A. Benani, C. Hryhorczuk, A. Gouazé, X. Fioramonti, X. Brenachot et al., Food Intake Adaptation to Dietary Fat Involves PSA-Dependent Rewiring of the Arcuate Melanocortin System in Mice, Journal of Neuroscience, vol.32, issue.35, pp.11970-11979, 2012.
DOI : 10.1523/JNEUROSCI.0624-12.2012

URL : https://hal.archives-ouvertes.fr/hal-00760988

J. Gascuel and L. Pénicaud, Alexandre Benani Références 1. Berthoud, H.-R. Mind versus metabolism in the control of food intake and energy balance, Physiol. Behav, vol.81, pp.781-93, 2004.

H. Berthoud and C. Morrison, The Brain, Appetite, and Obesity, Annual Review of Psychology, vol.59, issue.1, pp.55-92, 2008.
DOI : 10.1146/annurev.psych.59.103006.093551

J. Lemaire, White matter connectivity of human hypothalamus, Brain Research, vol.1371, pp.43-64, 2011.
DOI : 10.1016/j.brainres.2010.11.072

C. B. Saper, Hypothalamic connections with the cerebral cortex, Prog. Brain Res, vol.126, pp.39-48, 2000.
DOI : 10.1016/S0079-6123(00)26005-6

G. Bray and D. York, Hypothalamic and genetic obesity in experimental animals: an autonomic and endocrine hypothesis., Physiological Reviews, vol.59, issue.3, pp.719-809, 1979.
DOI : 10.1152/physrev.1979.59.3.719

J. K. Elmquist, C. F. Elias, and C. B. Saper, From Lesions to Leptin, Neuron, vol.22, issue.2, pp.221-253, 1999.
DOI : 10.1016/S0896-6273(00)81084-3

URL : https://doi.org/10.1016/s0896-6273(00)81084-3

H. Berthoud, Multiple neural systems controlling food intake and body weight, Neuroscience & Biobehavioral Reviews, vol.26, issue.4, pp.393-428, 2002.
DOI : 10.1016/S0149-7634(02)00014-3

L. E. Johnstone, T. M. Fong, and G. Leng, Neuronal activation in the hypothalamus and brainstem during feeding in rats, Cell Metabolism, vol.4, issue.4, pp.313-334, 2006.
DOI : 10.1016/j.cmet.2006.08.003

H. Berthoud, G. M. Sutton, R. L. Townsend, L. M. Patterson, and H. Zheng, Brainstem mechanisms integrating gut-derived satiety signals and descending forebrain information in the control of meal size, Physiology & Behavior, vol.89, issue.4, pp.517-541, 2006.
DOI : 10.1016/j.physbeh.2006.08.018

T. H. Moran, E. E. Ladenheim, and G. J. Schwartz, Within-meal gut feedback signaling, International Journal of Obesity, vol.25, issue.S5, pp.39-41, 2001.
DOI : 10.1038/sj.ijo.0801910

N. S. Canteras, R. B. Simerly, and L. W. Swanson, Organization of projections from the ventromedial nucleus of the hypothalamus: APhaseolus vulgaris-Leucoagglutinin study in the rat, The Journal of Comparative Neurology, vol.47, issue.1, pp.41-79, 1994.
DOI : 10.1001/archneur.1966.00470120102013

K. M. Mcclellan, K. L. Parker, and S. Tobet, Development of the ventromedial nucleus of the hypothalamus, Frontiers in Neuroendocrinology, vol.27, issue.2, pp.193-209, 2006.
DOI : 10.1016/j.yfrne.2006.02.002

A. Sclafani, C. N. Berner, and G. Maul, Multiple knife cuts between the medial and lateral hypothalamus in the rat: A reevaluation of hypothalamic feeding circuitry., Journal of Comparative and Physiological Psychology, vol.88, issue.1, pp.201-208, 1975.
DOI : 10.1037/h0076198

G. Majdic, Knockout Mice Lacking Steroidogenic Factor 1 Are a Novel Genetic Model of Hypothalamic Obesity, Endocrinology, vol.143, issue.2, pp.607-621, 2002.
DOI : 10.1210/endo.143.2.8652

T. J. Unger, G. A. Calderon, L. C. Bradley, M. Sena-esteves, and M. Rios, Selective Deletion of Bdnf in the Ventromedial and Dorsomedial Hypothalamus of Adult Mice Results in Hyperphagic Behavior and Obesity, Journal of Neuroscience, vol.27, issue.52, pp.14265-74, 2007.
DOI : 10.1523/JNEUROSCI.3308-07.2007

C. Wang, E. Bomberg, A. Levine, C. Billington, and C. M. Kotz, Brain-derived neurotrophic factor in the ventromedial nucleus of the hypothalamus reduces energy intake, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol.293, issue.3, pp.1037-1082, 2007.
DOI : 10.1016/j.mce.2003.11.009

T. Sakurai, Orexins and Orexin Receptors: A Family of Hypothalamic Neuropeptides and G Protein-Coupled Receptors that Regulate Feeding Behavior, Cell, vol.92, issue.4, pp.573-85, 1998.
DOI : 10.1016/S0092-8674(00)80949-6

S. Muroya, Orexins (hypocretins) directly interact with neuropeptide Y, POMC and glucose-responsive neurons to regulate Ca2+ signaling in a reciprocal manner to leptin: orexigenic neuronal pathways in the mediobasal hypothalamus, European Journal of Neuroscience, vol.269, issue.6, pp.1524-1558, 2004.
DOI : 10.1016/S0031-9384(02)00843-0

M. Van-den-top, K. Lee, A. D. Whyment, A. M. Blanks, and D. Spanswick, Orexigen-sensitive NPY/AgRP pacemaker neurons in the hypothalamic arcuate nucleus, Nature Neuroscience, vol.7, issue.5, pp.493-497, 2004.
DOI : 10.1016/0306-4522(82)90044-6

X. Ma, L. Zubcevic, J. C. Brüning, F. M. Ashcroft, and D. Burdakov, Electrical Inhibition of Identified Anorexigenic POMC Neurons by Orexin/Hypocretin, Journal of Neuroscience, vol.27, issue.7, pp.1529-1562, 2007.
DOI : 10.1523/JNEUROSCI.3583-06.2007

C. R. Abbott, Identification of Hypothalamic Nuclei Involved in the Orexigenic Effect of Melanin-Concentrating Hormone, Endocrinology, vol.144, issue.9, pp.3943-3949, 2003.
DOI : 10.1210/en.2003-0149

D. S. Ludwig, Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance, Journal of Clinical Investigation, vol.107, issue.3, pp.379-86, 2001.
DOI : 10.1172/JCI10660

G. Segal-lieberman, Melanin-concentrating hormone is a critical mediator of the leptin-deficient phenotype, Proceedings of the National Academy of Sciences, vol.368, issue.2, pp.10085-90, 2003.
DOI : 10.1006/abbi.1999.1315

H. Zheng, Melanin concentrating hormone innervation of caudal brainstem areas involved in gastrointestinal functions and energy balance, Neuroscience, vol.135, issue.2, pp.611-636, 2005.
DOI : 10.1016/j.neuroscience.2005.06.055

C. Blouet and G. J. Schwartz, Hypothalamic nutrient sensing in the control of energy homeostasis, Behavioural Brain Research, vol.209, issue.1, pp.1-12, 2010.
DOI : 10.1016/j.bbr.2009.12.024

R. D. Cone, Anatomy and regulation of the central melanocortin system, Nature Neuroscience, vol.16, issue.5, pp.571-579, 2005.
DOI : 10.1038/sj.ijir.3901200

N. Balthasar, Divergence of Melanocortin Pathways in the Control of Food Intake and Energy Expenditure, Cell, vol.123, issue.3, pp.493-505, 2005.
DOI : 10.1016/j.cell.2005.08.035

J. Rossi, Melanocortin-4 Receptors Expressed by Cholinergic Neurons Regulate Energy Balance and Glucose Homeostasis, Cell Metabolism, vol.13, issue.2, pp.195-204, 2011.
DOI : 10.1016/j.cmet.2011.01.010

URL : https://doi.org/10.1016/j.cmet.2011.01.010

C. Fekete, alpha-Melanocyte-stimulating hormone is contained in nerve terminals innervating thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and prevents fasting-induced suppression of prothyrotropinreleasing hormone ge, J. Neurosci, vol.20, pp.1550-1558, 2000.

W. Fan, B. A. Boston, R. A. Kesterson, V. J. Hruby, and R. D. Cone, Role of melanocortinergic neurons in feeding and the agouti obesity syndrome, Nature, vol.385, issue.6612, pp.165-173, 1997.
DOI : 10.1038/385165a0

G. S. Barsh and M. W. Schwartz, Genetic approaches to studying energy balance: perception and integration, Nature Reviews Genetics, vol.296, issue.Suppl. 5, pp.589-600, 2002.
DOI : 10.1126/science.1070058

Y. S. Lee, L. K. Poh, B. L. Kek, and K. Loke, The role of melanocortin 3 receptor gene in childhood obesity, Diabetes, vol.56, pp.2622-2652, 2007.

D. Huszar, Targeted Disruption of the Melanocortin-4 Receptor Results in Obesity in Mice, Cell, vol.88, issue.1, pp.131-172, 1997.
DOI : 10.1016/S0092-8674(00)81865-6

A. S. Chen, Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass, Nat. Genet, vol.26, pp.97-102, 2000.

D. Atalayer, K. L. Robertson, C. Haskell-luevano, A. Andreasen, and N. E. Rowland, Food demand and meal size in mice with single or combined disruption of melanocortin type 3 and 4 receptors, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol.298, issue.6, pp.1667-74, 2010.
DOI : 10.1152/ajpregu.00869.2004

K. A. Simpson, N. M. Martin, and S. R. Bloom, Hypothalamic regulation of food intake and clinical therapeutic applications, Arquivos Brasileiros de Endocrinologia & Metabologia, vol.6, issue.2, pp.120-128, 2009.
DOI : 10.2174/1389450053174550

P. Kristensen, Hypothalamic CART is a new anorectic peptide regulated by leptin, Nature, vol.42, issue.6680, pp.72-78, 1998.
DOI : 10.1177/42.12.7983364

C. R. Abbott, Evidence of an Orexigenic Role for Cocaine- and Amphetamine-Regulated Transcript after Administration into Discrete Hypothalamic Nuclei, Endocrinology, vol.142, issue.8, pp.3457-63, 2001.
DOI : 10.1210/endo.142.8.8304

S. T. Hentges, V. Otero-corchon, R. L. Pennock, C. M. King, and M. J. Low, Proopiomelanocortin Expression in both GABA and Glutamate Neurons, Journal of Neuroscience, vol.29, issue.43, pp.13684-90, 2009.
DOI : 10.1523/JNEUROSCI.3770-09.2009

B. C. Jarvie and S. T. Hentges, Expression of GABAergic and glutamatergic phenotypic markers in hypothalamic proopiomelanocortin neurons, Journal of Comparative Neurology, vol.8, issue.17, pp.3863-76, 2012.
DOI : 10.1038/nmeth.1668

L. Vong, Leptin Action on GABAergic Neurons Prevents Obesity and Reduces Inhibitory Tone to POMC Neurons, Neuron, vol.71, issue.1, pp.142-54, 2011.
DOI : 10.1016/j.neuron.2011.05.028

D. Lu, Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor, Nature, vol.371, issue.6500, pp.799-802, 1994.
DOI : 10.1038/371799a0

M. M. Ollmann, Antagonism of Central Melanocortin Receptors in Vitro and in Vivo by Agouti-Related Protein, Science, vol.268, issue.5335, pp.135-143, 1997.
DOI : 10.1093/hmg/4.2.223

K. Ebihara, Involvement of agouti-related protein, an endogenous antagonist of hypothalamic melanocortin receptor, in leptin action, Diabetes, vol.48, issue.10, pp.2028-2061, 1999.
DOI : 10.2337/diabetes.48.10.2028

C. Broberger, J. Johansen, C. Johansson, M. Schalling, and T. Hökfelt, The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice, Proceedings of the National Academy of Sciences, vol.4, issue.2, pp.15043-15051, 1998.
DOI : 10.1016/0891-0618(91)90034-A

M. A. Cowley, Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus, Nature, vol.411, issue.6836, pp.480-484, 2001.
DOI : 10.1038/35078085

S. Lin, D. Boey, and H. Herzog, NPY and Y receptors: lessons from transgenic and knockout models, Neuropeptides, vol.38, issue.4, pp.189-200, 2004.
DOI : 10.1016/j.npep.2004.05.005

B. G. Stanley and S. F. Leibowitz, Neuroreptide Y: Stimulation of feeding and drinking by injection into the paraventricular nucleus, Life Sciences, vol.35, issue.26, pp.2635-2677, 1984.
DOI : 10.1016/0024-3205(84)90032-8

C. J. Billington, J. E. Briggs, M. Grace, and A. S. Levine, Effects of intracerebroventricular injection of neuropeptide Y on energy metabolism, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol.260, issue.2, pp.321-328, 1991.
DOI : 10.1152/ajpregu.1991.260.2.R321

A. D. Nguyen, Y1 and Y5 Receptors Are Both Required for the Regulation of Food Intake and Energy Homeostasis in Mice, PLoS ONE, vol.52, issue.6, p.40191, 2012.
DOI : 10.1371/journal.pone.0040191.t001

J. G. Wettstein, B. Earley, and J. L. Junien, Central nervous system pharmacology of neuropeptide Y, Pharmacology & Therapeutics, vol.65, issue.3, pp.397-414, 1995.
DOI : 10.1016/0163-7258(95)98598-K

S. L. Parker, S. P. Kalra, and W. Crowley, Neuropeptide Y Modulates the Binding of a Gonadotropin-Releasing Hormone (GnRH) Analog to Anterior Pituitary GnRH Receptor Sites*, Endocrinology, vol.128, issue.5, pp.2309-2325, 1991.
DOI : 10.1210/endo-128-5-2309

J. D. White, Neuropeptide Y: a central regulator of energy homeostasis, Regulatory Peptides, vol.49, issue.2, pp.93-107, 1993.
DOI : 10.1016/0167-0115(93)90431-7

R. Adan and H. , The MC4 receptor and control of appetite, British Journal of Pharmacology, vol.289, issue.Suppl 4, pp.815-842, 2006.
DOI : 10.1152/ajpregu.00869.2004

H. B. Schiöth, V. Chhajlani, R. Muceniece, V. Klusa, and J. E. Wikberg, Major pharmacological distinction of the ACTH receptor from other melanocortin receptors, Life Sciences, vol.59, issue.10, pp.797-801, 1996.
DOI : 10.1016/0024-3205(96)00370-0

R. A. Adan and W. Gispen, Brain Melanocortin Receptors: From Cloning to Function, Peptides, vol.18, issue.8, pp.1279-87, 1997.
DOI : 10.1016/S0196-9781(97)00078-8

Y. K. Yang, Effects of Recombinant Agouti-Signaling Protein on Melanocortin Action, Molecular Endocrinology, vol.11, issue.3, pp.274-80, 1997.
DOI : 10.1210/mend.11.3.9898

L. Roselli-rehfuss, Identification of a receptor for gamma melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system., Proc. Natl. Acad
DOI : 10.1073/pnas.90.19.8856

N. Griffon, Molecular Cloning and Characterisation of the Rat Fifth Melanocortin Receptor, Biochemical and Biophysical Research Communications, vol.200, issue.2, pp.1007-1021, 1994.
DOI : 10.1006/bbrc.1994.1550

K. G. Mountjoy, M. T. Mortrud, M. J. Low, R. B. Simerly, and R. D. Cone, Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain, Mol. Endocrinol, vol.8, pp.1298-308, 1994.

Z. Fathi, L. G. Iben, and E. M. Parker, Cloning, expression, and tissue distribution of a fifth melanocortin receptor subtype, Neurochemical Research, vol.579, issue.2, pp.107-120, 1995.
DOI : 10.1007/BF00995160

Y. Xia, J. E. Wikberg, and V. Chhajlani, Expression of melanocortin 1 receptor in periaqueductal gray matter, NeuroReport, vol.6, issue.16, pp.2193-2199, 1995.
DOI : 10.1097/00001756-199511000-00022

S. J. Getting, L. Gibbs, A. J. Clark, R. J. Flower, and M. Perretti, POMC gene-derived peptides activate melanocortin type 3 receptor on murine macrophages, suppress cytokine release, and inhibit neutrophil migration in acute experimental inflammation, J. Immunol, vol.162, pp.7446-53, 1999.

J. Wikberg, Melanocortin receptors: perspectives for novel drugs, European Journal of Pharmacology, vol.375, issue.1-3, pp.295-310, 1999.
DOI : 10.1016/S0014-2999(99)00298-8

J. E. Wikberg, New aspects on the melanocortins and their receptors, Pharmacological Research, vol.42, issue.5, pp.393-420, 2000.
DOI : 10.1006/phrs.2000.0725

G. N. Andersen, Quantitative Measurement of the Levels of Melanocortin Receptor Subtype 1, 2, 3 and 5 and Pro-Opio-Melanocortin Peptide Gene Expression in Subsets of Human Peripheral Blood Leucocytes, Scandinavian Journal of Immunology, vol.2, issue.3, pp.279-84, 2005.
DOI : 10.1034/j.1600-0897.2002.01131.x

W. H. Gispen, V. M. Wiegant, H. M. Greven, and D. De-wied, The induction of excessive grooming in the rat by intraventricular application of peptides derived from ACTH: Structure-activity studies, Life Sciences, vol.17, issue.4, pp.645-52, 1975.
DOI : 10.1016/0024-3205(75)90103-4

M. D. Hirsch, Structural and conformational modifications of ??-MSH/ACTH4???10 provide melanotropin analogues with highly potent behavioral activities, Peptides, vol.5, issue.6, pp.1197-201
DOI : 10.1016/0196-9781(84)90187-6

R. Muceniece, The MC3 receptor binding affinity of melanocortins correlates with the nitric oxide production inhibition in mice brain inflammation model, Peptides, vol.27, issue.6, pp.1443-50, 2006.
DOI : 10.1016/j.peptides.2005.12.002

A. J. Thody, M. F. Cooper, P. E. Bowden, D. Meddis, and S. Shuster, EFFECT OF ??-MELANOCYTE-STIMULATING HORMONE AND TESTOSTERONE ON CUTANEOUS AND MODIFIED SEBACEOUS GLANDS IN THE RAT, Journal of Endocrinology, vol.71, issue.3, pp.279-88, 1976.
DOI : 10.1677/joe.0.0710279

H. Leiba, The melanocortin receptor in the rat lacrimal gland: a model system for the study of MSH (melanocyte stimulating hormone) as a potential neurotransmitter, European Journal of Pharmacology, vol.181, issue.1-2, pp.71-82, 1990.
DOI : 10.1016/0014-2999(90)90246-3

L. S. Robbins, Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function, Cell, vol.72, issue.6, pp.827-861, 1993.
DOI : 10.1016/0092-8674(93)90572-8

R. Bhardwaj, Evidence for the differential expression of the functional alphamelanocyte-stimulating hormone receptor MC-1 on human monocytes, J. Immunol, vol.158, pp.3378-84, 1997.

J. M. Lipton and A. Catania, Mechanisms of Antiinflammatory Action of the Neuroimmunomodulatory Peptide ??-MSH, Annals of the New York Academy of Sciences, vol.5, issue.Suppl, pp.373-80, 1998.
DOI : 10.1097/00002030-199509020-00004

B. A. Boston, The Role of Melanocortins in Adipocyte Function, Annals of the New York Academy of Sciences, vol.89, issue.1, pp.75-84, 1999.
DOI : 10.1042/bj2990367

I. Gantz and T. M. Fong, The melanocortin system, American Journal of Physiology-Endocrinology and Metabolism, vol.15, issue.3, pp.468-74, 2003.
DOI : 10.1093/hmg/4.2.223

A. S. Garfield, D. D. Lam, O. J. Marston, M. J. Przydzial, and L. K. Heisler, Role of central melanocortin pathways in energy homeostasis, Trends in Endocrinology & Metabolism, vol.20, issue.5, pp.203-218, 2009.
DOI : 10.1016/j.tem.2009.02.002

A. A. Butler, A Unique Metalolic Sysdrone Causes Obesity in the Melanocortin-3 Receptor-Deficient Mouse, Endocrinology, vol.141, issue.9, pp.3518-3539, 2000.
DOI : 10.1210/endo.141.9.7791

A. Butler, The melanocortin system and energy balance, Peptides, vol.27, issue.2, pp.281-90, 2006.
DOI : 10.1016/j.peptides.2005.02.029

A. S. Chen, Role of the melanocortin-4 receptor in metabolic rate and food intake in mice, Transgenic Research, vol.9, issue.2, pp.145-54, 2000.
DOI : 10.1023/A:1008983615045

. Butler, Melanocortin-4 receptor is required for acute homeostatic responses to increased dietary fat, Nature Neuroscience, vol.288, issue.1, pp.605-616, 2001.
DOI : 10.1126/science.288.5475.2379

G. M. Sutton, Diet-Genotype Interactions in the Development of the Obese, Insulin-Resistant Phenotype of C57BL/6J Mice Lacking Melanocortin-3 or -4 Receptors, Endocrinology, vol.147, issue.5, pp.2183-96, 2006.
DOI : 10.1210/en.2005-1209

B. G. Challis, Mice lacking pro-opiomelanocortin are sensitive to high-fat feeding but respond normally to the acute anorectic effects of peptide-YY3-36, Proceedings of the National Academy of Sciences, vol.72, issue.2, pp.4695-700, 2004.
DOI : 10.1159/000054579

Y. C. Tung, D. Rimmington, S. O-'rahilly, and A. P. Coll, Pro-Opiomelanocortin Modulates the Thermogenic and Physical Activity Responses to High-Fat Feeding and Markedly Influences Dietary Fat Preference, Endocrinology, vol.148, issue.11, pp.5331-5339, 2007.
DOI : 10.1210/en.2007-0797

L. Yaswen, N. Diehl, M. B. Brennan, and U. Hochgeschwender, Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin, Nat. Med, vol.5, pp.1066-70, 1999.

J. L. Smart, V. Tolle, and M. J. Low, Glucocorticoids exacerbate obesity and insulin resistance in neuron-specific proopiomelanocortin-deficient mice, Journal of Clinical Investigation, vol.116, issue.2, pp.495-505, 2006.
DOI : 10.1172/JCI25243

URL : http://www.jci.org/articles/view/25243/files/pdf

T. M. Mizuno, K. A. Kelley, G. M. Pasinetti, J. L. Roberts, and C. Mobbs, Transgenic Neuronal Expression of Proopiomelanocortin Attenuates Hyperphagic Response to Fasting and Reverses Metabolic Impairments in Leptin-Deficient Obese Mice, Diabetes, vol.52, issue.11, pp.2675-83, 2003.
DOI : 10.2337/diabetes.52.11.2675

G. Li, Melanocortin activation of nucleus of the solitary tract avoids anorectic tachyphylaxis and induces prolonged weight loss, American Journal of Physiology-Endocrinology and Metabolism, vol.293, issue.1, pp.252-260, 2007.
DOI : 10.1152/ajpregu.00869.2004

E. Savontaus, Metabolic Effects of Transgenic Melanocyte-Stimulating Hormone Overexpression in Lean and Obese Mice, Endocrinology, vol.145, issue.8, pp.3881-91, 2004.
DOI : 10.1210/en.2004-0263

S. Qian, Neither Agouti-Related Protein nor Neuropeptide Y Is Critically Required for the Regulation of Energy Homeostasis in Mice, Molecular and Cellular Biology, vol.22, issue.14, pp.5027-5062, 2002.
DOI : 10.1128/MCB.22.14.5027-5035.2002

K. E. Wortley, Agouti-related protein-deficient mice display an age-related lean phenotype, Cell Metabolism, vol.2, issue.6, pp.421-428, 2005.
DOI : 10.1016/j.cmet.2005.11.004

URL : https://doi.org/10.1016/j.cmet.2005.11.004

G. A. Bewick, Post-embryonic ablation of AgRP neurons in mice leads to a lean, hypophagic phenotype, The FASEB Journal, vol.19, issue.12, pp.1680-1682, 2005.
DOI : 10.1096/fj.04-3434fje

S. Luquet, F. A. Perez, T. S. Hnasko, R. D. Palmiter, and . Npy, NPY/AgRP Neurons Are Essential for Feeding in Adult Mice but Can Be Ablated in Neonates, Science, vol.310, issue.5748, pp.683-688, 2005.
DOI : 10.1126/science.1115524

E. Gropp, Agouti-related peptide???expressing neurons are mandatory for feeding, Nature Neuroscience, vol.327, issue.10, pp.1289-91, 2005.
DOI : 10.1016/j.bbrc.2004.12.113

M. Graham, J. R. Shutter, U. Sarmiento, I. Sarosi, and K. L. Stark, Overexpression of Agrt leads to obesity in transgenic mice, Nature Genetics, vol.206, issue.3, pp.273-277, 1997.
DOI : 10.1006/bbrc.1997.7200

M. L. Klebig, J. E. Wilkinson, J. G. Geisler, and R. P. Woychik, Ectopic expression of the agouti gene in transgenic mice causes obesity, features of type II diabetes, and yellow fur., Proceedings of the National Academy of Sciences, vol.92, issue.11, pp.4728-4760, 1995.
DOI : 10.1073/pnas.92.11.4728

D. M. Jacobowitz and T. L. O-'donohue, alpha-Melanocyte stimulating hormone: immunohistochemical identification and mapping in neurons of rat brain., Proc. Natl. Acad
DOI : 10.1073/pnas.75.12.6300

S. A. Joseph, W. H. Pilcher, and C. Bennett-clarke, Immunocytochemical localization of ACTH perikarya in nucleus tractus solitarius: evidence for a second opiocortin neuronal system, Neuroscience Letters, vol.38, issue.3, pp.221-226, 1983.
DOI : 10.1016/0304-3940(83)90372-5

M. K. Mcgowan, K. M. Andrews, J. Kelly, and S. P. Grossman, Effects of chronic intrahypothalamic infusion of insulin on food intake and diurnal meal patterning in the rat., Behavioral Neuroscience, vol.104, issue.2, pp.373-85, 1990.
DOI : 10.1037/0735-7044.104.2.373

M. K. Mcgowan, K. M. Andrews, and S. P. Grossman, Chronic intrahypothalamic infusions of insulin or insulin antibodies alter body weight and food intake in the rat, Physiology & Behavior, vol.51, issue.4, pp.753-66, 1992.
DOI : 10.1016/0031-9384(92)90112-F

M. W. Schwartz, Inhibition of hypothalamic neuropeptide Y gene expression by insulin., Endocrinology, vol.130, issue.6, pp.3608-3624, 1992.
DOI : 10.1210/endo.130.6.1597158

C. Könner, Insulin Action in AgRP-Expressing Neurons Is Required for Suppression of Hepatic Glucose Production, Cell Metabolism, vol.5, issue.6, pp.438-487, 2007.
DOI : 10.1016/j.cmet.2007.05.004

S. C. Benoit, The catabolic action of insulin in the brain is mediated by melanocortins, J. Neurosci, vol.22, pp.9048-52, 2002.

Y. Zhang, Positional cloning of the mouse obese gene and its human homologue, Nature, vol.372, issue.6505, pp.425-457, 1994.
DOI : 10.1038/372425a0

L. Campfield, F. J. Smith, Y. Guisez, R. Devos, and P. Burn, Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks, Science, vol.269, issue.5223, pp.546-555, 1995.
DOI : 10.1126/science.7624778

L. Tartaglia, Identification and expression cloning of a leptin receptor, OB-R, Cell, vol.83, issue.7, pp.1263-71, 1995.
DOI : 10.1016/0092-8674(95)90151-5

J. L. Halaas, Physiological response to long-term peripheral and central leptin infusion in lean and obese mice, Proceedings of the National Academy of Sciences, vol.2, issue.5, pp.8878-83, 1997.
DOI : 10.1038/nm0596-589

J. K. Elmquist, C. Bjørbaek, R. S. Ahima, J. S. Flier, and C. B. Saper, Distributions of leptin receptor mRNA isoforms in the rat brain, The Journal of Comparative Neurology, vol.372, issue.4, pp.535-582, 1998.
DOI : 10.1179/his.1989.12.3.169

M. W. Schwartz, Specificity of Leptin Action on Elevated Blood Glucose Levels and Hypothalamic Neuropeptide Y Gene Expression in ob/ob Mice, Diabetes, vol.45, issue.4, pp.531-536, 1996.
DOI : 10.2337/diab.45.4.531

C. D. Morrison, G. J. Morton, K. D. Niswender, R. W. Gelling, and M. W. Schwartz, gene expression via a mechanism that requires phosphatidylinositol 3-OH-kinase signaling, American Journal of Physiology-Endocrinology and Metabolism, vol.289, issue.6, pp.1051-1058, 2005.
DOI : 10.1038/nn885

C. C. Cheung, D. K. Clifton, and R. A. Steiner, Proopiomelanocortin Neurons Are Direct Targets for Leptin in the Hypothalamus, Endocrinology, vol.138, issue.10, pp.4489-92, 1997.
DOI : 10.1210/endo.138.10.5570

J. W. Hill, Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice, Journal of Clinical Investigation, vol.118, issue.5, pp.1796-805, 2008.
DOI : 10.1172/JCI32964

M. Kojima, Ghrelin is a growth-hormone-releasing acylated peptide from stomach, Nature, vol.140, issue.6762, pp.656-60, 1999.
DOI : 10.1210/endo.140.5.6734

H. Ariyasu, Stomach Is a Major Source of Circulating Ghrelin, and Feeding State Determines Plasma Ghrelin-Like Immunoreactivity Levels in Humans, The Journal of Clinical Endocrinology & Metabolism, vol.86, issue.10, pp.4753-4761, 2001.
DOI : 10.1210/jcem.86.10.7885

D. E. Cummings, R. S. Frayo, C. Marmonier, R. Aubert, and D. Chapelot, Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues, American Journal of Physiology-Endocrinology and Metabolism, vol.287, issue.2, pp.297-304, 2004.
DOI : 10.1210/endo.141.11.7873

URL : http://ajpendo.physiology.org/content/ajpendo/287/2/E297.full.pdf

M. G. Willesen, P. Kristensen, and J. Rømer, Co-Localization of Growth Hormone Secretagogue Receptor and NPY mRNA in the Arcuate Nucleus of the Rat, Neuroendocrinology, vol.70, issue.5, pp.306-322, 1999.
DOI : 10.1159/000054491

M. Tschöp, D. L. Smiley, and M. L. Heiman, Ghrelin induces adiposity in rodents, Nature, vol.407, issue.6806, pp.908-921, 2000.
DOI : 10.1038/35038090

A. M. Wren, The Novel Hypothalamic Peptide Ghrelin Stimulates Food Intake and Growth Hormone Secretion, Endocrinology, vol.141, issue.11, pp.4325-4333, 2000.
DOI : 10.1210/endo.141.11.7873

M. A. Cowley, The Distribution and Mechanism of Action of Ghrelin in the CNS Demonstrates a Novel Hypothalamic Circuit Regulating Energy Homeostasis, Neuron, vol.37, issue.4, pp.649-61, 2003.
DOI : 10.1016/S0896-6273(03)00063-1

M. Shintani, Ghrelin, an Endogenous Growth Hormone Secretagogue, Is a Novel Orexigenic Peptide That Antagonizes Leptin Action Through the Activation of Hypothalamic Neuropeptide Y/Y1 Receptor Pathway, Diabetes, vol.50, issue.2, pp.227-259, 2001.
DOI : 10.2337/diabetes.50.2.227

M. A. Smith, Melanocortins and agouti-related protein modulate the excitability of two arcuate nucleus neuron populations by alteration of resting potassium conductances, The Journal of Physiology, vol.13, issue.2, pp.425-463, 2007.
DOI : 10.1210/mend.13.1.0223

R. L. Batterham, Gut hormone PYY3-36 physiologically inhibits food intake, Nature, vol.281, issue.6898, pp.650-654, 2002.
DOI : 10.1016/S0306-4522(00)00308-0

I. G. Halatchev, K. L. Ellacott, W. Fan, and R. D. Cone, Inhibits Food Intake in Mice through a Melanocortin-4 Receptor-Independent Mechanism, Endocrinology, vol.145, issue.6, pp.2585-90, 2004.
DOI : 10.1210/en.2003-1754

K. Zilles, Neuronal plasticity as an adaptive property of the central nervous system, Annals of Anatomy - Anatomischer Anzeiger, vol.174, issue.5, pp.383-91, 1992.
DOI : 10.1016/S0940-9602(11)80255-4

M. Frotscher, Specificity of interneuronal connections, Annals of Anatomy - Anatomischer Anzeiger, vol.174, issue.5, pp.377-82, 1992.
DOI : 10.1016/S0940-9602(11)80254-2

S. Pinto, Rapid Rewiring of Arcuate Nucleus Feeding Circuits by Leptin, Science, vol.304, issue.5667, pp.110-115, 2004.
DOI : 10.1126/science.1089459

B. Coupe and S. G. Bouret, Development of the Hypothalamic Melanocortin System, Frontiers in Endocrinology, vol.4, p.38, 2013.
DOI : 10.3389/fendo.2013.00038

S. G. Bouret, S. J. Draper, and R. B. Simerly, Trophic Action of Leptin on Hypothalamic Neurons That Regulate Feeding, Science, vol.304, issue.5667, pp.108-118, 2004.
DOI : 10.1126/science.1095004

P. Dubuc, Effects of Estrogen on Food Intake, Body Weight, and Temperature of Male and Female Obese Mice, Experimental Biology and Medicine, vol.180, issue.3, pp.468-73, 1985.
DOI : 10.3181/00379727-180-42204

Q. Gao, Anorectic estrogen mimics leptin's effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals, Nature Medicine, vol.26, issue.suppl. 1, pp.89-94, 2007.
DOI : 10.1523/JNEUROSCI.0327-06.2006

T. L. Horvath, I. Bechmann, F. Naftolin, S. P. Kalra, and C. Leranth, Heterogeneity in the neuropeptide Y-containing neurons of the rat arcuate nucleus: GABAergic and non-GABAergic subpopulations, Brain Research, vol.756, issue.1-2, pp.283-289, 1997.
DOI : 10.1016/S0006-8993(97)00184-4

Z. B. Andrews, UCP2 mediates ghrelin???s action on NPY/AgRP neurons by lowering free radicals, Nature, vol.13, issue.7206, pp.846-51, 2008.
DOI : 10.1042/bj1860021

E. Gyengesi, Corticosterone Regulates Synaptic Input Organization of POMC and NPY/AgRP Neurons in Adult Mice, Endocrinology, vol.151, issue.11, pp.5395-402, 2010.
DOI : 10.1210/en.2010-0681

D. L. Drazen, T. P. Vahl, D. A. D-'alessio, R. J. Seeley, and S. C. Woods, Effects of a Fixed Meal Pattern on Ghrelin Secretion: Evidence for a Learned Response Independent of Nutrient Status, Endocrinology, vol.147, issue.1, pp.23-30, 2006.
DOI : 10.1210/en.2005-0973

H. R. Berthoud, D. A. Bereiter, E. R. Trimble, E. G. Siegel, and B. Jeanrenaud, Cephalic phase, reflex insulin secretion neuroanatomical and physiological characterization, Diabetologia, vol.50, issue.Suppl 4, pp.393-401, 1981.
DOI : 10.1172/JCI106772

K. L. Teff, R. D. Mattes, and K. Engelman, Cephalic phase insulin release in normal weight males: verification and reliability, American Journal of Physiology-Endocrinology and Metabolism, vol.230, issue.4, pp.430-436, 1991.
DOI : 10.1210/jcem-55-6-1114

D. P. Begg and S. C. Woods, The endocrinology of food intake, Nature Reviews Endocrinology, vol.122, issue.10, 2013.
DOI : 10.1172/JCI59660

N. Balthasar, Leptin Receptor Signaling in POMC Neurons Is Required for Normal Body Weight Homeostasis, Neuron, vol.42, issue.6, pp.983-91, 2004.
DOI : 10.1016/j.neuron.2004.06.004

E. Van-de-wall, Collective and Individual Functions of Leptin Receptor Modulated Neurons Controlling Metabolism and Ingestion, Endocrinology, vol.149, issue.4, pp.1773-85, 2008.
DOI : 10.1210/en.2007-1132

Q. Tong, C. Ye, J. E. Jones, J. K. Elmquist, and B. B. Lowell, Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance, Nature Neuroscience, vol.19, issue.9, pp.998-1000, 2008.
DOI : 10.1016/j.peptides.2006.08.036

Y. Yang, D. Atasoy, H. H. Su, and S. M. Sternson, Hunger States Switch a Flip-Flop Memory Circuit via a Synaptic AMPK-Dependent Positive Feedback Loop, Cell, vol.146, issue.6, pp.992-1003, 2011.
DOI : 10.1016/j.cell.2011.07.039

T. Liu, Fasting Activation of AgRP Neurons Requires NMDA Receptors and Involves Spinogenesis and Increased Excitatory Tone, Neuron, vol.73, issue.3, pp.511-533, 2012.
DOI : 10.1016/j.neuron.2011.11.027

M. O. Dietrich and T. L. Horvath, Synaptic Plasticity of Feeding Circuits: Hormones and Hysteresis, Cell, vol.146, issue.6, pp.863-868, 2011.
DOI : 10.1016/j.cell.2011.08.031

D. C. Spanswick, S. E. Simonds, and M. Cowley, Transmitter Time: Synaptic Plasticity and Metabolic Memory in the Hypothalamus, Cell Metabolism, vol.15, issue.3, pp.275-281, 2012.
DOI : 10.1016/j.cmet.2012.01.014

L. M. Zeltser, R. J. Seeley, and M. H. Tschöp, Synaptic plasticity in neuronal circuits regulating energy balance, Nature Neuroscience, vol.19, issue.10, pp.1336-1378, 2012.
DOI : 10.1038/nm.2421

C. Goridis and J. Brunet, NCAM: Structural diversity, function and regulation of expression, Seminars in Cell Biology, vol.3, issue.3, pp.189-97, 1992.
DOI : 10.1016/S1043-4682(10)80015-7

G. M. Edelman and K. L. Crossin, Cell Adhesion Molecules: Implications for a Molecular Histology, Annual Review of Biochemistry, vol.60, issue.1, pp.155-90, 1991.
DOI : 10.1146/annurev.bi.60.070191.001103

G. J. Cole, A. Loewy, and L. Glaser, Neuronal cell???cell adhesion depends on interactions of N-CAM with heparin-like molecules, Nature, vol.5, issue.6061, pp.445-452, 1986.
DOI : 10.1038/320445a0

M. Eckhardt, Molecular characterization of eukaryotic polysialyltransferase-1, Nature, vol.373, issue.6516, pp.715-723, 1995.
DOI : 10.1038/373715a0

N. Kojima, Y. Yoshida, N. Kurosawa, Y. C. Lee, and S. Tsuji, Enzymatic activity of a developmentally regulated member of the sialyltransferase family (STX): evidence for ??2,8-sialyltransferase activity toward N-linked oligosaccharides, FEBS Letters, vol.240, issue.1, pp.1-4, 1995.
DOI : 10.1126/science.3281256

J. Nakayama, M. N. Fukuda, B. Fredette, B. Ranscht, and M. Fukuda, Expression cloning of a human polysialyltransferase that forms the polysialylated neural cell adhesion molecule present in embryonic brain., Proceedings of the National Academy of Sciences, vol.92, issue.15, pp.7031-7036, 1995.
DOI : 10.1073/pnas.92.15.7031

E. P. Scheidegger, L. R. Sternberg, J. Roth, and J. B. Lowe, A Human STX cDNA Confers Polysialic Acid Expression in Mammalian Cells, Journal of Biological Chemistry, vol.264, issue.39, pp.22685-22693, 1995.
DOI : 10.1038/367455a0

E. Ong, Developmental regulation of polysialic acid synthesis in mouse directed by two polysialyltransferases, PST and STX, Glycobiology, vol.118, issue.3, pp.415-439, 1998.
DOI : 10.1093/oxfordjournals.jbchem.a124960

H. Hildebrandt, C. Becker, M. Mürau, R. Gerardy-schahn, and H. Rahmann, Heterogeneous Expression of the Polysialyltransferases ST8Sia II and ST8Sia IV During Postnatal Rat Brain Development, Journal of Neurochemistry, vol.71, issue.6, pp.2339-2387, 1998.
DOI : 10.1046/j.1471-4159.1998.71062339.x

N. M. Moran, K. C. Breen, and C. M. Regan, Characterization and Cellular Localization of a Developmentally Regulated Rat Neural Sialidase, Journal of Neurochemistry, vol.252, issue.1, pp.18-22, 1986.
DOI : 10.1016/0005-2760(77)90079-0

C. M. Regan, Regulation of neural cell adhesion molecule sialylation state, International Journal of Biochemistry, vol.23, issue.5-6, pp.513-536, 1991.
DOI : 10.1016/0020-711X(87)90043-7

P. Yang, X. Yin, and U. Rutishauser, Intercellular space is affected by the polysialic acid content of NCAM, The Journal of Cell Biology, vol.116, issue.6, pp.1487-96, 1992.
DOI : 10.1083/jcb.116.6.1487

P. Yang, D. Major, and U. Rutishauser, Role of charge and hydration in effects of polysialic acid on molecular interactions on and between cell membranes, J. Biol. Chem, vol.269, pp.23039-23083, 1994.

I. Fujimoto, J. L. Bruses, and U. Rutishauser, Regulation of Cell Adhesion by Polysialic Acid, Journal of Biological Chemistry, vol.181, issue.34, pp.31745-51, 2001.
DOI : 10.1073/pnas.070022697

U. Rutishauser, Polysialic acid in the plasticity of the developing and adult vertebrate nervous system, Nature Reviews Neuroscience, vol.11, issue.1, pp.26-35, 2008.
DOI : 10.1016/S0166-2236(96)10041-2

J. Z. Kiss and G. Rougon, Cell biology of polysialic acid, Current Opinion in Neurobiology, vol.7, issue.5, pp.640-646, 1997.
DOI : 10.1016/S0959-4388(97)80083-9

L. C. Rønn, V. Berezin, and E. Bock, The neural cell adhesion molecule in synaptic plasticity and ageing, International Journal of Developmental Neuroscience, vol.18, issue.2-3, pp.193-202
DOI : 10.1016/S0736-5748(99)00088-X

T. Ben-hur, B. Rogister, K. Murray, G. Rougon, and M. Dubois-dalcq, Growth and fate of PSA-NCAM+ precursors of the postnatal brain, J. Neurosci, vol.18, pp.5777-88, 1998.

D. L. Benson, L. M. Schnapp, L. Shapiro, and G. W. Huntley, Making memories stick: cell-adhesion molecules in synaptic plasticity, Trends in Cell Biology, vol.10, issue.11, pp.473-82, 2000.
DOI : 10.1016/S0962-8924(00)01838-9

J. Nacher, E. Lanuza, and B. S. Mcewen, Distribution of PSA-NCAM expression in the amygdala of the adult rat, Neuroscience, vol.113, issue.3, pp.479-84, 2002.
DOI : 10.1016/S0306-4522(02)00219-1

E. Varea, PSA-NCAM expression in the rat medial prefrontal cortex, Neuroscience, vol.136, issue.2, pp.435-478, 2005.
DOI : 10.1016/j.neuroscience.2005.08.009

T. Seki and Y. Arai, Different polysialic acid-neural cell adhesion molecule expression patterns in distinct types of mossy fiber boutons in the adult hippocampus, The Journal of Comparative Neurology, vol.12, issue.1, pp.115-140, 1999.
DOI : 10.1146/annurev.cellbio.13.1.425

J. Nacher, G. Alonso-llosa, D. Rosell, and B. Mcewen, PSA-NCAM expression in the piriform cortex of the adult rat. Modulation by NMDA receptor antagonist administration, Brain Research, vol.927, issue.2, pp.111-132, 2002.
DOI : 10.1016/S0006-8993(01)03241-3

D. T. Theodosis, L. Bonfanti, S. Olive, G. Rougon, and D. A. Poulain, Adhesion molecules and structural plasticity of the adult hypothalamo-neurohypophysial system, Psychoneuroendocrinology, vol.19, issue.5-7, pp.455-62, 1994.
DOI : 10.1016/0306-4530(94)90032-9

F. Bouzioukh, F. Tell, . Jean, and G. Rougon, NMDA receptor and nitric oxide synthase activation regulate polysialylated neural cell adhesion molecule expression in adult brainstem synapses, J. Neurosci, vol.21, pp.4721-4751, 2001.

T. Schuster, Immunoelectron microscopic localization of the neural recognition molecules L1, NCAM, and its isoform NCAM180, the NCAM-associated polysialic acid, beta1 integrin and the extracellular matrix molecule tenascin-R in synapses of the adult rat hippocampus, Journal of Neurobiology, vol.248, issue.2, pp.142-58, 2001.
DOI : 10.1126/science.2114039

J. I. Arellano, J. Defelipe, and A. Muñoz, PSA-NCAM Immunoreactivity in Chandelier Cell Axon Terminals of the Human Temporal Cortex, Cerebral Cortex, vol.12, issue.6, pp.617-641, 2002.
DOI : 10.1093/cercor/12.6.617

L. Bonfanti, PSA-NCAM in mammalian structural plasticity and neurogenesis, Progress in Neurobiology, vol.80, issue.3, pp.129-64, 2006.
DOI : 10.1016/j.pneurobio.2006.08.003

C. G. Becker, The polysialic acid modification of the neural cell adhesion molecule is involved in spatial learning and hippocampal long-term potentiation, Journal of Neuroscience Research, vol.267, issue.2, pp.143-52, 1996.
DOI : 10.1139/y84-067

K. J. Murphy, A. W. Connell, and C. M. Regan, Repetitive and Transient Increases in Hippocampal Neural Cell Adhesion Molecule Polysialylation State Following Multitrial Spatial Training, Journal of Neurochemistry, vol.67, issue.3, pp.1268-74, 1996.
DOI : 10.1046/j.1471-4159.1996.67031268.x

T. Bliss and T. Lomo, Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, The Journal of Physiology, vol.232, issue.2, pp.331-56, 1973.
DOI : 10.1113/jphysiol.1973.sp010273

C. Lüscher, R. Nicoll, R. C. Malenka, and D. Muller, Synaptic plasticity and dynamic modulation of the postsynaptic membrane, Nature Neuroscience, vol.282, issue.6, pp.545-50, 2000.
DOI : 10.1126/science.282.5393.1508

H. J. Carlisle and M. B. Kennedy, Spine architecture and synaptic plasticity, Trends in Neurosciences, vol.28, issue.4, pp.182-189, 2005.
DOI : 10.1016/j.tins.2005.01.008

F. Engert and T. Bonhoeffer, Dendritic spine changes associated with hippocampal long-term synaptic plasticity, Nature, vol.86, issue.6731, pp.66-70, 1999.
DOI : 10.1073/pnas.86.20.8113

N. Toni, P. A. Buchs, I. Nikonenko, C. R. Bron, and D. Muller, LTP promotes formation of multiple spine synapses between a single axon??terminal and a dendrite, Nature, vol.134, issue.6760, pp.421-426, 1999.
DOI : 10.1111/j.1365-2818.1984.tb02501.x

M. Eckhardt, Mice Deficient in the Polysialyltransferase ST8SiaIV/PST-1 Allow Discrimination of the Roles of Neural Cell Adhesion Molecule Protein and Polysialic Acid in Neural Development and Synaptic Plasticity, J. Neurosci, vol.20, pp.5234-5244, 2000.

M. S. Fazeli, K. Breen, M. L. Errington, and T. Bliss, Increase in extracellular NCAM and amyloid precursor protein following induction of long-term potentiation in the dentate gyrus of anaesthetized rats, Neuroscience Letters, vol.169, issue.1-2, pp.77-80, 1994.
DOI : 10.1016/0304-3940(94)90360-3

E. Maarouf, A. Kolesnikov, Y. Pasternak, G. Rutishauser, and U. , Polysialic acid-induced plasticity reduces neuropathic insult to the central nervous system, Proceedings of the National Academy of Sciences, vol.94, issue.25, pp.11516-11536, 2005.
DOI : 10.1073/pnas.94.25.14002

D. T. Theodosis, C. Montagnese, F. Rodriguez, J. D. Vincent, and D. A. Poulain, Oxytocin induces morphological plasticity in the adult hypothalamo-neurohypophysial system, Nature, vol.352, issue.6081, pp.738-778
DOI : 10.1113/jphysiol.1984.sp015302

G. Hatton, Emerging concepts of structure-function dynamics in adult brain: The hypothalamo-neurohypophysial system, Progress in Neurobiology, vol.34, issue.6, pp.437-504, 1990.
DOI : 10.1016/0301-0082(90)90017-B

F. Nothias, P. Vernier, Y. Von-boxberg, S. Mirman, and J. Vincent, Modulation of NCAM Polvsialvlation is Associated with Morphofunctional Modifkations in the Hypothalamo-neurohypophysial System During Lactation, European Journal of Neuroscience, vol.267, issue.8, pp.1553-65, 1997.
DOI : 10.1083/jcb.116.6.1487

D. T. Theodosis, Oxytocin-Secreting Neurons: A Physiological Model of Morphological Neuronal and Glial Plasticity in the Adult Hypothalamus, Frontiers in Neuroendocrinology, vol.23, issue.1, pp.101-136, 2002.
DOI : 10.1006/frne.2001.0226

S. H. Oliet, R. Piet, and D. A. Poulain, Control of Glutamate Clearance and Synaptic Efficacy by Glial Coverage of Neurons, Science, vol.292, issue.5518, pp.923-929, 2001.
DOI : 10.1126/science.1059162

URL : https://hal.archives-ouvertes.fr/inserm-00000059

G. Olmos, F. Naftolin, J. Perez, P. A. Tranque, and L. M. Garcia-segura, Synaptic remodeling in the rat arcuate nucleus during the estrous cycle, Neuroscience, vol.32, issue.3, pp.663-670, 1989.
DOI : 10.1016/0306-4522(89)90288-1

Z. Hoyk, A. Parducz, and D. T. Theodosis, The highly sialylated isoform of the neural cell adhesion molecule is required for estradiol-induced morphological synaptic plasticity in the adult arcuate nucleus, European Journal of Neuroscience, vol.267, issue.4, pp.649-56, 2001.
DOI : 10.1083/jcb.135.6.1565

D. T. Theodosis, D. A. Poulain, and S. H. Oliet, Activity-Dependent Structural and Functional Plasticity of Astrocyte-Neuron Interactions, Physiological Reviews, vol.88, issue.3, pp.983-1008, 2008.
DOI : 10.1038/ncb1620

S. Smyth and A. Heron, Diabetes and obesity: the twin epidemics, Nature Medicine, vol.12, issue.1, pp.75-80, 2006.
DOI : 10.1038/nm0106-75

M. Hübener and T. Bonhoeffer, Searching for Engrams, Neuron, vol.67, issue.3, pp.363-71, 2010.
DOI : 10.1016/j.neuron.2010.06.033

C. R. Bramham and D. G. Wells, Dendritic mRNA: transport, translation and function, Nature Reviews Neuroscience, vol.13, issue.10, pp.776-89, 2007.
DOI : 10.1152/ajpcell.00314.2002

I. J. Cajigas, T. Will, and E. M. Schuman, Protein homeostasis and synaptic plasticity, The EMBO Journal, vol.23, issue.16, pp.2746-52, 2010.
DOI : 10.1086/512489

URL : http://emboj.embopress.org/content/embojnl/29/16/2746.full.pdf

E. R. Vimr, Use of prokaryotic-derived probes to identify poly(sialic acid) in neonatal neuronal membranes., Proc. Natl. Acad. Sci, pp.1971-1975, 1984.
DOI : 10.1073/pnas.81.7.1971

S. H. Oliet, Functional Consequences of Morphological Neuroglial Changes in the Magnocellular Nuclei of the Hypothalamus, Journal of Neuroendocrinology, vol.5, issue.3, pp.241-247, 2002.
DOI : 10.1016/0306-4522(80)90063-9

URL : https://hal.archives-ouvertes.fr/inserm-00000067

V. Prevot, Glial-Neuronal-Endothelial Interactions are Involved in the Control of GnRH Secretion, Journal of Neuroendocrinology, vol.103, issue.Suppl. 11, pp.247-55, 2002.
DOI : 10.1161/01.CIR.103.1.113

F. J. Ebling and P. Barrett, The Regulation of Seasonal Changes in Food Intake and Body Weight, Journal of Neuroendocrinology, vol.107, issue.6, pp.827-860, 2008.
DOI : 10.1210/en.2005-0507

B. Pillot, Role of Hypothalamic Melanocortin System in Adaptation of Food Intake to Food Protein Increase in Mice, PLoS ONE, vol.22, issue.4, p.19107, 2011.
DOI : 10.1371/journal.pone.0019107.g004

URL : https://hal.archives-ouvertes.fr/inserm-00737426

M. Ziotopoulou, C. S. Mantzoros, S. M. Hileman, and J. S. Flier, Differential expression of hypothalamic neuropeptides in the early phase of diet-induced obesity in mice, American Journal of Physiology-Endocrinology and Metabolism, vol.268, issue.4, pp.838-845, 2000.
DOI : 10.1038/372425a0

D. D. Mcnay, N. Briançon, M. M. Kokoeva, E. Maratos-flier, and J. S. Flier, Remodeling of the arcuate nucleus energy-balance circuit is inhibited in obese mice, Journal of Clinical Investigation, vol.122, issue.1, pp.142-52, 2012.
DOI : 10.1172/JCI43134DS1

K. G. Mountjoy, Functions for pro-opiomelanocortin-derived peptides in obesity and diabetes, Biochemical Journal, vol.153, issue.3, pp.305-329, 2010.
DOI : 10.1186/1471-2350-8-44

T. L. Horvath, Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity, Proceedings of the National Academy of Sciences, vol.7, issue.2, pp.14875-80, 2010.
DOI : 10.1016/j.cmet.2007.12.001

P. J. Enriori, Diet-Induced Obesity Causes Severe but Reversible Leptin Resistance in Arcuate Melanocortin Neurons, Cell Metabolism, vol.5, issue.3, pp.181-94, 2007.
DOI : 10.1016/j.cmet.2007.02.004

S. Diano, Peroxisome proliferation???associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity, Nature Medicine, vol.2005, issue.9, pp.1121-1128, 2011.
DOI : 10.1038/35041687

D. T. Theodosis, Retention of embryonic features by an adult neuronal system capable of plasticity: polysialylated neural cell adhesion molecule in the hypothalamo-neurohypophysial system., Proc. Natl. Acad. Sci, pp.5494-5498, 1991.
DOI : 10.1073/pnas.88.13.5494

A. D. Strader, O. Reizes, S. C. Woods, S. C. Benoit, and R. J. Seeley, Mice lacking the syndecan-3 gene are resistant to diet-induced obesity, Journal of Clinical Investigation, vol.114, issue.9, pp.1354-60, 2004.
DOI : 10.1172/JCI20631

G. Zhang, Neuropeptide Exocytosis Involving Synaptotagmin-4 and Oxytocin in Hypothalamic Programming of Body Weight and Energy Balance, Neuron, vol.69, issue.3, pp.523-558, 2011.
DOI : 10.1016/j.neuron.2010.12.036

A. Abizaid, Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite, Journal of Clinical Investigation, vol.116, issue.12, pp.3229-3268, 2006.
DOI : 10.1172/JCI29867DS1

A. Coppola, A Central Thermogenic-like Mechanism in Feeding Regulation: An Interplay between Arcuate Nucleus T3 and UCP2, Cell Metabolism, vol.5, issue.1, pp.21-33, 2007.
DOI : 10.1016/j.cmet.2006.12.002

S. Chiu and H. Cline, Insulin receptor signaling in the development of neuronal structure and function, Neural Development, vol.5, issue.1, p.7, 2010.
DOI : 10.1186/1749-8104-5-7

J. Wang, Overfeeding Rapidly Induces Leptin and Insulin Resistance, Diabetes, vol.50, issue.12, pp.2786-91, 2001.
DOI : 10.2337/diabetes.50.12.2786

URL : http://diabetes.diabetesjournals.org/content/diabetes/50/12/2786.full.pdf

K. M. Crosby, W. Inoue, Q. J. Pittman, and J. S. Bains, Endocannabinoids Gate State-Dependent Plasticity of Synaptic Inhibition in Feeding Circuits, Neuron, vol.71, issue.3, pp.529-570, 2011.
DOI : 10.1016/j.neuron.2011.06.006

M. Lafourcade, Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions, Nature Neuroscience, vol.433, issue.3, pp.345-50, 2011.
DOI : 10.1126/science.1120972

URL : https://hal.archives-ouvertes.fr/hal-00612705

F. J. Bermudez-silva, P. Cardinal, and D. Cota, The role of the endocannabinoid system in the neuroendocrine regulation of energy balance, Journal of Psychopharmacology, vol.34, issue.1, pp.114-138, 2012.
DOI : 10.2478/v10042-008-0033-4

J. R. Peinado, Amphibian Melanotrophs as a Model to Analyze the Secretory Plasticity of Endocrine Cells, General and Comparative Endocrinology, vol.126, issue.1, pp.4-6, 2002.
DOI : 10.1006/gcen.2002.7778

L. Appelbaum, Circadian and Homeostatic Regulation of Structural Synaptic Plasticity in Hypocretin Neurons, Neuron, vol.68, issue.1, pp.87-98, 2010.
DOI : 10.1016/j.neuron.2010.09.006

M. Baroncini, Sex steroid hormones-related structural plasticity in the human hypothalamus, NeuroImage, vol.50, issue.2, pp.428-461, 2010.
DOI : 10.1016/j.neuroimage.2009.11.074

URL : https://hal.archives-ouvertes.fr/inserm-00487089

J. C. Han, Brain-Derived Neurotrophic Factor and Obesity in the WAGR Syndrome, New England Journal of Medicine, vol.359, issue.9, pp.918-945, 2008.
DOI : 10.1056/NEJMoa0801119

G. Thorleifsson, Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity, Nature Genetics, vol.87, issue.1, pp.18-24, 2009.
DOI : 10.1038/ng1104-1129

C. J. Willer, Six new loci associated with body mass index highlight a neuronal influence on body weight regulation, Nature Genetics, vol.294, issue.1, pp.25-34, 2009.
DOI : 10.1086/521580

A. Benani, Food Intake Adaptation to Dietary Fat Involves PSA-Dependent Rewiring of the Arcuate Melanocortin System in Mice, Journal of Neuroscience, vol.32, issue.35, pp.11970-11979, 2012.
DOI : 10.1523/JNEUROSCI.0624-12.2012

URL : https://hal.archives-ouvertes.fr/hal-00760988

K. L. Ellacott, G. J. Morton, S. C. Woods, P. Tso, and M. W. Schwartz, Assessment of Feeding Behavior in Laboratory Mice, Cell Metabolism, vol.12, issue.1, pp.10-17, 2010.
DOI : 10.1016/j.cmet.2010.06.001

G. S. Yeo and L. K. Heisler, Unraveling the brain regulation of appetite: lessons from genetics, Nature Neuroscience, vol.34, issue.10, pp.1343-1352, 2012.
DOI : 10.1038/ijo.2009.292

K. Markram, L. Fernandez, M. A. Abrous, D. N. Sandi, and C. , Amygdala upregulation of NCAM polysialylation induced by auditory fear conditioning is not required for memory formation, but plays a role in fear extinction, Neurobiology of Learning and Memory, vol.87, issue.4, pp.573-82, 2007.
DOI : 10.1016/j.nlm.2006.11.007

M. Lopez-fernandez, Upregulation of Polysialylated Neural Cell Adhesion Molecule in the Dorsal Hippocampus after Contextual Fear Conditioning Is Involved in Long-Term Memory Formation, Journal of Neuroscience, vol.27, issue.17, pp.4552-61, 2007.
DOI : 10.1523/JNEUROSCI.0396-07.2007

URL : https://hal.archives-ouvertes.fr/hal-00159499

T. Mccall, Depletion of polysialic acid from neural cell adhesion molecule (PSA-NCAM) increases CA3 dendritic arborization and increases vulnerability to excitotoxicity, Experimental Neurology, vol.241, pp.5-12, 2013.
DOI : 10.1016/j.expneurol.2012.11.028

J. M. Barker, M. M. Torregrossa, and J. R. Taylor, Low prefrontal PSA-NCAM confers risk for alcoholism-related behavior, Nature Neuroscience, vol.30, issue.10, pp.1356-1364, 2012.
DOI : 10.1016/S0896-6273(00)80174-9

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3629946/pdf

L. Cristino, Obesity-driven synaptic remodeling affects endocannabinoid control of orexinergic neurons, Proceedings of the National Academy of Sciences, vol.18, issue.5, pp.2229-2267, 2013.
DOI : 10.1515/revneuro.2007.18.5.383

M. O. Dietrich and T. L. Horvath, Hypothalamic control of energy balance: insights into the role of synaptic plasticity, Trends in Neurosciences, vol.36, issue.2, 2013.
DOI : 10.1016/j.tins.2012.12.005

J. N. Darling, A. P. Ross, T. J. Bartness, and M. B. Parent, Predicting the effects of a high-energy diet on fatty liver and hippocampal-dependent memory in male rats, Obesity, vol.23, issue.5, pp.910-917, 2013.
DOI : 10.1002/hipo.22062

M. Tsoory, A. Guterman, and G. Richter-levin, Exposure to Stressors during Juvenility Disrupts Development-Related Alterations in the PSA-NCAM to NCAM Expression Ratio: Potential Relevance for Mood and Anxiety Disorders, Neuropsychopharmacology, vol.18, issue.2, pp.378-93, 2008.
DOI : 10.1016/S0142-9612(00)00353-7

C. Sandi, J. J. Merino, M. I. Cordero, K. Touyarot, and C. Venero, Effects of chronic stress on contextual fear conditioning and the hippocampal expression of the neural cell adhesion molecule, its polysialylation, and L1, Neuroscience, vol.102, issue.2, pp.329-368, 2001.
DOI : 10.1016/S0306-4522(00)00484-X

M. Karaca, Exploring Functional ??-Cell Heterogeneity In Vivo Using PSA-NCAM as a Specific Marker, PLoS ONE, vol.51, issue.5, p.5555, 2009.
DOI : 10.1371/journal.pone.0005555.s001

W. Fan, Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin system, Nature Neuroscience, vol.348, issue.4, pp.335-341, 2004.
DOI : 10.1056/NEJMoa022050

T. J. Bartness, K. Song, C. Shi, H. Bowers, R. R. Foster et al., Brain???adipose tissue cross talk, Proceedings of the Nutrition Society, vol.30, issue.01, pp.53-64, 2005.
DOI : 10.1111/j.1748-1716.1954.tb01074.x

URL : https://www.cambridge.org/core/services/aop-cambridge-core/content/view/DDDF5E1276B7201FE229D237A19A36BD/S002966510500008Xa.pdf/div-class-title-brain-adipose-tissue-cross-talk-div.pdf

S. Obici, Central melanocortin receptors regulate insulin action, Journal of Clinical Investigation, vol.108, issue.7, pp.1079-85, 2001.
DOI : 10.1172/JCI200112954

URL : http://europepmc.org/articles/pmc200952?pdf=render

A. Voss-andreae, Role of the Central Melanocortin Circuitry in Adaptive Thermogenesis of Brown Adipose Tissue, Endocrinology, vol.148, issue.4, pp.1550-60, 2007.
DOI : 10.1210/en.2006-1389

R. Nogueiras, The central melanocortin system directly controls peripheral lipid metabolism, Journal of Clinical Investigation, vol.117, issue.11, pp.3475-88, 2007.
DOI : 10.1172/JCI31743

J. M. Stafford, Central Nervous System Neuropeptide Y Signaling Modulates VLDL Triglyceride Secretion, Diabetes, vol.57, issue.6, pp.1482-90, 2008.
DOI : 10.2337/db07-1702

URL : http://diabetes.diabetesjournals.org/content/diabetes/57/6/1482.full.pdf

J. M. Rojas, Central nervous system neuropeptide Y signaling via the Y1 receptor partially dissociates feeding behavior from lipoprotein metabolism in lean rats, American Journal of Physiology-Endocrinology and Metabolism, vol.271, issue.12, 2012.
DOI : 10.1038/372425a0

E. Bruinstroop, Hypothalamic Neuropeptide Y (NPY) Controls Hepatic VLDL-Triglyceride Secretion in Rats via the Sympathetic Nervous System, Diabetes, vol.61, issue.5, pp.10-2337, 2012.
DOI : 10.2337/db11-1142

D. Perez-tilve, Melanocortin signaling in the CNS directly regulates circulating cholesterol, Nature Neuroscience, vol.262, issue.7, pp.877-82, 2010.
DOI : 10.1111/j.1399-3011.1992.tb00291.x

H. Vallejo and S. J. , Short-term adaptation of postprandial lipoprotein secretion and intestinal gene expression to a high-fat diet, American Journal of Physiology-Gastrointestinal and Liver Physiology, vol.296, issue.4, pp.782-92, 2009.
DOI : 10.1172/JCI113806

J. P. Warne, RETRACTED: Impairment of Central Leptin-Mediated PI3K Signaling Manifested as Hepatic Steatosis Independent of Hyperphagia and Obesity, Cell Metabolism, vol.14, issue.6, pp.791-803, 2011.
DOI : 10.1016/j.cmet.2011.11.001