A. References, U. Lamprecht, C. Schäfer, and . Leh, Influences of process parameters on preparation of microparticle used as a carrier system for O -3 unsaturated fatty acid ethyl esters used in supplementary nutrition, Journal of Microencapsulation, vol.18, issue.3, pp.347-357, 2001.

C. Adank, T. J. Green, C. M. Skeaff, and B. Briars, Weekly High-Dose Folic Acid Supplementation Is Effective in Lowering Serum Homocysteine Concentrations in Women, Annals of Nutrition and Metabolism, vol.47, issue.2, pp.47-55, 2003.
DOI : 10.1159/000069278

A. Reid, A. Vuillemard, J. C. Britten, M. Arcand, Y. Farnworth et al., -induced whey protein gel and effects on their viability in a dynamic gastro-intestinal model, Journal of Microencapsulation, vol.76, issue.6, pp.603-619, 2005.
DOI : 10.1097/00042737-199911000-00001

S. G. Anema and C. G. De-kruif, Interaction of Lactoferrin and Lysozyme with Casein Micelles, Biomacromolecules, vol.12, issue.11, pp.12-3970, 2011.
DOI : 10.1021/bm200978k

S. G. Anema and C. G. De-kruif, Complex coacervates of lactotransferrin and ??-lactoglobulin, Journal of Colloid and Interface Science, vol.430, pp.214-220, 2014.
DOI : 10.1016/j.jcis.2014.05.036

A. Annunziata and R. Vecchio, Functional foods development in the European market: A consumer perspective, Journal of Functional Foods, vol.3, issue.3, pp.223-228, 2011.
DOI : 10.1016/j.jff.2011.03.011

M. M. Araújo, E. Marchioni, A. L. Villavicencio, M. Zhao, T. Di-pascoli et al., Mechanism of folic acid radiolysis in aqueous solution, LWT - Food Science and Technology, vol.63, issue.1, pp.599-603, 2015.
DOI : 10.1016/j.lwt.2015.03.038

R. Arshady, Microspheres and microcapsules, a survey of manufacturing techniques Part II: Coacervation, Polymer Engineering and Science, vol.112, issue.7, pp.905-914, 1990.
DOI : 10.1248/cpb.33.4649

C. Arzeni, O. E. Pérez, J. G. Leblanc, and A. M. Pilosof, Egg albumin???folic acid nanocomplexes: Performance as a functional ingredient and biological activity, Journal of Functional Foods, vol.18, pp.379-386, 2015.
DOI : 10.1016/j.jff.2015.07.018

M. A. Augustin and L. Sanguansri, Challenges in developing delivery systems for food additives, nutraceuticals and dietary supplements, Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals, pp.19-48, 2012.
DOI : 10.1533/9780857095909.1.19

M. Augustin, . Ann, and L. Sanguansri, Challenges and Solutions to Incorporation of Nutraceuticals in Foods, Annual Review of Food Science and Technology, vol.6, issue.1, pp.463-477, 2015.
DOI : 10.1146/annurev-food-022814-015507

E. N. Baker and H. M. Baker, A structural framework for understanding the multifunctional character of lactoferrin, Biochimie, vol.91, issue.1, pp.3-10, 2009.
DOI : 10.1016/j.biochi.2008.05.006

C. Barbana, M. D. Pérez, L. Sánchez, M. Dalgalarrondo, J. M. Chobert et al., Interaction of bovine -lactalbumin with fatty acids as determined by partition equilibrium and fluorescence spectroscopy, International Dairy Journal, vol.16, issue.1, pp.18-25, 2006.
DOI : 10.1016/j.idairyj.2005.01.007

G. J. Basset, E. P. Quinlivan, J. F. Gregory, and A. D. Hanson, Folate Synthesis and Metabolism in Plants and Prospects For Biofortification, Crop Science, vol.45, issue.2, p.449, 2005.
DOI : 10.2135/cropsci2005.0449

C. Bayford, E. Pdf-blanchard, P. Zhu, P. Schuck, H. Bokkhim et al., Whey Protein: A Functional Food 18 -Infant formula powders Retrieved from //www.sciencedirect.com/science Physico-chemical properties of different forms of bovine lactoferrin, Handbook of Food Powders, pp.465-483, 2010.

M. Boland, H. Singh, and A. Thompson, Milk Proteins: From Expression to Food, 2014.

L. A. Bosnea, T. Moschakis, C. G. Biliaderis, and T. Croguennec, Complex Coacervation as a Novel Microencapsulation Technique to Improve Viability of Probiotics Under Different Stresses -Springer Spontaneous Assembly and Induced Aggregation of Food Proteins, Polyelectrolyte Complexes in the Dispersed and Solid State II, pp.67-101, 1007.

S. Bouhallab, C. Lopez, and M. A. Axelos, Naturally Occurring Nanostructures in Food, Nanotechnology in Agriculture and Food Science, pp.33-48, 2017.
DOI : 10.1016/j.cocis.2014.09.004

URL : https://hal.archives-ouvertes.fr/hal-01535207

C. P. Brangwynne, Phase transitions and size scaling of membrane-less organelles, The Journal of Cell Biology, vol.203, issue.6, pp.875-881, 2013.
DOI : 10.1093/jb/mvt001

H. Bungenberg-de-jong, Colloid Science, 1949.

E. Carvalho, N. Mateus, B. Plet, I. Pianet, E. Dufourc et al., Influence of Wine Pectic Polysaccharides on the Interactions between Condensed Tannins and Salivary Proteins, Journal of Agricultural and Food Chemistry, vol.54, issue.23, pp.54-8936, 2006.
DOI : 10.1021/jf061835h

F. Casanova, A. Chapeau, P. Hamon, A. F. De-carvalho, T. Croguennec et al., pH- and ionic strength-dependent interaction between cyanidin-3-O-glucoside and sodium caseinate, Food Chemistry, 2017.
DOI : 10.1016/j.foodchem.2017.06.081

URL : https://hal.archives-ouvertes.fr/hal-01574202

C. P. Champagne and P. Fustier, Microencapsulation for the improved delivery of bioactive compounds into foods, Current Opinion in Biotechnology, vol.18, issue.2, pp.184-190, 2007.
DOI : 10.1016/j.copbio.2007.03.001

A. Chapeau, P. Hamon, F. Rousseau, T. Croguennec, D. Poncelet et al., Scale-up production of vitamin loaded heteroprotein coacervates and their protective property, Journal of Food Engineering, vol.206, pp.67-76, 2017.
DOI : 10.1016/j.jfoodeng.2017.03.005

URL : https://hal.archives-ouvertes.fr/hal-01506631

A. Chapeau, G. M. Tavares, P. Hamon, T. Croguennec, D. Poncelet et al., Spontaneous co-assembly of lactoferrin and ??-lactoglobulin as a promising biocarrier for vitamin B9, Food Hydrocolloids, vol.57, pp.280-290, 2016.
DOI : 10.1016/j.foodhyd.2016.02.003

URL : https://hal.archives-ouvertes.fr/hal-01454587

L. Y. Chen, G. E. Remondetto, and M. Subirade, Food protein-based materials as nutraceutical delivery systems, Trends in Food Science & Technology, vol.17, issue.5, pp.272-283, 2006.
DOI : 10.1016/j.tifs.2005.12.011

L. Cornacchia and Y. H. Roos, Stability of ??-Carotene in Protein-Stabilized Oil-in-Water Delivery Systems, Journal of Agricultural and Food Chemistry, vol.59, issue.13, pp.59-7013
DOI : 10.1021/jf200841k

M. T. Corredig, G. M. Tavares, and S. Bouhallab, Dairy-Derived Ingredients: Food and Nutraceutical Uses Heteroprotein complex coacervation: A generic process, Advances in Colloid and Interface Science, 2009.
DOI : 10.1533/9781845697198

M. Czarnowska and E. Gujska, Effect of Freezing Technology and Storage Conditions on Folate Content in Selected Vegetables, Plant Foods for Human Nutrition, vol.47, issue.4, pp.401-406, 2012.
DOI : 10.1007/s00394-008-0701-3

G. Davidov-pardo and D. J. Mcclements, Nutraceutical delivery systems: Resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification, Food Chemistry, vol.167, pp.205-212, 2015.
DOI : 10.1016/j.foodchem.2014.06.082

L. Day, M. Xu, P. Hoobin, I. Burgar, and M. A. Augustin, Characterisation of fish oil emulsions stabilised by sodium caseinate, Food Chemistry, vol.105, issue.2, pp.469-479, 2007.
DOI : 10.1016/j.foodchem.2007.04.013

A. De-boer, M. J. Urlings, and A. Bast, Active ingredients leading in health claims on functional foods, Journal of Functional Foods, vol.20, pp.587-593, 2016.
DOI : 10.1016/j.jff.2015.11.025

C. G. De-kruif, F. Weinbreck, and R. De-vries, Complex coacervation of proteins and anionic polysaccharides, Current Opinion in Colloid & Interface Science, vol.9, issue.5, pp.340-349, 2004.
DOI : 10.1016/j.cocis.2004.09.006

C. G. De-kruif and C. Holt, Casein Micelle Structure, Functions and Interactions, Advanced Dairy Chemistry?1 Proteins, pp.233-276, 2003.
DOI : 10.1007/978-1-4419-8602-3_5

C. G. De-kruif, . De, and F. Weinbreck, Complex coacervates of whey proteins and anionic polysaccharides, and their use for encapsulation, Food New Zealand, vol.5, issue.3, pp.23-30, 2005.

P. De-sa-peixoto, G. M. Tavares, T. Croguennec, A. Nicolas, P. Hamon et al., Structure and dynamic of heteroprotein coacervates, Langmuir, 2016.

P. De-vos, M. M. Faas, M. Spasojevic, and J. Sikkema, Encapsulation for preservation of functionality and targeted delivery of bioactive food components, International Dairy Journal, vol.20, issue.4, pp.292-302, 2010.
DOI : 10.1016/j.idairyj.2009.11.008

Y. Desfouge?-res, T. Croguennec, V. Lechevalier, S. Bouhallab, and F. Nau, Charge and Size Drive Spontaneous Self-Assembly of Oppositely Charged Globular Proteins into Microspheres, The Journal of Physical Chemistry B, vol.114, issue.12, pp.4138-4144, 2010.
DOI : 10.1021/jp9090427

N. Devi, M. Sarmah, B. Khatun, and T. K. Maji, Encapsulation of active ingredients in polysaccharide???protein complex coacervates, Advances in Colloid and Interface Science, vol.239, pp.136-145, 2017.
DOI : 10.1016/j.cis.2016.05.009

F. Diarrassouba, G. Garrait, G. Remondetto, P. Alvarez, E. Beyssac et al., Food protein-based microspheres for increased uptake of vitamin D3, Food Chemistry, vol.173, pp.1066-1072, 2015.
DOI : 10.1016/j.foodchem.2014.10.112

F. Diarrassouba, G. Garrait, G. Remondetto, P. Alvarez, E. Beyssac et al., Improved bioavailability of vitamin D3 using a ??-lactoglobulin-based coagulum, Food Chemistry, vol.172, pp.361-367, 2015.
DOI : 10.1016/j.foodchem.2014.09.054

K. R. Domike, E. Hardin, D. N. Armstead, and A. M. Donald, Investigating the inner structure of irregular $ \beta$ -lactoglobulin spherulites, The European Physical Journal E, vol.209, issue.2, pp.173-182, 2009.
DOI : 10.1006/jcis.2000.7365

F. Donsi, M. Annunziata, M. Sessa, and G. Ferrari, Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods, LWT - Food Science and Technology, vol.44, issue.9, pp.1908-1914, 2011.
DOI : 10.1016/j.lwt.2011.03.003

J. Doublier, C. Garnier, D. Renard, and C. Sanchez, Protein???polysaccharide interactions, Current Opinion in Colloid & Interface Science, vol.5, issue.3-4, pp.3-4, 2000.
DOI : 10.1016/S1359-0294(00)00054-6

X. Du, D. Seeman, P. L. Dubin, and D. A. Hoagland, Nonfreezing Water Structuration in Heteroprotein Coacervates, Langmuir, vol.31, issue.31, pp.31-8661, 2015.
DOI : 10.1021/acs.langmuir.5b01647

D. Eratte, B. Wang, K. Dowling, C. J. Barrow, and B. P. Adhikari, Complex coacervation with whey protein isolate and gum arabic for the microencapsulation of omega-3 rich tuna oil, Food Funct., vol.44, issue.11, pp.2743-2750, 2014.
DOI : 10.1016/j.lwt.2011.01.005

M. Esmaili, S. M. Ghaffari, Z. Moosavi-movahedi, M. S. Atri, A. Sharifizadeh et al., Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application. LWT-Food Science and Technology, pp.44-2166, 2011.

A. W. Etchells, C. F. Meyer, P. N. Ezhilarasi, P. Karthik, N. Chhanwal et al., Mixing in Pipelines Nanoencapsulation Techniques for Food Bioactive Components: A Review, Handbook of Industrial Mixing, pp.391-477, 2003.

R. Fang, H. Jing, Z. Chai, G. Zhao, S. Stoll et al., Design and characterization of protein-quercetin bioactive nanoparticles, Journal of Nanobiotechnology, vol.9, issue.1
DOI : 10.1016/S0891-5849(98)00315-3

Z. Fang and B. Bhandari, Encapsulation of polyphenols ??? a review, Trends in Food Science & Technology, vol.21, issue.10, pp.510-523, 2010.
DOI : 10.1016/j.tifs.2010.08.003

S. Farnaud and R. W. Evans, Lactoferrin???a multifunctional protein with antimicrobial properties, Molecular Immunology, vol.40, issue.7, pp.395-405, 2003.
DOI : 10.1016/S0161-5890(03)00152-4

H. M. Farrell, R. Jimenez-flores, G. T. Bleck, E. M. Brown, J. E. Butler et al., Nomenclature of the Proteins of Cows??? Milk???Sixth Revision, Journal of Dairy Science, vol.87, issue.6, pp.1641-1674
DOI : 10.3168/jds.S0022-0302(04)73319-6

F. Jr, H. M. Malin, E. L. Brown, E. M. Qi, and P. X. , Casein micelle structure: What can be learned from milk synthesis and structural biology?, Current Opinion in Colloid & Interface Science, vol.11, issue.23, pp.135-147, 2006.

S. E. Flanagan, A. J. Malanowski, E. Kizilay, D. Seeman, P. L. Dubin et al., Complex Equilibria, Speciation, and Heteroprotein Coacervation of Lactoferrin and ??-Lactoglobulin, Langmuir, vol.31, issue.5, pp.31-1776, 2015.
DOI : 10.1021/la504020e

F. Environmental and . Inc, Measuring Turbidity, TSS, and Water Clarity/environmental- measurements/equipment/measuring-water-quality/turbidity-sensors-meters- and-methods, 2014.

N. Garti and D. J. Mcclements, Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals, 2012.
DOI : 10.1533/9780857095909

F. Gaucheron, The minerals of milk, Reproduction Nutrition Development, vol.77, issue.4, pp.473-483, 2005.
DOI : 10.1051/rnd:2005030

URL : https://hal.archives-ouvertes.fr/hal-00900570

A. Gharsallaoui, G. Roudaut, O. Chambin, A. Voilley, and R. Saurel, Applications of spray-drying in microencapsulation of food ingredients: An overview, Food Research International, vol.40, issue.9, pp.40-1107, 2007.
DOI : 10.1016/j.foodres.2007.07.004

H. J. Giroux and M. Britten, Encapsulation of hydrophobic aroma in whey protein nanoparticles, Journal of Microencapsulation, vol.43, issue.5, pp.337-343, 2011.
DOI : 10.1111/j.1365-2621.2006.01454.x

M. Gonnet, L. Lethuaut, and F. Boury, New trends in encapsulation of liposoluble vitamins, Journal of Controlled Release, vol.146, issue.3, pp.276-290, 2010.
DOI : 10.1016/j.jconrel.2010.01.037

S. Gouin, Microencapsulation, Trends in Food Science & Technology, vol.15, issue.7-8, pp.7-8, 2004.
DOI : 10.1016/j.tifs.2003.10.005

URL : https://hal.archives-ouvertes.fr/hal-01607981

J. F. Graveland-bikker and C. G. De-kruif, Unique milk protein based nanotubes: Food and nanotechnology meet, Trends in Food Science & Technology, vol.17, issue.5, pp.196-203, 2006.
DOI : 10.1016/j.tifs.2005.12.009

J. F. Gregory, Case Study: Folate Bioavailability, The Journal of Nutrition, vol.131, issue.4, pp.1376-82, 2001.
DOI : 10.1093/jn/131.4.1376S

?. Gülseren, Y. Fang, and M. Corredig, Whey protein nanoparticles prepared with desolvation with ethanol: Characterization, thermal stability and interfacial behavior, Food Hydrocolloids, vol.29, issue.2, pp.258-264
DOI : 10.1016/j.foodhyd.2012.03.015

S. Gunasekaran, S. Ko, and L. Xiao, Use of whey proteins for encapsulation and controlled delivery applications, Journal of Food Engineering, vol.83, issue.1, pp.31-40, 2007.
DOI : 10.1016/j.jfoodeng.2006.11.001

P. Hamilton, D. Littlejohn, A. Nordon, J. Sefcik, and P. Slavin, Validity of particle size analysis techniques for measurement of the attrition that occurs during vacuum agitated powder drying of needle-shaped particles, The Analyst, vol.361, issue.1, pp.118-125, 2012.
DOI : 10.1016/j.ijpharm.2008.05.025

G. Hardy, Nutraceuticals and functional foods: introduction and meaning, Nutrition, vol.16, issue.7-8, 2000.
DOI : 10.1016/S0899-9007(00)00332-4

C. M. Hasler, Functional Foods: Benefits, Concerns and Challenges???A Position Paper from the American Council on Science and Health, The Journal of Nutrition, vol.132, issue.12, pp.3772-3781, 2002.
DOI : 10.1093/jn/132.12.3772

J. Hategekimana, K. G. Masamba, J. Ma, and F. Zhong, Encapsulation of vitamin E: Effect of physicochemical properties of wall material on retention and stability, Carbohydrate Polymers, vol.124, pp.172-179, 2015.
DOI : 10.1016/j.carbpol.2015.01.060

W. He, M. Parowatkin, V. Mailänder, M. Flechtner-mors, R. Graf et al., Nanocarrier for Oral Peptide Delivery Produced by Polyelectrolyte Complexation in Nanoconfinement, Biomacromolecules, vol.16, issue.8, pp.16-2282, 2015.
DOI : 10.1021/acs.biomac.5b00500

Z. He, J. L. Santos, H. Tian, H. Huang, Y. Hu et al., Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin, Biomaterials, vol.130, pp.28-41, 2017.
DOI : 10.1016/j.biomaterials.2017.03.028

G. Hébrard, S. Blanquet, E. Beyssac, G. Remondetto, M. Subirade et al., Use of whey protein beads as a new carrier system for recombinant yeasts in human digestive tract, Journal of Biotechnology, vol.127, issue.1, pp.151-160, 2006.
DOI : 10.1016/j.jbiotec.2006.06.012

T. Heidebach, P. Först, and U. Kulozik, Microencapsulation of probiotic cells by means of rennet-gelation of milk proteins, Food Hydrocolloids, vol.23, issue.7, pp.1670-1677, 2009.
DOI : 10.1016/j.foodhyd.2009.01.006

T. Heidebach, P. Först, and U. Kulozik, Transglutaminase-induced caseinate gelation for the microencapsulation of probiotic cells, International Dairy Journal, vol.19, issue.2, pp.77-84, 2009.
DOI : 10.1016/j.idairyj.2008.08.003

W. Herrmann and R. Obeid, Vitamins in the prevention of human diseases Retrieved from https, 2011.

D. Hoehler, A. A. Frohlich, R. R. Marquardt, and H. Stelsovsky, Extraction of ??-Tocopherol from Serum Prior to Reversed-Phase Liquid Chromatography, Journal of Agricultural and Food Chemistry, vol.46, issue.3, pp.973-978, 1998.
DOI : 10.1021/jf970596i

S. M. Hosseini, Z. Emam-djomeh, P. Sabatino, and P. Van-der-meeren, Nanocomplexes arising from protein-polysaccharide electrostatic interaction as a promising carrier for nutraceutical compounds, Food Hydrocolloids, vol.50, pp.16-26, 2015.
DOI : 10.1016/j.foodhyd.2015.04.006

K. Huang, H. Y. Yoo, Y. Jho, S. Han, and D. S. Hwang, Bicontinuous Fluid Structure with Low Cohesive Energy: Molecular Basis for Exceptionally Low Interfacial Tension of Complex Coacervate Fluids, ACS Nano, vol.10, issue.5, pp.5051-5062, 2016.
DOI : 10.1021/acsnano.5b07787

J. Zuidam, N. Shimoni, and E. , Overview of Microencapsulates for Use in Food Products or Processes and Methods to Make Them, Encapsulation Technologies for Active Food Ingredients and Food Processing, 2009.
DOI : 10.1007/978-1-4419-1008-0_2

P. J. Jones and S. Jew, Functional food development: concept to reality, Trends in Food Science & Technology, vol.18, issue.7, pp.387-390, 2007.
DOI : 10.1016/j.tifs.2007.03.008

L. Jourdain, M. E. Leser, C. Schmitt, M. Michel, and E. Dickinson, Stability of emulsions containing sodium caseinate and dextran sulfate: Relationship to complexation in solution, Food Hydrocolloids, vol.22, issue.4, pp.647-659, 2008.
DOI : 10.1016/j.foodhyd.2007.01.007

I. J. Joye and D. J. Mcclements, Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application, Current Opinion in Colloid & Interface Science, vol.19, issue.5, pp.417-427, 2014.
DOI : 10.1016/j.cocis.2014.07.002

B. Khoshnood, M. Loane, H. Walle, . De, L. Arriola et al., Long term trends in prevalence of neural tube defects in Europe: population based study, BMJ, pp.351-5949, 2015.
DOI : 10.1136/bmj.h5949

E. Kizilay, A. B. Kayitmazer, and P. L. Dubin, Complexation and coacervation of polyelectrolytes with oppositely charged colloids, Advances in Colloid and Interface Science, vol.167, issue.1-2, pp.24-37, 2011.
DOI : 10.1016/j.cis.2011.06.006

E. Kizilay, D. Seeman, Y. Yan, X. Du, P. L. Dubin et al., Structure of bovine beta-lactoglobulin-lactoferrin coacervates, Soft Matter, issue.37, pp.10-7262

S. Koga, D. S. Williams, A. W. Perriman, and S. Mann, Peptide???nucleotide microdroplets as a step towards a membrane-free protocell model, Nature Chemistry, vol.32, issue.9, pp.720-724, 2011.
DOI : 10.1002/bies.200900141

G. Kontopidis, C. Holt, and L. Sawyer, Invited Review: ??-Lactoglobulin: Binding Properties, Structure, and Function, Journal of Dairy Science, vol.87, issue.4, pp.785-796, 2004.
DOI : 10.3168/jds.S0022-0302(04)73222-1

T. Koupantsis, E. Pavlidou, and A. Paraskevopoulou, Flavour encapsulation in milk proteins ??? CMC coacervate-type complexes, Food Hydrocolloids, vol.37, pp.134-142, 2014.
DOI : 10.1016/j.foodhyd.2013.10.031

M. Kowalska, A. Zbikowska, and K. Tarnowska, Stability of Emulsions Containing Interesterified Fats Based on Mutton Tallow and Walnut Oil, Journal of the American Oil Chemists' Society, vol.39, issue.7, pp.92-993, 2015.
DOI : 10.1016/j.foodres.2005.06.003

N. I. Krinsky and E. J. Johnson, Carotenoid actions and their relation to health and disease, Molecular Aspects of Medicine, vol.26, issue.6, pp.459-516, 2005.
DOI : 10.1016/j.mam.2005.10.001

D. Kurukji, I. Norton, and F. Spyropoulos, Fabrication of sub-micron protein-chitosan electrostatic complexes for encapsulation and pH-Modulated delivery of model hydrophilic active compounds, Food Hydrocolloids, vol.53, pp.249-260, 2016.
DOI : 10.1016/j.foodhyd.2015.02.021

D. J. Lakkis, Encapsulation and Controlled Release Technologies in Food Systems, 2016.

C. Lara, J. Adamcik, S. Jordens, and R. Mezzenga, General Self-Assembly Mechanism Converting Hydrolyzed Globular Proteins Into Giant Multistranded Amyloid Ribbons, Biomacromolecules, vol.12, issue.5, pp.1868-1875, 2011.
DOI : 10.1021/bm200216u

L. Maux, S. Bouhallab, S. Giblin, L. Brodkorb, A. Croguennec et al., Bovine lactoglobulin/fatty acid complexes: binding, structural, and biological properties, Dairy Science & Technology, issue.5, pp.94-409, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01209560

C. Y. Lemetter, F. M. Meeuse, and N. J. Zuidam, Control of the morphology and the size of complex coacervate microcapsules during scale-up, AIChE Journal, vol.38, issue.8, pp.55-1487, 2009.
DOI : 10.1002/aic.11816

B. Li, W. Du, J. Jin, and Q. Du, Preservation of (???)-Epigallocatechin-3-gallate Antioxidant Properties Loaded in Heat Treated ??-Lactoglobulin Nanoparticles, Journal of Agricultural and Food Chemistry, vol.60, issue.13, 2012.
DOI : 10.1021/jf300307t

L. Liang and M. Subirade, ??-Lactoglobulin/Folic Acid Complexes: Formation, Characterization, and Biological Implication, The Journal of Physical Chemistry B, vol.114, issue.19, pp.6707-6712
DOI : 10.1021/jp101096r

L. Liang and M. Subirade, Study of the acid and thermal stability of ??-lactoglobulin???ligand complexes using fluorescence quenching, Food Chemistry, vol.132, issue.4, pp.2023-2029
DOI : 10.1016/j.foodchem.2011.12.043

L. Liang, H. A. Tajmir-riahi, and M. Subirade, Interaction of ??-Lactoglobulin with Resveratrol and its Biological Implications, Biomacromolecules, vol.9, issue.1, pp.50-56, 2008.
DOI : 10.1021/bm700728k

L. Liang, V. Tremblay-hébert, and M. Subirade, Characterisation of the ??-lactoglobulin/??-tocopherol complex and its impact on ??-tocopherol stability, Food Chemistry, vol.126, issue.3, pp.821-826, 2011.
DOI : 10.1016/j.foodchem.2010.12.029

D. Liska and J. Bland, Clinical nutrition: a functional approach, 2004.

H. C. Liu, W. L. Chen, and S. J. Mao, Antioxidant Nature of Bovine Milk ??-Lactoglobulin, Journal of Dairy Science, vol.90, issue.2, pp.547-555
DOI : 10.3168/jds.S0022-0302(07)71538-2

Y. D. Livney, Milk proteins as vehicles for bioactives, Current Opinion in Colloid & Interface Science, vol.15, issue.1-2, pp.73-83, 2010.
DOI : 10.1016/j.cocis.2009.11.002

J. I. Loch, P. Bonarek, A. Polit, D. Riès, M. Dziedzicka-wasylewska et al., Binding of 18-carbon unsaturated fatty acids to bovine ??-lactoglobulin???Structural and thermodynamic studies, International Journal of Biological Macromolecules, vol.57, pp.226-231
DOI : 10.1016/j.ijbiomac.2013.03.021

A. López-rubio and J. M. Lagaron, Whey protein capsules obtained through electrospraying for the encapsulation of bioactives, Innovative Food Science & Emerging Technologies, vol.13, pp.200-206, 2012.
DOI : 10.1016/j.ifset.2011.10.012

S. M. Loveday, X. L. Wang, M. A. Rao, S. G. Anema, and H. Singh, ??-Lactoglobulin nanofibrils: Effect of temperature on fibril formation kinetics, fibril morphology and the rheological properties of fibril dispersions, Food Hydrocolloids, vol.27, issue.1, pp.242-249
DOI : 10.1016/j.foodhyd.2011.07.001

M. Lucock, Folic Acid: Nutritional Biochemistry, Molecular Biology, and Role in Disease Processes, Molecular Genetics and Metabolism, vol.71, issue.1-2, pp.121-138, 2000.
DOI : 10.1006/mgme.2000.3027

H. Madziva, K. Kailasapathy, and M. Phillips, Evaluation of alginate???pectin capsules in Cheddar cheese as a food carrier for the delivery of folic acid, LWT - Food Science and Technology, vol.39, issue.2, pp.146-151, 2006.
DOI : 10.1016/j.lwt.2004.12.015

G. Mandalari, K. Adel-patient, V. Barkholt, C. Baro, L. Bennett et al., In vitro digestibility of beta-casein and beta-lactoglobulin under simulated human gastric and duodenal conditions: a multi-laboratory evaluation. Regulatory Toxicology and Pharmacology, pp.55-372, 2009.

V. Manojlovi?, V. A. Nedovi?, K. Kailasapathy, and N. J. Zuidam, Encapsulation of Probiotics for use in Food Products, Encapsulation Technologies for Active Food Ingredients and Food Processing, pp.269-302
DOI : 10.1007/978-1-4419-1008-0_10

. Marketsandmarkets, Nutraceutical Ingredients Market by Type, Application, Region -2022 | MarketsandMarkets, 2014.

A. H. Martin, G. A. Jong, and . De, Impact of protein pre-treatment conditions on the iron encapsulation efficiency of whey protein cold-set gel particles, European Food Research and Technology, vol.229, issue.286, pp.995-1003, 2012.
DOI : 10.1007/s00217-009-1130-0

A. Matalanis, O. G. Jones, and D. J. Mcclements, Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds, Food Hydrocolloids, vol.25, issue.8, pp.25-1865, 2011.
DOI : 10.1016/j.foodhyd.2011.04.014

D. J. Mcclements, Requirements for food ingredient and nutraceutical delivery systems, Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals, pp.3-18, 2012.
DOI : 10.1533/9780857095909.1.3

D. Mcclements and . Julian, Encapsulation, protection, and release of hydrophilic active components: Potential and limitations of colloidal delivery systems, Advances in Colloid and Interface Science, vol.219, pp.27-53, 2015.
DOI : 10.1016/j.cis.2015.02.002

D. Mcclements, . Julian, E. A. Decker, and Y. Park, Controlling Lipid Bioavailability through Physicochemical and Structural Approaches, Critical Reviews in Food Science and Nutrition, vol.284, issue.1, pp.48-67, 2009.
DOI : 10.1016/S0921-4488(03)00004-X

D. Mcclements, . Julian, and J. Rao, Food-Grade Nanoemulsions: Formulation, Fabrication, Properties, Performance, Biological Fate, and Potential Toxicity, Critical Reviews in Food Science and Nutrition, vol.3, issue.4, pp.285-330, 2011.
DOI : 10.1016/j.foodchem.2007.09.015

G. H. Mcintosh, P. J. Royle, L. Leu, R. K. Regester, G. O. Johnson et al., Whey Proteins as Functional Food Ingredients?, International Dairy Journal, vol.8, issue.5-6, pp.425-434, 1998.
DOI : 10.1016/S0958-6946(98)00065-X

H. Mcnulty and K. Pentieva, Folate bioavailability, Proceedings of the Nutrition Society, vol.134, issue.04, pp.529-536, 2004.
DOI : 10.1159/000012840

G. M. Meesters, Encapsulation of Enzymes and Peptides, Encapsulation Technologies for Active Food Ingredients and Food Processing, pp.253-268, 2010.
DOI : 10.1007/978-1-4419-1008-0_9

J. L. Mills and C. Signore, Neural tube defect rates before and after food fortification with folic acid, Birth Defects Research Part A: Clinical and Molecular Teratology, vol.269, issue.11, pp.70-844, 2004.
DOI : 10.1002/bdra.20075

URL : http://onlinelibrary.wiley.com/doi/10.1002/bdra.20075/pdf

S. F. Mirpoor, S. M. Hosseini, and G. H. Yousefi, Mixed biopolymer nanocomplexes conferred physicochemical stability and sustained release behavior to introduced curcumin, Food Hydrocolloids, vol.71, pp.216-224, 2017.
DOI : 10.1016/j.foodhyd.2017.05.021

S. J. Moat, D. Lang, I. F. Mcdowell, Z. L. Clarke, A. K. Madhavan et al., Folate, homocysteine, endothelial function and cardiovascular disease, The Journal of Nutritional Biochemistry, vol.15, issue.2, pp.64-79, 2004.
DOI : 10.1016/j.jnutbio.2003.08.010

E. Muehlhoff, A. Bennett, D. Macmahon, and A. Food, Milk and dairy products in human nutrition, United Nations, 2013.

D. M. Mulvihill and J. E. Kinsella, Gelation characteristics of whey proteins and betalactoglobulin . Food Technology (USA) Retrieved from http, 1987.

T. Nicolai, M. Britten, and C. Schmitt, ??-Lactoglobulin and WPI aggregates: Formation, structure and applications, Food Hydrocolloids, vol.25, issue.8, pp.25-1945
DOI : 10.1016/j.foodhyd.2011.02.006

M. Nigen, T. Croguennec, and S. Bouhallab, Formation and stability of ??-lactalbumin???lysozyme spherical particles: Involvement of electrostatic forces, Food Hydrocolloids, vol.23, issue.2, pp.510-518, 2009.
DOI : 10.1016/j.foodhyd.2008.02.005

URL : https://hal.archives-ouvertes.fr/hal-00729209

M. Nigen, L. Tilly, V. Croguennec, T. Drouin-kucma, D. Bouhallab et al., Molecular interaction between apo or holo ??-lactalbumin and lysozyme: Formation of heterodimers as assessed by fluorescence measurements, BBA) -Proteins and Proteomics, pp.1794-709, 2009.
DOI : 10.1016/j.bbapap.2008.12.017

URL : https://hal.archives-ouvertes.fr/hal-00404764

A. Oliveira, V. M. Ruiz-henestrosa, M. Von-staszewski, A. M. Pilosof, and M. Pintado, Behaviour of cyanidin-3-glucoside, 2015.

O. 'mahony, J. A. Fox, and P. F. , Milk Proteins: Introduction and Historical Aspects, Advanced Dairy Chemistry, pp.43-85

C. Onwulata and P. Huth, Whey Processing, Functionality and Health Benefits, 2009.
DOI : 10.1002/9780813803845

C. I. Onwulata, Encapsulation of New Active Ingredients, Annual Review of Food Science and Technology, vol.3, issue.1, pp.183-202, 2012.
DOI : 10.1146/annurev-food-022811-101140

J. T. Overbeek and M. J. Voorn, Phase separation in polyelectrolyte solutions. Theory of complex coacervation, Journal of Cellular and Comparative Physiology, vol.75, issue.S1, pp.49-56, 1957.
DOI : 10.1002/recl.19560750311

R. Paliwal, R. J. Babu, and S. Palakurthi, Nanomedicine Scale-up Technologies: Feasibilities and Challenges, AAPS PharmSciTech, vol.15, issue.6, pp.1527-1534, 2014.
DOI : 10.1208/s12249-014-0177-9

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4245446/pdf

J. Pathak, K. Rawat, V. K. Aswal, and H. B. Bohidar, Hierarchical Surface Charge Dependent Phase States of Gelatin???Bovine Serum Albumin Dispersions Close to Their Common pI, The Journal of Physical Chemistry B, vol.118, issue.38, pp.11161-11171, 2014.
DOI : 10.1021/jp5068846

J. Pathak, K. Rawat, and H. B. Bohidar, Charge heterogeneity induced binding and phase stability in ??-lacto-globulin???gelatin B gels and coacervates at their common pI, RSC Advances, vol.4, issue.26, pp.67066-67076, 2015.
DOI : 10.1038/ncomms3007

E. L. Paul, V. A. Atiemo-obeng, and S. M. Kresta, Handbook of Industrial Mixing: Science and Practice, 2004.
DOI : 10.1002/0471451452

R. Penalva, I. Esparza, M. Agüeros, C. J. Gonzalez-navarro, C. Gonzalez-ferrero et al., Casein nanoparticles as carriers for the oral delivery of folic acid, Food Hydrocolloids, vol.44, pp.399-406, 2015.
DOI : 10.1016/j.foodhyd.2014.10.004

O. E. Pérez, T. David-birman, E. Kesselman, S. Levi-tal, and U. Lesmes, Milk protein???vitamin interactions: Formation of beta-lactoglobulin/folic acid nano-complexes and their impact??on??in??vitro gastro-duodenal proteolysis, Food Hydrocolloids, vol.38, pp.40-47, 2014.
DOI : 10.1016/j.foodhyd.2013.11.010

O. E. Pérez, T. David-birman, E. Kesselman, S. Levi-tal, and U. Lesmes, Milk protein???vitamin interactions: Formation of beta-lactoglobulin/folic acid nano-complexes and their impact??on??in??vitro gastro-duodenal proteolysis, Food Hydrocolloids, vol.38, pp.40-47, 2014.
DOI : 10.1016/j.foodhyd.2013.11.010

R. Pérez-masiá, R. López-nicolás, M. J. Periago, G. Ros, J. M. Lagaron et al., Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications, Food Chemistry, vol.168, pp.124-133, 2015.
DOI : 10.1016/j.foodchem.2014.07.051

C. Pineda-vadillo, F. Nau, C. Guerin-dubiard, J. Jardin, V. Lechevalier et al., The food matrix affects the anthocyanin profile of fortified egg and dairy matrices during processing and in vitro digestion, Food Chemistry, vol.214, pp.486-496, 2017.
DOI : 10.1016/j.foodchem.2016.07.049

URL : https://hal.archives-ouvertes.fr/hal-01454637

DOI : 10.1007/1-4020-4741-x_3

D. Priftis, R. Farina, and M. Tirrell, Interfacial Energy of Polypeptide Complex Coacervates Measured via Capillary Adhesion, Langmuir, issue.23, pp.28-8721, 2012.

I. M. Reddy, N. K. Kella, and J. E. Kinsella, Structural and conformational basis of the resistance of .beta.-lactoglobulin to peptic and chymotryptic digestion, Journal of Agricultural and Food Chemistry, vol.36, issue.4, pp.737-741, 1988.
DOI : 10.1021/jf00082a015

P. Relkin and R. Shukat, Food protein aggregates as vitamin-matrix carriers: Impact of processing conditions, Food Chemistry, vol.134, issue.4, pp.2141-2148, 2012.
DOI : 10.1016/j.foodchem.2012.04.020

URL : https://hal.archives-ouvertes.fr/hal-01003360

G. E. Remondetto, P. Paquin, and M. Subirade, Cold Gelation of ??-lactoglobulin in the Presence of Iron, Journal of Food Science, vol.34, issue.4, pp.586-595, 2002.
DOI : 10.1038/scientificamerican0181-124

D. Renard, P. Robert, L. Lavenant, D. Melcion, Y. Popineau et al., Biopolymeric colloidal carriers for encapsulation or controlled release applications, International Journal of Pharmaceutics, vol.242, issue.1-2, pp.163-166, 2002.
DOI : 10.1016/S0378-5173(02)00143-6

M. Research, R. , and M. , Research and Markets: Food Encapsulation Market 2015-2020: Global Industry Analysis and Opportunity Assessment of the $5.46 Billion Market Global Nutraceutical Ingredients Market, 2014.

H. S. Ribeiro, H. P. Schuchmann, R. Engel, E. Walz, and K. Briviba, Encapsulation of Carotenoids, Encapsulation Technologies for Active Food Ingredients and Food Processing, pp.211-252, 2010.
DOI : 10.1007/978-1-4419-1008-0_8

M. Ruiz-rico, É. Pérez-esteve, M. J. Lerma-garcía, M. D. Marcos, R. Martínez-máñez et al., Protection of folic acid through encapsulation in mesoporous silica particles included in fruit juices, Food Chemistry, vol.218, pp.471-478, 2017.
DOI : 10.1016/j.foodchem.2016.09.097

C. Sabliov, H. Chen, and R. Yada, Nanotechnology and Functional Foods: Effective Delivery of Bioactive Ingredients, 2015.
DOI : 10.1002/9781118462157

G. B. Saha, Fundamentals of Nuclear Pharmacy, 2010.

M. Sahlan and I. Pramadewi, Nanoencapsulation of the flavonoids isolated from Phaleria macrocarpa leaf by casein micelle, International Journal of Pharmacology and Biological Sciences, vol.3, pp.472-478, 2012.

D. Salvatore, T. Croguennec, S. Bouhallab, V. Forge, and T. Nicolai, Kinetics and Structure during Self-Assembly of Oppositely Charged Proteins in Aqueous Solution, Biomacromolecules, vol.12, issue.5, pp.12-1920, 2011.
DOI : 10.1021/bm200264m

URL : https://hal.archives-ouvertes.fr/hal-01138113

F. M. Sánchez, F. García, P. Calvo, M. J. Bernalte, and D. González-gómez, Optimization of broccoli microencapsulation process by complex coacervation using response surface methodology, Innovative Food Science & Emerging Technologies, vol.34, pp.243-249, 2016.
DOI : 10.1016/j.ifset.2016.02.008

M. A. Sanjoaquin, N. Allen, E. Couto, A. W. Roddam, and T. J. Key, Folate intake and colorectal cancer risk: A meta-analytical approach, International Journal of Cancer, vol.87, issue.5, pp.825-828, 2005.
DOI : 10.1042/bj2570277

H. Sato and A. Nakajima, Complex coacervation in sulfated polyvinyl alcoholaminoacetalyzed polyvinyl alcohol system -II. Formation of coacervate droplets, 1974.

L. Sawyer and C. Holt, The Secondary Structure of Milk Proteins and their Biological Function, Journal of Dairy Science, vol.76, issue.10, pp.76-3062, 1993.
DOI : 10.3168/jds.S0022-0302(93)77646-8

C. Schmitt, L. Aberkane, and C. Sanchez, 16 -Protein?polysaccharide complexes and coacervates, Handbook of Hydrocolloids, pp.420-476, 2009.
DOI : 10.1533/9781845695873.420

C. Schmitt and S. L. Turgeon, Protein/polysaccharide complexes and coacervates in food systems, Advances in Colloid and Interface Science, vol.167, issue.1-2, pp.63-70, 2011.
DOI : 10.1016/j.cis.2010.10.001

C. Schmitt, C. Bovay, A. Vuilliomenet, M. Rouvet, L. Bovetto et al., Multiscale characterization of individualized beta-lactoglobulin microgels formed upon heat treatment under narrow pH range conditions, Langmuir: The ACS Journal of Surfaces and Colloids, issue.14, pp.25-7899, 2009.

E. Semo, E. Kesselman, D. Danino, and Y. D. Livney, Casein micelle as a natural nanocapsular vehicle for nutraceuticals, Food Hydrocolloids, vol.21, pp.5-6, 2007.

S. Sen and Y. Pathak, Nanotechnology in Nutraceuticals: Production to Consumption, 2016.
DOI : 10.1201/9781315370859

A. Shapira, Y. G. Assaraf, and Y. D. Livney, Beta-casein nanovehicles for oral delivery of chemotherapeutic drugs, Nanomedicine: Nanotechnology, Biology and Medicine, vol.6, issue.1, pp.119-126, 2010.
DOI : 10.1016/j.nano.2009.06.006

H. M. Shewan and J. R. Stokes, Review of techniques to manufacture micro-hydrogel particles for the food industry and their applications, Journal of Food Engineering, vol.119, issue.4, pp.781-792, 2013.
DOI : 10.1016/j.jfoodeng.2013.06.046

E. Shimoni, Chapter 23 -Nanotechnology for Foods: Delivery Systems, Global Issues in Food Science and Technology, pp.411-424, 2009.

S. Diego, Retrieved from http://www.sciencedirect.com/science

G. Simone, An alternative approach to the phase change of proteins in an aqueous mixture with ethanol, Chemical Engineering Research and Design, vol.105, pp.130-136, 2016.
DOI : 10.1016/j.cherd.2015.11.005

C. E. Sing, Development of the modern theory of polymeric complex coacervation, Advances in Colloid and Interface Science, vol.239, pp.2-16, 2017.
DOI : 10.1016/j.cis.2016.04.004

H. Singh and P. G. Havea, Thermal Denaturation Aggregation and Gelation of Whey Proteins Whey and whey proteins?From gutter-to-gold, Advanced Dairy Chemistry?1 Proteins, pp.1261-1287, 2003.

A. H. Sneharani, J. V. Karakkat, S. A. Singh, and A. G. Rao, Interaction of Curcumin with ??-Lactoglobulin???Stability, Spectroscopic Analysis, and Molecular Modeling of the Complex, Journal of Agricultural and Food Chemistry, vol.58, issue.20, pp.58-11130, 2010.
DOI : 10.1021/jf102826q

W. Somchue, W. Sermsri, J. Shiowatana, and A. Siripinyanond, Encapsulation of ??-tocopherol in protein-based delivery particles, Food Research International, vol.42, issue.8, pp.42-909
DOI : 10.1016/j.foodres.2009.04.021

R. J. Stewart, C. S. Wang, and H. Shao, Complex coacervates as a foundation for synthetic underwater adhesives, Advances in Colloid and Interface Science, vol.167, issue.1-2, pp.85-93, 2011.
DOI : 10.1016/j.cis.2010.10.009

M. Sugiarto, A. Ye, and H. Singh, Characterisation of binding of iron to sodium caseinate and whey protein isolate, Food Chemistry, vol.114, issue.3, pp.1007-1013, 2009.
DOI : 10.1016/j.foodchem.2008.10.062

K. Tainaka, Effect of counterions on complex coacervation, Biopolymers, vol.47, issue.7, pp.1289-1298, 1980.
DOI : 10.1002/bip.1980.360190705

G. M. Tavares, T. Croguennec, A. F. Carvalho, and S. Bouhallab, Milk proteins as encapsulation devices and delivery vehicles: Applications and??trends, Trends in Food Science & Technology, vol.37, issue.1, pp.5-20, 2014.
DOI : 10.1016/j.tifs.2014.02.008

URL : https://hal.archives-ouvertes.fr/hal-01209620

G. M. Tavares, T. Croguennec, P. Hamon, A. F. Carvalho, and S. Bouhallab, Selective coacervation between lactoferrin and the two isoforms of????-lactoglobulin, Food Hydrocolloids, vol.48, pp.238-247, 2015.
DOI : 10.1016/j.foodhyd.2015.02.027

URL : https://hal.archives-ouvertes.fr/hal-01209800

G. M. Tavares, T. Croguennec, P. Hamon, A. F. Carvalho, and S. Bouhallab, Selective coacervation between lactoferrin and the two isoforms of????-lactoglobulin, Food Hydrocolloids, vol.48, pp.238-247, 2015.
DOI : 10.1016/j.foodhyd.2015.02.027

URL : https://hal.archives-ouvertes.fr/hal-01209800

G. M. Tavares, T. Croguennec, S. Lê, O. Lerideau, P. Hamon et al., Binding of Folic Acid Induces Specific Self-Aggregation of Lactoferrin: Thermodynamic Characterization, Langmuir, vol.31, issue.45, pp.31-12481, 2015.
DOI : 10.1021/acs.langmuir.5b02299

URL : https://hal.archives-ouvertes.fr/hal-01454552

T. M. Taylor, P. M. Davidson, B. D. Bruce, and J. Weiss, Liposomal Nanocapsules in Food Science and Agriculture, Critical Reviews in Food Science and Nutrition, vol.44, issue.7-8, pp.7-8, 2005.
DOI : 10.1093/pcp/pcg005

Z. Teng, Y. Li, and Q. Wang, Insight into Curcumin-Loaded ??-Lactoglobulin Nanoparticles: Incorporation, Particle Disintegration, and Releasing Profiles, Journal of Agricultural and Food Chemistry, vol.62, issue.35, pp.62-8837, 2014.
DOI : 10.1021/jf503199g

C. Thies, Microencapsulation methods based on biopolymer phase separation and gelation phenomena in aqueous media, Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals, pp.177-207, 2012.
DOI : 10.1533/9780857095909.2.177

C. Thies, Microencapsulation of Flavors by Complex Coacervation, Encapsulation and Controlled Release Technologies in Food Systems, pp.149-170, 2007.
DOI : 10.1111/j.2042-7158.1988.tb05257.x

M. Tippetts, S. Martini, C. Brothersen, and D. J. Mcmahon, Fortification of cheese with vitamin D3 using dairy protein emulsions as delivery systems, Journal of Dairy Science, vol.95, issue.9, pp.95-4768, 2012.
DOI : 10.3168/jds.2011-5134

A. Tiwari, S. Bindal, and H. B. Bohidar, Kinetics of Protein???Protein Complex Coacervation and Biphasic Release of Salbutamol Sulfate from Coacervate Matrix, Biomacromolecules, vol.10, issue.1, pp.184-189, 2009.
DOI : 10.1021/bm801160s

M. H. Tunick, Whey Protein Production and Utilization: A Brief History, Whey Processing, Functionality and Health Benefits, pp.1-13, 2008.
DOI : 10.1002/9780813803845.ch1

S. L. Wiley-blackwell-turgeon, C. Schmitt, and C. Sanchez, Protein?polysaccharide complexes and coacervates, Current Opinion in Colloid & Interface Science, vol.12, pp.4-5, 2007.

D. Van-swaay, T. D. Tang, S. Mann, and A. De-mello, Microfluidic Formation of Membrane-Free Aqueous Coacervate Droplets in Water, Angewandte Chemie International Edition, issue.29, pp.54-8398, 2015.

A. Veis, E. Bodor, and S. Mussell, Molecular weight fractionation and the self-suppression of complex coacervation, Biopolymers, vol.16, issue.1, pp.37-59, 1967.
DOI : 10.1002/recl.19560750904

M. Vittayanont, J. F. Steffe, S. L. Flegler, and D. M. Smith, Gelling properties of heatdenatured beta-lactoglobulin aggregates in a high-salt buffer, Journal of Agricultural and Food Chemistry, issue.10, pp.50-2987, 2002.

Q. Wang and J. B. Schlenoff, The Polyelectrolyte Complex/Coacervate Continuum, Macromolecules, vol.47, issue.9, pp.3108-3116, 2014.
DOI : 10.1021/ma500500q

R. R. Watson and V. R. Preedy, Probiotics, Prebiotics, and Synbiotics: Bioactive Foods in Health Promotion, 2015.

F. Weinbreck, R. De-vries, P. Schrooyen, and C. G. De-kruif, Complex Coacervation of Whey Proteins and Gum Arabic, Biomacromolecules, vol.4, issue.2, pp.293-303, 2003.
DOI : 10.1021/bm025667n

F. Weinbreck, M. Minor, and C. G. De-kruif, Microencapsulation of oils using whey protein/gum arabic coacervates, Journal of Microencapsulation, vol.4, issue.2, pp.667-679, 2004.
DOI : 10.1021/bm025667n

Z. Xiao, W. Liu, G. Zhu, R. Zhou, and Y. Niu, A review of the preparation and application of flavour and essential oils microcapsules based on complex coacervation technology, Journal of the Science of Food and Agriculture, vol.84, issue.8, pp.94-1482, 2014.
DOI : 10.1002/cite.201100212

Z. Xiao, W. Liu, G. Zhu, R. Zhou, and Y. Niu, A review of the preparation and application of flavour and essential oils microcapsules based on complex coacervation technology, Journal of the Science of Food and Agriculture, vol.84, issue.8, pp.94-1482, 2014.
DOI : 10.1002/cite.201100212

C. Yan and W. Zhang, Chapter 12 -Coacervation Processes, Microencapsulation in the Food Industry, pp.125-137, 2014.
DOI : 10.1016/b978-0-12-404568-2.00012-1

Y. Yan, E. Kizilay, D. Seeman, S. Flanagan, P. L. Dubin et al., Heteroprotein Complex Coacervation: Bovine ??-Lactoglobulin and Lactoferrin, Langmuir, vol.29, issue.50, pp.29-15614, 2013.
DOI : 10.1021/la4027464

Y. Yang and D. J. Mcclements, Encapsulation of vitamin E in edible emulsions fabricated using a natural surfactant, Food Hydrocolloids, vol.30, issue.2, pp.712-720, 2013.
DOI : 10.1016/j.foodhyd.2012.09.003

J. Zhang, X. Liu, M. Subirade, P. Zhou, and L. Liang, A study of multi-ligand beta-lactoglobulin complex formation, Food Chemistry, vol.165, pp.256-261, 2014.
DOI : 10.1016/j.foodchem.2014.05.109