A. Alwan, R. Narayan, and . Aluru, Improved statistical models for limited datasets in uncertainty quantification using stochastic collocation, Journal of Computational Physics, vol.255, pp.521-539, 2013.
DOI : 10.1016/j.jcp.2013.08.024

C. Audebert, P. Bucur, M. Bekheit, E. Vibert, I. E. Vignon-clementel et al., Kinetic scheme for arterial and venous blood flow, and application to partial hepatectomy modeling, Computer Methods in Applied Mechanics and Engineering, vol.314, 2016.
DOI : 10.1016/j.cma.2016.07.009

URL : https://hal.archives-ouvertes.fr/hal-01347500

M. E. Abbate, Y. Boulakia, J. Coudière, P. Gerbeau, N. Zitoun et al., In silico assessment of the effects of various compounds in MEA/hiPSC-CM assays: Modeling and numerical simulations, Journal of Pharmacological and Toxicological Methods, vol.89, 2017.
DOI : 10.1016/j.vascn.2017.10.005

M. Niall, D. J. Adams, and . Hand, Improving the practice of classifier performance assessment, Neural computation, vol.12, issue.2, pp.305-311, 2000.

G. Didier, . Arquès, J. Christian, and . Michel, Study of a perturbation in the coding periodicity, Mathematical biosciences, vol.86, issue.1, pp.1-14, 1987.

A. Yama, B. Abassi, N. Xi, W. Li, A. Ouyang et al., Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment, British journal of pharmacology, vol.12, issue.1655, pp.1424-1441, 2012.

J. Oliver, A. Britton, K. Bueno-orovio, H. Van-ammel, R. Lu et al., Experimentally calibrated population of models predicts and explains intersubject variability in cardiac cellular electrophysiology, Proceedings of the National Academy of Sciences, pp.110-2098, 2013.

S. Boulakia, . Cazeau, A. Miguel, J. Fernández, N. Gerbeau et al., Mathematical Modeling of Electrocardiograms: A Numerical Study, Annals of Biomedical Engineering, vol.98, issue.1???3, pp.1071-1097, 2010.
DOI : 10.1161/01.CIR.98.18.1928

URL : https://hal.archives-ouvertes.fr/inria-00400490

H. Bungartz and M. Griebel, Sparse grids, Acta Numerica, vol.13, pp.147-269, 2004.
DOI : 10.1017/S0962492904000182

E. Bernhard, . Boser, M. Isabelle, . Guyon, N. Vladimir et al., A training algorithm for optimal margin classifiers, Proceedings of the fifth annual workshop on Computational learning theory, pp.144-152, 1992.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, Convex optimization with sparsity-inducing norms, Optimization for Machine Learning, vol.5, pp.19-53, 2011.
DOI : 10.1561/2200000015

URL : https://hal.archives-ouvertes.fr/hal-00937150

I. Babu?ka, F. Nobile, and R. Tempone, A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data, SIAM Journal on Numerical Analysis, vol.45, issue.3, pp.1005-1034, 2007.
DOI : 10.1137/050645142

[. Bueno-orovio, M. Elizabeth, . Cherry, H. Flavio, and . Fenton, Minimal model for human ventricular action potentials in tissue, Journal of Theoretical Biology, vol.253, issue.3, pp.544-560, 2008.
DOI : 10.1016/j.jtbi.2008.03.029

]. D. Bps-+-06, R. C. Bottino, A. Penland, M. Stamps, B. Traebert et al., Preclinical cardiac safety assessment of pharmaceutical compounds using an integrated systems-based computer model of the heart, Progress in biophysics and molecular biology, pp.414-443, 2006.

S. Barber, J. Voss, and M. Webster, The rate of convergence for approximate Bayesian computation, Electronic Journal of Statistics, vol.9, issue.1, pp.80-105, 2015.
DOI : 10.1214/15-EJS988SUPP

H. Cintrón-arias, A. Banks, . Capaldi, L. Alun, and . Lloyd, A sensitivity matrix based methodology for inverse problem formulation, Journal of Inverse and Ill-Posed Problems, pp.545-564, 2009.
DOI : 10.1002/kin.20369

O. Clayton, E. Bernus, H. Cherry, . Dierckx, . Fh-fenton et al., Models of cardiac tissue electrophysiology: Progress, challenges and open questions, Progress in biophysics and molecular biology, pp.22-48, 2011.
DOI : 10.1016/j.pbiomolbio.2010.05.008

D. Chapelle, A. Collin, and J. Gerbeau, A SURFACE-BASED ELECTROPHYSIOLOGY MODEL RELYING ON ASYMPTOTIC ANALYSIS AND MOTIVATED BY CARDIAC ATRIA MODELING, Mathematical Models and Methods in Applied Sciences, vol.1, issue.14, pp.2749-2776, 2013.
DOI : 10.1098/rsfs.2010.0048

URL : https://hal.archives-ouvertes.fr/hal-00723691

A. Chen, X. Chu, Y. Yang, J. Lei, and . Chu, Identification of the Parameters of the Beeler???Reuter Ionic Equation With a Partially Perturbed Particle Swarm Optimization, IEEE Transactions on Biomedical Engineering, vol.59, issue.12, pp.3412-3421, 2012.
DOI : 10.1109/TBME.2012.2216265

M. Christie, V. Demyanov, and D. Erbas, Uncertainty quantification for porous media flows, Journal of Computational Physics, vol.217, issue.1, pp.143-158, 2006.
DOI : 10.1016/j.jcp.2006.01.026

G. Paul, E. Constantine, Q. Dow, and . Wang, Active subspace methods in theory and practice: Applications to kriging surfaces, SIAM Journal on Scientific Computing, vol.36, issue.4, pp.1500-1524, 2014.

G. Paul, M. Constantine, J. Emory, G. Larsson, and . Iaccarino, Exploiting active subspaces to quantify uncertainty in the numerical simulation of the hyshot ii scramjet, Journal of Computational Physics, vol.302, pp.1-20, 2015.

. Cgb-+-16-]-i, J. Cavero, V. Guillon, M. Ballet, J. Clements et al., Comprehensive in vitro proarrhythmia assay (cipa): Pending issues for successful validation and implementation, Journal of pharmacological and toxicological methods, vol.81, pp.21-36, 2016.

D. Scott, A. C. Cohen, and . Hindmarsh, Cvode, a stiff/nonstiff ode solver in c, Computers in physics, vol.10, issue.2, pp.138-143, 1996.

C. Chang and C. Lin, LIBSVM, ACM transactions on intelligent systems and technology (TIST), p.27, 2011.
DOI : 10.1145/1961189.1961199

A. Autumn, C. M. Cuellar, . Lloyd, F. Poul, . Nielsen et al., An overview of cellml 1.1, a biological model description language, Simulation, issue.12, pp.79740-747, 2003.

[. Cao, S. Li, L. Petzold, and R. Serban, Adjoint Sensitivity Analysis for Differential-Algebraic Equations: The Adjoint DAE System and Its Numerical Solution, SIAM Journal on Scientific Computing, vol.24, issue.3, pp.1076-1089, 2003.
DOI : 10.1137/S1064827501380630

C. John, J. Clements, . Nenonen, M. Li, and . Horá?ek, Activation dynamics in anisotropic cardiac tissue via decoupling, Annals of biomedical engineering, vol.32, issue.7, pp.984-990, 2004.

A. Collin, Analyse asymptotique en électrophysiologie cardiaque: applications à la modélisation et à l'assimilation de données, 2014.

G. Paul and . Constantine, Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter Studies, 2015.

M. Courtemanche, J. Rafael, S. Ramirez, and . Nattel, Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model, American Journal of Physiology-Heart and Circulatory Physiology, vol.263, issue.32, pp.301-321, 1998.
DOI : 10.1016/S0006-3495(95)80271-7

M. Clements and N. Thomas, High-Throughput Multi-Parameter Profiling of Electrophysiological Drug Effects in Human Embryonic Stem Cell Derived Cardiomyocytes Using Multi-Electrode Arrays, Toxicological Sciences, vol.84, issue.2, pp.445-461, 2014.
DOI : 10.1161/01.RES.84.9.989

. Christ, . Wettwer, . Voigt, . Hala, . Radicke et al., Pathology-specific effects of the IKur/Ito/IK,ACh blocker AVE0118 on ion channels in human chronic atrial fibrillation, British Journal of Pharmacology, vol.496, issue.Part 3, pp.1541619-1630, 2008.
DOI : 10.1113/jphysiol.1996.sp021716

. C. Dcp-+-16-]-c, N. Drovandi, S. Cusimano, B. A. Psaltis, A. N. Lawson et al., Sampling methods for exploring between-subject variability in cardiac electrophysiology experiments, Journal of The Royal Society Interface, issue.121, pp.13-2016

M. Shaun, . Davidson, D. Paul, R. Docherty, and . Murray, The dimensional reduction method for identification of parameters that trade-off due to similar model roles, Mathematical Biosciences, vol.285, pp.119-127, 2017.

F. Keith, J. Decker, . Heijman, R. Jonathan, . Silva et al., Properties and ionic mechanisms of action potential adaptation, restitution, and accommodation in canine epicardium, American Journal of Physiology-Heart and Circulatory Physiology, vol.296, issue.4, pp.1017-1026, 2009.

S. Dokos, H. Nigel, and . Lovell, Parameter estimation in cardiac ionic models. Progress in biophysics and molecular biology, pp.407-431, 2004.
DOI : 10.1016/j.pbiomolbio.2004.02.002

URL : http://www3.emath.pu.edu.tw/web/Biomedical Math Lecture Notes/lovellpbmb04p407.pdf

P. Arthur, . Dempster, M. Nan, . Laird, B. Donald et al., Maximum likelihood from incomplete data via the em algorithm, Journal of the royal statistical society. Series B (methodological), pp.1-38, 1977.

[. Davies, H. Balvanta-mistry, L. Hussein, C. E. Pollard, J. Valentin et al., An in silico canine cardiac midmyocardial action potential duration model as a tool for early drug safety assessment, American Journal of Physiology-Heart and Circulatory Physiology, vol.16, issue.7, 2011.
DOI : 10.1161/01.RES.84.5.571

D. Dobrev and U. Ravens, Remodeling of cardiomyocyte ion channels in human atrial fibrillation Basic research in cardiology, pp.137-148, 2003.

D. Dubin, Lecture accélérée de l'ECG: un enseignement programmé pour une interprétation systématique des électrocardiogrammes. Maloine, 1984.

R. Mark, K. Davies, . Wang, R. Gary, A. Mirams et al., Recent developments in using mechanistic cardiac modelling for drug safety evaluation, Thomas Singer, and Liudmila Polonchuk, 2016.

R. Fisher, The genetical theory of natural selection: a complete variorum edition, 1930.
DOI : 10.5962/bhl.title.27468

L. Formaggia, A. Quarteroni, and A. Veneziani, Cardiovascular Mathematics: Modeling and simulation of the circulatory system, 2010.
DOI : 10.1007/978-88-470-1152-6

R. Gul and S. Bernhard, Parametric uncertainty and global sensitivity analysis in a model of the carotid bifurcation: Identification and ranking of most sensitive model parameters, Mathematical Biosciences, vol.269, pp.104-116, 2015.
DOI : 10.1016/j.mbs.2015.09.001

[. Gemmell, K. Burrage, B. Rodriguez, and A. Quinn, Population of Computational Rabbit-Specific Ventricular Action Potential Models for Investigating Sources of Variability in Cellular Repolarisation, PLoS ONE, vol.1245, issue.3, p.90112, 2014.
DOI : 10.1371/journal.pone.0090112.t004

D. Luke, G. , and W. Doghmi, Use of indicative and reciprocal electrocardiographic changes to help localize the site of coronary occlusion, Proceedings Medical Center), vol.14, issue.1, p.104, 2001.

I. Guyon and A. Elisseeff, An introduction to variable and feature selection, Journal of machine learning research, vol.3, pp.1157-1182, 2003.

A. Louis, G. , and E. Gold-berger, Clinical electrocardiography , a simplified approach, Critical Care Medicine, vol.9, issue.12, pp.891-892, 1981.

[. Guatimosim, C. Guatimosim, and L. Song, Imaging Calcium Sparks in Cardiac Myocytes, Light Microscopy: Methods and Protocols, pp.205-214, 2011.
DOI : 10.1007/978-1-60761-950-5_12

[. Gokulakrishnan, . Lawrence, E. Mclellan, and . Grandmaison, A functional-PCA approach for analyzing and reducing complex chemical mechanisms, Computers & Chemical Engineering, vol.30, issue.6-7, pp.1093-1101, 2006.
DOI : 10.1016/j.compchemeng.2006.02.007

J. Gerbeau, D. Lombardi, and E. Tixier, A moment-matching method to study the variability of phenomena described by partial differential equations, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01391254

J. Gerbeau, D. Lombardi, and E. Tixier, How to choose biomarkers in view of parameter estimation, 2017.

E. Grenier, V. Louvet, and P. Vigneaux, Parameter estimation in non-linear mixed effects models with SAEM algorithm: extension from ODE to PDE, ESAIM: Mathematical Modelling and Numerical Analysis, vol.48, issue.5, pp.1303-1329, 2014.
DOI : 10.1137/1.9780898717921

URL : https://hal.archives-ouvertes.fr/hal-00936373

J. Guilleminot, C. Noshadravan, R. Soize, and . Ghanem, A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.17-20, pp.1637-1648, 2011.
DOI : 10.1016/j.cma.2011.01.016

URL : https://hal.archives-ouvertes.fr/hal-00684305

J. Guilleminot and C. Soize, On the Statistical Dependence for the Components of Random Elasticity Tensors Exhibiting Material Symmetry Properties, Journal of Elasticity, vol.21, issue.5, pp.109-130, 2013.
DOI : 10.1016/S0065-2156(08)70332-6

URL : https://hal.archives-ouvertes.fr/hal-00724048

A. Griewank and A. Walther, Evaluating derivatives: principles and techniques of algorithmic differentiation. Siam, 2008.
DOI : 10.1137/1.9780898717761

B. Ganapathysubramanian and N. Zabaras, Sparse grid collocation schemes for stochastic natural convection problems, Journal of Computational Physics, vol.225, issue.1, pp.652-685, 2007.
DOI : 10.1016/j.jcp.2006.12.014

[. Hansen, The CMA Evolution Strategy: A Comparing Review, Towards a new evolutionary computation, pp.75-102, 2006.
DOI : 10.1007/3-540-32494-1_4

C. Alan, . Hindmarsh, N. Peter, . Brown, E. Keith et al., Sundials: Suite of nonlinear and differential/algebraic equation solvers, ACM Transactions on Mathematical Software (TOMS), issue.3, pp.31363-396, 2005.

B. Ben, S. Hui, . Dokos, and . Lovell, Parameter identifiability of cardiac ionic models using a novel cellml least squares optimization tool, 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.5307-5310, 2007.

F. Hecht, New development in freefem++, Journal of Numerical Mathematics, vol.20, issue.3-4, pp.251-265, 2012.
DOI : 10.1515/jnum-2012-0013

URL : https://hal.archives-ouvertes.fr/hal-01476313

D. Henrion, B. Jean, M. Lasserre, and . Mevissen, Mean Squared Error Minimization for Inverse Moment Problems, Applied Mathematics & Optimization, vol.70, issue.8, pp.83-110, 2014.
DOI : 10.1364/JOSA.70.000920

URL : https://hal.archives-ouvertes.fr/hal-00725977

P. Owen, . Hamill, E. Marty, B. Neher, F. Sakmann et al., Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflügers Archiv European journal of physiology, vol.391, issue.2, pp.85-100, 1981.

[. Hansen, S. André, L. Niederberger, P. Guzzella, and . Koumoutsakos, A Method for Handling Uncertainty in Evolutionary Optimization With an Application to Feedback Control of Combustion, IEEE Transactions on Evolutionary Computation, vol.13, issue.1, pp.180-197, 2009.
DOI : 10.1109/TEVC.2008.924423

URL : https://hal.archives-ouvertes.fr/inria-00276216

C. Himpe and M. Ohlberger, Cross-Gramian-Based Combined State and Parameter Reduction for Large-Scale Control Systems, Mathematical Problems in Engineering, vol.31, issue.9, 2014.
DOI : 10.1109/TAC.1986.1104421

URL : http://doi.org/10.1155/2014/843869

J. Thomas, Y. Hund, and . Rudy, Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model, Circulation, vol.110, issue.20, pp.3168-3174, 2004.

F. Heiss and V. Winschel, Likelihood approximation by numerical integration on sparse grids, Journal of Econometrics, vol.144, issue.1, pp.62-80, 2008.
DOI : 10.1016/j.jeconom.2007.12.004

URL : https://hal.archives-ouvertes.fr/hal-00501810

T. Edwin and . Jaynes, Information theory and statistical mechanics, p.620, 1957.

H. Ross, . Johnstone, T. Eugene, R. Chang, . Bardenet et al., Uncertainty and variability in models of the cardiac action potential: Can we build trustworthy models, Journal of molecular and cellular cardiology, 2015.

R. Peter, R. M. Johnston, and . Gulrajani, Selecting the corner in the l-curve approach to tikhonov regularization, IEEE Transactions on biomedical engineering, vol.47, issue.9, pp.1293-1296, 2000.

[. Krier, . Francois, M. Wertz, and . Verleysen, FEATURE SCORING BY MUTUAL INFORMATION FOR CLASSIFICATION OF MASS SPECTRA, Applied Artificial Intelligence, 2006.
DOI : 10.1142/9789812774118_0079

E. Kuhn and M. Lavielle, Maximum likelihood estimation in nonlinear mixed effects models, Computational Statistics & Data Analysis, vol.49, issue.4, pp.1020-1038, 2005.
DOI : 10.1016/j.csda.2004.07.002

[. Kaur, A. Nygren, J. Edward, and . Vigmond, Fitting membrane resistance in single cardiac myocytes reduces variability in parameters, Computing in Cardiology 2014, pp.209-212, 2014.

B. J. Kogan, Introduction to computational cardiology: mathematical modeling and computer simulation, 2009.
DOI : 10.1007/978-0-387-76686-7

J. Kramer, C. A. Obejero-paz, G. Myatt, Y. A. Kuryshev, A. Bruening-wright et al., Mice models: superior to the herg model in predicting torsade de pointes Scientific reports, 2013.

[. Koutsourelakis, A multi-resolution, non-parametric, Bayesian framework for identification of spatially-varying model parameters, Journal of Computational Physics, vol.228, issue.17, pp.6184-6211, 2009.
DOI : 10.1016/j.jcp.2009.05.016

J. Kaipio and E. Somersalo, Statistical and computational inverse problems, 2006.

T. Jussi, G. Koivumäki, . Seemann, M. Mary, P. Maleckar et al., In silico screening of the key cellular remodeling targets in chronic atrial fibrillation, PLoS Comput Biol, vol.10, issue.5, p.1003620, 2014.

U. David, G. Keller, . Seemann, L. Daniel, D. Weiss et al., Computer based modeling of the congenital long-qt 2 syndrome in the visible man torso: From genes to ecg, 29th Annual International Conference of the IEEE, pp.1410-1413, 2007.

C. Lemieux, Monte carlo and quasi-monte carlo sampling, 2009.

M. Daniel, . Lombardo, H. Flavio, . Fenton, M. Sanjiv et al., Comparison of detailed and simplified models of human atrial myocytes to recapitulate patient specific properties, PLOS Comput Biol, issue.8, pp.12-1005060, 2016.

M. Young-seon-lee, J. Hwang, C. Song, B. Li, . Joung et al., The contribution of ionic currents to rate-dependent action potential duration and pattern of reentry in a mathematical model of human atrial fibrillation, PloS one, vol.11, issue.3, p.150779, 2016.

. Lixoft, Monolix Software, Version 4.3.2, 2014.

C. Luo and Y. Rudy, A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes, Circulation Research, vol.74, issue.6, pp.1071-1096, 1994.
DOI : 10.1161/01.RES.74.6.1071

M. Cummins, L. , and E. Sobie, Improved prediction of druginduced torsades de pointes through simulations of dynamics and machine learning algorithms, Clinical Pharmacology & Therapeutics, vol.100, issue.4, pp.371-379, 2016.

[. Lance and W. Williams, A General Theory of Classificatory Sorting Strategies: 1. Hierarchical Systems, The Computer Journal, vol.9, issue.4, pp.373-380, 1967.
DOI : 10.1093/comjnl/9.4.373

S. Koen, J. Matthys, J. Alastruey, . Peiró, W. Ashraf et al., Pulse wave propagation in a model human arterial network: assessment of 1-d numerical simulations against in vitro measurements, Journal of biomechanics, issue.15, pp.403476-3486, 2007.

A. Muszkiewicz, J. Oliver, P. Britton, E. Gemmell, C. Passini et al., Variability in cardiac electrophysiology: Using experimentally-calibrated populations of models to move beyond the single virtual physiological human paradigm, Progress in biophysics and molecular biology, pp.115-127, 2016.
DOI : 10.1016/j.pbiomolbio.2015.12.002

[. Meyer, K. Boven, E. Günther, and M. Fejtl, Micro-Electrode Arrays in Cardiac Safety Pharmacology, Drug Safety, vol.13, issue.2, pp.763-772, 2004.
DOI : 10.2165/00002018-200427110-00002

. Mcs-+-11-]-g, Y. Mirams, A. Cui, M. Sher, J. Fink et al., Simulation of multiple ion channel block provides improved early prediction of compounds clinical torsadogenic risk, Cardiovascular research, vol.91, issue.1, pp.53-61, 2011.

[. Massot, F. Laurent, D. Kah, and S. De-chaisemartin, A Robust Moment Method for Evaluation of the Disappearance Rate of Evaporating Sprays, SIAM Journal on Applied Mathematics, vol.70, issue.8, pp.3203-3234, 2010.
DOI : 10.1137/080740027

URL : https://hal.archives-ouvertes.fr/hal-00332423

L. R. Mead and N. Papanicolaou, Maximum entropy in the problem of moments, Journal of Mathematical Physics, vol.25, issue.8, pp.2404-2417, 1984.
DOI : 10.1063/1.523061

E. Marder, L. Adam, and . Taylor, Multiple models to capture the variability in biological neurons and networks, Nature Neuroscience, vol.13, issue.27, pp.133-138, 2011.
DOI : 10.1038/nn.2630

X. Bjørn-fredrik-nielsen, M. Cai, and . Lysaker, On the possibility for computing the transmembrane potential in the heart with a one shot method: An inverse problem, Mathematical Biosciences, vol.210, issue.2, pp.523-553, 2007.
DOI : 10.1016/j.mbs.2007.06.003

Y. Nesterov, A method of solving a convex programming problem with convergence rate o (1/k2), In Soviet Mathematics Doklady, vol.27, pp.372-376, 1983.

O. Brendan, E. Donoghue, and . Candes, Adaptive restart for accelerated gradient schemes. Foundations of computational mathematics, pp.715-732, 2015.

. Oka-+, T. Patrick, . Gara, G. Frederick, . Kushner et al., 2013 accf/aha guideline for the management of st-elevation myocardial infarction, Journal of the American College of Cardiology, issue.4, pp.61-78, 2013.

T. Johnny, J. Ottesen, . Mehlsen, S. Mette, and . Olufsen, Structural correlation method for model reduction and practical estimation of patient specific parameters illustrated on heart rate regulation, Mathematical biosciences, vol.257, pp.50-59, 2014.

C. Pueyo, . Dangerfield, . Oj-britton, . Virág, . Kistamás et al., Experimentally-Based Computational Investigation into Beat-To-Beat Variability in Ventricular Repolarization and Its Response to Ionic Current Inhibition, PLOS ONE, vol.467, issue.7, p.151461, 2016.
DOI : 10.1371/journal.pone.0151461.s002

S. Pant and D. Lombardi, An information-theoretic approach to assess practical identifiability of parametric dynamical systems, Mathematical Biosciences, vol.268, pp.66-79, 2015.
DOI : 10.1016/j.mbs.2015.08.005

URL : https://hal.archives-ouvertes.fr/hal-01099901

J. Michael and . Powell, The bobyqa algorithm for bound constrained optimization without derivatives, 2009.

E. Patelli and G. Schuëller, On optimization techniques to reconstruct microstructures of random heterogeneous media, Computational Materials Science, vol.45, issue.2, pp.536-549, 2009.
DOI : 10.1016/j.commatsci.2008.11.019

. Pvg-+-11-]-f, G. Pedregosa, A. Varoquaux, V. Gramfort, B. Michel et al., Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.

M. F. Raphel, C. Boulakia, Y. Zemzemi, J. Coudière, P. Guillon et al., Identification of ion currents components generating field potential recorded in MEA from hiPSC-CM. Preprint available at https, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01570341

U. Ravens, D. Katircioglu-Öztürk, E. Wettwer, T. Christ, D. Dobrev et al., Application of the RIMARC algorithm to a large data set of action potentials and clinical parameters for risk prediction of atrial fibrillation, Medical & Biological Engineering & Computing, vol.5, issue.6 Suppl, pp.263-273, 2015.
DOI : 10.1016/j.hrthm.2008.01.016

P. Reymond, F. Merenda, F. Perren, D. Rüfenacht, and N. Stergiopulos, Validation of a one-dimensional model of the systemic arterial tree, American Journal of Physiology-Heart and Circulatory Physiology, vol.297, issue.1, pp.208-222, 2009.
DOI : 10.1016/0021-9290(86)90118-1

S. Jeffrey and . Rosenthal, Minorization conditions and convergence rates for markov chain monte carlo, Journal of the American Statistical Association, vol.90, issue.430, pp.558-566, 1995.

[. Romero, E. Pueyo, M. Fink, and B. Rodríguez, Impact of ionic current variability on human ventricular cellular electrophysiology, American Journal of Physiology-Heart and Circulatory Physiology, vol.5, issue.4, pp.1436-1445, 2009.
DOI : 10.1161/CIRCULATIONAHA.107.758672

T. Michael and R. , Uncertainty quantification with experimental data and complex system models, 2010.

C. Sánchez, A. Bueno-orovio, E. Wettwer, S. Loose, J. Simon et al., Inter-Subject Variability in Human Atrial Action Potential in Sinus Rhythm versus Chronic Atrial Fibrillation, PLoS ONE, vol.279, issue.8, pp.9-105897, 2014.
DOI : 10.1371/journal.pone.0105897.s004

E. Schenone, A. Collin, and J. Gerbeau, Numerical simulation of electrocardiograms for full cardiac cycles in healthy and pathological conditions, International Journal for Numerical Methods in Biomedical Engineering, vol.283, issue.2, p.2016
DOI : 10.1007/978-3-642-01932-6_39

URL : https://hal.archives-ouvertes.fr/hal-01184744

E. Schenone, Reduced order models, forward and inverse problems in cardiac electrophysiology, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01092945

[. Streif, R. Findeisen, and E. Bullinger, Relating cross gramians and sensitivity analysis in systems biology, Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems, pp.437-441, 2006.

C. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal, vol.27, issue.4, p.623, 1948.
DOI : 10.1002/j.1538-7305.1948.tb00917.x

I. Shinnawi, L. Huber, N. Maizels, A. Shaheen, G. Gepstein et al., Monitoring Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Genetically Encoded Calcium and Voltage Fluorescent Reporters, Stem Cell Reports, vol.5, issue.4, pp.582-596, 2015.
DOI : 10.1016/j.stemcr.2015.08.009

URL : https://doi.org/10.1016/j.stemcr.2015.08.009

J. Sundnes, G. T. Lines, and A. Tveito, An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso, Mathematical Biosciences, vol.194, issue.2, pp.233-248, 2005.
DOI : 10.1016/j.mbs.2005.01.001

M. Ilya and . Sobol, Uniformly distributed sequences with an additional uniform property, USSR Computational Mathematics and Mathematical Physics, vol.16, issue.5, pp.236-242, 1976.

W. Clay, . Scott, F. Matthew, Y. P. Peters, and . Dragan, Human induced pluripotent stem cells and their use in drug discovery for toxicity testing, Toxicology letters, vol.219, issue.1, pp.49-58, 2013.

B. Schölkopf and A. J. Smola, Learning with kernels: support vector machines, regularization, optimization, and beyond, 2002.

X. Amrita, . Sarkar, A. Eric, and . Sobie, Regression analysis for constraining free parameters in electrophysiological models of cardiac cells, PLoS Comput Biol, vol.6, issue.9, p.1000914, 2010.

J. A. , S. , and J. D. Tamarkin, The problem of moments, 1943.

G. Strang, On the Construction and Comparison of Difference Schemes, SIAM Journal on Numerical Analysis, vol.5, issue.3, pp.506-517, 1968.
DOI : 10.1137/0705041

Z. Syed, . Vigmond, L. Nattel, and . Leon, Atrial cell action potential parameter fitting using genetic algorithms, Medical & Biological Engineering & Computing, vol.4, issue.5, pp.561-571, 2005.
DOI : 10.1161/01.RES.81.5.727

S. Sankaran and N. Zabaras, A maximum entropy approach for property prediction of random microstructures, Acta Materialia, vol.54, issue.8, pp.2265-2276, 2006.
DOI : 10.1016/j.actamat.2006.01.015

B. Trudel, M. Dubé, R. M. Potse, L. Gulrajani, and . Leon, Simulation of qrst integral maps with a membranebased computer heart model employing parallel processing, IEEE Transactions on Biomedical Engineering, issue.8, pp.511319-1329, 2004.

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B (Methodological), pp.267-288, 1996.

[. Tixier, D. Lombardi, B. Rodriguez, and J. Gerbeau, Modelling variability in cardiac electrophysiology: a moment-matching approach, Journal of The Royal Society Interface, vol.21, issue.133, pp.14-2017
DOI : 10.1016/j.drudis.2016.02.003

[. Tixier, F. Raphel, D. Lombardi, and J. Gerbeau, Optimal Biomarkers Design for Drug Safety Evaluation Using Microelectrode Array Measurements. working paper or preprint, 2017.

]. L. Tun78 and . Tung, A bi-domain model for describing ischemic myocardial D?C potentials, 1978.

[. Van-der-straeten and C. Beck, Superstatistical distributions from a maximum entropy principle, Physical Review E, vol.38, issue.5, p.51101, 2008.
DOI : 10.1103/PhysRevE.59.5457

R. David, . Van-wagoner, L. Amber, M. Pond, . Lamorgese et al., Atrial l-type ca2+ currents and human atrial fibrillation, Circulation research, vol.85, issue.5, pp.428-436, 1999.

C. John, R. Wheeler, and . Gordon, Rigorous bounds for thermodynamic properties of harmonic solids, The Journal of Chemical Physics, vol.51, issue.12, pp.5566-5583, 1969.

E. Wettwer, O. Hála, T. Christ, F. Jürgen, D. Heubach et al., András Varró, and Ursula Ravens Role of ikur in controlling action potential shape and contractility in the human atrium influence of chronic atrial fibrillation, Circulation, issue.16, pp.1102299-2306, 2004.

M. Wilhelms, H. Hettmann, M. Mary, . Maleckar, T. Jussi et al., Benchmarking electrophysiological models of human atrial myocytes, Frontiers in Physiology, vol.3, p.487, 2013.
DOI : 10.3389/fphys.2012.00487

S. Wold, A. Ruhe, H. Wold, W. Dunn, and I. , The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses, SIAM Journal on Scientific and Statistical Computing, vol.5, issue.3, pp.735-743, 1984.
DOI : 10.1137/0905052

J. Wang and N. Zabaras, A Bayesian inference approach to the inverse heat conduction problem, International Journal of Heat and Mass Transfer, vol.47, issue.17-18, pp.3927-3941, 2004.
DOI : 10.1016/j.ijheatmasstransfer.2004.02.028

[. Yue, . Feng, S. Li, and . Nattel, Transient outward and delayed rectifier currents in canine atrium: properties and role of isolation methods, American Journal of Physiology-Heart and Circulatory Physiology, vol.270, issue.6, pp.2157-2168, 1996.
DOI : 10.1152/ajpheart.1996.270.6.H2157

[. Young, E. Michael, J. E. Goddard, G. Pryce, and . Deng, Kernel methods and haplotypes used in selection of sparse DNA markers for protein yield in dairy cattle, Mathematical Biosciences, vol.243, issue.1, pp.57-66, 2013.
DOI : 10.1016/j.mbs.2013.01.009

. Zboo-+-16-]-xin, A. Zhou, M. Bueno-orovio, B. Orini, M. Hanson et al., In vivo and in silico investigation into mechanisms of frequency dependence of repolarization alternans in human ventricular cardiomyocytes, Circulation research, vol.118, issue.2, pp.266-278, 2016.

. Zbs-+-13-]-n, M. Zemzemi, J. Bernabeu, J. Saiz, P. Cooper et al., Computational assessment of drug-induced effects on the electrocardiogram: from ion channel to body surface potentials, British journal of pharmacology, vol.168, issue.3, pp.718-733, 2013.

B. [. Zabaras and . Ganapathysubramanian, A scalable framework for the solution of stochastic inverse problems using a sparse grid collocation approach, Journal of Computational Physics, vol.227, issue.9, pp.4697-4735, 2008.
DOI : 10.1016/j.jcp.2008.01.019

L. Zhang, H. Guo, . Zeng, L. Stephen, M. White et al., Multi-parametric assessment of cardiomyocyte excitation-contraction coupling using impedance and field potential recording: A tool for cardiac safety assessment, Journal of Pharmacological and Toxicological Methods, vol.81, pp.201-216, 2016.
DOI : 10.1016/j.vascn.2016.06.004

M. Zehender, W. Kasper, E. Kauder, M. Schonthaler, A. Geibel et al., Right Ventricular Infarction as an Independent Predictor of Prognosis after Acute Inferior Myocardial Infarction, New England Journal of Medicine, vol.328, issue.14, pp.981-988, 1993.
DOI : 10.1056/NEJM199304083281401