H. D. Hora and . Nicholson, Introduction to Plasma Theory, XII, 292 pp. Laser and Particle Beams, p.127, 1983.

S. Cuperman, I. Weiss, and M. Dryer, Higher order fluid equations for multicomponent nonequilibrium stellar /plasma/ atmospheres and star clusters, The Astrophysical Journal, vol.239, pp.345-359, 1980.
DOI : 10.1086/158116

R. Fitzpatrick, The physics of plasmas Texas: The University of Texas at Austin. Ders Notlar?, pp.6-7, 2008.

S. Chapman and T. G. Cowling, The mathematical theory of nonuniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases, 1970.

A. Sommerfeld, Partial differential equation in physics, p.11, 1949.

S. Succi, V. Iliya, H. Karlin, and . Chen, theorem in lattice Boltzmann hydrodynamic simulations, Reviews of Modern Physics, vol.152, issue.4, p.1203, 2002.
DOI : 10.1006/jcph.1999.6257

C. Leslie and . Woods, Principles of magnetoplasma dynamics, p.29, 1987.

L. D. Landau, The transport equation in the case of coulomb interactions, ZhETF (J. Exptl. Theoret. Phys. USSR), vol.7, issue.203, p.18, 1937.

S. I. Braginskii, Transport Processes in a Plasma, Reviews of Plasma Physics, vol.1, issue.28, pp.205-234, 1965.

K. Kimura, On one-fluid mhd models with electron inertia, p.23, 2012.

M. Lingam, P. J. Morrison, and E. Tassi, Inertial magnetohydrodynamics, Physics Letters A, vol.379, issue.6, pp.570-576, 2015.
DOI : 10.1016/j.physleta.2014.12.008

URL : https://hal.archives-ouvertes.fr/hal-01104544

A. Hasegawa, Electrostatic Ion Acoustic Waves, pp.425-452, 1983.
DOI : 10.1007/978-94-009-7194-3_17

D. Ryutov and . Drake, Criteria for Scaled Laboratory Simulations of Astrophysical MHD Phenomena, The Astrophysical Journal Supplement Series, vol.127, issue.2, pp.465-498, 2000.
DOI : 10.1086/313320

J. P-chittenden, S. Lebedev, C. Jennings, S. Bland, and A. Ciardi, X-ray generation mechanisms in three-dimensional simulations of wire array Z-pinches, Plasma Physics and Controlled Fusion, vol.46, issue.12B, pp.46-457, 2004.
DOI : 10.1088/0741-3335/46/12B/039

A. Ciardi, T. Vinci, J. Fuchs, B. Albertazzi, C. Riconda et al., Astrophysics of Magnetically Collimated Jets Generated from Laser-Produced Plasmas, Physical Review Letters, vol.86, issue.2, pp.25002-25041, 2013.
DOI : 10.1088/0004-637X/737/2/54

URL : https://hal.archives-ouvertes.fr/hal-00802906

L. Mejnertsen, J. P. Eastwood, J. P. Chittenden, and A. Masters, Global MHD simulations of Neptune's magnetosphere, Journal of Geophysical Research: Space Physics, vol.96, issue.S01, pp.7497-7513, 1939.
DOI : 10.1029/91JA01857

P. Message and . Forum, Mpi: A message-passing interface standard, p.39, 1994.

J. Vonneumann, D. Robert, and . Richtmyer, A Method for the Numerical Calculation of Hydrodynamic Shocks, Journal of Applied Physics, vol.21, issue.3, pp.232-237, 1950.
DOI : 10.1007/BF01448839

D. Salzmann, Atomic Physics in Hot Plasmas. International Series of Monographs on Physics, p.40, 1998.

E. M. Epperlein and M. G. Haines, Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker???Planck equation, Physics of Fluids, vol.11, issue.4, pp.1029-1041, 1986.
DOI : 10.1063/1.1691877

R. Paul and D. , High-energy-density physics: fundamentals, inertial fusion, and experimental astrophysics, p.40, 2006.

S. Atzeni, A. Schiavi, F. Califano, F. Cattani, F. Cornolti et al., Fluid and kinetic simulation of inertial confinement fusion plasmas, Computer Physics Communications, vol.169, issue.1-3, pp.153-159, 2005.
DOI : 10.1016/j.cpc.2005.03.036

M. Grech, V. T. Tikhonchuk, G. Riazuelo, and S. Weber, Plasma induced laser beam smoothing below the filamentation threshold, Physics of Plasmas, vol.13, issue.9, pp.93104-93145, 2006.
DOI : 10.1063/1.871510

G. Schurtz, D. Ph, M. Nicolaï, and . Busquet, A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes, Physics of Plasmas, vol.6, issue.10, pp.4238-4249, 2000.
DOI : 10.1063/1.873499

B. Van-der-holst, G. Tóth, I. V. Sokolov, K. G. Powell, J. P. Holloway et al., CRASH: A BLOCK-ADAPTIVE-MESH CODE FOR RADIATIVE SHOCK HYDRODYNAMICS???IMPLEMENTATION AND VERIFICATION, The Astrophysical Journal Supplement Series, vol.194, issue.2, pp.23-41, 2011.
DOI : 10.1088/0067-0049/194/2/23

J. T. Larsen and S. M. Lane, HYADES???A plasma hydrodynamics code for dense plasma studies, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.51, issue.1-2, pp.179-186, 1994.
DOI : 10.1016/0022-4073(94)90078-7

A. Koniges, N. Masters, R. Fisher, D. Anderson, T. Eder et al., ALE-AMR: A new 3D multi-physics code for modeling laser/target effects, Journal of Physics: Conference Series, pp.32019-32060, 2010.
DOI : 10.1088/1742-6596/244/3/032019

T. B. Kaiser, Laser ray tracing and power deposition on an unstructured three-dimensional grid, Physical Review E, vol.35, issue.1, pp.895-905, 2000.
DOI : 10.1103/PhysRevLett.35.663

B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale et al., FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes, The Astrophysical Journal Supplement Series, vol.131, issue.1, pp.273-314, 2000.
DOI : 10.1086/317361

J. P. Freidberg, R. W. Mitchell, R. L. Morse, and L. I. Rudsinski, Resonant Absorption of Laser Light by Plasma Targets, Physical Review Letters, vol.14, issue.13, pp.795-799, 1972.
DOI : 10.1063/1.1693518

V. V. Blazhenkov, A. N. Kirkin, A. V. Kononov, L. P. Kotenko, A. M. Leontovich et al., Evidence of suprathermal electron fluxes in laser-produced plasma from the polarization and anisotropy of X-ray bremsstrahlung emission, Optics Communications, vol.34, issue.2, pp.231-234, 1980.
DOI : 10.1016/0030-4018(80)90022-X

I. Afanasev, . Demchenko, V. On-krokhin, and . Rozanov, Absorption and reflection of laser radiation by a dispersing high-temperature plasma. Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, pp.170-179, 1977.

A. Colaitis, Multiscale description of the laser-plasma interaction : application to the physics of shock ignition in inertial confinement fusion. Theses, p.45, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01237269

G. V. Pereverzev, Paraxial WKB solution of a scalar wave equation, IPP, p.46, 1993.

M. Modestov, V. Bychkov, G. Brodin, M. Marklund, and A. Brandenburg, Evolution of the magnetic field generated by the Kelvin-Helmholtz instability, Physics of Plasmas, vol.5, issue.7, pp.72126-2014
DOI : 10.1103/PhysRevLett.112.054101

M. Haines, Magnetic-field generation in laser fusion and hot-electron transport, Canadian Journal of Physics, vol.64, issue.8, pp.912-919, 1986.
DOI : 10.1139/p86-160

L. Biermann, Über den Ursprung der Magnetfelder auf Sternen und im interstellaren Raum (miteinem Anhang von A. Schlüter), Zeitschrift Naturforschung Teil A, vol.5, pp.65-53, 1950.

C. L. Carilli and G. B. Taylor, Cluster Magnetic Fields. araa, pp.319-348, 2002.

L. M. Widrow, Origin of galactic and extragalactic magnetic fields, Reviews of Modern Physics, vol.385, issue.3, pp.775-823, 2002.
DOI : 10.1038/385131a0

C. Graziani, P. Tzeferacos, D. Lee, D. Q. Lamb, K. Weide et al., THE BIERMANN CATASTROPHE IN NUMERICAL MAGNETOHYDRODYNAMICS, The Astrophysical Journal, vol.802, issue.1, pp.43-55, 2015.
DOI : 10.1088/0004-637X/802/1/43

H. Theodore and . Maiman, Stimulated optical radiation in ruby, nature, vol.187, issue.4736, pp.493-494, 1960.

. Slashme, graph showing the history of maximum laser pulse intensity throughout the past 40 years, 2010.

F. J. Mcclung and R. W. Hellwarth, Giant Optical Pulsations from Ruby, Journal of Applied Physics, vol.33, issue.3, pp.828-829, 1962.
DOI : 10.1103/PhysRevLett.5.303

A. Herman and . Haus, Mode-locking of lasers, IEEE Journal of Selected Topics in Quantum Electronics, vol.6, issue.6, pp.1173-1185, 2000.

C. Laser and . Group, Twenty-two years of laser-matter work at centre d'etudes de limeil-valenton (cel-v), Nuclear Fusion, vol.25, issue.9, pp.1333-62, 1985.

V. V. Blazhenkov, A. N. Kirkin, A. V. Kononov, L. P. Kotenko, A. M. Leontovich et al., Evidence of suprathermal electron fluxes in laser-produced plasma from the polarization and anisotropy of X-ray bremsstrahlung emission, Optics Communications, vol.34, issue.2, pp.231-234, 1980.
DOI : 10.1016/0030-4018(80)90022-X

G. Malka, Experimental Confirmation of Ponderomotive-Force Electrons Produced by an Ultrarelativistic Laser Pulse on a Solid Target, Physical Review Letters, vol.69, issue.1, pp.75-62, 1996.
DOI : 10.1103/PhysRevLett.69.3052

N. F. Mott and H. Jones, The theory of the properties of metals and alloys, p.63, 1958.

S. Matthew, C. B. Brown, and . Arnold, Fundamentals of laser-material interaction and application to multiscale surface modification. Laser precision microfabrication, pp.91-120, 2010.

Y. P. Raizer, BREAKDOWN AND HEATING OF GASES UNDER THE INFLUENCE OF A LASER BEAM, Soviet Physics Uspekhi, vol.8, issue.5, pp.650-673, 1966.
DOI : 10.1070/PU1966v008n05ABEH003027

L. V. Keldysh, Ionization in the field of a strong electromagnetic wave, Soviet Physics JETP, vol.20, pp.1307-1314, 1964.

V. S. Popov, . Reviews, . Of, and . Problems, Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory), Physics-Uspekhi, vol.47, issue.9, pp.855-885, 2004.
DOI : 10.1070/PU2004v047n09ABEH001812

A. Gold and H. B. Bebb, Theory of Multiphoton Ionization, Physical Review Letters, vol.133, issue.3, pp.60-63, 1964.
DOI : 10.1103/PhysRev.133.A117

F. Paschen, Ueber die zum Funken??bergang in Luft, Wasserstoff und Kohlens??ure bei verschiedenen Drucken erforderliche Potentialdifferenz, Annalen der Physik, vol.29, issue.5, pp.69-96
DOI : 10.1080/14786448008626949

V. A. Volkov, F. V. Grigorev, V. V. Kalinovskii, S. B. Kormer, L. M. Lavrov et al., Dependence of threshold for air breakdown by a focused laser beam on the geometry of the focal region, Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, vol.69, pp.115-121, 1975.

L. Spitzer-jr, Physics of Fully Ionized Gases, American Journal of Physics, vol.31, issue.11, pp.31890-891, 1963.
DOI : 10.1119/1.1969155

N. G. Basov and O. N. Krokhin, The Conditions of Plasma Heating by the Optical Generator Radiation, Quantum Electronics, pp.1373-65, 1964.

M. John and . Dawson, On the production of plasma by giant pulse lasers. The Physics of Fluids, pp.981-987, 1964.

P. Mulser and D. Bauer, High power laser-matter interaction. Springer tracts in modern physics, p.66, 2010.
DOI : 10.1007/978-3-540-46065-7

URL : http://cds.cern.ch/record/1292813/files/978-3-540-46065-7_BookTOC.pdf

R. C. Malone, R. L. Mccrory, and R. L. Morse, Indications of Strongly Flux-Limited Electron Thermal Conduction in Laser-Target Experiments, Physical Review Letters, vol.25, issue.12, pp.721-724, 1975.
DOI : 10.1063/1.1655398

L. Spitzer and R. Härm, Transport Phenomena in a Completely Ionized Gas, Physical Review, vol.82, issue.5, pp.977-981, 1953.
DOI : 10.1103/PhysRev.82.442

R. L. Morse and C. W. Nielson, Occurrence of highenergy electrons and surface expansion in laserheated target plasmas. The Physics of Fluids, pp.909-920, 1973.

J. P. Freidberg, R. W. Mitchell, R. L. Morse, and L. I. Rudsinski, Resonant Absorption of Laser Light by Plasma Targets, Physical Review Letters, vol.14, issue.13, pp.795-799, 1972.
DOI : 10.1063/1.1693518

C. Riconda and S. Weber, Raman???Brillouin interplay for inertial confinement fusion relevant laser???plasma interaction, High Power Laser Science and Engineering, vol.12, p.67, 2016.
DOI : 10.1103/PhysRevA.23.2006

J. C. Couturaud, P. A. Holstein, M. Louis-jacquet, B. Meyer, and G. Thiell, Determination of energy transport parameters in flat, layered targets irradiated by picosecond Nd-laser pulses, Nuclear Fusion, vol.21, issue.12, pp.1657-67, 1981.
DOI : 10.1088/0029-5515/21/12/014

G. Pert, Thermal conduction effects in laser solid target interaction, Plasma Physics, vol.16, issue.11, pp.1019-80, 1974.
DOI : 10.1088/0032-1028/16/11/003

W. M. Manheimer, D. G. Colombant, and J. H. Gardner, Steadystate planar ablative flow. The Physics of Fluids, pp.1644-1652, 1982.
DOI : 10.1063/1.863956

URL : http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA107601&Location=U2&doc=GetTRDoc.pdf

R. Fabbro, C. Max, and E. Fabre, Planar laserdriven ablation: Effect of inhibited electron thermal conduction. The Physics of Fluids, pp.1463-1481, 1985.

D. Ryutov and . Drake, Criteria for Scaled Laboratory Simulations of Astrophysical MHD Phenomena, The Astrophysical Journal Supplement Series, vol.127, issue.2, pp.465-67, 2000.
DOI : 10.1086/313320

C. Fauquignon and F. Floux, Hydrodynamic behavior of solid deuterium under laser heating. The Physics of Fluids, pp.386-391, 1970.

J. L. Bobin, Flame propagation and overdense heating in a laser created plasma. The Physics of Fluids, pp.2341-2354, 1971.

J. P. Babuel-peyrissac, C. Fauquignon, and F. Floux, Effect of powerful laser pulse on low Z solid material, Physics Letters A, vol.30, issue.5, pp.290-291, 1969.
DOI : 10.1016/0375-9601(69)91000-7

J. Watteau, La fusion thermonucléaire inertielle par laser, Eyrolles, vol.67, p.69, 1995.

H. C. Liu, X. L. Mao, J. H. Yoo, and R. E. Russo, Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.54, issue.11, pp.1607-1624, 1999.
DOI : 10.1016/S0584-8547(99)00092-0

K. Eidmann and R. Sigel, Backscatter Experiments, Laser Interaction and Related Plasma Phenonema, pp.667-690, 1974.
DOI : 10.1007/978-1-4684-8416-8_13

. Bh-ripin, . Decoste, . Sp-obenschain, . Se-bodner, . Ea-mclean et al., Laser-plasma interaction and ablative acceleration of thin foils at 1012?1015 w/cm2. The Physics of Fluids, pp.1012-1030, 1980.

T. J. Goldsack, J. D. Kilkenny, B. J. Macgowan, S. A. Veats, P. F. Cunningham et al., The variation of mass ablation rate with laser wavelength and target geometry, Optics Communications, vol.42, issue.1, pp.55-59, 1982.
DOI : 10.1016/0030-4018(82)90089-X

M. Key, . Toner, . Goldsack, . Kilkenny, . Veats et al., A study of ablation by laser irradiation of plane targets at wavelengths 1.05, 0.53, and 0.35 µm. The Physics of fluids, pp.2011-2026, 1983.

P. D. Gupta, Y. Y. Tsui, R. Popil, R. Fedosejevs, and A. A. Offenberger, Energy transport in gold coated plastic targets irradiated by a KrF laser, Optics Communications, vol.63, issue.3, pp.165-170, 1987.
DOI : 10.1016/0030-4018(87)90150-7

J. Anthes, M. Gusinow, and . Keith-matzen, Experimental Observation and Numerical Simulations of Laser-Driven Ablation, Physical Review Letters, vol.19, issue.19, pp.1300-69, 1978.
DOI : 10.1063/1.861354

B. Ahlborn and M. Key, Scaling laws for laser driven exploding pusher targets, Plasma Physics, vol.23, issue.5, pp.435-69, 1981.
DOI : 10.1088/0032-1028/23/5/005

B. Ahlborn and W. Liese, Heat flux induced wave fronts. The Physics of Fluids, pp.1955-1966, 1981.
DOI : 10.1063/1.863292

H. Puell, Heating of laser produced plasmas generated at plane solid targets i. theory, Zeitschrift für Naturforschung A, vol.25, issue.12, pp.1807-1815, 1970.

A. Caruso, B. Bertotti, and P. Giupponi, Ionization and heating of solid material by means of a laser pulse, Il Nuovo Cimento B Series 10, vol.7, issue.2, pp.176-189, 1965.
DOI : 10.1088/0029-5515/5/1/012

A. Caruso and R. Gratton, Some properties of the plasmas produced by irradiating light solids by laser pulses, Plasma Physics, vol.10, issue.9, pp.867-69, 1968.
DOI : 10.1088/0032-1028/10/9/307

H. Ian and . Hutchinson, Principles of plasma diagnostics. Plasma Physics and Controlled Fusion, pp.2603-70, 2002.

F. C. Jahoda, E. M. Little, W. E. Quinn, G. A. Sawyer, and T. F. Stratton, Continuum Radiation in the X Ray and Visible Regions from a Magnetically Compressed Plasma (Scylla), Physical Review, vol.20, issue.3, pp.843-856, 1960.
DOI : 10.1063/1.1698286

J. Ready, Effects of high-power laser radiation, p.70, 2012.

T. Donaldson, M. Hutcheon, and . Key, Electron temperature and ionization state in laser produced plasmas, Journal of Physics B: Atomic and Molecular Physics, vol.6, issue.8, p.1525, 1973.
DOI : 10.1088/0022-3700/6/8/030

B. Meyer and G. Thiell, Experimental scaling laws for ablation parameters in plane target???laser interaction with 1.06 ??m and 0.35 ??m laser wavelengths, Physics of Fluids, vol.41, issue.1, pp.302-311, 1984.
DOI : 10.1063/1.93561

B. Ya, . Zeldovich, P. Yu, F. Raizer, and . Oh, Physics of shock waves and high-temperature hydrodynamic phenomena, pp.72-85, 1965.

K. R. Chen, T. C. King, J. H. Hes, J. N. Leboeuf, D. B. Geohegan et al., Theory and numerical modeling of the accelerated expansion of laser-ablated materials near a solid surface. prb, pp.8373-8382, 1999.

A. C. Raga and L. Kofman, Knots in stellar jets from time-dependent sources, The Astrophysical Journal, vol.386, pp.222-228, 1992.
DOI : 10.1086/171008

M. J. Rees, The M87 jet -Internal shocks in a plasma beam. mnras, pp.61-65, 1978.

J. Burgers, A mathematical model illustrating the theory of turbulence Advances in applied mechanics, pp.171-199, 1948.

C. E. Needham, The Rankine?Hugoniot Relations, pp.9-15, 2010.

R. Courant and K. O. Friedrichs, Supersonic flow and shock waves, 1948.
DOI : 10.1007/978-1-4684-9364-1

M. Melsens, Sur les plaies produitspar les arrnes a feu. 1872, p.95

P. George, O. Sutton, and . Biblarz, Rocket propulsion elements, p.96, 2017.

R. Emden, Ueber die Ausstr??mungserscheinungen permanenter Gase, Annalen der Physik und Chemie, vol.143, issue.9, pp.264-289
DOI : 10.1002/andp.18993050915

M. L. Norman, K. A. Winkler, L. Smarr, and M. D. Smith, Structure and dynamics of supersonic jets. aap, pp.285-302, 1982.

D. E. Carlucci and S. S. Jacobson, Ballistics: Theory and design of guns and ammunition, Boca Raton, p.97, 2014.
DOI : 10.1201/9781420066197

M. S. Brotherton, Astrophysics: Quasar complexity simplified, Nature, vol.302, issue.7517, pp.181-182, 2014.
DOI : 10.1086/163973

R. Mundt, Highly collimated mass outflows from young stars, Protostars and Planets II, pp.414-433, 1985.
DOI : 10.1007/978-94-009-2941-8_11

R. D. Blandford and M. J. Rees, A 'twin-exhaust' model for double radio sources. mnras, pp.395-415, 1974.

A. C. Raga and L. Kofman, Knots in stellar jets from time-dependent sources, The Astrophysical Journal, vol.386, pp.222-228, 1992.
DOI : 10.1086/171008

F. S. Simmons, Rocket Exhaust Plume Phenomenology, p.99
DOI : 10.2514/4.989087

P. Michael and . Paidoussis, Fluid-structure interactions: slender structures and axial flow, p.100, 1998.

A. Ferrari, E. Trussoni, and L. Zaninetti, Magnetohydrodynamic Kelvin-Helmholtz instabilities in astrophysics. II Cylindrical boundary layer in vortex sheet approximation . mnras, pp.1051-1066, 0103.

D. Ryutov and . Drake, Criteria for Scaled Laboratory Simulations of Astrophysical MHD Phenomena, The Astrophysical Journal Supplement Series, vol.127, issue.2, pp.465-106, 2000.
DOI : 10.1086/313320

F. Shu, J. Najita, E. Ostriker, F. Wilkin, S. Ruden et al., Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model, The Astrophysical Journal, vol.429, pp.781-796, 1994.
DOI : 10.1086/174363

URL : http://doi.org/10.1086/174363

A. Ciardi, T. Vinci, J. Fuchs, B. Albertazzi, C. Riconda et al., Astrophysics of Magnetically Collimated Jets Generated from Laser-Produced Plasmas, Physical Review Letters, vol.86, issue.2, pp.25002-120, 2013.
DOI : 10.1088/0004-637X/737/2/54

URL : https://hal.archives-ouvertes.fr/hal-00802906

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard et al., Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field, Science, vol.424, issue.1, pp.346325-328, 2014.
DOI : 10.1051/0004-6361:200400014

D. Higginson, . Revet, . Khiar, . Béard, . Blecher et al., Detailed characterization of laser-produced astrophysically-relevant jets formed via a poloidal magnetic nozzle, High Energy Density Physics, vol.23, issue.122, pp.48-59, 2017.
DOI : 10.1016/j.hedp.2017.02.003

B. Khiar, Enhancement of quasi-stationary shocks and heating via temporal-staging in a magnetized, laser-plasma jet, pp.2017-120

C. Baccou, Initiation de réactions nucléaires par des protons accélérés par laser, Thèse de doctorat dirigée par Labaune, p.120, 2016.

B. Albertazzi, . Béard, . Ciardi, . Vinci, . Albrecht et al., Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields, Review of Scientific Instruments, vol.84, issue.4, pp.43505-120, 2013.
DOI : 10.1364/JOSA.51.000943

URL : https://hal.archives-ouvertes.fr/hal-00860978

D. P. Higginson, P. Korneev, J. Béard, S. N. Chen, E. Humières et al., A novel platform to study magnetized high-velocity collisionless shocks, High Energy Density Physics, vol.17, pp.190-197, 2015.
DOI : 10.1016/j.hedp.2014.11.007

J. Béard and F. Debray, The French High Magnetic Field Facility, Journal of Low Temperature Physics, vol.477, issue.2, pp.541-552, 0120.
DOI : 10.1038/nature10345

J. Zou, C. Blanc, . Audebert, A. Janicot, . Sautivet et al., Recent progress on LULI high power laser facilities, Journal of Physics: Conference Series, vol.112, issue.3, pp.32021-121, 2008.
DOI : 10.1088/1742-6596/112/3/032021

T. Pisarczyk, R. Arendzikowski, Z. Patron, and P. Parys, Polari interferometer with automatic images processing for laser plasma diagnostic, Laser and Particle Beams, vol.33, issue.03, pp.549-121, 1994.
DOI : 10.1063/1.91196

D. D. Ryutov, N. L. Kugland, H. Park, S. M. Pollaine, B. A. Remington et al., Collisional current drive in two interpenetrating plasma jets, Physics of Plasmas, vol.18, issue.10, pp.18104504-123, 2011.
DOI : 10.1103/PhysRevLett.2.83

D. D. Ryutov, N. L. Kugland, H. Park, C. Plechaty, B. A. Remington et al., Intra-jet shocks in two counter-streaming, weakly collisional plasma jets, Physics of Plasmas, vol.5, issue.7, p.74501, 2012.
DOI : 10.1016/B978-0-08-017720-5.50008-7

D. D. Ryutov, N. L. Kugland, M. C. Levy, C. Plechaty, J. S. Ross et al., Magnetic field advection in two interpenetrating plasma streams, Physics of Plasmas, vol.4, issue.3, pp.32703-123, 2013.
DOI : 10.1103/RevModPhys.82.603

S. Atzeni, A. Schiavi, F. Califano, F. Cattani, F. Cornolti et al., Fluid and kinetic simulation of inertial confinement fusion plasmas, Computer Physics Communications, vol.169, issue.1-3, pp.153-159, 2005.
DOI : 10.1016/j.cpc.2005.03.036

I. Sergei, B. Anisimov, and . Luk-'yanchuk, Selected problems of laser ablation theory, Physics-Uspekhi, vol.45, issue.3, pp.293-127, 2002.

D. B. Schaeffer, A. S. Bondarenko, E. T. Everson, S. E. Clark, C. G. Constantin et al., Characterization of laser-produced carbon plasmas relevant to laboratory astrophysics, Journal of Applied Physics, vol.120, issue.4, pp.43301-127, 2016.
DOI : 10.1063/1.4876608

K. R. Chen, T. C. King, J. H. Hes, J. N. Leboeuf, D. B. Geohegan et al., Theory and numerical modeling of the accelerated expansion of laser-ablated materials near a solid surface. prb, pp.8373-8382, 0128.

L. Spitzer-jr, Physics of Fully Ionized Gases, American Journal of Physics, vol.31, issue.11, pp.31890-891, 1963.
DOI : 10.1119/1.1969155

W. Norman, Supersonic jets, LOS ALAMOS SCIENCE, p.134, 1985.

M. L. Norman, K. A. Winkler, L. Smarr, and M. D. Smith, Structure and dynamics of supersonic jets. aap, pp.285-302, 1982.

G. Benford, Stability of galactic radio jets, The Astrophysical Journal, vol.247, pp.792-802, 0134.
DOI : 10.1086/159091

J. D. Huba, Onset criteria for structure in magnetically confined plasma expansions, 0135.

J. Grun, R. Decoste, B. H. Ripin, and J. Gardner, Characteristics of ablation plasma from planar, laser???driven targets, Applied Physics Letters, vol.39, issue.7, pp.545-547, 1981.
DOI : 10.1103/PhysRevLett.43.1995

T. Green and G. B. Niblett, Rayleigh-Taylor instabilities of a magnetically accelerated plasma, Nuclear Fusion, vol.1, issue.1, pp.42-136, 1960.
DOI : 10.1088/0029-5515/1/1/003

C. Ho, G. Tseng, Y. Chang, J. Hsu, and C. Kuo, Magnetic-field-assisted laser percussion drilling, The International Journal of Advanced Manufacturing Technology, vol.196, issue.1, pp.329-340, 2014.
DOI : 10.1016/j.jmatprotec.2007.05.049

K. M. Strom, S. E. Strom, S. C. Wolff, J. Morgan, and M. Wenz, Optical manifestations of mass outflows from young stars - At atlas of CCD images of Herbig-Haro objects, The Astrophysical Journal Supplement Series, vol.62, pp.39-80, 1986.
DOI : 10.1086/191133

F. Menard and G. Duchene, On the alignment of Classical T??Tauri stars with the magnetic field in the Taurus-Auriga molecular cloud, Astronomy & Astrophysics, vol.470, issue.3, pp.973-980, 2004.
DOI : 10.1086/310307

G. Miley, The Structure of Extended Extragalactic Radio Sources, Annual Review of Astronomy and Astrophysics, vol.18, issue.1, pp.165-218, 1980.
DOI : 10.1146/annurev.aa.18.090180.001121

R. D. Blandford and M. J. Rees, A 'twin-exhaust' model for double radio sources. mnras, pp.395-415, 1974.

K. Eidmann, Radiation transport and atomic physics modeling in high-energydensity laser-produced plasmas. Laser and particle beams, pp.223-244, 1994.

A. Ciardi and P. Hennebelle, Outflows and mass accretion in collapsing dense cores with misaligned rotation axis and magnetic field, Monthly Notices of the Royal Astronomical Society: Letters, vol.469, issue.1, pp.39-43, 2010.
DOI : 10.1093/mnras/199.4.883

Y. Kato, . Mima, . Miyanaga, Y. Arinaga, . Kitagawa et al., Random Phasing of High-Power Lasers for Uniform Target Acceleration and Plasma-Instability Suppression, Physical Review Letters, vol.23, issue.11, pp.531057-152, 1984.
DOI : 10.1063/1.1654772

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard et al., Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field, Science, vol.424, issue.1, pp.346325-328, 2014.
DOI : 10.1051/0004-6361:200400014

D. Higginson, . Revet, . Khiar, . Béard, . Blecher et al., Detailed characterization of laser-produced astrophysically-relevant jets formed via a poloidal magnetic nozzle, High Energy Density Physics, vol.23, pp.48-59, 2017.
DOI : 10.1016/j.hedp.2017.02.003

Y. Sn-ryazantsev, . Skobelev, T. Faenov, . Pikuz, . Dp-higginson et al., Diagnostics of laser-produced plasmas based on the analysis of intensity ratios of He-like ions X-ray emission, Physics of Plasmas, vol.23, issue.12, pp.23123301-152, 2016.
DOI : 10.1088/1742-6596/653/1/012027

S. Atzeni, A. Schiavi, F. Califano, F. Cattani, F. Cornolti et al., Fluid and kinetic simulation of inertial confinement fusion plasmas, Computer Physics Communications, vol.169, issue.1-3, pp.153-159, 2005.
DOI : 10.1016/j.cpc.2005.03.036

K. Bockasten, Transformation of Observed Radiances into Radial Distribution of the Emission of a Plasma*, Journal of the Optical Society of America, vol.51, issue.9, p.943, 1961.
DOI : 10.1364/JOSA.51.000943

A. Ciardi, T. Vinci, J. Fuchs, B. Albertazzi, C. Riconda et al., Astrophysics of Magnetically Collimated Jets Generated from Laser-Produced Plasmas, Physical Review Letters, vol.86, issue.2, pp.25002-157, 2013.
DOI : 10.1088/0004-637X/737/2/54

URL : https://hal.archives-ouvertes.fr/hal-00802906

S. Ustamujic, . Orlando, . Bonito, A. Miceli, J. Gómez-de-castro et al., Formation of X-ray emitting stationary shocks in magnetized protostellar jets, Astronomy & Astrophysics, vol.432, pp.99-157, 2016.
DOI : 10.1051/0004-6361:20034439

A. N. Mostovych, B. H. Ripin, and J. A. Stamper, Laser produced plasma jets: Collimation and instability in strong transverse magnetic fields, Physical Review Letters, vol.13, issue.24, pp.2837-2840, 1989.
DOI : 10.1088/0029-5515/13/2/007

C. Plechaty, R. Presura, and A. A. Esaulov, Focusing of an Explosive Plasma Expansion in a Transverse Magnetic Field, Physical Review Letters, vol.10, issue.18, pp.185002-165, 2013.
DOI : 10.1063/1.1812277

S. Atzeni, A. Schiavi, F. Califano, F. Cattani, F. Cornolti et al., Fluid and kinetic simulation of inertial confinement fusion plasmas, Computer Physics Communications, vol.169, issue.1-3, pp.153-159, 2005.
DOI : 10.1016/j.cpc.2005.03.036

D. Higginson, . Revet, . Khiar, . Béard, . Blecher et al., Detailed characterization of laser-produced astrophysically-relevant jets formed via a poloidal magnetic nozzle, High Energy Density Physics, vol.23, pp.48-59, 2017.
DOI : 10.1016/j.hedp.2017.02.003

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard et al., Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field, Science, vol.424, issue.1, pp.346325-328, 2014.
DOI : 10.1051/0004-6361:200400014

A. Ciardi, T. Vinci, J. Fuchs, B. Albertazzi, C. Riconda et al., Astrophysics of Magnetically Collimated Jets Generated from Laser-Produced Plasmas, Physical Review Letters, vol.86, issue.2, pp.25002-169, 2013.
DOI : 10.1088/0004-637X/737/2/54

URL : https://hal.archives-ouvertes.fr/hal-00802906

L. Hu-guangyue, S. Yihan, Y. Falun, W. Peng, Z. Yulin et al., A 7 t pulsed magnetic field generator for magnetized laser plasma experiments, Plasma Science and Technology, vol.17, issue.2, pp.134-165, 2015.

B. Roberts, Wave propagation in a magnetically structured atmosphere, Solar Physics, vol.71, issue.1, pp.39-56, 1981.
DOI : 10.1007/BF00151254

P. M. Edwin and B. Roberts, Wave propagation in a magnetically structured atmosphere . III -The slab in a magnetic environment, Sol. Phys, vol.76, pp.239-259, 1982.

A. P. Singh and S. P. Talwar, Hydromagnetic stability of a plasma jet, Solar Physics, vol.76, issue.2, pp.331-345, 1994.
DOI : 10.1007/BF00690620

J. A. Ionson, Resonant absorption of Alfvenic surface waves and the heating of solar coronal loops, The Astrophysical Journal, vol.226, pp.650-673, 1978.
DOI : 10.1086/156648

D. Ryutov and . Drake, Criteria for Scaled Laboratory Simulations of Astrophysical MHD Phenomena, The Astrophysical Journal Supplement Series, vol.127, issue.2, pp.465-165, 2000.
DOI : 10.1086/313320

M. Kruskal and M. Schwarzschild, Some Instabilities of a Completely Ionized Plasma, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.223, issue.1154, pp.348-360, 0167.
DOI : 10.1098/rspa.1954.0120

A. Nicholas, . Krall, C. Paulett, and . Liewer, Low-frequency instabilities in magnetic pulses, Phys. Rev. A, vol.4, pp.2094-2103, 0167.

D. Winske, Short-wavelength modes on expanding plasma clouds, Journal of Geophysical Research, vol.88, issue.A4, pp.2539-2552, 1988.
DOI : 10.1029/JA088iA04p03026

A. B. Hassam and J. D. Huba, Structuring of the Ampte magnetotail barium releases, Geophysical Research Letters, vol.3, issue.1, pp.60-63, 1987.
DOI : 10.1103/PhysRevLett.8.197

B. H. Ripin, E. A. Mclean, C. K. Manka, C. Pawley, J. A. Stamper et al., Large-Larmor-radius interchange instability, Physical Review Letters, vol.12, issue.20, pp.2299-2302, 1987.
DOI : 10.1103/PhysRevA.4.2094

J. D. Huba, J. G. Lyon, and A. B. Hassam, Theory and Simulation of the Rayleigh-Taylor Instability in the Limit of Large Larmor Radius, Physical Review Letters, vol.48, issue.26, pp.2971-2974, 1987.
DOI : 10.1103/PhysRevLett.48.677

P. A. Bernhardt, R. A. Roussel-dupre, M. B. Pongratz, G. Haerendel, A. Valenzuela et al., Observations and theory of the AMPTE magnetotail barium releases, Journal of Geophysical Research, vol.30, issue.A6, pp.925777-5794, 1987.
DOI : 10.1016/0032-0633(82)90132-5

D. B. Batchelor and R. C. Davidson, Nonlocal analysis of the lower-hybrid-drift instability in theta-pinch plasmas, Physics of Fluids, vol.16, issue.6, pp.882-888, 1976.
DOI : 10.1088/0029-5515/16/1/008

S. Okada, K. Sato, and T. Sekiguchi, Behaviour of Laser-Produced Plasma in a Uniform Magnetic Field???Plasma Instabilities, Japanese Journal of Applied Physics, vol.20, issue.1, pp.157-167, 1981.
DOI : 10.1143/JJAP.20.157

J. D. Huba and S. L. Ossakow, Physical mechanism of the lower-hybrid-drift instability in a collisional plasma, Journal of Atmospheric and Terrestrial Physics, vol.43, issue.8, pp.775-778, 1981.
DOI : 10.1016/0021-9169(81)90053-2

J. P. Goedbloed, R. Keppens, and S. Poedts, Advanced magnetohydrodynamics : with applications to laboratory and astrophysical plasmas, p.168, 2010.
DOI : 10.1017/CBO9781139195560

M. Haines, A review of the dense z -pinch. Plasma Physics and Controlled Fusion, pp.93001-168, 2011.

N. A. Rosenbluth, M. N. , and N. Rostoker, Finite larmor radius stabilization of 'weakly" unstable confined plasmas, Nuclear Fusion, vol.143, p.168, 1962.

T. Green and G. B. Niblett, Rayleigh-Taylor instabilities of a magnetically accelerated plasma, Nuclear Fusion, vol.1, issue.1, pp.42-169, 1960.
DOI : 10.1088/0029-5515/1/1/003

L. Spitzer-jr, Physics of Fully Ionized Gases, American Journal of Physics, vol.31, issue.11, pp.31890-891, 1963.
DOI : 10.1119/1.1969155

D. Ryutov, R. P. Drake, J. Kane, E. Liang, B. A. Remington et al., Similarity Criteria for the Laboratory Simulation of Supernova Hydrodynamics, The Astrophysical Journal, vol.518, issue.2, pp.821-169, 1999.
DOI : 10.1086/307293

L. Hartmann, G. Herczeg, and N. Calvet, Accretion onto Pre-Main-Sequence Stars, Annual Review of Astronomy and Astrophysics, vol.54, issue.1, pp.135-180, 2016.
DOI : 10.1146/annurev-astro-081915-023347

E. D. Feigelson and T. Montmerle, High-Energy Processes in Young Stellar Objects, Annual Review of Astronomy and Astrophysics, vol.37, issue.1, pp.363-408, 1999.
DOI : 10.1146/annurev.astro.37.1.363

G. Basri and C. Bertout, Accretion disks around T Tauri stars. II - Balmer emission, The Astrophysical Journal, vol.341, pp.340-358, 0178.
DOI : 10.1086/167498

L. W. Hartmann and S. J. Kenyon, Optical veiling, disk accretion, and the evolution of T Tauri stars, The Astrophysical Journal, vol.349, pp.190-196, 1990.
DOI : 10.1086/168305

V. Mannings and A. I. Sargent, High???Resolution Studies of Gas and Dust around Young Intermediate???Mass Stars. II. Observations of an Additional Sample of Herbig Ae Systems, The Astrophysical Journal, vol.529, issue.1, pp.391-401, 2000.
DOI : 10.1086/308253

P. Godon, Accretion Disk Boundary Layers in Classical T Tauri Stars, The Astrophysical Journal, vol.463, p.674, 0178.
DOI : 10.1086/177281

N. Calvet and E. Gullbring, The Structure and Emission of the Accretion Shock in T Tauri Stars, The Astrophysical Journal, vol.509, issue.2, pp.802-818, 1998.
DOI : 10.1086/306527

J. Muzerolle, P. D-'alessio, N. Calvet, and L. Hartmann, Magnetospheres and Disk Accretion in Herbig Ae/Be Stars, The Astrophysical Journal, vol.617, issue.1, pp.406-417, 2004.
DOI : 10.1086/425260

I. Mendigutía, N. Calvet, B. Montesinos, A. Mora, J. Muzerolle et al., Accretion rates and accretion tracers of Herbig Ae/Be stars, Astronomy & Astrophysics, vol.582, pp.99-180, 2011.
DOI : 10.1086/344673

C. F. Gammie, Layered Accretion in T Tauri Disks, The Astrophysical Journal, vol.457, p.355, 0180.
DOI : 10.1086/176735

T. P. Fleming, J. M. Stone, and J. F. Hawley, The Effect of Resistivity on the Nonlinear Stage of the Magnetorotational Instability in Accretion Disks, The Astrophysical Journal, vol.530, issue.1, pp.464-180, 2000.
DOI : 10.1086/308338

J. Li, Magnetic Interaction between Classic T Tauri Stars and Their Associated Disks, The Astrophysical Journal, vol.456, pp.696-181, 1996.
DOI : 10.1086/176690

URL : http://doi.org/10.1086/176690

G. V. Ustyugova, A. V. Koldoba, M. M. Romanova, and R. V. Lovelace, ???Propeller??? Regime of Disk Accretion to Rapidly Rotating Stars, The Astrophysical Journal, vol.646, issue.1, pp.304-318, 2006.
DOI : 10.1086/503379

L. J. Machado, M. T. Lago, and J. J. Lima, Rotation of T Tauri Stars Revisited, pp.69-70, 1999.
DOI : 10.1007/978-94-011-4497-1_17

H. Shang, Z. Li, and N. Hirano, Jets and Bipolar Outflows from Young Stars: Theory and Observational Tests, Protostars and Planets V, pp.261-276, 2007.
DOI : 10.1017/s0074180900182646

S. G. Gregory, S. P. Matt, J. Donati, and M. Jardine, The non-dipolar magnetic fields of accreting T Tauri stars, Monthly Notices of the Royal Astronomical Society, vol.89, issue.4, pp.1839-181, 2008.
DOI : 10.1111/j.1365-246X.1987.tb05206.x

URL : https://hal.archives-ouvertes.fr/hal-00392188

C. M. Johns-krull, The Magnetic Fields of Classical T Tauri Stars, The Astrophysical Journal, vol.664, issue.2, pp.975-985, 2007.
DOI : 10.1086/519017

E. Gullbring, N. Calvet, J. Muzerolle, and L. Hartmann, The Structure and Emission of the Accretion Shock in T Tauri Stars. II. The Ultraviolet???Continuum Emission, The Astrophysical Journal, vol.544, issue.2, pp.927-932, 2000.
DOI : 10.1086/317253

H. M. Günther, J. H. Schmitt, J. Robrade, and C. Liefke, X-ray emission from classical T Tauri stars: accretion shocks and coronae?, Astronomy & Astrophysics, vol.144, issue.3, pp.1111-1121, 2007.
DOI : 10.1086/344365

I. N. Kiselev, I. V. Nemchinov, and V. V. Shuvalov, Mathematical modeling of the propagation of intensely radiating shock waves, Zhurnal Vychislitelnoi Matematiki i Matematicheskoi Fiziki, pp.901-921, 1991.

E. Furlan, L. Hartmann, N. Calvet, P. D-'alessio, R. Franco-hernández et al., Infrared Spectrograph Spectra of T Tauri Stars in Taurus, The Astrophysical Journal Supplement Series, vol.165, issue.2, pp.568-605, 2006.
DOI : 10.1086/505468

L. Ingleby, N. Calvet, E. Bergin, G. Herczeg, A. Brown et al., NEAR-ULTRAVIOLET EXCESS IN SLOWLY ACCRETING T TAURI STARS: LIMITS IMPOSED BY CHROMOSPHERIC EMISSION, Near-ultraviolet Excess in Slowly Accreting T Tauri Stars: Limits Imposed by Chromospheric Emission, pp.105-184, 2011.
DOI : 10.1088/0004-637X/743/2/105

A. V. Dodin and S. A. Lamzin, Interpretation of the veiling of the photospheric spectrum for T Tauri stars in terms of an accretion model, Astronomy Letters, vol.16, issue.10, pp.649-666, 2012.
DOI : 10.1086/116783

C. Argiroffi, A. Maggio, G. Peres, J. J. Drake, J. López-santiago et al., X-ray optical depth diagnostics of T Tauri accretion shocks. aap, pp.939-948, 2009.

L. Hartmann, N. Calvet, E. Gullbring, and P. , Accretion and the Evolution of T Tauri Disks, The Astrophysical Journal, vol.495, issue.1, pp.385-400, 1998.
DOI : 10.1086/305277

W. Fischer, S. Edwards, L. Hillenbrand, and J. Kwan, EXCESS CONTINUUM EMISSION IN T TAURI STARS, The Astrophysical Journal, vol.730, issue.2, pp.73-185, 2011.
DOI : 10.1088/0004-637X/730/2/73

J. Donati, S. G. Gregory, S. H. Alencar, J. Bouvier, G. Hussain et al., The large-scale magnetic field and poleward mass accretion of the classical T Tauri star TW Hya. mnras, pp.472-487, 2011.

B. Stelzer and J. H. Schmitt, X-ray emission from a metal depleted accretion shock onto the classical T Tauri star TW Hya. aap, pp.687-697, 0185.

J. J. Drake, P. Testa, and L. Hartmann, X-Ray Diagnostics of Grain Depletion in Matter Accreting onto T Tauri Stars, The Astrophysical Journal, vol.627, issue.2, pp.149-185, 2005.
DOI : 10.1086/432468

G. G. Sacco, C. Argiroffi, S. Orlando, A. Maggio, G. Peres et al., X-ray emission from dense plasma in classical T Tauri stars: hydrodynamic modeling of the accretion shock, Astronomy & Astrophysics, vol.184, issue.2, pp.17-20, 2008.
DOI : 10.1086/152353

N. S. Brickhouse, S. R. Cranmer, A. K. Dupree, G. J. Luna, and S. Wolk, X-RAY SPECTRUM OF THE ACCRETING YOUNG STAR TW HYDRAE, The Astrophysical Journal, vol.710, issue.2, pp.1835-1847, 2010.
DOI : 10.1088/0004-637X/710/2/1835

G. G. Sacco, S. Orlando, C. Argiroffi, A. Maggio, G. Peres et al., On the observability of T Tauri accretion shocks in the X-ray band. aap, pp.55-185, 2010.

C. F. Esau, T. J. Harries, and J. Bouvier, Line and continuum radiative transfer modelling of AA Tau. mnras, pp.1022-1043, 2014.

C. M. Johns-krull, J. A. Valenti, and C. Koresko, Measuring the Magnetic Field on the Classical T Tauri Star BP Tauri, The Astrophysical Journal, vol.516, issue.2, pp.900-915, 0186.
DOI : 10.1086/307128

H. M. Günther, N. Lewandowska, M. P. Hundertmark, H. Steinle, J. H. Schmitt et al., The absence of sub-minute periodicity in classical T Tauri stars. aap, pp.54-188, 2010.

M. M. Romanova, G. V. Ustyugova, A. V. Koldoba, and R. V. Lovelace, Three???dimensional Simulations of Disk Accretion to an Inclined Dipole. II. Hot Spots and Variability, The Astrophysical Journal, vol.610, issue.2, pp.920-932, 2004.
DOI : 10.1086/421867

A. V. Koldoba, G. V. Ustyugova, M. M. Romanova, and R. V. Lovelace, Oscillations of magnetohydrodynamic shock waves on the surfaces of T Tauri stars. mnras, pp.357-366, 2008.

S. Orlando, G. G. Sacco, C. Argiroffi, F. Reale, G. Peres et al., X-ray emitting MHD accretion shocks in classical T Tauri stars. Case for moderate to high plasma-? values. aap, pp.71-189, 2010.

A. Mignone, G. Bodo, S. Massaglia, T. Matsakos, O. Tesileanu et al., PLUTO: A Numerical Code for Computational Astrophysics, The Astrophysical Journal Supplement Series, vol.170, issue.1, pp.228-242, 2007.
DOI : 10.1086/513316

URL : https://hal.archives-ouvertes.fr/hal-00398331

R. S. Sutherland, D. K. Bisset, and G. V. Bicknell, The Numerical Simulation of Radiative Shocks. I. The Elimination of Numerical Shock Instabilities Using a Local Oscillation Filter, The Astrophysical Journal Supplement Series, vol.147, issue.1, pp.187-195, 2003.
DOI : 10.1086/374795

T. Matsakos, J. Chièze, C. Stehlé, M. González, L. Ibgui et al., YSO accretion shocks: magnetic, chromospheric or stochastic flow effects can suppress fluctuations of X-ray emission, Astronomy & Astrophysics, vol.210, pp.69-189, 2013.
DOI : 10.1086/154840

URL : https://hal.archives-ouvertes.fr/cea-01135429

S. Orlando, G. G. Sacco, C. Argiroffi, F. Reale, G. Peres et al., X-ray emitting MHD accretion shocks in classical T Tauri stars. Case for moderate to high plasma-? values. aap, pp.71-208, 2010.

G. Revet, Laboratory unravelling of matter accretion in young stars, Science Advances, vol.208, pp.2017-210, 0205.

B. Albertazzi, . Béard, . Ciardi, . Vinci, . Albrecht et al., Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields, Review of Scientific Instruments, vol.84, issue.4, p.43505, 2013.
DOI : 10.1364/JOSA.51.000943

URL : https://hal.archives-ouvertes.fr/hal-00860978

J. Zou, C. Blanc, . Audebert, A. Janicot, . Sautivet et al., Recent progress on LULI high power laser facilities, Journal of Physics: Conference Series, vol.112, issue.3, pp.32021-196, 2008.
DOI : 10.1088/1742-6596/112/3/032021

T. Pisarczyk, R. Arendzikowski, Z. Patron, and P. Parys, Polari interferometer with automatic images processing for laser plasma diagnostic, Laser and Particle Beams, vol.33, issue.03, p.549, 0197.
DOI : 10.1063/1.91196

S. Atzeni, A. Schiavi, F. Califano, F. Cattani, F. Cornolti et al., Fluid and kinetic simulation of inertial confinement fusion plasmas, Computer Physics Communications, vol.169, issue.1-3, pp.153-159, 0199.
DOI : 10.1016/j.cpc.2005.03.036

A. Ciardi, T. Vinci, J. Fuchs, B. Albertazzi, C. Riconda et al., Astrophysics of Magnetically Collimated Jets Generated from Laser-Produced Plasmas, Physical Review Letters, vol.86, issue.2, p.25002, 0206.
DOI : 10.1088/0004-637X/737/2/54

URL : https://hal.archives-ouvertes.fr/hal-00802906

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard et al., Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field, Science, vol.424, issue.1, pp.346325-328, 0201.
DOI : 10.1051/0004-6361:200400014

D. Higginson, . Revet, . Khiar, . Béard, . Blecher et al., Detailed characterization of laser-produced astrophysically-relevant jets formed via a poloidal magnetic nozzle, High Energy Density Physics, vol.23, issue.208, pp.48-59, 0206.
DOI : 10.1016/j.hedp.2017.02.003

D. Ryutov and . Drake, Criteria for Scaled Laboratory Simulations of Astrophysical MHD Phenomena, The Astrophysical Journal Supplement Series, vol.127, issue.2, p.465, 0201.
DOI : 10.1086/313320

L. Hartmann, G. Herczeg, and N. Calvet, Accretion onto Pre-Main-Sequence Stars, Annual Review of Astronomy and Astrophysics, vol.54, issue.1, pp.135-180, 0201.
DOI : 10.1146/annurev-astro-081915-023347

M. Christopher and . Johns-krull, Wind and Accretion Variability in T Tauri Stars, pp.153-159, 0201.

H. Shang, Z. Li, and N. Hirano, Jets and Bipolar Outflows from Young Stars: Theory and Observational Tests, Protostars and Planets V, pp.261-276, 2007.

J. E. Cross, G. Gregori, J. M. Foster, P. Graham, J. Bonnet-bidaud et al., Laboratory analogue of a supersonic accretion column in a binary star system, Nature Communications, vol.12, p.11899, 0205.
DOI : 10.1016/0167-2789(84)90512-8

K. Matsuo, H. Nagatomo, Z. Zhang, P. Nicolai, T. Sano et al., Magnetohydrodynamics of laser-produced high-energy-density plasma in a strong external magnetic field, Physical Review E, vol.95, issue.5, p.53204, 0205.
DOI : 10.1103/PhysRevLett.101.025002

J. D. Huba, Onset criteria for structure in magnetically confined plasma expansions, 0205.

B. Khiar, Enhancement of quasi-stationary shocks and heating via temporal-staging in a magnetized, laser-plasma jet, pp.2017-206

R. Bonito, S. Orlando, C. Argiroffi, M. Miceli, G. Peres et al., MAGNETOHYDRODYNAMIC MODELING OF THE ACCRETION SHOCKS IN CLASSICAL T TAURI STARS: THE ROLE OF LOCAL ABSORPTION IN THE X-RAY EMISSION, The Astrophysical Journal, vol.795, issue.2, pp.795-829, 2014.
DOI : 10.1088/2041-8205/795/2/L34

C. Argiroffi, A. Maggio, G. Peres, J. J. Drake, J. López-santiago et al., X-ray optical depth diagnostics of T Tauri accretion shocks. aap, pp.939-948, 0206.

P. George, O. Sutton, and . Biblarz, Rocket propulsion elements, p.208, 2017.

G. G. Sacco, C. Argiroffi, S. Orlando, A. Maggio, G. Peres et al., X-ray emission from dense plasma in classical T Tauri stars: hydrodynamic modeling of the accretion shock, Astronomy & Astrophysics, vol.184, issue.2, pp.17-20, 0210.
DOI : 10.1086/152353

S. R. Cranmer, TESTING MODELS OF ACCRETION-DRIVEN CORONAL HEATING AND STELLAR WIND ACCELERATION FOR T TAURI STARS, The Astrophysical Journal, vol.706, issue.1, pp.824-843, 0210.
DOI : 10.1088/0004-637X/706/1/824

N. S. Brickhouse, S. R. Cranmer, A. K. Dupree, G. J. Luna, and S. Wolk, X-RAY SPECTRUM OF THE ACCRETING YOUNG STAR TW HYDRAE, The Astrophysical Journal, vol.710, issue.2, pp.1835-1847, 0210.
DOI : 10.1088/0004-637X/710/2/1835

J. A. Valenti and C. M. Johns-krull, Observations of Magnetic Fields on T Tauri Stars, Astrophysics and Space Science, vol.292, issue.1-4, pp.619-629, 0212.
DOI : 10.1023/B:ASTR.0000045068.34836.cf

S. G. Gregory, M. Jardine, A. Collier-cameron, and J. Donati, Rotationally modulated X-ray emission from T Tauri stars. mnras, pp.827-835, 2006.
DOI : 10.1111/j.1365-2966.2006.11086.x

URL : https://hal.archives-ouvertes.fr/hal-00138874

M. Long, M. M. Romanova, and R. V. Lovelace, Accretion to stars with non-dipole magnetic fields. mnras, pp.436-444, 0212.

A. V. Koldoba, G. V. Ustyugova, M. M. Romanova, and R. V. Lovelace, Oscillations of magnetohydrodynamic shock waves on the surfaces of T Tauri stars. mnras, pp.357-366, 0212.

=. Above and 4. 10°, The three pictures correspond to a time t=14 ns Curve: Mean total impulsion in the direction of the magnetic field as a function of tilt angle. The initial laser energy is the same in all cases: 17 J (for a 0, p.141

L. Hartmann, The disk rotating around its pre-main sequence star exchanges both matter and angular momentum through the existence of the stellar magnetic field (here represented as been dipolar) The coupling is done in the inner part of the disk where the gas is heated and ionized by the stellar radiations. The funneling of the disk material by the magnetic field to form the accretion flows leads to the generation of the polar accretions shocks which radiate in X-ray, Schematic view a classical T Tauri star, p.179, 2016.

L. Hartmann, The infalling accreting material impact the star chromosphere and forms, where its ram pressure is comparable to the local thermal pressure, a shock Temperature produced by this shock are of the order of few millions of kelvins and thus a large amount of X-rays are emitted. These radiations are then reprocessed by the preshock, the postshock and the ambient environment into larger wavelengths which creates the features observed on the TTS spectra, Schematic view of an accretion shock on the stellar surface, p.183, 2016.