. Pris-home, Available: https://www.iaea.org/pris/. [Accessed: 04-Feb, 2017.

G. Naudet and P. Reuss, Energie, électricité et nucléaire, EDP Science, 2008.

J. Massoud, Suivi et maîtrise du vieillissement des matériaux des installations nucléaires. Présentation aux journées technique AFIAP, 2009.

P. Blair, Modelling of fission gas behaviour in high burnup nuclear fuel, 2008.

H. Bailly, D. Ménessier, and C. Prunier, Le combustible nucléaire des réacteurs à eau sous pression et des réacteurs à neutrons rapides, 1996.

G. Ducros, Les réacteurs nucléaires expérimentaux: etudier les situations accidentelles, Monographie de la DEN, 2012.

P. M. Khot, Development of recycling processes for clean rejected MOX fuel pellets, Nuclear Engineering and Design, vol.270, pp.227-237, 2014.
DOI : 10.1016/j.nucengdes.2013.12.060

A. Bouloré, L. Aufore, E. Federici, P. Blanpain, and R. Blachier, Advanced characterization of MIMAS MOX fuel microstructure to quantify the HBS formation, Nuclear Engineering and Design, vol.281, pp.79-87, 2015.
DOI : 10.1016/j.nucengdes.2014.11.020

R. F. Bryan, edited by A. J. C. Wilson, Acta Crystallographica Section D Biological Crystallography, vol.49, issue.4, pp.428-428, 1993.
DOI : 10.1107/S0907444993099718

P. Beaten, Physique des réacteurs nucléaires, cours données à l'école Joliot Curie, 2006.

J. L. Fowler and L. Rosen, by Slow and by Fast Neutrons, Physical Review, vol.71, issue.10, pp.926-930, 1947.
DOI : 10.1103/PhysRev.55.982

E. A. Crouch, Fission-product yields from neutron-induced fission, Atomic Data and Nuclear Data Tables, vol.19, issue.5, pp.417-532, 1977.
DOI : 10.1016/0092-640X(77)90023-7

S. Valin, Etude des mécanismes microstructuraux liés aux relâchement des gaz de fission du dioxyde d'uranium irradié, INP Grenoble, 1999.

I. Zacharie, Traitements thermiques de l'oxyde d'uranium irradié en réacteur à eau pressurisée: gonflement et relâchement de gaz de fission, 1997.

H. Stehle, Performance of oxide nuclear fuel in water-cooled power reactors, Journal of Nuclear Materials, vol.153, pp.3-15, 1988.
DOI : 10.1016/0022-3115(88)90187-0

H. Matzke, Oxide fuel transients, Journal of Nuclear Materials, vol.166, issue.1-2, pp.165-178, 1989.
DOI : 10.1016/0022-3115(89)90187-6

H. Matzke and J. Spino, Formation of the rim structure in high burnup fuel, Journal of Nuclear Materials, vol.248, pp.170-179, 1997.
DOI : 10.1016/S0022-3115(97)00171-2

M. Marcet, Contribution to High Burn up Structure the Fission Gas Release under Transient Conditions, 2009.

K. Hanifi, Examens métallographique microsonde et SIMS du crayon ALIX -D13 de l'assemblage FW0GA1, CEA, 2008.

H. Kleykamp, The chemical state of the fission products in oxide fuels, Journal of Nuclear Materials, vol.131, issue.2-3, pp.221-246, 1985.
DOI : 10.1016/0022-3115(85)90460-X

H. Kleykamp, Post-irradiation examinations and composition of the residues from nitric acid dissolution experiments of high-burnup lwr fuel, Journal of Nuclear Materials, vol.171, issue.2-3, pp.3-181, 1990.
DOI : 10.1016/0022-3115(90)90364-S

C. Jégou, Raman micro-spectroscopy of UOX and MOX spent nuclear fuel characterization and oxidation resistance of the high burn-up structure, Journal of Nuclear Materials, vol.458, 2015.
DOI : 10.1016/j.jnucmat.2014.12.072

J. Spino, K. Vennix, and M. Coquerelle, Detailed characterisation of the rim microstructure in PWR fuels in the burn-up range 40???67 GWd/tM, Journal of Nuclear Materials, vol.231, issue.3, pp.179-190, 1996.
DOI : 10.1016/0022-3115(96)00374-1

J. Rest and G. L. Hofman, Dynamics of irradiation-induced grain subdivision and swelling in U3Si2 and UO2 fuels, Journal of Nuclear Materials, vol.210, issue.1-2, pp.187-202, 1994.
DOI : 10.1016/0022-3115(94)90237-2

L. E. Thomas, C. E. Beyer, and L. A. Chariot, Microstructural analysis of LWR spent fuels at high burnup, Journal of Nuclear Materials, vol.188, pp.80-89, 1992.
DOI : 10.1016/0022-3115(92)90457-V

T. Sonoda, Transmission electron microscopy observation on irradiation-induced microstructural evolution in high burn-up UO2 disk fuel, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.191, issue.1-4, pp.622-628, 2002.
DOI : 10.1016/S0168-583X(02)00622-5

J. Spino, A. D. Stalios, H. S. Cruz, and D. Baron, Stereological evolution of the rim structure in PWR-fuels at prolonged irradiation: Dependencies with burn-up and temperature, Journal of Nuclear Materials, vol.354, issue.1-3, pp.66-84, 2006.
DOI : 10.1016/j.jnucmat.2006.02.095

J. Noirot, L. Desgranges, and J. Lamontagne, Detailed characterisations of high burn-up structures in oxide fuels, Journal of Nuclear Materials, vol.372, issue.2-3, pp.3-318, 2008.
DOI : 10.1016/j.jnucmat.2007.04.037

Y. Koo, B. Lee, J. Cheon, and D. Sohn, Pore pressure and swelling in the rim region of LWR high burnup UO2 fuel, Journal of Nuclear Materials, vol.295, issue.2-3, pp.213-220, 2001.
DOI : 10.1016/S0022-3115(01)00535-9

J. Spino and D. Papaioannou, Lattice parameter changes associated with the rim-structure formation in high burn-up UO2 fuels by micro X-ray diffraction, Journal of Nuclear Materials, vol.281, issue.2-3, pp.2-3, 2000.
DOI : 10.1016/S0022-3115(00)00236-1

M. Amaya, J. Nakamura, and T. Fuketa, Pellet by X-ray Diffractometry, Journal of Nuclear Science and Technology, vol.41, issue.3, pp.244-250, 2008.
DOI : 10.1299/jsmea.41.10

M. E. Cunningham, M. D. Freshley, and D. D. Lanning, Development and characteristics of the rim region in high burnup UO2 fuel pellets, Journal of Nuclear Materials, vol.188, pp.19-27, 1992.
DOI : 10.1016/0022-3115(92)90449-U

V. V. Rondinella and T. Wiss, The high burn-up structure in nuclear fuel, Materials Today, vol.13, issue.12, pp.24-32, 2010.
DOI : 10.1016/S1369-7021(10)70221-2

N. Capron, Chimie des solides : du cristal parfait au cristal réel, 2012.

C. Onofri, C. Sabathier, C. Baumier, C. Bachelet, H. Palancher et al., Evolution of extended defects in polycrystalline Au-irradiated UO 2 using in situ TEM: Temperature and fluence effects, Journal of Nuclear Materials, vol.482, pp.105-113, 2016.
DOI : 10.1016/j.jnucmat.2016.10.011

C. Onofri, Full characterization of dislocations in ion-irradiated polycrystalline UO 2, Journal of Nuclear Materials, vol.494, pp.252-259, 2017.
DOI : 10.1016/j.jnucmat.2017.07.043

URL : https://hal.archives-ouvertes.fr/hal-01584641

M. Freyss, T. Petit, and J. Crocombette, Point defects in uranium dioxide: Ab initio pseudopotential approach in the generalized gradient approximation, Journal of Nuclear Materials, vol.347, issue.1-2, pp.44-51, 2005.
DOI : 10.1016/j.jnucmat.2005.07.003

F. Devynck, M. Iannuzzi, and M. Krack, : Importance of explicit description of polarizability in core-shell molecular dynamics simulations, Physical Review B, vol.85, issue.18, p.184103, 2012.
DOI : 10.1103/PhysRevB.83.035126

C. Lemaignan, Science des matériaux pour le nucléaire, EDP Sciences, 49] P. Lours, Les défauts dans les solides, 2004.

E. H. Karb, M. Pruessmann, L. Sepold, P. Hofmann, and G. Schanz, LWR fuel rod behavior in the FR2 in-pile tests simulating the heatup phase of a LOCA, 1983.

M. Schwarz, G. Hache, P. Von, and . Hardt, PHEBUS FP: a severe accident research programme for current and advanced light water reactors, Nuclear Engineering and Design, vol.187, issue.1, pp.47-69, 1999.
DOI : 10.1016/S0029-5493(98)00257-X

P. Von, A. Hardt, and . Tattegrain, The Phebus fission product project, J. Nucl. Mater, vol.188, pp.115-130, 1992.

K. Svanholm, M. P. Breghi, F. D. Auria, and R. Ianiri, Halden reactors IFA-511.2 and IFA-54x: Experimental series under adverse core cooling conditions, Experimental Thermal and Fluid Science, vol.11, issue.1, pp.77-100, 1995.
DOI : 10.1016/0894-1777(94)00138-X

A. F. Williams, The ELOCA fuel modelling code: past, present and future

P. B. Middleton, R. C. Rock, S. L. Wadsworth58-]-d, Y. Barber, L. W. Parlatan et al., FACTAR 2.0 code validation0: fission product release code, Source IST, vol.2

L. W. Dickson, R. S. Dickson, R. J. Lemire, and S. Sunder, SOPHAEROS-IST 2.0 validation: an update on the current status

F. J. Erbacher, LWR fuel cladding deformation in a LOCA and its interaction with the emergency core cooling, 1982.

R. H. Chapman, TN (USA), NUREG/CR-1883, Multirod Burst Test Program. Progress Report Oak Ridge National Lab, p.426, 1980.

Y. K. Bibilashvili, N. B. Sokolov, and A. V. Salatov, WWER-1000 type fuel assembly tests on electro heated facilities in LOCA simulating conditions, 2002.

M. Flanagan and P. Askeljung, Observations of fuel fragmentation, mobility and release in integral, high-burnup, fueled LOCA tests, Enlarged Halden Program Group Meeting, pp.2-7, 2011.

K. Shiba, Fission Iodine and Xenon Release from Uo2-U3o8 System with Emphasis on Radiation-Damage, J. Nucl. Mater, vol.57, issue.3, pp.271-279, 1975.

J. Colle, Fission product release and microstructure changes of irradiated MOX fuel at high temperatures, Journal of Nuclear Materials, vol.442, issue.1-3, pp.1-3, 2013.
DOI : 10.1016/j.jnucmat.2013.09.022

L. Desgranges, Localisation des zones ayant relâché des gaz de fission lors d'un traitement thermique dans les crayons PXP2C5 -C13 et PXP2C5 -P13, 2008.

J. Noirot, Y. Pontillon, S. Yagnik, J. A. Turnbull, and T. Tverberg, Fission gas release behaviour of a 103 GWd/t(HM) fuel disc during a 1200 degrees C annealing test, J. Nucl. Mater, vol.446, pp.1-3, 2014.

C. Valot, J. Noirot, and Y. Pontillon, Post-Irradiation Analysis of Fission Gases in Nuclear Fuels, EPJ Web of Conferences, vol.51, p.3002, 2013.
DOI : 10.1051/epjconf/20135103002

J. Noirot, Y. Pontillon, S. Yagnik, and J. A. Turnbull, Post-irradiation examinations and high-temperature tests on undoped large-grain UO2 discs, Journal of Nuclear Materials, vol.462, pp.77-84, 2015.
DOI : 10.1016/j.jnucmat.2015.03.008

J. Noirot, High Burn-up Structure in Nuclear Fuel: Impact on Fuel Behavior, EPJ Web of Conferences, vol.115, p.4005, 2016.
DOI : 10.1051/epjconf/201611504005

Y. Pontillon, L. Desgranges, and A. Poulesquen, ADAGIO technique: From UO2 fuels to MOX fuels, Journal of Nuclear Materials, vol.385, issue.1, pp.137-141, 2009.
DOI : 10.1016/j.jnucmat.2008.10.013

Y. Pontillon, M. P. Ferroud-plattet, and S. , Projet FLASHMOX : programme d'essais analytique 'GASPARD' compte rendu d'essais et d'interprétation de la Campagne GASPARD A8, 2003.

A. Puranen, M. Granfors, P. Askeljung, D. Jädernäs, and M. Flanagan, Burnup effects on fine fuel fragmentation in simulated loca testing, LWR Fuel Perform. Meet. Top Fuel, vol.2, pp.669-674, 2013.

E. Kolstad, High burn-up fuel behaviour under LOCA conditions as observed in Halden experiments, " presented at the IAEA Technical meetin on fuel behaviour and modelling under severe transient and LOCA conditions, 2011.

Y. Guérin and J. Noirot, Obervations expérimentales et comportement des gaz de fission, pp.3-012, 2003.

C. Ferry, J. P. Piron, and C. Poinssot, Evolution of the spent nuclear fuel during the confinement phase in repository conditions: Major outcomes of the French research, MRS Proceedings, vol.23, issue.43, 2006.
DOI : 10.1016/0022-3115(94)90193-7

D. Prieur, Alpha self-irradiation effect on the local structure of the U0.85Am0.15O2??x solid solution, Journal of Solid State Chemistry, vol.194, pp.206-211, 2012.
DOI : 10.1016/j.jssc.2012.05.006

URL : https://hal.archives-ouvertes.fr/hal-00771358

T. Wiss, Evolution of spent nuclear fuel in dry storage conditions for millennia and beyond, Journal of Nuclear Materials, vol.451, issue.1-3, pp.198-206, 2014.
DOI : 10.1016/j.jnucmat.2014.03.055

E. Maugeri, Helium solubility and behaviour in uranium dioxide, Journal of Nuclear Materials, vol.385, issue.2, pp.461-466, 2009.
DOI : 10.1016/j.jnucmat.2008.12.033

D. Staicu, T. Wiss, V. V. Rondinella, J. P. Hiernaut, R. J. Konings et al., Impact of auto-irradiation on the thermophysical properties of oxide nuclear reactor fuels, Journal of Nuclear Materials, vol.397, issue.1-3, pp.1-3, 2010.
DOI : 10.1016/j.jnucmat.2009.11.024

H. Matzke, Range, energy loss, energy straggling and damage production for ??-particles in uranium dioxide, Journal of Nuclear Materials, vol.270, issue.1-2, pp.49-54, 1999.
DOI : 10.1016/S0022-3115(98)00739-9

H. Matzke, O. Meyer, and A. Turos, Damage Recovery in the U-Sublattice of Ion-Implanted Uo2 Between 5-K and, Radiat. Eff. Defects Solids, vol.119, pp.885-890, 1991.

H. Palancher, Strain relaxation in He implanted UO 2 polycrystals under thermal treatment: An in situ XRD study, Journal of Nuclear Materials, vol.476, pp.63-76, 2016.
DOI : 10.1016/j.jnucmat.2016.04.023

W. Weber, Thermal recovery of lattice defects in alpha-irradiated UO2 crystals, Journal of Nuclear Materials, vol.114, issue.2-3, pp.3-213, 1983.
DOI : 10.1016/0022-3115(83)90259-3

G. Brillant, F. Gupta, and A. Pasturel, Fission products stability in uranium dioxide, Journal of Nuclear Materials, vol.412, issue.1, pp.170-176, 2011.
DOI : 10.1016/j.jnucmat.2011.02.054

URL : https://hal.archives-ouvertes.fr/hal-00640089

C. Catlow, Fission Gas Diffusion in Uranium Dioxide, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.364, issue.1719, pp.473-497, 1978.
DOI : 10.1098/rspa.1978.0213

R. Jackson and C. Catlow, Trapping and Solution of Fission Xe in Uo2 .1. Single Gas Atoms and Solution from Underpressurized Bubbles, J. Nucl. Mater, vol.127, pp.2-3, 1985.

Y. Yun, H. Kim, H. Kim, and K. Park, Atomic diffusion mechanism of Xe in UO2, Journal of Nuclear Materials, vol.378, issue.1, pp.40-44, 2008.
DOI : 10.1016/j.jnucmat.2008.04.013

K. Govers, S. E. Lemehov, and M. Verwerft, On the solution and migration of single Xe atoms in uranium dioxide ??? An interatomic potentials study, Journal of Nuclear Materials, vol.405, issue.3, pp.252-260, 2010.
DOI : 10.1016/j.jnucmat.2010.08.013

K. Forsberg and A. R. Massih, Diffusion theory of fission gas migration in irradiated nuclear fuel UO2, Journal of Nuclear Materials, vol.135, issue.2-3, pp.3-140, 1985.
DOI : 10.1016/0022-3115(85)90071-6

J. A. Turnbull, C. A. Friskney, J. R. Findlay, F. A. Johnson, and A. J. Walter, The diffusion coefficients of gaseous and volatile species during the irradiation of uranium dioxide, Journal of Nuclear Materials, vol.107, issue.2-3, pp.2-3, 1982.
DOI : 10.1016/0022-3115(82)90419-6

A. Michel, Etude du comportement des gaz de fission dans le dioxyde d'uranium: mécanismes de diffusion, nucléation et grossissement de bulles, 2011.

H. Matzke, Radiation damage in nuclear materials, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.65, issue.1-4, pp.4-30, 1992.
DOI : 10.1016/0168-583X(92)95010-O

H. Labrim, Thermal evolution of the vacancy defects distribution in 1MeV helium implanted sintered UO2, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.261, issue.1-2, pp.883-887, 2007.
DOI : 10.1016/j.nimb.2007.04.059

A. Turos, H. Matzke, and S. Kwiatkowski, at low temperatures, Physical Review Letters, vol.53, issue.70, pp.1215-1218, 1990.
DOI : 10.1080/01418618608242805

A. Turos, H. Matzke, M. Wielunski, and L. Nowicki, Radiation defects in the oxygen sublattice of UO2 single crystals, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.80, issue.81, pp.1259-1263, 1993.
DOI : 10.1016/0168-583X(93)90779-6

B. Marchand, Effets de la température et de l'irradiation sur la mobilité du xénon dans UO $ _2 $: étude profilométrique et microstructurale, 2012.

D. Staicu, T. Wiss, V. V. Rondinella, J. P. Hiernaut, R. J. Konings et al., Impact of auto-irradiation on the thermophysical properties of oxide nuclear reactor fuels, Journal of Nuclear Materials, vol.397, issue.1-3, pp.1-3, 2010.
DOI : 10.1016/j.jnucmat.2009.11.024

M. A. Watzky and R. G. Finke, Transition Metal Nanocluster Formation Kinetic and Mechanistic Studies. A New Mechanism When Hydrogen Is the Reductant:?? Slow, Continuous Nucleation and Fast Autocatalytic Surface Growth, Journal of the American Chemical Society, vol.119, issue.43, pp.10382-10400, 1997.
DOI : 10.1021/ja9705102

M. J. Abadie, N. K. Chia, and F. Boey, Cure kinetics for the ultraviolet cationic polymerization of cycloliphatic and diglycidyl ether of bisphenol-A (DGEBA) epoxy systems with sulfonium salt using an auto catalytic model, Journal of Applied Polymer Science, vol.31, issue.7, pp.1587-1591, 2002.
DOI : 10.1016/0014-3057(94)00171-5

J. A. Widegren, M. A. Bennett, and R. G. Finke, , Plus Kinetic Characterization of the Heterogeneous Nucleation, Then Autocatalytic Surface-Growth Mechanism of Metal Film Formation, Journal of the American Chemical Society, vol.125, issue.34, pp.10301-10310, 2003.
DOI : 10.1021/ja021436c

M. A. Watzky, E. E. Finney, and R. G. Finke, Transition-Metal Nanocluster Size vs Formation Time and the Catalytically Effective Nucleus Number: A Mechanism-Based Treatment, Journal of the American Chemical Society, vol.130, issue.36, pp.11959-11969, 2008.
DOI : 10.1021/ja8017412

D. V. Talapin, A. L. Rogach, M. Haase, and H. Weller, Evolution of an Ensemble of Nanoparticles in a Colloidal Solution:?? Theoretical Study, The Journal of Physical Chemistry B, vol.105, issue.49, pp.12278-12285, 2001.
DOI : 10.1021/jp012229m

P. Garcia, Nucleation and growth of intragranular defect and insoluble atom clusters in nuclear oxide fuels, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.277, pp.98-108, 2012.
DOI : 10.1016/j.nimb.2011.12.031

URL : https://hal.archives-ouvertes.fr/in2p3-00658341

W. Nixon and D. A. Macinnes, A model for bubble diffusion in uranium dioxide, Journal of Nuclear Materials, vol.101, issue.1-2, pp.192-199, 1981.
DOI : 10.1016/0022-3115(81)90457-8

J. Role?ek, ?. Foral, K. Katovský, and D. Salamon, thermal conductivity enhancement, Advances in Applied Ceramics, vol.110, issue.3, pp.123-131, 2017.
DOI : 10.2172/917989

B. Ye, Irradiation effects in UO2 and CeO2, Journal of Nuclear Materials, vol.441, issue.1-3, pp.525-529, 2013.
DOI : 10.1016/j.jnucmat.2012.09.035

H. S. Kim, C. Y. Joung, B. H. Lee, J. Y. Oh, Y. H. Koo et al., Applicability of CeO2 as a surrogate for PuO2 in a MOX fuel development, Journal of Nuclear Materials, vol.378, issue.1, pp.98-104, 2008.
DOI : 10.1016/j.jnucmat.2008.05.003

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, SRIM ??? The stopping and range of ions in matter (2010), Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.268, issue.11-12, pp.1818-1823, 2010.
DOI : 10.1016/j.nimb.2010.02.091

Y. Guerin and J. Henckes, Conception et fabrication de combustibles à base d'uranium, Tech. Ing. Génie Nucl, vol.2, issue.BN3620, 2008.

Y. C. Zhou and M. N. Rahaman, Hydrothermal synthesis and sintering of ultrafine CeO2 powders, Journal of Materials Research, vol.8, issue.07, pp.1680-1686, 1993.
DOI : 10.1111/j.1151-2916.1988.tb05773.x

R. Podor, N. Clavier, J. Ravaux, L. Claparede, and N. Dacheux, Grain Growth During Sintering, Journal of the American Ceramic Society, vol.40, issue.14, pp.3683-3690, 2012.
DOI : 10.1111/j.1551-2916.2012.05406.x

R. Springell, /water interface, Faraday Discussions, vol.40, pp.301-311, 2015.
DOI : 10.1107/S0021889807045086

URL : https://hal.archives-ouvertes.fr/hal-01572751

J. Hierso, Design, Synthesis, Structural and Textural Characterization, and Electrical Properties of Mesoporous Thin Films Made of Rare Earth Oxide Binaries, Chemistry of Materials, vol.21, issue.11, pp.2184-2192, 2009.
DOI : 10.1021/cm802627k

URL : https://hal.archives-ouvertes.fr/hal-00411164

F. Zhang, Cerium oxide nanoparticles: Size-selective formation and structure analysis, Applied Physics Letters, vol.80, issue.1, pp.127-129, 2002.
DOI : 10.1063/1.357593

D. Simeone, G. Baldinozzi, D. Gosset, G. Zalczer, and J. Berar, Rietveld refinements performed on mesoporous ceria layers at grazing incidence, Journal of Applied Crystallography, vol.35, issue.6, pp.1205-1210, 2011.
DOI : 10.1107/S0021889811042294/hx5133ce02-02sup3.rtv

URL : https://hal.archives-ouvertes.fr/hal-00641434

C. Boissiere, D. Grosso, S. Lepoutre, L. Nicole, A. B. Bruneau et al., Porosity and Mechanical Properties of Mesoporous Thin Films Assessed by Environmental Ellipsometric Porosimetry, Langmuir, vol.21, issue.26, pp.12362-12371, 2005.
DOI : 10.1021/la050981z

URL : https://hal.archives-ouvertes.fr/hal-00022622

M. R. Baklanov, K. P. Mogilnikov, V. G. Polovinkin, and F. N. Dultsev, Determination of pore size distribution in thin films by ellipsometric porosimetry, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.18, issue.3, pp.1385-1391, 2000.
DOI : 10.1116/1.591390

H. Matzke, A. Turos, and G. Linker, Polygonization of single crystals of the fluorite-type oxide UO2 due to high dose ion implantation +, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.91, issue.1-4, pp.294-300, 1994.
DOI : 10.1016/0168-583X(94)96234-0

B. Ban-d-'etat, Potential and Kinetic Sputtering of UO2 by Slow Highly Charged Ions, Physica Scripta, vol.110, pp.389-393, 2004.
DOI : 10.1238/Physica.Topical.110a00389

URL : https://hal.archives-ouvertes.fr/in2p3-00022191

C. Cabet, Information aux utilisateurs de la plateforme JANNuS-Saclay (suite) / to users of JANNuS-Saclay (cont'd), 2017.

V. G. Keramidas and W. B. White, Raman spectra of oxides with the fluorite structure, The Journal of Chemical Physics, vol.59, issue.3, pp.1561-1562, 1955.
DOI : 10.1103/PhysRevB.1.1787

J. H. Denning and S. D. Ross, The vibrational spectra and structures of rare earth oxides in the A modification, Journal of Physics C: Solid State Physics, vol.5, issue.11, pp.1123-1133, 1972.
DOI : 10.1088/0022-3719/5/11/008

J. Cui and G. A. Hope, Raman and Fluorescence Spectroscopy of CeO2, Er2O3, Nd2O3, Tm2O3, Yb2O3, La2O3, and Tb4O7 Available: https://www.hindawi.com/journals/jspec, Journal of Spectroscopy, vol.940172, 2015.

M. Ashkin, J. H. Parker, and D. W. Feldman, Temperature dependence of the Raman lines of ??-Al2O3, Solid State Communications, vol.6, issue.6, pp.343-346, 1968.
DOI : 10.1016/0038-1098(68)90152-X

M. Kadle?ková, J. Breza, and M. Veselý, Raman spectra of synthetic sapphire, Microelectronics Journal, vol.32, issue.12, pp.955-958, 2001.
DOI : 10.1016/S0026-2692(01)00087-8

G. W. Graham, W. H. Weber, C. R. Peters, and R. Usmen, Empirical method for determining CeO2-particle size in catalysts by raman spectroscopy, Journal of Catalysis, vol.130, issue.1, pp.310-313, 1991.
DOI : 10.1016/0021-9517(91)90113-I

. Null-weber, . Hass, and . Mcbride, : Second-order scattering, lattice dynamics, and particle-size effects, Physical Review B, vol.58, issue.1, pp.178-185, 1993.
DOI : 10.1016/0038-1098(86)90513-2

S. Wang, W. Wang, J. Zuo, and Y. Qian, Study of the Raman spectrum of CeO2 nanometer thin films, Materials Chemistry and Physics, vol.68, issue.1-3, pp.246-248, 2001.
DOI : 10.1016/S0254-0584(00)00357-6

J. H. Parker, D. W. Feldman, and M. Ashkin, Raman Scattering by Silicon and Germanium, Physical Review, vol.99, issue.3, pp.712-714, 1967.
DOI : 10.1103/PhysRev.99.1151

H. Yasuda and I. Kobayashi, Optically Stimulated Luminescence from Al2O3:C Irradiated with Relativistic Heavy Ions, Radiation Protection Dosimetry, vol.95, issue.4, pp.339-343, 2001.
DOI : 10.1093/oxfordjournals.rpd.a006558

T. Gürel and R. Eryi?it, Ab initio pressure-dependent vibrational and dielectric properties of CeO 2, Phys. Rev. B, vol.74, issue.1, 2006.

T. Yamamoto, H. Momida, T. Hamada, T. Uda, and T. Ohno, First-principles study of dielectric properties of cerium oxide, Thin Solid Films, vol.486, issue.1-2, pp.136-140, 2005.
DOI : 10.1016/j.tsf.2004.11.240

W. H. Weber, K. C. Hass, and J. R. Mcbride, : Second-order scattering, lattice dynamics, and particle-size effects, Physical Review B, vol.58, issue.1, pp.178-185, 1993.
DOI : 10.1016/0038-1098(86)90513-2

A. Michel, An in situ TEM study of the evolution of Xe bubble populations in UO2, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.272, pp.218-221, 2012.
DOI : 10.1016/j.nimb.2011.01.069

URL : https://hal.archives-ouvertes.fr/in2p3-00688383

J. A. Turnbull and R. M. Cornell, The re-solution of gas atoms from bubbles during the irradiation of UO2, Journal of Nuclear Materials, vol.36, issue.2, pp.161-168, 1970.
DOI : 10.1016/0022-3115(70)90140-6

J. A. Turnbull and R. M. Cornell, The re-solution of fission-gas atoms from bubbles during the irradiation of UO2 at an elevated temperature, Journal of Nuclear Materials, vol.41, issue.2, pp.156-160, 1971.
DOI : 10.1016/0022-3115(71)90075-4

D. R. Olander and D. Wongsawaeng, Re-solution of fission gas ??? A review: Part I. Intragranular bubbles, Journal of Nuclear Materials, vol.354, issue.1-3, pp.94-109, 2006.
DOI : 10.1016/j.jnucmat.2006.03.010

J. H. Evans, Bubble diffusion to grain boundaries in UO2 and metals during annealing: a new approach, Journal of Nuclear Materials, vol.210, issue.1-2, pp.21-29, 1994.
DOI : 10.1016/0022-3115(94)90218-6

K. Une, S. Kashibe, and K. Ito, Fuels Irradiated to 23 GWd/t, Journal of Nuclear Science and Technology, vol.130, issue.12, pp.221-231, 1993.
DOI : 10.1016/0022-3115(85)90334-4

P. Losonen, Calculation method for diffusional gas release with grain boundary resolution, Nuclear Engineering and Design, vol.201, issue.2-3, pp.139-153, 2000.
DOI : 10.1016/S0029-5493(00)00295-8

D. M. Dowling, R. J. White, and M. O. Tucker, The effect of irradiation-induced re-solution on fission gas release, Journal of Nuclear Materials, vol.110, issue.1, pp.37-46, 1982.
DOI : 10.1016/0022-3115(82)90405-6

D. R. Olander, Fundamental aspects of nuclear reactor fuel elements: prepared for the Division of Reactor Development and Demonstration, Energy Research and Development Administration. Oak Ridge, Tenn. : Springfield, Va: Technical Information Center, Energy Research and Development Administration ; available [from] National Technical Information Service, U.S. Dept. of Commerce, 1976.
DOI : 10.2172/7343826

N. Khalfaoui, Etude des défauts surfaciques et volumiques induits par les ions lourds dans les isolants, 2003.

K. Nogita, K. Hayashi, K. Une, and K. Fukuda, Depth profiles of damage accumulation in UO2 and (U,Gd)O2 pellets irradiated with 100 MeV iodine ions, Journal of Nuclear Materials, vol.273, issue.3, pp.302-309, 1999.
DOI : 10.1016/S0022-3115(99)00048-3

T. Sonoda, M. Kinoshita, N. Ishikawa, M. Sataka, A. Iwase et al., Clarification of high density electronic excitation effects on the microstructural evolution in UO2, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.268, issue.19
DOI : 10.1016/j.nimb.2010.06.015

H. Matzke, P. G. Lucuta, and T. Wiss, Swift heavy ion and fission damage effects in UO2, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.166, issue.167, pp.920-926, 2000.
DOI : 10.1016/S0168-583X(99)00801-0

R. L. Fleischer, P. B. Price, and R. M. Walker, Nuclear Tracks in Solids (Principles & Applications), Nuclear Technology, vol.54, issue.1, 1975.
DOI : 10.13182/NT81-A32766

C. Rotaru, SiO2 sur silicium : comportement sous irradiation avec des ions lourds, 2004.
URL : https://hal.archives-ouvertes.fr/tel-00005399

F. Seitz and D. Turnbull, Solid state physics, 1955.

M. Toulemonde, E. Paumier, and C. Dufour, Thermal spike model in the electronic stopping power regime, Radiation Effects and Defects in Solids, vol.126, issue.1, pp.201-206, 1993.
DOI : 10.1080/10420159308219709

M. Toulemonde, W. Assmann, C. Dufour, A. Meftah, and C. Trautmann, Nanometric transformation of the matter by short and intense electronic excitation: Experimental data versus inelastic thermal spike model, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.277, pp.28-39, 2012.
DOI : 10.1016/j.nimb.2011.12.045

T. Wiss, H. Matzke, C. Trautmann, M. Toulemonde, and S. Klaumünzer, Radiation damage in UO2 by swift heavy ions, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.122, issue.3, pp.583-588, 1997.
DOI : 10.1016/S0168-583X(96)00754-9

T. Hirosawa and I. Sato, Burnup dependence of melting temperature of FBR mixed oxide fuels irradiated to high burnup, Journal of Nuclear Materials, vol.418, issue.1-3, pp.207-214, 2011.
DOI : 10.1016/j.jnucmat.2011.07.001

L. Desgranges, G. Baldinozzi, P. Ruello, and C. Petot, Is UO2 irradiation resistance due to its unusual high temperature behaviour?, Journal of Nuclear Materials, vol.420, issue.1-3, pp.334-337, 2012.
DOI : 10.1016/j.jnucmat.2011.10.003

URL : https://hal.archives-ouvertes.fr/hal-00639227

F. Garrido, C. Choffel, J. Dran, L. Thome, L. Nowicki et al., Structural modifications in uranium dioxide irradiated with swift heavy ions, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.127, issue.128, pp.634-638, 1997.
DOI : 10.1016/S0168-583X(96)01142-1

URL : https://hal.archives-ouvertes.fr/in2p3-00012987

L. Desgranges, B. Pasquet, and I. Roure, First experimental evidence by SIMS of different surface binding energies for uranium according to its oxidation state, Applied Surface Science, vol.257, issue.14, pp.6208-6211, 2011.
DOI : 10.1016/j.apsusc.2011.02.039

C. R. Stanek, Atomic Scale Disorder in Fluorite and Fluorite Related Oxides, 2003.

B. J. Lewis, Fission product release from nuclear fuel by recoil and knockout, Journal of Nuclear Materials, vol.148, issue.1, pp.28-42, 1987.
DOI : 10.1016/0022-3115(87)90515-0

L. Van-brutzel, M. Rarivomanantsoa, and D. Ghaleb, Displacement cascade initiated with the realistic energy of the recoil nucleus in UO2 matrix by molecular dynamics simulation, Journal of Nuclear Materials, vol.354, issue.1-3, pp.1-3, 2006.
DOI : 10.1016/j.jnucmat.2006.01.020

F. Garrido, L. Vincent, L. Nowicki, G. Sattonnay, and L. Thomé, Radiation stability of fluorite-type nuclear oxides, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.266, issue.12-13, pp.2842-2847, 2008.
DOI : 10.1016/j.nimb.2008.03.128

URL : https://hal.archives-ouvertes.fr/in2p3-00825710

D. Simeone, D. Gosset, and G. Baldinozzi, A preferred orientation correction to describe a fiber texture under glancing incidence, Journal of Applied Crystallography, vol.42, issue.1, pp.93-98, 2013.
DOI : 10.1107/S0021889809013727

URL : https://hal.archives-ouvertes.fr/hal-00913714

R. W. James, The Dynamical Theory of X-Ray Diffraction Solid State Phys, pp.53-220, 1963.

M. Hart, W. Parrish, M. Bellotto, and G. S. Lim, The refractive-index correction in powder diffraction, Acta Crystallographica Section A Foundations of Crystallography, vol.44, issue.2, pp.193-197, 1988.
DOI : 10.1107/S010876738701050X

P. Scherrer, Bestimmung der Grosse und der Inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen 98-100 -References -Scientific Research Publish, Nachrichten von der Gesellschaft der Wissenschaften, Gottingen. Mathematisch-Physikalische Klasse, 1918.
DOI : 10.1007/978-3-662-33915-2_7

A. R. Stokes and A. J. Wilson, The diffraction of X rays by distorted crystal aggregates - I, Proc. Phys. Soc, pp.174-181, 1944.
DOI : 10.1088/0959-5309/56/3/303

W. H. Hall, X-Ray Line Broadening in Metals, Proc. Phys. Soc. Sect. A, p.741, 1949.
DOI : 10.1088/0370-1298/62/11/110

B. E. Warren and B. L. Averbach, The Effect of Cold???Work Distortion on X???Ray Patterns, Journal of Applied Physics, vol.228, issue.6, pp.595-599, 1950.
DOI : 10.1038/151137a0

T. Ida and H. Hibino, Symmetrization of diffraction peak profiles measured with a high-resolution synchrotron X-ray powder diffractometer, Journal of Applied Crystallography, vol.39, issue.1, pp.90-100, 2006.
DOI : 10.1107/S0021889805040318

P. W. Stephens, Phenomenological model of anisotropic peak broadening in powder diffraction, Journal of Applied Crystallography, vol.32, issue.2, 1999.
DOI : 10.1107/S0021889898006001