonterminal; the �rst component needs to in

addition satisfy the semantic condition (MEM 1 PERSON) stating that the node

numbered 1 should be a person (MEM ... PERSON) and similar conditions exist for

the second component. Thus, the LHS indicates that if the sentence has a subject

which is a person, a verb �write�,4 and an object of �write� which is a document

then the template matches the string and will produce the semantic interpretation

speci�ed on the RHS.

The semantic interpretation speci�ed by the RHS of this rule is (PRED (AU-

THOR: (# 2 2) (# 1 1)) which is a predicate AUTHOR with two arguments. The

RHS indicates that the meaning of the sentence is computed by substituting the

interpretations of the node number 1 (# 1 1) in the �rst component (# 1 1, which is

the NP component in our example) and the node number 2 in the second component

(# 2 2) into the indicated argument places.

This rule can be used to give a semantic interpretation for our sentence �Chom-

sky wrote Syntactic Structures�. The LHS of our semantic rule matches the parse

tree as the sentence veri�es both syntactical and semantic conditions. Then the se-

mantic interpretation is constructed by substituting the �rst argument of predicate

AUTHOR by �Syntactic Structures� and the second argument by �Chomsky� and we

obtain the semantics PRED (AUTHOR: (Syntactic Structures) (Chomsky)).

Limits of the system Despite the success and achievements of LUNAR, the

system has several drawbacks.

First, the system is not robust in several aspects. The system is based on a

limited vocabulary (3500 words) and cannot deal with words out of this vocabulary.

In particular, the system cannot deal with spelling errors. The system will fail on

ungrammatical sentences as the very �rst component PARSER will fail.

Secondly, the engineering e�ort required to make such a system work in practice

is considerable. In the LUNAR technical report [Woods et al., 1972], the authors

describe in detail the grammatical rules (for PARSER) and semantic rules (for SE-

MANTIC INTERPRETER) used in the system. The writing merely of these rules

takes more than 100 pages in the report (grammatical rules in pages 159-214 and se-

4In practice, a morphological analyzer is used so that the rule recognizes the verb �write� as well
as its variants such as �writes�, �wrote�, etc.

11

1.1. Early Developments

mantic rules in pages 217-263) with semantic rules not transferable to other domains.

Discussion

• LUNAR calculates the semantics of a sentence in two steps: parse syntacti-

cally the sentence (PARSER) and then produce the semantics based on the syn-

tax tree (SEMANTIC INTERPRETER). The SEMANTIC INTERPRETER is

domain-speci�c and only the PARSER can be used to adapt to other domains.

One may hope for a general grammar formalism that is able to produce both

syntax and semantics that are not domain speci�c. Several research directions

have been raised (which we will discuss in subsection 1.1.2) with progress being

made in the later research for building executable semantic parsing systems.

• With the rise of machine learning, one may hope to avoid writing rules and

let a machine learn the mappings (under or not under the forms of rules)

between NL and LF using training data consisting of pairs (NL,LF). This

new paradigm not only opens doors for a signi�cant reduction of engineering

e�ort, but also improves robustness because problems such as spelling errors

or ungrammatical sentences will be seen in training and the model will learn

to deal with these aspects. In subsection 1.1.3 we review some early attempts

trying to incorporate machine learning for building executable semantic parsing

systems.

Remarks To reduce engineering e�ort to build executable semantic parsing systems,

researchers in the 70s and the 80s proposed to focus on controlled languages [Hendrix

et al., 1978; Warren and Pereira, 1982]. As this is not the focus of the thesis, we

refer interested readers to the above references.

1.1.2 Grammar formalisms dealing with both syntax and semantics

Many grammar formalisms such as LFG (Lexical Functional Grammar) [Dalrymple,

2001], CCG (Combinatorial Categorical Grammar) [Steedman, 1996], UCG (Uni-

�cation Categorical Grammar) [Calder et al., 1988], HPSG (Head-driven Phrase

Structure Grammar) [Pollard and Ivan A., 1994], and TAG (Tree Adjoining Gram-

mar) [Joshi and Vijay-Shanker, 2001] have been proposed so that both syntax and

semantics can be analyzed simultaneously. We will give examples on LFG and CCG

as illustrations.

LFG assumes two syntactic representation levels. Constituent structure (c-structure)

encodes the sentence into a phrase structure tree and Functional structure (f-structure)

12

1.1. Early Developments

Figure 1.4: An example of the c-structure and the f-structure in LFG for �Sam greeted
Terry�.

encodes the syntactic predicate argument structure of the sentence. LFG uses the

following type of syntactic rules to produce the c-structure and f-structure:

S→ NP((↑ SUBJ) =↓) VP(↑=↓)
VP→ V(↑=↓) NP((↑ OBJ) =↓)

These rules indicate the c-structure as in a CFG. For example, the nonterminal S

expands to two nonterminals NP, VP.

The rules also indicate the f-structure by the content in the parenthesis. For

example, the rule expanding S (noted by the metavariable ↑ on the NP node) says

that S has a SUBJ attribute whose value is the f-structure for the NP daughter

(noted by the metavariable ↓ on the NP node) , and that the S node corresponds

to an f-structure which is the same as (i.e �uni�ed� with) the f-structure for the VP

daughter. A similar rule involving c-structure and f-structure also exists for VP.

Fig. 1.4 shows an example of the resulting c-structure and f-structure after ap-

plying these rules to the sentence �Sam greeted Terry�. The c-structure is a typical

derivation tree and the f-structure is encoded in key-value pairs.

[Dalrymple, 2001] proposes to use semantic rules to further construct the seman-

tics of the whole sentence based on the f-structure of the sentence. For instance,

a rule on predicate greet indicating that if the subject means X and the object

means Y , then the sentence means greet(X,Y) allows us to construct the semantics

greet(Sam, Terry) for the sentence �Sam greeted Terry�.

CCG [Steedman, 1996] is a popular grammar formalism inside categorical gram-

mar where elements like verbs are associated with a syntactic �category� which iden-

ti�es them as functions, and speci�es the type and directionality of their arguments

and the type of their result. For example, a transitive verb is a function from an

(object) NP into a predicate � that is, into a function from (subject) an NP into

13

1.1. Early Developments

Figure 1.5: Comparison of CCG and CFG for parsing the sentence �Mary likes musicals�.

an S:

likes := (S\NP)/NP

CCG uses the �result leftmost� notation in which a rightward-combining functor over

a domain β into a range α is written α/β, while the corresponding leftward combining

functor is written α\β. α and β may themselves be function categories:

• Forward Application (>): X/Y Y ⇒ X

• Backward Application (<): Y X\Y ⇒ X

Fig. 1.5 shows how CCG uses these types of rules to parse the sentence and compares

the CCG parsing procedure with classic CFG ones. Note that the major burden of

specifying particular grammars is transferred from phrase structure rules to lexical

rules.

CCG categories can be regarded as encoding semantic types, making it possible

to combine words to form the semantic interpretation of the sentence. For example,

we can specify the semantic translation of the verb `likes' as:

likes := (S\NP3s)/NP : like′

where like′ is the semantics5. We also specify the Forward/Backward functional

application on top of our category application:

• Forward Application (>): X/Y : f Y : a ⇒ X : fa

• Backward Application (<): Y : a X\Y : f ⇒ X : fa

Applying these rules on the sentence `Mary likes musicals' yields the semantics

like′musicals′mary′ as shown in Fig. 1.6.

As we shall see in the later chapters, these grammar formalisms, notably CCG

have played important roles in the development of executable semantic parsing sys-

tems [Zettlemoyer and Collins, 2005; Reddy et al., 2014]. Using those formalisms,

53s in the CCG rule is a feature standing for third person singular.

14

1.1. Early Developments

Figure 1.6: Semantics construction for the sentence �Mary likes musicals�.

generic LFs that are close to the input sentence can be �rst produced, before being

further translated into speci�c query languages to be executed over the knowledge

base [Reddy et al., 2014].

1.1.3 Early executable semantic parsing systems learned from Data

[Miller et al., 1996; Schwartz et al., 1996] are amongst the earliest approaches learn-

ing executable semantic parsing systems from data. Similar to LUNAR, [Miller et

al., 1996; Schwartz et al., 1996] propose an architecture relying on the CFG-like

syntactic tree to map NLs to LFs. The di�erences with LUNAR are two folds: the

models [Miller et al., 1996; Schwartz et al., 1996] try to generate the syntactic trees

directly labelled with semantic classes thus avoiding the two components design and

they are directly learned from data.

To train their model, the authors use the ATIS corpus. ATIS is a dataset that con-

tains air travel information such as �ight departure/arrival cities, departure/arrival

time, etc. In this corpus, each NL is paired with an LF written in frames. For exam-

ple, the sentence in Fig. 1.7 will be paired with the LF (Frame: TOLOC.TIME Slots:

(FROMLOC.CITY: BOSTON, TOLOC.CITY=Atlanta)) where Frame denotes the

required information and Slots list the constraints. A more detailed description of

the ATIS dataset can be found in 1.2.1 inside this thesis.

The authors propose to enrich the initial ATIS dataset with syntactic trees whose

nodes are also annotated with semantic classes. More precisely, each sentence is

associated with a syntactic tree whose nodes are labelled with both a syntactic and

sometimes a semantic class.6 Fig. 1.7 illustrates this annotation. For example, the

word `when' has the semantics `time' and has the syntactic structure `wh-head'; the

vp node just below the /wh-question root is associated with the semantics `arrival',

etc.

Note that at test time, if one succeeds in producing such a semantic/syntactic

tree, it may be easier in the following to convert the semantic information in the

6Because not every word carries semantics (e.g. 'do', 'the' in the sentence of Fig. 1.7), one can
note in the �gure that every node is associated with a syntactic class but not always with a semantic
one.

15

1.1. Early Developments

When thedo flights that leave from Boston arrive in Atlanta

time

/wh-head /det/aux

flight

/np-head /comp

departure

/vp-head

departure

/prep

city

/npr

arrival

/vp-head

location

/prep

city

/npr

departure

/pp

location

/pp

flight

/corenp

departure

/vp

flight-constraints

/rel-clause

flight

/np

arrival

/vp

/wh-question

Figure 1.7: Annotations for the sentence �When do the �ights that leave from Boston
arrive in Atlanta�.

tree to LFs written in frames if necessary. Either one can conceive a system using

rules: for example, from the tree in Fig. 1.7, it is trivial to extract the Slots in-

dicating the departure and arrival cities; the Frame can be further deduced as the

/wh-question is associated with both 'arrival' and 'time' semantics; or one can use

some probabilistic modelling when the semantics in the tree presents ambiguity. In

either cases, the produced semantic/syntactic tree is directly useful for producing

required LFs: semantic labels identify the basic units of meaning, while syntactic

structures help identify relationships between those units. Thus, in the following,

we will just focus on the methods proposed by the authors [Miller et al., 1996;

Schwartz et al., 1996] to learn to generate the semantic/syntactic trees.

The authors choose probabilistic models to predict the semantic/syntactic tree;

let W be a sentence and T be a semantic/syntactic parse tree.7 One would like to

estimate P (T |W). According to Bayes rules:

P (T |W) =
P (T)P (W |T)

P (W)

Since P (W) is constant for any given word string, candidate parses T can be ranked

7Here, T denotes a parse tree not containing terminals.

16

1.1. Early Developments

by considering only the product P (T)P (W |T). Both P (T) and P (W |T) are directly

estimated from data using markovian assumptions; the probability P (T) is modeled

by transition probabilities between nodes in the parse tree, and P (W |T) is modeled

by word transition probabilities:

• P (T) takes the form P (noden|noden−1, nodeup) where noden−1 is the node hav-

ing the semantic/syntactic information of the previous preterminal node8 and

nodeup is the node having the semantic/syntactic information of the nontermi-

nal at one level above. For example, P (location/pp) in Fig. 1.7 is conditioned

on arrival/vp − head (i.e noden−1) and arrival/vp (i.e nodeup) according to

the model.

• P (W |T) is modelled by word transition probability P (wordn|wordn−1, pre-

terminal) where wordn−1 is the previous word and preterminal is the syn-

tactic/semantic node directly associated with the word to be generated. For

example, the probability of word `Boston' in Fig. 1.7 is conditioned on `from'

(i.e wordn−1) and city/npr (i.e preterminal) according to the model.

These probabilities can be estimated directly from counts in the data followed by

smoothing techniques to take into account unseen words or nodes.9

The authors [Schwartz et al., 1996] train their model on 4500 utterances of the

ATIS dataset and test it on the ATIS DEC94 dataset [Dahl et al., 1994]. The system

achieves an accuracy of 0.86 on the test data. For the test utterances of Class A

(the sentences whose meanings do not depend on the context), the system achieves

an accuracy of 0.91.10

Discussion Compared to a manually written rule based system such as LUNAR,

these works on executable semantic parsing show promising directions to learn a

semantic parser from annotated data. However, a major issue with the above ap-

proaches is that they require a large amount of e�ort for actually annotating inter-

mediate results (i.e. semantic/syntactic trees). As we shall see, approaches proposed

later try to reduce this annotation e�ort by either treating the parse trees as hidden

variables or by estimating a model directly mapping an NL to the corresponding LF.

8We refer to preterminal nodes the nodes just above the words, which are sometimes called tags
also in the literature.

9We refer readers interested in smoothing techniques to the paper [Miller et al., 1996].
10Note that these scores are produced by evaluating the accuracy over LFs written in frames;

the system evaluated thus contains the parsing model described so far and a model converting the
semantics in the tree to LFs written in frames that we did not describe.

17

1.2. Machine Learning Approaches

1.2 Machine Learning Approaches

In this section, we will discuss some semantic parsing approaches [Kate et al., 2005a;

Kate and Mooney, 2006; Wong and Mooney, 2006; Wong and Mooney, 2007; Zettle-

moyer and Collins, 2007; Zettlemoyer and Collins, 2005] having both machine learn-

ing and grammar aspects. We choose to discuss these approaches in this section

for several reasons. First, they are natural improvements over the early semantic

parsing systems learned from data that we have discussed in subsection 1.1.3 as they

eliminate the needs for intermediate annotations. Secondly, those systems were state

of the art systems tested on existing public datasets where the results can be directly

compared. Finally, the drawbacks that those systems reveal (e.g the rule application

is too strict to take into account many phenomena in natural language questions)

and the questions that we have on those systems (e.g can those systems extend to

much larger domains?) motivate further research on semantic parsing systems which

we will describe in section 1.3.11

Caveat. There is a lot of work around building semantic parsing systems that we

will not discuss here. For example, we will not discuss inductive logic programming

(ILP) approaches [Zelle and Mooney, 1996; Tang and Mooney, 2001] as the proposed

systems learn rules to build deterministic semantic parsers thus do not re�ect the

statistical machine learning aspects we focus on in this thesis12. We will also not

discuss [Papineni et al., 1997] which proposes to use a log-linear model to rank all

logical forms (LFs) given an NL input. While the idea of simply ranking all LFs

is very attractive as we do not need to rely on linguistic assumptions about the

NL, unfortunately, the proposed approach can not generalize to situations where the

number of LFs explode.

1.2.1 Datasets

Datasets play an important role in machine learning approaches. For semantic

parsing, given a dataset consisting of (NL, LF) pairs, the systems �t a model

(parametrized or non-parametrized) on this training data with the objective that

the learned model will perform well on test data by predicting a correct LF for an

unseen NL.
11Another reason is that the works we choose to review in this section are between 2000-2010, so

the section order also �ts the timeline.
12[Kate et al., 2005a] also builds a deterministic semantic parser, however their proposed method

is based on SCFG and lays the ground for papers that later on incorporate statistical machine
learning [Kate and Mooney, 2006; Wong and Mooney, 2006; Wong and Mooney, 2007].

18

1.2. Machine Learning Approaches

Figure 1.8: Examples of (NL,LF) in the Geoquery dataset.

As said in the previous section, datasets can help to alleviate engineering e�orts

to write rules. One can instead try to make the system learn those rules (or other rep-

resentations) so that the system generalizes well on test data. Another advantage of

having datasets is that they are natural benchmarks for comparing di�erent systems.

We can indeed compare two systems learning from the same training data on their

performance on the test data to see which system learns better on the dataset. As the

comparison may generalize to other datasets, it can indicate promising approaches.

As we are interested in executable semantic parsing, a dataset must contain two

things here. First, (NL,LF) pairs based on which the systems can perform learning.

Second, a knowledge base (KB) so that one can execute the LF on the KB. We will

review two such datasets in this section.

Geoquery [Zelle and Mooney, 1996] is a dataset about the US geography. In

its original version, the dataset contains 250 (NL, LF) pairs. Later on [Tang and

Mooney, 2001] extended the dataset to include 880 (NL, LF) pairs with 600 training

pairs and 240 test pairs. We refer by Geoquery to this larger extension which is a pop-

ular benchmark for many executable semantic parsing systems whose performances

can be directly compared [Tang and Mooney, 2001; Zettlemoyer and Collins, 2005;

Wong and Mooney, 2007; Zettlemoyer and Collins, 2007]. The KB accompanying

this dataset contains about 800 Prolog facts providing basic information about the

U.S states, including: population, area, capital city, neighboring states, major cities

etc.

Fig. 1.8 shows some examples (NL, LF) pairs from this dataset. The LFs are

written in Prolog programming languages where strings starting with capital letters

(S,C,P in the two examples) are logical variables. Certain semantic parsing sys-

tems [Kate and Mooney, 2006; Wong and Mooney, 2006] cannot deal with LFs with

logical variables, so to circumvent the problems, some authors propose to rewrite

those LFs into a variable free formalism called FunQL [Kate et al., 2005b] and report

the performance of their semantic parsers based on those LFs.

19

1.2. Machine Learning Approaches

Figure 1.9: Examples of (NL,LF) in the ATIS dataset.

ATIS [Dahl et al., 1994] is a dataset which contains air travel information such

as �ight departure city, destination city, departure time, �ying time, etc. The initial

ATIS dataset [Hirschman et al., 1993] contains �ight information about 11 cities, 9

airports and 765 �ights. Later on, the database was largely expanded to contain

�ight information about 46 cities, 52 airports and 23457 �ights; new annotations

were acquired accompanying the dataset [Dahl et al., 1994].

Inside the ATIS dataset, the logical forms (LFs) are rather `�at' and do not

have much structure. In consequence, while some researchers try to predict the

LFs [Zettlemoyer and Collins, 2007], many other researchers in the community [He

and Young, 2005; Raymond and Riccardi, 2007; Mesnil et al., 2015] learn to map

NLs into LFs that are written in frames that have slots to be �lled and propose to

learn the mapping as a sequence tagging problem. See Fig. 1.9 for an example of

(NL, LF) inside the dataset where LFs are written in frames. Inside each frame, the

Frame indicates the required information (i.e. the �ights in the example) and Slots

list all the constraints concerning the required information.

For studying executable semantic parsing systems, the most popular benchmark

is the ATIS dataset of Class A which contains only the sentences that can be under-

stood (can be translated into LFs) without looking at the context. In the following,

we will refer by ATIS dataset to this subset which contains 4978 (NL, LF) pairs in its

training set. At least two test sets are available called Nov93 and DEC94 containing

448 and 445 sentences respectively. The authors choose to report their system per-

formance on one test set [Zettlemoyer and Collins, 2007] or both test sets [Papineni

et al., 1997; He and Young, 2005; Raymond and Riccardi, 2007].

Contrary to the evaluations in Geoquery, researchers studying the ATIS dataset

compare their systems not by evaluating the precision and recall based on LFs (or

frames in ATIS) but on the precision and the recall for each slot in the test data.

The evaluation based on slots is possible and justi�ed inside the ATIS dataset but

obviously cannot be used for evaluating more complex LFs which cannot be decom-

posed into slots.

Robocup [Kuhlmann et al., 2004] is a dataset about robotic soccer where com-

mands to soccer robots from team coach written in natural language are paired with

20

1.2. Machine Learning Approaches

Figure 1.10: Examples of (NL,LF) in the Robocup dataset.

their formal language representation written in Clang [Chen et al., 2003]. Fig. 1.10

shows an example of a natural language command (noted with NL) paired with its

corresponding Clang LF.

The Robocup dataset is a collection of total 300 such pairs. As the dataset is

rather small, authors using the dataset [Kate et al., 2005a; Kate and Mooney, 2006;

Wong and Mooney, 2006; Wong and Mooney, 2007] report their system performance

on average accuracy during cross validations. This dataset will not be used as bench-

mark inside the thesis. Nevertheless, we introduce it here as several examples illus-

trating semantic parsing systems are taken from the dataset.

1.2.2 Semantic Parsing systems with linguistic hypothesis about

NL

In this subsection, we review SCFG (Synchronous CFG) [Kate et al., 2005a; Kate

and Mooney, 2006; Wong and Mooney, 2006; Wong and Mooney, 2007] and CCG

based approaches [Zettlemoyer and Collins, 2007; Zettlemoyer and Collins, 2005] to

semantic parsing. Like approaches described in subsection 1.1.3, these works also

suppose that the input utterance (NL) can be parsed by a grammar. However, one

di�erence is that grammars used here seem to be more adapted to semantic parsing

tasks as the produced LFs directly take the same form as the target LFs either to be

evaluated or executed.13

For example, [Wong and Mooney, 2006] suppose that a SCFG (synchronous CFG)

generates both NLs and LFs; the same authors later extend SCFG to λ-SCFG [Wong

and Mooney, 2007] so that LFs with binding variables can be handled; [Zettlemoyer

and Collins, 2005; Zettlemoyer and Collins, 2007] suppose that NLs can be parsed

by a certain CCG.

Another important di�erence is that instead of requiring the parse trees to be

annotated like [Miller et al., 1996; Schwartz et al., 1996], the parse trees here are

regarded as hidden; having hidden parse trees makes the learning problem harder

13This is in contrast to the approach discussed in 1.1.3 where the produced semantics has to be
further analyzed.

21

1.2. Machine Learning Approaches

Figure 1.11: An SCFG example which can generate synchronously the NL part `if our
player 4 has the ball' and the LF part bowner our 4.

but allows to signi�cantly reduce annotation e�orts. As a consequence, these meth-

ods can be directly applied to datasets such as Geoquery and ATIS without further

annotations.

1.2.2.1 SCFG based approaches

[Kate et al., 2005a] propose to learn an SCFG to map NLs into LFs. Analogous to

an ordinary CFG, each SCFG rule consists of a single non-terminal on the left-hand

side (LHS). The right-hand side (RHS) of an SCFG rule is a pair of strings (instead

of a single string in CFG) (α, β), where the non-terminals in β are a permutation of

the non-terminals in α. In our context, α is a string for the NL part and β for the

LF part. Fig. 1.11 shows an SCFG example.

Consider the sentence (3a) from the RoboCup dataset [Chen et al., 2003] whose

corresponding logical form (LF) is (3b).

(3) a. If our player 4 has the ball, then our player 6 should stay in the left side of

our half.

b. ((bowner our {4})(do our {6} (pos (left (half our))))).

The SCFG shown in Fig. 1.11 generates both the NL and the LF (if our player 4 has

the ball, bowner our 4) of the conditional part of this example.

In the following, it is assumed that the LFs can always be parsed by a certain

CFG which is known a priori. As this condition holds true for almost all computer

languages, it should hold true also for the LFs as the LFs need to be executed thus

are actually some computer languages. Because this CFG is known a priori, `half'

of the SCFG is known a priori. To illustrate, suppose that the CFG known for LFs

include the LF part of SCFG shown in Fig. 1.11;14 it is as if we have an SCFG

grammar including rules such as

14We will refer to this CFG simply as CFG known a priori in the follwing of this subsubsection.

22

1.2. Machine Learning Approaches

Figure 1.12: Output rule generalizing on two NL strings with the same LF production
(penalty-area TEAM).

(4) a. TEAM → (?, our)

b. CONDITION → (?, bowner TEAM {UNUM})

where ? are the placeholders for the NL part. and one needs only to search for the

NL part in each SCFG rule.

[Kate et al., 2005a] propose to learn the SCFG rules (i.e �ll in the NL part from

'half speci�ed' rules (4a) (4b) etc.) by using a bottom-up rule induction process

which infers general rules from maximally speci�c ones. At initialization, for each

training pair (NL, LF), rules are created where the NL part contains the whole

sentence. For example, given the (NL, LF) pair (3a, 3b) and the CFG known a

priori for LFs, one would create the SCFG rule shown in (5) by �lling the NL part

of the rule (4a) with the whole sentence:

(5) TEAM→ (If our player 4 ... our half, our).

This rule however is too speci�c to be applied for test sentences, so one needs

to generalize those rules. Ideally, we want to induce from the above, very speci�c,

SCFG rule, a rule like TEAM → (our, our) which is much more general. [Kate et

al., 2005a] propose a procedure to generalize rules based on pair of rules with the

same LF production. At each iteration, they sample two rules with the same LF

production out of all the rules constructed so far;15 when receiving the two rules,

they �rst compute the longest common subsequence (with gaps) of the two NL

strings containing also non terminals and regard the subsequence as generalization

candidate. An example of this common subsequence computation is given in Fig. 1.12

where two rules Pattern 1 and Pattern 2 (we only show the NL part of the rule

indicated by `Pattern' as the LF production is the same) are merged into one more

general rule candidate. If the rule is appropriate16, they add the rule to be a rule in

the �nal SCFG.

The learned SCFG may have ambiguity, the authors propose to resolve these

ambiguities by adding more context to the NL parts of each involved SCFG rule,

15The rules initially are like (3a) before generalization.
16Authors de�ne a score of appropriateness for each rule which is the product of its accuracy and

coverage.

23

1.2. Machine Learning Approaches

making the learned SCFG deterministic.

The above SCFG learning approach is tested on Geoquery showing an accuracy

of 0.88 and a recall of 0.53.17

There are two problems with this approach that learns a deterministic SCFG.

First, the SCFG is not very robust. For example, the learned rules can not deal

with misspelled words never seen in training (the low recall of the system somehow

indicates the non robustness of the system). Secondly, the learned SCFG is made

deterministic at the price of making rules rather speci�c. One may want to have

more general rules and learn a stochastic SCFG. If more than one derivation tree

matches the sentence, one can learn a ranker to discriminate these derivation trees.

We will now see some approaches which are also based on learning an SCFG for

semantic parsing, but propose to address the above issues.

[Kate and Mooney, 2006] propose to deal with the robustness problems by using

kernel-SVMs.

Recall that a CFG for LFs is known a priori ; for each CFG rule producing an

LF string (i.e TEAM → our), they propose to learn a string kernel SVM [Lodhi

et al., 2002] predicting if a certain rule should be used for a given sentence. More

precisely, given a CFG rule noted π; at �rst iteration, all the sentences where π

is used are collected as positive examples and all the other sentences are used as

negative examples to train the kernel SVM. For example, given (NL, LF) pair shown

in (3a,3b), the authors use the kernel SVM to learn that the rule (TEAM → our)

should be predicted as the sentence is a positive example for this rule while the

rule (REGION → penalty-area TEAM) should not be predicted (sentence being a

negative example for this rule).

Once these classi�ers are learned, they are used to parse the NL string where

an additional constraint that substrings covered by the children of a node are not

allowed to overlap is taken into account. For a given sentence, several parses are

often possible, so a probability score for each rule application covering a certain NL

substring is needed. Denote the NL substring L, authors propose to use the trained

SVM to determine the probability score. For example, for the rule (TRAV ERSE →
traverse) covering four consecutive words `which river runs through' in Fig. 1.13,

authors use the trained SVM to predict its probability score based on this four word

input. The probability is estimated based on the SVM margin with the input L.

With those probability scores, a given sentence is parsed producing the derivation

17The results shown here are a tree based version of the presented method where the NL part
also includes syntactic information (e.g. several terminals grouped forming an NP nonterminal).

24

1.2. Machine Learning Approaches

Figure 1.13: A derivation tree that correctly parses the NL.

with the maximum score.18 Fig. 1.13 shows an example where these classi�ers help

to �nd the correct derivation tree. When the produced LF is found to be correct,

each applied rule with its covered substring is added as positive training examples

for the SVMs. Sometimes, the learned classi�ers can make mistakes and return the

wrong derivation tree; in those cases, some wrongly predicted rules together with

their associated substrings are added as negative examples. The kernel SVMs will

then be retrained with the `enriched' training set and the procedure iterates several

times.

The authors test their system on Geoquery and achieve a precision of 0.93 and a

recall of 0.72. The proposed method is shown to be particularly robust to noise such

as spelling errors.

Inspired by phrase based machine translation [Chiang, 2005], [Wong and Mooney,

2006] propose to use word alignment techniques to learn overgenerating SCFG rules

and then rank possible derivations.

First, the authors propose to use the target side non-ambiguous CFG to parse

each LF and produce the corresponding derivation sequence (DS) which is the se-

quence of rules used to produce the LF. A word alignment model then is learned

between the NL and the DS. The authors argue that learning such an alignment

model results more useful information compared to trying to align between NLs

and LFs as not every token in LFs (e.g. the parentheses in the LF) carries speci�c

meanings.19 An example of such alignments is shown in Fig. 1.14.

18Note that to calculate the exact maximum, one has to consider every derivation as the classi�er
assigns a nonzero score to all the rules, so approximate beam search based algorithms are derived
to calculate the derivation with the maximum score.

19Authors also argue that learning alignment between LFs and DSs is better because tokens in

25

1.2. Machine Learning Approaches

Figure 1.14: An example of alignment between words and CFG rules in [Wong and Mooney,
2006].

Then, with the help of these alignments an SCFG is constructed in a bottom-up

manner. Similar to [Kate et al., 2005a], the system tries to construct an SCFG rule

by adding an NL part for each LF production rule resulting rules like TEAM →
our, our where �rst `our' is an NL expression. Concretely, the system starts with LF

production rules whose RHS is all terminals (e.g. TEAM → our and UNUM → 4).

For each of these productions, a rule X → (α, β) is constructed20 where α consists

of the words to which the production rule is linked where the `linking' is found by

learned alignments.

For example, consider the alignments shown in Fig. 1.14. The rule expanding

the nonterminal UNUM is linked to `4' while the rule expanding the nonterminal

CONDITION is linked to `player', `has' and `ball'. According to the rule construction

procedure just sketched, UNUM→ 4, 4 can be extracted as `4' is the only word linked

to the rule expanding UNUM.
Then the system considers the production rules whose RHS contain also non-

terminals. In this case, a constructed pattern (the NL part of an SCFG rule) consists
of words to which the production rule as well as the non-terminals inside the rule
are linked. For example, one constructed rule would be: 21

CONDITION→< TEAM1 player UNUM2 has (1) ball, (bowner TEAM1 UNUM2) >

as all the NL words appearing in this rule link to either the rule expanding CON-

DITION or to the nonterminals on its RHS shown in Fig. 1.14.

Once the SCFG is constructed, the next task is to learn a ranker to rank all the

derivation sequences that can generate the NL. The authors use a log-linear model:

Pλ(d|e) =
1

Zλ
exp

∑
i

λifi(d, e),

LFs may exhibit polysemy; we don't think this point is very relevant; in any case, polysemy is
unavoidable for the NLs.

20Note that similar to [Kate et al., 2005a] X and β is given by the LF production rule.
21The (1) denotes a word gap of size 1, due to the unaligned word the.

26

1.2. Machine Learning Approaches

Figure 1.15: An example of alignment between words and CFG rules in [Wong and Mooney,
2006] where no rule can be extracted for REGION → penalty-area TEAM.

where e is the NL input, d is the derivation sequence (DS), fi are manually de�ned

features involving d, e or both and λ are parameters to be learnt.

The whole system with the learned SCFG and the ranker achieves a precision

of 0.87 and a recall of 0.73 on Geoquery dataset. Note that the system adopts the

SCFG formalism thus cannot predict LFs with variables, so instead of learning to

predict the Prolog queries in Geoquery, the system learns to predict the FunQL

queries which are semantically equivalent LFs without variables.

According to the SCFG construction procedure described above, the model [Wong

and Mooney, 2006] is only e�ective when words linked to a speci�c LF production

rule stay close to each other in the sentence. As a failure example, consider the sen-

tence `our left penalty area' and its corresponding LF (left (penalty-area our)) with

learned alignment shown in Fig. 1.15. In this case, no SCFG rule can be constructed

to generate the LF (penalty-area TEAM) as we impose that all the words from the

NL part in a rule should link to the production rule or its RHS nonterminal while

the word `left' is not linked to this rule; the fact that `our' and `penalty area' is

separated by `left' making the rule production impossible.

Discussion We can compare the work [Wong and Mooney, 2006] with previous

work [Macherey et al., 2001] which has also proposed to use alignment models to learn

a semantic parsing system. One major di�erence and a contribution of [Wong and

Mooney, 2006] is that authors propose to use CFG over the LFs as prior knowledge;

without using this CFG as prior knowledge, the LFs that a system produces can be

syntactically ill-formed. Another di�erence is that the model of [Wong and Mooney,

2006] uses SCFG from hierarchical phrase based machine translation [Chiang, 2005]

while the model in [Macherey et al., 2001] is not based on hierarchical machine

translation but simpler alignment models.

Techniques similar to [Wong and Mooney, 2006] can be used to handle LFs with

variables as shown in [Wong and Mooney, 2007]. One needs to extend SCFG to

λ-SCFG in which each rule has the form:

A→< α, λx1 . . . λxk.β >

27

1.2. Machine Learning Approaches

Where α is an NL sentence and β is a string of terminals, non-terminals, and vari-

ables. The variable-binding operator λ binds occurrences of the logical variables

x1, . . . , xk in β. Learning a λ-SCFG can be performed in a bottom up way, similar

to the learning of a SCFG; the ranker can also be constructed similarly.

Being able to handle variables can ease the λ-SCFG learning. If the LF (a, b) is

equivalent to (b, a), one can choose to represent the LF such that the LF is maxi-

mally isomorphic22 to the input utterance (NL) thus ease the learning of λ-SCFG.

As a result, when authors [Wong and Mooney, 2007] test their system on the Geo-

query dataset with LFs written in Prolog (and rearrange the LFs to be maximally

isomorphic to the NLs), they found a large improvement over the system [Wong and

Mooney, 2006] and achieve a precision of 0.92 and a recall of 0.87.

1.2.2.2 CCG based approaches

[Zettlemoyer and Collins, 2005] propose to use PCCG (probabilistic CCG), an exten-

sion of CCG [Steedman, 1996]23 to learn an executable semantic parser. Like [Wong

and Mooney, 2006], the system both parses sentences using CCG rules also called lex-

icons and ranks them using a log-linear model; the di�erence is that in [Zettlemoyer

and Collins, 2005] the lexicons and the feature parameters are learnt jointly.

A CCG parser parses a sentence with CCG rules. For example, consider the

following subset of CCG rules. Each rule associates a lexical item with a syntactic

category and a semantics written in lambda calculus. For instance, the �rst rule

associates the lexical item Utah with the syntactic category NP and the semantics

utah.

• Utah := NP :utah

• Idaho := NP :idaho

• borders := (S\NP)/NP : λx.λy.borders(y, x)

With these 3 rules, one can parse the sentence �Utah borders Idaho� (with forward

and backward applications) and produce the correct LF borders(utah, idaho). The

central question is then how to successfully learn those rules (also called lexicons) to-

gether with their feature parameters based uniquely on (NL, LF) pairs when parsing

steps are not available in the considered datasets.

22Isomorphic in the sense that the structure of the LF being similar to that of the NL.
23Inside this thesis, we brie�y discussed CCG in subsection 1.1.2.

28

1.2. Machine Learning Approaches

Figure 1.16: All the CCG rules used in [Zettlemoyer and Collins, 2005].

[Zettlemoyer and Collins, 2005] propose an iterative procedure to learn the lexicon

together with their feature parameters. First, they limit the forms of rules that the

system will learn. In practice, all the learned rules will be in one of the forms

shown in Fig. 1.16. Given an (NL, LF) pair, the system creates temporarily all

the rules possibly useful to map the NL to the LF via a function called GENLEX,

mathematically:

GENLEX(NL,LF) = {x := y|x ∈W (NL), y ∈ C(LF)}

In the above formula, W (NL) is the set of all subsequences of words in the NL

and C(LF) returns the rules involved in the LF that are in one of the forms shown in

Fig. 1.16. For example, consider the sentence �Utah borders Idaho� paired with the

LF borders(utah, idaho). In this example, C(LF) will contain three elements: utah,

idaho and λx.λy.borders(y, x); W(NL) will contain all the substrings such as `utah',

`borders', `utah borders', etc. Thus, rules such as Utah := NP :utah and borders

:= NP :utah will all be considered as candidates initially. Note that the GENLEX

function over-generates lexicons to map an NL into the corresponding LF, which

guarantees that the system always �nds a parse leading to the correct form.

P (LF,DS|NL, θ) =
ef(LF,DS,NL)·θ∑

LF,DS e
f(LF,DS,NL)·θ

To distinguish between several possible parses, a PCCG is actually used. As

shown in the equation above, the PCCG de�nes a probability distribution over

(LF,DS) (DS is a derivation sequence) using a log-linear model; in the equation,

f(LF,DS,NL) are manually de�ned features for a rule capturing interactions be-

tween the associated syntax/semantics. In the model [Zettlemoyer and Collins, 2005],

only weights for each lexicon are used as features.

Note that the objective is to maximize the probability of the correct LF which can

29

1.2. Machine Learning Approaches

come from di�erent DS's with P (LF |NL, θ) =
∑

DS;LF P (LF,DS|NL, θ);24 given
a set of rules, parameters in the log-linear model (i.e the weight of each lexicon) can

be updated using gradient descent so that the likelihood of the correct LF P (LF) is

maximized.25

To output a compact set of rules26 [Zettlemoyer and Collins, 2005], [Zettlemoyer

and Collins, 2005] propose to iterate between lexicon generation steps (using GEN-

LEX) and parameter estimation steps. More precisely, after the initialization step

that set weights for generated lexicons and initial lexicons Λ0, the system iterates

between the following two steps at iteration t where a lexicon set Λt is initialized to

be empty before the iteration:

• For each sentence, the system calls the GENLEX procedure overgenerating

lexicons and parses the sentence with their currently associated weights; then,

only the rules that are used for the parse with the highest probability score

are added to Λt. The system parses the whole corpus this way and then set

Λt = Λt ∪ Λ0.

• The feature parameters involving Λt are optimized by using gradient descent.

After a �xed number of iterations, the learning procedure stops and output the

lexicons used at the last iteration Λt together with their feature weights; this more

compact lexicon is used at test time. The system was tested on Geoquery and

achieves a precision of 0.96 and a recall of 0.79.

Discussion Compared with the performance of [Wong and Mooney, 2007] on

the Geoquery dataset, the system of [Zettlemoyer and Collins, 2005] has a higher

precision and lower recall. We think that the lower recall is due to the rigidity of

the learned CCG grammar as it cannot parse ungrammatical sentences unseen at

training time. For example, consider a CCG grammar with two rules in the ATIS

domain:

• �ights := N :λx.flight(x)

• one way := (N/N):λf.λx.f(x) ∧ one_way(x)

24We use DS ; LF denote all the DS that produce the concerned LF.
25Even though the number of DS's is huge, the gradients can be calculated exactly in this case

by using dynamic programming. We refer interested readers to the original paper [Zettlemoyer and
Collins, 2005] on this aspect. This is notably contrary to some models we discuss in 1.3.1.1 where
gradients can no more be calculated exactly (there is no e�cient way).

26In particular, we want the system to avoid outputting rules such as Idaho := NP :utah.

30

1.2. Machine Learning Approaches

Figure 1.17: ATIS annotated with concept sequences.

The grammar can successfully parse the sentence �one way �ights� and give the

correct corresponding parse λx.flight(x) ∧ one_way(x). However, the system will

fail for the sentence �'�ights one way� (while one can argue that the sentence should

be understood by the system) thus lowering the recall of the system.

[Zettlemoyer and Collins, 2007] propose a remedy to the above problem by al-

lowing more forms of rules in the system so that a larger number of sentences can

be parsed by the considered CCG. The additional rules involve application and com-

position rules, type-raising rules and crossed composition rules. We discuss here the

added functional application rules:

• A\B:f B:g ⇒ A:f(g)

• B:g A/B:f ⇒ A:f(g)

These application rules are variants of the original application rules, where the slash

direction on the principal categories (A\B or A/B) is reversed. With the second

rule, one can correctly parse the sentence �'�ights one way� with the result being the

same as �one way �ights�.

Having additional rules lead to signi�cantly more parses for any sentence x. How-

ever, the authors found that the log-linear ranker27 is still able to learn well to choose

a correct parse among all the candidate parses. Authors test their system on the

ATIS NOV93 dataset and achieves a precision of 0.95 with a recall of 0.97.

Remark As the semantics in the ATIS dataset is written in frames thus pretty

`�at', people have proposed to annotate each sentence in the dataset with a sequence

of associated concepts as shown in Fig. 1.17. Under these conditions, one can ap-

ply sequence tagging techniques using models such as Conditional Random Fields

(CRFs) [La�erty et al., 2001] and Recurrent Neural Networks (RNNs) [Rumelhart et

al., 1988]. Note however that annotations will be very di�cult if not impossible when

the logical forms (LFs) are not that `�at' and have more structures. For this reason,

approaches based on sequence tagging that we describe here cannot be applied for

general semantic parsing tasks and we will not discuss them in detail inside the thesis.

27Compared to [Zettlemoyer and Collins, 2005], the ranker incorporates a richer set of features.

31

1.2. Machine Learning Approaches

CRFs are discriminative undirected graphical models which �nd their applications

in sequence tagging problems such as POS tagging and entity recognition. At each

prediction step, the model makes a prediction based on manually de�ned features

that take into account the current word, the context of the current word and the

previous prediction (tag)28; the model assigns a global score to each target sequence

and learns its parameters to rank the correct target sequence highest amongst all the

sequences, using a log-linear model. Mathematically, let y be the target sequence

and x the input sequence; the model (�rst-order CRF) is de�ned by a set of features

fk with their associated weights λk; Z(x) is the normalization term summing over

all the sequences y:

p(y|x) =
exp(

∑
t

∑K
k=1 λkf(yt−1, yt, x))

Z(x)

[Raymond and Riccardi, 2007] apply CRFs on the ATIS dataset where the features

are mainly de�ned to link the words with corresponding concepts. For example,

one can de�ne features such as if the word is `washington', it links to either the

concept fromloc.city or the concept toloc.city; the ambiguity can be further resolved

by applying more speci�c features, e.g. if the word `washington' is preceded by `from'

then the tag is `fromloc.city'.

The authors test their approach on the ATIS dataset (Nov93+Dec94) and achieve

a F1 score of 0.96.

[Mesnil et al., 2015] propose to use Recurrent Neural Networks (RNNs) for the

semantic parsing problems seen as sequence tagging problems. Compared to CRF

models, the main advantage of using such deep learning models is to avoid feature en-

gineering as deep learning models integrate both feature design and classi�cation into

the learning procedure. Some discussions on RNNs can be found in section 3.2, 3.3

inside the thesis.

The considered neural network architecture runs an RNN through the input

sequence x, calculates a hidden vector at each step (word) of x based on the word

context and already predicted tags; then in the simplest case, the model learns to

predict the tag at the current step based on this hidden vector through cross-entropy

minimization.

More precisely, the network �rst maps each 1-hot encoded word to a continuous

28In [La�erty et al., 2001], CRF is introduced so that the current tag depends only on the previous
tag. However, the model can still be trained reasonably e�ciently with the current tag depending
on the n previous tags when n is small [Cuong et al., 2014].

32

1.2. Machine Learning Approaches

Precision Recall F1
[Tang and Mooney, 2001] 0.90 0.79 0.84

[Zettlemoyer and Collins, 2005] 0.96 0.79 0.87
[Wong and Mooney, 2007] 0.92 0.87 0.89

[Zettlemoyer and Collins, 2007] 0.92 0.86 0.89

Table 1.1: Results on the Geoquery dataset for systems learning to predict a Prolog query.

word embedding which is a real-valued vector of certain dimensions (typically several

hundreds which is much less than the total number of words). Then an RNN is run

through the word embeddings producing a hidden vector at each time step. Many

variants of RNNs exist, the authors propose to use the following formulation which

is a hybrid of Elman type [Elman, 1990] (i.e. the h(t− 1) term which is the previous

hidden vector in the equation below) and Jordan type [Jordan, 1986] (i.e. the Cd
term which is a context window of size d centered on the t-th word in the input

sequence x and the y(t−1) term which is the previous predicted tag, in the equation

below):

h(t) = f(UCd + U ′P (y(t− 1)) + U ∗ h(t− 1))

The class label at each time t is then calculated based on h(t) using softmax.

As said, one can train this RNN step by step (trying to make the predicted tag at

each step correct). However, this standard RNN training (also called teacher forcing)

can create the label bias problem [Bottou, 1991],29 a problem that CRF models can

solve. So the authors propose to build a CRF model on top of the RNN model where

hidden states are regarded as CRF features.

The authors test their model (word embeddings+RNN+CRF) and observe im-

provements over CRF baselines on the ATIS dataset achieving an F1 score of 0.96.

We want to �nally mention that the literature seeing ATIS as a sequence tagging

problem is abundant. Just to mention a few of them, [Kuhn and De Mori, 1995]

propose to use classi�cation trees to classify slots and [He and Young, 2005] propose

to use hidden a vector space (HVS) model.

Remark Tables 1.1 and 1.2 summarize the performance of the di�erent systems

on the Geoquery dataset discussed in this section and Table 1.3 summarizes the

29The label bias problem appears due to the asymmetry we create between training and test: at
training time, the model always has access to the correct previous tags, which is not satis�ed at
test time.

33

1.2. Machine Learning Approaches

Precision Recall F1
[Wong and Mooney, 2006] 0.87 0.73 0.79
[Kate and Mooney, 2006] 0.93 0.72 0.81

Table 1.2: Results on the Geoquery dataset for systems learn to predict a FunQL query.

F1
[He and Young, 2005] 0.90

[Zettlemoyer and Collins, 2007] 0.96
[Raymond and Riccardi, 2007] 0.96

[Mesnil et al., 2015] 0.96

Table 1.3: Results on ATIS dataset, note that the results of [Zettlemoyer and Collins,
2007] is tested only on the Nov93 dataset while other systems are tested both on the Nov93
and the Dec94 dataset.

performance of systems on ATIS. We have two remarks based on these tables.

• Systems based on CCG [Zettlemoyer and Collins, 2007] can perform well on

both datasets. From the tables, we can see that they are amongst the best

performing systems.30 This suggests that when we can safely suppose that

most of the sentences can be parsed by a certain grammar, the use of this

linguistic prior knowledge (CCG in this case) can e�ciently reduce the search

space thus largely ease the learning procedure [Zettlemoyer and Collins, 2005].

More than that, it seems that this prior knowledge is so useful that even a

relaxed form can largely bene�t the task [Zettlemoyer and Collins, 2007].

• All the best performing systems use some discriminative models. One partic-

ularly interesting class of discriminative models are deep learning models as

they avoid heavy feature engineering for a given task. However, at this stage,

we have seen the application of deep learning models (RNNs, in particular)

only to semantic parsing seen as a sequence tagging task [Mesnil et al., 2015]

while as we have said, this form of semantic parsing is very limited compared

to the task we focus on where one needs to generate a structured LF (which is

not necessarily a linear chain and which can be of any length).
30One should note that the CCG system is only tested on the NOV93 dataset on ATIS while

most of other systems are tested on both the NOV93 and the DEC94 datasets.

34

1.3. New Challenges

1.3 New Challenges

In the previous section, we have seen some successful semantic parsing systems

learned based on a training corpus that consists of (NL, LF) pairs. Despite of the

success, there are two limits of those systems that more recent systems try to address:

• One may note that all the previous systems assume having access to annotated

LFs, which requires a lot of annotation e�orts: annotating LFs often require

expertise for the language in which LFs are expressed. We will review in this

section di�erent proposals raised by researchers in recent years to train semantic

parsers while reducing the annotation e�orts. One important direction is to

train the system based on (natural language question, answers) pairs [Liang et

al., 2011; Berant et al., 2013; Berant and Liang, 2014; Pasupat and Liang, 2015]

that we will note as (NL, A) in the following; this reduces the annotation e�orts

notably because annotating an answer does not require as much expertise as

annotating a LF. Another idea of annotating LFs with less e�orts is to turn the

LF annotation problem to a simpler one such as creating paraphrases [Wang et

al., 2015]. Finally, noting that text information is abundant and easy to access

nowadays, we will review proposals to leverage these texts to learn semantic

parsers [Reddy et al., 2014].

• Previous semantic parsing systems require also much engineering e�orts. For

example, to build the semantic parsing system [Zettlemoyer and Collins, 2005]

based on PCCG, the authors need to specify the set of necessary CCG rules

and also the features for the log-linear ranker. Also, although CCG-based

semantic parser induction is language- and domain- independent as shown

in [Kwiatkowski et al., 2011], sometimes minor changes in CCG rule speci�ca-

tion are necessary to well adapt to a particular domain.31 Thus, researchers

have proposed machine learning models that learn semantic parsers with less

engineering e�orts [Bordes et al., 2014a; Yih et al., 2015] (e.g. by using end to

end deep learning models). We will review those works as well in this section.

1.3.1 Reduce annotation e�orts

1.3.1.1 Learning with QA pairs

In recent years, learning a semantic parser based on (NL, A) pairs has boosted the

research for semantic parsing and a review of learning with QA pairs can be found

31For example, [Zettlemoyer and Collins, 2007] has to extend the CCG rules that they use previ-
ously [Zettlemoyer and Collins, 2005] when building a semantic parser for another domain.

35

1.3. New Challenges

in [Liang, 2016]. The main problem in learning with QA pairs is that LFs are no more

available thus have to be treated as hidden variables. Under this condition, suppose

that we want to build a semantic parser using/extending previous approaches such

as [Wong and Mooney, 2007; Zettlemoyer and Collins, 2005] that �rst induce a gram-

mar that parses the natural language question while generating LF candidates, then

use a ranker that learns to choose the best LF amongst the candidates,32 learning

with QA pairs implies two complications:

• For the ranker, instead of learning a log-linear ranker maximizing the likelihood

of the annotated LF P (LF |NL, θ) = ef(LF,NL)·θ∑
LF e

f(LF,NL)·θ , one needs to learn to max-

imize the probability of getting the correct answer P (A|NL, θ) by marginalizing

over LFs, thus giving the objective function:

P (A|NL, θ) =
∑

LF;A

ef(LF,NL)·θ

Z

where we use LF ; A to denote the LFs whose executions give the answer A;

Z =
∑

LF e
f(LF,NL)·θ is the normalizing factor summing over all possible LFs.

Note that as we sum on the numerator over all the LFs reaching the answer

which is a set of LFs that don't factorize over the nodes inside a parse tree

(e.g CFG parse tree, CCG parse tree etc.), there is no way to estimate the

quantity P (A|NL, θ) or its gradient exactly besides �rst enumerating all the

LFs and execute each one of them.33 Thus, to optimize the objective function

P (A|NL, θ), beam search (to search for LFs reaching the correct answer) with

approximate gradients (gradients calculated based on the beams) are generally

used.

• For the grammar induction, �rst note that all the learning approaches we

describe in the previous section (e.g. [Zettlemoyer and Collins, 2005; Wong

and Mooney, 2007]) need the LFs to be given in the dataset: [Zettlemoyer and

Collins, 2005] �rst decompose the LFs into elementary forms that are known a

priori (see Fig.1.16 for an example of the elementary forms) before trying to

learn the NL expressions associated with these elementary forms; to learn an

SCFG that can translate the NL into corresponding LFs, [Wong and Mooney,

2007] �rst parse the LFs using a CFG over LFs known a priori before trying

32As we shall see in this chapter, all the works we review in this subsection adopts this architecture
using a grammar and a ranker but with important di�erence on the role the grammar plays.

33This is contrary to the model [Zettlemoyer and Collins, 2005] where the probability of the
correct LF P (LF |NL, θ) and its gradient can be estimated exactly in an e�ecient way (by using
dynamic programming).

36

1.3. New Challenges

to deduce the NL expressions that trigger the SCFG rules.

As the direct application of previous approaches [Zettlemoyer and Collins, 2005;

Wong and Mooney, 2007] are not possible, one may try to devise a two step

approach to build a semantic parser where the �rst step tries to �nd all the

correct LFs. However, as the number of LFs can be huge even for relatively

small datasets due to the compositionality, the solution is not applicable in

general cases.

To our best knowledge, the �rst work proposing to learn a semantic parsing

system with QA pairs (notably addressing the grammar induction di�culty) is [Liang

et al., 2011]. We will �rst give the general idea behind the approach before entering

into more details.

As the LFs are not available in the dataset, the system we want to build has to

explore the space of LFs randomly at the beginning.34 During the random explo-

ration, the system may �nd LFs that give the correct answer for some NLs in the

dataset; the semantic parser can then learn a model over these (NL,LF) pairs so that

at the next iteration, the system can explore the LF space focusing on promising LFs

by using the model it has learned. The system iterates this way each time switching

between learning a semantic parser and exploring LFs using it, forming a bootstrap-

ping approach; the system stops when it �nds enough proportion of correct answers

for the NL questions in the dataset, suggesting a good performance of the semantic

parser. This bootstrapping approach is examined under a theoretical point of view

in [Daumé and Marcu, 2005] where the authors name it LaSO (Learning as Search

Optimization).

To implement the approach [Liang et al., 2011] learning a semantic parser by

bootstrapping, one �rst needs a �exible grammar so that the system can explore

randomly the LF space at �rst place. Fig. 1.18 shows an example of parsing a

sentence with a �exible grammar. While the rules of type `lexicon' can be generated

by using some prior knowledge, the rules of type `join' and `intersection' are generated

randomly at the beginning before being generated by the semantic parser's guidance.

Fig. 1.18 also illustrates another �exibility of the grammar as the sentence is not fully

analyzed by the grammar and some tokens in the sentence (e.g. `was' and `?') are

skipped.

34With some exceptions where prior knowledge can be used. For example, to answer the question
`States that border Utah', one may encode the prior knowledge into the semantic parser that if the
NL contains `utah' or `Utah', the LFs have to contain utah; however, this form of prior knowledge
is generally limited to named entities.

37

1.3. New Challenges

Figure 1.18: An example of a derivation tree for the sentence `Where was Obama born'
using a �exible grammar; the derivation steps are each labeled with the type of rule (in blue)
and the logical form (in red).

One can see that the grammar we are discussing here is very di�erent from gram-

mars such as CCG which do not generate rules on the �y and which do not skip

tokens.35.

A rich feature set is also needed for the semantic parser to implement the boot-

strapping learning approach. When a correct LF is found,36 the feature parameters

of the corresponding rule application inside the LF will be updated (very often using

gradient based optimization algorithms) to make sure that the correct rule will be

applied in the future on this example; when the features associated with the rule

application is rich enough, we can hope that some features will generalize over NLs

allowing to �nd more correct LFs at the next iterations.

For example, suppose that the system �nds a correct LF (notably the `join' and

`intersection' operations) for the given sentence in Fig. 1.18 through exploration. If

the only feature associated with the `join' rule application is its frequency in the

dataset (similar to [Zettlemoyer and Collins, 2005]), the model will just try to apply

`join' rules more often at the next iterations during bootstrapping. However, better

generalization may be achieved if the `join' rule is also associated with the NL fea-

ture such as `PERSON born';37 in this case, the semantic parser will favor to apply

the `join' rule at the next iterations when it sees the pattern `PERSON born' after

parameter updates.

35Note that constructing a semantic parser with CCG is indeed possible, but as the CCG will
not produce semantics tailored to the domain of interest, some `semantic matching' module needs
to be implemented [Reddy et al., 2014].

36The `correct' here means that the LF gives the correct answer under execution.
37Suppose that the system can identify a `Obama' in the sentence as a person.

38

1.3. New Challenges

By putting together a �exible grammar and a rich feature set, [Liang et al., 2011]

test the bootstrapping approach to learn a semantic parser based on QA pairs.38

On the Geoquery dataset, the semantic parser can only �nd 29% of the correct

LFs at �rst by `pure exploration', but training over these examples are enough to

increase this ratio to 65% and then 95% after the next few iterations. Some patterns

are discovered during bootstrapping through learning with the rich feature set; the

system discovers for example that when a word `in' is seen in the NL, the relation

`loc' (i.e. location) will be triggered with high probability.

The system overall achieves an accuracy of 91.1%, a new state of art on Geoquery

while only trained on QA pairs (previous systems are trained on (NL, LF) pairs.).

Many recent works propose improvements of the above bootstrapping approach

to learn a semantic parser with QA pairs.

[Berant et al., 2013] propose two ways to better exploit prior knowledge to limit

the LF space that the system searches. The �rst way consists of constructing a larger

lexicon set corresponding to the rules applied at the bottom level in the derivation

tree (e.g. the `lexicon' rules in Fig. 1.18) that map NL expressions to LFs; the second

way consists of using type constraints of the LFs to control generation of rules other

than lexicons (e.g. the `join' and `intersect' rules in Fig. 1.18)).

Their system is tested on an RDF knowledge base Freebase [Bollacker et al., 2008]

which contains about 2.5 billion triples in the form (e1, r, e2); in the triple, e1, e2 are

entities forming the subject (e1) and the object (e2) respectively and r is a relation

forming the predicate of the triple (e.g. (`barack_obama',`birthplace',`honolulu')).

A dataset called Webquestions containing QA pairs is constructed for which the

questions can be answered by either a Freebase entity or a value or a list of Freebase

entities. The questions are collected via Google suggest API and turkers are asked

to answer the questions using only Freebase. A total number of 5810 QA pairs

is collected, 35% is reserved for test; for the remaining 65%, a 80%-20% split is

performed for training and validation.

Lexicons over entities are often constructed by string matching. However, such

methods do not work well with relations as the relation mention often di�ers from

its NL expressions. For example, in texts, we �nd `Barack Obama was born in

Honolulu' to express that `Barack Obama's birthplace is Honolulu'. To construct

38Another main contribution of [Liang et al., 2011] is to introduce a new semantic representation
λ − DCS; we do not discuss further over this aspect inside the thesis as we do not focus on how
the semantics is coded but rather how learning can be performed for given semantics.

39

1.3. New Challenges

Figure 1.19: An example where the binary predicate `Education' is generated on the �y
while obeying type constraints (i.e `bridging').

lexicons for relations, authors propose to use triples (e.g. `barack_obama', `born

in', `Honolulu') extracted from free texts (texts that one can �nd on the web) and

align them with the knowledge base using the heuristics [Cai and Yates, 2013] which

construct an alignment between a phrase and a relation if they co-occur with many

same entities. For instance, in the above example, `born in' and `birthplace' co-occur

with (`barack_obama', `honolulu'); if they co-occur with many other such pairs, an

alignment (a lexicon on relation) will be constructed.

The construction of LFs obeys type constraints for which authors propose to

exploit as prior knowledge. Similar to [Liang et al., 2011], in [Berant et al., 2013],

some LFs have to be generated on the �y; however, to limit the LF search space,

[Berant et al., 2013] note that one can generate LFs on the �y while taking into

account type constraints (an operation called `bridging'). Fig. 1.19 illustrates the

`bridging' operation. Once rules of type `lexicons' are generated (which generate

the LFs Type.Univesity and BarackObama), other rules such as `Education` need

to be generated on the �y. However, the predicates generated at this place which

link Type.University and BarackObama must be binary predicates which operate on

(Type.University, Type.Person) as type constraints; those constraints narrow down

the search space of predicates.

The whole system (with predicate lexicons and bridging) is tested on Webques-

tions achieving 35.7% in accuracy.

40

1.3. New Challenges

[Berant and Liang, 2014] propose to enrich the feature set in the semantic parser

by exploiting existing resources such as paraphrase corpus and pretrained word vec-

tors.

For each LF query, they propose to use prespeci�ed templates to generate a

question in natural language called `canonical form'. Using those templates, they

are able to generate the question Who directed Top Gun ? from the LF query (?

Directed.TopGun).39

Once the canonical forms are generated, alignment features can be estimated

between canonical forms and the NL using an alignment model pretrained on a

paraphrase corpus; besides, the similarity can also be estimated using pretrained

word vectors [Mikolov et al., 2013a] where both the representations of canonical

forms and NLs are taken as the average of content word vectors (nouns, verbs and

adjectives). The alignment features can detect di�erent phrases expressing the same

notion; for example, it can make `genres' close to `kinds' or `types'. On the other

hand, vectorial representation can identify correct paraphrases when it is hard to

directly associate phrases from NL to canonical forms; for example, it can make the

NL `Where is made Kia car?' close to the canonical form `What city is Kia motors

a headquarters of?'.

Using those additional features, the semantic parser improves its ranker over

LF candidates. When the system is tested on Webquestions dataset, it achieves an

accuracy of 39.9%.

1.3.1.2 Smart Annotations

While annotation e�orts can be reduced by replacing (NL, LF) pairs with (NL,

A) pairs, annotation of LFs can itself be reduced as noted by [Wang et al., 2015].

Instead of asking experts to annotate LFs for a given NL, the annotation process

proposed by [Wang et al., 2015] begins with LFs and is illustrated in Fig. 1.20. First,

similar to [Berant and Liang, 2014], a grammar generates LFs paired with a textual

form called canonical forms. For example, in Fig. 1.20, the grammar generates

the LF R(date).(student.Alice∩university.Brown) paired with the canonical

form start date of student alice whose university is brown university. The

generated canonical forms do not need to be `natural' English but have the property

to re�ect transparently the semantics of the sentence. Once the canonical forms are

generated, they are given to turkers to be paraphrased giving paraphrases such as

When did alice start attending brown university; pairs of (NL, LF) can then

39We refer interested readers to the original paper on the exact forms of the templates.

41

1.3. New Challenges

start date of student alice whose university is brown university

R(date).(student.Alice∩ university.Brown)

When did alice start attending
brown university?

when did alice join at brown
university?

…

Figure 1.20: The annotation process proposed by [Wang et al., 2015].

be collected where NLs are the paraphrases. This process allows to reduce annotation

e�orts as creating paraphrases is arguably much easier than annotating LFs.

1.3.1.3 Using Free Texts

[Reddy et al., 2014] propose an approach to build a semantic parser without QA

pairs (thus requiring no annotation e�ort). The key insight is to represent natural

language (NL) as semantic graphs whose topology shares commonalities with the in-

terested knowledge base (KB) such as Freebase; then the problem is reduced to learn

to match graphs (between semantic graphs and the KB query graph). We will �rst

explain how to represent NL into semantic graphs before going into graph matching

algorithms. Fig. 1.21 illustrates the steps to convert a sentence (`Austin is the capi-

tal of Texas.') �rst into a semantic graph then into a Freebase grounded query graph.

To represent a sentence into a semantic graph, authors propose to �rst obtain

the semantic parse of the sentence by parsing the sentence using a CCG. Fig. 1.22

illustrates the parsing process constructing both the semantics and the syntactics for

the sentence `Cameron directed Titanic'. At the beginning, all words are associated

with both a syntactic and a semantic category (the whole representation called a

lexicon); for example, the lexicon `Cameron' constitutes the word associated with

the syntactic category NP and the semantic category Cameron. Those lexicons

are combined using forward and backward application till producing the syntactic

category S and the semantics directed.arg1(e,Cameron)∧directed.arg2(e,Titanic).40

40Inside the thesis, we discuss in more detail CCGs being able to produce simultaneously syntax

42

1.3. New Challenges

Figure 1.21: Steps involved in converting a natural language sentence to a Freebase
grounded query graph [Reddy et al., 2014].

One may note that the semantics in this example di�ers in forms with the semantics

that we have seen in subsection 1.1.2 produced also by a CCG; this is because the

semantic representation chosen here41 is more related to how the interested KB

(Freebase) represents the semantics.

Once the semantic parse is produced (i.e corresponding to the step Fig. 1.21(a)),

the authors propose to specify rules to transform it into a graph representation based

on each part of the semantic parse. For example, in Fig. 1.21(b), the semantics capi-

tal(Austin) is transformed into the entity Austin (indicated by the green rectangular

box) having the property of being unique and having the type capital; the entity

Austin is linked to another entity Texas in Fig. 1.21(b) through a binary relation

whose mention in the sentence is capital, which is the graphical representation of

the semantics capital.of.arg1(e,Austin)∧capital.of.arg2(e,Texas). Several semantic

and semantics in subsection 1.1.2.
41We refer interested readers to Appendix of [Reddy et al., 2014] to see how authors de�ne

semantic patterns based on the CCG syntactic category information.

43

1.3. New Challenges

Figure 1.22: CCG derivation containing both syntactic and semantic construction.

graphs may be produced from one semantic parse due to ambiguity.42

At test time, a natural language query can be transformed into a graph repre-

sentation (e.g. semantic graph Fig. 1.21(c)) using the above proposed techniques;

however, the graph needs to be further transformed to make the graph represent-

ing a KB query so that it can be executed on the KB. The authors propose to use

denotations as weak supervision to learn this transformation.

To learn the transformation, the authors propose to �rst overgenerate the pos-

sible KB graphs corresponding to the semantic graph. To be more precise, entity

nodes in the semantic graph are mapped to KB entities through entity recognition43,

type nodes are mapped to all the possible KB types consistent with the entity; for

example, the type `capital' in Fig. 1.21(b) is mapped to types such as location.city,

location.capital_city, book.book_subject, broadcast.genre etc; similarly an edge be-

tween two entities is mapped to all the edges linking the two entities in the KB.

Obviously, only one (or a few) KB graphs will be faithful representation(s) of the

sentence.

To actually get a faithful KB representation, the authors propose to use deno-

tations as criteria. First, an entity is removed from the sentence graph where the

entity becomes the `target' (Fig. 1.21(c)); the same operation is performed also for

each KB graph obtained by transforming the semantic graph. Then we consider a

KB graph representation correct if its denotation (i.e. the result of the execution) is

the same as the removed entity. Fig. 1.21(d) illustrates the procedure of selecting a

correct KB graph representation. The two KB graphs in Fig. 1.21(d) di�er from their

42The authors give one speci�c kind of ambiguity where a number can either be directly linked
to an entity or be produced by some count operations.

43The web corpus Clueweb09 which the authors use already contain this mapping using entity
recognition.

44

1.3. New Challenges

relation transformation (i.e the left graph transforms capital.of into location.capital

while the right graph transforms the same relation into location.containedby), the

left one is correct while the right one is not as the denotation entity Austin must be

unique according to the semantic graph Fig. 1.21(b).

One can learn this graph transformation when semantic graphs are paired with

their correct (in the sense of denotation) KB graphs. The authors propose to use a

linear scoring function for the transformation where the KB graph with the maximum

score is returned at test time:

(ĝ, û) = argmaxg,uφ(g, u,NL,KB) · θ

In the equation, u is the semantic graph and g is the transformed KB graph;

φ(g, u,NL,KB) are prespeci�ed features and θ are the parameters to be learned.

Features characterizing the transformation include alignment between types (e.g.

φtype(capital, location.city) in Fig. 1.21) and edges (e.g. directed, �lm.directed_by),

lexical similarity which counts the number of stems shared by the semantic graph

and the KB graph (i.e. directed and �lm.directed_by has one stem overlap), etc.

The parameters θ over features are learned using the averaged structured perceptron

algorithm [Collins, 2002].

The whole model is tested on the a subset of Webquestions dataset involving

questions on business, �lm and people; the system achieves an precision of 41.9%,

a recall of 37.0% thus a F1 score of 39.3%. The system performs better than the

system of [Berant and Liang, 2014] on this subset.

1.3.2 Reduce engineering e�orts

Most semantic parsing systems we have discussed till this point requires signi�cant

engineering e�orts. In [Berant et al., 2013; Berant and Liang, 2014], feature engi-

neering is required to specify the set of features for the log-linear ranker. In [Reddy

et al., 2014], the authors need to specify rules to transform the semantics of the

sentence (obtained from a CCG parser) into a semantic graph; also, features have to

be manually speci�ed to learn the matching function between the semantic graphs

and the KB graphs.

We will describe in this subsection several works trying to reduce the engineering

e�orts [Bordes et al., 2014a; Yih et al., 2015]. The idea is to use models that can

learn the features and the classi�er at the same time thus avoid having to specify

features manually.

45

1.3. New Challenges

Figure 1.23: Illustration of the subgraph embedding model scoring a candidate an-
swer [Bordes et al., 2014a].

1.3.2.1 Matching answer subgraphs

[Bordes et al., 2014a] propose an approach to answer natural language questions with

few handcrafted features. The main idea is to represent both the semantics of the

question (q) and the answer (a) into real-valued vectors (also called embeddings) of

the same dimension and then learn a scoring function (i.e the dot product of the

two vectors) between them. As we shall see that one can use the question or the

answer directly to map them to the embedding space, the approach avoids manually

specifying features (for the question or for the answer).

Fig. 1.23 gives a detailed illustration of the approach to answer the factoid ques-

tions like `Who did Clooney marry in 1987?' in Webquestions44 using Freebase as the

KB. First, an entity is extracted from the question using string matching between the

words in the question and KB entity mentions45. Using this entity, a subgraph rep-

resenting the answer (Freebase subgraph in Fig. 1.23) is calculated which involves 1)

a path from the extracted entity to the candidate answer46 2) other entities directly

linked (via 1 predicate) to the candidate answer.

Then embeddings of both the question and the answer subgraph are calculated.

Let NW denote the total number of words and NS the total number of entities and

relations; with N = NW + NS , W is a matrix of Rk×N and each column of W

44Recall that the answers for the questions in Webquestions are either an entity or a value or a
list of entities.

45When several entities can be extracted, the entity with most connections in the KB is chosen.
46To limit the search space at prediction time, the path involves only one or two predicates (1

predicate married_to in Fig. 1.23)

46

1.3. New Challenges

corresponds to the embedding of either a word or a KB element (i.e. a relation or

an entity) of dimension k where we force the norm L2 of each embedding to be no

more than 1. The question is �rst mapped into a sparse vector φ(q) ∈ NN indicating

the number of times each word appearing in the question; then the embedding of

the question f(q) is calculated as Wφ(q). Similarly, the subgraph representing the

answer is mapped into another sparse vector ψ(a) ∈ NN indicating the number of

times each KB element (an entity or a relation) appearing in the subgraph and the

embedding of the answer subgraph g(a) is calculated asWψ(a). The scoring function

between the question and the answer subgraph S(q, a) is de�ned as the dot product

between the two embeddings: S(q, a) = f(q) · g(a).

To learn the model (the embedding matrix W), the authors propose to minimize

a margin based loss. Let D = {(qi, ai), i = 1, 2, . . . , |D|} be the training set of

questions (qi) paired with their answer subgraph (ai). The loss to minimize is:

|D|∑
i=1

∑
ā∈Ā(ai)

max{0,m− S(qi, ai) + S(qi, ā)}

where m is the margin (�xed to 0.1). ā is an incorrect answer subgraph sampled

from Ā(ai) the set of incorrect subgraphs for ai. The ā is sampled either by changing

the candidate path (i.e. the path from the extracted entity in the question to the

candidate entity in ai) to point to another entity or directly changing the entity

answer to another entity randomly generated. Optimization is accomplished via

stochastic gradient descent. At test time, beam search is used to generate answer

subgraphs that are ranked using the embedding model; the answer subgraph with

the maximum score is returned.

Learning W (N ×k parameters to learn) requires a lot of data and Webquestions

alone is not enough. The authors propose to both use the KB and other resources

(e.g Clueweb09) to generate question answer pairs using templates. For example,

Freebase contains triples in the form of (entity1, type1.type2.predicate, entity2);

given the triple (barack_obama, person.country.nationality, united_states) and the

template `what is the predicate of the type1 entity1 ?', one can generate a question

answer pair (`what is the nationality of barack obama ?', united states).

The system is tested on Webquestions achieving a F1 score 39.2 (compared to

39.9 in [Berant and Liang, 2014]).

Remark The main problem with the approach [Bordes et al., 2014a] is that

the subgraph representing the answer does not necessarily match with the semantics

47

1.3. New Challenges

Figure 1.24: The Freebase graph representation for the question `Who �rst voiced Meg on
Family Guy?'.

of the question; notably, some semantics in the question will be missing from the

subgraph. Consider the question `Who �rst voiced Meg on Family Guy?' whose

Freebase graph representation is shown in Fig. 1.24. The answer subgraph accord-

ing to [Bordes et al., 2014a] will only contain an instantiation of the `core chain'

Family Guy
cast−−→ y

actor−−−→ x and the entities directly linked to x where x is instanti-

ated with a certain entity; the entityMeg Gri�n and the constraint argmin indicated

by `Meg' and `�rst' respectively in the sentence will be omitted in the subgraph rep-

resentation (if the entity Meg Gri�n is not connected with the instantiated entity

x). The mismatch between the semantics actually expressed and the KB subgraph

gives an unwanted bias to the system that can harm the performance.

1.3.2.2 Matching sentence semantic subgraphs

In [Yih et al., 2015], contrary to [Bordes et al., 2014a], the KB graph represents

reliably the semantics of the sentence (e.g. the Freebase graph representation of the

sentence `Who �rst voiced Meg on Family Guy?' is the one shown in Fig. 1.24),

which is similar to [Reddy et al., 2014]. However, instead of constructing the graph

from the semantics produced by a CCG parser like [Reddy et al., 2014], the authors

propose to directly look for the KB subgraph which maps best to the sentence, in a

spirit similar to [Bordes et al., 2014a].

The KB subgraph searching procedure in [Yih et al., 2015] consists of 3 stages

as shown in Fig. 1.25. First, an entity is identi�ed in the natural language question

using an entity recognizer designed for short and noisy text [Yang and Chang, 2016].

The 10 top ranked entities are kept for later search stages together with their entity

linking score. On the left of Fig. 1.25 shows the KB graph expanding from an empty

graph to a graph with one entity node during the �rst stage.

The second stage identi�es the `core chain' which is a chain graph starting from

48

1.3. New Challenges

Figure 1.25: The subgraph search procedure for mapping a natural language question into
a KB subgraph in [Yih et al., 2015].

the identi�ed entity node to the entity node being queried. To limit the search space,

like [Bordes et al., 2014a], the `core chain' is limited to contain no more than two

predicates. The middle of Fig. 1.25 shows the KB graph expanding from the entity

node `Family Guy' to graphs containing a core chain. Note that as the entity node is

given from the previous stage, only legitimate predicates are searched in this stage,

similar to the subgraph construction procedure in [Bordes et al., 2014a] or λ−DCS
tree construction procedure in [Berant et al., 2013].

To select the best `core chains' (i.e identifying the best sequences of predicates),

the authors propose to use a CNN architecture to map both the natural language

question and the `core chain' to an embedding space before calculating a matching

score between the two embeddings. The CNN architecture is shown in Fig. 1.26 and

applies to both the questions and the `core chains'. First, words are represented as a

sparse vector of letter-trigrams (xt → ft). Then convolutions are used to project the

words (represented by vectors of letter-trigrams) to a local feature vector (ft → ht),

followed by max pooling operation extracting the most salient local features to form

a global feature vector v. v is passed to an MLP (multilayer perceptron) to �nally

obtain the semantic feature y for either the question or the sequence of predicates.

Once the core chain is constructed, some constraints need to be added so that

the subgraph re�ects the whole semantics of the sentence and executes to a correct

answer. The authors propose to add constraints using simple rules. For example,

the argmin/argmax constraints are triggered if the sentence contains words such as

`�rst', `latest'.

As several candidates are kept at each stage, many subgraphs are produced after

the three stages; a log-linear ranker with features is used to choose the best KB

subgraph. To train the ranker and the CNN identifying the core chain, the authors

propose to �rst �nd the correct KB subgraphs for each question (which is found to

be feasible over Webquesions) and then use these subgraphs as supervised signals

for training. The whole system with three stages of search and the ranker is tested

49

1.3. New Challenges

Figure 1.26: The convolutional neural networks (CNN) used to score the match between
the question and the core chain (a sequence of predicates).

on Webquestions and achieves a F1 score 52.5, the best of all the systems we have

reviewed so far.

Remark Both [Bordes et al., 2014a] and [Yih et al., 2015] learn embeddings of

sentences and KB subgraphs for their QA systems with di�erent choices on architec-

tures. [Bordes et al., 2014a] learn the embedding of the sentence (or the subgraph)

based on the bags of words representation; [Yih et al., 2015] learn the embedding

based on letter-trigrams representation. The later one is more robust to spelling

errors. The architecture of [Yih et al., 2015] is also more deep with convolution and

max-pooling layers, possibly capturing more appropriate features to learn the scoring

function between the question and the KB subgraph.

In the later chapters (chapter 5,6), we will discuss our works amongst others on

constructing semantic parsers using Recurrent Neural Networks (RNNs). We (and

probably other authors) are inspired by the work [Sutskever et al., 2014] in the �eld

of machine translation where the authors propose to use RNNs to map a sentence in

the source language to a sentence in the target language. Some descriptions and use

cases of RNNs are discussed inside this thesis in Chapter 3 about neural networks.

50

Chapter 2

Automata and Grammars

Contents

2.1 Automata and Context-Free Grammars 51

2.2 Intersection between a WCFG and WFSA(s) 54

2.2.1 Intersecting a WFSA with a WCFG 55

2.1 Automata and Context-Free Grammars

In this section, we introduce the notions of �nite state automata (FSA), context free

grammars (CFG), and their weighted versions (WFSA,WCFG). These core concepts

will be used in later chapters. The operations over these objects (notably intersec-

tions) together with the associated algorithms will be described in the next section.

De�nition 2.1. A weighted �nite state automaton (WFSA) is represented formally

by a 6-tuple (Q,Σ, δ, i, f, ν), where:

Q is a �nite set of states,

Σ is a �nite set of symbols, called the alphabet of the automaton,

δ is the transition function, δ : Q× Σ→ Q,

i is the start state (i ∈ Q), the state of the automaton before any input has been

processed,

f is a set of states of Q (f ⊂ Q) called �nal states,

ν is the weight function, ν : δ → K where K is a semiring.

Semirings used in NLP applications include boolean semirings, log semirings and

tropical semirings. See Fig. 2.1 for some of their properties. We refer interested

readers to [Mohri, 2009] for detailed descriptions. WFSAs over boolean semirings

51

2.1. Automata and Context-Free Grammars

Figure 2.1: Some examples of semirings.

a:𝛿

.

.

.

b:1

c:1

0:1

Figure 2.2: A WFSA example with weight δ � 1.

have equivalent representations as non weighted FSAs. In the thesis, we mostly use

WFSAs with probability semirings.

Fig. 2.2 shows a WFSA example. The automaton has only one state that is both

initial (indicated by 0) and �nal (indicated by the double circle). The weights belong

to the probability semiring and are indicated after `:' on both transition arcs and

�nal states. This automaton generates sequences such as a, bc, etc. and associates a

weight with every sequence..

As most of the weights are 1, many sequences will be of weight 1 (weights are

combined through multiplication in the probability semiring, Fig. 2.1) with the ex-

ception of those sequences containing the symbol a. If a sequence contains k ≥ 1

instances of a, it will receive a weight of δk which is much smaller than 1. So this

automaton concisely expresses the belief that a sequence is unlikely to contain a

instances. In this thesis, we use automata to express beliefs that we have over LFs

in semantic parsing.

De�nition 2.2. A weighted context free grammar (WCFG) is de�ned by the 5-tuple

G = (V,Σ, R, S, µ) where:

52

2.1. Automata and Context-Free Grammars

V is a �nite set; each element v ∈ V is called a nonterminal (sometimes also

called syntactic category).

Σ is a �nite set of terminals, disjoint from V , which make up the actual content

of a sentence. The set of terminals is the alphabet of the language de�ned by the

grammar G.

R is a �nite relation, R ⊆ V × (V ∪Σ)∗, where the asterisk represents the Kleene

star operation. The members of R are called the rules or productions of the grammar.

S is the start symbol, used to represent the whole sentence. It must be an element

of V .

µ is the weight function, µ : R→ K where K is a semiring.

Non-weighted CFGs have equivalent representations as WCFGs over boolean

semirings. In the thesis, we use WCFGs over both boolean semirings and probability

semirings.

A WCFG provides a simple and mathematically precise mechanism for describing

the methods by which sentences are built from smaller components, capturing the

�compositional structure� of sentences. As an example, consider the following WCFG

containing four rules de�ning arithmetic expressions with weights speci�ed after `:':

(1) E→ E+E : 0.8

(2) E→ E ∗E : 0.9

(3) E→ (E) : 1

(4) E→ id : 1

Here, The only nonterminal isE (which is also the start symbol), the terminals are

+, ∗, (,) and id. Using this grammar, we can obtain complex arithmetic expresssions

such as (id+ id) ∗ id.
We can consider a derivation tree (DT) that transforms the start symbol into

this sentence. For each derivation tree (DT), the root is a rule identi�er associated

with the start symbol, all internal nodes are labelled also with rule identi�ers47 and

all leaves are labelled with terminals. For example, Fig. 2.3 shows the derivation tree

that generates the arithmetic expression (id+ id) ∗ id.
One can also associate a derivation sequence (DS) with the sentence which is a se-

quence of rules to transform the start symbol into the sentence. It can be easily seen

47In Fig. 2.3 rule identi�ers are indicated by indexed nonterminals.

53

2.2. Intersection between a WCFG and WFSA(s)

E(2)

*

E(4)

id

E(3)

()

E(1)

E(4) E(4)

+id id

Figure 2.3: The derivation tree producing the string (id+id)*id.

that if we construct a sequence of rules using the leftmost traversal of a derivation

tree, we obtain a DS. For example, the leftmost traversal of the tree in Fig. 2.3 cor-

responds to the derivation sequence: (2),(3),(1),(4),(4),(4). The weight associated to

this DS/DT is the multiplication of the weights for each rule: 0.9*1*0.8*1*1*1=0.72.

One can note that this simple WCFG always guarantees a balanced parenthesis as

the application of rule (3) implies that parentheses always come in pairs, something

that one cannot guarantee using a WFSA. In fact, WCFGs are strictly more powerful

than WFSAs and a proof for non weighted version (with CFG and FSA) can be found

in [Hopcroft et al., 2006].

2.2 Intersection between a WCFG and WFSA(s)

We will describe an intersection algorithm between WFSA(s) and WCFG in this

section. Two elements motivate us for introducing the algorithm. Firstly, such

algorithms are `historically' important for many computational linguistic tasks (i.e.

syntactic parsing, hierarchical machine translation [Chiang, 2005]). Secondly, the

symbolic models (i.e. based on WFSA(s) and WCFG) possess important `modularity

properties' which is a consequence of having e�cient intersection algorithms and

those properties are typically missing for recently more popular deep learning models.

Historical importance Intersection algorithms are closely linked to the problem

of syntactic parsing as noted by [Billot and Lang, 1989; Nederhof and Satta, 2003].

One can formally see the problem of syntactic parsing as intersection between a

54

2.2. Intersection between a WCFG and WFSA(s)

CFG and a `sentence FSA'.48 Furthermore, to model the preference amongst all the

possible parses according to the grammar, one needs to weight the FSA and the CFG

thus formally intersects a WFSA with a WCFG.

Intersection algorithms also play an important role in hierarchical machine trans-

lation [Chiang, 2005]. Under these translation models, a weighted SCFG (syn-

chronous CFG) is used to translate a source sentence into a target sentence. At

decoding time, given a source sentence, all possible target sentences according to the

SCFG form a WCFG. To choose the target sentence among all these possibilities,

one typically takes into account a language model by intersecting the WCFG with

the language model. As language models are often WFSAs (i.e. n-grams models),

the intersection operation is formally intersecting a WCFG and a WFSA as noted

by [Aziz et al., 2014].

Modularity properties The use of intersection algorithms permits a modular

design. For example, suppose one needs to produce a model producing sentences

taking into account several constraints (i.e word coming from a dictionary, sentence

being grammatically correct, etc.). Instead of building one single model at from

scratch, one can build much `smaller models' each taking into account one type of

constraints, which is arguably much easier; however, to solve the original task, one

has the problem of combining these `smaller models' through intersection, so this

modular design is feasible as long as e�cient intersection algorithms exist between

those `smaller models'.

One should remark that it is non trivial to ensure the existence of an e�cient

intersection algorithm between models and this property is indeed missing for many

learning devices. For example, one could try to implement the `smaller models' above

using neural networks instead of symbolic models. However, there are no obvious

ways to combine (intersect) the neural networks to form a new model taking into

account all the constraints.49

2.2.1 Intersecting a WFSA with a WCFG

Intersection between an FSA and a CFG is a CFG. The proof [Bar-Hillel et al.,

1961] relies on the construction of a CFG which represents the intersection. The

48The sentence FSA is a linear automaton having the initial state as the start of the sentence; at
each word it transits from one state to the next one till the end of the sentence, corresponding to
the �nal state.

49To combine neural networks, some researchers have proposed to approximate them using �nite
state machines (WFSAs) [Deoras et al., 2011].

55

2.2. Intersection between a WCFG and WFSA(s)

construction can be easily extended to the weighted cases [Nederhof and Satta, 2003]

(i.e a WFSA and a WCFG) that we will describe here.

Given inputs a WCFG G = (V,Σ, R, S, µ) and a WFSA M = (Q,Σ, δ, i, f, ν),50

the intersection between G and M results in a WCFG G∩ = (V∩,Σ, R∩, S∩, µ∩)

where V∩ = Q × (Σ ∪ V) × Q, S∩ = (i, S, f) and R∩ consists of the set of rules

obtained as follows:

• For each rule π = (A→ X1 . . . Xm) ∈ R, 51 m ≥ 0 and each sequence of states

r0 . . . rm ∈ Q, add the rule π∩ = ((r0, A, rm)→ (r0, X1, r1) . . . (rm−1, Xm, rm))

to R∩; for m = 0,52 let R∩ contain the rule π∩ = ((r0, A, r0) → ε) for all

r0 ∈ Q. In both cases, let µ∩(π∩) = µ(π).

• For each transition τ = (r
a−→ t) ∈ δ, let the rule π∩ = (r, a, t) → a be in R∩

and let µ∩(π∩) = ν(τ).

One can check that the resulting grammar G∩ represents all the sentences accepted

by both G andM . Furthermore, the weight for a sentence in G∩ is the multiplication

of its weights in G and M . Formal proof of correctness on this weighted intersection

algorithm can be found in [Nederhof and Satta, 2003].

However, the above intersection algorithm is too ine�cient to be useful in prac-

tice. For an automata M having n states and any rule π = (A → X1 . . . Xm) ∈ R,
the intersection algorithm described above constructs a G∩ producing nm+1 rules

out of the original rule π.53

The resulting G∩ contains many rules that are non-generating, meaning that no

terminal string can be derived from the nonterminal on the LHS of these rules. One

can use a bottom-up procedure to avoid generating these rules making the intersec-

tion algorithm less ine�cient and more useful in practice. The bottom-up procedure

that we will describe is an adaption of that proposed by [Nederhof and Satta, 2008]

and is related to the syntactic parsing algorithm by [Graham et al., 1980].

Before entering into the intersection algorithm, we introduce the dot notation:

given a production A → αβ ∈ R, the notation A → α · β represents a condition

50Note that without loss of generality, we suppose that G and M share the same set of terminals
Σ.

51Note that throughout the section, the Xi involved in the rule can be either terminals or non-
terminals.

52The cases m = 0 correspond to rules producing the empty string noted by A→ ε.
53To see the number of rules, one notes that the new rules are constructed by `inserting' states

between two consecutive Xi, Xi+1 or at the beginning or at the end of the rule (m+ 1 possibilities);
as this holds true for each state insertion, the number is nm+1.

56

2.2. Intersection between a WCFG and WFSA(s)

in which α has already been handled54 and β is expected. As we apply a dynamic

programming procedure (very similar to syntactic parsing) for the intersection, the

dot notation helps to record the current state for the rules (i.e. rules in the items

I and the agenda A in Fig. 2.4); in particular, it helps to distinguish two states

involving the same rule but that are not `handled' till the same position inside the

rule.

Fig. 2.4 describes the bottom up procedure for the intersection. For a state tran-

sition in the automata such as s
a:w′−−→ t ∈ δ, the w′ denotes the weight associated

with the transition; similarly, the w in A
w−→ α ∈ R denotes the weight of the rule.

Thus, compared to the bottom up procedure in [Nederhof and Satta, 2008], we in-

corporate the calculation of weights into our algorithm. Furthermore, our algorithm

explicitly outputs all the rules of the resulting WCFG (i.e R∩).

We will �rst give a high-level description of the algorithm in Fig. 2.4. In this

description, we will not make any distinction between elements in I and elements in

A; the distinction is only necessary at a later stage of the description.

Note that as in our previous algorithm, all the rules in the new grammar R∩
are generated by `indexing' rules in the original grammar R.55 The di�erence is

that now the algorithm will choose indexes that correspond to generating rules. To

do this, at the intial state, we have all the rules with the dot at the beginning of

each right-hand side. Then the algorithm advances by producing new dotted rules

(i.e by advancing the dots) at each iteration from the current dotted rules and the

nonterminals that are known to be generating (i.e N in Fig. 2.4); the algorithm stops

when no more dotted rules can be further deduced from all the current dotted rules

and the generating nonterminals. When the algorithm stops, R∩ will consist of the

set of all the rules with the dot situated at the end (or we can collect them during

each iteration as in our algorithm).

Now, let's consider how to produce new dotted rules from current dotted rules

and generating nonterminals. There are two ways:

• Given a dotted rule (r,A
w−→ α·Xγ, s) and knowing that (s,X, t) is a generating

nonterminal, one can produce a new dotted rule by advancing the dot: (r,A
w−→

α(s,X, t) · γ, t). This is shown in lines 22-25 in Fig. 2.4.

• Given a dotted rule where the dot is at the end of the rule (r,A
w−→ α·, s), one

can add the nonterminal (r,A, s) into the set of generating nonterminals N by

54`Handled' in the sense that all the nonterminals involved in α will be generating.
55Exceptions are the rules expanding the nonterminals in the form (s, a, t) where a is a terminal.

These rules are generated by examing the transitions in the automata; as they are all generating
by construction, we simply add them in our algorithm in Fig. 2.4 (line 10-12).

57

2.2. Intersection between a WCFG and WFSA(s)

main(): 1

𝑵 = ∅ {set of all generating terminals for 𝑁∩} 2

𝑰 = ∅ {multiset of passive items} 3

𝑨 = ∅ {multiset of active items to be processed} 4

𝐑∩ = ∅ {set of rules for the new grammar} 5

 6

for all 𝑠 ∈ 𝑄 : 7

for all (𝐴
𝑤
→ 𝛼) ∈ 𝑅 : 8

 𝑨 = 𝑨 ∪ {(𝑠, 𝐴
𝑤
→ ∙ 𝛼, 𝑠) } 9

for all (𝑠
𝑎:𝑤′

→ 𝑡) ∈ δ : 10

 add_symbol(𝑠, 𝑎, 𝑡) 11

 add_rule_terminal(𝑠
𝑎:𝑤′

→ 𝑡) 12

while 𝑨 ≠ ∅ : 13

 choose a rule {(𝑠, 𝐴
𝑤
→ 𝛼 ⋅ 𝛽, 𝑡)} from 𝑨 14

 𝑨 = 𝑨 − {(𝑠, 𝐴
𝑤
→ 𝛼 ⋅ 𝛽, 𝑡)} 15

add_item(𝑠, 𝐴
𝑤
→ 𝛼 ∙ 𝛽, 𝑡) 16

 17

add_item(𝑟, 𝐴
𝑤
→ 𝛼 ∙ 𝛽, 𝑠) : 18

if 𝛽 = 𝜖 : 19

 add_symbol(𝑟, 𝐴, 𝑠) 20

 add_rule_nonterminal(𝑟, 𝐴
𝑤
→ 𝛼, 𝑠) 21

else if 𝛽 = 𝑋 𝛾 : # X is either a terminal or a nonterminal 22

 𝑰 = 𝑰 ∪ {(𝑟, 𝐴
𝑤
→ 𝛼 ∙ 𝛽, 𝑠)} 23

 for all (𝑠, 𝑋, 𝑡) ∈ 𝑵 : 24

 𝑨 = 𝑨 ∪ {(𝑟, 𝐴
𝑤
→ 𝛼 (𝑠, 𝑋, 𝑡) ∙ 𝛾, 𝑡)} 25

 26

add_symbol(𝑠, 𝑋, 𝑡) : 27

 if (𝑠, 𝑋, 𝑡) ∉ 𝑵 : 28

 𝑵 = 𝑵 ∪ {(𝑠, 𝑋, 𝑡)} 29

 for all (𝑟, 𝐴
𝑤
→ 𝛼 ∙ 𝑋𝛽, 𝑠) ∈ 𝑰 : 30

 𝑨 = 𝑨 ∪ {(𝑟, 𝐴
𝑤
→ 𝛼 (𝑠, 𝑋, 𝑡) ∙ 𝛽, 𝑡) } 31

 32

add_rule_terminal(𝑠
𝑎:𝑤′

→ 𝑡) ∶ 33

 𝐑∩ = 𝐑∩ ∪ {((𝑠, 𝑎, 𝑡)
𝑤′

→ 𝑎)} 34

 35

add_rule_nonterminal(𝑟, 𝐴
𝑤
→ 𝛼, 𝑠) ∶ 36

 𝐑∩ = 𝐑∩ ∪ {((𝑟, 𝐴, 𝑠)
𝑤
→ 𝑎)} 37

Figure 2.4: The bottom up procedure of the intersection algorithm. Inputs are WCFG
G = (V,Σ, R, S, µ) and WFSA M = (Q,Σ, δ, i, f, ν).

58

2.2. Intersection between a WCFG and WFSA(s)

making N = N ∪{(r,A, s)}. Having new generating nonterminals (lines 19-21)

will further help to produce new dotted rules by advancing the dot.

To summarize this high-level description, to calculate the intersection between a

WFSA M and a WCFG G, one uses two ways described above to generate exhaus-

tively all the new dotted rules from the original rules dotted at the beginning and

the initial generating nonterminals (lines 10-12); after the exhaustive generation, the

rules of the new grammar consist of the dotted rules with the dot at the end.

Now to actually implement this idea, one needs to specify an order of generating

new dotted rules through a loop (lines 13-16).56 The dotted rules are now distin-

guished by either belonging to the items I or to the agenda A. I are the passive

dotted rules as at the beginning of each iteration, no more dotted rules can be further

deduced from {N, I} � they are all in {N, I,A}; on the contrary, A are the active

dotted rules that may generate new dotted rules with current {N, I}.
With this distinction, at each iteration, we pop out an element from A and obtain

either a dotted rule or a generating nonterminal and add it to the corresponding

groups (i.e N or I); then new dotted rules are produced from the updated {N, I}
and are added into A guaranteeing that all the dotted rules that can be deduced from

the current {N, I} are always in {N, I,A} after each iteration; this invariance in

particular guarantees that all the dotted rules will have been produced when the

loop is �nished57 (i.e. when no more elements can be popped from A).

The main loop of generating dotted rules is shown in lines 13-16 in Fig. 2.4; after

popping an element from A, it calls the procedure add_item which �rst either adds

a nonterminal in N (i.e β = ε) or adds a dotted rule in I (i.e. β = Xγ). In both

cases, new dotted rules will be generated from the updated {N, I} and will be added

into A. During the loop, a rule is added into R∩ (line 21) only when the nonterminal

on its LHS is known to be generating.

The way that our algorithm handles weights is very similar to [Nederhof and

Satta, 2003], as we have described at the beginning of this subsection. For rules

that are generated by indexing the rules in the original grammar (lines 36-37), their

weights remain unchanged; for rules that are added by inspecting the transition in

the automata (lines 33-34), their weights are the weights for the associated transition.

56Specifying the generation order can avoid in particular performing the same operations several
times.

57Dotted rules (r, A
w−→ α · β, t) are created from the rules in the original grammar (A

w−→ αβ) by
choosing r, t and the insertion place of the dot. As the number of choices for r, t and the insertion
place are all �nite, the number of all possible dotted rules is �nite, which guarantees that the loop
�nishes.

59

2.2. Intersection between a WCFG and WFSA(s)

Remark that the bottom up procedure described above eliminates non-generating

nonterminals but does not eliminate `non reachable' nonterminals. A nonterminal is

said to be `reachable' if a string involving that nonterminal can be derived from the

start symbol (i.e S in G = (V,Σ, R, S, µ)). A top down procedure can be applied

after the bottom up procedure [Nederhof and Satta, 2008] to e�ectively eliminate non

reachable nonterminals in the resulting intersected grammar. In practice, we use an

intersection algorithm adapted from the Earley parsing algorithm [Dyer, 2010] which

combines bottom up and top down elements.

A �nal remark concerns intersecting WFSA(s) and a WCFG. Till now, we have

focused on the intersection algorithm between one WFSA and a WCFG; as the result

of this intersection is still a WCFG, one can repeat the process to intersect several

WFSAs and a WCFG. However, as a much faster algorithm exists for intersecting

WFSAs which gives another WFSA,58 it may be preferable to �rst intersect the

WFSAs and then intersect the resulting WFSA with the WCFG.

58The library Openfst http://www.openfst.org implements such algorithms.

60

Chapter 3

Neural Networks

Contents

3.1 Multilayer Perceptrons 61

3.1.1 The Multilayer Perceptron model 61

3.1.2 Learning through BackPropagation 62

3.2 Recurrent Neural Networks 64

3.2.1 Recurrent Neural Network model 64

3.2.2 Training for RNNs . 68

3.3 Recurrent Neural Network Variants 69

3.3.1 Vanishing/exploding gradient problems 69

3.3.2 Leaky units . 69

3.3.3 Some remarks on LSTMs 70

3.1 Multilayer Perceptrons

3.1.1 The Multilayer Perceptron model

A Multilayer Perceptron (MLP) is a neural network that can map an input vector x

to an output vector y through a cascade of non-linear functions fi giving the following

equation between the input and the output:

y = fn(fn−1 . . . f1(x)).

61

3.1. Multilayer Perceptrons

Given an input vector z ∈ Rm1 , all the functions fi in the MLP take a particular form:

fi(z) = gi(Wi(z)).59 Wi ∈ Rm2×m1 is a matrix transforming the m1 dimensional

real-valued vector z into another m2 dimensional real-valued vector and gi is a non-

linear di�erentiable function applied to them2 dimensional real-valued output vector.

Some popular choices of gi for the intermediate layers (f1, f2, . . . , fn−1) are element-

wise sigmoid/tanh/relu.60 Note that in neural network terminology, we refer to the

function fi as the ith layer and say that the ith layer outputs a vector of dimension

m2; we refer to the number of layers in the neural network as its depth.

When the MLPs are used for multiclass classi�cation, the gn of the last layer is

generally a softmax function: gn(z)j = ezj∑K
k=1 e

zk
where z is the real-valued output

vector of the last layer (zj denotes the value of the jth coordinate in z) and K is its

dimension.

MLPs possess some mathematical properties that may be related to their good

performance in di�erent machine learning tasks. One of the properties is being `uni-

versal approximators', given by the universal approximation theorem. The theorem

states that an MLP can approximate any continuous function on a compact set of

Rn given enough neurons (i.e vector size of hidden layers). [Cybenko, 1989] proved

a �rst version of the theorem for sigmoid activation functions; the particular choice

of sigmoids was generalized later to a wider range of activation functions [Hornik,

1991].61

The theorem shows that the MLPs are expressive models. However, it does not

address the question of �nding parameters such that the MLP approximates well a

given continuous function.

3.1.2 Learning through BackPropagation

Now that we have speci�ed and parametrized our model as MLPs, we discuss the

learning procedure to choose parameters. In MLPs, the parameters to learn are the

weight matrices Wi for each layer. We suppose that we are in a supervised setting

59More precisely, fi(z) = gi(Wi(z) + bi) where bi is referred as the bias term; as one can always
extend Wn and x to integrate the bias, we omit it through the chapter for clarity.

60The relu operator is not di�erentiable at 0; however, all the presentations in this chapter can be
easily adapted to the cases where the operator is di�erentiable almost everywhere instead of being
di�erentiable. For clarity, we only discuss about di�erentiable cases.

61As both proofs only need to assume one single hidden layer for the MLPs to provide universal
approximators, no advantages are shown here for having multiple hidden layers. We do not know
of any formal proofs but there are many empirical results and intuitions [Bengio, 2009] related to
the advantage of using `deep' neural networks.

62

3.1. Multilayer Perceptrons

where an x in the training data is annotated with its correct one-hot vector y′62 for

the true label; we use softmax as the non-linear transformation for the last layer so

that our neural network outputs a probability distribution over all the labels.

Before starting the learning procedure, we need to specify our loss function. A

loss function for us is a non-negative function f(y, y′) which re�ects our belief about

good models; y′ is the one-hot vector for the true label and y is our MLP output.

As our MLP predicts a probability distribution y on each input data x, the typical

loss that we use is the cross-entropy loss: f(y, y′) = −〈y′, log y〉 = −
∑

i y
′
i log yi

where index i iterates through the coordinates of y and y′; the cross entropy loss is

minimized when y equals to y′ and intuitively the loss is smaller when y is closer

to y′. During our training procedure (i.e learning of parameters), we will tune our

parameters to minimize the loss over the training data in the hope that the model

may perform well on unseen test data.

To minimize the loss function, �rst note that if it is di�erentiable on the MLP

output y,63 then it is also di�erentiable on all the parameters of the neural network

(weight matrices Wi of each layer) as the output vectors of each layer are di�eren-

tiable over their corresponding weight matrices and composition over di�erentiable

functions is di�erentiable.

As the MLP parameters are all di�erentiable for the loss function, a natural idea

to minimize the loss function is to apply gradient descent algorithm (or its stochastic

version) iteratively [Bottou, 2010].

As all the gradients are well de�ned, one can simply calculate each of them

independently at every iteration. However, we shall see that many calculations are

redundant and BackPropagation (BP) is an especially e�cient algorithm to calculate

the gradients of all the parameters of the model by exploiting this redundancy. We

will use a slightly abusive notation dv
du to denote derivatives, gradients or jacobians

depending on the dimensions of v and u. For example, d(f(y,y′))
dWi

is a gradient vector

containing all the partial derivatives of the form ∂(f(y,y′))
∂Wi[r,c]

whereWi[r, c] is the element

in row r and column c ofWi;
dy
dWi

is a jacobian matrix whose column j is the gradient

of coordinate yj over Wi:
dyj
dWi

.

To illustrate BP, suppose that we have an MLP of depth n. Let's note the

intermediate output vector after the input x to be y1, the output vector after y1 to

be y2, ..., and yn = y (i.e. we note f1(x) = y1, f2(f1(x)) = y2, etc.) Then, one can

62The one-hot vector y′ for the true label is a vector �lled with a 1 for the true label and 0s for
the other labels.

63This is the case for the cross-entropy loss, the log loss and many other losses used in machine
learning.

63

3.2. Recurrent Neural Networks

expand the gradients of Wi according to the chain rule: d(f(y,y′))
d(Wi)

= d(f(y,y′))
dyi

dyi
d(Wi)

.

The �rst term d(f(y,y′))
dyi

can be further expanded using the chain rule across outputs

of di�erent layers in the neural network: d(f(y,y′))
dyi

= d(f(y,y′))
dy

dy
dyn−1

. . . dyi+1

dyi
.

One useful remark is that d(f(y,y′))
dyi

also equals d(f(y,y′))
dyi+1

dyi+1

dyi
and the quantity

d(f(y,y′))
dyi+1

is needed to calculate the gradient on Wi+1 as d(f(y,y′))
d(Wi+1) = d(f(y,y′))

dyi+1

dyi+1

d(Wi+1) .

Thus, to save computation time to calculate the gradients on layer i, one can use the

quantity d(f(y,y′))
dyi+1

calculated at the layer i+ 1.

This idea gives the BP algorithm where one starts by calculating the gradient on

the output (yn) of last layer, then descends layer by layer to calculate the gradients

on the output vectors (yi) at each layer, each time using the calculation performed

by the previous step; once the gradient over an output vector (yi) is calculated, it

can be used to calculate the gradient over the parameters (Wi) of that layer.

Remark One can also think of algorithms exploiting the calculation redundancy

by using `forward propagation'. The fact that backpropagation is used when training

MLPs for label predictions is because the dimension of f(y, y′) (which is 1) is much

smaller than the dimension of Wi ∈ Rm2×m1 (which is m2×m1). In this case, it can

be shown that backpropagation is more e�cient than forward propagation [Baydin

et al., 2015].

3.2 Recurrent Neural Networks

3.2.1 Recurrent Neural Network model

To introduce recurrent neural networks (RNNs), let's consider the task of language

modeling. A language model assigns a probability distribution P over all sequences

of words (i.e sentences) w1, . . . , wm.

To estimate the distribution P , a natural way to tackle the problem is to use

the Markov assumption. More precisely, for all words wi in the sentence w1, . . . , wm,

we suppose that P (wi|w1, . . . , wi−1) = P (wi|wi−n, . . . , wi−1); in other words, the

probability of the current word depends only on the n previous words which we call

the `n-gram pre�x', an assumption that underlies the traditional n-gram models.

However, natural languages often exhibit long range dependencies over the words,

which motivates the construction of a model being able to handle a long pre�x (i.e

a `large n-gram pre�x'); traditional n-gram models cannot handle large n well due

to data sparsity: larger n implies less data to estimate the conditional probabilities.

For example, suppose that we have a language of vocabulary size |V |. For traditional

64

3.2. Recurrent Neural Networks

n-gram models which estimate each P (wi|wi−n, . . . , wi−1) by counting occurrences

in the dataset, if we suppose a model with pre�x length 0, we just need to estimate

the probability of occurrence for each word, so there are |V | parameters to estimate;

if we suppose a model with pre�x length n, there are |V |n variations for the pre�x;

as each pre�x can be followed by |V | possible words, there are |V |n+1 parameters

to estimate which is too di�cult for a large n as we have only a corpus of limited

length.

RNNs are models that can in theory handle a pre�x of any length without suf-

fering such data sparsity problems; the main idea is to use parameter sharing to

pass both long range and short range information. In particular, RNNs do not use

additional parameters for handling long pre�xes inside the model; the number of

parameters to estimate for an RNN no more depends on its speci�ed pre�x length.

Parameter sharing implies that when an RNN traverses a pre�x, at each word (or

each step) it produces another state (hidden vector) using the same function (i.e f

in the following equation) applying to the current word and the current state, giving

the following recurrence over states:

ht = f(ht−1, xt, θ),

where ht is the state (hidden vector) at time t; xt is the input (input word wt in our

language modeling example) received at time t and θ denotes the parameters of our

RNN.

To further specify the model, the following equation provides a simple parametriza-

tion for the function f :

ht = tanh(Wht−1 + Uxt).

The above parametrization uses an input-to-hidden weight matrix U and a hidden-

to-hidden weight matrix W .

To make the RNN capable of predicting a sequence of discrete words, one can add

a hidden-to-output weight matrix V and then use the softmax function to predict

a probability distribution over all the vocabulary ŷt = softmax(V ht)64. Fig. 3.1

illustrates this RNN architecture.

The recurrence in RNNs gives the model the theoretical power of being universal

in the sense that any function computable by a Turing machine can be computed

by such a recurrent neural network of a �nite size. The proof [Siegelmann and

Sontag, 1991] relies on using a theoretical RNN to simulate an unbounded stack

64Note the di�erence between ŷt and yt: ŷt is the output of the RNN while yt in Fig. 3.1 is the
target value at t.

65

3.2. Recurrent Neural Networks

Figure 3.1: RNN computational graph that maps an input sequence x to a corresponding
sequence of output o values. L stands for the loss computation, which computes ŷ =
softmax(o) before comparing this with target y. The RNN has input-to-hidden connections
parametrized by a weight matrix U , hidden-to-hidden recurrent connections parametrized
by a weight matrix W , and hidden-to-output connections parametrized by a weight matrix
V . On the left we draw the RNN with recurrent connections that we unfold on the right.
Figure taken from [Goodfellow et al., 2016].

by representing its activations and weights with rational numbers of unbounded

precision. In practice, implementations use �oating-point representations of limited

precision and therefore are not Turing-complete.

Language modeling application We can now describe how to use a trained

RNN to generate texts with a probability score. For the input at each step i, we

let xi = ỹi−1
65 in this case where ỹi−1 is sampled from the distribution ŷi−1 cal-

culated by the RNN. At time t, the model calculates a hidden state ht based on

the pre�x ỹ1, . . . , ỹt−1 it has generated itself;66 the predicted probability distribu-

tion for the current word at step t can then be calculated using the hidden state ht:

ŷt = softmax(V ht) according to our model. One can sample from this distribution

to choose a word ỹt and continue generating texts using the same mechanism. When

a sentence is �nished generating, the associated score is the product of the sampling

probabilities ỹi for all i in the sentence.

65The beginning of the text x1 can also be handled by the same RNN but need some special
treatment [Goodfellow et al., 2016].

66More precisely, the pre�x is sampled from the probability distribution that the RNN predicts
at each time step.

66

3.2. Recurrent Neural Networks

Figure 3.2: An RNN that generates a distribution over sequences Y conditioned on a
�xed-length vector input c. Figure taken from [Goodfellow et al., 2016].

Other NLP tasks as conditional language modeling Many NLP tasks

can be seen as generating text based on some conditions. For example, machine

translation can be seen as generating a text in the target language based on a sentence

in the source language; natural language generation can be seen as generating a target

text based on some meaning representation. We describe in this paragraph how to

use one particular RNN architecture to generate a text based on some condition.

Our architecture supposes �rst that the condition is modeled by a real-valued

vector c. One can then integrate c into the recurrence model:

ht = f(ht−1, xt, c, θ).

Fig. 3.2 illustrates the architecture; the interaction between the input vector c and

each hidden unit vector ht is parametrized by a newly introduced weight matrix R

that was absent from our previous model. The product Rc is added as an additional

input to the hidden units at every time step allowing the RNN to take into account

the condition information. The following equation shows a parametrization of the

model:

ht = tanh(Wht−1 + Uxt +Rc).

67

3.2. Recurrent Neural Networks

3.2.2 Training for RNNs

We now discuss the training (learning of parameters) for RNNs. For a guiding ex-

ample, we will use the RNN architecture shown in Fig. 3.1 to address the language

modeling task; other `conditional language modeling' tasks can be trained using sim-

ilar algorithms. Given a sentence w1, . . . , wm, we have according to the probability

chain rule:

P (w1, . . . , wm) =
m∏
i=1

P (wi|w1, . . . , wi−1),

which decomposes the probability over sequences into a product of probabilities over

words (or equivalently, sum of probabilities in log). Using this decomposition, in-

stead of minimizing the loss over the whole sequence, one can minimize the loss over

the prediction of each word. More precisely, for each step i, our model takes as input

the pre�x y1, . . . , yi−1 given in the training corpus and tries to predict the target

word yi.67

The prediction of each word is then a multiclass classi�cation task that we have

discussed in the section about MLPs; similar to MLPs, the training over RNN pa-

rameters also uses the idea of BackPropagation (BP) with some modi�cations. To

calculate the gradient of parameters for the loss, one can unfold n times the RNN

the way we show on the right of Fig. 3.1.68 After the unfolding procedure, the RNN

looks exactly like an MLP of n+1 layers with the di�erence that 1) each layer receives

an extra input word (i.e. wi's)69 2) RNN parameters (e.g the hidden layer transition

function parametersW) are shared across all layers. To tackle the problem of shared

parameters, one needs to apply a generalized BP (see section 6.5.6 in [Goodfellow

et al., 2016]) to the MLP unfolded from the RNN .

The BP algorithm for training RNNs is commonly called BPTT for BackPropaga-

tion Through Time as the algorithm involves unfolding the RNN by several previous

steps and calculating the gradients over those steps.

67When minimizing loss over words, the model always gets a `correct' pre�x y1, . . . , yi−1 during
training which is no more the case at test time, which creates unwanted asymmetry between training
and test; this is a general problem for `teacher forcing' training techniques and we refer interested
readers on this topic to section 10.2.1 in [Goodfellow et al., 2016].

68n can be regarded as a hyperparameter of the model specifying the number of steps back in
RNN that one wants to apply Backpropagation.

69One can note that the extra input does not complicate the gradient calculation.

68

3.3. Recurrent Neural Network Variants

3.3 Recurrent Neural Network Variants

3.3.1 Vanishing/exploding gradient problems

The RNNs are designed to be expressive models that are able to model long range

dependencies. However, a problem of �exploding or vanishing gradients� [Hochreiter,

1991] appears when using BPTT to train RNNs. More precisely, when a gradient

backpropagates to the nth previous layer through unfolding and when n is large

enough, the norm of the gradient can be either too big (exploding) or too small

(vanishing); the exploding gradients will harm the model performance by actually

ignoring previous training steps and the vanishing gradients imply that the model

does not take into account long range dependencies during training. In this subsec-

tion, we will brie�y describe the problem.

If we ignore the tanh activation function in the equation ht = tanh(Wht−1+Uxt),

the recurrence between the hidden states resembles matrix multiplication (ht =

Wht−1) with some `input perturbations'. Suppose that the matrix W admits an

eigendecomposition, so W = QΣQ−1 where Σ is a diagonal matrix �lled with eigen-

values and Q is invertible. Then running the RNN n steps gives:

hn = QΣnQ−1h0.

For the eigenvalues larger than 1, the power of n will make those values explode;

in these circumstances, any change of h0 in the direction given by the associated

eigenvector will be much ampli�ed in hn, giving an exploding gradient. On the other

hand, for eigenvalues smaller than 1, any change of h0 in the corresponding eigen-

vector direction will only cause a small change on hn, giving a vanishing gradient.

Now let's examine the e�ect of adding a non-linear function such as tanh after

each matrix application W . The gradient of tanh is bounded by 1 and goes to zero

at in�nity. In fact, the gradient goes to zero quickly and the norm is less than 0.5

in the interval [−∞, 1] and the interval [1,∞]. Thus, adding this non-linearity will

decrease (sometimes signi�cantly) the gradient norm compared to the simpli�ed case

discussed above. As a consequence, the gradient backpropagated over a long range is

now more likely to vanish than to explode after adding the non-linearity application.

3.3.2 Leaky units

There are several ways to make changes over the simple RNN model in Fig. 3.1 to

take into account long range dependencies (by making sure that the gradient is able

to backpropagate through a long range). Section 10.9 in [Goodfellow et al., 2016]

69

3.3. Recurrent Neural Network Variants

gives a review of methods proposed in the literature. We here focus on one particular

solution: Leaky units; introducing leaky units helps us gain some insights on more

complex RNN design such as LSTM (Long Short Term Memory) [Hochreiter and

Schmidhuber, 1997] that we will discuss later in this section.

Suppose that apart from the recurrence on hidden states, we have another state

c called �memory state� (or leaky unit) which also obeys some recurrence:

ct = αct−1 + (1− α)vt,

where the parameter α is between 0 and �xed prior to training, and v is some extra

input. In the above equation, when α is near one, the current memory state will

be in�uenced by another memory state from many previous steps back, and we say

that the memory state remembers information from the past for a long time; on the

other hand, when α is near 0, the information from the past is rapidly discarded.

[Mozer, 1992] were the �rst to the best of our knowledge to propose the above

memory state and integrate it into an RNN where one replaces v by the hidden state

of an RNN:

ct = αct−1 + (1− α)ht

ht = tanh(Wht−1 + Uxt).

At test time, c can used for predictions of sequences. One notices that ct is

modeled as a compromise between ct−1 and h: on the one hand, when α is near

1, information can be kept through many steps in the memory state c, which is

useful when the current prediction depends on the long range information; on the

other hand, when α is near 0, more `recent' information in h is used for predictions.

[Mozer, 1992] shows that with well chosen α, the proposed architecture is able to

better capture long range information compared to an RNN without memory states.

3.3.3 Some remarks on LSTMs

Leaky units allow an RNN to accumulate information (such as evidence for a par-

ticular feature) over a long range. However, once that information has been used,

it might be also useful for the RNN to forget that information. For example, if a

sequence is made of independent subsequences, then we may want to accumulate

evidence inside each subsequence but forget the evidence at the end of each subse-

quence; if we choose to implement this mechanism with an RNN with leaky units, it

means that we want to make α be near 1 inside each subsequence, but almost drop

70

3.3. Recurrent Neural Network Variants

to near 0 when the RNN begins processing another subsequence. LSTMs [Hochreiter

and Schmidhuber, 1997] are RNNs that incorporate the idea of using memory cells

that adapt the coe�cient α according to the context. Below are the equations that

describe an LSTM:

ft = σ(Wfxt + Ufht−1)

it = σ(Wixt + Uiht−1)

ot = σ(Woxt + Uoht−1)

ct = ft ◦ ct−1 + it ◦ tanh(Wcxt + Ucht−1)

ht = ot ◦ tanh(ct)

In the equations above, σ is the sigmoid function which is applied to its input in

an elementwise way; ◦ stands for elementwise multiplication; as in other sections

of the chapter, we omit the bias term in the equations for clarity. x1, . . . , xn is

the input sequence; the LSTM outputs a sequence of hidden vectors h1, . . . , hn.

Wf ,Wi,Wo,Wc, Uf , Ui, Uo, Uc are parameter matrices to be learned.

The ft, it, ot, varying between 0 and 1, are called forget gate, input gate and

output gate respectively. These gates control the information �owing into the mem-

ory state (ct) and output state (ht). For example, the update on the memory state

ct is written as ct = ft ◦ ct−1 + it ◦ tanh(Wcxt + Ucht−1) where the update is in�u-

enced by the forget gate ft and the input gate it. When ft is near 1, most of the

information in the previous memory state ct−1 will be copied to ct; when ft is near 0,

the information in ct−1 will be mostly forgot. Similarly, when it is near 1, the recent

information (captured by tanh(Wcxt + Ucht−1)) will be mostly copied contrary to

the case where the information is mostly discarded with it near 0.

One should also notice the similarity between the recurrence in ct and the leaky

units. The forget gate ft plays the role of α in the leaky units to control the �ow

of long range information. As ft = σ(Wfxt + Ufht−1) which is between 0 and 1

and depends on the input xt, the LSTM has the possibility to learn how to choose

di�erent values of ft depending on the input at di�erent steps t.

The LSTMs have been shown to learn long-term dependencies more easily than

the simple recurrent architectures and have been very successful in many NLP ap-

plications such as machine translation [Sutskever et al., 2014], natural language gen-

eration [Wen et al., 2015] and syntactic parsing [Vinyals et al., 2014], to name just

a few. We will use LSTMs as an important component for our semantic parsing

systems in the later chapters.

71

Part II

Contributions

72

Chapter 4

Orthogonal Embeddings for the

Semantic Parsing of Simple

Queries

Contents

4.1 Introduction . 73

4.2 The ReVerb Question Answering Task 75

4.3 Embedding model . 75

4.3.1 Scoring function . 75

4.3.2 Inference . 76

4.3.3 Training . 76

4.3.4 Enforcing Orthogonal Embeddings 77

4.4 Experiments . 78

4.4.1 Toy example . 78

4.4.2 Wikianswers . 79

4.5 Related Work . 79

4.6 Conclusion . 81

4.1 Introduction

In this chapter, we consider a `simple' semantic parsing task by focusing on the

Wikianswers [Fader et al., 2013] dataset where the answers to the user query can be

found in the Reverb [Fader et al., 2011] knowledge base (KB). In the Wikianswers

73

4.1. Introduction

dataset, the underlying semantics is very simple: just one single triple (e1, r, e2)

involving two entities (e1, e2) and one relation (r). However, the task remains chal-

lenging due to the large variety of lexicalizations for the same semantics.

We follow the approach of Bordes et al. [2014b] which learns the embeddings of

words and KB elements. They model the semantics of natural language sentences and

KB triples as the sum of the embeddings of the associated words and KB elements

respectively. Then a scoring function involving the sentence embedding and the triple

embedding is learned so that for a given natural language sentence the correct triple

achieves a high score. We are particularly interested in this approach as it is robust to

syntax errors that impact the performance of more traditional semantic parsers. For

example, Reddy et al. [2014] propose to use a CCG parser [Clark and Curran, 2007]

to construct their model and achieve good results; however, for the WebQuestions

dataset [Berant et al., 2013], the authors observe that 25% of the system failures are

due to the fact that the sentence cannot be parsed by the CCG parser. The situation

is worse for more simple grammars, Berant et al. [2013] manually write a grammar

to parse the questions in the WebQuestions dataset, however, this simple grammar

seems to be able to parse no more than half of the questions.70

In our work, we push the results of Bordes et .al [2014b] further when relying

only on the KB to create training data71. Our contribution is to introduce a new

orthogonality regularizer which distinguishes entities from relations. We also inves-

tigate the tradeo� captured by the orthogonality constraints. With a toy example in

section 4.4, we show that if the predictions of entities and relations are independent

of each other given the input question, orthogonal embeddings we propose allow to

better learn to answer of these questions.

The orthogonality constraint in the context of question answering is new, al-

though it has been successfully used in other contexts such as topic modelling [Yao

et al., 2014]. Like [Bordes et al., 2014b], we use almost no linguistic features such as

POS tagging, parsing, etc.

70In their experiments, authors report that if they let the grammar generate the 200 most probable
parses given a sentence (beam size), only in 40% cases one of the parse may correspond to a parse
whose execution gives the correct answer. (oracle accuracy)

71Bordes et .al [2014b] use prede�ned templates to create (q, a) pairs from KB; we adopt the same
procedure in this work.

74

4.2. The ReVerb Question Answering Task

4.2 The ReVerb Question Answering Task

The ReVerb question answering task was �rst introduced in [Fader et al., 2013] as

follows. Given a large RDF KB and a natural language (NL) question whose answer

is given by a triple contained in that KB, the task is to �nd a correct triple. For

example, a correct answer to the NL question �What is the main language in Hong

Kong ?� would be the KB triple (cantonese.e, be-major-language-in.r, hong-kong.e).

RDF triples are assertions of the form (e1, r, e2) where r is a binary relation from

some vocabulary R and e1, e2 are entities from a vocabulary E.

The KB used is ReVerb72, a publicly available set of 15 million extractions [Fader

et al., 2011] de�ned over a vocabulary of approximately 600K relations and 3M

entities. The test set used for evaluation consists of 698 questions extracted from

the website Wikianswers, many of which involve paraphrases.

4.3 Embedding model

Word embeddings are generally learned [Deerwester et al., 1990; Mikolov et al.,

2013b; Lebret and Collobert, 2015; Faruqui et al., 2014] such that words with similar

context will naturally share similar embeddings as measured for instance by cosine

similarity. The context are often words that co-occur in some �xed window with the

word in question.

The word embeddings learned in [Bordes et al., 2014b] encode a di�erent context

(arguably more suited for QA tasks) which are all the triple-answers co-occurred with

the word as we shall see in subsection 4.3.1. While those embeddings are probably

better for QA tasks, we �nd that they do not re�ect all the prior knowledge we have

for the task. Notably the embeddings for elements in answer triples do not encode

the information whether it is an entity or a relation. We propose in subsection

4.3.4 to incorporate those prior knowledge using a novel regularizer � orthogonality

regularizer which favors entity embeddings orthogonal to relation embeddings.

4.3.1 Scoring function

The model learns the embedding of each word and KB element by trying to score the

correct answers highest.73 Mathematically, let q be the query in natural language,

and a be the answer-triple to align. Denote the total number of words as Nw and

72http://reverb.cs.washington.edu
73The model and training/inference procedures are similar to [Bordes et al., 2014a] that we have

discussed in Chapter 1 (1.3.2.1).

75

4.3. Embedding model

1. Sample a positive training pair (qi, ai) from D.
2. Create a corrupted triple a′i
3. If S(qi, ai)− S(qi, a

′
i) < 0.1 :

make a stochastic gradient ascent on S(qi, ai)− S(qi, a
′
i)− λ|E.R|

4. Normalize the embedding vector

Algorithm 1: Training with orthogonality regularizer

the number of KB elements as Nkb. Then denote by φ(q) ∈ {0, 1}Nw the 1-hot

representation indicating the presence or absence of words in the query. Similarly

we denote the sparse representation on the KB side as ψ(a). Let M ∈ Rd×Nw be

the embedding matrix for words and K ∈ Rd×Nkb be the embedding matrix for the

elements in the KB. d is the low dimension chosen by the user.

The embedding of the sentence is then calculated as M φ(q) and similarly the

embedding of the answer-triple as K ψ(a). We can score the matching of these

embeddings:

S(q, a) = (M φ(q))>(K ψ(a))

which is the dot product between the embedding of the sentence and the embedding

of the triple. The model is introduced in [Bordes et al., 2014b] and we use the same

scoring function. Note that the model actually sums up each word embedding to

form the embedding of the sentence.74

4.3.2 Inference

The inference procedure is straightforward. Given a question q and a set of possible

answer triples noted A(q), the model predicts the answer by returning the triple with

the highest score:

a′ = argmaxa∈A(q)S(q, a)

4.3.3 Training

Originally in [Bordes et al., 2014b], given a question to be answered, training is

performed by imposing a margin-constraint between the correct answer and negative

ones. More precisely, note a′ a negative answer to the question q (the correct answer

to q being a). Then for each question answer pair, the system tries to maximize the

following function by performing a gradient ascent step:

74We can see here that each word will encode information from triple answers if we use a gradient-
like algorithm to maximize the scoring function. In fact, the gradient received by each word for a
certain (q, a) pair will be exactly K ψ(a).

76

4.3. Embedding model

min(ε, S(q, a)− S(q, a′))

with ε the margin set to 0.1. In addition, the norms of columns in M and K are

constrained to be inferior to 1. The training is done in a stochastic way by randomly

selecting a question answer pair at each step. For each gradient step, the step size

is calculated using Adagrad [Duchi et al., 2011]. For a given (q, a) pair, the negative

example is created by randomly replacing each element of (e1, r, e2) by another one

in the KB with probability 2/3.

4.3.4 Enforcing Orthogonal Embeddings

In this chapter, we are especially interested in the additional assumptions we can

make on the model in order to cope with data sparsity. Indeed, when the number of

training data supporting the computation of embeddings is small, embedding mod-

els are brittle and can lead to disappointing results. We noticed that one important

assumption that is not discussed in the basic approach is that the embedding space

is the same for relations and entities. That approach has a tendency to learn similar

embeddings for entities and relations, even if they have di�erent meanings. Intu-

itively, we would like to balance that tendency by a �prior knowledge� preference

towards choosing embeddings of entities and relations which are orthogonal to each

other.

To justify this assumption, consider a simple case where the underlying semantics

is (e, r) as in the sentence �John eats�. We will use the same letters e and r to indicate

both an entity or relation words and their corresponding embeddings. In [Bordes et

al., 2014b], the embedding of the sentence semantics is then calculated as e + r for

this very simple case.

Now suppose that ∀e′ 6= e, ||e − e′||2 ≥ ε (i.e John is di�erent from Mary with

margin ε) and that the same kind of constraints also holds for relations. However,

even when these constraints are satis�ed, it is not guaranteed that ||e+r−e′−r′||2 ≥ ε,
which means that the model may still get confused on the whole semantics even if

each part is clear.

One obvious and linguistically plausible solution is to say that entities and re-

lations lie in orthogonal spaces. Indeed, if relations and entities are orthogonal

(∀r, e (r ⊥ e)), then if two entities e, e′ and two relations r, r′ are distinct (i.e.,

||e − e′||22 ≥ ε and ||r − r′||22 ≥ ε), it follows that ||e + r − e′ − r′||22 = ||e − e′||22 +

|||r − r′||22 ≥ 2ε by Pythagorean theorem. That is, two sentences involving distinct

entities and/or relations will have di�erent representations in the embedding space.

77

4.4. Experiments

In real problems, however, posing a hard orthogonality constraint largely re-

duces the model's expressive power75, so we decide to add it as a regularizer. More

concretely, let the correct triple be (e1, r, e2) and the negative one be (e′1, r
′, e′2).

Consider that we are in a case not satisfying the margin constraint, then we will

try to maximize the following regularized function S(q, a)−S(q, a′)− λ|E.R| with a

gradient step. The regularizer |E.R| = |e1.r| + |e2.r| + |e′1.r′| + |e′2.r′| is minimized

when entities and relations live in orthogonal space. Algorithm 1 shows the whole

training procedure; the regularization parameter λ is chosen via an automatically

constructed development set for which we randomly selected 1/2000 of all the triples

in the KB and generate associated questions. We discard these triples from training

and choose the λ value based on the score on the development set. The λ value is

by this means set to 0.01 with λ in {0.5,0.1,0.05,0.01,0.005,0.001}. Once the λ value

is chosen, we retrain the whole system.

4.4 Experiments

4.4.1 Toy example

In this section, we illustrate the bene�ts of orthogonality via a toy example. We

construct a KB containing 50 entities (E) and 50 relations (R) then generate all their

cross products obtaining 2500 fact pairs. In consequence the entities and relations

are independent.

For every ei ∈ E, we suppose that there is a single word lexicalizing the entity

noted �ei�. Similarly, we note the lexicalization of rj �rj�. We separate these 2500

pairs into training (2450) and test (50). Notice that similar to Wikianswers, this toy

dataset involves KB entities and relations whose type is known a priori.

The training corpus is built using one simple generation rule : (ei, rj)→ �ei rj�.

Negative examples are created by replacing with probability 1/2 both entity and

relation with another one. We embed all the words and KB symbols in a space of 20

dimensions. We compare the model [Bordes et al., 2014b] with the model where we

enforce E and R (and also their lexicalizations �E� and �R�) to be orthogonal. This

means that words or KB symbols in fact live in an embedding space of dimension

10.

At test time, for a given sentence �ei rj�, a set of (e, r) pairs is ranked and we

compute the proportion of cases where the �rst ranked pair is correct. Table 4.1 shows

the results for both systems on two con�gurations: a con�guration (Accuracy(1))

75Especially, if the embeddings are orthogonal between entities and relations, the knowledge of a
given entity can not help to infer the relation and vice versa.

78

4.5. Related Work

Model Accuracy (1) Accuracy (2)

Embedding 76% 54%

Ortho_Embedding 90% 68%

Table 4.1: Experimental results on toy example.

Method Prec Recall F1 MAP

Embedding 0.60 0.60 0.60 0.34

Ortho_Embedding 0.63 0.63 0.63 0.36

Table 4.2: Performance for re-ranking question answer pairs of test set for di�erent systems
on Wikianswers

where the number of pairs to be ranked is 1250 and another (Accuracy(2)) with 2500

pairs.76 In both cases, imposing the orthogonality constraint improves performance

by a large margin.

4.4.2 Wikianswers

Wikianswers contains a set of possible triples for each question and we re-rank these

triples to report our system's performance. This is the �re-ranking� setting used

in [Bordes et al., 2014b].

Table 4.2 shows that our technique improves the performance also on the larger,

non-synthetic, Wikianswers dataset provided by Fader [2013] over the Bordes [2014b]'s

method.77 In addition, Fig. 4.1 shows some examples where the two systems di�er

and where the orthogonality regularized embeddings seem to better support the

identi�cation of similar relations. For instance, �is the argument on� is mapped to

support.r rather than be-type-of.r and �is the religious celebration of� to be-most-

important-holiday.r rather then be-all-about.r.

4.5 Related Work

Fader et al. [2013] present one of the �rst approaches for dealing with open domain

question answering. The idea is to use certain templates (e.g. `what is the r of

e ?') where r is a relation and e is an entity lexicalized that will be by their KB

mentions. A semantic parsing system can be constructed by mapping questions to

these templates through exact string matching (e.g., `what is the population of China'

76In Accuracy(1) con�guration, we make sure that the correct answer is included.
77The scores are taken from [Bordes et al., 2014b] for which we have reimplemented and con�rmed

the results.

79

4.5. Related Work

Sentence: What is the argument on gun control ?
Embedding: (short-gun.e be-type-of.r gun.e)
Ortho_Embedding: (giuliani.e support.r gun-control.e)

Sentence: What year did minnesota become part of US ?
Embedding: (minnesota.e become-state-on.r may-11-1858.e)
Ortho_Embedding: (minnesota.e be-part-of.r united-states.e)

Sentence: What is the religious celebration of christians ?
Embedding: (christian.e be-all-about.r original-sin.e)
Ortho_Embedding: (easter.e be-most-important-holiday.r christian.e)

Sentence: What do cassava come from ?
Embedding: (cassava.e be-source-of.r security.e)
Ortho_Embedding: (cassava.e be-grow-in.r africa.e)

Figure 4.1: Some examples for which our system di�ers from [Bordes et al., 2014b]. Gold
standard answer triples are marked in bold.

matches the above template lexicalized by the relation `population' and the entity

`china'). However, the system will fail against minor changes of the above sentence

(e.g. `what is the number of habitants in China') making it of high precision but of

low recall.

To improve the recall, the authors propose to use a paraphrase corpus. The

sentences that match exactly to lexicalized templates in the paraphrase corpus are

treated as annotated together with their paraphrases. Then an alignment is learned

between sentences matching the templates and their paraphrases to enlarge the ini-

tial lexicons that consist of KB mentions. Finally, using this lexicon, multiple KB

queries can be derived from a NL question. These queries are then ranked using a

log-linear scoring function. The proposed method quadruples the recall with only

8% loss in precision compared to the above exact string matching approach using

templates.

Bordes et al. [2014b] introduce a linguistically leaner IR-based approach which

identi�es the KB triple most similar to the input NL question by learning triple em-

beddings and question embeddings. We notice that Bordes' [2014b] system performs

relatively well (MAP score 0.34) on the Wikianswers dataset even without using the

paraphrase corpus. This suggests that the embedding method successfully captures

the similarity between NL questions and KB queries. Our work continues this direc-

tion by further separating relations with entities.

The idea of distinguishing entities and relations in question answering can also

80

4.6. Conclusion

be found in [Yih et al., 2014]. However, their work supposes that we can �rst cut

the sentence into �entity part� and �relation part�, then calculate the matching score

of each part. Our model does not need this cut and simply enforces the entity

embeddings and relation embeddings (on the KB side) to be di�erent.

More generally, our model proposes to incorporate KB information into embed-

ding models. A popular approach along this line is `retro�tting' word vectors [Faruqui

et al., 2014] so that words with same labels stay close in the embedding space. How-

ever, we doubt if the `retro�tting' approach is useful in our case because the approach

will tend to make all entities staying close together while we need to distinguish them

for our QA task. Our approach does not favor all entity embeddings to stay closer

instead.

Orthogonality or near orthogonality is a property which is desired in many em-

bedding techniques. In random indexing [Sahlgren, 2005], a near orthogonality is

ensured amongst the embeddings of di�erent contexts used to learn the word vectors.

In [Zanzotto and Dell'Arciprete, 2012], to approximate tree kernels in a distributed

way, di�erent subtree feature embeddings are also constructed to be near orthogonal.

This chapter gives yet another motivation for orthogonal embeddings for the

special case where the semantics of a sentence is modeled as the sum of its associated

word embeddings. As we have shown, in this case orthogonal word embeddings help

to model their independence.

4.6 Conclusion

This chapter introduces an embedding model for question answering with orthogonal-

ity regularizer. We show that orthogonality helps to capture the di�erences between

entities and relations and that it helps to improve performance on the Wikianswers

dataset.

81

Chapter 5

Neural Semantic Parsing under

Grammatical Prior Knowledge

Contents

5.1 Introduction . 83

5.2 Background on SPO 84

5.3 Neural Approach Integrating Grammatical Constraints 85

5.3.1 Grammars and Derivations 85

5.3.2 Sequence prediction models 88

5.3.2.1 Predicting logical form (LFP model) 88

5.3.2.2 Predicting derivation sequence (DSP-X mod-

els) . 88

5.3.2.3 Predicting canonical form (CFP model) . . . 89

5.3.3 Sequence prediction architecture 90

5.3.3.1 Neural network model 90

5.3.3.2 Decoding the target sequence 91

5.4 Experiments . 92

5.4.1 Setup . 92

5.4.2 Implementation details 92

5.4.3 Experimental results 93

5.4.3.1 Results on test data 93

5.4.4 Analysis of results . 94

5.4.4.1 Grammatical errors 94

5.4.4.2 Di�erence between DSP-C and DSP-CL . . . 94

5.5 Related Work and Discussion 95

82

5.1. Introduction

NL: article published in 1950
CF: article whose publication date is 1950
LF: get[[lambda,s,[filter,s,pubDate,=,1950]],article]
DT: s0(np0 (np1 (typenp0), cp0 (relnp0, entitynp0))
DS: s0 np0 np1 typenp0 cp0 relnp0 entitynp0

Figure 5.1: Example of natural language utterance (NL) from the SPO dataset and asso-
ciated representations considered in this work. CF: canonical form, LF: logical form, DT:
derivation tree, DS: derivation sequence.

5.6 Conclusion . 98

5.1 Introduction

In this chapter, we focus on a semantic parsing task where the NL question may

be semantically complex, leading to a logical form query with a fair amount of

compositionality.

Given the recently shown e�ectiveness of RNNs (Recurrent Neural Networks), in

particular Long Short Term Memory (LSTM) networks [Hochreiter and Schmidhu-

ber, 1997], for performing sequence prediction in NLP applications such as machine

translation [Sutskever et al., 2014] and natural language generation [Wen et al.,

2015], we try to exploit similar techniques for our task. However we observe that,

contrary to those applications which try to predict intrinsically sequential objects

(texts), our task involves producing a structured object, namely a logical form that

is tree-like by nature and also has to respect certain a priori constraints in order to

be interpretable against the knowledge base.

In our case, building on the work �Building a Semantic Parser Overnight� [Wang

et al., 2015], which we will refer to as SPO, the LFs are generated by a grammar which

is known a priori, and it is this grammar that makes explicit the structural constraints

that have to be satis�ed by the LFs. The SPO grammar, along with generating

logical forms, generates so-called �canonical forms� (CF), which are direct textual

realizations of the LF that, although they are not �natural� English, transparently

convey the meaning of the LF (see Fig. 5.1 for an example).

Based on this grammar, we explore three di�erent ways of representing the LF

structure through a sequence of items. The �rst one (LF Prediction, or LFP), and

simplest, consists in just linearizing the LF tree into a sequence of individual tokens;

the second one (CFP) represents the LF through its associated CF, which is itself

a sequence of words; and �nally the third one (DSP) represents the LF through a

83

5.2. Background on SPO

derivation sequence (DS), namely the sequence of grammar rules that were chosen

to produce this LF.

We then predict the LF via LSTM-based models that take as input the NL

question and map it into one of the three sequentializations. In the three cases,

the LSTM predictor cannot on its own ensure the grammaticality of the predicted

sequence, so that some sequences do not lead to well-formed LFs. However, in the

DSP case (in contrast to LFP and CFP), it is easy to integrate inside the LSTM

predictor local constraints which guarantee that only grammatical sequences will be

produced.

In summary, the contribution of this chapter is twofold. Firstly, we propose

to use sequence prediction for semantic parsing. Our experimental results show

some signi�cant improvements over previous systems. Secondly, we propose to pre-

dict derivation sequences taking into account grammatical constraints and we show

that the model performs better than sequence prediction models not exploiting this

knowledge. These results are obtained without employing any reranking or linguistic

features such as POS tags, edit distance, paraphrase features, etc., which makes the

proposed methodology even more promising.

5.2 Background on SPO

The SPO paper [Wang et al., 2015] proposes an approach for quickly developing

semantic parsers for new knowledge bases and domains when no training data initially

exists. In this approach, a small underlying grammar is used to generate canonical

forms and pair them with logical forms. Crowdsourcing is then used to paraphrase

each of these canonical forms into several natural utterances. The crowdsourcing

thus creates a dataset (SPO dataset in the sequel) consisting of (NL, CF, LF) tuples

where NL is a natural language question with CF and LF the canonical and the

logical form associated with this question. In Chapter 1 (1.3.1.2), we have discussed

this annotation approach which is arguably easier than annotating LFs based on

NLs.

SPO learns a semantic parser on this dataset by �rstly learning a log-linear sim-

ilarity model based on a number of features (word matches, ppdb matches, matches

between semantic types and POSs, etc.) between NLs and the corresponding (CF,

LF) pairs. At decoding time, SPO parses a natural language utterance NL by search-

ing among the derivations of the grammar for one for which the projected (CF, LF)

is most similar to the NL based on this log-linear model. The search is based on a

so-called ��oating parser� [Pasupat and Liang, 2015], a modi�cation of a standard

84

5.3. Neural Approach Integrating Grammatical Constraints

chart-parser, which is able to guide the search based on the similarity features.

In contrast, our approach does not search among the derivations for the one

that maximizes a match with the NL, but instead directly tries to predict a decision

sequence that can be mapped to the LF.

The SPO system together with its dataset were released to the public78 and we

exploit this release in this chapter.

5.3 Neural Approach Integrating Grammatical Constraints

5.3.1 Grammars and Derivations

s0: s(S) → np(S).
np0: np(get[CP,NP]) → np(NP), cp(CP).
np1: np(NP) → typenp(NP).
cp0: cp([lambda,s,[filter,s,RELNP,=,ENTNP]]) →

[whose], relnp(RELNP), [is], entitynp(ENTNP).
...
typenp0: typenp(article) → [article].
relnp0: relnp(pubDate) → [publication, date]
entitynp0: entitynp(1950) → [1950].
...

Figure 5.2: Some general rules (top) and domain-speci�c rules (bottom) in DCG format.

The core grammatical resource released by SPO is a generic grammar connecting

logical forms with canonical form realizations. They also provide seven domain-

speci�c lexica that can be used in combination with the generic grammar to ob-

tain domain-speci�c grammars which generate (LF, CF) pairs in each domain, in

such a way that LFs can then be used to query the corresponding knowledge base.

While SPO also released a set of Java-based parsers and generators for these gram-

mars, for our own purposes we found it convenient to translate the grammars into

the formalism of De�nite Clause Grammars [Pereira and Warren, 1980], a classical

uni�cation-based extension of CFGs, which � through a standard Prolog interpreter

such as Swipl79 � provide direct support for jointly generating textual realizations

and logical forms and also for parsing text into logical forms; we found this transla-

tion process to be rather straightforward and we were able to cover all of the SPO

grammars.

Figure 5.2 lists a few DCG rules, general rules �rst, then lexical rules, for the

SPO �publications� domain. Nonterminals are indicated in bold, terminals in italics.

We provide each rule with a unique identi�er (e.g. s0, np0, ...), which is obtained by

78https://github.com/percyliang/sempre
79http://www.swi-prolog.org/

85

5.3. Neural Approach Integrating Grammatical Constraints

s0

np0

np1 cp0

typenp0 relnp0 entitynp0

Figure 5.3: A derivation tree. Its leftmost derivation sequence is [s0, np0, np1, typenp0,
cp0, relnp0, entitynp0].

typenp0 article

article
relnp0 publication date

pubDate
entitynp0 1950

1950
cp0 whose publication date is 1950

[lambda,s,[�lter,s,pubDate,=,1950]
np1 article

article
np0 article whose publication date is 1950

get[[lambda,s,[�lter,s,pubDate,=,1950]],article]
s0 article whose publication date is 1950

get[[lambda,s,[�lter,s,pubDate,=,1950]],article]

Figure 5.4: Projection of the derivation tree nodes into (i) a canonical form and (ii) a
logical form.

concatenating the name of its head nonterminal with a position number relative to the

rules that may expand this nonterminal; we can then consider that the nonterminal

(e.g. np) is the �type� of all its expanding rules (e.g. np0, np1, ...).

According to standard DCG notation, uppercase items S, NP, CP, RELNP, ENTNP

denote uni�cation variables that become instantiated during processing. In our case

uni�caion variables range over logical forms and each nonterminal has a single argu-

ment denoting a partially instantiated associated logical form. For instance, in the

cp0 rule, relnp is associated with the logical form RELNP, entitynp with the logical

form ENTNP, and the LHS nonterminal cp is then associated with the logical form

[lambda, s, [filter, s, RELNP, =, ENTNP]].80

In Figure 5.3, we display a derivation tree DT (or simply derivation) relative to

this grammar, where each node is labelled with a rule identi�er. This tree projects

on the one hand onto the canonical form article whose publication date is 1950, on the

80This logical form is written here in DCG list notation; in the more �Lispian� format used by
SPO, it would be written (lambda s (filter s RELNP = ENTNP)).

86

5.3. Neural Approach Integrating Grammatical Constraints

other hand onto the logical form get[[lambda,s,[filter,s, pubDate,=,1950]],article].

Figure 5.4 shows how these projections are obtained by bottom-up composition.

For instance, the textual projection of node cp0 is obtained from the textual rep-

resentations of nodes relnp0 and entitynp0, according to the RHS of the rule cp0,

while its logical form projection is obtained by instantiation of the variables RELNP

and ENTNP respectively to the LFs associated with relnp0 and entitynp0.

Relative to these projections, one may note a fundamental di�erence between

derivation trees DT and their projections CF and LF: while the well-formedness of

DT can simply be assessed locally by checking that each node expansion is valid

according to the grammar, there is in principle no such easy, local, checking possible

for the canonical or the logical form; in fact, in order to check the validity of a

proposed CF (resp. LF), one needs to search for some DT that projects onto this

CF (resp LF). The �rst process, of course, is known as �parsing�, the second process

as �generation�. While parsing has polynomial complexity for grammars with a

context-free backbone such as the ones considered here, deciding whether a logical

form is well-formed or not could in principle be undecidable for certain forms of LF

composition.81

To be able to leverage sequence prediction models, we can associate with each

derivation tree DT its leftmost derivation sequence DS, which corresponds to a pre-

order traversal of the tree. For the tree of Figure 5.3, this sequence is [s0, np0, np1,

typenp0, cp0, relnp0, entitynp0]. When the grammar is known (in fact, as soon as

the CFG core of the grammar is known), two properties of the DS hold (we omit the

easy algorithms underlying these properties; they involve using a pre�x of the DS

for constructing a partial derivation tree in a top-down fashion):

1. knowing the DS uniquely identi�es the derivation tree.

2. knowing a pre�x of the DS (for instance [s0, np0, np1, typenp0]) completely

determines the type of the next item (here, this type is cp).

The �rst property implies that if we are able to predict DS, we are also able to predict

DT, and therefore also LF and CF. The second property implies that the sequential

prediction of DS is strongly constrained by a priori knowledge of the underlying

grammar: instead of having to select the next item among all the possible rules

in the grammar, we only have to select among those rules that are headed by a

81The term `projection' is borrowed from the notion of bimorphism in formal language theory
[Shieber, 2014] and refers in particular to the fact that the overall logical form is constructed by
bottom-up composition of logical forms associated with lower nodes in the derivation tree. In
our DCG grammars, this composition actually involves more complex operations (such as �beta-
reduction�) than the simple copyings illustrated in the small excerpt of Fig. 5.2.

87

5.3. Neural Approach Integrating Grammatical Constraints

speci�c nonterminal. Under a simple condition on the grammar (namely that there

are no �unproductive� rules, rules that can never produce an output82), following

such constrained selection for the next rule guarantees that the derivation sequence

will always lead to a valid derivation tree.

At this point, a theoretical observation should be made: there is no �nite-state

mechanism on the sequence of rule-names that can control whether the next rule-

name is valid or not.83 The relevance of that observation for us is that the RNNs

that we use are basically �nite-state devices (with a huge number of states, but still

�nite-state), and therefore we do not expect them in principle to be able to always

produce valid derivation sequences unless they can exploit the underlying grammar

for constraining the next choice.

5.3.2 Sequence prediction models

In all these models, we start from a natural language utterance NL and we predict

a sequence of target items, according to a common sequence prediction architecture

that will be described in section 5.3.3.

5.3.2.1 Predicting logical form (LFP model)

The most direct approach is to directly predict a linearization of the logical form

from the NL, the input question. While an LF such as that of Figure 5.1 is really a

structured object respecting certain implicit constraints (balanced parentheses, con-

sistency of the variables bound by lambda expressions, and more generally, confor-

mity with the underlying grammar), the linearization treats it simply as a sequence

of tokens: get [[lambda s [filter s pubDate = 1950]] article]. At

training time, the LFP model only sees such sequences, and at test time, the next

token in the target sequence is then predicted without taking into account any struc-

tural constraints. The training regime is the standard one attempting to minimize

the cross-entropy of the model relative to the logical forms in the training set.

5.3.2.2 Predicting derivation sequence (DSP-X models)

Rather than predicting LF directly, we can choose to predict a derivation sequence

DS, that is, a sequence of rule-names, and then project it onto LF. We consider three

variants of this model.
82The general grammar ensures a good coverage of possible logical and canonical forms. However,

when this general grammar is used in particular domains, some rules are not relevant any more (i.e.
become "unproductive"), but these can be easily eliminated at compile time.

83This is easy to see by considering a CFG generating the non �nite-state language anbn.

88

5.3. Neural Approach Integrating Grammatical Constraints

DSP This basic derivation sequence prediction model is trained on pairs (NL, DS)

with the standard training regime. At test time, it is possible for this model to predict

ill-formed sequences, which do not correspond to grammatical derivation trees, and

therefore do not project onto any logical form.

DSP-C This is a Constrained variant of DSP where we use the underlying grammar

to constrain the next rule-name. We train this model exactly as the previous one,

but at test time, when sampling the next rule-name inside the RNN, we reject any

rule that is not a possible continuation.

DSP-CL This last model is also constrained, but uses a di�erent training regime,

with Constrained Loss. In the standard learning regime (used for the two previous

models), the incremental loss when predicting the next item yt of the sequence is

computed as − log p(yt), where p(yt) is the probability of yt according to the RNN

model, normalized (through the computation of a softmax) over all the potential val-

ues of yt (namely, here, all the rules in the grammar). By contrast, in the CL learning

regime, the incremental loss is computed as − log p′(yt), where p′(yt) is normalized

only over the values of yt that are possible continuations once the grammar-induced

constraints are taken into account, ignoring whatever weights the RNN predictor

may (wrongly) believe should be put on impossible continuations. In other words,

the DSP-CL model incorporates the prior knowledge about well-formed derivation

sequences that we have thanks to the grammar. It computes the actual cross-entropy

loss according to the underlying generative process of the model that is used once

the constraints are taken into account.

5.3.2.3 Predicting canonical form (CFP model)

The last possibility we explore is to predict the sequence of words in the canonical

form CF, and then use our grammar to parse this CF into its corresponding LF,

which we then execute against the knowledge base.84

Table 5.1 provides length and vocabulary-size statistics for the LFP, DSP and

CFP tasks.
84Although the general intention of SPO is to unambiguously re�ect the logical form through the

canonical form (which is the basis on which Turkers provide their paraphrases), we do encounter
some cases where, although the CF is well-formed and therefore parsable by the grammar, several
parses are actually possible, some of which do not correspond to queries for which the KB can return
an answer. In these cases, we return the �rst parse whose logical form does return an answer. Such
situations could be eliminated by re�ning the SPO grammar to a moderate extent, but we did not
pursue this.

89

5.3. Neural Approach Integrating Grammatical Constraints

Target sequence DS CF LF
Length 10.5 11.8 47.0

Vocabulary Size 106.0 55.8 59.9

Table 5.1: Characteristics of di�erent target sequences.

article

𝑢𝑏

whose publication

𝑢𝑙,𝑡 𝑢𝑙,𝑡+1 𝑢𝑙,𝑡+2
LSTM encoding for the prefix
of a sequence of items

𝑢𝑏 𝑢𝑏

whose publication date

Figure 5.5: Our neural network model which is shared between all the systems where
we illustrate its use for CFP. An MLP encodes the sentence in unigrams and bigrams and
produces ub. An LSTM encodes the pre�x of the predicted sequence generating ul,t for each
step t. The two representations are then fed into a �nal MLP to predict the next choice of
the target sequence.

We see that, typically, for the di�erent domains, DS is a shorter sequence than

LF or CF, but its vocabulary size (i.e. number of rules) is larger than that of LF or

CF. However DS is unique in allowing us to easily validate grammatical constraints.

We also note that the CF is less lengthy than the LF, which uses a number of non

�word-like� symbols such as parentheses, lambda variables, and the like.

5.3.3 Sequence prediction architecture

5.3.3.1 Neural network model

The goal of our neural network is to estimate the conditional probability p(y1, . . . , yT ′ |x1, . . . , xT)

where (x1, . . . , xT) is a natural language question and (y1, . . . , yT ′) is a target se-

quence (linearized LF, CF or derivation sequence). In all three cases, we use the

same neural network model, which we explain in this subsection.

Suppose that the content of the NL is captured in a real-valued vector ub, while

the pre�x of the target sequence up to time t is captured in another real-valued

vector ul,t. Now, the probability of the target sequence given the input question can

90

5.3. Neural Approach Integrating Grammatical Constraints

be estimated as:

p(y1, . . . yT ′ |x1, . . . , xT) =
T ′∏
t=1

p(yt|ub, y1, . . . yt−1)

=

T ′∏
t=1

p(yt|ub, ul,t−1)

In all our systems, the ub capturing the content of the NL is calculated from the

concatenation of a vector u1 reading the sentence based on unigrams and another

vector u2 reading the sentence based on bigrams. Mathematically, u1 = tanh(W1v1)

where v1 is the 1-hot unigram encoding of the NL and u2 = tanh(W2v2) where v2 is

its 1-hot bigram encoding. Then ub = tanh(Wu), where u is the concatenation of u1

and u2. W1, W2 and W are among the parameters to be learnt. For regularization

purposes, a dropout procedure [Srivastava et al., 2014] is applied to u1 and u2.

The pre�x of the target sequence up to time t is modelled with the vector ul,t
generated by the latest hidden state of an LSTM [Hochreiter and Schmidhuber, 1997];

LSTM is appropriate here in order to capture the long distance dependencies inside

the target sequence. The vector ul,t is then concatenated with ub (forming ubl in the

equation below) before passing through a two-layer MLP (Multi-Layer Perceptron)

for the �nal prediction:

p(yt+1|ul,t, ub) = softmax(W ′2 tanh(W ′1ubl))

Using deep structures such as this MLP for RNN prediction has been shown to be

bene�cial in previous work [Pascanu et al., 2013].

The overall network architecture is summarized in Figure 5.5. We train the whole

network to minimize the cross entropy between the predicted sequence of items and

the reference sequence.

This network architecture can easily support other representations for the input

sentence than unigrams and bigrams, as long as they are real-valued vectors of �xed

length. We can just concatenate them with u1 and u2 and generate ub as previously.

In fact, in initial experiments, we did concatenate an additional representation which

reads the sentence through an LSTM, but the performance was not improved.

5.3.3.2 Decoding the target sequence

We implemented a uniform-cost search algorithm [Russell and Norvig, 2003] to de-

code the best decision sequence as the sequence with the highest probability. The

91

5.4. Experiments

algorithm �nishes in a reasonable time for two reasons: 1) as indicated by Table 5.1,

the vocabulary size of each domain is relatively small, and 2) we found that our

model predicts relatively peaked distributions. Of course, it would also be easy to

use a beam-search procedure, for situations where these conditions would not hold.

5.4 Experiments

5.4.1 Setup

We conduct our experiments on the SPO dataset. To test the overall performance

of a semantic parser, the SPO dataset contains seven domains focusing on di�er-

ent linguistic phenomena such as multi-arity relations, sublexical compositionality,

etc. The utterances in each domain are annotated both with logical forms (LFs)

and canonical forms (CFs). The number of such utterances vary from 800 to 4000

depending on the domain. The size of training data is indeed small but as the target

vocabulary is always in the domain, thus very small as well, it is actually possible to

learn a reasonable semantic parser.

In the SPO dataset, the natural utterances were split randomly into 80%-20%

for training and test, and we use the same sets. We perform an additional 80%-

20% random split on the SPO training data and keep the 20% as development set to

choose certain hyperparameters of our model. Once the hyperparameters are chosen,

we retrain on the whole training data before testing.

For LFP experiments, we directly tokenize the LF, as explained earlier, and for

CFP experiments we directly use the CF. For DSP experiments (DSP, DSP-C, DSP-

CL) where our training data consist of (NL, DS) pairs, the derivation sequences are

obtained by parsing each canonical form using the DCG grammar of section 5.3.

We compare our di�erent systems to SPO. While we only use unigram and bigram

features on the NL, SPO uses a number of features of di�erent kinds: linguistic

features on NL such as POS tags, lexical features computing the similarity between

words in NL and words in CF, semantic features on types and denotations, and also

features based on PPDB [Ganitkevitch et al., 2013].

At test time, like SPO, we evaluate our system on the proportion of questions

for which the system is able to �nd the correct answer in the knowledge base.

5.4.2 Implementation details

We choose the embedding vectors u1 for unigrams and u2 for bigrams to have 50

dimensions. The vector ub representing the sentence content has 200 dimensions. The

92

5.4. Experiments

Basketball Social Publication Blocks Calendar Housing Restaurants Avg
SPO 46.3 48.2 59.0 41.9 74.4 54.0 75.9 57.1
LFP 73.1 70.2 72.0 55.4 71.4 61.9 76.5 68.6
CFP 80.3 79.5 70.2 54.1 73.2 63.5 71.1 70.3
DSP 71.6 67.5 64.0 53.9 64.3 55.0 76.8 64.7
DSP-C 80.5 80.0 75.8 55.6 75.0 61.9 80.1 72.7

DSP-CL 80.6 77.6 70.2 53.1 75.0 59.3 74.4 70.0

Table 5.2: Test results over di�erent domains on SPO dataset. The numbers reported
correspond to the proportion of cases in which the predicted LF is interpretable against the
KB and returns the correct answer. LFP = Logical Form Prediction, CFP = Canonical
Form Prediction, DSP = Derivation Sequence Prediction, DSP-C = Derivation Sequence
constrained using grammatical knowledge, DSP-CL = Derivation Sequence using a loss
function constrained by grammatical knowledge.

word embedding layer has 100 dimensions, which is also the case of the hidden layer of

the LSTM ul,t. Thus ubl which is the concatenation of ub and ul,t has 300 dimensions

and we �x the next layer to ubl to have 100 dimensions. The model is implemented

in Keras85 on top of Theano [Bergstra et al., 2010]. For all the experiments, we train

our models using rmsprop [Tieleman and Hinton., 2012] as the backpropagation

algorithm86. We use our development set to select the number of training epochs,

the dropout factor over unigrams representation and the dropout factor over bigrams

representation, by employing a grid search over these hyperparameters: epochs in

{20, 40, 60}, unigrams dropout in {0.05, 0.1} and bigrams dropout in {0.1, 0.2, 0.3}.

5.4.3 Experimental results

5.4.3.1 Results on test data

Table 5.2 shows the test results of SPO and of our di�erent systems over the seven

domains.

It can be seen that all of our sequence-based systems are performing better than

SPO by a large margin on these tests. When averaging over the seven domains, our

`worst' system DSP scores at 64.7% compared to SPO at 57.1%.

We note that these positive results hold despite the fact that DSP has the hand-

icap that it may generate ungrammatical sequences relative to the underlying gram-

mar, which do not lead to interpretable LFs. The LFP and CFP models, with higher

performance than DSP, also may generate ungrammatical sequences.

85https://github.com/fchollet/keras
86All the hyperparameters of rmsprop as well as options for initializing the neural network are

left at their default values in Keras.

93

5.4. Experiments

Basketball Publication Housing
LFP 6.6 3.7 1.6
CFP 1.8 1.9 2.2
DSP 9.5 11.8 5.8

DSP-C(L) 0.0 0.0 0.0

Table 5.3: Grammatical error rate of di�erent systems on test.

The best results overall are obtained by the DSP-C system, which does take into

account the grammatical constraints. This model performs not only considerably

better than its DSP baseline (72.7% over 64.7%), but also better than the models

LFP and CFP. Somewhat contrary to our expectations, the DSP-CL model, which

exploits constraints not only during decoding, but also during training, performs

somewhat worse than the DSP-C, which only exploits them during decoding.

We note that, for all the sequence based models, we strictly base our results on

the performance of the �rst sequence predicted by the model. It would probably be

possible to improve them further by reranking n-best sequence lists using a set of

features similar to those used by SPO.

5.4.4 Analysis of results

5.4.4.1 Grammatical errors

We just observed that CFP and LFP perform well on test data although the sequences

generated are not guaranteed to be grammatical. We analysed the percentage of

grammatical errors made by these models and also by DSP for three domains, which

we report in Table 5.3.87

The table shows that LFP and especially CFP make few grammatical errors while

DSP makes them more frequently. For DSP-C and DSP-CL, the error rate is always

0 since by construction, the derivations must be well-formed. Note that as DSP is

not constrained by prior knowledge about the grammar, the grammatical error rate

can be high � even higher than CFP or LFP because DSP typically has to choose

among more symbols, see Table 5.1.

5.4.4.2 Di�erence between DSP-C and DSP-CL

We observed that the DSP-CL model performs somewhat worse than DSP-C in our

experiments. While we were a bit surprised by that behavior, given that the DSP-

87Our DCG permits to compute this error rate directly for canonical forms and derivation se-
quences. For logical forms, we made an estimation by executing them against the knowledge base
and eliminating the cases where the errors are not due to the ungrammaticality of the logical form.

94

5.5. Related Work and Discussion

CL has strong theoretical motivations, let us note that the two models are quite

di�erent. To stress the di�erence, suppose that, for a certain prediction step, only

two rules are considered as possible by the grammar, among the many rules of the

grammar. Suppose that the LSTM gives probabilities 0.004 and 0.006 respectively

to these two rules, the rest of the mass being on the ungrammatical rules. While

the DSP-C model associates respective losses of − log 0.004,− log 0.006 with the two

rules, the DSP-CL model normalizes the probabilites �rst, resulting in smaller losses

− log 0.4,− log 0.6.

As we choose the best complete sequence during decoding, it means that DSP-C

will be more likely to prefer to follow a di�erent path in such a case, in order not

to incur a loss of at least − log 0.006. Intuitively, this means that DSP-C will prefer

paths where the LSTM on its own gives small probability to ungrammatical choices,

a property not shared by DSP-CL. However, a more complete understanding of the

di�erence will need more investigation.

5.5 Related Work and Discussion

In recent work on developing semantic parsers for open-domain and domain-speci�c

question answering, various methods have been proposed to handle the mismatch

between natural language questions and knowledge base representations including,

graph matching, paraphrasing and embeddings techniques.

Reddy et al. [2014] exploits a weak supervision signal to learn a mapping between

the logical form associated by a CCG based semantic parser with the input question

and the appropriate logical form in Freebase [Bollacker et al., 2008].

Paraphrase-based approaches [Berant and Liang, 2014] generate variants of the

input question using a simple hand-written grammar and then rank these using a

paraphrase model. That is, in their setting, the logical form assigned to the input

question is that of the generated sentence which is most similar to the input question.

Finally, Bordes et al. [2014b; 2014a] learn a similarity function between a natural

language question and the knowledge base formula encoding its answer.

We depart from these approaches in that we learn a direct mapping between

natural language questions and their corresponding logical form or equivalently, their

corresponding derivation and canonical form. This simple, very direct approach to

semantic parsing eschews the need for complex feature engineering and large external

resources required by such paraphrase-based approaches as [Berant and Liang, 2014].

It is conceptually simpler than the two steps, graph matching approach proposed by

Reddy et al. [2014]. And it can capture much more complex semantic representations

95

5.5. Related Work and Discussion

than Bordes et al. [2014b; 2014a]'s embeddings based method.88

At a more abstract level, our approach di�ers from previous work in that it

exploits the fact that logical forms are structured objects whose shape is determined

by an underlying grammar. Using the power of RNN as sequence predictors, we learn

to predict, from more or less explicit representations of this underlying grammar,

equivalent but di�erent representations of a sentence content namely, its canonical

form, its logical form and its derivation sequence. The observation that one can

incorporate the grammatical prior knowledge into a semantic parsing system is made

by [Kate et al., 2005a; Kate and Mooney, 2006; Wong and Mooney, 2006; Wong and

Mooney, 2007]. Our contribution is to incorporate this type of prior knowledge into

RNN-based models.

We observe that the best results are obtained by using the derivation sequence,

when also exploiting the underlying grammatical constraints. However the results

obtained by predicting directly the linearization of the logical form or canonical form

are not far behind; we show that often, the predicted linearizations actually satisfy

the underlying grammar. This observation can be related to the results obtained

by Vinyals et al. [2014], who use an RNN-based model to map a sentence to the

linearization of its parse tree,89 and �nd that in most cases, the predicted sequence

produces well-balanced parentheses. It would be interesting to see if our observation

would be maintained for more complex LFs than the ones we tested on, where it

might be more di�cult for the RNN to predict not only the parentheses, but also the

dependencies between several lambda variables inside the overall structure of the LF.

This chapter is closely related to [Dong and Lapata, 2016] which also proposes

an RNN-based semantic parser. Fig. 5.6 illustrates the neural network architecture

of [Dong and Lapata, 2016]; after encoding the sentence into a real-valued vector, to

predict the LF lambda $0 e (and (>(de- parture time $0) 1600:ti) (from $0 dallas:ci),

the model �rst uses an LSTM to predict lambda $0 e <n> </s> (LSTM predictions

at the top of Fig. 5.6) where <n> is a nonterminal to be expanded and </s> stands

for the end. Then the LSTM is re-used at the next layer to expand the nonterminals

in the previous layer (e.g. <n> expanded to and <n> <n> </s>). The model

iterates until there is no more nonterminal to expand. There are two main di�erences

88In [Bordes et al., 2014b; Bordes et al., 2014a], the logical forms denoting the question answers
involve only few RDF triples consisting of a subject, a property and an object i.e., a binary relation
and its arguments.

89Note a crucial di�erence with our approach. While in their case the underlying (�syntactic�)
grammar is only partially and implicitly represented by a set of parse annotations, in our case the
explicit (�semantic�) grammar is known a priori and can be exploited as such.

96

5.5. Related Work and Discussion

Figure 5.6: Neural network architecture of [Dong and Lapata, 2016] for predicting LFs.

compared to our approach for the decoding strategy:

• The model learns to predict LFs while our DSP-C(L) models learn to pre-

dict derivation sequences. Using their way of predicting LFs can ensure well-

balanced parentheses as each layer predicts an LF with well-balanced paren-

theses; however, their model may fail to capture other grammatical constraints

thus the produced LF is not guaranteed to be grammatically correct. Our

DSP-C(L) models on the other hand always produce grammatically correct

LFs.

• When predicting a certain LF token, the model [Dong and Lapata, 2016] is

always conditioned on the hidden state of the nonterminal that the model is

expanding (e.g. in Fig. 5.6, every prediction on the second layer is conditioned

on the hidden state of <n> in the �rst layer), a mechanism that the authors

called `parent-feeding'. Explicitly conditioning on the parent node represen-

tation can help the performance, however, this mechanism is missing in our

proposed model. Implementing a `parent-feeding' mechanism for our DSP-

C(L) models doesn't pose theoretical di�culties. For example, consider the

DS prediction in Fig. 5.3, an example of `parent-feeding' for the DSP-C(L) will

consist in condition also on np0 when trying to predict cp0.

[Yin and Neubig, 2017] study the code generation problem (i.e generating machine

97

5.6. Conclusion

readable codes based on a natural language description) and take the best of both our

model and the model of [Dong and Lapata, 2016]. Similar to our work, their neural

code generator tries to predict the AST (abstract syntactic tree) to fully capture all

the grammatical constraints; similar to the work of [Dong and Lapata, 2016], their

neural network is equipped with the `parent-feeding' mechanism and the attention

mechanism [Bahdanau et al., 2015]. They have shown in their work that both are

important to achieve state-of-the-art result for code generation.

5.6 Conclusion

In this chapter, we propose a sequence-based approach for the task of semantic pars-

ing. We encode the target logical form, a structured object, through three types

of sequences: direct linearization of the logical form, canonical form, derivation se-

quence in an underlying grammar. In all cases, we obtain competitive results with

previously reported experiments. The most e�ective model is one using derivation

sequences and taking into account the grammatical constraints.

In order to encode the underlying derivation tree, we chose to use a leftmost

derivation sequence. But there are other possible choices that might make the en-

coding even more easily learnable by the LSTM, and we would like to explore those

in future work.

98

Chapter 6

Automata as Additional, Modular,

Prior Knowledge Sources

Contents

6.1 Introduction . 100

6.2 Background on Grammars and Automata 102

6.2.1 The approach of Wang et al. (2015), original and new

datasets . 102

6.2.2 The approach of chapter 5 103

6.3 Symbolic Background Neural Model 103

6.3.1 Background priors on RNNs 103

6.3.2 WCFG background . 104

6.3.2.1 Constructing theWCFG background, WFSA

factors . 105

6.4 Experiments . 108

6.4.1 Setup . 108

6.4.2 Implementations . 108

6.4.3 Experimental Results 109

6.4.4 Result Analysis . 109

6.5 Related Work . 111

6.6 Conclusion . 112

99

6.1. Introduction

6.1 Introduction

In chapter 5, we propose to use RNNs for semantic parsing; notably, we propose to

integrate grammatical prior knowledge into RNN predictors by predicting derivation

sequences (DS). In this chapter, we exploit other sources of prior knowledge, combine

them with the grammatical one before integrating the result into RNN predictors.

To identify sources of prior knowledge for semantic parsing, we are inspired by

traditional semantic parsing systems [Kwiatkowski et al., 2013; Berant and Liang,

2014; Reddy et al., 2014; Pasupat and Liang, 2015] which exploit rich prior knowledge

in the form of features and grammars. In this chapter, we propose to integrate

this type of prior knowledge into RNNs and particularly LSTMs [Hochreiter and

Schmidhuber, 1997] based deep learning models [Jia and Liang, 2016; Dong and

Lapata, 2016; Xiao et al., 2016b; Neelakantan et al., 2016] for semantic parsing.

Deep learning models have shown to be successful for many NLP tasks; however, we

notice that those models can be further enhanced by incorporating prior knowledge

and this paper builds on two recent attempts to combine prior knowledge with neural

networks in an NLP context.

In the context of Natural Language Generation (NLG), Goyal et al. [2016] de-

scribe an RNN model that generates sentences character-by-character, conditional

on a semantic input. They use a form of prior knowledge, which they call a �back-

ground�, to guide the RNN in producing string of characters which are (i) valid

common English words or (ii) �named entities� (e.g. hotel names, addresses, phone

numbers, ...) for which evidence can be found in the semantic input.

In the context of Semantic Parsing, we propose in chapter 5 to use an RNN-based

model to predict derivation sequences (DS) that are derivation steps relative to an a

priori given underlying grammar. The grammar is used to incrementally �lter out

those derivation steps that may lead to non-interpretable LFs, something which is

di�cult for the RNN to learn on its own.

While the �background� used by [Goyal et al., 2016] is partially based on its

actual semantic input, the prior employed by chapter 5 only exploits knowledge

about output well-formedness. In both cases (NLG and Semantic Parsing) however,

the output depends on the input; in semantic parsing, if the input question contains

the string `Barack Obama', it is highly likely that the LF of that question involves

the entity Barack Obama and therefore, that the rule expanding to �barack obama�

is present in the output derivation sequence.

This chapter can be seen as an extension of the semantic parsing approach pro-

posed in chapter 5 using ideas from [Goyal et al., 2016], where we use a background

100

6.1. Introduction

prior that combines the grammaticality constraints with certain types of prior beliefs

that we can extract from the NL question.

Combining di�erent sources of prior knowledge, which can also be seen as combin-

ing di�erent factors in a graphical model, is a hard problem. In general, to compute

the exact combination (with even two factors), one does not have other solutions

than to go through an exhaustive enumeration of both factors and multiplying each

pair of factors. Our proposed solution to this problem is to implement our input-

dependent background through weighted �nite-state automata (WFSAs), which we

then intersect with a weighted context free grammar (WCFG) representing valid

grammar derivations.

Intersecting a WFSA with a WCFG can be done through a dynamic program-

ming procedure (thus e�cient as it avoids exhaustive enumeration) closely related

to chart-parsing.90 The result of this intersection algorithm is a new WCFG, which

can be normalized into a PCFG (Probabilistic CFG), which makes explicit the con-

ditional probabilities for the di�erent ways in which a given derivation sequence can

be continued.91

The obtained PCFG is then used as a background, and when making its next

local choice, the RNN has only to learn to �correct� the choices of the PCFG. In

the cases where the background is close to the true distribution, the RNN will learn

to predict a uniform distribution thus always referring to the background for such

predictions.

This is in fact a desirable behaviour as the background may contain prior knowl-

edge that the RNN is not able to learn based on data (e.g. prior knowledge on

entities unseen in training) and the best behavior for the model in those cases is to

refer to the background.

We test our new Background RNN semantic parser on an extended version of

the SPO dataset [Wang et al., 2015], which removes certain problematic aspects of

the original dataset (that made the results too optimistic, as explained in section

6.4). By incorporating simple input-dependent prior knowledge via WFSAs, our

model not only improves over its RNN baseline but also over the non-RNN system

proposed in [Wang et al., 2015] which involves much richer hand-crafted features.

90More on intersection algorithms can be found in chapter 2 (2.2) inside the thesis.
91While on �rst sight the whole procedure may appear somewhat involved, it has the crucial

advantage that a global constraint, for instance the required appearance of a certain symbol at
some unknown future point in the DS, has local consequences much earlier in the incremental
process that the network is following.

101

6.2. Background on Grammars and Automata

6.2 Background on Grammars and Automata

6.2.1 The approach of Wang et al. (2015), original and new datasets

s0: s(S) → np(S).
np0: np(get[CP,NP]) → np(NP), cp(CP).
np1: np(NP) → typenp(NP).
cp0: cp([lambda,s,[filter,s,RELNP,=,ENTNP]]) →

[whose], relnp(RELNP), [is], entitynp(ENTNP).
...
typenp0: typenp(article) → [article].
relnp0: relnp(pubDate) → [publication, date]
entitynp0: entitynp(1950) → [1950].
...

Figure 6.1: Some general rules (top) and domain-speci�c rules (bottom) of the Overnight

in DCG format.

[Wang et al., 2015] (which we refer to as �SPO�) proposes a novel way to build

datasets for training a semantic parser without having to manually annotate natural

language sentences with logical forms (LFs). First a grammar (of which we provide an

extract in Fig. 6.1, in the format of De�nite Clause Grammars [Pereira and Warren,

1980], reproduced from chapter 5) is used to generate LFs paired with conventional

surface realizations called �canonical forms� (CFs). For example, the rules shown in

Fig. 6.1 support the generation of the LF get[[lambda,s,[�lter,s,pubDate,=,1950]],article]

along with the CF �article whose publication date is 1950�.

The CFs are not necessarily natural English but are supposed to be �semantically

transparent� so that one can use crowdsourcing to paraphrase those CFs into natural

utterances (NLs) e.g., Articles published in 1950. The resulting (NL, LF) pairs make

up a dataset which can be used for learning semantic parsers.

After collecting all the paraphrases, the authors of SPO construct a dataset

divided into training and test sets by performing a random 80%-20% split over all

the (NL, LF) pairs. However, given the data collecting process, each LF tends to

correspond to several (in general more than 5) paraphrases. In consequence, inside

this original dataset, most of the LFs in the test set have already been seen in training,

making the task close to a classi�cation process and easier than it should be.

In addition, as pointed out by Jia and Liang [2016], the original dataset contains

very few named entities. In this work, we therefore construct a new dataset called

Overnight+ �xing some of the above issues. More details on our proposed dataset

can be found in subsection 6.4.1.

102

6.3. Symbolic Background Neural Model

6.2.2 The approach of chapter 5

To learn the semantic parser, SPO �rst trains a log-linear model based on rich prior

features dependent jointly on NL and the corresponding (LF, CF) pair. Then it

searches for the derivation tree relative to the grammar for which the produced (LF,

CF) pair has the highest score [Pasupat and Liang, 2015].

In contrast, in chapter 5 we propose to use RNN-based models to directly map

the NL to its corresponding derivation sequence (DS), which are sequentialized rep-

resentations of derivation trees in the grammar. Predicting DS provides an e�cient

sequentialization and makes it easy to guarantee the well-formedness of the predicted

sequence. Chapter 5 shows that the model �Derivation Sequence Predictor with

Constraints Loss� (DSP-CL) achieves good performance on the original Overnight

dataset.

This chapter can be seen as extending DSP-CL by integrating some input-dependent

prior knowledge into the RNN predictor, allowing it to improve its performance on

the more challenging Overnight+ dataset.

6.3 Symbolic Background Neural Model

6.3.1 Background priors on RNNs

[Goyal et al., 2016], in the context of NLG, propose to modify the standard generative

procedure of RNNs:

pθ(xt+1|x1, . . . , xt, C) = rnnθ(xt+1|x1, . . . , xt, C),

where C is the observed input context (that is, the input of the seq2seq model),

x1, . . . , xt the current output pre�x, rnnθ the softmax output of the RNN parametrized

by θ, and pθ the probability distribution from which the next symbol xt+1 is sampled,

with:

pθ(xt+1|x1, . . . , xt, C) ∝ b(xt+1|x1, . . . , xt, C) · rnnθ(xt+1|x1, . . . , xt, C),

where the background b is an arbitrary non-negative function over C, x1, . . . , xt, xt+1,

which is used to incorporate prior knowledge about the generative process pθ.92 On

one extreme, taking b to be uniform corresponds to the situation where no prior

knowledge is available, and one is back to a standard RNN, with all the discriminat-

92See also [Dymetman and Xiao, 2016], for a more general presentation, of which the background-
RNN can be seen as a special case.

103

6.3. Symbolic Background Neural Model

ing e�ort falling on the rnn component and relying on whatever (possibly limited)

training data is available in each context; on the other extreme, if the true process p is

known, one may take b = p, and then the rnn component rnnθ(xt+1|x1, . . . , xt, C) is

only required to produce a close-to-uniform distribution over the target vocabulary,

independently of x1, . . . , xt, C, which is an easy task to learn. In practice, the inter-

esting cases fall between these two extremes, with the background b incorporating

some prior knowledge that the rnn component can leverage in order to more easily

�t the training data. In the NLG application considered by [Goyal et al., 2016],

the output of the seq2seq model is a string of characters, and the background �

implemented as a WFSA over characters � is used to guide this output: (i) towards

the production of valid common English words, and (ii) towards the production of

named entities (e.g. hotel names, addresses, ...) for which evidence can be found in

the semantic input.

The approach of chapter 5 can be reformulated into such a �Background-RNN�

(BRNN) framework. In that work, the underlying grammar G acts as a yes-no �lter

on the incremental proposals of the RNN, and this �ltering process guarantees that

the evolving DS pre�x always remains valid relative to G. There:

pθ(xt+1|x1, . . . , xt, C) ∝ b(xt+1|x1, . . . , xt) · rnnθ(xt+1|x1, . . . , xt, C),

where C = NL is the input question, the xi's are rule-names, and b takes a value in

{0, 1}, with b(xt+1|x1, . . . , xt) = 1 indicating that x1, . . . , xt, xt+1 is a valid DS pre�x

relative to G. With this mechanism in place, on the one hand the BRNN cannot

produce �ungrammatical� (in the sense of being valid according to the grammar)

pre�xes, and on the other hand it can exploit this grammatical knowledge in order

to ease the learning task for the rnn component, which is not responsible for detecting

ungrammaticality on its own anymore.

6.3.2 WCFG background

While the (implicit) background of chapter 5 shown in (6.3.1) is a binary function

that does not depend on the NL input, but only on hard grammaticality judgments,

in this paper, we propose to use the more general formulation (6.3.1). Now b is soft

rather than hard, and it does exploit the NL input.

More speci�cally, b(xt+1|x1, . . . , xt, NL) is obtained in the following way. First,

we use the original grammar G together with the input NL to determine a WCFG

(weighted context-free grammar) GWNL over derivation sequences of the original

CFG (that is, the terminals of GWNL are rule-names of the original G), as will

104

6.3. Symbolic Background Neural Model

a:𝛿

.

.

.

b:1

c:1

.

.

.

a:𝛾𝑎

b:𝛾𝑏

c:𝛾𝑐

.

.

.

a:1

.

.

.

c:1

b:1

c:1

b:1

a:1

0:1 0:𝜂 0:11:1

Figure 6.2: Three WFSA's for handling di�erent types of prior information. Edge labels
are written in the form symbol : weight. The initial state is 0. Final states are indicated by
a double circle and their exit weight is also indicated.

be explained below. Second, we compute b(xt+1|x1, . . . , xt, NL) as the conditional

probability relative toGWNL of producing xt+1 in the context of the pre�x x1, . . . , xt.

Apart from our use of a much richer background than chapter 5, our overall

training approach remains similar. Our training set consists in pairs of the form

(NL,DS); the rnnθ component of the BRNN (6.3.1) is an LSTM-based network in

which the input encoding is a vector based on the unigrams and bigrams present

in NL, and where the DS output is a sequence of rule-names from G; the out-

put layer of this network is then combined additively with log b before a softmax is

applied, resulting in the probability distribution pθ(xt+1|x1, . . . , xt, NL); �nally the

incremental cross-entropy loss of the network − log pθ(x̄t+1|x1, . . . , xt, NL) is back-

propagated through the network (where x̄t+1 is the observation in the training data).

Implementation details are provided in section 6.4.

6.3.2.1 Constructing the WCFG background, WFSA factors

As in the case of chapter 5, we still want our background to ensure grammaticality of

the evolving derivation sequences, but in addition we wish it to re�ect certain tenden-

cies of these sequences that may depend on the NL input. By stating these tendencies

through a real-weighted, rather than binary, background b(xt+1|x1, . . . , xt, NL), we

make it possible for the rnn component to bypass the background preferences in

the presence of a training observation xt+1 that does not agree with them, through

giving a high enough value to rnnθ(xt+1|x1, . . . , xt, NL).

Our approach is then the following. We start by constructing a simple WCFG

GW0 that (1) enumerates exactly the set of all valid derivation sequences relative

to the original G, and (2) gives equal weight 1/nNT to each of the possible nNT

105

6.3. Symbolic Background Neural Model

expansions of each of its non-terminals NT . Thus GW0 is actually a Probabilistic

CFG (PCFG), that is, a WCFG that has the property that the sum of weights of

the possible rules expanding a given nonterminal is 1. Thus GW0 basically ensures

that the strings of symbols it produces are valid DS's relative to G, but is otherwise

non-committal concerning di�erent ways of extending each pre�x.

The second step consists in constructing, possibly based on the input NL, a small

number of WFSA's (weighted FSA's) each of which represents a certain aspect of the

prior knowledge we have about the likely output sequences. These automata will be

considered as �factors� (in the sense of probabilistic graphical models) that will be

intersected (in other words, multiplied) with GW0, resulting in a �nal WCFG GWNL

which will then combine the di�erent aspects and be used as our background.93 In

Fig. 6.2, we illustrate three possible such automata; here the output vocabulary

consists of the symbols a, b, c, . . . (in our speci�c case, they will actually be DS

symbols, but here we keep the description generic).

Let us �rst describe the automaton on the left. Here each symbol appears on an

edge with weight 1, with the exception of the edge associated with a, which carries a

weight δ � 1; this automaton thus gives a �neutral� weight 1 to any symbol sequence

that does not contain a, but a much smaller weight δk to one that contains k ≥ 1

instances of a. Once intersected with GW0, this automaton can be used to express

the belief that given a certain input NL, a is unlikely to appear in the output.

The automaton in the middle expresses the opposite belief. Here the exit weight

associated with the �nal (also initial) state 0 is η � 1. This automaton gives a

weight 1 to any sequence that contains a, but a weight η to sequences that do not.

Once intersected with GW0, this automaton expresses the belief that given the input

NL, a is likely to appear in the output.

The automaton on the right is a simple illustration of the kind of prior beliefs that

could be expressed on output sequences, independently of the input. Here γx denotes

the unigram probability of the output symbol x. In the context of semantic parsing,

such automata on the output could be used to express certain forms of regularities on

expected logical forms, such as, like here, unigram probabilities that are not handled

by the grammar GW0 (which is concerned only by well-formedness constraints), or

more generally, observations about certain patterns that are likely or unlikely to

occur in the logical forms (e.g. the unlikeliness of mixing basketball players with

scienti�c authors), insofar as such regularities can be reasonably expressed in �nite-

93Formally, intersecting a WCFG GW with a WFSA A consists in applying a Dynamic Program-
ming algorithm that constructs a new WCFG GW ′ = GW ∩A. If the weight of a certain sequence
x1, . . . , xn is ωGW relative to GW (resp. ωA relative to A), then its weight relative to GW ′ is
ωGW · ωA.

106

6.3. Symbolic Background Neural Model

state terms.

Why automata? In order to be e�ective, the background b has to be able to

provide the rnn component with useful information on the next incremental step,

conditional on the already generated pre�x. In addition, we would like the back-

ground to capitalize on di�erent sources of information.

In connection with these desiderata, WCFG and WFSAs have the following re-

markable properties: (1) the intersection of several WFSAs is a WFSA which can be

e�ciently computed, (2) the intersection of a WCFG with a WFSA is a WCFG which

can be e�ciently computed, (3) given a pre�x, the conditional probability of the next

symbol relative to a WCFG (resp. a WFSA) can be e�ciently computed; here �ef-

�ciently computed� means through Dynamic Programming and in polynomial time

[Nederhof and Satta, 2003]. These properties are conspicuously absent from most

other generative devices. For instance it is far from obvious how to intersect two

di�erent RNNs to compute the conditional probability of the next symbol, given a

common pre�x: while a certain symbol may have a large probability relative to both

RNNs, the later (global) consequences of choosing this next symbol may be largely

incompatible between the two RNNs; in other words, the local combined conditional

probability cannot be computed solely on the basis of the product of the two local

conditional probabilities.

Implementation principles. The fact that one can intersect a WCFG with a

WFSA to produce another WCFG is a generalization of the classical result [Bar-

Hillel et al., 1961] concerning the non-weighted case. The implementation we use

is based on the Earley-inspired intersection algorithm of [Dyer, 2010], obtaining a

certain WCFG, which we normalize into probabilistic form [Nederhof and Satta,

2003], �nally obtaining a PCFG GWNL. In order to compute the background

b(xt+1|x1, . . . , xt, NL) we then need to compute the conditional probability relative

to GWNL of producing the symbol xt+1 given the pre�x x1, . . . , xt. There are some

special-purpose algorithms for doing that e�ciently, for instance [Stolcke, 1994], but

in this work we use again (unoptimally) the generic Earley intersection algorithm,

taking advantage of the fact that the probability mass relative to GWNL of the set

of sequences starting with the pre�x x1, . . . , xt, xt+1 can be obtained by intersecting

GWNL with the automaton generating the language of all sequences starting with

this pre�x.

107

6.4. Experiments

6.4 Experiments

6.4.1 Setup

The original Overnight dataset is a valuable data resource for studying seman-

tic parsing as the dataset contains various domains focusing on di�erent linguistic

phenomena; the utterances in each domain are annotated both with logical forms

(LFs) and canonical forms (CFs). However, as Jia and Liang [2016] point out, this

dataset has two main drawbacks: 1) it contains too few entities compared to real

datasets, 2) most of the LFs in test are already seen during training. In conse-

quence, the results achieved on this dataset by di�erent systems [Wang et al., 2015;

Jia and Liang, 2016] are probably too optimistic.

To remedy these issues, we release an extended Overnight+ dataset.94 First, we

group all the data and propose a new split. This split makes a 80%-20% random split

on all the LFs and keeps the 20% LFs (together with their corresponding utterances)

as test and the remaining 80% as training. Thus LFs seen in test are guaranteed

to not be seen during training. For each domain, we also add new named entities

into the knowledge base and create a new development set and test set containing

those new named entities.95 Depending on the domain, the number of annotated

utterances vary from 800 to 4000 and we eliminate some erroneous annotations from

the training set. All the reported experiments are conducted on Overnight+.

6.4.2 Implementations

For our BRNN, the background b is composed of a WCFG factor (GW0 in subsection

6.3.2) and depending on the input, zero to several WFSA factors favoring the presence

of certain entities. In the current implementation, we only employ automata that

have the same topology as the automaton shown in the middle of Fig. 6.2 where the

output vocabulary consists in rule names (e.g. s0, np1, ...) and where the weight η

is chosen in [0, 0.0001, 0.01] based on the results obtained on the development set.

Currently, we detect only named entities and dates by using mostly exact string

matching (e.g. if we detect 'alice' in the input, we construct an automaton to favor its

presence in the LF), as well as a small amount of paraphrasing for dates (e.g we de-

tect both `jan 2' (as given by CFs) and `january 2' as January 2nd). We use a library

developed by Wilker Aziz96 for performing the intersection between WFSA(s) and

94https://github.com/chunyangx/overnight_more
95We use a high-precision heuristic substituting the named entities in the input string with new

ones under certain conditions.
96https://github.com/wilkeraziz/pcfg-sampling

108

6.4. Experiments

a WCFG. The intersection algorithm results in a new WCFG, from which the back-

ground is computed through pre�x-conditional probabilities as explained in section

6.3.

We adopt the same neural network architecture that we have described in section

5.3. We represent the NL semantics by a vector ub calculated from the concatenation

of a vector u1 encoding the sentence at the level of unigrams and another vector u2

at the level of bigrams. Dropout [Srivastava et al., 2014] is applied to u1 (0.1)

and u2 (0.3). We model the DS up to time t with the vector ut generated by an

LSTM [Hochreiter and Schmidhuber, 1997]; we concatenate ut and ub and pass the

concatenated vector to a two-layer MLP for the �nal prediction. At test time, we

use a uniform-cost search algorithm [Russell and Norvig, 2003] to produce the DS

with the highest probability. All the models are trained for 30 epochs.

6.4.3 Experimental Results

Table 6.1 shows the results of di�erent systems. The best average accuracy is achieved

by our proposed system BDSP-CL. The system largely improves (48.8% over 34.5%

in accuracy) over its RNN baseline DSP-CL which does not have input-dependent

WFSA factors. Our system also improves largely over SPO (no-lex) i.e., SPO without

�alignment features� (this system still has a rich feature set including string matching,

entity recognition, POS tagging, denotation, etc).

In average, BDSP-CL also performs better than the system noted SPO* with

the full set of features, but to a more moderate extent. However the results of

this SPO* may be too optimistic: the so-called �alignment features� of SPO were

obtained from a provided alignment �le based on the original Overnight training

dataset and not on the correct Overnight+, because we did not have access to easy

means of recomputing this alignment �le. The implication is that those features were

calculated in a situation where most of the test LFs were already seen in training

as explained in subsection 6.4.1, possibly unfairly helping SPO* on the Overnight+

test set.

6.4.4 Result Analysis

Examples We look into predictions of BDSP-CL, DSP-CL, SPO (no-lex) trying

to understand the pros and the cons of our proposed model. Table 6.2 shows some

typical cases. Because our current implementation with automata is limited to taking

into account prior knowledge on only named entities and dates, our BDSP-CL can

miss some important indications compared to SPO (no-lex). For example, for the

109

6.4. Experiments

New split Basketball Social Publication Calendar Housing Restaurants Blocks Avg
SPO (no-lex) 42.2 3.1 33.1 38.8 31.0 65.4 32.1 35.1

SPO* 47.4 40.4 43.4 56.6 30.7 67.8 37.0 46.2

DSP-CL 51.0 49.7 15.2 22.5 28.7 58.7 15.9 34.5
BDSP-CL 63.0 57.3 25.5 36.4 60.7 64.3 34.7 48.8

Table 6.1: Test results over all the domains on Overnight+. The numbers reported corre-
spond to the proportion of cases in which the predicted LF is interpretable against the KB
and returns the correct answer. DSP-CL is the model introduced in chapter 5 that guarantees
the grammaticality of the produced DS. BDSP-CL is our model integrating various factors
(e.g WCFG, WFSA) into the background. SPO (no-lex) is a feature-based system [Wang
et al., 2015] where we desactivate alignment features. SPO* is the full feature-based system
but with unrealistic alignment features (explained in subsection 6.4.3) and thus should be
seen as an upper bound of full SPO performance.

sentence BDSP-CL DSP-CL SPO(no-lex)
`what locations are the
fewest meetings held'

`meetings that has the least
number of locations'

`location that is location of
more than 2 meeting'

`location that is location of

the least number of meet-

ing'

`which men are 180cm
tall'

`person whose gender

is male whose height is

180cm'

`person whose height is
180cm'

`person whose height is at
least 180cm'

`what position is shaq
oneal'

`position of player shaq

oneal'

`position of player kobe
bryant'

`position of player shaq

oneal'

Table 6.2: Some prediction examples of BDSP-CL, DSP-CL and SPO (no-lex). For read-
ability, instead of showing the predicted LF, we show the equivalent CF. Correct predictions
are noted in italics.

sentence `what locations are the fewest meetings held', our model predicts a set

of meetings while SPO (no-lex) detects through its features that the question asks

about locations; our model seems better at discovering regularities in the data for

which SPO (no-lex) does not have prede�ned features. For example, for the sentence

`which men are 180cm tall', our model successfully detects that the question asks

about males.

Our model consistently performs better than DSP-CL. The example `what po-

sition is shaq oneal' in Table 6.2 illustrates the di�erence. In this example, both

BDSP-CL and SPO (no-lex) correctly predict the LF; however, DSP-CL fails be-

cause it cannot predict the entity `shaq oneal' as the entity is never seen in training.

Background E�ect If our background is in average closer to the true distribution

compared to the uniform distribution, we hypothesize that the RNN will learn to

predict a more uniform distribution compared to an RNN without background as

110

6.5. Related Work

DSP-CL BDSP-CL
Avg. KL-divergence 3.13 1.95

Table 6.3: Average KL-divergence to the uniform distribution when models predict rules
corresponding to named entities.

explained in subsection 6.3.1. To test this hypothesis, we randomly sample 100

distributions in housing domain when the RNN needs to predict a rule corresponding

to a named entity. We calculate the average KL-divergence from these distribution

to the uniform distribution and report the results in Table 6.3. The results seem to

con�rm our hypothesis: the KL-divergence is much smaller for BDSP-CL where a

background takes into account the presence of certain named entities depending on

the input.

6.5 Related Work

This chapter makes important extensions over chapter 5. While chapter 5 incorpo-

rates grammatical constraints into RNN models, we incorporate additional prior

knowledge about input dependency. We propose to take into account the well-

formedness of LFs by a WCFG and depending on the input, take into account the

presence of certain entities inside LFs by WFSA(s). We choose to use WFSA mod-

eling our input-dependent prior knowledge as the algorithm of intersection can ef-

�ciently combine WCFG and WFSA(s) to form the background priors guiding the

RNN.

Taking into account prior knowledge about named entities is common in more tra-

ditional, symbolic semantic parsing systems [Liang et al., 2011; Berant et al., 2013;

Kwiatkowski et al., 2013; Reddy et al., 2014]. For example, in [Berant et al., 2013],

named entities are �rst identi�ed before they are used to construct the whole deriva-

tion tree. We propose to incorporate those knowledge into an RNN-based model.

This is arguably more principled than Jia and Liang [2016]'s approach that incorpo-

rates such knowledge into an RNN using data augmentation.

The intersection algorithm used to compute the background allows local weight

changes to propagate through the grammar tree thereby in�uencing the weight of

each node inside the tree. This is related to the recent reinforcement learning re-

search for semantic parsing [Liang et al., 2016; Mou et al., 2016] where rewards are

propagated over di�erent action steps.

More generally, this chapter is another instance of incorporating prior knowledge

111

6.6. Conclusion

into deep learning models. We do this using symbolic objects such as grammar and

automata. Salakhutdinov et al. [2013] model prior knowledge over the structure of

the problem by combining hierarchical bayesian models and deep models while Hu

et al. [2016] handle prior knowledge that can be expressed by �rst-order logic rules

and uses these rules as a teacher network to transfer knowledge into deep models.

6.6 Conclusion

We propose to incorporate a symbolic background prior into RNN-based models

to learn a semantic parser taking into account prior knowledge about LF well-

formedness and about the likelihood of certain entities being present based on the

input. We use a variant of a classical dynamic programming intersection algorithm to

e�ciently combine these factors and show that our Background-RNN yields promis-

ing results on Overnight+. In the future, we plan to explore the use of WFSA(s)

with di�erent topologies to model more prior knowledge.

112

Chapter 7

Conclusion and Perspectives

7.1 Summary

The main contribution of this thesis is the investigation of novel, neural approaches

to executable semantic parsing. First, I showed that a standard sequence-to-sequence

model could successfully be used to map natural language questions to logical forms

(LFs), which are knowledge base queries for us. The approach was trained and tested

on an existing dataset covering 7 domains and whose queries were compositionally

non trivial. I then proposed di�erent ways of integrating prior knowledge in neu-

ral approaches to semantic parsing with a focus on symbolic priors (grammars and

automata). These contributions can be summarized as follows.

Orthogonal Embeddings for Simple queries. In the case where LFs are struc-

turally simple (e.g. in the form of a triple (e1, r, e2) in the Wikianswers dataset [Fader

et al., 2011]), we follow the work of [Bordes et al., 2014b] that learns sentence/LF

embeddings and a scoring function between them. We remark that their model does

not distinguish between entity (e1, e2) emeddings and relation (r) embeddings and

propose an orthogonality regularizer to capitalize this prior knowledge (Chapter 4).

We show empirically that adding this prior knowledge improves performance.

Integrating Grammatical Knowledge. In the case where LFs are more complex

involving a fair amount of compositionality as in the Semantic Parsing Overnight

(SPO) dataset [Wang et al., 2015], we �rst notice that we can use RNNs to learn an

end-to-end model mapping NL questions to KB queries. While for neural machine

translation [Sutskever et al., 2014], input and output are sentences, for semantic

parsing, the input is a natural language sentence and the output a linearized logical

113

7.2. Perspectives

formula. Based on the grammar developed by [Wang et al., 2015] to generate the

SPO dataset, we compare (Chapter 5) di�erent ways of linearizing logical formulae: a

direct linearization of the LF, a linearization of the associated canonical realization

(produced for each LF by the grammar), and a sequence consisting of derivation

steps relative to the underlying grammar. We further propose two ways of integrating

grammatical constraints on the derivation sequence inside the RNN- based sequential

predictor. We show empirically that our RNN-based semantic parser that integrates

grammatical prior knowledge performs better than both its RNN baselines and a

more traditional semantic parser.

Modelling Input Dependency. If the input question contains the string `Barack

Obama', it is highly likely that the LF of that question involves the entity Barack

Obama and therefore, that the rule expanding to �barack obama� is present in the

output derivation sequence. Remarking that our produced LFs have to be executable

thus grounded to a particular knowledge base (KB), the contribution presented in

Chapter 6 consists in integrating additional prior knowledge about input dependency

into our previous RNN-based semantic parser integrating grammatical constraints.

Technically, we �rst construct weighted automata (WFSAs) biasing the likelihood of

certain rules corresponding to named entities being present inside the target deriva-

tion sequence. We model this prior knowledge using WFSAs because these can be

combined e�ciently with the grammatical prior knowledge we use previously in the

form of a weighted context free grammar (WCFG). This combination is then treated

as `Background' for the RNN and we show that our extended `Background RNN'

semantic parser can further improve the performance.

7.2 Perspectives

There are two main directions for further research which it would be interesting to

explore.

Application to Other Semantic Parsing Tasks. Executable semantic parsing

aims at predicting a target language grounded in a KB. This shares similarityies with

tasks such as instructing robots (i.e. mapping natural language utterances to robot

commands) [Artzi and Zettlemoyer, 2013] and code generation (i.e mapping natural

language text to a piece of general-pupose code) [Quirk et al., 2015; Yin and Neubig,

2017] where the target languages are also grounded.

114

7.2. Perspectives

In Chapter 5, we show that having a grammar that constrains LF derivations

is e�ective. Such grammars exist not only for knowledge base queries as we have

considered in the thesis, but also for many other grounded languages such as robot

commands and general-purpose codes. In the future, we would like to test the ef-

fectiveness of integrating grammatical prior knowledge on those tasks. An example

of this line of research is [Yin and Neubig, 2017] who shows that integrating such

grammars into an RNN-based model is e�ective for code generation.

Other forms of Prior Knowledge. While we have shown some successful se-

mantic parsing examples of incorporating prior knowledge into expressive learning

machines, we believe that there are more forms of prior knowledge to consider in the

future. In particular, the grammar or automata that we use express explicit prior

knowledge / constraints over our considered target sequences while many forms of

prior knowledge is implicit (e.g. answer to a LF query, a natural language feed-

back to a predicted LF). Implicit prior knowledge is arguably more common and

abundant and some works start exploiting this form of prior knowledge for neural

networks [Liang et al., 2016; Mou et al., 2016; Guu et al., 2017]. It would be inter-

esting to explore to what extent this type of knowledge could be exploited to guide

neural semantic parsing.

115

Bibliography

[Androutsopoulos, 1995] L. Androutsopoulos. Natural language interfaces to

databases - an introduction. Journal of Natural Language Engineering, 1:29�81,

1995.

[Artzi and Zettlemoyer, 2013] Yoav Artzi and Luke Zettlemoyer. Weakly supervised

learning of semantic parsers for mapping instructions to actions. Transactions of

the Association for Computational Linguistics, 1(1):49�62, 2013.

[Aziz et al., 2014] Wilker Aziz, Marc Dymetman, and Lucia Specia. Exact decod-

ing for phrase-based statistical machine translation. In Proceedings of the 2014

Conference on Empirical Methods in Natural Language Processing, EMNLP 2014,

October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group

of the ACL, pages 1237�1249, 2014.

[Bahdanau et al., 2015] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.

Neural machine translation by jointly learning to align and translate. In Interna-

tional Conference on Learning Representations (ICLR), 2015.

[Bar-Hillel et al., 1961] Yehoshua Bar-Hillel, Micha A. Perles, and Eli Shamir. On

formal properties of simple phrase structure grammars. Zeitschrift für Phonetik,

Sprachwissenschaft und Kommunicationsforschung, 14:143�172, 1961.

[Baydin et al., 2015] Atilim Gunes Baydin, Barak A. Pearlmutter, and Alexey An-

dreyevich Radul. Automatic di�erentiation in machine learning: a survey. CoRR,

abs/1502.05767, 2015.

[Bengio, 2009] Yoshua Bengio. Learning deep architectures for ai. Foundation and

Trends in Machine Learning, 2(1):1�127, January 2009.

[Berant and Liang, 2014] Jonathan Berant and Percy Liang. Semantic parsing via

paraphrasing. In Annual Meeting for the Association for Computational Linguis-

tics (ACL), 2014.

116

[Berant et al., 2013] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang.

Semantic parsing on freebase from question-answer pairs. In Empirical Methods

in Natural Language Processing (EMNLP), 2013.

[Bergstra et al., 2010] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal

Lamblin, Razvan Pascanu, Guillaume Desjardins, Joseph Turian, and Yoshua Ben-

gio. Theano: a CPU and GPU math expression compiler. In Proceedings of the

Python for Scienti�c Computing Conference (SciPy), jun 2010. Oral.

[Billot and Lang, 1989] Sylvie Billot and Bernard Lang. The structure of shared

forests in ambiguous parsing. In Proceedings of the 27th Annual Meeting on As-

sociation for Computational Linguistics, ACL '89, pages 143�151. Association for

Computational Linguistics, 1989.

[Bollacker et al., 2008] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge,

and Jamie Taylor. Freebase: a collaboratively created graph database for struc-

turing human knowledge. In SIGMOD Conference, pages 1247�1250, 2008.

[Bordes et al., 2014a] Antoine Bordes, Sumit Chopra, and Jason Weston. Question

answering with subgraph embeddings. In Empirical Methods in Natural Language

Processing (EMNLP), pages 615�620, 2014.

[Bordes et al., 2014b] Antoine Bordes, Jason Weston, and Nicolas Usunier. Open

question answering with weakly supervised embedding models. European Confer-

ence on Machine Learning and Principles and Practice of Knowledge Discovery

(ECML-PKDD), 2014.

[Bottou, 1991] Léon Bottou. Une Approche théorique de l'Apprentissage Connexion-

niste: Applications à la Reconnaissance de la Parole. PhD thesis, Université de

Paris XI, Orsay, France, 1991.

[Bottou, 2010] Léon Bottou. Large-scale machine learning with stochastic gradient

descent. In in COMPSTAT, 2010.

[Cai and Yates, 2013] Qingqing Cai and Alexander Yates. Large-scale semantic pars-

ing via schema matching and lexicon extension. In In Proceedings of the Annual

Meeting of the Association for Computational Linguistics, 2013.

[Calder et al., 1988] Jonathan Calder, Ewan Klein, and Henk Zeevat. Uni�cation

categorial grammar: A concise, extendable grammar for natural language process-

ing. In Proceedings of the 12th conference on Computational linguistics-Volume 1,

pages 83�86. Association for Computational Linguistics, 1988.

117

[Chen et al., 2003] Mao Chen, Klaus Dorer, Ehsan Foroughi, Fredrick Heintz,

ZhanXiang Huang, Spiros Kapetanakis, Kostas Kostiadis, Johan Kummeneje, Jan

Murray, Itsuki Noda, Oliver Obst, Pat Riley, Timo Ste�ens, Yi Wang, and Xiang

Yin. Users Manual: RoboCup Soccer Server � for Soccer Server Version 7.07

and Later. The RoboCup Federation, February 2003.

[Chiang, 2005] David Chiang. A hierarchical phrase-based model for statistical ma-

chine translation. In Proceedings of the 43rd Annual Meeting on Association for

Computational Linguistics, ACL '05, pages 263�270, Stroudsburg, PA, USA, 2005.

[Clark and Curran, 2007] Stephen Clark and James R. Curran. Wide-coverage e�-

cient statistical parsing with CCG and log-linear models. Computational Linguis-

tics, 33(4):493�552, 2007.

[Collins, 2002] Michael Collins. Discriminative training methods for hidden markov

models: Theory and experiments with perceptron algorithms. In Proceedings of

the ACL-02 Conference on Empirical Methods in Natural Language Processing -

Volume 10, EMNLP '02, pages 1�8, Stroudsburg, PA, USA, 2002.

[Cuong et al., 2014] Nguyen Viet Cuong, Nan Ye, Wee Sun Lee, and Hai Leong

Chieu. Conditional random �eld with high-order dependencies for sequence label-

ing and segmentation. J. Mach. Learn. Res., 15(1):981�1009, January 2014.

[Cybenko, 1989] George Cybenko. Approximation by superpositions of a sigmoidal

function. Mathematics of Control, Signals, and Systems (MCSS), 2(4):303�314,

December 1989.

[Dahl et al., 1994] Deborah A. Dahl, Madeleine Bates, Michael Brown, William

Fisher, Kate Hunicke-Smith, David Pallett, Christine Pao, Alexander Rudnicky,

and Elizabeth Shriberg. Expanding the scope of the atis task: The atis-3 corpus.

In Proceedings of the Workshop on Human Language Technology, HLT '94, pages

43�48, 1994.

[Dalrymple, 2001] Mary Dalrymple. Lexical-Functional Grammar (Syntax and Se-

mantics, Volume 34) (Syntax and Semantics). MIT Press, August 2001.

[Daumé and Marcu, 2005] Hal Daumé, III and Daniel Marcu. Learning as search

optimization: Approximate large margin methods for structured prediction. In

Proceedings of the 22Nd International Conference on Machine Learning, ICML

'05, pages 169�176, New York, NY, USA, 2005. ACM.

118

[Deerwester et al., 1990] Scott Deerwester, Susan T. Dumais, George W. Furnas,

Thomas K. Landauer, and Richard Harshman. Indexing by latent semantic anal-

ysis. JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCI-

ENCE, 41(6):391�407, 1990.

[Deoras et al., 2011] Anoop Deoras, Tomas Mikolov, Stefan Kombrink, Martin

Kara�át, and Sanjeev Khudanpur. Variational approximation of long-span lan-

guage models for lvcsr. In ICASSP, pages 5532�5535. IEEE, 2011.

[Dong and Lapata, 2016] Li Dong and Mirella Lapata. Language to logical form with

neural attention. In Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany,

Volume 1: Long Papers, 2016.

[Duchi et al., 2011] John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgra-

dient methods for online learning and stochastic optimization. Journal of Machine

Learning Research, 12:2121�2159, 2011.

[Dyer, 2010] Christopher Dyer. A Formal Model of Ambiguity and its Applications

in Machine Translation. PhD thesis, University of Maryland, 2010.

[Dymetman and Xiao, 2016] Marc Dymetman and Chunyang Xiao. Log-linear

rnns: Towards recurrent neural networks with �exible prior knowledge. CoRR,

abs/1607.02467, 2016.

[Elman, 1990] Je�rey L. Elman. Finding structure in time. COGNITIVE SCIENCE,

14(2):179�211, 1990.

[Fader et al., 2011] Anthony Fader, Stephen Soderland, and Oren Etzioni. Identi-

fying relations for open information extraction. In Proceedings of the Conference

of Empirical Methods in Natural Language Processing (EMNLP '11), Edinburgh,

Scotland, UK, July 27-31 2011.

[Fader et al., 2013] Anthony Fader, Luke Zettlemoyer, and Oren Etzioni.

Paraphrase-driven learning for open question answering. In Proceedings of the

51st Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), pages 1608�1618, 2013.

[Faruqui et al., 2014] Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar, Chris

Dyer, Eduard H. Hovy, and Noah A. Smith. Retro�tting word vectors to semantic

lexicons. CoRR, abs/1411.4166, 2014.

119

[Ganitkevitch et al., 2013] Juri Ganitkevitch, Benjamin Van Durme, and Chris

Callison-Burch. Ppdb: The paraphrase database. In North American Chapter

of the Association for Computational Linguistics: Human Language Technologies

(NAACL-HLT), pages 758�764, 2013.

[Goodfellow et al., 2016] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep

Learning. MIT Press, 2016. http://www.deeplearningbook.org.

[Goyal et al., 2016] Raghav Goyal, Marc Dymetman, and Éric Gaussier. Natural

language generation through character-based rnns with �nite-state prior knowl-

edge. In COLING, pages 1083�1092, 2016.

[Graham et al., 1980] Susan L. Graham, , and Michael HarrisonWalter L. Ruzzo. An

improved context-free recognizer. ACM Transactions on Programming Languages

and Systems, 2(3):415�462, July 1980.

[Guu et al., 2017] K. Guu, P. Pasupat, E. Z. Liu, and P. Liang. From language to

programs: Bridging reinforcement learning and maximum marginal likelihood. In

Association for Computational Linguistics (ACL), 2017.

[He and Young, 2005] Yulan He and Steve Young. Semantic processing using the

hidden vector state model. Computer Speech and Language, 19(1):85�106, January

2005.

[Hendrix et al., 1978] Gary G. Hendrix, Earl D. Sacerdoti, Daniel Sagalowicz, and

Jonathan Slocum. Developing a natural language interface to complex data. ACM

Trans. Database Syst., 3(2):105�147, June 1978.

[Hirschman et al., 1993] L. Hirschman, M. Bates, D. Dahl, W. Fisher, J. Garofolo,

D. Pallett, K. Hunicke-Smith, P. Price, A. Rudnicky, and E. Tzoukermann. Multi-

site data collection and evaluation in spoken language understanding. In Pro-

ceedings of the Workshop on Human Language Technology, HLT '93, pages 19�24,

Stroudsburg, PA, USA, 1993. Association for Computational Linguistics.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and Jürgen Schmidhuber.

Long short-term memory. Neural Computation, 9(8):1735�1780, 1997.

[Hochreiter, 1991] S. Hochreiter. Untersuchungen zu dynamischen neuronalen Net-

zen. Diploma thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische

Universität München, 1991.

120

[Hopcroft et al., 2006] John E. Hopcroft, Rajeev Motwani, and Je�rey D. Ullman.

Introduction to Automata Theory, Languages, and Computation (3rd Edition).

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006.

[Hornik, 1991] Kurt Hornik. Approximation capabilities of multilayer feedforward

networks. Neural Network, 4(2):251�257, March 1991.

[Hu et al., 2016] Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard H. Hovy, and

Eric P. Xing. Harnessing deep neural networks with logic rules. In ACL (1), 2016.

[Jia and Liang, 2016] Robin Jia and Percy Liang. Data recombination for neural

semantic parsing. In Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany,

Volume 1: Long Papers, 2016.

[Jordan, 1986] Michael I. Jordan. Serial order: A parallel, distributed processing ap-

proach. Technical report, Institute for Cognitive Science, University of California,

San Diego, 1986.

[Joshi and Vijay-Shanker, 2001] Aravind K Joshi and K Vijay-Shanker. Composi-

tional semantics with lexicalized tree-adjoining grammar (ltag): How much un-

derspeci�cation is necessary? In Computing Meaning, pages 147�163. Springer,

2001.

[Kate and Mooney, 2006] Rohit J. Kate and Raymond J. Mooney. Using string-

kernels for learning semantic parsers. In ACL 2006: Proceedings of the 21st Inter-

national Conference on Computational Linguistics and the 44th annual meeting of

the ACL, pages 913�920, Morristown, NJ, USA, 2006. Association for Computa-

tional Linguistics.

[Kate et al., 2005a] Rohit J. Kate, Yuk WahWong, and Raymond J. Mooney. Learn-

ing to transform natural to formal languages. In Proceedings, The Twentieth

National Conference on Arti�cial Intelligence and the Seventeenth Innovative Ap-

plications of Arti�cial Intelligence Conference, July 9-13, 2005, Pittsburgh, Penn-

sylvania, USA, pages 1062�1068, 2005.

[Kate et al., 2005b] Rohit J. Kate, YukWahWong, and Raymond J. Mooney. Learn-

ing to transform natural to formal languages. In Proceedings of the 20th National

Conference on Arti�cial Intelligence - Volume 3, AAAI'05, pages 1062�1068, 2005.

[Kuhlmann et al., 2004] Gregory Kuhlmann, Peter Stone, Raymond J. Mooney, and

Jude W. Shavlik. Guiding a reinforcement learner with natural language advice:

121

Initial results in robocup soccer. In The AAAI-2004 Workshop on Supervisory

Control of Learning and Adaptive Systems, July 2004.

[Kuhn and De Mori, 1995] Roland Kuhn and Renato De Mori. The application of

semantic classi�cation trees to natural language understanding. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 17:449�460, 1995.

[Kwiatkowski et al., 2011] Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater,

and Mark Steedman. Lexical generalization in ccg grammar induction for semantic

parsing. In Proceedings of the Conference on Empirical Methods in Natural Lan-

guage Processing, EMNLP '11, pages 1512�1523, Stroudsburg, PA, USA, 2011.

[Kwiatkowski et al., 2013] Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke S.

Zettlemoyer. Scaling semantic parsers with on-the-�y ontology matching. In

Empirical Methods in Natural Language Processing, (EMNLP), pages 1545�1556,

2013.

[La�erty et al., 2001] John D. La�erty, Andrew McCallum, and Fernando C. N.

Pereira. Conditional random �elds: Probabilistic models for segmenting and la-

beling sequence data. In Proceedings of the Eighteenth International Conference

on Machine Learning, ICML '01, pages 282�289, 2001.

[Lebret and Collobert, 2015] Rémi Lebret and Ronan Collobert. Rehabilitation of

count-based models for word vector representations. In Computational Linguistics

and Intelligent Text Processing - 16th International Conference, CICLing 2015,

Cairo, Egypt, April 14-20, 2015, Proceedings, Part I, pages 417�429, 2015.

[Liang et al., 2011] Percy Liang, Michael I. Jordan, and Dan Klein. Learning

dependency-based compositional semantics. In Proceedings of the 49th Annual

Meeting of the Association for Computational Linguistics: Human Language Tech-

nologies - Volume 1, HLT '11, pages 590�599, 2011.

[Liang et al., 2016] Chen Liang, Jonathan Berant, Quoc Le, Kenneth D. Forbus, and

Ni Lao. Neural symbolic machines: Learning semantic parsers on freebase with

weak supervision. CoRR, abs/1611.00020, 2016.

[Liang, 2016] Percy Liang. Learning executable semantic parsers for natural lan-

guage understanding. Commun. ACM, 59(9):68�76, 2016.

[Lodhi et al., 2002] Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cris-

tianini, and Chris Watkins. Text classi�cation using string kernels. J. Mach.

Learn. Res., 2:419�444, March 2002.

122

[Macherey et al., 2001] Klaus Macherey, Franz Josef Och, and Hermann Ney. Natu-

ral language understanding using statistical machine translation. In In European

Conf. on Speech Communication and Technology, pages 2205�2208, 2001.

[Mesnil et al., 2015] Grégoire Mesnil, Yann Dauphin, Kaisheng Yao, Yoshua Bengio,

Li Deng, Dilek Hakkani-Tur, Xiaodong He, Larry Heck, Gokhan Tur, Dong Yu,

and Geo�rey Zweig. Using recurrent neural networks for slot �lling in spoken

language understanding. Trans. Audio, Speech and Lang. Proc., 23(3):530�539,

March 2015.

[Mikolov et al., 2013a] Tomas Mikolov, Kai Chen, Greg Corrado, and Je�rey Dean.

E�cient estimation of word representations in vector space. CoRR, abs/1301.3781,

2013.

[Mikolov et al., 2013b] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Cor-

rado, and Je�rey Dean. Distributed representations of words and phrases and their

compositionality. In Advances in Neural Information Processing Systems 26: 27th

Annual Conference on Neural Information Processing Systems 2013. Proceedings

of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States., pages

3111�3119, 2013.

[Miller et al., 1996] Scott Miller, David Stallard, Robert Bobrow, and Richard

Schwartz. A fully statistical approach to natural language interfaces. In Proceed-

ings of the 34th Annual Meeting on Association for Computational Linguistics,

ACL '96, pages 55�61. Association for Computational Linguistics, 1996.

[Mohri, 2009] Mehryar Mohri. Weighted Automata Algorithms, pages 213�254.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[Mou et al., 2016] Lili Mou, Zhengdong Lu, Hang Li, and Zhi Jin. Coupling

distributed and symbolic execution for natural language queries. CoRR,

abs/1612.02741, 2016.

[Mozer, 1992] Michael C. Mozer. The induction of multiscale temporal structure.

In J. E. Moody, S. J. Hanson, and R. P. Lippmann, editors, Advances in Neural

Information Processing Systems, 4, pages 275�282. Morgan Kaufmann, 1992.

[Nederhof and Satta, 2003] Mark-Jan Nederhof and Giorgio Satta. Probabilistic

parsing as intersection. In 8th International Workshop on Parsing Technologies,

pages 137�148, 2003.

123

[Nederhof and Satta, 2008] Mark-Jan Nederhof and Giorgio Satta. Probabilistic

parsing. In New Developments in Formal Languages and Applications, pages 229�

258. 2008.

[Neelakantan et al., 2016] Arvind Neelakantan, Quoc V. Le, Martín Abadi, Andrew

McCallum, and Dario Amodei. Learning a natural language interface with neural

programmer. CoRR, abs/1611.08945, 2016.

[Papineni et al., 1997] Kishore Papineni, Salim Roukos, and Todd Ward. Feature-

based language understanding. In Fifth European Conference on Speech Commu-

nication and Technology, EUROSPEECH 1997, Rhodes, Greece, September 22-25,

1997, 1997.

[Pascanu et al., 2013] Razvan Pascanu, Çaglar Gülçehre, Kyunghyun Cho, and

Yoshua Bengio. How to construct deep recurrent neural networks. CoRR,

abs/1312.6026, 2013.

[Pasupat and Liang, 2015] Panupong Pasupat and Percy Liang. Compositional se-

mantic parsing on semi-structured tables. In ACL(1), 2015.

[Pereira and Warren, 1980] Fernando C.N. Pereira and David H.D. Warren. De�nite

clause grammars for language analysis a survey of the formalism and a comparison

with augmented transition networks. Arti�cial Intelligence, 13:231 � 278, 1980.

[Pollard and Ivan A., 1994] Carl Pollard and Sag Ivan A. Head-driven phrase struc-

ture grammar. University of Chicago Press, 1994.

[Quirk et al., 2015] Chris Quirk, Raymond Mooney, and Michel Galley. Language to

code: Learning semantic parsers for if-this-then-that recipes. In Proceedings of the

53rd Annual Meeting of the Association for Computational Linguistics (ACL-15),

pages 878�888, Beijing, China, July 2015.

[Raymond and Riccardi, 2007] Christian Raymond and Giuseppe Riccardi. Gener-

ative and discriminative algorithms for spoken language understanding. In Inter-

Speech, pages 1605�1608, Antwerp, Belgium, August 2007.

[Reddy et al., 2014] Siva Reddy, Mirella Lapata, and Mark Steedman. Large-scale

semantic parsing without question-answer pairs. Transactions of the Association

for Computational Linguistics, 2:377�392, 2014.

124

[Rumelhart et al., 1988] David E. Rumelhart, Geo�rey E. Hinton, and Ronald J.

Williams. In Neurocomputing: Foundations of Research, chapter Learning Rep-

resentations by Back-propagating Errors, pages 696�699. MIT Press, Cambridge,

MA, USA, 1988.

[Russell and Norvig, 2003] Stuart J. Russell and Peter Norvig. Arti�cial Intelligence:

A Modern Approach. Pearson Education, 2 edition, 2003.

[Sahlgren, 2005] Magnus Sahlgren. An introduction to random indexing. In In Meth-

ods and Applications of Semantic Indexing Workshop at the 7th International Con-

ference on Terminology and Knowledge Engineering, 2005.

[Salakhutdinov et al., 2013] Ruslan Salakhutdinov, Joshua B. Tenenbaum, and An-

tonio Torralba. Learning with hierarchical-deep models. IEEE Trans. Pattern

Analysis and Machine Intelligence, 35(8):1958�1971, 2013.

[Schwartz et al., 1996] Richard Schwartz, Scott Miller, David Stallard, and John

Makhoul. Language understanding using hidden understanding models. In In

Proc. ICSLP-96, pages 997�1000, 1996.

[Shieber, 2014] Stuart M. Shieber. Bimorphisms and synchronous grammars. J.

Language Modelling, 2(1):51�104, 2014.

[Siegelmann and Sontag, 1991] Hava T. Siegelmann and Eduardo D. Sontag. Turing

computability with neural nets. Applied Mathematics Letters, 4:77�80, 1991.

[Srivastava et al., 2014] Nitish Srivastava, Geo�rey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: A simple way to prevent neu-

ral networks from over�tting. Journal of Machine Learning Research (JMLR),

15(1):1929�1958, 2014.

[Steedman, 1996] Mark Steedman. Surface structure and interpretation. Linguistic

inquiry monographs, 30. MIT Press, 1996.

[Stolcke, 1994] Andreas Stolcke. An E�cient Probabilistic Context-Free Pars-

ing Algorithm that Computes Pre�x Probabilities. Computational Linguistics,

21(2):165�201, 1994.

[Sutskever et al., 2014] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence

to sequence learning with neural networks. In Advances in Neural Information

Processing Systems (NIPS), pages 3104�3112. 2014.

125

[Tang and Mooney, 2001] Lappoon R. Tang and Raymond J. Mooney. Using mul-

tiple clause constructors in inductive logic programming for semantic parsing. In

Proceedings of the 12th European Conference on Machine Learning, pages 466�477,

Freiburg, Germany, 2001.

[Tieleman and Hinton., 2012] T. Tieleman and G. E. Hinton. Lecture 6.5-rmsprop:

Divide the gradient by a running average of its recent magnitude. 2012.

[Vinyals et al., 2014] Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya

Sutskever, and Geo�rey E. Hinton. Grammar as a foreign language. Neural In-

formation Processing Systems (NIPS), 2014.

[Wang et al., 2015] Yushi Wang, Jonathan Berant, and Percy Liang. Building a se-

mantic parser overnight. In Annual Meeting of the Association for Computational

Linguistics and the 7th International Joint Conference on Natural Language Pro-

cessing of the Asian Federation of Natural Language Processing, ACL Volume 1:

Long Papers, pages 1332�1342, 2015.

[Warren and Pereira, 1982] David H. D. Warren and Fernando C. N. Pereira. An

e�cient easily adaptable system for interpreting natural language queries. Comput.

Linguist., 8(3-4):110�122, July 1982.

[Wen et al., 2015] Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-hao Su, David

Vandyke, and Steve J. Young. Semantically conditioned lstm-based natural lan-

guage generation for spoken dialogue systems. In Empirical Methods in Natural

Language Processing (EMNLP), 2015.

[Wong and Mooney, 2006] Yuk Wah Wong and Raymond J. Mooney. Learning for

semantic parsing with statistical machine translation. In Proceedings of Human

Language Technology Conference / North American Chapter of the Association

for Computational Linguistics Annual Meeting (HLT-NAACL-06), pages 439�446,

New York City, NY, 2006.

[Wong and Mooney, 2007] Yuk Wah Wong and Raymond Mooney. Learning syn-

chronous grammars for semantic parsing with lambda calculus. In Proceedings of

the 45th Annual Meeting of the Association of Computational Linguistics, pages

960�967, Prague, Czech Republic, June 2007. Association for Computational Lin-

guistics.

126

[Woods et al., 1972] W. Woods, R. Kaplan, and B. Nash-Webber. The lunar sci-

ences natural language information system: Final report. Technical report, Bolt,

Beranek and Newman, Inc., Cambridge, MA, 1972.

[Xiao et al., 2016a] Chunyang Xiao, Guillaume Bouchard, Marc Dymetman, and

Claire Gardent. Orthogonality regularizer for question answering. In Proceedings of

the Fifth Joint Conference on Lexical and Computational Semantics, *SEM@ACL

2016, Berlin, Germany, 11-12 August 2016, 2016.

[Xiao et al., 2016b] Chunyang Xiao, Marc Dymetman, and Claire Gardent.

Sequence-based structured prediction for semantic parsing. In ACL(1), 2016.

[Xiao et al., 2017] Chunyang Xiao, Marc Dymetman, and Claire Gardent. Symbolic

priors for rnn-based semantic parsing. In Proceedings of the Twenty-Sixth In-

ternational Joint Conference on Arti�cial Intelligence, IJCAI 2017, Melbourne,

Australia, August 19-25, 2017, pages 4186�4192, 2017.

[Yang and Chang, 2016] Yi Yang and Ming-Wei Chang. S-MART: novel tree-

based structured learning algorithms applied to tweet entity linking. CoRR,

abs/1609.08075, 2016.

[Yao et al., 2014] Enpeng Yao, Guoqing Zheng, Ou Jin, Shenghua Bao, Kailong

Chen, Zhong Su, and Yong Yu. Probabilistic text modeling with orthogonal-

ized topics. In The 37th International ACM SIGIR Conference on Research and

Development in Information Retrieval, SIGIR '14, Gold Coast , QLD, Australia -

July 06 - 11, 2014, pages 907�910, 2014.

[Yih et al., 2014] Wen-tau Yih, Xiaodong He, and Christopher Meek. Semantic pars-

ing for single-relation question answering. In Proceedings of the 52nd Annual

Meeting of the Association for Computational Linguistics, ACL 2014, June 22-27,

2014, Baltimore, MD, USA, Volume 2: Short Papers, pages 643�648, 2014.

[Yih et al., 2015] Scott Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng

Gao. Semantic parsing via staged query graph generation: Question answering

with knowledge base. In Proceedings of the 52nd Annual Meeting of the Association

for Computational Linguistics, ACL 2015, 2015.

[Yin and Neubig, 2017] Pengcheng Yin and Graham Neubig. A syntactic neural

model for general-purpose code generation. CoRR, abs/1704.01696, 2017.

127

[Zanzotto and Dell'Arciprete, 2012] Fabio Massimo Zanzotto and Lorenzo

Dell'Arciprete. Distributed tree kernels. In International Conference on

Machine Learning (ICML), 2012.

[Zelle and Mooney, 1996] John M. Zelle and Raymond J. Mooney. Learning to parse

database queries using inductive logic programming. In AAAI/IAAI, pages 1050�

1055, Portland, OR, August 1996. AAAI Press/MIT Press.

[Zettlemoyer and Collins, 2005] Luke S. Zettlemoyer and Michael Collins. Learning

to map sentences to logical form: Structured classi�cation with probabilistic cat-

egorial grammars. In UAI '05, Proceedings of the 21st Conference in Uncertainty

in Arti�cial Intelligence, Edinburgh, Scotland, July 26-29, 2005, pages 658�666,

2005.

[Zettlemoyer and Collins, 2007] Luke S. Zettlemoyer and Michael Collins. Online

learning of relaxed ccg grammars for parsing to logical form. In In Proceedings of

the 2007 Joint Conference on Empirical Methods in Natural Language Processing

and Computational Natural Language Learning (EMNLP-CoNLL-2007, pages 678�

687, 2007.

128

	Neural-Symbolic Learning for Semantic Parsing
	Contents
	List of Figures
	List of Tables

	Analyse Sémantique avec Apprentissage Neuro-Symbolique (français)
	Introduction
	Part I Background
	Chapter 1 Executable Semantic Parsing Systems
	Contents
	1.1 Early Developments
	1.1.1 LUNAR
	1.1.2 Grammar formalisms dealing with both syntax and semantics
	1.1.3 Early executable semantic parsing systems learned from Data

	1.2 Machine Learning Approaches
	1.2.1 Datasets
	1.2.2 Semantic Parsing systems with linguistic hypothesis about NL

	1.3 New Challenges
	1.3.1 Reduce annotation efforts
	1.3.2 Reduce engineering efforts

	Chapter 2 Automata and Grammars
	Contents
	2.1 Automata and Context-Free Grammars
	2.2 Intersection between a WCFG and WFSA(s)
	2.2.1 Intersecting a WFSA with a WCFG

	Chapter 3 Neural Networks
	Contents
	3.1 Multilayer Perceptrons
	3.1.1 The Multilayer Perceptron model
	3.1.2 Learning through BackPropagation

	3.2 Recurrent Neural Networks
	3.2.1 Recurrent Neural Network model
	3.2.2 Training for RNNs

	3.3 Recurrent Neural Network Variants
	3.3.1 Vanishing/exploding gradient problems
	3.3.2 Leaky units
	3.3.3 Some remarks on LSTMs

	Part II Contributions
	Chapter 4 Orthogonal Embeddings for the Semantic Parsing of Simple Queries
	Contents
	4.1 Introduction
	4.2 The ReVerb Question Answering Task
	4.3 Embedding model
	4.3.1 Scoring function
	4.3.2 Inference
	4.3.3 Training
	4.3.4 Enforcing Orthogonal Embeddings

	4.4 Experiments
	4.4.1 Toy example
	4.4.2 Wikianswers

	4.5 Related Work
	4.6 Conclusion

	Chapter 5 Neural Semantic Parsing under Grammatical Prior Knowledge
	Contents
	5.1 Introduction
	5.2 Background on SPO
	5.3 Neural Approach Integrating Grammatical Constraints
	5.3.1 Grammars and Derivations
	5.3.2 Sequence prediction models
	5.3.3 Sequence prediction architecture

	5.4 Experiments
	5.4.1 Setup
	5.4.2 Implementation details
	5.4.3 Experimental results
	5.4.4 Analysis of results

	5.5 Related Work and Discussion
	5.6 Conclusion

	Chapter 6 Automata as Additional, Modular, Prior Knowledge Sources
	Contents
	6.1 Introduction
	6.2 Background on Grammars and Automata
	6.2.1 The approach ofWang et al. (2015), original and new datasets
	6.2.2 The approach of chapter 5

	6.3 Symbolic Background Neural Model
	6.3.1 Background priors on RNNs
	6.3.2 WCFG background

	6.4 Experiments
	6.4.1 Setup
	6.4.2 Implementations
	6.4.3 Experimental Results
	6.4.4 Result Analysis

	6.5 Related Work
	6.6 Conclusion

	Chapter 7 Conclusion and Perspectives
	7.1 Summary
	7.2 Perspectives

	Bibliography

