R. Castaing and G. Slodzian, Microanalyse par émission ionique secondaire, Journal of Microscopy, 1962.

A. Benninghoven, Surface investigation of solids by the statical method of secondary ion mass spectroscopy (SIMS), Surface Science, vol.35, pp.427-437, 1973.
DOI : 10.1016/0039-6028(73)90232-X

G. Bolbach, A. Viari, R. Galera, A. Brunot, and J. C. Blais, Organic film thickness effect in secondary ion mass spectrometry and plasma desorption mass spectrometry, International Journal of Mass Spectrometry and Ion Processes, vol.112, issue.1, pp.93-100, 1992.
DOI : 10.1016/0168-1176(92)87034-C

A. Benninghoven and B. Hagenhoff, Niehuis, E. Surface MS: probing real-world samples

P. Sigmund, Sputtering by ion bombardment: theoretical concepts In Sputtering by particle bombardment I: physical sputtering of single-element solids

M. L. Yu, A bond breaking model for secondary ion emission. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, pp.542-548, 1986.

W. Gerhard and C. Plog, Secondary ion emission by nonadiabatic dissociation of nascent ion molecules with energies depending on solid composition, Zeitschrift für Physik B Condensed Matter, pp.59-70, 1983.
DOI : 10.1016/0167-5087(83)90844-X

R. G. Cooks and K. L. Busch, Matrix effects, internal energies and MS/MS spectra of molecular ions sputtered from surfaces, International Journal of Mass Spectrometry and Ion Physics, vol.53, pp.111-124, 1983.
DOI : 10.1016/0020-7381(83)85106-7

F. Kotter and A. Benninghoven, Secondary ion emission from polymer surfaces under Ar +

A. Brunelle, D. Touboul, and O. Laprévote, Biological tissue imaging with time-of-flight secondary ion mass spectrometry and cluster ion sources, Journal of Mass Spectrometry, vol.5, issue.232, pp.985-999, 2005.
DOI : 10.1021/ac9904617

D. Rading, From sample to data, IONTOF workshop

J. Cheng and A. Wucher, Winograd, N. Molecular depth profiling with cluster ion beams

J. C. Vickerman, D. Briggs, and . Tof-sims, Materials analysis by mass spectrometry, 2 nd Ed, 2001.

V. E. Krohn and G. Ringo, Ion source of high brightness using liquid metal, Applied Physics Letters, vol.13, issue.9, pp.479-481, 1975.
DOI : 10.1103/RevModPhys.3.191

D. M. Cannon, M. L. Pacholski, N. Winograd, and A. G. Ewing, Molecule Specific Imaging of Freeze-Fractured, Frozen-Hydrated Model Membrane Systems Using Mass Spectrometry, Journal of the American Chemical Society, vol.122, issue.4, pp.603-610, 2000.
DOI : 10.1021/ja992078p

S. G. Ostrowski, C. T. Van-bell, N. Winograd, and A. G. Ewing, Mass Spectrometric Imaging of Highly Curved Membranes During Tetrahymena Mating, Science, vol.305, issue.5680, pp.71-73, 2004.
DOI : 10.1126/science.1099791

H. H. Andersen and H. L. Bay, Nonlinear effects in heavy???ion sputtering, Journal of Applied Physics, vol.33, issue.14, pp.45-953, 1974.
DOI : 10.1080/00337577008235616

A. Wucher, Molecular secondary ion formation under cluster bombardment: A fundamental review, Applied Surface Science, vol.252, issue.19, pp.6482-648, 2006.
DOI : 10.1016/j.apsusc.2006.02.070

W. Reuter, Secondary ion emission from metal targets under carbon trifluoride ion (CF3+) and oxygen ion (O2+) bombardment, Analytical Chemistry, vol.59, issue.17, pp.2081-2087, 1987.
DOI : 10.1021/ac00144a017

A. D. Appelhans and J. Delmore, Comparison of polyatomic and atomic primary beams for secondary ion mass spectrometry of organics, Analytical Chemistry, vol.61, issue.10, pp.1087-1093, 1989.
DOI : 10.1021/ac00185a009

M. G. Blain, S. Della-negra, H. Joret, Y. Le-beyec, and E. A. Schweikert, Secondary-ion yields from surfaces bombarded with keV molecular and cluster ions, Physical Review Letters, vol.32, issue.15, pp.1625-1628, 1989.
DOI : 10.1063/1.328790

M. G. Blain, E. A. Scweikert, G. Ben-assayag, and P. Sudraud, Impact of slow gold clusters on various solids: nonlinear effects in secondary ion emission. Nuclear Instruments and Methods in Physics Research, pp.8-22, 1991.
URL : https://hal.archives-ouvertes.fr/in2p3-00016202

O. Laprévote, Tissue molecular ion imaging by gold cluster ion bombardment, Analytical Chemistry, vol.76, pp.1550-1159, 2004.

P. Sjövall, J. Jausmaa, and B. Johansson, Mass Spectrometric Imaging of Lipids in Brain Tissue, Analytical Chemistry, vol.76, issue.15, pp.4271-4278, 2004.
DOI : 10.1021/ac049389p

M. Benguerba, A. Brunelle, S. Della-negra, J. Depauw, H. Joret et al., Impact of Slow Gold Cluster on Various Solids: Nonlinear Effects in Secondary Ion Emission. Nuclear Instruments and Methods in Physics Research Section, pp.8-22, 1991.

F. Kollmer, Cluster Primary Ion Bombardment of Organic Materials, Applied Surface Science, pp.231-232, 2004.

D. Touboul, F. Kollmer, A. Brunelle, and O. Laprévote, Improvement of biological time-of-flight-secondary ion mass spectrometry imaging with a bismuth cluster ion source, Journal of the American Society for Mass Spectrometry, vol.187, issue.232, pp.1608-1618, 2005.
DOI : 10.1016/S0169-4332(01)00787-5

D. Weibel, S. Wong, N. Lockyer, P. Blenkinsopp, R. Hill et al., Primary Ion Beam System for Time of Flight Secondary Ion Mass Spectrometry:?? Its Development and Secondary Ion Yield Characteristics, Analytical Chemistry, vol.75, issue.7, pp.1754-1764, 2003.
DOI : 10.1021/ac026338o

N. Winograd, The Magic of Cluster SIMS, Analytical Chemistry, vol.77, issue.7, pp.142-149, 2005.
DOI : 10.1021/ac053355f

K. Mochiji, M. Hashinokuchiy, K. Moritani, and N. Toyoda, Matrix-free detection of intact ions from proteins in argon-cluster secondary ion mass spectrometry. Rapid Communication in Mass Spectrometry, pp.648-652, 2009.

A. Brunelle, D. Touboul, and O. Laprévote, Biological tissue imaging with time-of-flight secondary ion mass spectrometry and cluster ion sources, Journal of Mass Spectrometry, vol.5, issue.232, pp.985-999, 2005.
DOI : 10.1021/ac9904617

C. Bich, D. Touboul, and A. Brunelle, Cluster TOF-SIMS imaging as a tool for micrometric histology of lipids in tissue, Mass Spectrometry Reviews, vol.201, issue.220, pp.442-451, 2014.
DOI : 10.1016/j.surfcoat.2006.02.081

URL : https://hal.archives-ouvertes.fr/hal-01075080

J. S. Fletcher, N. P. Lockyer, and J. C. Vickerman, Developments in molecular SIMS depth profiling and 3D imaging of biological systems using polyatomic primary ions, Mass Spectrometry Reviews, vol.19, issue.232, pp.142-174, 2011.
DOI : 10.1021/jp077325n

L. A. Mcdonnell and R. M. Heeren, Imaging mass spectrometry, Mass Spectrometry Reviews, vol.226, issue.220, pp.606-643, 2007.
DOI : 10.5702/massspec.54.133

D. Touboul and A. Brunelle, What more can TOF-SIMS bring than other MS imaging methods?, Bioanalysis, vol.8, issue.5, pp.367-369
DOI : 10.1021/ac4009513

F. M. Green, I. S. Gilmore, and M. P. Seah, TOF-SIMS: Accurate mass scale calibration, Journal of the American Society for Mass Spectrometry, vol.26, issue.232, pp.514-523, 2006.
DOI : 10.1002/(SICI)1096-9918(199808)26:9<617::AID-SIA407>3.0.CO;2-V

URL : https://link.springer.com/content/pdf/10.1016%2Fj.jasms.2005.12.005.pdf

D. Touboul, A. Brunelle, and O. Laprévote, Structural analysis of secondary ions by post-source decay in time-of-flight secondary ion mass spectrometry, Rapid Communications in Mass Spectrometry, vol.58, issue.232, pp.703-709, 2006.
DOI : 10.1002/rcm.2362

URL : https://hal.archives-ouvertes.fr/hal-00018296

A. Carado, J. Kozole, M. Passarelli, N. Winograd, A. Loboda et al., Cluster SIMS with a hybrid quadrupole time-of-flight mass spectrometer, Applied Surface Science, vol.255, issue.4, pp.1610-1613, 2008.
DOI : 10.1016/j.apsusc.2008.05.151

R. Hill, P. Blenkinsopp, S. Thompson, J. Vickerman, and J. S. Fletcher, A new time-of-flight SIMS instrument for 3D imaging and analysis, Surface and Interface Analysis, vol.20, issue.1-2, pp.506-509, 2011.
DOI : 10.1021/ac8015278

S. Rabbani, J. S. Fletcher, N. P. Lockyer, and J. C. Vickerman, Exploring subcellular imaging on the buncher-ToF J105 3D chemical imager, Exploring subcellular imaging on the buncher-ToF J105 3D chemical imager, pp.380-384, 2011.
DOI : 10.1021/ac900636v

N. T. Phan, M. Munem, A. G. Ewing, J. S. Fletcher, and . Ms, MS/MS analysis and imaging of lipids across Drosophila brain using secondary ion mass spectrometry, Analytical and Bioanalytical Chemistry, vol.106, issue.4, pp.3923-3932, 2017.
DOI : 10.1016/S0009-3084(00)00128-6

D. F. Smith, E. W. Robinson, A. V. Tolmachev, and R. M. Heeren, Secondary Ion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Analytical Chemistry, vol.83, issue.24, pp.9552-9556, 2011.
DOI : 10.1021/ac2023348

J. S. Fletcher, Cellular imaging with secondary ion mass spectrometry, The Analyst, vol.79, issue.19, pp.2204-2215, 2009.
DOI : 10.1116/1.576748

H. Van-der-werff, Sextonia, a New Genus of Lauraceae from South America, Novon, vol.7, issue.4, pp.436-439, 1997.
DOI : 10.2307/3391778

J. Madda, S. Khandregula, S. K. Bandari, N. Kommu, and J. S. Yadav, Stereoselective total synthesis of rubrenolide and rubrynolide, Tetrahedron: Asymmetry, vol.25, issue.22, pp.1494-1500, 2014.
DOI : 10.1016/j.tetasy.2014.10.004

C. Baudassé, L. S. Espíndola, and D. Stien, The termiticidal activity of Sextonia rubra (Mez) van der Werff (Lauraceae) extract and its active constituent rubrynolide. Pest Management Science, pp.1420-1423, 2011.

J. Beauchêne, L. S. Espíndola, and D. Stien, Search for Antifungal Compounds from the Wood of Durable Tropical Trees, Journal of Natural Products, vol.73, pp.1706-1707, 2010.

D. Stien, E. Houël, and I. Dusfour, Assessment of a simple compound-saving method to study insecticidal activity of natural extracts and pure compounds against mosquito larvae, Journal of the American Mosquito Control Association, vol.32, pp.337-340, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01602207

N. Amusant, M. Migg, B. Thibaut, and J. Beauchene, Diversity of decay resistance strategies of durable tropical woods species: Bocoa prouacencsis Aublet, Vouacapoua americana Aublet, Inga alba (Sw.) Wild, International Biodeterioration & Biodegradation, vol.94, pp.103-108, 2014.
DOI : 10.1016/j.ibiod.2014.06.012

URL : https://hal.archives-ouvertes.fr/hal-01321162

S. E. Galembeck, R. Vessecchia, and N. P. Lopes, Gas-phase fragmentation of ?-lactone derivatives by electrospray ionization tandem mass spectrometry, Journal of Mass Spectrometry, vol.44, pp.1733-1741, 2009.

I. Beritognolo, E. Magel, A. Latif, J. P. Charpentier, C. Jay-allemand et al., Expression of genes encoding chalcone synthase, flavanone 3-hydroxylase and dihydroflavonol 4-reductase correlates with flavanol accumulation during heartwood formation in Juglans nigra, Tree Physiology, vol.22, issue.5, pp.291-300, 2002.
DOI : 10.1093/treephys/22.5.291

K. Saito, T. Mitsutani, T. Imai, Y. Matsushita, and K. Fukushima, Discriminating the Indistinguishable Sapwood from Heartwood in Discolored Ancient Wood by Direct Molecular Mapping of Specific Extractives Using Time-of-Flight Secondary Ion Mass Spectrometry, Analytical Chemistry, vol.80, issue.5, pp.1552-1557, 2008.
DOI : 10.1021/ac7021162

W. Hillis, Formation of Robinetin Crystals in Vessels of Intsia Species, IAWA Journal, vol.17, issue.4, pp.405-419, 1996.
DOI : 10.1163/22941932-90000637

T. Nagasaki, S. Yasuda, and T. Imai, Immunohistochemical localization of agatharesinol, a heartwood norlignan, in Cryptomeria japonica, Phytochemistry, vol.60, issue.5, pp.461-466, 2002.
DOI : 10.1016/S0031-9422(02)00141-3

N. Amusant, C. Moretti, B. Richard, E. Prost, J. M. Nuzillard et al., Chemical compounds from Eperua falcata and Eperua grandiflora heartwood and their biological activities agains twood destroying fungus (Coriolus versicolor) Holz Roh Werkst, pp.23-28, 2007.
DOI : 10.1007/s00107-006-0120-1

N. Amusant, M. Migg, B. Thibaut, and J. Beauchene, Diversity of decay resistance strategies of durable tropical woods species: Bocoa prouacencsis Aublet, Vouacapoua americana Aublet, Inga alba (Sw.) Wild, International Biodeterioration & Biodegradation, vol.94, pp.103-108, 2014.
DOI : 10.1016/j.ibiod.2014.06.012

URL : https://hal.archives-ouvertes.fr/hal-01321162

H. Van-der-werff, Sextonia, a New Genus of Lauraceae from South America, Novon, vol.7, issue.4, pp.436-439, 1997.
DOI : 10.2307/3391778

N. C. Franca, O. R. Gottlieb, D. T. Coxon, and W. Ollis, Chemistry of brazilian Lauraceae. xVII. constitution of rubrenolide and rubrynolide in Nectandra rubra. Acad Brasil Cienc An, pp.123-125, 1971.

N. C. Franc, O. R. Gottlieb, D. T. Coxon, and W. Ollis, Constitutions of rubrenolide and rubrynolide: an alkene???alkyne pair from Nectandra rubra, J. Chem. Soc., Chem. Commun., issue.9, pp.514-515, 1972.
DOI : 10.1039/C39720000514

N. C. Franca, O. R. Gottlieb, and D. T. Coxon, Rubrenolide and rubrynolide: An alkene-alkyne pair from Nectandra rubra???, Phytochemistry, vol.16, issue.2, pp.257-262, 1977.
DOI : 10.1016/S0031-9422(00)86797-7

J. Beauchêne, L. S. Espíndola, and D. Stien, Search for Antifungal Compounds from the Wood of Durable Tropical Trees, Journal of Natural Products, vol.73, pp.1706-1707, 2010.

A. M. Rodrigues, N. Amusant, J. Beauchêne, V. Eparvier, N. Leménager et al., The termiticidal activity of Sextonia rubra (Mez) van der Werff (Lauraceae) extract and its active constituent rubrynolide, Pest Management Science, vol.37, issue.11, pp.1420-1423
DOI : 10.1111/j.1365-294X.2005.02508.x

URL : https://hal.archives-ouvertes.fr/hal-00649278

E. Houël, A. M. Rodrigues, E. Nicolini, and O. Ngwete, Natural durability of Sextonia rubra, an Amazonian tree species: description and origin

D. Stien, E. Houël, and I. Dusfour, Assessment of a simple compound-saving method to study insecticidal activity of natural extracts and pure compounds against mosquito larvae, Journal of the American Mosquito Control Association, vol.32, pp.337-340, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01602207

A. Thibaut, L. S. Espindola, B. Thibaut, and D. Stien, Antinomic natural self-protection mechanism in long-lasting woods: a case study with three tropical species from French Chapter 4 Biosynthetic investigation and localization of bioactive metabolites in Amazonian tree species Sextonia rubra (Lauraceae) by 2D

. Guiana, IRG/WP 09-10696. The International Research Group on Wood Protection, 2009.

S. K. Taylor, J. A. Hopkins, K. A. Spangenberg, D. W. Mcmillen, and J. Grutzner, Synthesis of (.+-.)-rubrynolide and a revision of its reported stereochemistry, The Journal of Organic Chemistry, vol.56, issue.20, pp.5951-5955, 1991.
DOI : 10.1021/jo00020a047

URL : https://hal.archives-ouvertes.fr/hal-00702673

L. Thijs and B. Zwanenburg, Rubrenolide, total synthesis and revision of its reported stereochemical structure, Tetrahedron, vol.60, issue.24, pp.5237-5252, 2004.
DOI : 10.1016/j.tet.2004.04.037

H. Fujioka, Y. Ohba, H. Hirose, K. Nakahara, K. Murai et al., Facile formation of tetrahydrofurans with multiple chiral centers using double iodoetherification of ??-symmetric diene acetals: short asymmetric total synthesis of rubrenolide and rubrynolide, Tetrahedron, vol.64, issue.19, pp.4233-4245, 2008.
DOI : 10.1016/j.tet.2008.02.088

J. Madda, S. Khandregula, S. K. Bandari, N. Kommu, and J. S. Yadav, Stereoselective total synthesis of rubrenolide and rubrynolide, Tetrahedron: Asymmetry, vol.25, issue.22, pp.1494-1500, 2014.
DOI : 10.1016/j.tetasy.2014.10.004

O. Gottlieb, Chemosystematics of the lauraceae, Phytochemistry, vol.11, issue.5, pp.1537-1570, 1972.
DOI : 10.1016/0031-9422(72)85001-5

J. Lisec, N. Schauer, J. Kopka, L. Willmitzer, and A. R. Fernie, Gas chromatography mass spectrometry???based metabolite profiling in plants, Nature Protocols, vol.301, issue.1, pp.387-396, 2006.
DOI : 10.1093/pcp/pch094

J. W. Allwood and R. Goodacre, An introduction to liquid chromatography??????mass spectrometry instrumentation applied in plant metabolomic analyses, Phytochemical Analysis, vol.86, issue.1, pp.33-47, 2010.
DOI : 10.1002/9781118592014

Y. J. Lee, D. C. Perdian, Z. Song, E. S. Yeung, and B. J. Nikolau, Use of mass spectrometry for imaging metabolites in plants, The Plant Journal, vol.17, issue.1, pp.81-95, 2012.
DOI : 10.1002/(SICI)1098-2787(1998)17:5<337::AID-MAS2>3.0.CO;2-S

N. Bjarnholt, B. Li, J. D-'alvise, and C. Janfelt, Mass spectrometry imaging of plant metabolites ??? principles and possibilities, Nat. Prod. Rep., vol.84, issue.6, pp.818-837, 2014.
DOI : 10.1021/ac202905y

P. Franceschi, Sample preparation for mass spectrometry imaging of plant tissues: A review, Frontiers in Plant Science, 2016.

S. G. Ostrowski, C. T. Van-bell, N. Winograd, and A. G. Ewing, Mass Spectrometric Imaging of Highly Curved Membranes During Tetrahymena Mating, Science, vol.305, issue.5680, pp.71-73, 2004.
DOI : 10.1126/science.1099791

T. Imai, K. Tanabe, T. Kato, and K. Fukushima, Localization of ferruginol, a diterpene phenol, in Cryptomeria japonica heartwood by time-of-flight secondary ion mass spectrometry, Planta, vol.16, issue.4, pp.549-556, 2005.
DOI : 10.1007/978-3-642-72534-0_6

K. Saito, T. Mitsutani, T. Imai, Y. Matsushita, and K. Fukushima, Discriminating the indistinguishable sapwood from heartwood in discolored ancient wood by direct molecular Chapter 4 Biosynthetic investigation and localization of bioactive metabolites in Amazonian tree species Sextonia rubra (Lauraceae) by 2D

Q. P. Vanbellingen, T. Fu, C. Bich, N. Amusant, D. Stien et al., Amsh. wood constituents by submicron resolution cluster-TOF-SIMS imaging, Journal of Mass Spectrometry, vol.34, issue.232, pp.412-423, 2016.
DOI : 10.1080/00049158.2002.10674861

URL : https://hal.archives-ouvertes.fr/hal-01532634

S. Jung, M. Foston, U. C. Kalluri, G. A. Tuskan, and A. J. Ragauskas, 3D Chemical Image using TOF-SIMS Revealing the Biopolymer Component Spatial and Lateral Distributions in Biomass, Angewandte Chemie International Edition, vol.27, issue.86, pp.12005-12008, 2012.
DOI : 10.1523/JNEUROSCI.2846-07.2007

D. F. Smith, E. W. Robinson, A. V. Tolmachev, and R. M. Heeren, Secondary Ion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Analytical Chemistry, vol.83, issue.24, pp.9552-9556, 2011.
DOI : 10.1021/ac2023348

P. E. Larson and R. M. Heeren, A new method and mass spectrometer design for TOF-SIMS parallel imaging MS/MS, Analytical Chemistry, vol.88, pp.6433-6440, 2016.

E. Rutishauser, D. Barthélémy, and L. Blanc, Eric-André, N. Crown fragmentation assessment in tropical trees: Method, insights and perspectives. Forest ecology and management, pp.400-407, 2011.

D. Touboul, A. Brunelle, F. Halgand, S. De-la-porte, and O. Laprévote, Lipid imaging by gold cluster time-of-flight secondary ion mass spectrometry: application to Duchenne muscular dystrophy, Journal of Lipid Research, vol.19, issue.7, pp.1388-1395, 2005.
DOI : 10.1091/mbc.11.5.1859

URL : https://hal.archives-ouvertes.fr/hal-00126281

R. E. Goacher, D. Jeremic, and E. R. Master, Expanding the Library of Secondary Ions That Distinguish Lignin and Polysaccharides in Time-of-Flight Secondary Ion Mass Spectrometry Analysis of Wood, Analytical Chemistry, vol.83, issue.3, pp.804-812, 2011.
DOI : 10.1021/ac1023028

M. J. Cheng, I. L. Tsai, S. J. Lee, B. Jayaprakasam, and I. S. Chen, Steryl epoxide, secobutanolide and butanolides from the stem wood of Machilus zuihoensis, Phytochemistry, vol.66, issue.10, pp.1180-1185, 2005.
DOI : 10.1016/j.phytochem.2005.03.020

H. Karikome, Y. Mimaki, and Y. Sashida, A butanolide and phenolics from Machilus thunbergii, Phytochemistry, vol.30, issue.1, pp.315-319, 1991.
DOI : 10.1016/0031-9422(91)84145-I

I. L. Tsai, C. H. Hung, C. Y. Duh, and I. S. Chen, Cytotoxic Butanolides and Secobutanolides from the Stem Wood of Formosan Lindera communis, Planta Medica, vol.68, issue.2, pp.142-145, 2002.
DOI : 10.1055/s-2002-20260

C. Pathirana, R. Dwight, P. R. Jensen, W. Fenical, A. Delgado et al., Structure and synthesis of a new butanolide from a marine actinomycete, Tetrahedron Letters, vol.32, issue.48, pp.7001-7004, 1991.
DOI : 10.1016/0040-4039(91)85024-Y

A. M. Taylor, B. L. Gartner, and J. J. Morrell, Heartwood formation and natural durability a review, pp.587-611, 2002.

S. S. Grecco, H. Lorenzi, A. G. Tempone, and J. H. Lago, Update: biological and chemical aspects of Nectandra genus (Lauraceae), Tetrahedron: Asymmetry, vol.27, issue.17-18, pp.793-810, 2016.
DOI : 10.1016/j.tetasy.2016.07.009

J. E. Anderson, W. Ma, D. L. Smith, and C. J. Chang, Biologically Active ??-Lactones and Methylketoalkenes from Lindera benzoin, Journal of Natural Products, vol.55, issue.1, pp.2145-2152, 2009.
DOI : 10.1021/np50079a011

C. Chen, Cytotoxic Compounds from the Stems of Cinnamomum tenuifolium, Journal of Natural Products, vol.72, pp.1816-1824, 2009.

I. L. Tsai, C. H. Hung, C. Y. Duh, and I. S. Chen, Cytotoxic Butanolides and Secobutanolides from the Stem Wood of Formosan Lindera communis, Planta Medica, vol.68, issue.2, pp.142-145, 2002.
DOI : 10.1055/s-2002-20260

K. Kaburagi, O. Iida, K. Sugimura, and E. Sakai, Two new butanolides from the roots of Litsea acuminata, Phytochemistry Letter, vol.11, pp.32-36, 2015.

P. L. Kuo, C. Y. Chen, and Y. L. Hsu, Isoobtusilactone A Induces Cell Cycle Arrest and Apoptosis through Reactive Oxygen Species/Apoptosis Signal-Regulating Kinase 1 Signaling Pathway in Human Breast Cancer Cells, 7406?7420. Chapter 4 Biosynthetic investigation and localization of bioactive metabolites in Amazonian tree species Sextonia rubra (Lauraceae) by 2D and 3D TOF-SIMS imaging 129, 2007.
DOI : 10.1158/0008-5472.CAN-07-1089

D. Micco, V. Balzano, A. Wheeler, E. A. Baas, and P. , TYLOSES AND GUMS: A REVIEW OF STRUCTURE, FUNCTION AND OCCURRENCE OF VESSEL OCCLUSIONS, IAWA Journal, vol.37, issue.2, pp.186-205, 2016.
DOI : 10.1163/22941932-20160130

H. E. Dadswell, W. E. Hillis, and . Wood, In Wood extractives and their significance to the pulp and paper industries, pp.3-49, 1962.

W. Hillis, Formation of Robinetin Crystals in Vessels of Intsia Species, IAWA Journal, vol.17, issue.4, pp.405-419, 1996.
DOI : 10.1163/22941932-90000637

T. Nagasaki, S. Yasuda, and T. Imai, Immunohistochemical localization of agatharesinol, a heartwood norlignan, in Cryptomeria japonica, Phytochemistry, vol.60, issue.5, pp.461-466, 2002.
DOI : 10.1016/S0031-9422(02)00141-3

R. B. Filho, P. P. Diaz, and O. R. Gottlieb, Tetronic acid and diarylpropanes from Iryanthera elliptica, Phytochemistry, vol.19, issue.3, pp.455-459, 1980.
DOI : 10.1016/0031-9422(80)83200-6

J. A. Kato, N. Funa, H. Watanabe, Y. Ohnishi, and S. Horinouchi, Biosynthesis of ??-butyrolactone autoregulators that switch on secondary metabolism and morphological development in Streptomyces, Proceedings of the National Academy of Sciences, pp.2378-2383, 2007.
DOI : 10.1016/S0040-4020(01)91552-2

S. Schulz and S. Hötling, The use of the lactone motif in chemical communication, Natural Product Reports, vol.90, issue.7, pp.1042-1066, 2015.
DOI : 10.2183/pjab.90.373

S. Lybing and L. Reio, Degradation of 14C-Labelled Carolic and Carlosic Acids from Penicillium Charlesii G. Smith., Acta Chemica Scandinavica, vol.12, pp.1575-1584, 1958.
DOI : 10.3891/acta.chem.scand.12-1575

C. Ross, K. Scherlach, F. Kloss, and C. Hertweck, The Molecular Basis of Conjugated Polyyne Biosynthesis in Phytopathogenic Bacteria, Angewandte Chemie International Edition, vol.51, issue.30, pp.7794-7798, 2014.
DOI : 10.1002/anie.201200002

C. Juan, V. Martinez, M. Yoshida, and O. Gottlieb, Six groups of ?-ethyl-, ?-ethenyland ?-ethynyl-?-alkylidene-?-lactones, Tetrahedron Letters, pp.1021-1024, 1979.

. Boumendjel, M. De-waard, and R. Robins, A retro-biosynthetic approach to the prediction of biosynthetic pathways from position-specific isotope analysis as shown for tramadol, Proceedings of the National Academy of Sciences 2015, pp.8296-8301

R. M. Rowell, R. Pettersen, J. S. Han, J. S. Rowell, M. A. Tshabalala et al., Cell wall chemistry. In Handbook of wood chemistry and wood composites, 2005.

E. Windeisen, G. Wegener, G. Lesnino, and P. Schumacher, Investigation of the correlation between extractives content and natural durability in 20 cultivated larch trees, Holz als Roh- und Werkstoff, vol.60, issue.5, pp.373-374, 2002.
DOI : 10.1007/s00107-002-0314-0

N. Gierlinger, D. Jacques, M. Schwanninger, R. Wimmer, and L. E. Pâques, Heartwood extractives and lignin content of different larch species ( Larix sp.) and relationships to brown-rot decay-resistance, Trees - Structure and Function, vol.18, issue.2, pp.230-236, 2004.
DOI : 10.1007/s00468-003-0300-0

M. Grabner, U. Müller, N. Gierlinger, and R. Wimmer, Effects of Heartwood Extractives on Mechanical Properties of Larch, IAWA Journal, vol.26, issue.2, pp.211-220, 2005.
DOI : 10.1163/22941932-90000113

K. K. Pandey, A note on the influence of extractives on the photo-discoloration and photo-degradation of wood, Polymer Degradation and Stability, vol.87, issue.2, pp.375-379, 2005.
DOI : 10.1016/j.polymdegradstab.2004.09.007

A. N. Shebani, A. J. Van-reenen, and M. Meincken, The effect of wood extractives on the thermal stability of different wood species, Thermochimica Acta, vol.471, issue.1-2, pp.43-50, 2008.
DOI : 10.1016/j.tca.2008.02.020

N. Gierlinger, M. Schwanninger, B. Hinterstoisser, and R. Wimmer, sp. by Means of Fourier Transform near Infrared Spectroscopy, Journal of Near Infrared Spectroscopy, vol.50, issue.1, pp.203-214, 2002.
DOI : 10.1255/jnirs.277

L. A. Ostroukhova, V. A. Raldugin, V. A. Babkin, N. A. Onuchina, and A. A. Levchuk, Investigation of the chemical composition of larch wood resin, Russian Journal of Bioorganic Chemistry, vol.52, issue.5, pp.775-779, 2012.
DOI : 10.1007/s10086-005-0780-1

A. M. Taylor, B. L. Gartner, and J. J. Morrell, Heartwood formation and natural durability? A review, Wood and Fiber Science, vol.34, pp.587-611, 2002.

N. Gierlinger and R. Wimmer, Radial distribution of heartwood extractives and lignin in mature European larch, Wood and Fiber Science, vol.36, pp.387-394, 2004.

F. Bertaud and B. Holmbom, Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood, Wood Science and Technology, vol.38, issue.4, pp.245-256, 2004.
DOI : 10.1007/s00226-004-0241-9

D. Ekeberg, P. O. Flaete, M. Eikenes, M. Fongen, and C. Naess-andresen, Qualitative and quantitative determination of extractives in heartwood of Scots pine (Pinus sylvestris L.) by gas chromatography, Journal of Chromatography A, vol.1109, issue.2, pp.267-272, 1109.
DOI : 10.1016/j.chroma.2006.01.027

N. Winograd, The Magic of Cluster SIMS, Analytical Chemistry, vol.77, issue.7, pp.142-149, 2005.
DOI : 10.1021/ac053355f

A. Brunelle, D. Touboul, and O. Laprévote, Biological tissue imaging with time-of-flight secondary ion mass spectrometry and cluster ion sources, Journal of Mass Spectrometry, vol.5, issue.232, pp.985-999, 2005.
DOI : 10.1021/ac9904617

C. Bich, D. Touboul, and A. Brunelle, Cluster TOF-SIMS imaging as a tool for micrometric histology of lipids in tissue, Mass Spectrometry Reviews, vol.201, issue.220, pp.442-451, 2014.
DOI : 10.1016/j.surfcoat.2006.02.081

URL : https://hal.archives-ouvertes.fr/hal-01075080

E. N. Tokareva, P. Fardim, A. V. Pranovich, H. Fagerholm, G. Daniel et al., Imaging of wood tissue by ToF-SIMS: Critical evaluation and development of sample preparation techniques, Applied Surface Science, vol.253, issue.18, pp.7569-7577, 2007.
DOI : 10.1016/j.apsusc.2007.03.059

R. Funada, K. Fukazawa, and K. Fukushima, Direct mapping of morphological distribution of syringyl and guaiacyl lignin in the xylem of maple by time-of-flight secondary ion mass spectrometry, The Plant Journal, vol.69, pp.542-552, 2012.

S. Jung, M. Foston, U. C. Kalluri, G. A. Tuskan, and A. J. Ragauskas, 3D Chemical Image using TOF-SIMS Revealing the Biopolymer Component Spatial and Lateral Distributions in Biomass, Angewandte Chemie International Edition, vol.27, issue.86, pp.12005-12008, 2012.
DOI : 10.1523/JNEUROSCI.2846-07.2007

T. Imai, K. Tanabe, T. Kato, and K. Fukushima, Localization of ferruginol, a diterpene phenol, in Cryptomeria japonica heartwood by time-of-flight secondary ion mass spectrometry, Planta, vol.16, issue.4, pp.549-556, 2005.
DOI : 10.1007/978-3-642-72534-0_6

K. Saito, T. Mitsutani, T. Imai, Y. Matsushita, and K. Fukushima, Discriminating the Indistinguishable Sapwood from Heartwood in Discolored Ancient Wood by Direct Molecular Mapping of Specific Extractives Using Time-of-Flight Secondary Ion Mass Spectrometry, Analytical Chemistry, vol.80, issue.5
DOI : 10.1021/ac7021162

Q. P. Vanbellingen, T. Fu, C. Bich, N. Amusant, D. Stien et al., Amsh. wood constituents by submicron resolution cluster-TOF-SIMS imaging, Journal of Mass Spectrometry, vol.34, issue.232, pp.412-423, 2016.
DOI : 10.1080/00049158.2002.10674861

URL : https://hal.archives-ouvertes.fr/hal-01532634

T. Morikawa, T. Ashitani, N. Sekine, N. Kusumoto, and K. Takahashi, Bioactivities of extracts from Chamaecyparis obtusa branch heartwood, Journal of Wood Science, vol.43, issue.10, pp.544-549, 2012.
DOI : 10.1007/BF01192336

W. Wen-jie and L. Xue-ying, Dynamic feature of flavonoids content in different organs of larch (Larix gmelinii), Journal of Forestry Research, vol.11, issue.2, pp.89-92, 2005.
DOI : 10.1007/978-1-4615-5335-9_5

R. E. Goacher, D. Jeremic, and E. R. Master, Expanding the Library of Secondary Ions That Distinguish Lignin and Polysaccharides in Time-of-Flight Secondary Ion Mass Spectrometry Analysis of Wood, Analytical Chemistry, vol.83, issue.3, pp.804-812, 2011.
DOI : 10.1021/ac1023028

S. B. Mclaughlin and R. Wimmer, Tansley Review No. 104. Calcium physiology and terrestrial ecosystem processes, New Phytologist, vol.142, issue.3, pp.373-417, 1999.
DOI : 10.1046/j.1469-8137.1999.00420.x

J. J. Sauter, Respiratory and phosphatase activities in contact cells of wood rays and their possible role in sugar secretion, Zeitschrift f??r Pflanzenphysiologie, vol.67, issue.2, pp.135-145, 1972.
DOI : 10.1016/S0044-328X(72)80127-2

L. Chun and H. Hui-yi, Tree-ring element analysis of Korean pine

E. Zucc, Mongolian oak (Quercus mongolica Fisch. ex Turcz.) from Changbai Mountain, northeast China, Trees, vol.6, pp.103-108, 1992.

V. Penninckx, S. Glineur, W. Gruber, J. Herbauts, and P. Meerts, Radial variations in wood mineral element concentrations: a comparison of beech and pedunculate oak from the Belgian Ardennes, Annals of Forest Science, vol.58, issue.3, pp.253-260, 2001.
DOI : 10.1051/forest:2001124

URL : https://hal.archives-ouvertes.fr/hal-00884182

Z. Kebbi-benkeder, F. Colin, S. Dumarçay, and P. Gérardin, Quantification and characterization of knotwood extractives of 12 European softwood and hardwood species, Annals of Forest Science, vol.99, issue.2
DOI : 10.1016/j.biortech.2006.11.022

A. M. Harju, P. Kainulainen, M. Venäläinen, M. Tiitta, and H. Viitanen, Differences in Resin Acid Concentration between Brown-Rot Resistant and Susceptible Scots Pine Heartwood, Holzforschung, vol.29, issue.1
DOI : 10.1515/hfsg.1997.51.2.99

V. Piironen, D. G. Lindsay, T. A. Miettinen, J. Toivo, and A. Lampi, Plant sterols: biosynthesis, biological function and their importance to human nutrition, Journal of the Science of Food and Agriculture, vol.117, issue.7, pp.939-966, 2000.
DOI : 10.1161/01.CIR.96.12.4226

I. S. Gilmore, M. P. Seah, and F. M. Green, Static TOF-SIMS ??? a VAMAS interlaboratory study. Part I. Repeatability and reproducibility of spectra, Surface and Interface Analysis, vol.25, issue.145, pp.651-672, 2005.
DOI : 10.1002/sia.2061

I. S. Gilmore, F. M. Green, M. P. Seah, and T. Static, A VAMAS interlaboratory study. Part II?accuracy of the mass scale and G?SIMS compatibility. Surface and Interface Analysis, 2007.

D. Mao, T. Miyayama, E. Niehuis, D. Rading, and R. Moellers, Argon cluster ion beams for organic depth profiling: results from a VAMAS interlaboratory study, Analytical Chemistry, vol.84, pp.7865-7873, 2012.

Z. Postawa, L. Rzeznik, R. Paruch, M. F. Russo, N. Winograd et al., Depth profiling by cluster projectiles as seen by computer simulations. Surface and Interface Analysis, pp.12-15, 2011.

T. B. Angerer, P. Blenkinsopp, and J. S. Fletcher, High energy gas cluster ions for organic and biological analysis by time-of-flight secondary ion mass spectrometry, International Journal of Mass Spectrometry, vol.377, pp.591-598, 2015.
DOI : 10.1016/j.ijms.2014.05.015

H. K. Shon, S. Yoon, J. H. Moon, and T. G. Le, Improved mass resolution and mass accuracy in TOF-SIMS spectra and images using argon gas cluster ion beams, Biointerphases, vol.11, issue.2, pp.2-321, 2016.
DOI : 10.1116/1.4941447

A. Wucher, H. Tian, and N. Winograd, A mixed cluster ion beam to enhance the ionization efficiency in molecular secondary ion mass spectrometry, Rapid Communications in Mass Spectrometry, vol.110, issue.4, pp.396-400, 2014.
DOI : 10.1021/jp0573341

N. T. Phan, M. Munem, A. G. Ewing, J. S. Fletcher, and . Ms, MS/MS analysis and imaging of lipids across Drosophila brain using secondary ion mass spectrometry, Analytical and Bioanalytical Chemistry, vol.106, issue.4, pp.3923-3932, 2017.
DOI : 10.1016/S0009-3084(00)00128-6

D. F. Smith, E. W. Robinson, A. V. Tolmachev, and R. M. Heeren, Secondary Ion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Analytical Chemistry, vol.83, issue.24, pp.9552-9556, 2011.
DOI : 10.1021/ac2023348

C. M. Mahoney, Cluster secondary ion mass spectrometry: principles and applications
DOI : 10.1002/9781118589335