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Part 1

Synthése en francais






Etude spectroscopique des plasmas
hautement ionisés : approches
détaillée et statistique

Les spectres d’absorption et d’émission dans des plasmas chauds, comme ceux rencontrés en
astrophysique et en sciences de la fusion nucléaire, présentent souvent des structures complexes.
Afin de les interpréter, il existe des méthodes dites statistiques qui décrivent les ensembles non
résolus de raies par des structures dites faisceaux de transition. Par rapport aux méthodes
détaillées qui tentent de calculer les spectres raie par raie en nécessitant la diagonalisation de
I’hamiltonien du systéeme considéré, les méthodes statistiques sont basées sur la détermination
des moments de distribution, qui met en jeu le calcul des moyennes en configuration. L’objet
de cette these consiste a comparer les deux approches — détaillée et statistique, en utilisant
notamment le code de structure atomique FAC (Flexible Atomic Code).

Dans cette synthese, le sujet de la thése est présenté dans un premier temps a travers ses mots
clés. Puis, quelques éléments sont extraits des deux travaux publiés au cours de la these, dont
I’'un numérique sur la modélisation des spectres des transitions dipolaires magnétiques dans des
plasmas de tungstene, et 'autre analytique sur le calcul des moyennes des énergies spin-orbite
dans une configuration multi-électronique. Enfin, la synthése se termine par une conclusion
composée d’un résumé de travaux effectués et de plusieurs perspectives proposées.

0.1 Présentation du sujet

Plasma

Généralement considéré comme le 4éme état de matiére, un plasma est constitué d’un en-
semble de particules chargées s’interagissant par des forces électromagnétiques.
Les plasmas de grandes variations de températures T' et de densités n, cf. Fig. 1.1 et Table 1,
sont caractérisés par leur capacité de maintenir [’état de quasi-neutralité, traduit par 1’égalité
des charges positives et négatives
Ne = Z X n; (1)

ou n.; =densités électronique, ionique, Z =degré d’ionization moyen, et s’explique par les
parametres fondamentaux tels que la longueur de Debye

Ap x \/Te/ne. (2)



Haute Basse
T. >10'K <2x 107K
ni >10Pm=3 <10¥m3

Table 1: Classification - grosso modo - des domaines d’étude des plasmas en fonction de leurs
températures et densités.

Spectroscopie atomique

La physique des plasmas chauds représente un champ d’études multi-disciplinaires, parmi

lesquelles ’étude des spectres radiatifs atomiques, qui sont principalement de deux types : en
émission et en absorption, l'intensité I(\) et 'opacité k() respectivement sont représentées en
fonction des longueurs d’onde (ou de fagon équivalente des énergies I(E),x(E)) des photons mis
en jeu.
La spectroscopie atomique joue un réle essentiel dans le diagnostic des propriétés radiatives des
plasmas sur le plan expérimental, qui permet de contribuer en contrepartie au développement
théorique de la physique atomique dans leur sein. Une illustration d’étude expérimentale de la
spectroscopie des plasmas de cuivre du laboratoire est montrée dans la Fig. 1.

Quant a la plupart des calculs atomiques, le point de départ consiste a déterminer la structure
électronique des éléments atomiques du plasma étudié, comme les énergies de niveaux et de
configurations.

e Un niveau est caractérisé par des nombres quantiques tels que n,l,m;,ms;

e Une configuration désigne un ensemble de sous-couches électroniques partageant les m
valeurs de

— (n4,l;) dans le cas non relativiste:
Cur = (n1l1)" (nal2)"?...(nplp)"" (3)
— (n4,l;,7;) dans le cas relativiste:
Cr = (n1l1j1)*" (n2l2j2)*? .. (nglgjq) (4)
ou v;,w; sont les nombres d’occupation de i, tels que
vt =2(2l;4+1), w™™=2j+1. (5)

K3 (3

Les dégénérescences des configurations gc s’obtiennent en fonction de celles des sous-couches g;:

p q
9o, = Hgi,nra gc, = Hgi,r (6)
=1 i=1

pmaz wmaz
Ginr = ( Z]/i ) y Yir = < ZJZ > (7)

Par exemple, g(3s3p?) = (?) <2> =g(s)-[g(p1) + g(p-p3) + g(p2p3)] = 30.
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Figure 1: Illustration d’étude expérimentale de la spectroscopie des plasmas de cuivre du labo-
ratoire (Source: travaux du stage Master 2 sur les ions creux).



Généralement, deux classes de modeles de la physique atomique dans des plasmas sont
utilisées :

o détaillée, qui consiste a construire les spectres en sommant raie par raie;

o statistique, qui regroupe des approches différentes telles que la description d’atome moyen
statistique (1529 25989, & (n,T) donné) et les méthodes de moyenne, par exemple pour
moyenner les niveaux en configuration (1s? 2s 2p), voire en supraconfiguration ((1s)?

(252p)?).

Dans cette theése, nous nous focalisons sur les méthodes qui moyennent les niveaux en configu-
ration et nous allons considérer les faisceaux de transition. Alors qu’une raie spectrale traduit
une transition électronique entre 2 niveaux, un faisceau désigne ’ensemble des transitions entre
les niveaux de 2 configurations.

Modéle UTA (Unresolved Transition Array) — Faisceau de transition non-résolue

Dans les spectres des plasmas hautement ionisés, deux caractéristiques sont souvent présentes.
D’une part, le nombre de raies les constituant peut étre trés important, lié par exemple aux tran-
sitions parmi un nombre élevé de sous-couches électronique ouvertes. De l'autre part, les raies
d’énergies voisines sont susceptibles de se recouvrir en formant des structures non-résolues. Un
exemple pertinent se trouve dans la Figure 2.2 du livre des Bauche et de Peyrusse (2015). Ainsi
est-il adéquat d’appliquer le modele UTA dans l'interprétation de tels spectres.

Le modele UTA est basé sur le calcul des moments p,,[X] ainsi qu’au choix des fonctions F’
de distribution. Les moments de distribution d’ordre n s’écrivent :

', w; = poids statistiques de X; (8)
En spectroscopie statistique, il est d’usage d’étudier par exemple

¢ la distribution des énergies de raies X; = E; pondérées par leurs forces w; = fqp;

e la distribution des énergies X; = E, des niveaux par leurs dégénérescences w; = ¢g,; etc.
En générale, les 4 premiers ordres, qui représentent respectivement

e 11 = la moyenne,

e 9 = la variance,

3 = la dissymétrie,

nq = aplatissement

d’une distribution, permettent d’en caractériser globalement son profil. Et les fonctions de
distribution usuelles F'(u,[X]) sont de type Gaussien, Gram-Charlier, Gaussien généralisé, etc.

Comme illustration, en utilisant le code FAC, les transitions 3d%4p — 3d?4s dans les plasmas
de KrX et ZrXIV sont calculées en modes détaillé et UTA, dont les spectres sont montrés dans
la Fig. 3.1.



0.2 Modélisation des spectres

0.2 Modélisation des spectres

Problématique étudiée

Afin d’explorer I'une des caractéristiques des plasmas hautement ionisés, qui est I'importance
croissante des transitions dipolaires magnétiques M; par rapport au type dipolaire électrique
F, nous nous intéressons a la contribution lié-lié des transitions M; dans le cas du complex
3+ 14 (14 électrons dans les sous-couches de n = 3) dans les plasmas de tungstene (W, Z =74) de
charges aux alentours de 504, en régime de température-densité équivalent du tokamak d’ITER.

Nous allons comparer les spectres d’émission détaillés et UTA avec le code FAC, qui est un
code atomique relativiste, bien adapté aux cas des éléments lourds fortement chargés. Son mode
UTA calcule des faisceaux de transitions entre les configurations relativistes C.

Cette étude est motivée par deux aspects notamment: d’un c6té, I’élément tungstene W étant
choisi comme composant du divertor du tokamak d’ITER, le calcul de sa perte radiative suscite
d’intérét dans la communauté de la fusion nucléaire; de ’autre c6té, vis-a-vis de la spectroscopie
statistique des raies interdites, il s’agit de tester 'implémentation dans le code FAC des formules
analytiques des moments u,, pour les transitions du type Mj, obtenues récemment.

Construction des spectres liés-liés

Les spectres liés-liés résultent des transitions spontanées et stimulées qui sont caractérisées
par les coefficients d’Einstein — As1, Bo1, Bi2, & partir desquels se définissent les parameétres
spectroscopiques tels que la force des raies f, etc. Dans le cas des spectres d’émission, I'intensité
d’émission s’écrit

I(Eab) ="y ZpaAabEabSab (9)
ab
avec n; =densité ionique, p, =population a, Ay, =taux de transition a — b et Sy, =profil ab, ou
selon I'option choisie, a,b peuvent désigner deux niveaux ou configurations et ab une raie ou un
faisceau.

Le code atomique FAC nous fournit les quantités F, A, g, f soit par diagonalisation de
I’'Hamiltonien dans l'option détaillée, soit avec les formules analytiques des moments (ex. o
i.e. pg) préalablement implémentées dans I'option UTA. Nous avons écrit un post-processeur
afin de calculer les quantités p, S de 'Eq.(9). Plus précisément, nous avons fait les choix suivants

e S = profil Gaussien
S(E) = e~ 22 (10)

2ro

2 _ 2 2 _,C 2 .
aveC Opgtail = JDoppler et oyTA = M2 + UDOppleN
e p = loi Saha-Boltzmann

En effet, basé sur la théorie de la température effective Tog — température qui en supposant
la loi de Saha-Boltzmann pour 7" donnerait la méme charge moyenne que par le calcul
hors ETL, et en utilisant le code FLYCHK — doté des modeles collisionnel-radiatif et
ETL, nous avons constaté qu’a la densité n, = 10"4cm ™3, la température effective Tog de
Thors ETL ~ 8800 eV est de TFT! ~ 200eV, cf. Fig. 2.2.

Comme exemple, les spectres d’émission des transitions M; du complex 314 dans un plasma de
W5+ sont représentés dans la Fig. 2. Alors que les pics d’émission sont correctement reproduits,
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nous notons un écart significatif entre spectres détaillés et UTA dans les ailes de ces structures,
par exemple entre 500 et 800 eV.
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Figure 2: Spectres d’émission détaillés et UTA : transitions M; du complex 3% 14 dans W5t 4 la
densité n. = 10" cm ™3, la température effective Tog ~ 200eV. Distribution Gaussienne construite
avec ses 2 premiers moments statistiques.

Procédure pseudo-UTA numérique

Afin d’élucider la disparité observée entre les spectres M7 détaillés et UTA, deux hypotheses
sont émises : la disparité est lié

e soit au choix de profil statistique, notamment a ’absence des moments d’ordre élevé;

e soit au manque de raies prises en compte dans les formules UTA du code.

Pour les vérifier, nous avons implémenté une procédure numérique de pseudo-UTA qui con-
siste & post-traiter les données de sortie détaillées — en regroupant des niveaux en configurations
et des raies en UTAs, permettant ainsi de fabriquer numériquement des moments d’ordre quel-
conque

Eaea gafab (Eab - Ea,@)k
bep

Zzgg Gafab

1) = ((B— Eop)") = (11)

Comme montre la Fig. 3, 'excellent accord a été constaté entre les spectres détaillé et pseudo-
UTA Gaussien, i.e. construit a partir de 2 moments seulement. Ainsi pouvons-nous éliminer
I’hypothese liée a ’absence des moments d’ordre élevé.

En effet, dans le cas de W?°* | les 18513 raies calculées par FAC correspondent aux 91 UTAs
selon 'option UTA du code, alors qu’elles se regroupent en 649 pseudo-UTA selon notre post-
processeur. En comparant avec les données de sortie UTA de FAC, nous avons constaté que
seule une partie de raies résultant des transitions entre 2 configurations C). différentes, notées par
InterL, a été prise en compte par 'option UTA de FAC. Parmi les données de sortie détaillées
de FAC, il s’avere que 2 catégories de raies sont négligées par les formules UTA implémentées :



0.3 Calcul des moyennes
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Figure 3: Spectres d’émission détaillés, pseudo-UTA, UTA : transitions M; du complex 3% 14
dans W0t Excellent accord entre spectres détaillé et pseudo-UTA Gaussien, i.e. construit avec
seulement 2 moments.

e InterNL = une partie de transitions inter-configurationnelles; il s’agit essentiellement

des transitions multi-électroniques, par ex. 3d§ j2 3d§ /20 rendues possible par 'effet des
interactions de configuration.

e Intra = toutes les transitions intra-configurationnelles, i.e. ayant lieu au sein d’'une méme

configuration, permises par les régles de sélection des transitions M; (contrairement a
celles des Ey).

W%+ (3*¥14) Nombre Emissivité

Inter L 5124 2,74(9)
Inter NL 12462 1,32(R)
Intra 927 5,65(5)
Totale 18513 2,87(9)

Table 2: Nombre de raies et leurs contributions intégrées aux spectres des transitions M; du
complex 3% 14 dans W*'F. Emissivité=Y", pp EapApe- La notation 2,74(9) signifie 2,74 x 10°.

L’ensemble des 3 catégories de raies ainsi que leurs contributions respectives en termes de
nombre et d’émissivité sont représentées dans la Fig. 4 et la Table 2, en prenant toujours le cas
des transitions M; du complex 314 dans W59+, Malgré le nombre relativement faible des raies
InterL, leur contribution spectrale reste majoritaire parmi les 3 catégories, ce qui est rassurant.

0.3 Calcul des moyennes

Problématique étudiée

Dans cette section, nous explorons une autre caractéristique des plasmas hautement ionisés,
qui est I'importance croissante de 'effet spin-orbite Vg, par rapport a 'effet Coulombien V.
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0.3 Calcul des moyennes

Rappelons que ’'Hamiltonien perturbatif dans I’approximation semi-relativiste s’écrit

2
p;i Z
H=Y" (2 —‘>+Vee+vso, (12)

=N Ti

en nous plagant dans la situation ou le numéro Z du plasma considéré est élevé, ’effet spin-orbite
Vso emporte sur 'effet Coulombien V.

L’étude des moments i, (Vso) des énergies spin-orbite dans une configuration multi-électronique
nous amene au calcul des moyennes de type <C | VE | C’> = <V£>N ol la configuration peut étre
relativiste ou non, i.e. C' = Cy = ()N ou C = C, = (nlj_)"(nljy)VN~7. L’opérateur Vi, peut
s’écrire préférentiellement de deux fagons, selon la base utilisée:

« soit en termes d’opérateurs l1,l, dans la base non couplée |lm;so)

1
Vso = Zg(rp) |:2(lp+5p— + lp—sp—i-) + lpzspz:| ; (13)
p
o soit en fonction des j,l,s dans la base couplée |lsjm)

Vi = Y€l 22—, (14)

Or, dans la base |lsjm), la matrice de Vi, est diagonale, en considérant C' = C, par exemple,
I’expression analytique de <VS’(§>N s’écrit

-1
(e =t (M) S (3) (3 en-renmt, (15

14

De maniére générale, bien qu’il existe une base dans laquelle la matrice d’'un opérateur
hermitien est diagonale, il n’est pas forcément aisé de déterminer cette base que ce soit analy-
tiquement (ex. dans le cas de couplage intermédiaire) ou numériquement (ex. la taille de la base
élevée), la méthode des moyennes s’avere nécessaire. Nous allons l'illustrer par un exemple qui
peut étre traité de maniere completement analytique, qu’est le calcul du moment de ’opérateur
spin-orbite a 'ordre 3, soit <V’S’(§>N,k =3.

Méthode du calcul des moyennes

La moyenne (O) d’un opérateur O est reliée a sa trace Tr(O) et au facteur de dégénérescence
g selon la relation

Tr(O)
(0) = : (16)
g
ol, sur une configuration a N électrons équivalents,
1
Tr(0) = N Z Z Er <Q1"'CIN\O|QT(1)"'QT(N)> (17)
q1-qN TESN

avec
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e ¢; = nombres quantiques de 1’électron 1 ;

e 7 = permutation, £, = signature de permutation.

La double-somme -, ... > cs, dans Eq. (17) peut contenir un nombre important de termes,
ce qui présente une difficulté non négligeable pour mener a bien le calcul en pratique. L’une des
astuces consiste a appliquer le théoréme d’Uylings ', qui stipule que si O = O, est un opérateur
& k-8lectron, alors sa moyenne (Oy) y sur C' = (nl)" est reliée & sa moyenne (Oy), sur C = (nl)*
par

Ok = (JZ ) Okl (18)

De ce fait, la double-somme se simplifie en >, ... > cs,, souvent k < N. Concretement, si O
est une somme d’opérateurs a 1-, 2- et 3-électron, i.e. O = 01+ Oz + Os, alors sa moyenne sur
une configuration a N-électron se décompose comme

(O)x = (QV ) (O1), + (;V ) (O} + (@f ) (0s)5. (19)

Illustrons la méthode des moyennes dans le cas du calcul de <‘/'s’f)>N Jk=3.

1. Dans un premier temps, I'opérateur V3 s’écrit comme une décomposition de trois types
d’opérateurs

3
N
Vio = (Z zqsq> =V1+3V2+6V; (20)
q=1
respectivement a 1-, 2- et 3-électron, avec

o Vi=2N(lisi)?
o Vo= ;(lisi)?(ljs5)
o Va=3icjp(lisi)(ljs;)(Upsp).

2. Puis, prenons l'exemple du calcul de moyenne (V3) de 'opérateur a 3 électrons. En notant
f=(l151)(l2s2)(I3s3) et en tenant compte des permutations des 3 électrons en 2 catégories

« permutations circulaires ((—1)7 =+1): (i,5,p); (4,p,3); (p,i,5)
« permutations d’échange ((—1)"=-1):  (j.i,p); (i,p.5);  (p,].7)

nous obtenons la moyenne de V3 sur une configuration a 3 électrons (V)4

vy = L y . » g - o O+
( s>3—693%(<w\flwp>+<w|flm>+<w|f|pw>—<w|f\ﬂp>—<¢\f|zm>—<w|f|mz>)——164l+1,
(21)

IDémontrable en 2nd quantification.
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0.3 Calcul des moyennes

ou (y[ = (ijp] -

En outre, avec le théoréeme d’Uylings et g3 = <4l;2>,

@) I+1 N(N-1)(N-2)
(Va)y = 16 4l+1 6

. (22)

3. Enfin, ensemble avec (V}) et (V3) calculables de la méme fagon, nous avons

<V§o>N _ <§>3 (1+D(1 +21l6—(1]\j_)£j)+ 4l — N)N (23)

Comparaison des expressions analytiques avec le code Cowan

Les expressions analytiques des moyennes ji,,(Vso), sont comparées aux résultats numériques
du code Cowan, fournis par J.-C. Pain et F. Gilleron. Le code Cowan est un code semi-relativiste,
doté d’une option d’annuler le terme Coulombien de I’Hamiltonien perturbatif pour étudier I'effet
spin-orbite de facon séparée.

Pour exemples, nous prenons 2 configurations de l'ion d’or (Au,Z =179) :

e 3d% de I'ion Au®®T, soit une sous-couche composée de 6 électrons équivalents;

e 3p?3d5 de I'ion Au®®t, deux sous-couches électroniques distinctes.

Dans le cas de la configuration 3d%, d’aprés Cowan, lintégral spin-orbite (£),,(Au®") =
39,865 €V, et les résultats analytique et numérique des moments d’énergies perturbatives —
tin (Vo) €t pin(Vee, Vao) pour n = 2,3,4 — sont récapitulés dans la Table 3. Focalisons sur cette
table, nous notons

o en comparant les 2 premieres lignes pi,(Vio)a <> tin(Vso)c, qu’il y & un bon accord entre les
résultats a l'issue des expressions analytiques et les valeurs numériques de Cowan;

o ala 3eme ligne sur pi,(Vee, Vao)a : 12(Vee, Vio)a €st basée sur la formule de variance pub-
liée dans la Table 3.2 du livre des Bauche et de Peyrusse (2015), u3(Vee, Vso)a provient
d’une formule publiée par Kuctas et Karazija (1993) que nous avons vérifié en utilisant les
techniques de seconde quantification et d’algeébre angulaire, et qu’il n’y a pas de formules
analytiques disponibles lorsque n > 3;

o ala colonne n =3, en comparant ps(Vso) <> t3(Vee, Vo), nous en déduisons que Ueffet Vee
contribue plus a la dissymétrie de la structure d’énergie que 'effet V4.

n 2 3 4
1tn(Veo)a 6356,87 3,168(4)  1,110(8)
fin(Vso)C 6357 3,168(4) 1,11(8)

tin(Vees Vso)a 6691.6 8111 X
fin(Vee, Veo) 6692 8111 1,195(8)

Table 3: Comparaison des résultats analytique et numérique des moments d’énergies perturba-
tives dans la configuration 3d% de I’ion Au®>*. Les indexes a =analytique, C =Cowan.
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Dans le cas de 3p?3dS, nous pouvons étudier les cumulants k,, qui sont adéquats pour des
phénomenes statistiquement indépendants en raison de leur propriété d’additivité. Un cumulant
est relié au moment par relation de récurrence

n—1
n—1
Kp = fin — Z (m 1) [T — (24)

m=1

D’apres Cowan, (£),, (Au™T) = 326,842 eV, (£),,(Au”) = 42,261 eV. En constatant la Table
4, outre que le bon accord confirmé entre résultats analytique et numérique ky,(Vso)a <> £n(Vso) o,
les 3 premiéres lignes permettent de vérifier I'additivité des cumulants des deux sous-couches
indépendantes en terme d’énergie spin-orbite k,(3p?) + £, (3d%) = kn(Vio). Remarquons que
I’additivité ne sera plus vérifiée si nous considérons l'effet Coulombien qui implique les paires de
sous-couches distinctes.

n 2 3 4
kn(3p%)a  8,546(4) -6,983(6)  -4,793(9)
kn(3d®),  7,144(3)  3,774(4)  -1,287(7)
kn(Veo)a  9,260(4) -6,945(6)  -4,806(9)
tin(Vio)C 9,26(4) -6,945(6)  -4.804(9)

Table 4: Comparaison des résultats analytique et numérique des cumulants d’énergies spin-orbite
dans la configuration 3p?3d® de I'ion Au®?t.

En plus d’intérét méthodologique et fondamental, les méthodes des moyennes pourraient
servir aux futures études des UTAs de transitions M intra-configurationnelles évoquées dans la
section précédente.

0.4 Conclusion

Résumé

Dans le cadre de la spectroscopie statistique, deux études ont été menées durant cette these.

e Modélisation des spectres M; des plasmas de tungsténe, en utilisant les codes comme FAC
et FLYCHK et par implémentation d’un post-processeur. Bien que 'option UTA du code
FAC reproduise la majorité d’émissivité des structures spectrales, les formules analytiques
du modele UTA restent a compléter dans le cas des transitions M;.

e Calcul analytique des moments d’énergies spin-orbite en utilisant les méthodes de calcul
de moyennes, une formule de la littérature a été corrigée.

Cette synthese a pour but d’étre résolument pédagogique, les lecteurs intéressés sont invités a lire
nos 2 articles dans lesquels plus de cas d’études sont présentés pour la partie de la modélisation
des spectres M7 des plasmas de tungsteéne, et le probleme de convergence de distribution Gram-
Charlier est discutée pour la partie des moments d’ordre élevé d’énergies spin-orbite.

Perspectives

Concernant les perspectives, on pourra envisager sur le plan théorique
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0.4 Conclusion

e étudier les transitions M intra- et inter-configurationnelles manquantes,

e approfondir I’étude des UTA, par exemple, examiner les propriétés des faisceaux, 'effet
des différentes fonctions de distribution;

et sur le plan numérique

» mener a breve échéance un calcul de spectre UTA dans le tungsténe hors ETL (sans utiliser
de théorie de température effective);

e implémenter d’autres modeles statistiques dans le code, par exemple les modeles STA et
mixtes;

« paralléliser le code FAC, par exemple par ion ou par configuration.
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Chapter 1

Introduction

The journey of a thousand miles begins with a single step.

Lao Tzu

Plasma state

Besides the states of solid, liquid and gas, plasma is often referred to as the 4th state of
matter, in which probably up to 99% of the matter exists naturally in the universe ! At first
sight, plasma is similar to an ionized gaseous mixture of charged and neutral particles whose
dynamics are dominated by electromagnetic forces. Hence the term plasma was first used to
describe the ionized regions in gas discharges by I. Langmuir in the 1920’s. While stars and
interstellar space provide examples of plasmas, the Earth and its lower atmosphere form an
exception of the 1% plasma-free oasis. On the Earth, aurora borealis and lightning storms are
natural phenomena generating plasmas on one hand. On the other hand, the laboratory plasmas
constitute a large-scale research subject involving various domains of applications, such as in
the investigation of beta cepheid pulsation and convection limit in star interiors, for resolving
the problem of plasma heating and confinement in controlled thermonuclear fusion devices, etc.
Examples of plasmas belonging to different temperature and density regimes are gathered and
shown on Fig. 1.1, see also [W2][B1]. Densities vary roughly over 30 orders of magnitude from
10° to 103° electrons per m?, and temperatures over 7 orders from 10% to 10° K.

Despite the extremely wide range of temperatures and densities covered by the plasma state,
one notable feature concerning the nature of the plasma is its ability to maintain a state of
quasi-neutrality

Ne = Z X n; (11)

where Z is the mean ionization charge of the plasma, n. stands for electronic density and n;
ionic density. In response to a potential charge imbalance, say resulting from introduction of an
electric field or from local concentrations of positive and negative charges generated by charge
motions, a phenomenon called Debye shielding sets up providing that the external influence is

1 According to Empedocles, fire was the plasma-representative element which together with earth, water and
air made up the elements of Greek cosmology [B1].
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restricted within a finite range. Beyond the Debye length [B1],

6016318 3 le(e\/>
=4/ m)="7.43x1 _— 1.2
AD noe? Ap(m)=7.43 x 10 o (5 (1.2)

where 1leV =~ 11604K, the plasma remains effectively neutral. Actually, in the presence of
strong electrostatic fields, elements of plasma are related even at large distances by the long-
ranged Coulomb force and can exhibit collective behaviour such as plasma oscillations when
re-establishing neutrality, with electrons and ions oscillating respectively at the frequencies

VEkT./me Nee?

pe = ¥ =\ e’ Wpe(s1) = 56.44/n, (1.3a)
ni(Ze)? _ n;
wpi =\ s wpi(s 1):1.32><Z,/Z (1.3b)

where Z denotes the charge state of the plasma and A the atomic number of the ion considered.
[B1] For example, a plasma is not transparent to electromagnetic radiation of frequency w < wpe,
since the more rapid electron response will neutralize the field and stop its propagation into the
plasma.

More quantitatively speaking, to be qualified plasma, an ionized gas must satisfy the following
three criteria [B3].

e The Debye length Ap should be negligible versus the dimension of the system L
Ap < L (1.4)
to ensure the quasi-neutrality.

e The number Np of particles in a "Debye sphere"

4
Np = gne)\i’b, Np=1.38x1/T3(K)/n.>1 (1.5)

should be large enough that the collective interactions rule over resultant force on any
given particle due to binary collisions.

o The frequency of plasma oscillations wy. should be higher than the collision rate with
neutral atoms. With 7 standing for the mean time between collisions, it reads

WpeT > 1. (1.6)

As a counter-example, if the charged particles collide so frequently with neutral atoms that
their motion is dictated by hydrodynamic forces (rather than by electromagnetic ones), it
turns out that such gas is too weakly ionized to behave like a plasma.

Depending on density and temperature parameters, the plasma physics can be roughly di-
vided into different regimes :
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o In terms of density, low density plasmas correspond to ionic densities n; < 10'7cm =3 [B4]
which include plasmas in astrophysics and magnetic confinement devices. Whereas high
density regions n; > 10"%m™3 can be found in inertial confinement plasmas and in star

cores.

o In terms of temperature, hot plasmas [O5] may refer to those being nearly fully ionized.
Since the degree of ionization « in a plasma, defined as
1

= : = density of neutral at 1.7
« - (nq = density of neutral atoms) (1.7)

is mostly controlled by temperature (rather weakly by density) [W6]. Approximatively,
high-temperature plasmas correspond to T; ~ T, > 10°K. Whereas low-temperature plas-
mas (LTP) [O7] can be subdivided into two types: thermal LTP with T; ~ T, <2 x 10%K,
and nonthermal LTP with T; ~ 300K, T; < T, < 10°K, o = 1076 — 1074,
Other parameters have been defined to describe plasma features, such as optically thin or thick,
degenerate or non-degenerate, weakly or strongly coupled, etc. When needed, they will be
recalled in their respective contexts throughout the manuscript.

Optical atomic spectroscopy

Spectroscopy represents an essential tool to probe the radiative properties of plasmas. Among
the various subjects where atomic physics is relevant for plasmas, one may mention three general
topics [B4]: the influence of the plasma environment on ionic potential (thus on bound electrons
wave functions and energy levels), the study of collisional and radiative processes among electrons
and ions inside plasmas and the investigation of emission and absorption spectra of plasmas. This
thesis belongs to the 3rd topic and deals with statistical methods applied in the interpretation
of emission and absorption spectra with respect to detailed approach.

Concerning the study of emission and absorption in plasmas, a wide literature is available
[A8][A9][A10][A11][A12], covering large ranges of atomic elements as well as of plasma (n.,7¢)
regimes. For examples,

« measurement of iron Fe opacity in the Sun for stellar interior energy transport calculations
[A13], production of spectroscopic data for the calculation of radiative accelerations in
stellar envelopes [A14][A15][A16][A17];

e spectroscopic investigations of tungsten W as tokamak divertor [B18], X opacity measure-
ments in mid Z — like copper Cu, aluminium Al — dense plasmas in order to enhance plasma
diagnostics and target design in inertial confinement fusion development [P19].

Detailed and statistical approaches

When the experimental spectra are composed by well-separated lines, the detailed approach
represents an appropriate tool of interpretation, which is based on line-by-line accounting. Nev-
ertheless, in complex spectra arising from highly ionized plasmas, where atoms are often present
in multiple ionization stages with several open subshells, there may be millions of emission or
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absorption individual lines which, besides, often gather in coalescent structures.? Statistical
methods are required to identify and analyze essential spectral features in a more efficient way,
whose main idea consists in considering transition arrays between configurations (cf. Fig.1.2).

Since the first observation of unresolved transition arrays (UTA) in atomic spectroscopy
tracing back to the 1940s [A21] and the pioneering analysis by Moszkowski in the 1960s[A22],
a special attention has been paid to averaging procedures devoted to the analysis of complex
spectra, avoiding the very costly procedure of computing spectra involving thousands of levels
and millions of lines in a detailed way. Within the framework of the theory of transition arrays,
different statistical models are available. When considering highly charged ions, spin-orbit effect
may become dominant and the observed transition arrays connecting pairs of relativistic config-
urations are named Spin-Orbit-Split Arrays (SOSA) [A23]. The averaging procedure has been
even more generalized by gathering configurations into super-configurations which leads one to
consider super-transition arrays (STA) [A24].

Such statistical description is nowadays included in atomic physics packages such as SCO-
RCG [A25] [A26][P27], HULLAC [A28][W29], FAC [A30][O31] which are widely used in atomic
spectroscopy. Freely distributed and endowed with a flexible Python interface, the Flexible
Atomic Code (FAC) has been used for numerical work in this thesis.

Scope of the manuscript

This manuscript is composed of three chapters and organized as follows.

In chapter 2, general concepts of atomic physics in hot plasmas are introduced. While en-
ergy levels and radiative transitions in an isolated atom can be described by quantum
mechanics, the computation of emission and absorption spectra requires one to consider
the thermodynamic conditions in plasmas.

The chapter 3 is devoted to statistical description of unresolved spectra. The model of UTA is
firstly presented, highlighting the use of distribution moments and the choice of distribution
function. Then, using the FAC code, numerical construction of transition arrays is made
explicit and illustrated by some empirical analysis.

The chapter 4 focuses on moments computations, performed in two cases. On one hand,
compact formulas for high-order moments of spin-orbit energies are derived in analytical
way, which deal with distribution of degeneracy-weighted level energies. On the other
hand, magnetic dipole transitions in tungsten plasmas are investigated numerically through
distribution moments of transition energies weighted by line oscillator force. The two cases
respectively echo back to the two articles [A32] [A33] published during the thesis.

2 A relevant example can be found on Figure 2.2 of the book [B20], which shows the coalescent structures
observed in an experimental Lanthanum (Z=57) spectrum of laser-produced plasma. The spectral lines arising
from transitions 3d"¥ 14 f— 3aN overlap for the consecutive values of N, for instance, in the case of the Cr-like
(N=6) ions, the transition array 3d°4f — 3d% contains 5470 lines.
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Chapter 2

Atomic physics in hot plasmas

2.1 N-fermion structure

Regarding quantum behaviour exhibited experimentally on atomic scale, a suitable descrip-
tion of N-electron systems requires mathematical formulations of quantum mechanics, according
to which a physical observable (eg. energy, position, angular momentum, etc.) can be repre-
sented by an operator A and a particle (eg. electron, ion, atom, etc.) by a wave function ¥. One
aspect of the complexity in the many-body problem consists of the indistinguishability of iden-
tical particles, which involves the symmetry ' concept. For instance, any exchange of identical
particles should not modify the wave function modulus.

Since the introduction of the central field scheme by Slater [A35], a large amount of effort
has been made to keep track of the symmetry of the states of N-electron systems in simple and
elegant ways. Namely, Condon and Shortley establish matrix building method in N-electron
atom study [B36], which consists in evaluating matrix elements of the form

<\If|A|\I/’)z///\l/*(r)A\I/’(r)d?’Nr (2.1)

Later, using the tensor-operator techniques [A37] [A38], Racah’s algebra enables to reduce the
difficulties in matrix element calculation by writing down formulae for the direct evaluation of
matrix elements for coupled basis functions, which bypasses explicit use of Slater determinantal
functions. After extending the tensor-operator techniques applicable to all types of operators
and configurations in 1962, Judd developed the second quantization method [B39] — firstly
introduced and applied on boson-nature photons in the 30s — for fermion-nature electrons in
atomic spectroscopy. Comparing to the 1st quantization calculation which requires notably
cumbersome anti-symmetrization of wave functions, the 2nd quantization method corresponds
to a different labelling of the state basis together with introduction of creation a™, annihilation
a operators and the vacuum state |0).

Except where explicitly noted, Hartree atomic units (cf. Appendix A) are used throughout
this section.

'For example, the invariance of translation in time (resp. in space) gives rise to conservation law of energy
(resp. linear momentum), and the rotational symmetry of a closed system gives rise to the angular momentum
conservation law [B34].
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Atomic physics in hot plasmas

N-electron Hamiltonian H

In the atomic structure study, the general operator A in Eq.(2.1) mostly refers to the her-
mitian Hamiltonian H of the N-fermion system considered.

H as sum of one- and two-electron Hamiltonians :

N 1 N

H=3 H(i)+35 >
i=1 ij=1

i#

1
Tij
where H denotes either the Schrodinger Hamiltonian, known as nonrelativistic model, or the rel-

ativistic Dirac Hamiltonian. The difference between Schrodinger and Dirac approaches departs
from the one-electron Hamiltonians H(i). Omitting quantum electrodynamic effects,

Z 1
HS(Z) = Helec—nucl(i) + Hkinet@) + Hspin—orb(i) = = *vzz +£(Tz)lzsz
1 r; 2
HP (i) = == +ca(i) - p; + B(i)mc?
Ti

with Z denoting the nuclear charge, r; the radial coordinates, & the spin-orbit parameter, cf.
Eq. (2.34c), c the light velocity, a(i), (i) the 4x4 Dirac matrices for the ith-electron and p; its
3-momentum. The Schrédinger Hamiltonian for the ith-electron is constituted by 3 components
[B40], whereas the kinetic and spin-orbit effects are not considered separately in the Dirac
Hamiltonian [B41]. Accordingly, in the 2nd quantization formalism, H can be expressed as sum
of one- and two-electron operators F,G [B20], which correspond respectively to the one-electron
Hamiltonians H (i) and the Coulomb interaction % between pairs of electrons of the Eq.(2.2),

N
F=Y fi=) (e|lf|¢)atay (2.4a)
=1 €,0
N 1
G= Z 9ii =5 Z (af | g12 | en) a;raganae. (2.4b)
1<j=1 afen

More details about the formalism will be given later, see for example Eq.(2.21).

Because of the mutual electrostatic repulsion 1/7;; on the r.h.s in Eq.(2.2), only the N =1
cases — i.e. for hydrogen atom and H-like ions — can be fully solved in analytical way, with the
symmetry of the central Coulomb potential 1/r enabling the separation of radial and angular
solutions. In order to circumvent the inter-dependence problems in the calculations of N-electron
structures, the starting point for most resolution methods in nonrelativistic quantum mechanics
as well as in relativistic atomic model is to define an averaged effective potential U (r) following
the H-like independent particle central field scheme. In such a way, the state of each electron
in a N-electron system is governed by a mean potential U(r) on one hand, and the residual
electronic correlations of the other (N-1) electrons on the other hand. In other words, the
N-electron system Hamiltonian defined in Eq.(2.2) is partitioned in a new way.

H involving separable mean field U(r) :
H=Hy+H. (2.5)
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2.1 N-fermion structure

The central term Hj is invariant with respect to rotation of the frame of reference

N
Hy :Z(ti+U(Ti)) (2.6)
i=1
with )
——V? in the non-relativistic scheme,
ti={ 2 (2.7)
ca(i) - p; + B(i)mc? in the relativistic scheme.
and U (r) fulfilling the following boundary conditions [B41]
Z
——4const. r—0
_ T
U(r)= (Z—N+1) (2.8)
——, T
,
The residual term H'
N
H —Z(—T‘—U(T@)>+H1+H2+... (2.9)
i=1 i

may regroup various correlation effects Hy, Ha, etc. See eg. Eq.(2.39). In the central-field model,
operators Hy and H' are defined according to the 2nd quantization formalism by [B42] :

Ho=> FEiafa; =Y (i|H(i)li)a] a; (2.10)
i i
|
H = 3 .Zklgijkla;rajalak — ;Uika;rak (2.11)
1,7,K, T

where E; is the eigenvalue of the one-electron Hamiltonian (See Eq. (2.12))— Schrédinger or
Dirac one — in the potential U(r;) ,gijr is a 2-electron matrix of the Coulomb potential 1/r2
evaluated with Schrédinger or Dirac orbitals, Uj, is the one-electron integral of the central
potential U such as Uy, = [ d®r; (r)U (r)e(r).

Up to now, the introduction of the central field U(r) only leads to a different partition of
the system Hamiltonian. However, when neglecting H "in Eq.(2.5), an approzimation is made
for the resolution of the N-electron problem.

2.1.1 Central field approximation

By analogy with the hydrogen case, the central field approximation may consist of two
following points :

e since H ~ Hy, particle inter-dependence problem of N-electron systems is solved ;

o the central potential U(r) used in Hy is assumed to be spherically symmetric, so that
radial and spin-angular variables of a N-electron wave function are separable.

Finding the most accurate form of U(r) is an uneasy issue and out of the scope of this thesis.
Only a succinct summary of approximation methods will be given in Sec.2.1.2.
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One-electron central field orbitals

Assuming a suitably defined U(r), a complete set of central field orbitals 1; can be generated
as eigenfunctions of one-electron (N=1) stationary equation

Hoi(¢) = Eii(C), (2.12)

where the subscript ¢ stands for a quantum state characterized by an ordered but non uniquely
defined set of quantum numbers, ¢ an electron identified by its spherical coordinates and spin
variable (r,0,¢,0), and Hy is whether Schrodinger or Dirac Hamiltonian (cf.Eqs.(2.6)(2.7)) for
one electron, i.e. Hy=t+U(r) .

In the nonrelativistic model, a one-electron central field orbital 1;(¢) = Ynimm, (1,60, ¢,0) is
named spin-orbital and has the form [B40]

wnlmlms (T,e, ¢7U) = %Pnl(r) : Yﬂ(lll) (97 ¢) : Xgrsz)s (U) (213)

where Ry, (1) = Py(r)/r, Yéf) (0,¢) and X,(fl)s(a) are its respectively radial, angular, spin parts.
In the relativistic model, a spinor 1;(¢) = Ynem(r,0,6,0) is characterized by the quantum

number set (nkm =m;) or equivalently (nijm;) and reads [B41]

_ 1 Prm(r) an(aafb)
wnnm(r,07¢7a) - ; |}Qrm(r) X—nm(evé) (214)

where Py, Qny(r) are purely radial amplitudes, and « is related to [,j as

—1—-1 if j=10+1/2,
K= - / (2.15)
l ifj=1-1/2.
The angular dependent spin-orbit function x,.m(6,¢) is given by
0= X Vi (0.0) - (15m— aolljm) (2.16)
’ meo 2 2

o=F1/2

where 117 is a spin eigenvector, Yn(f ) »(0,¢) a spherical harmonic and <l%m — O'(T’l% jm> a Clebsch-
Gordan coefficient. Clebsch-Gordan coefficients as well as relations between different quantum
numbers are presented in Appendix B.

+

One-electron state |7) in the second quantization is represented by the creation operator a;

operating on the vacuum state |0)
i) = o [0), (2.17a)

whose adjoint is defined through the annihilation operator aj such as
(i] = (0]a;. (2.17b)
Furthermore, as a rule,
(Olai =0, arl0)=0, (ilaf =6 (0, axli)=3ik|0). (2.17c)
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2.1 N-fermion structure

N-electron wave functions

Based on fundamental postulate of quantum mechanics, a N-electron (N>1) wave function
¥ should exhibit anti-symmetric characteristics upon interchange of any two electrons, the
Pauli exclusion principle states that two electrons can not occupy the same spin-orbital. More
precisely, it means that :

1. for an arbitrary N-electron product state W((1,...,¢n) = >, C(k1, ... kn) -0k, (C1) - rp (CN),
the coefficients C'(ky, ..., kn) must be anti-symmetric under the exchange k; <+ k; as U((1,...,(n)
is anti-symmetric under an arbitrary exchange i <> j;

2. W =0 ifany two spin-orbitals (or spinors) are identical, for instance (n;l;m,ms,;) = (n;lym;,ms, ),
or two electrons have the same coordinates (; = ¢j.

In the central field model, a typical wave function describing a N-electron system is made
up of appropriate linear combinations of one-electron orbitals products

1
V= oyl D (D) PNy (1) oy (), (2.18)

“o(P)

where anti-symmetrization of the wave function is carried out by the sum running over all
possible electron permutations o(P), with the permutation signature, labelled €(P), representing
the parity of the permutation 2,

1, if even permutation,
e(P) = { P (2.19)

—1, if odd permutation.

The anti-symmetric properties together with Pauli’s exclusion principle are more easily taken
into account by building N-electron wave functions with Slater determinant. A N-electron de-
terminantal function writes as

P1(C1)  ¥1(¢2) - Y1(Cw)
\I/(Cl,...,CN):\/Ale! velQ) 2(G) o ¥2ltw) (2.20)

on(C) On(@) - dn(Cy)

where 1);((;) can be either spin-orbital or spinor, 1;(¢;) = ((j]7). One can notice that the deter-
minant vanishes if two rows are identical (i.e. two spin-orbitals are identical) or two columns
are identical (i.e. two electrons have the same coordinates). The anti-symmetrization is auto-
matically ensured, since the summation over permutations is implicitly accounted for through
interchanges of rows and columns.

In the 2nd quantization formalism, a normalized N-electron determinantal state |af...v), is

regarded as a sequence of operators a, ag... acting on a vacuum state |0)

fB..v) = afaf..a;|0) (2.21)

where each Greek symbol stands for a quantum-number set, eg. (nlmyms). |af...v) is anti-
symmetric under permutation of one-electron quantum numbers, whose ordering is indicated by

2For example, in the case of 3 electrons (,7,p), the circular permutations {(¢,7,p); (4,p,%); (p,4,5)} corre-
spond to ¢(P) = +1, and the exchange permutations {(j,%,p); (4,p,7); (p,J,%)} are odd.
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the sign of the wave function. Furthermore, Pauli exclusion principle stems automatically from
the anti-commutation relations ® between operators [B34] :

{aa,ag} = aaag + agaa = 0a8, (2.23a)
{a;t,ag = a;tazg + agaa =0, (2.23b)
{aa,a} = aqag+aga, =0. (2.23¢)

Indeed, the fundamental idea of the second quantization method is to transfer to operators — a™,
a, etc. the tensorial proprieties characteristic of wave functions.

As example, an anti-symmetrized two-electron state |¥(1,2)) can be built out of two one-
particle states ¢ such as

Y1(C)  1(¢2)
Pa2(C1)  ¥2(C2)

1

=7 (101(¢1)¥2(C2) — 1 (C2)¥2(¢1)) = af az |0). (2.24)

S

[W(1,2)) = 73

Electron configuration

As a consequence of the central field approximation, a configuration is defined by means of a
list of occupied orbitals in an anti-symmetric N-electron wave function [B41]. The energy of an
atom in the central field approximation is independent of the z-projection (magnetic) quantum
numbers * it means that the energy level is characterized by the quantum numbers (n,l) in
nonrelativistic cases,

Cor = (n1l1)" (nal2)™...(npl,)"" (2.25a)

and by (n,k) or equivalently (n,l,7) in relativistic cases,
Cr = (nllljl)wl (n212j2)w2 ...(nqlqjq)wq (2.25b)

where the orbitals sharing the same values of (n,l) or (n,l,7) are identical and form respectively
a nonrelativistic (nr) or a relativistic (r) subshell. The v; or w; — called the occupation numbers
— electrons are said to be equivalent, with

Zl/p = qu =N. (2.25¢)

Given the equivalence, nr- as well as r-configurations are usually specified by the occupation
numbers v; or w; of each subshell i, which give rise to spectroscopic labels.

3 By the way, the orthonormality of one-electron states (¥pnim,m. |’l/]n/l/7";m/s> = 5nn'5ll/5mlm; Om m/,, Written
in the 2nd quantization formalism, ' '

(a|B) = (Olaaaf|0) = /a*ﬁdT:(Saﬁ (2.22)
can be proved by the relation (2.23a), and the anti-commutation relations in Eqgs. (2.23b)(2.23c) ensure the
anti-symmetry of the state |@8) and its adjoint (| respectively [B42].

4For a pure Coulomb field, there exists additional (hydrogenic) degeneracy: the energy of such atom does not
depend on the orbital quantum number .
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2.1 N-fermion structure

n-value shell [-value wnr-subshell j-value r-subshell full shell composition

1 K 0 s 0 s (1s

2 L 1 p é% p—.Dy (28+2p)

3 M 2 d 22 d_,dy  (3s+3p+3d)

4 N 3 f %,5 fo fy  (4s+4p+4d+4f)

5 O 4 g 2.3 g—,9+  (bs+5p+5d+5f+5g)

6 P 5 h T h_,hy  (6s+6p+6d+6f+6g+6h)

Table 2.1: Spectroscopic labels illustrated for the first 6 shells. Non-relativistic and relativistic
subshells are respectively denoted by nr-subshell and r-subshell. For a given [-value (except
[ =0), a nr-subshell corresponds to two r-subshells, characterized by j_ = [l —1/2|,j+ = |l +1/2]
and denoted respectively by the subscripts —,+. For example, a full L-shell includes subshells
of types (2s+2p) or (2s+2p_ +2p; ) depending on whether non-relativistic or relativistic model
is considered.

Due to the Pauli exclusion principle, the occupation numbers v;,w; of each subshell 7 is
limited to a maximum, defined by

v =2(2l;4+1) for a nr-subshell
(2.26)

wi' =27 +1 for a r-subshell,

with ¥4 < 2p? and w™@® < 2n?, where 2n? is the maximum number of electrons occupying the
same n-shell. A fully occupied subshell is qualified closed whereas a open subshell is a partially
filled one. Closed subshells in a configuration are of practical interest, since the state of a closed
subshell must be invariant under axis rotation, only one Slater determinant exists corresponding
to a total angular momentum J = 0 and degeneracy g = 1, cf. Eq.(2.28). Therefore, a closed
subshell is often omitted in the spectroscopic label of a configuration, eg. 15%2s22p%3s3p?* is
usually denoted by 3s3p*.

For an arbitrary subshell (n;l;)" or (n;l;j;)**, the degeneracy 5 or statistical weight g; is

equal to
A _ V:nam ‘ _ wzrnax
Ginr = ( v, ) y  Gix = ( Wi . (228)

The configurational degeneracies of (2.25a)(2.25b) can be deduced from subshell ones by
product,

p q
9= Hgi,nr = Hgi,r- (2.29)
=1 i=1

Taking the example of 3s3p*, two subshells —s(I = 0),p(l = 1) with respectively one and 4
electrons. Applying Eqgs. (2.28)(2.29), the configurational degeneracy is derived as

gur (353p1) = G) <Z> =2x15=30 (2.30)

5The degeneracy of a subshell g; corresponds to the number of micro-states it covers such as

{(msos)} €Cnr with 1 <s <1, 1 <a < gjnr

2.27
{(Isjsms)} € Cr with 1 <s <w;,1 <a < g, ( )
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Atomic physics in hot plasmas

in nonrelativistic consideration. In relativistic model, p* = p*~ p(’f with w_ +wy =4. Since

wme(j_ =1y =2 and wm(j; = 3) =4, w_ ={0,1,2} and wy = {0,1,2,3,4}. The different
population repartitions involved give rise to 3 possible relativistic configurations, each with its

degeneracy written as

g(r}) = (2'%; 1) =1 (2.31a)
+1).<2.g3+1>:8 (2.31b)

+1) [2-3+1
) (24 - a0

9:(3s3p*) =2 x (14-8+46) = 30 (2.31d)

s DOl

g(p-pl) = (2'

2.

Mwl»—l

g(pipl) = (

and the total statistical weight

is equal to the result in nonrelativistic model, as expected.

2.1.2 Configuration structure
Empirical energy ordering

As seen in Table 2.1, spectroscopic notation of a configuration is closely related to angular
momentum quantum numbers. Qualitatively speaking, atomic energy levels in a energy-level
diagram can be roughly estimated as classified according to their angular momenta [B40]. In
general, the energy ordering of neutral atoms in their ground state follow the n+1 rule [W43],
which states that orbitals with a lower n+ [ value are filled before those with higher n +( ones,
cf. the Fig.2.1. However, when highly charged ions are considered, the ordering of energies is

Figure 2.1: Scheme of the n+1 rule in orbital filling. The energies of subshells (nl) increase
following the direction of arrows from the bottom right to the top left.

firstly defined by the increasing principal quantum number n, then by the increasing orbital
quantum number [. The comparison of energy orderings between 3d and 4s orbitals is carried
out through two alkali elements — neutral potassium K (Z=19) and highly ionized caesium Cs3%+
(Z=55), based on the on-line computation of NIST atomic database [W44]. The output values
are gathered in the Table 2.2. While the configuration 3p%3d lies higher than 3p®4s in energy-
level diagram of neutral K, crossover between 3d and 4s orbitals is observed in highly charged
Cs35% ions.



2.1 N-fermion structure

K (Z=19), KI Cs%F (Z=55), Cs XXXVII

E(3p%4s,2S) (eV) 0 980.68
E(3p%3d,2D) (eV) 2.66996 (5/2) 18.41 (5/2)
2.67025 (3/2) 0 (3/2)

Table 2.2: Illustration of energy ordering in neutral atom and highly charged ion. Levels energies
are output values from NIST atomic database. Two alkali elements of the Mendeleev’s table
— potassium K (Z=19) and caesium Cs (Z=55) are considered, with the first neutral and the
second highly ionized, so that both configurations are composed by 19 electrons. Crossover
between 3d and 4s orbitals occurs in Cs*¢* jons.

Single configuration basis

A more rigorous treatment of energy level structures was provided by the Slater-Condon
theory, namely through matrix method as briefly mentioned in Eq.(2.1). For instance, the
energy of spherically averaged atom reads [B40)]

Sul(V[H|V)
number of basis functions’

E= (2.32)
The basic procedure of the matrix method consists in expanding the unknown wave function
|¥) in terms of judiciously truncated basis functions. Setting up an appropriate set of basis
functions is crucial in matrix elements evaluation and represents an important difficulty of the
method. It has been found out that [B40] one configuration constitutes generally a suitable
grouping of nearly-spaced energy levels which set of functions, for instance > g € C in Eq.(2.32),
can be used as configurational basis functions to evaluate the matrix elements.

In the single configuration approrimation, the energies of the various states of a field-free
atom are given by the eigenvalues of matrices, one matrix for each possible J value [A45]. The
matrix elements connecting two states b, b’ are in the form

be'_ébb' av+Z{ko lzal)+ng lul } dez (233)

ijk

e The configurational average E,, is given by the diagonal matrix elements Hyy.

e The parameters F* G ¢ are the Slater integrals arising from the calculation of the radial
part of wave functions. Actually, the integrals R*(ij, pq) appear when evaluating the matrix
element (i§]2/r12|pq), the direct F*(ij) and exchange G*(ij) Slater integrals are particular
cases of the integrals R¥(ij,pq) such as F¥(ij) = R*(ij,i5),G*(ij) = R*(ij,ji). Together
with the spin-orbit integral £(7) [A46], they are related to the radial wave functions P,;(r)

as

o0 2r<
*(i) / / k;+1’P r1) | P;(ra)[Pdridra, (2.34a)

koo o0 27“]2
G (ij) :/0 /0 rkﬁpi(ﬁ)Pj(7‘1)Pi(7"2)Pj(r2)dr1dr2, (2.34Db)

>
. a? [ 1dU 9

i) =5 | g Bl (2.34c)
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o The parameters (fx,gr,d;) are angular coefficients that depend only on the angular quan-
tum numbers of the basis states b,b in the chosen coupling scheme, say LS- or jj-couplings,
they are independent of the atom or ion which exhibits the configuration. Analytical ex-
pressions of (fx,gx,d;) can readily be derived using Racah’s algebra of irreducible tensor
operators® in terms of three types of reduced matriz elements’,

(He®p) (2.37a)
(aLs|lU®|jima’L's") (2.37b)
(ImaLs||VE|jma’L's" (2.37¢)

for details, see Eqgs. (20)(21)(22) in [A45].

Approximation methods of resolution

The evaluation of matrix elements H,,; requires one to determine P, (r) of one-electron
wavefunction v;(r), cf. Eq.(2.13) and set up a potential U(r;) in the system Hamiltonian,
cf. Eq.(2.6). Two approximation approaches are of great interest, namely the perturbational
procedure and self-consistent field method.

Perturbational procedure
The basic idea of the perturbational procedure is to start with the central part Hy of the system
Hamiltonian, cf. Eq.(2.5), and add the perturbative part H " as corrections to Hy assuming
H' <« Hy, cf. Eqs.(2.6)(2.9). The perturbed quantity is approximated by a n-th order power
expansion in parameter A,

H=Hy+\H

Hep = By with { o=@ 4+ XM 4223 4 (2.38)
E=E9 4 EW 4 2B 4

6 When dealing with evaluating angular portion of matrix calculation, Racah’s algebra of irreducible tensor

operators turn out to be efficient. An irreducible tensor Tq(k) of k-rank has 2k +1 components ¢ = —k, ..., k, whose
commutation relations with the angular momentum operators read

.70 = VEF bz T DTS, (2:350)

[jz,Ték)} =qr™, (2.35D)
)

position vector » may be considered as ) =@,
" It is worth mentioning the Wigner-Eckart theorem

For example, a set of spherical functions C’,(,l, (m=-1,—1+1,...0,.... — 1,1) composes an irreducible tensor; the

(agm | T o/ j'm" ) = € (jmi'km'q) (gl TV 1o (2:36)
which enables the separation between geometrical properties and physical nature of the operator. The geometrical
properties are linked to k,q and contained in the 3j symbol (related to the coupling of angular momenta). The

physical nature (in the sense of interaction) is found in the reduced matrix element, independent of the quantum
numbers appearing in the 35 symbol.
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2.1 N-fermion structure

where the 1st-order energy shift is given by F(}) = <¢(0)|H '|1/)(0)> for instance. When applying
on atomic structure, for example with the perturbative terms as

1&g
Hy = 5 Z E (2.39&)
ij=1""
i#]
H2 = 5(7’1)[13, (239b)

in the nonrelativistic scheme, [047]

e the Oth order Hamiltonian Hy determines the energy level structure specified by n,l or
n,l,j (eg. in a Grotrian diagram) ;

e the Coulomb term H; splits the energy levels into different terms;
o the spin-orbit term Hs splits the terms, leading to fine structure of the energy levels;

o other effects (eg. nuclear effect, external field) Hs may lead to hyperfine structures of the
levels, etc.

Variational principle
Among the most commonly used methods, the Hartree-Fock (HF) numerical resolution scheme
represents a self-consistent method which optimizes potential U®) (r) and wave functions Pf;l’) (r)
through iterative process with i.

For example, in a nonrelativistic single-configuration basis Cy,, the Hartree-type wave func-
tions are solutions of a set of p differential equations [B40]

2L+
<_+1<1+)

S+ +U(r>>P1<r>=E1P1<r>

-+ A\ ) + U(r)) B(T) = ElPl(’I") (2'40)

_W+72 +U(7“)> Py(r) = EpBy(r)

where each equation to one of the subshells (n;l;)" composing Cy,. At the initial stage, a set of
suitably defined "test" wave functions (Pl(l)(r), ...,Pi(l)(r), ...Pzgl)(r)) is used to derive the poten-
tial UM (r). Then, with UM (), (Pl(Q) (r),...,]Di(Q) (r),...PZSZ)(r)) can be performed which give in
turn the potential U(?)(r), etc. At each iteration 7, the optimized PU)(r) should satisfy two cri-
teria : minimize the calculated energy of the atom, cf. Eq. (2.32) and ensure orthonormalization
relation, cf. Eq.(2.22). The procedure repeats until U™ (1) = U™~ (7).

Notice that the presentation of approximation methods above is very simplified, focusing
more on general procedures rather than resolution details. A rigorous discussion on the choice
and derivation of different potentials in use in various atomic codes would require more advanced
knowledge on purely atomic structure. Here, we are content with showing the form of the
potential in FAC [A30], the code based on which the numerical work was done in this thesis.
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Potential U(r) in FAC

The atomic structure calculation in FAC [A30] is based on the relativistic configuration
interaction, see next paragraph, with independent particle basis wave-functions. These basis
wave-functions are derived from a local central potential V' (r), which is self-consistently deter-
mined to represent electronic screening of the nuclear potential.[O31]

The local central potential V' (r) includes contributions from the nuclear charge V¥ (r) and
the electron-electron interaction V¢¢(r).

e The nuclear contribution part is defined regarding to the statistical model radius Ry of
the nucleus such as Ry = 2.2677 x 107°A/3 with A the atomic mass,

VA r )2 .
VN(r) = 2sz[3_<sz>1’ s A (2.41)

Z/r, elsewhere.

o And the expression of V¢(r) is given by

Ve(r) = ——— 5 wapa( X Zwa dab Ybb( )Pa(r)+

Zwa we—1) ka (a,a)y, +ZZwawbgk (a,b)Y, ( )Pan(T) (2.42)

E>0 atb k

where

— a,b denote two sub-shells nn,n/ KZ/, with w,,wp their occupation numbers ;

— Pab = Pa(r)Py(r) + Qu(r)Qu(r), cf. Eq.(2.14) ;

—Yk(r)y=r[ Tg%pab(rl)dr/, with ro =min(r,7’) and r+ =max(r,r’) ;

— fr and g are respectively the direct and exchange coefficients, defined as a function

of the Wigner 3j coefficient (‘71 J2 U3 ), cf. Appendix B,
m1p Mg mMms

2
1 , ,
fr(a,b) = — <1+2ja) (i‘g lg ‘5’) (2.43a)

gr(a,b) = — (Zal g ‘71b> (2.43Db)

Based on the Dirac-Fock-Slater method [A48], which is the relativistic version of the Hartree-
Fock-Slater method, the effective potential used in code FAC is defined as

Ur)=Vv(r) -

OéQ
> V() —ea)* =W (r)}, (2.44)

where W (r) is a function of V(r), defined in [A30].
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2.2 Emission and absorption spectra

Configuration mixing

When accurate calculations are no longer made within the single-configuration approxima-
tion, especially in the case of highly excited configurations overlapping each other in energy,
it would be necessary to include functions from two or more configurations in the basis set.
When each computed wave function |¥) results in a mixture of basis functions from several
configurations, there is configuration mixing.

For example, considering a tractable case of 3d? of a W>4F ion, using the code FAC, mixing
among the relativistic configurations {3d%,3d_3d,3d? } is illustrated in Table 2.3. As shown
in the last column, three relativistic configuration mixing groups—(0,3,7) =2, (1,8) =0, (4,6)7=4
and two configurations without mixing—2,5 are identified. Because of J-value conservation,
configuration mixing occurs only within configurations with the same J.

Moreover, in the basis (0,3,7,1,8,4,6,2,5), the "block-diagonal" matrix M = m;; reads

—0.9975 —0.0686 0.0146 0 0 0 0 0 0
—0.0681 0.9972  0.0328 0 0 0 0 00
0.0168 —0.0313 0.9937 0 0 0 0 0 0
0 0 0 —0.9945 —-0.1050 0 0 0 0
M= 0 0 0 0.1050  —0.9945 0 0 00 (2.45)
0 0 0 0 0 —-0.9927 0.1206 0 O
0 0 0 0 0 —0.1205 —-0.9927 0 O
0 0 0 0 0 0 0 10
0 0 0 0 0 0 0 01

where the non-zero off-diagonal coefficients are mixing coefficients, and inside each configuration
mixing group, the matrix is diagonal. The diagonal matrix elements in Eq.(2.45) are near 1,
it means the mixing effect is relatively small, a matrix without configuration mixing would be
diagonal with matrix elements m;; = ;.

2.2 Emission and absorption spectra

Although it is a very good approximation to assume that the atom interacts weakly with
the electromagnetic radiation [B40], an atom in an excited level 2 of energy Es can be found in
a lower-energy level 1 (E; < E3) through a spontaneous emission of a photon of energy

hV12 = E2 - El, (246)

which results in a spectrum line at the frequency v15. Together with the spontaneous emission,
the formation of an atomic spectrum occurring in plasmas may arise from other emission or
absorption processes, between bound-bound levels as well as between bound-free or free-free
ones, cf. Table 2.4. All lines together form a radiative spectrum, whose properties depend on
the collective behaviours of the atoms in a plasma.

Thermodynamics — for instance, through the electron density n. and temperature T, — are
involved in order to account for the distribution of atoms among the various ionization stages
and populations of different states on one hand, and line shapes as a result of broadening effects
on the other hand. Unless otherwise noted, temperature 7" stands for energy T' = kg7 and is in
units of eV.
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LS-level jj-level Index Mixing

3Fy (3d2) =2 0 +3,+7
3Py (3d2 ) =0 1 +8
5Fy (3d_3d4)j=3 2 Non
Py (3d-3dy)j= 3 +0,+7
3Fy (3d-3dy)j=a 4 +6
3Py (3d_ 3d+) J=1 5 Non
yen (3d%) )= 6 +4
1Dy (3d2+)J 9 7T 43,40
150 (3d3_)J:0 8 +1

Table 2.3: Configuration structure in the case of 3d% of a W>*F ion. - stands for j = 3/2, +
for j =5/2. The 9 levels from FAC computation, which can be regrouped into 3 relativistic
configurations {3d2_,3d,3d+,3di}, are indexed through 0 to 8 and sorted in the order of in-
creasing energy, i.e. Fyp < Ej <...< Eg. One can identify three relativistic configuration mixing
groups—(0,3,7) j=2, (1,8) j=0, (4,6) =4 and two configurations without mixing—2,5. By the way,
comparing energy levels arising from jj- and LS-couplings, one can notice that the Hund’s rules
are no longer fully respected because of the high atomic number Z of tungsten which leads to
strong relativistic effect.

Free-free processes

bremsstrahlung e+—e+hv inverse brems
Bound-free processes
collisional ionization (Z,N)+e<+— (Z,N—1)+2e 3-body recombination
photoionization (Z,N)+hv<+— (Z,N—1)+e radiative recombination
auto-ionization (Z,N)"*+— (Z,N—1)+e dielectronic recombination
Bound-bound processes
spontaneous (+induced) emission (Z,N)* «— (Z,N)+hv photoabsorption

Table 2.4: Chemical pictures of microscopic processes (not exclusive) in detailed balance. Ac-
cording to plasma (ne,7T.) ranges, electron-atom collisional frequencies and radiative transition
probability rates may be in competition with each other, resulting in various ionization as well as
recombination processes [B40]. The balance between rates at which these processes take place
may be studied by solving rate equations, required when plasmas are out of thermodynamic
equilibrium. The symbol * stands for excited state lying above the ionization limit.
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2.2 Emission and absorption spectra

2.2.1 Thermodynamic equilibrium

When the rates of various ionization and recombination processes in a plasma are equal,
the plasma is said to be in steady state, which is a necessary but not sufficient condition to
define thermodynamic equilibrium. Under the assumption of thermodynamic equilibrium, the
relative ions abundances and the distribution of populations over states can be determined
by purely statistical considerations. Indeed, the thermodynamic equilibrium of a plasma may
roughly cover 3 types of equilibria — the complete Thermodynamic Equilibrium (TE), the Local
Thermodynamic Equilibrium (LTE) and the Partial Local Thermodynamic Equilibrium (PLTE).

Complete thermodynamic equilibrium

In a TE plasma, all 3 types of particles — ions, electrons and photons are in equilibrium, as
a result of which the following conditions are satisfied.

e The detailed balance is fulfilled, meaning that the rate of each process equals exactly the
rate of its inverse [B4].

e The radiation is assimilated to a black-body radiation, i.e. photon energy distribution

obeys the Planck’s law,
2hv3 1

c? exp( )—1

which shows the spectral radiance B, for the frequency v at the temperature 7.

B,(v,T) = (2.47)

e Electron and ion velocity and energy distributions follow Maxwell-Boltzmann functions,

3/2 2
fo(v)dv =ne (27:; ) 4 exp <_n;;31 ) dv (2.48a)
2 e\ /2 g\ de
fg((‘:)d&f = Fne (1_16) exXp (—T,e) i (248b)

where f,(v)dv (resp. f-(¢)de) is the density of free electrons whose velocity (resp. kinetic
energy) is between v and v+ dv (resp. between € and €+ de). The normalization is done
so that the integrals of such distributions are equal to n..

o Within one charge state Z, distribution of populations over two levels (i,7) € Jz is given
by Boltzmann law,
A . E —E.
M T exp (—H) (2.49)
nj o gj T

When an arbitrary number of charge states are present in the plasma, the relative ions
abundances of two successive charge states nzy1,nz follow Saha-Boltzmann law,

nzi1 2 E E,—EY E,— EY
7t - exp< Z+1> Z gpexp< P Z+1 /quexp qkiTZ

pEJz41 q€Jz
(2.50)

8Whether in equilibrium or not, fy(v)dv = f-(¢)de
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where E% stands for the energy of the ion with net charge Z at its ground state, and
Ath = Agp is the De Broglie thermal wave length,
h

Ath = ———= 2.51
= (251)

These equations assume that the free electrons are non-degenerate and treated as ideal

gas. ?

Local thermodynamic equilibrium

Compared to a TE plasma, which represents almost an ideal system, radiation may escape
from real plasmas so that the detailed balance can be disturbed. In other words, photons in
LTE plasmas are not necessarily in equilibrium with electrons and ions whose distributions of
velocities, energies and excited states remain the same as for the TE conditions '°. Actually,

9 Two parameters [W49] are worth mentioning here which, by the way, give more insight into plasma regimes.

— The ideal gas limit corresponds to a null value I" = 0 for the Coulomb coupling parameter, which is defined
as the ratio of the potential energy to the kinetic energy of plasma particles I' =< Epot > / < Ejgine > and
measures the degree to which many-body interactions affect the dynamics of particles. I' < 1 corresponds
to a weakly coupled system, whereas I' > 1 reveals strong interparticle interactions. Moreover, for a system
of ions of charge Ze at density n and temperature 7T,

2
r— (2763/3 (2.52)
(50)

— Whether describing the energy distribution of electrons in a plasma by classical or quantum statistics

1/

2
parameter is defined as the ratio of thermal energy to Fermi energy Tp = 2}3% (3772718)2/3,

2
_Te Ath
0= (nel/?’ . (2.53)

If 6 < 1, the plasma is said to be degenerated, Fermi-Dirac statistics should be used to describe the dynamics
of electrons and account for their fermionic nature,

depends on \;;, with respect to the interparticle distance ~ ne 3, Quantitatively, the quantum degeneracy

1

_ .54
1+eXP(—ﬂ;F:) (254

nrp(€)

with g is the chemical potential, ¢ :p2/(2me) the electron energy. If 0 > 1, quantum effects can be
neglected, so that electrons in the non-degenerated plasma can be described by classical point particles.
The Boltzmann statistics of one-particle states assess

ng(e) = exp (‘u;:) . (2.55)

The classical/quantum limit is set by 6 = 1, where T% — —o0 and ngpp — npg.

The quantum degeneracy ought to occur at high ne where electrons get close to each other and at low T, so
that Ayp, increases and wave packets increasingly overlap. It doesn’t concern the plasma regime (Te > Tr)
studied in this thesis.

10 Remind that the charge state distribution in LTE plasmas can be derived by minimizing the Helmholtz free
energy F, defined in terms of the temperature and the partition function Z(7T') of the system

F = —Tlog(Z(T)) (2.56)
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2.2 Emission and absorption spectra

"local" can be interpreted as bounded by the mean free path (mfp) of photons emitted from the
plasma A7, and the collision length of electrons and ions. The crucial condition underlying
the validity domain of LTE is that the rate of the energy-conserving collisional processes in the
plasma is much higher than the rate of energy-dissipating radiative processes, predicting that
the LTE condition is ensured at rather high electron densities. Rather high electron densities
are therefore required by TE and LTE, but TE also implies reabsorption of emitted photons by
the plasma when A, ), is large, i.e. the optically thick plasma. A rough criterium for the validity
of the LTE between two levels 4, j is estimated [B50] to be

ne > 1.8 x 10"/ T, E3, (2.57)

with n, is in units of cm™3, T, and Ej; in eV.

Partial local thermodynamic equilibrium

Up to now, no specification has been provided to the temperature T' — whether it’s about
electronic temperature 1, or ionic temperature T;. The reason is that in TE and LTE plasmas,
it is assumed that T, = T;. Nevertheless, in a PLTE plasma, T; # T¢, so that it can no longer
be described by a single temperature. The energy difference between the ground state and the
first excited state is normally large, whereas the energy difference between the excited states is
small [W51]. If n, is high enough, the excited states can be in equilibrium among each other,
excluding ground states, thus the "partial" LTE.

Non-LTE description and effective temperature

In non-equilibrium plasmas, statistical distributions are no longer applicable, various ele-
mentary processes cross sections should be taken into account to determine the population dis-
tribution of different levels according to a given model, such as the collisional-radiative model.
Nevertheless, rather than accounting for kinetic effects, simpler approaches like the theory of
effective temperature Teg [A52][A53] can be used when suitable for spectral analysis, which is
implicitly given by [A53]

exp (— ﬁf ) = exp(—f)/ [1 - 0.125':5521;;@ (AEZ?/QN (2:582)

with
B=AE/T. (2.58b)
x(8) =1In (1 + W) , (2.58¢)

ne in units of cm™3 and AFE in eV. For example, in tokamaks, tungsten impurities are present
in different regions for which the temperatures and density vary significantly. As reported in
the literature [A54] in ITER core plasma, the electronic temperature will reach 10-25 keV with
charge states in the W>"T-W0%+ range, while towards the edge of the main plasma column the
expected temperature is much lower, the charge states being about W4+ -W50+ The average
electron density ~ 104 cm™2 is too low to ensure LTE. An analysis of ion and level populations
as obtained from NLTE databases [A55][A56] and a calculation shown on Fig. 2.2 using the
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online version of the FLYCHK code [A57] indicates that the “average” conditions of 8.8 keV and
10 e¢m™3 may be modelled by an effective temperature in the 150-250 ¢V range, keeping the
same electron density.

250

225

200

175

€

T - Saha-Boltzmann (eV)
L B L
IIIIIIIIIIIIIIIIIIIII

| L | L | L | L | L | L |
6000 8000 10000
T,-NLTE (eV)
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Figure 2.2: Effective temperature as a function of electron temperature for a 104 e.cm™3

tungsten plasma as obtained by FLYCHK. The Teg is the temperature which, assuming Saha-
Boltzmann law, would give the same average charge as the non-LTE calculation from FLYCHK.

2.2.2 Spectral emissivity and opacity

Since the work of this thesis, both analytical and numerical parts (cf. chapter 4), involves
only bound-bound transitions in LTE plasmas, neither the bound-free and free-free processes
nor their contributions to the computation of emission and absorption spectra are discussed
here.

The Einstein coefficients

The bound-bound processes, as shown in the Table 2.4, can be characterized by their re-
spective Einstein coefficients, namely the spontaneous emission coefficient Asj, the induced (or
stimulated) emission coefficient B2; and the photon absorption coefficient Bja. A schematic
illustration is given in the Fig. 2.3 based on a 2-level system, denoted accordingly by 1 and 2.

o The Einstein spontaneous emission coefficient Ay; (in units of s=!) provides the rate of
change of ny(t) atoms in 2 due to spontaneous transition to 1 such as

dng (t)

dt = —TL2(t)A21 (2.59)

and defines the natural lifetime of the atom in 2

1
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level 2, density n2

f\

A21 B12 B21

_d S

Figure 2.3: The three Einstein coefficients in a two-level system. The energy difference is given
by FE = hV12.

meaning that if there is no other excitation nor de-excitation processes involved, na(t) =
n2(0) exp(—t/Ata).

o The Einstein absorption Bis and stimulated emission Bs coefficients (having dimensions of

volume - angular frequency / (energy - time)[A58], in units of J~1-m?-s72 or equivalently

st erg=!.cm? - sterad) are related to the spectral energy density p(v) of the radiation
field assuming isotropic at frequency 112, which is the electromagnetic energy per unit

volume and per unit frequency, such as

dng(t)

———= = —ny(t)Baip(v)

dncit(t) (2.61)
g = () Brp)

These equations are applicable if p(/) does not change significantly over the line width.!!

It is noteworthy that the Einstein coefficients arise from the intrinsic properties of each atom,
whose mutual relationships are [A58]

By g1 Axn i 87h s
—— =2 — = F(v) with F(v) = —1". 2.62
5= B (v) v)=-3 (2.62)
Thus, the kinetic equation set giving the total variation of the system simplifies to
dnq(t
allt( ) n2(t)Az21 —ni(t) Bizp(v) +n2(t) Baip(v) =0
(2.63)
dns(t
;t( ) = —na(t) Ag1 +n1(t) Biap(v) —na(t) Baip(v) =0

1 1n the opposite situation, for example under a strictly monochromatic laser radiation, the on-resonance
excitation would produce Rabi oscillations, i.e. the population difference between 2 states (or 2 non-degenerated
levels) oscillates in time with the Rabi frequency wgr = p21 E/h, where E stands for the electric field amplitude
of a linearly polarized light field and po; the transition dipole moment.
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where the steady state is ensured under the assumption of plasmas in LTE condition. Using the
mutual relationships of the Einstein coefficients in Eq. (2.62), one may solve one of Eq. (2.63)
leading to the density ratio of level 1 to level 2 as

m g F(v)+pv)
ny 92 p(v) ' (2.64)

Based on the Einstein coefficients, customary spectroscopic parameters such as

o emission oscillator strength fo; and its related absorption one fi2, where |g1 f12| = |g2fo1| =

lgf|

e the absorption cross section og ;
o the transition dipole moment p2; ;
e the line strength S5; of a transition, etc.

can be defined. For instance,

fi2  g22megmc®  Soy 2
—_— =, _—_— = 6g160ﬁ 5 etc. 2.65
A21 g1 w%1€2 Blz ( )

The relationships between these parameters are well tabulated in [A58].
With the induced emission By being seen as the negative absorption, Einstein coefficients can

be used to characterize emission and absorption of one atomic line radiation through coefficients
such as

h
€= 4—I/n2A21 for emission
;7; (2.66)
K = 4—(n1312 —ngBsy) for absorption
T

Concerning the interpretation of spectra in practice, emission intensity and (absorption) opacity
are key quantities to study, which can be derived by radiative transfer equation given by the
Kirchhoff law of thermal radiation in the framework of LTE condition. 2

Zero-dimensional emission &%

The spectral emission arising from a point-like source, which involves only bound-bound
transitions and assumes that the reabsorption can be neglected 3, is given by

EUE) =1 ppAbaBpa-Tah(E) (2.69)
ab

12The Kirchhoff law of thermal radiation reads
I, =B, -(1—exp(—KL)) (2.67)

where B, follows Planck’s law, K denotes the absorption coefficient and L the thickness of the system. The
spectral intensity B, is related to the spectral energy density p, by By = z=pv.
13Otherwise, the bound-free spectral emission for a dimensionless source under the LTE assumption reads

exp (—(E - Eyq)?/T)
(2rmT)3/2

47
(gak?—cé(E) = C*QZVions]\/veE3 Z pgia Uab(E)
ab

(2.68)

where Ne is the free-electron density, o4, (E) the photo-ionization cross-section from a to b, and T the thermal
energy.
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2.2 Emission and absorption spectra

where n; denotes the ionic density, p, the normalized a-level population (3, p, =1) and .7 (E)
the normalized line shape ([dE .7 (E) =1).

Opacity
The spectral opacity at energy F is defined as

K _ o(E) M

K(E)=—= , 2.70

(B)=-—= T (2.70)

where p,, denotes the mass density of ions, .44, the Avogadro number, o(FE) the absorption

cross-section, and M the molar mass of the considered atom. K and p,, are related to n; such
as

niM

Nay’

whereas the opacity x(E) does not depend on n;. The total bound-bound contribution to the
absorption cross-section involves a sum over transitions a — b

K =n;o(F) and p,, =

(2.71)

h32

Fap(E) =2m°0€’a0 Y pafar-Lab(E).- (2.72)

2
Eba ab

Line shape .%;

For non-hydrogenic highly ionized plasmas, a suitable approximation for .#,;(E) turns out
to be Gaussian shape [B4], which reads

D E) = ﬁexp <_(E;UE2”)2> (2.73a)

with variance o2 and half-width at half-maximum hwhm given by

o Ega%, hwhm = ov/2In2 x V/T. (2.73D)
The effect of ions’ motion in the plasma is the broadening of the emission line into such Doppler
profile. One may notice that the width of the Doppler broadening depends on the plasma
temperature only— the higher the temperature, the larger is the line width. The relative Doppler
line width, however, is very small.

Related to the natural lifetime At of a level, as defined in Eq. (2.60), the Heisenberg uncer-
tainties state that the natural energy width of a level is of the order of i/At. Therefore, the
natural fwhm (full-width at half-maximum) of a line ab is

1 1
fwhm="nh <At + Atb) . (2.74)

The natural broadening of a line ab is usually assumed to be described by a Lorentzian profile

.iﬂ ab (w)
Cup 1

27 (w—wo)? + (Tap/2)?

L) = (2.75)
with its fwhm denoted by Ty, [B4].
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Atomic physics in hot plasmas

In cases that the natural width is much less than the Doppler width, Gaussian profiles are
preferred. However, if both widths must be accounted for, the resulting convolved profile is the
Voigt function

1 E— Ey, Cap )
(B = , 2.
Yan(E) (2m)1/20p (21/2013 2120 (2.762)
where
B [t~ exp(—t?)
1
=5 (exp ((—iA+ B)?)erfc(—iA + B) +exp ((iA—I—B)Q)erfc(iA—i—B)) (2.76¢)

where erfc stands for the complementary error function [B59]. Voigt function can be obtained
numerically using fast and reasonably accurate methods [A60].

Line width is an important issue, especially for absorption spectra when Rosseland or the
Planck mean is calculated. It may result from various broadening effects in plasmas, collisional
as well as radiative. However, when individual lines gather into coalescent features, their line
shapes are mostly hidden under the UTA width.
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Chapter 3

Statistical description of unresolved
transition arrays

In highly ionized plasmas, except some individual lines observed in the case of ions whose
ground configuration only contains one electron out of a closed shell [B20], the numerous radia-
tive lines generally gather into broad features, which may be studied as Unresolved Transition
Arrays (UTA) according to the UTA model. It is well suited to describe transitions between
configurations which contain large number of levels, for example configurations with open d or
f shells. In fact, contrary to the detailed computation which requires the Hamiltonian diago-
nalization to obtain the N-electron quantum states, the statistical method consists in averaging
the perturbative Hamiltonian (cf. Eq.(4.2)) using the invariance of its trace so that the aver-
age values can be expressed as compact analytical formulas [P61]. For instance, Bauche et al
have thoroughly investigated the UTA model in a series of papers and derived formulas for the
variance and shift of the distribution of array energies [A62][A63].

According to Condon and Shortley [B36], a transition array is defined as the totality of lines
resulting from transitions between two configurations C'— C’, characterized by its successive
orders of distribution moments u,. For example, denoting F the energy of an array and I(F)
its emission intensity, cf. eg. Eq.(2.69), the distribution moments p,[I] such as

o [t 1(B)E"IE
pnl1] = [T I(E)dE

(3.1)

are of great interest. Within the framework of statistical spectroscopy, one may be led to evaluate
distribution moments of various quantities, such as M ; values, level energies and radiative lines.

The UTA model is an approxzimation which consists in assuming a specific analytical shape
P(FE), such as Gaussian or skewed Gaussian functions, assumed to be the same for all the
transitions of the array, I(F) is actually a convolution product

I(E)=P(E)*A(E) where A(E)=) nqAud(Eq—E). (3.2)
ab

In terms of distribution moments,
fin[1] = pn[P]+ pn[A], (3.3a)
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Statistical description of unresolved transition arrays

the approximation on P(FE) yields
pinl1] = p1a ] (3.3b)

3.1 Elements of distribution theory

3.1.1 Moments
Definitions

As a mathematical concept, distribution moments represent a quantitative measure of the
shape of a statistical distribution, whether continuous or discrete. The nth-order moment ., of
a N-value quantity X = {X;,i =1..N} is defined by

N
N (X)W
L [X] _ 271( Z) ?

, n>0, (3.4)
Zi]\il Wi

where w; stands for the weight of the X; value, Zi]il w; the total weight of the quantity. The
moments are said to be unweighted, in case Vi,w; = 1.

The Oth-order moment g represents the total probability density (normalized to 1). The
1st-order moment f; is the mean of the distribution, about which the centered moment pf, can

be defined N

2= (Xi — )" wi
Zﬁ\;l Wi
With respect to the raw moments p,, — defined about the value 0, the centered moments pf, focus

more on the shape of the distribution independently of its localisation. The centered moments
pf, may also be expressed in terms of p,, for instance

po [ X] = n>1. (3.5)

w5 = pia — (n)? (3.6a)
15 = iz — 3papn +2(p)° (3.6b)
1§ = pa — Apspn + 6o (1) — 3(p)* (3.6¢)

For example, a N-mass mechanical system in rotation around a given axis {(m;, R;),i =1..N}
can be studied through the m;-weighted distribution moments of R. According to the Eq. (3.4),

pn[R] = M,

N
, with M, = Zmz (3.7)
i=1
where M; is the total mass of the system and R; denotes the radius at which m; rotates from
the rotation axis. The Oth-order moment pg, representing My, is normalized to 1. The 1st-order
moment p1 = (Rymy + Roma + ...+ Rymy) /M, yields the center of mass. And the 2nd-order
moment us = (R¥my + R3ma + ... + R3,mx)/M; provides the rotational inertia.
Moments up to the 4th-order of the probability distribution are often denoted by their
traditional names

e 1= the mean or the average.

o 5= the variance v = 0%, whose positive square root is the standard deviation 0. Based
on the variance, it is possible to construct normalized nth-order centered moment «,, as
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3.1 Elements of distribution theory

nth-order centered moment divided by o™
anp=ps/(6™) n>2. (3.8)

These dimensionless quantities have advantages to represent the distribution independently
of any linear change of scale.

o as=the skewness, which represents a measure of the asymmetry of the distribution (with
respect to a Gaussian shape). A symmetric (Gaussian) distribution corresponds to ag =0,
whereas a skewed distribution can be specified whether by as < 0 (skewed to the left) or
a3 > 0 (skewed to the right).

e «ay=the kurtosis, it provides a measure of the flattening of the distribution, compared to
the normal distribution (cq = 3) of the same variance !. So that a distribution having
heavy tails (a4 > 3) corresponds to high kurtosis (leptokurtic) and a distribution having
light tails (g < 3) corresponds to low kurtosis (platykurtic).

Usually, moments beyond the 4th-order are qualified high-order moments. High-order statistics,
involving non-linear combination of data, can be used for description or estimation of further
shape parameters 2[W64].

Moments of level energies and transition lines

When considering energy distribution of levels in a configuration or radiative line distribution
in a transition array, the computation of their correspondant moments turn out to be essential.
The importance of the calculation of such quantities in spectroscopic analysis has been stressed
decades ago by Moszkowski [A22]. For example, application of averaging techniques to the
computation of opacity of a high-temperature and high-density gold plasma has been proposed
by Nardi and Zinamon [A65].

Distribution moments of quantum states in one configuration C' reads

pn(C) = <Em)n, (3.9)

meC gc

where E,, = (m | H | m), with H the atomic Hamiltonian, | m >=| aJM > its eigenstates,
and the sum runs over all states | m > of configuration C'; go=the total number of states,
defined for example by a list of magnetic quantum numbers (m;, ms) of each electron. The
knowledge of energy moments is essential when considering plasmas at LTE, being involved
for instance in quantities like partition functions, or in the Saha-Boltzmann equation. [A32]
Beyond the average energy of a configuration [B40] given by the moment pq, expressions
have been published for the variance (n =2)[A63][B20]. Concerning higher-order moments,
formal methods have been proposed [A66], and explicit expressions given for the third-
order moment [A67]. However, for n > 4 the available literature is rather scarce.

ISome references define the kurtosis coefficient as a4 — 3.

2As an example, in the same way that the kurtosis can be interpreted as the relative importance of tails
versus shoulders in causing dispersion, the 5th-order moment provides the relative importance of tails versus
center (mode, shoulders) in causing skew. For a given skew, high 5th-order moment corresponds to heavy tails
and little movement of mode, whereas low 5th-order moment reveals more change in shoulders.
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Statistical description of unresolved transition arrays

Distribution moments of radiative transitions between 2 configurations C and C’ writes

n

pn(C — )y = 30 = ]f;) e (3.10)
mm/

with E,y = (m'| H|m'), Epn = (m| H|m), the sum runs over all states | m),| m’) of

configurations C,C" respectively; w,,,,»=the strength of the m —m’ transition such as

Wy = (m | A | m’)? where A can be electric-dipole, magnetic-dipole operators, etc. cf.

Eq.(4.42), W =3, Wy

The sums over states in the above equations can be limited to relativistic configurations in
j —j coupling, or to a single Russell-Saunders term. They can also be extended to more than
two configurations in case of configuration mixing. These moments — shown in Egs.(3.9)(3.10)
— can be evaluated by means of the second quantization 3 and the tensor-operator formalisms,
according to the procedure indicated in [B20] :

1. applying the second quantization methods, sums of products of matrix elements to calcu-
late can be transformed into a small number of N-electron operators ;

2. then, the matrix elements of these operators are computed using Racah’s tensor-operator
techniques [A37][A38] as sums of product of Wigner n — j coefficients.

Cumulants x,

As a set of descriptive constants of a distribution, cumulants can be more useful than mo-
ments from the theoretical standpoint to measure the properties of the distribution or to specify
it [B68][B69][B70]. The interest of these quantities versus the ordinary moments is that the cu-
mulants are additive if two phenomena are statistically independent. For example, for complex
configurations with several open subshells (n1l1)P* (nalg)P? -+, the total configurational cumulant
of spin-orbit energies can be obtained by summing up cumulants of each subshells.

Unlike moments u,, where n > 0, cumulants k, are defined from r = 1. The formal definition
of the cumulant of order r(r > 0) is given by [B68]

> Rpt” > ppt”
exp<2” >: i (3.11)

|
r=1 r r=0

In practice, it follows that the cumulants are related to the moments by the recursion formula
[WT1]

n—1

n—1

o =fn— Y (m_ 1) Fom i —m- (3.12)
m=1

For instance, cumulants of up to the 10-th order are applied in the study of high order moments
of spin-orbit energies in Chapter 4 whose expressions as a function of centered moments p,, = s,

31n general, the second quantization formalism is convenient for the distribution moments of the eigenvalues
of any operator commuting with the Hamiltonian.
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3.1 Elements of distribution theory

are as follows,

Ko = 2 (3.13a)
K3 = 43 (3.13b)
K4 = g — 313 (3.13c)
k5 = s — 103 e (3.13d)
K6 = 6 — 15p1ap12 — 1043 + 303 (3.13¢)
K7 = iy — 21 s g — 35pap3 + 210345 (3.13f)
ks = ps — 28416112 — 56415413 — 3543 + 420414115 + 5604312 — 630413 (3.13g)
Ko = po — 367 1g — 84p1gps — 1265114 + T56p5 15 + 2520 pi3pro + 5603 — 756035 (3.13h)
K10 = fi10 — 45 pta — 12047113 — 21046114 + 1260416113 — 126112 + 504015 1312 + 3150412 11 (3.130)

+ 4200414113 — 189004113 — 3780013 143 + 2268015.

3.1.2 Examples of distribution function

Whereas distribution moments of various orders are exact quantities, the choice of a partic-
ular distribution function is to some extent arbitrary, resulting mostly from computation tests
[B20]. Independently of arbitrary choices, all distribution functions ought to converge to the
same behaviour when moments of high enough orders are used.

Beyond the Gaussian assumption, i.e. in cases of moments other than average and variance
are not insignificant the modelling of UTA different from "bell curved" shapes requires one to
consider distributions including moments of orders higher than 2. For instance, the effect of
the 3rd and the 4th reduced centered moments — representing respectively the skewness and the
kurtosis of a distribution — on the statistical modelling of transition lines in complex atomic
spectra has been investigated through the use of Gram-Charlier (GC), Generalized Gaussian
(GG) and Normal Inverse Gaussian (NIG) distributions [AT72].

Gram-Charlier function

Quite popular among statisticians, the Gram-Charlier (GC) type A distribution [B69] of
variable X truncated at index p reads

Q X —1)?
GC(X) = Wexp (—(20/2“)>

1+zp:anen (X;‘“)], (3.14)

n=3

e The above distribution is normalized to the total area of the distribution €2. For instance,
if one analyzes the energy distribution of levels inside a configuration, 2 will be the con-
figuration degeneracy Q) = g¢o, and X = F, u1 = Fuy

e The Gram-Charlier coefficients ¢,, are related to the scaled centered moments

n = pin /0" with 02 := pig (or ag:=1) (3.15a)
by
(-1 Jan A1) n—2;
= 1
XJ: 27 ji(n 21 (3.15b)
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Statistical description of unresolved transition arrays

o He, is the Hermite polynomial defined as [B59]

_1\ym yn—2m
Hen(X):n!Z2( D"X

—-_ 3.16

mml(n—2m)! (3.16)
with the summation being restricted to m values for which the inverse factorials do not
cancel.

It is noteworthy that GC expansion represents probably the most intuitif choice of distribution
when going beyond Gaussian assumption. Actually, as shown in Eq.(3.14), GC function is defined
as a product of a normal distribution with a polynomial accounting for corrections departing
from Gaussian form (corresponding to a3 =0 and a4 = 3). Whereas GC expansion involves in
a simple way moments of any order, it may exhibit negative features in certain circumstances
which is quite bothersome.

Generalized Gaussian function

GG(X) = %exp (- | (XUA’“) |P> {nr (;)] oo (1> /T <3> (3.18)

p p

where

o I'(X) is the ordinary gamma function ;

e pis a positive real parameter, which can be approximated by the following fitting function

when constraining the kurtosis ay such as ay = F(%)F(g)/(F(%))Q,

0.796349 -1

p=1.62796[In(cy —0.783143)] “1 . (3.19)

Unlike GC expansions, GG functions do not have negative values. Furthermore, GG functions
are symmetric (increasing for % < 0 and decreasing for % > 0), with the odd-order mo-
ments null.

4 By the way, the Hermite polynomial of order n obeys the recursion relation
Hep41(X) = XHen(X) —nHep—1(X), (3.17a)

where for examples, polynomials of up to the 4th-order have the following explicit expressions

Heo(X) =1, (3.17D)
He1(X) = X, (3.17¢c)
Hey(X) = X% —1, (3.17d)
Hez(X) = X3 -3X, (3.17¢)
Hey(X)=X*—6X2+3 (3.17f)



3.2 Computation of transition arrays by FAC

Normalized Inverse Gaussian function

Another example of distribution function without negative values, but accounts for both
symmetric and asymmetric effects is the NIG distribution :

Q(cava? —b2exp(c) +b(X —d
NIG(X) = ( . \/% ))m (a\/c2—|—(X—d)2> (3.20)

with K is a modified Bessel function of the 3rd kind, and (a,b,c,d) are parameters of the
distribution expressed as functions of moments of the first orders, cf. Table 1 in [AT2].

In this thesis, only the GC expansions have been used, serving mainly for the convergence
test of the distribution related to the analytical calculation of high-order moments of spin-orbit
energies (cf. Sec.4.1.2.2), however, more details about the three distributions as well as their
comparisons can be found in the referent paper [A72].

3.2 Computation of transition arrays by FAC

In order to illustrate the UTA concept, emission intensities arising from point-like plasmas
are computed in both detailed and UTA approaches for comparison using the FAC code. As
shown in Sec.3.2.1 below, spectra computed using UTA formulas are consistent with detailed
ones in the case of electric dipole (E7) transitions. In contrast, the numerical tests on magnetic
dipole (M) transitions exhibit significant discrepancies, cf. Sec.4.2, leading us to develop a
pseudo-UTA computation method explained in Sec.3.2.2.

3.2.1 Numerical example
3d%4p — 3d*4s transitions in KrX and ZrXIV plasmas

An empirical analysis is performed in the case of 3d%4p — 3d?4s transitions in KrX and ZrXIV
plasmas, cf. Fig. 3.1, using the FAC code.

In addition to the ability to calculate various radiative and collisional processes, as shown in
Table 2.4, the atomic calculations in FAC [A30] can be carried out either in the configuration
average approximation or using the detailed term accounting method, easily by calling the
function SetUTA. In fact, the numerical subroutines implemented in FAC are exported through
several Python modules. The computation task can therefore be completed in a flexible way
by programming in the scripting language Python.[O31]. For instance, the radiative transition
rates A, outputs from UTA computation provide the transition energy F, s including the UTA
shift, the Gaussian standard deviation, and the correction to the line strengths due to the
configuration interaction within the same non-relativisitic configurations.

For the transition 3d?4p — 3d?4s, 61 levels and 359 lines are computed in the detailed ap-
proach, whereas 9 relativistic configurations and 6 arrays result from the UTA option. The UTA
output is regrouped in Table 3.1.

The atomic data from FAC are then post-processed under the assumption of plasmas at LTE,
with the populations n, obtained from Saha-Boltzmann law shown in Eq.(2.50). Moreover, line
shape is assumed to be normalized Doppler profile, cf. Eq.(2.73) and Gaussian distribution is
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Statistical description of unresolved transition arrays

Configuration Relativistic configuration Index Transition

3d%4p 3d% 4p. 8 — 2
3d_3d 4p. 7 — 1
3d%4p_ 6 — 2
3d% 4p, 5 -0
3d_3d 4p_ 4 — 1
3d% 4p_ 3 — 0
3d*4s 3d% 4s 2
3d_3d.4s 1
3d? 4s 0

Table 3.1: Configuration and array structures from UTA computation of the FAC code. For
d-subshells, - stands for j =3/2, + for j = 5/2; for p-subshells, - stands for j =1/2, 4 for j =3/2.
The 9 relativistic configurations are indexed through 0 to 8 and sorted in the order of increasing
energy, i.e. Fg < E; <...< Eg. The 6 relativistic transition arrays computed are listed in the
upper part of the Table.

used for UTA profile.

1 _(B—pp)?
P =—— ¢ 7 where 02 = 02 + uS 3.21
UTA maT T D T M2 ( )

As shown on Fig. 3.1,

o the constructed spectrum of K19t (Z=36) consists of one Unresolved Transition Array
(UTA), in agreement with the convolved spectrum. The array is characterized by an
average of p1 =21.03eV and a width FWHM ~ 2.35,/p5 ~ 3.5¢V. Percent error of UTA
is estimated as § ~ 0.20%.

o The constructed spectrum of Zr!3+(Z=40) consists of two Spin-Orbit-Split Arrays (SOSA)
as in the convolved spectrum. When Z increases, the spin-orbit integral begins to dominate
over the inter-electronic ones. As a consequence, spin-orbit split gives rise to 2 relativistic
sub-arrays, 3d%4p, 2 — 3d%4s and 3d%4ps 2 — 3d%4s whose average transition energies
are 26.9 eV and 30.2 eV respectively.

3.2.2 High-order UTA construction

In order to test high-order moments in a spectral distribution, or to analyze the detailed
spectra as provided numerically by the FAC code, a "constructed" or pseudo-UTA computation
method was developed and designed in the following way.[A33] The various detailed transitions
are sorted, so that all lines connecting a pair of given relativistic configurations («, ) are col-
lected in this pseudo-UTA structure. Since the oscillator strengths are known from the detailed
transition list, we may compute the average energies and centered moments for each pair of
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3.2 Computation of transition arrays by FAC
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6e+12 — - —
Detailed, no average
[ |— UTA-FAC
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Figure 3.1: Detailed and UTA zero-dimensional emission spectra accounting for electric dipole
E1 transitions 3d?4p — 3d?4s in two plasmas of different atomic numbers Z: Krypton X (Z=36)
and Zirconium XIV (Z=40), on subfigures 3.1a and 3.1c respectively. The horizontal lines on
subfigures 3.1b and 3.1d stand for the configurational energies Fy, E1,...Eg listed in Table 3.1,
from the bottom to the top, whose differences are vertically scaled. FAC output is post-processed
assuming an electron temperature of 5000 eV and density of 10?3 cm™3. The grey lines result
from the detailed computation including Doppler line shapes. The red curves are derived from
the detailed computation after convolution by a 3.5 eV-FWHM response function in the case of
Krypton X and a 0.9 eV-FWHM response function in the case of Zirconium XIV. The purple
curves are the spectra obtained using the UTA formulas as provided by FAC and Gaussian
profile.
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Statistical description of unresolved transition arrays

relativistic configurations «, § using the relations

Ea,B = ZgafabEab/Zgafab (3'223)

acx aco
bep bep

k

nl) = ((B=Eap)*) = 3" gufor (B — B >~ G (3.22D)
E =

where the sums run over detailed levels pairs ab, g, being the degeneracy of level a, f,; the
absorption oscillator strength for the a — b transition, and FE,;, is the level energy difference.
Of course the pseudo-UTA «af exists provided that the detailed computation involves at least
one level-level transition ab associated to it. Using these transition-array moments, we may
construct new "pseudo-UTA" spectra through the averaged formulas

EX bb(B) = UapTap(E) (3.23a)
ap

where the source term in this collecting scheme is given by

Uaﬂ = ZpbAbaEab- (323b)
aEq
beps

As in Eq. (2.73) the lineshape can be assumed to be Gaussian

1 (E — Eqp)°
Fng(E) = ————exp [ -~ 8L 3.23
s(E) ) s exp ( 202, (3.23¢)
with 025 = E2kpT/(Mc?) + 1) (3.23d)

the variance (3.23d) including Doppler effect and the energy dispersion as given by Eq. (3.22b).
As seen by comparing these relations with Eq. (2.69) the pseudo-UTA (3.23) is defined so
that the integral of the spectrum is conserved, notably

/ dE &% / dE €%, (B) = pyAsaPha. (3.24)
ab

Such numerical techniques will be illustrated in the case of tungsten plasmas in Sec.4.2.

o6



Chapter 4

Computation of distribution
moments

In this chapter, the theoretical methods and numerical procedure (cf. Sec.3.2.2) exposed
previously will be applied to two cases : one consists of high-order moments computation of
spin-orbit energies inside a multi-electron configuration, and the other deals with transition
arrays of magnetic-dipole type in tungsten plasmas. The present writing uses material from two
papers [A32] [A33] published during the thesis.

4.1 High-order moments of spin-orbit energies

The non-central Hamiltonian H', cf. Eq.(2.5), in a semi-relativistic approximation [B40] is
composed by an electron-electron Ve part!', and a spin-orbit V, one?

/ 1
H =3 —+) &ru)lksk = Vee + Vio. (4.2)
p<q'Pa k

1 Contrary to the one-electron spin-orbit operator Vso, the inter-electronic Coulomb energy operator Vee
involves two electrons, where 1,2 represent electrons 1 and 2 indistinguishably. Through multiple expansion of
1/r12 [B40]:

k
1 1 7"<
— = = E —— Py (cosw) (4.1a)
T12 \/r%—i—r% —2r17r2 COSW =0 TI;+1

where < =min(ry,r2), 7> =max(ry,r2) and Py(cosw) is the Legendre polynomial, defined as

47
20+1

l
> )Y (01,61 Yim (02,02), (4.1b)

m=—1

P(cosw) =

the Coulomb operator Vee can be expressed as a composition of a radial part and an angular part

47

k k
< qu
2k+1

2 = (‘UqC(_kq) (01,61)C (05, ¢2), P =
k=0"> g=—k

(4.1c)

where the angular part is given by a function of spherical harmonics. Quantities C,gk)7 usually called "special"
spherical harmonics in theoretical atomic spectroscopy, are used when a spherical function plays the role of an
operator.

?Notice that [€(rg),lksk] = 0.
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Computation of distribution moments

The purpose of this section is to consider high-order moments of energy distribution, cf. Eq.(3.9),
related to the spin-orbit interaction — the interaction between the orbital momentum and the
spin of an electron — considering mostly highly-charged ions for which this interaction rules the
electron-electron interaction Vg, > Vee. More precisely, moments <Vslé> for a series of k values
are obtained in both coupled and uncoupled schemes.

The operator Vi, can be preferably expressed in terms of raising and lowering operators [,
cf. Eq.(B.7),

Vo = Zg Tp { P+SP + lp*Ser) + lpzspz} . (4.3&)
or in terms of j,l,s
_ l2 2
Voo = Zf (r) 22, (4.3b)

according to whether an uncoupled basis \lmlsa) or a coupled one |lsjm) is used.

Averaging method

The calculation of the average of the k-th power of the atomic Hamiltonian on a N-electron
configuration relies on the use of the Uylings theorem [AT3] (see also Appendix in [A63]), which
states that the average of a k-particle operator O*) on a N-electron configuration may be derived
from the average computed on the k-electron configuration through a binomial factor (]Z )

(o®) — (flj ) (o) . (4.0

When dealing with average matrix element determination of a sub-shell (nl) occupied by N
electrons, it means that the number of electrons to be taken into account in a configuration
— depending on operator’s "nature'- can be minimized to k£ (usually less than 3 in atomic
spectroscopy) Thus, an arbitrary sub-shell (nl)" can be studied with a reduced configuration
IC) = (nl)*,k < N. Then, the average values in Eq.(4.4) are obtained by summlng the expres-
sion (¢ |Ox| ¢r) over all antisymmetric states ¢ in the configuration (nl)* and divided by the
degeneracy g of the configuration, whether relativistic or not. The numerator is the trace of
the operator [A74] and therefore may be computed in any basis.

If the quantum numbers of the j-th electron are denoted by g;, the g elements involved in
the trace are defined by the set (q1,¢2---qi) where all g; are different and ordered. Accounting
for anti-symmetrization of wave functions, the trace is

q1<-<qg

with  flg-q) = Y & <Q1"'Qk|0k\q7(1)"'qT(k;)> (4.5b)
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4.1 High-order moments of spin-orbit energies

where S, is a permutation group®. among k elements and e, the signature of the permutation

T.
It is noteworthy that
o the sum index ¢; < --- < gx in Eq.(4.5a) means that each set is counted only once ;
e the trace computation is significantly simplified by noting that the summed quantity f is
fully symmetric in the exchange of any pair of indexes f(q1,q2--+) = f(g2,q1--) ;
e because of the sum }° g &, f vanishes if two indexes are equal f(q1,q1---) =0.
As a result,

1
TrOy = 0 Z flqr---qr), (4.6)
q1---qk

the sum over non-repeated indexes may be replaced by the sum where ¢; - - - g vary freely, which
is much more convenient to perform. *

3 Regarding the class structure of the symmetric group S, [B69], the number of classes of Sy is the number
of ways in which the integer n can be partitioned into a sum of positive integers. For examples, if n = 3, the
number of classes of S3=3:

o 3 =3: cyclic permutations (123)
e 3=2+41: transpositions (12)(13)(23)
e 3=14+1+1: identity

where canonical notations (ijp) are adopted, and which mean that the i-th position value is replaced by j-th
position value, the j-th position value is replaced by the p-th one, and p-th one is replaced by the i-th. If n =4,
the number of classes of S4=>5:

e 4 =4: no object remains in its own place, nor do any 2 objects undergo a single transposition (6x)
e 4=3+1: cyclic permutations on 3 objects leaving the 4th unchanged (8x)

e 4=2+42: 2 interchanges in pairs (3x)

e 4=241+1: 1 transposition leaving the remaining 2 objects unchanged (6x)

e 4=1+41+41+1: identity (1x)

where there are au total 4!=24 permutations to consider. Besides, the number of k-particle permutations is k!,
whose list can be found with Mathematica (command line: "Permutations|list, {k}]").

4 For example, in the case of trace calculation over inter-dependent double i<j and triple sums ZZ <j<p

Zfijﬁéz:Zfij—%Zfij (4.7a)

i<j

R DD DI DU DI I )

1<j<p 4,5,P 1=7,p 1=p,J P=j,t i=j=p
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Computation of distribution moments

4.1.1 Analytical formulas for spin-orbit moments

Average values over one-electron configuration

As will be shown later, moments <VS'3> for a series of k values can be expressed as functions

of one-electron average values <(l.s)k> such as

((1.8)") = () |VE(n)"), (4.82)
which, dropping the constant radial factor £(r),
((1.8)) = 2(2ll+1) S (o |(t.8)| o) = 2(211“) S (im|@s)|im).  (as0)

no jm

The most straightforward method lies in using the coupled basis jm, where the spin-orbit term
is diagonal. Generally, when the basis used makes an Hamiltonian term diagonal, the average
determination can be largely simplified. For j =141/2, the level degeneracies are 2 and 2]+ 2
and the spin-orbit energies —(I+1)/2 and [/2 respectively, so that

<(l.s)k>:2(2;+1)Z(j(j+1)—l(l+1)—3/4)k/2k (4.92)
J
_ 211((12;:3)1) [(—1)’“(l+1)k—1+lk—1]. (4.9b)

This provides the average values for the first k values, with X =1[(l+1),

(1.s) =0 (4.10a)
((1.8)°) = % (4.10Db)
((18)*) = —g (4.10¢)
((18)*) = %(}H 1) (4.10d)
((1.8)°) = —%(ZX +1) (4.10e)
((1.8)") = %(XQ—H’)X—H) (4.10f)
(1.8)7) = —1)(78()(+ 1)(3X +1) (4.10g)
((1.8)°) = %(X3+6X2 F5X +1) (4.10h)
((1.8)°) = —5%(2)( F1)(2X%+4X +1) (4.10i)
((1.8)') = 1(%(XH)(X?’H;XZ+6X+1) (4.10§)
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4.1 High-order moments of spin-orbit energies

A direct inspection of these equations shows that these average values follow the relation

<(l.s)k> _ (_;>kXint(§)—l (k_j:_2> xi (411)
=0

J

where int(k/2) is the integer part of k/2.

4.1.1.1 Spin-orbit moments in uncoupled scheme

Concerning the first 2 moments, the moment k = 1 is clearly null, and the variance AVZ2 is
well known (see, e.g. [B20])

[(1+1)

Ry A2 )

ra(so) = (Vi) =

A simple expression can be provided for the moment k=3 called “skewness”.

Skewness

The cube of the spin-orbit interaction involves three terms

‘/s?:) =51 +55+ 853 (4.13&)

S1="" (&li.si)’ (4.13b)

Sy = 32 {(lezszy@ (lj.Sj) +1i <> j} (4.13(})
1<j

83 =6 Z (fll,sz fjlj.sj fklk.sk) . (4.13d)
i<j<k

The radial part for the considered sub-shell (&;)% = (nl|€(r)|nl)? is a common factor in all these
formulas and will be dropped unless mentioned. One may obtain the average values or traces
of each of these operators using Uylings’ theorem, cf. Eq. (4.4). For instance, the S; average
value will be calculated for N =1. One first computes the trace, then divides it by 2(2/+1)
to get (S1);. If N =1 the uncoupled basis states are nluio1 where the magnetic quantum
numbers verify —I < p; <, —1/2 < o1 < +1/2. From the average value in Eq. (4.10c), one gets
immediately
I(1+1)
g

Tr(S1) = > (o ‘(l1.31)3‘,u101> = —2(20+1) (4.14)
101

The trace of 2-particle operator is calculated accordingly. For symmetry reasons both terms

inside the brackets give the same contribution. The 1/k! factor in Eq.(4.6) compensates this

factor 2, so that, writing explicitly the permutations 7 and dropping unneeded single-electron
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Computation of distribution moments

indexes,

TI‘(SQ) == 3(d2 — 62) (415&)
d2 = Z <M10‘1 ‘(18)2‘ M10'1> <M20‘2 |l8| ,u202> (4.15b)

p1o1
p202

€9 = Z <M101 ‘(18)2‘ M202> <M202 \ls\ /1,10'1> . (4.150)
1203
The direct term dy is, up to a constant, the product of average values ((I.8)?)(l.s) the second
of which vanishes. The exchange term ey is easily derived from the closure relation

Y o) (uol =1 (4.15d)
no
and, using again the average value in Eq. (4.10c), one gets the trace

Tr(S) = —3e2 = 3 (mon |(1.8)*| o) = 2(2” 1)i(1+1). (4.15¢)

H101

In the computation of the trace of the operator S3, one has to perform the sum over the 3!
permutations of Ss. If any permutation lets one index invariant, e.g. 7(3) = 3, its contribution
to the trace cancels since it involves the sum (usos3|l.s|uzos). Therefore, only the two third-
order cycles contribute to Tr(S3), and for symmetry reasons their contributions are equal. One
readily gets

Tr(S3) =2 Z (101 1.8 poos) (paoa|l.s| usos) (usos |l.s| pior) (4.16a)
10505
—2}" <u101 \(1.3)3] um> (4.16b)
pio1
3 1
= 4(2+1)((1.5) >:—§z(z+1)(2z+1) (4.16¢)

which show that all elements of (V) are reducible to the single-electron average.

According to Uylings theorem

(=3 (V)mes/ (%) 417

and from 3 previous expressions of trace, one gets the contribution of spin-orbit interaction to
the configuration skewness

<V§;>N= <g>316((l4‘;i)1)1v(4z+2—zv)(zv—2z—1). (4.18)

This expression agrees with the result from Kucas and Karazija [A67]. The skewness vanishes
for an empty or closed subshell as well as for a half-filled one. It depends on M =N —2[—1
as M(M? — (20 +1)?). More generally one may easily check that V2**1 (resp. V.2¥) is an odd
(resp. even) function of M.
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4.1 High-order moments of spin-orbit energies

Kurtosis

Expanding the fourth power of the spin-orbit interaction one gets

Vi =K1+ Ko+ Ky + K3+ Ky (4.19a)
K> =4Y" [(&ls-8:)° ¢ (1j.85) +i < j] (4.19¢)
1<j
Ky =6 (&ili-:)” (&l5.55)° (4.19d)
i<j
Ky =12 " [(6li-8:)" &l Eely-sp -+ (i) + (ik5)] (4.19€)
1<j<k
K4 =24 Z lezs,, gjlj-sj fklk.skfm lm.sm (419f)
i<j<k<m

where in (4.19¢) (ijk),(ikj) stands for the cyclic permutations of indexes. Using the same
techniques as above, one gets, after computing the sum over the permutations in Sk,

Te(Ky) /(‘” 1”) (K1), = ma (4.20a)
Te(Ko) /<4l2+2> — (K, = — fl”fl (4.20b)
Tr(Kg)/<4l;2> = (Kb), = 4l6+1 (20214 1)m3 —ma) (4.20¢)
Tr(Kg)/<4l;_2> = (K3), = l(4lli1) (— (@ +1)m3 +my) (4.20d)
Ky (45: 2) = (K41 = g 13)6%4[ = (20 +1)m3 —ma) (4.20¢)

where the one-electron average values
my = ((1.8)") (4.21)

are detailed previously. After some algebra, the expression of the fourth moment reads

(I+1)N(4142—N)
(Vi) = ©* 2 - 1) +1) (4.222)
with f =20(21+1)2(312+1—1) = 3(23 + 212 — 1) (N — 21 — 1)? (4.22b)
=204l — 1) (PP +14+1) +3(283 +21* —1)(N —1)(4l+1—N). (4.22¢)

The 4th-order cumulant, sometimes called “excess” measuring the sharpness of the distribution,
is defined as

k4(so) = <V;é> -3 <VS%>2 (4.23)

63



Computation of distribution moments

Using the known value of the variance, one gets

_ (I+1)N@l+2-N)
Fa(s0) = =S )z ™ (4.242)

with
ka = [20(20+ 1222 +1) +ea(N — 20— 1)?] (4.24D)
ey =3(AP + 417 — 41— 1) (4.24c¢)
and since 413 +41%> —41—1 > 0 for [ > 0, the factor k4 is also positive. This proves that the excess
of the spin-orbit distribution is negative, which means it is flatter than a Gaussian profile.
Higher-order moments

Using the same techniques, calculations for the next average values can be performed. For
instance, the result for k =5 is

5\ _ 5 U+D)@RI+1-N)N@4I+2-N)
with f5 = (204 1)%(1002 +61 — 1) — 2(51> + 71 — 3)(N — 21 — 1)2. (4.25b)
And for k =6,
<V6> _ (e (I+1)N(4l+2—N) s (4.26a)
/N S 1284l —3) (4l —1)(4l+1)"° ‘
with fg = 20(20+1)*(151* — 141* — 14 3)
—5(20+1)3(120° + 121 — 613 — 191* — 51 + 3) (N — 21 —1)?
+5(60° +121* + 61> — 1312 — 171 — 6)(N — 21 — 1)*. (4.26b)

However this method becomes cumbersome when dealing with high-order moments because it
is necessary to account for k-particle interaction and for the whole set of permutations S.

4.1.1.2 Spin-orbit moments in coupled scheme

General formulas

Using the eigenvectors of the operators j2 and j;, noted as {jim;} (i =1...N), a N-electron
state obeying Pauli principle is defined by the occupation number v for the total angular mo-
mentum j =[—1/2, by the set of v distinct values mj ,---m; and by the set of N —v distinct
values mf, . ~m}_y for j =1+41/2. The number of allowed states is given by the possible choice

of ¥ magnetic quantum numbers among 2/ and N — v magnetic quantum numbers among 2! + 2,

g(N,v,l) = (?) (iﬁii) (4.27)

Since the spin-orbit Hamiltonian is diagonal in this basis, the energy of a relativistic configuration
of populations v, N — v is straightforwardly obtained as

By = <§> (NT— (20 +1)v). (4.28)
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4.1 High-order moments of spin-orbit energies

The radial term (&) identical for all states in a configuration will be omitted in the following
formulas. The average k-th power of spin-orbit energy is therefore

U G LR
1k

N

Such average values are computed using the identity

M N V! M! M+N-—p
g:(”) (k_”> (=pt~ (M—p)!< k—p ) (4.30)

derived from the Taylor expansion of M (M —1)...(M —p-+1)(1+X)M*+N=P_In order to use this
formula one has to express the term [N — (20 +1)v]" in (4.29) as a function of the polynomials

pj(v)=v(v—1)---(rv—7+1), with ¢o(v) = 1. (4.31)

Writing any k-th degree polynomial as
- (k)
Pu(X) = 3 P y(x) (4.32)
§=0

for X =0,1---k successively, one gets a set of k+ 1 linear equations which can be readily solved
for the c§k)

W1 zjj(—w’—i (i) Pa(i). (4.33)

Identifying Py (X) with [Nl — (20+1)X]", one can then write the moment (4.29) using its defi-
nition and (4.33)

2—]€ Jmax (2l)' 41 4+2 — ] J 1 j—i
o)y = 1)i)* 4.34
<VS°>N Al +2 %(25—;’)! Z e —(20+1)i] (4.34a)
N
]mux 4l+2 ])'N' J (_1)]_1
k B -
- Z 2l— (4 +2)I(N — j)!;)i!(j_i)![]vl (20+1)d] (4.34b)
with
Jmax = mln(k,Ql,N) (434(3)

This expression is apparently more complex than (4.29) since it involves a double sum. In fact,
since 0 <i < j <k, for the lowest k values very few terms have to be computed, and this number
of terms — at maximum k+ 1 values for j and (k+1)(k+2)/2 values for ¢ — is independent
of the number of electrons N in the sub-shell. Besides this formula is easy to implement in a
formal algebra software such as Mathematica. By the way, on the expression (4.29), one readily
verifies that changing v in 2l —v and N —v in 21+ 2 — (N —v) and therefore N in 4l+2— N,
the contribution of this sub-shell to the moment is multiplied by (—1)¥. This shows that

<VSI‘C’>41+27N = (=" <VS]‘C’>N (4.35)
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Computation of distribution moments

a property that was obviously verified on the various <Vslf)> moments detailed in the previous
sub-section.

and defining M = N —2[—1,
one obtain easily analytical expressions for k > 6. Moments from the 7th to the 10th-order are
listed below.

Using the double sum formula (4.34b)for the moment <Vk

SO>’

(v = S 2D )+ B+ M (4360
with A7 (1) = 2(21 +1)*(1051* + 561% — 551> — 281+ 3) (4.36D)
B (1) = —5(20 +1)?(841* + 1401% 4 641% — 211 — 18) (4.36¢)
C7(1) = 3(701* 4- 19613 + 2341 41331 + 30), (4.36d)
(V2) = 1532 4;5 - ;gi\lf “ j(jz_—]f))(zu 48+ Bs M+ Cu(DM* + Da(DM], - (4370)
Ag(l) = 41(20 +1)%(1051° — 1051° — 1471* + 851> +871% — 131 — 15) (4.37b)
Bs (1) = —14(21 +1)*(9017 4-301° — 1621° — 2481* 4 3813 + 1821 4 401 — 15) (4.37c)
Cs(1) = 35(2041)%(3617 + 6015 — 1215 — 1961* — 20813 — 201 4 731 + 30) (4.37d)
Dg(1) = —7(6017 +1801° 4 1801° — 2801* — 8881% — 9321% — 4591 — 90), (4.37e)
<V9> (I+1)N(414+2—N)(N —21—1)
S0/ 7 1024(41 — 5)(41 — 3) (4l — 1) (4l +1)
[Ag(1) + By (1) M? + Co(1)M* + Dy (1) M (4.38a)
with Ag(l) = (204 1)%(12601° — 25215 — 17701* — 3321% 4 5641% + 1821 — 15) (4.38b)
By (1) = —7(214 1)*(5401° 4 6841° — 2041* — 8861> — 46812 + 431 + 60) (4.38¢c)
Co(1) = 7(21 +1)2(5401° + 14761° + 15301* + 2441> — 7861 — 6251 — 150) (4.38d)
Dy(1) = —2(6301° + 26461° + 51841* + 577313 + 37771 + 13611 + 210), (4.38¢)
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4.1 High-order moments of spin-orbit energies

(Vee') = o600 = fféf_)];)(fii?)(ﬂ . a1y Ae® + B
+ Cro(1)M* + D1 (1) MO + Eyo(1) M) (4.39a)
with Ajo(l) = 41(2041)% (94518 — 252007 + 309015 4 2261* — 159413
—4841% + 2411 4105) (4.39Db)
Bio(l) = —6(21+1)° (252059 — 252018 — 71401 — 44501° 4 134101°
+131261* — 42861% — 68191 — 10511 + 315) (4.39¢)
Cio(l) =21(21+1)4 (108019 + 72018 — 30001 — 93001° — 35601°
+1056471% 4- 1205113 + 245912 — 20741 — 840) (4.39d)
Dio(l) = —42(21 +1)? (360l9 + 84018 + 601" — 441015 — 84501° — 49181*
4308313 + 600712 + 32431 + 630) (4.39)
Eio(l) =9 (42059 +16801% 4252017 — 32201° — 187601° — 334761

—328291 — 189511% — 60741 — 840) : (4.39f)

Following the computation of the analytical formulas above, a special emphasis can be put
on the choice of an adequate basis beforehand when performing averaging techniques. In the
case of high-order moments of spin-orbit energies, since the spin-orbit Hamiltonian is diagonal
in the coupled basis, the averages computation in coupled scheme is more favourable than in
uncoupled one.

4.1.2 Comparison of analytical expressions to numerical computations

The spin-orbit energy moments computed with the present analytical formulas are compared
to the numerical results from Cowan’s code [B40]. An option in Cowan’s code allows one to
cancel the electron-electron interaction, leading to an energy structure depending on spin-orbit
interaction only. All the data from Cowan’s code is kindly provided by J.C. Pain and F. Gilleron.

4.1.2.1 Analysis of moments for single and multiple open sub-shell

Two configurations are considered, one is composed by one sub-shell — 3d® configuration in
Au®t, and the other of two open sub-shells — 3p?3d® configuration in Au®**.

Moments for a single open sub-shell

As a first example, the moments up to n = 10 for the 3d® configuration in Au®**t with
an Ar-like core are presented in Table 4.1. The Cowan’s code provides the spin-orbit integral
(€)34 = 39.865 eV. The variance derived from the analytical form in Eq. (4.12) is 6356.9 eV?,
which fairly agrees with the numerical determination from Cowan’s code of 6357 eV2. The
various higher-order moments are listed as absolute values p, and as scaled values a,, i.e.,
divided by o™, where o2 is the variance. The last two columns are obtained with the analytical
expressions given above.
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Computation of distribution moments

In Table 4.1, it appears that the spin-orbit moments computed with Cowan’s code fairly
agree with the present determination at any order, as absolute as well as scaled values. We
note on columns 2-3 that including the electronic interaction mostly affect the low- and odd-
order moments. We do not have a definite explanation for this feature, but we may empirically
state that electron-electron interaction contributes more significantly than spin-orbit to the
asymmetry of energy structure.

By the way, one may evaluate analytically the moments for n up to 3 in the case where
electronic interaction is also accounted for. A relatively tractable example is shown in Appendix
C, which consists of analytical calculations of (VeeV2). And the analysis of third-order mo-
ment including electron-electron interaction is presented in Appendix B of [A32], where a sign
error in a previously published asymmetry formula has been corrected and the agreement is
reached when comparing the corrected expression ug) to Cowan’s numerical data. Limited to
variance calculations, the Cowan’s code provides for the Slater integrals the following values:
F®)(3d,3d) = 75.677 eV and F* (3d,3d) = 48.937 €V, inserting these values in the variance for-
mulas available in the literature (Table 3.2 in Ref. [B20]), we get {(Vee — (Vee))?) = 334.7 eV?
and (V2) = 6356.9 eV?, the total variance being 6691.6 eV?, which fairly agrees with the one in
Table 4.1. Nevertheless, the derivation of moments including both Ve, and Vi, is outside the
scope of our consideration and would be a tremendous task with probably page-long formulas if
n> 3.

Table 4.1: Absolute and scaled centered moments of energy distribution for the 3d° configuration
in Au®®t with an Ar-like core. The results from Cowan’s code are computed both with the
complete interaction (Vee,Vio) and with only spin-orbit terms (Vi,). The notation 1.195(8)
stands for 1.195 x 10%. Analytical values of moments including the whole interaction are not
available at any order, however values for n =2 and 3 are given in the main text.

Cowan’s code This work
Centered moment Scaled moment Centered moment  Scaled moment

n ,Ufn(‘/eea ‘/50) Hn(‘/so) O‘n(vvso) Mn(‘/so) O‘n(‘/so)

2 6692 6357 1 6356.87 1

3 8111 3.168(4) 0.062500 3.16771(4) 0.0625

4 1.195(8) 1.11(8) 2.747768 1.11037(8) 2.7477679
5  7.187(8) 2.16(9) 0.670201 2.15930(9) 0.67020089
6 3.128(12) 2.929(12) 11.399971 2.92843(12) 11.399972
7 7.351(13) 1.427(14) 6.968505 1.42722(14) 6.9685059
8 1.002(17) 9.738(16) 59.621394 9.73590(16) 59.621399
9 6.277(18) 9.73(18) 74.722146 9.72849(18) 74.722153
10 3.824(21) 3.999(21) 385.137765 3.99792(21) 385.13780

Ion with two open sub-shells

As mentioned in the section 3.1, more complex configurations with multiple opened sub-shells
(n111)P* (nale)P2 -+ can be dealt with using cumulants, cf. Eq. (3.12). The cumulants computed
for each sub-shell add up for the spin-orbit part, provided that the spin-orbit interaction does
not couple different sub-shells. ® In order to illustrate the case of two open sub-shells, we present

5 This result does not apply to the electronic interaction Vee. For instance, the variance accounting for this
interaction is a function of Slater integrals involving distinct sub-shells [B20].
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4.1 High-order moments of spin-orbit energies

in Table 4.2 the moments up to n = 6 for the 3p?3d° configuration in Au®®* with a Mg-like core.

In addition to the centered moments, the cumulants defined in Eq. (3.13) have been extracted
from Cowan’s data. The spin-orbit parameters (£) are 326.842 eV and 42.261 eV for 3p and 3d
sub-shells respectively. With the present analytical formulas for (V), we have computed the
cumulants for each sub-shell separately as well as their sums. In Table 4.2, we verify that the
sum of the contributions of each sub-shell is in fair agreement with the cumulant derived from
Cowan’s data. However, when the order n increases, since each cumulant is proportional to
(€)™, the 3p sub-shell has a much larger contribution than the 3d sub-shell, and the additivity
property loses its significance. That is why we restrict the analysis to n < 6.

Contrary to what was observed in the previous case of 3d®, the moments involving Ve and
Vio (column 2 of Table 4.2) do not differ much from the moments involving Vg, only (column 3)
whatever the order. This is because we consider here a configuration 3p?3d® while the previous
case involved only d electrons. As a rule, the spin-orbit integral decreases more rapidly with the
angular momentum [ than the Slater integrals.

Table 4.2: Centered moments and cumulants for the levels of 3p?3d® configuration in Au®+

with a Mg-like core. The columns 2 and 3 contain the centered moments p, obtained with
Cowan’s code, with electron interaction respectively included or not. Column 4 gives the list
of cumulants k, (3.13) derived from Cowan’s data with only spin-orbit included. The three
rightmost columns are computations using the spin-orbit parameter provided by the Cowan’s
code and the present analytical formulas. The tabulated cumulants refer to the 3p? sub-shell,
the 3d® sub-shell, and the whole configuration for columns 5-7 respectively. All data relative to
order n are in units of eV™. The notation 9.26(4) stands for 9.26 x 10%.

Data from Cowan’s code Cumulants from analytical formulas
n pn(Vee, Vso) tn(Vso) Kn(Vso) kn(3p?) K (3dC) Ky, total
2 9. 48( ) 9.26(4) 9 26(4) 8.546(4)  7.144(3) 9.260(4)
3 —7.332(6) —6.945(6) —6.945(6) —6.983(6) 3.774(4) —6.945(6)
4 2.171(10) 2.092(10) —4.804(9) —4.793(9) —1.287(7) —4.806(9)
5 —=7.394(12) —6.991(12) —5.599(11) —5.595(11) 1.950(8)  —5.593(11)
6 8.23(15) 7.712(15) 1.992(15) 1.993(15)  5.265(10) 1.993(15)

4.1.2.2 Analysis of Gram-Charlier expansion

The evolution of the Gram-Charlier expansion (cf. Eq. (3.14)) built with the spin-orbit
moments for the 3d°® configuration of Au®®* is shown on Fig. 4.1 for various truncation indexes p.
The spectrum built with energies and degeneracies from Cowan’s code where V. is unaccounted
for is plotted too, with an arbitrary Lorentzian lineshape (cf. Eq.(2.75)) of 2-eV FWHM. This
lineshape is included only to facilitate the visual comparison between distributions, but it is not
included in the moment computations.

When varying the truncation index p we observed that the case p =3 in the Gram-Charlier
expansion is hardly distinguishable from the pure Gaussian case p =2 — the difference being
below 2% — and for the sake of clarity the p =3 case was not plotted on Fig. 4.1. The same
observation can be made for the next values p < 10. For p = 12 some asymmetry appears and
increases gradually. The Gram-Charlier expansion is then changing significantly even when p
increases by one unit. Two separate components appear in the distribution for p > 15. For
p = 22 the expansion is clearly negative for energies around +230 eV. The position of the peaks
in the Gram-Charlier distribution gets in better agreement with Cowan’s data when p increases.
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Computation of distribution moments

Nevertheless we may check that for indexes p up to 42 no convergence is reached since the
expansion still varies significantly.
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Figure 4.1: Gram-Charlier distribution for the spin-orbit energy of the 3dS-configuration in
Au®t with an Ar-like core. The various curves correspond to the expansions truncated at
various indexes p. For comparison purpose one has plotted the data from Cowan’s code where
each energy level is arbitrarily represented by a Lorentzian of 2 eV FWHM not accounted
for in the moment computation. The Gram-Charlier curves are normalized to the degeneracy
g =210. The ordinates for Cowan’s data have been divided by a suitable factor in order to allow
comparison.

Convolution procedure

This absence of convergence can be explained and amended as follows. The “theoretical”
energy distribution we try to represent by a Gram-Charlier expansion is indeed a “Dirac comb”
since no broadening is accounted for on individual components. From a general point of view,
the Gram-Charlier expansion is relevant for statistical phenomena such as coalescent transition
arrays and not when individual lines show up. In order to verify this point we have performed
the convolution of the energy distribution by a Gaussian profile exp(—E?/272)/(2x)/?) 7. This
can be considered as a mathematical artifact to monitor convergence. More significantly from
a physical point of view it may also account for various broadening processes such as Stark
broadening or Zeeman effect with a inhomogeneous magnetic field. In favour of this analysis we
mention that the convolution of a Gram-Charlier expansion characterized by variance o? and
coefficients ¢,, with a Gaussian profile of variance 72 is again a Gram-Charlier expansion with
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Figure 4.2: Gram-Charlier distribution for the spin-orbit energy of the 3dS-configuration in
Au®®t with an Ar-like core convolved by a Gaussian profile with standard deviation 7 = 20 eV.
The Gram-Charlier curves and Cowan’s data are normalized to the degeneracy g = 210.
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variance
v =o% 472 (4.40a)

and coefficients ¢}, = (o /v)"¢y, the convolved function being

Flo(X) = (27&%/2“6*){2/2”2 <1 —i—Z(a/U)”anen(X/v)) . (4.40D)

The scaled moments of the convolved energy distribution o/, = pi!, /(1)™/? are related to the
transformed coefficients ¢, through an equation formally similar to (3.15b). One gets

, (1/0)% oy 2j
4.41
Qn = +7.2 n/2z 275!(n—25)! )
—1/2 _1\n—k —
- (QWZ @ St (P o N
o441\
k

a relation that was previously established by Pain and Gilleron (Eq. (40) in [A75]). The effect of
this convolution is illustrated by Fig. 4.2 with the same Cowan’s data as on Fig. 4.1 and including
a convolution by a profile with standard deviation 7 = 20 €V which ensure the coalescence of
lines. In this case a good agreement is observed between convolved Cowan’s data and Gram-
Charlier expansion at order n ~ 42. One also notes that for high enough n, the negative part
of the energy distribution has almost disappeared. Because of the factor (o/v)™ in Eq. (4.40b),
increasing the Gaussian width 7 improves the convergence speed.

Convergence analysis

In order to ensure that we did reach convergence in the latter case considered and not in the
former, we have plotted on Fig. 4.3 the absolute value of the coefficients in the Gram-Charlier
expansion t(n) = ¢, Hen(X/o) (resp. t'(n) =, He,(X/v)) for the distribution before (resp.
after) convolution. The case considered here is again the d® configuration with a non-convolved
standard deviation o = 79.7 eV and a convolution parameter 7 =20 eV. Computations have been
performed at an arbitrary energy X =1 eV but the results would exhibit the same behaviour for
any value of X. One notes that without convolution, the Gram-Charlier series hardly converges
since the term ¢(900) is about 0.02 in absolute value. The strong oscillations visible on this
plot correspond to changes in sign and amplitude of both ¢, and He, (X /o) factors. Using the
asymptotic form of Hermite polynomials [B59] one can verify that this second factor is indeed
an oscillating function of n with increasing amplitude, while the present numerical analysis
shows that ¢, is an oscillating function with decreasing amplitude. Using two independent
numerical methods — quadruple precision Fortran and Mathematica in arbitrary precision —
we could verify that oscillations on Fig. 4.3 are not a computational artifact. It appears that
the Gram-Charlier expansion converges toward the convolved energy distribution, though slowly
if the ratio o/v is close to unity. This slow convergence of the Gram-Charlier distribution is
reminiscent of the behaviour observed on the 3d®-3d®4p transition array in bromine by Gilleron
and Pain [A76] — though no convolution is then required since the array exhibits coalescence.
The Gram-Charlier expansion, though slowly or poorly convergent in some cases, is the simplest
form available to check the influence of moments at any order. Other distributions have been
proposed but they either involve a reduced set of parameters or give rise to tedious formulas for
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YN
Before convolution| =+ .y
+ After convolution Y
1 I 1 1 I 1 I 1 I 1
200 400 600
n

Figure 4.3: Absolute value of the Gram-Charlier term series ¢, He,(X /o) and ¢, He,(X/v) as
a function of n for the d° configuration in Aut®®. The standard deviation on energy before
convolution is o = 2§ = 79.7 eV. The original distribution has been convolved with a Gaussian
profile with standard deviation 7 =20 eV. See main text for more details.

defining their parameters as a function of the moments. This is why we restricted the present
analysis to such an expansion.

While most of the theoretical effort has been devoted to electric dipole (E;) transitions,
the study of magnetic dipole (M;) transitions in statistical spectroscopy is rather new. In
the following section, M;i-type transitions in tungsten plasmas are investigated in statistical
approach using the Flexible Atomic Code (FAC).

4.2 Magnetic dipole transitions in tungsten plasmas

Beyond the electric-dipole (E7) transitions, Bar-Shalom et al [A77] provided formulas for the
array widths involving the electric (E,) and magnetic (M,,) multipole moments at any order,
and Pain et al [A75] provided expressions for Esy arrays. Recently it was pointed out by Krief
and Feigel [A78] that formulas from Ref. [A77] needed to be corrected. Furthermore, these
newly derived expressions have been implemented by the same authors in the FAC code[A30)].
Widely used by the community of atomic physics in plasmas, this fully relativistic code is well
adapted to the analysis of highly-charged ions of heavy elements, for instance tungsten (W,
Z =T4), element chosen as plasma facing material in magnetic fusion devices [A54]. Large
radiative losses in tungsten could drastically impact the tokamak operation, therefore their
accurate calculation, including M effects, is essential [P79]. Radtke et al have studied the
complex N-shell band structure in W using an electron-beam ion trap [A80]. Several M; line
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ratios involving highly-charged tungsten ion with an open 3d subshell provide reliable diagnostics
for determining temperature and density in hot fusion devices [A81].

Owing to the availability of Mi-transition array formulas in FAC, we have studied absorption
and emission spectra of W ions with a net charge of about 50, comparing detailed and statistical
approaches.

4.2.1 Magnetic and electric dipole transition rates

The influence of lineshapes has been analyzed by comparing detailed or UTA spectra as-
suming lineshapes given first by Voigt profiles as shown in Eq.(2.76) and then by Gaussian,
i.e., canceling the natural width in formulas. The former option leads to profiles behaving as
1/(E — Eq)? in the wings, which is much slower than the Gaussian form.

Examples on 0d-emission spectra are given in Figs. 4.4a and 4.4b for F; and M; transitions
respectively.

Considering the E; case, in the 0-100 eV region, the Voigt profile differs from the Gaussian
profile in both detailed and UTA schemes because there are no transitions. In the region above
740 eV, the UTA Voigt profile significantly differs from the UTA Gauss profile because there are
no UTA in this region, while detailed spectra are identical whatever the line profile. As a rule,
when the density of lines is sufficient, lineshapes do not affect the spectra.

Accordingly, in the M; case illustrated by Fig. 4.4b, the lineshape effect is negligible, because
the density of M lines is more homogeneous than the density of F; lines.

A—A Detailed, Voigt profile

10
2 3 ---- Detailed, Gaussian profile
10 3 6—o6 UTA, Voigt profile
- - - " »x—> UTA, Gaussian profile
2 3 210 g
< 2 « j
g 10 3 = [
S 3
= B N
o 3 =
S 210"
210 ER
g A—A Detailed, Voigt profile =
= ---- Detailed, Gaussian profile Seg, & "
1085 o—o UTA, Voigtprofile % —O09gg 10

»—x UTA, Gaussian profile

@

PR IR RSN B R, Ll
100 300 500 700

HH:HH‘\H I T
100 300 500 700

Photon energy (eV) Photon energy (eV)
(a) Contribution of E; transitions to 0d-emission (b) Contribution of M; transitions to 0d-emission

Figure 4.4: Lineshape effects on the W zero-dimensional emission: Voigt and Gaussian profiles
are shown in the detailed and UTA cases, assuming an effective temperature of 180 eV and a
density of 10'4e/ cm®. The detailed curves are convolved with a 10-eV FWHM response profile.
The UTA profiles are not convolved. In the detailed case the convolution is performed using
FFT (resp. analytical) method for the Voigt (resp. Gaussian) profiles.
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4.2 Magnetic dipole transitions in tungsten plasmas

The interest of magnetic dipole transitions ¢ can be emphasized considering transition rates.

For E; lines the transition rate from level b to level a is [B40]

213
daag By,

Ay (Ey) =
ba(E1) 3r3c2q,

(aJq || D) bJy)* (4.43a)

where « is the fine-structure constant, ag is the Bohr radius, F, the transition energy, i the
quantum of angular momentum, c¢ the speed of light, g, the statistical weight of the upper
level and (aJ, || D||bJy) the dimensionless reduced matrix element of the electric dipole vector in
atomic units, such as

2

(adallDIbJ)* = > |{aduM, , (4.43b)

MaMbQ

DY ‘ beMb>

D(Q1 ) (Q =0,£1) being the standard tensorial components of the electric dipole. Accordingly,
the magnetic-dipole rate is [A82]

3,213
a’ag By

Apa(My) =
3h3c2q,

(ada | M]|bJ,)* (4.44)

where (aJ,||M||bJy) is the reduced matrix element of the vector M = L+2S, L (resp. S) being
the total orbital (resp. spin) angular momentum. In a H-like picture the squared element (4.43b)
scales as Z~2 if Z is the nucleus charge, while the magnetic moment is Z-independent. This
shows that M;/E; rates scale as Z2a?, assuming analogous transition energies and “ordinary”
matrix elements. For non-hydrogenic ions with an effective charge Z. acting on outer electrons,
this ratio is expected to be ~ Z2a?. Therefore, the higher the average charge is, the more
important M; transitions are.

In order to illustrate the above considerations,we present in Fig. 4.5a and Fig. 4.5b sample
computations of the opacity of a tungsten plasma with an effective temperature of 180 eV,
which intends to simulate the non-LTE charge distribution of a tokamak plasma. This work
being devoted to spectral analysis and averaging procedures rather than to kinetic effects, rather
than running NLTE codes, one may use the effective-temperature theory as indicated previously
in Eq. 2.58a. Though the effective-temperature dispersion in the Fig. 2.2 looks rather large, we
could check that the physical results shown in this work do not change significantly within such
a range. Since this work is devoted to spectral analysis and averaging procedures rather than
to kinetics effect, the crude approximation on the populations is acceptable with respect to our
goal.

The inner K and L shells are filled, as in all other examples in this section. Detailed and
UTA computations are plotted on the same graphs. Line shapes are assumed to be given by
Voigt profiles, the natural broadening effect arising from bound-bound emission. The very
narrow structures observed on the UTA opacity correspond to transition arrays consisting of
only one line, with therefore no UTA broadening. To make the detailed-UTA comparison easier,
the detailed spectra have been convolved with a Gaussian response function of 10-eV FWHM

6 The Hamiltonians of electric E1 and magnetic M1 dipole transitions are given by

_>
HEI = 67@; HMI = %( l +i§>)§ (442)
The E1 and M1 selection rules :

AJ=-1,0,1 (except 0 — 0); AM; = —1,0,1; Parity change: yes for El-type, non for M1-type.
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Figure 4.5: Opacity in tungsten: electric-dipole and magnetic dipole contributions

76



4.2 Magnetic dipole transitions in tungsten plasmas

using standard fast-Fourier transform (FFT) techniques [B83] and a 131072-point grid. As
seen in Fig. 4.5a, except in the 800-eV wing and to a lesser extent close to 500 eV, the UTA
formulas reproduce correctly the spectral opacity originating from FE; transitions. Conversely
considering the M contribution shown in Fig. 4.5b, it turns out that the UTA formulas, though
reproducing correctly the main structures around 90 eV and 330 eV, are orders of magnitude off
when considering the far wings of these structures, e.g., around 650 eV.

Inconsistency between detailed and averaged spectra

Accordingly we show 0-d emission spectra arising from M transitions in tungsten plasma
in Fig. 4.6. Four different charge states are plotted to show that the detailed-UTA discrepancy
occurs independently of the ion considered.

4.2.2 Inter- and inner-configuration M1 transitions

In order to check the hypothesis that moments of order above 2 may play a role, the
transition-array construction method shown in Sec. 3.2.2 has been applied to the cases ana-
lyzed in the previous section, namely the M; transitions within 3+n complex in W50+ W5+,
W34 and W% plasmas. Computing pseudo-UTA moments as explained by Eq. (3.22) up
to order k = 2, we have been able to build the pseudo-statistical 0d-emission spectra shown as
blue lines in Fig. 4.6. It turns out that these averaged spectra exhibit excellent agreement with
the detailed spectra. This indicates that the higher-order moments, e.g, asymmetry (k= 3) or
kurtosis (k =4) [A84, A76], have no significant effect in all these cases. Using the construction
method proposed in Sec. 3.2.2, the pseudo-UTAs are counted and compared their number to
the number of UTAs from the standard FAC computation. The result is in the last two columns
of Table 4.3 for the W ions considered above, where large differences show up. For example, the
number of UTAs computed by FAC in the case of W5%F is 91, while the corresponding 18513
detailed lines gather in 649 pseudo-arrays. This difference leads us to examine the completeness
of the UTA description currently implemented in FAC.

Ton Levels RCs Lines UTAs in FAC Pseudo UTAs
/50T 518 60 18513 91 649
Wwolt 1313 94 93979 157 1520
oA+ 6164 187 1200580 352 6675
Wos+ 2762 131 322827 232 3257

Table 4.3: Number of levels, relativistic configurations (RCs) and M; transitions within the
complex 3xn in W9t W33+ W5 and W5 ions. Results are from FAC in detailed and
UTA mode, that provide the numbers of transitions listed in columns 4 and 5 respectively. The
method proposed in this work constructs pseudo-UTAs, counted in column 6, which include
much more transitions than the standard UTA computation provided by FAC.

A careful analysis has been carried out on M; transitions arising from each pair of config-
urations in the four tungsten ions considered above. It appears that the detailed lines may be
distributed into three categories, according to the corresponding transition occurring between a
pair of configurations. These two configurations may be

« distinct and accounted for in FAC computation in UTA mode; such pairs are denoted by
Inter L
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Figure 4.6: Zero-dimensional emission spectra accounting for M; transitions within the 3%n
complex in W20+, W5+ W5t and W58t on subfigures 4.6a, 4.6b, 4.6¢, and 4.6d respectively.
FAC output is post-processed assuming an electron temperature of 200 eV and density of 10
cm 3. The grey line is the detailed computation including Doppler line shapes. The red curves
are derived from the detailed computation after convolution by a 10-eV-FWHM response func-
tion. The black curves are the spectra obtained using the UTA formulas as provided by FAC.
The blue curves are obtained from the detailed computation by collecting lines into pseudo-UTA,
see Sec. 3.2.2 for details.
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« distinct and not accounted for in FAC computation in UTA mode (Inter NL)

o identical and not accounted for in FAC computation in UTA mode (Inner).

Thus the missing UTAs are related to the Inter NL and Inner lines. Concerning the Inner
transitions, it is worth mentioning that, while inner-configuration processes are not forbidden
by M3 selection rules — with respect to E7 transition —, the corresponding transitions are absent
in the UTA list generated by FAC. Concerning Inter NL lines, a deeper insight shows that the
UTA computation of FAC does not take into account inter-configurational transitions involving
multiple-electron jumps such as the 2-electron jumps 3d§/2 — 3d§/2, 3p1/23ds/2 — 3p3/23d3 /2,
or even the 3-electron jump 381/23d§/2 — 3p§/23d5/2. The atomic part of the magnetic-dipole
interaction, »_;(1; + 2s;) where ¢ runs over all electrons, involves only one-electron operators.
However such processes are possible through configuration interaction (CI) effect, which is a
complex subject on its own occurring in both cases of F1- and Mi-type transitions.

Relative contribution of the three categories lines

The contributions of these three categories of lines are represented in Fig. 4.7. The number
of lines of each type and their respective contribution to the integrated absorption or emission
spectra are listed in Table 4.4.

Ton Inter L Inter NL Inner Total

WUt (3%14) 5124 12462 927 18513

WAt (3*13) 23912 66239 3828 93979

W (3%10) 257672 915807 27101 1200580

W8+ (3%6) 73592 242280 6955 322827

(a) Number of lines of each type and total

Ton Inter L Inter NL Inner Total
W0+ 252x107° 5.42x10~7 7.00x 107 2.65x 107>
wolt 3.05x107® 1.18x1076 1.00x 10~ 3.27x107°
Wodt 476 x107° 4.24x107% 1.14x10°6 5.30 x 107°
Wost 7.93x107° 6.62x107% 6.32x10°7 8.66 x 107>

(b) Contribution of each type of lines to the dimensionless integrated absorption. The
tabulated quantities are Zab Pa fqp for each type of transitions.

Ton Inter L Inter NL Inner Total
W0+ 2.74x10° 1.32x10%° 5.65x 10° 2.87 x 107
Wwolt 3.90 x 10° 2.94x10% 1.49 x 109 4.20 x 10°
Wodt 9.64x10° 1.10x10° 3.20 x 10° 1.07 x 1010
Wost 2.30x 1019 1.75x10° 1.29 x 106 2.47 x 1010

(c) Contribution of each type of lines to the integrated emission. The tabulated quantities
are ZabprabAba7 in eV /s, for each type of transitions.

Table 4.4: Number of lines of each type and their integrated contribution to the absorption and
emission spectra. See text for details.
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Figure 4.7: Contribution of the various types of transitions to the emission spectra in W
ions. The crosses (blue lines) correspond to transitions within a same relativistic configura-
tion. The triangles (green lines) correspond to inter-configuration transitions present in the list
of UTA computed by FAC. The circles (red lines) correspond to inter-configuration transitions
not present in this list. The thick black line includes all contributions. Subfigures 4.7a, 4.7hb,
4.7c, and 4.7d refer to ions W20, WA+ W54+ and W respectively. All these spectra have
been convolved by a 10-eV-FWHM Gaussian profile.
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Averaging over the four W ions investigated, Inter L transitions represent only 25% of the
total number of transitions, whereas the Inter NL and Inner items represent 70% and 5%
respectively. This could lead us to estimate that the UTA formalism from FAC fails in the
case of M; transitions. However, a more significant comparison concerns the absorption or
emission integrated over energy. More precisely, we display in Tables 4.4b and 4.4c the integrated
absorption and emission per ion. Namely, Table 4.4b presents the sum of Vo =" ,capepPafabs
and Table 4.4c the corresponding sums for Uyg = > 1cape 3 PpApaLep. The sums run on the pairs
of configurations af sorted as mentioned above.

It appears that the Inter NL lines which represent 70% of the total transition lines as men-
tioned above account for ~ 7% of the absorption and emission. Likewise, the Inner lines account
for less than 3% of the integrated absorption and emission. Their weak contribution to the emis-
sion is due to the fact that the energy difference between levels inside a same configuration is
usually small and that emission rates scale as Eﬁb. As mentioned above, the Inter NL lines
correspond in most cases to transitions with multiple electron jumps which are allowed only
through CI. Though such lines are numerous since many configurationg mixing schemes are
possible, their overall contribution to absorption or emission remain limited in the present case.

In term of spectral dependency, each of these three transition categories appears in specific
regions as shown on Fig. 4.7. The low-energy range (below 100 e€V) is occupied by Inner transi-
tions, as expected. The Inter L transitions are dominant in the 70 eV and 350 eV regions — and
to a lesser extent 900 eV — which correspond to the maximum emission probability. Finally the
Inter NL are present in regions (150-200 eV, 450-800 eV) where the most important discrepancy
was observed between detailed and UTA computation by FAC in Fig. 4.6.
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Chapter 5

Conclusion

Nothing in life is to be feared, it is only to be understood.
Now is the time to understand more [...]

Marie Sklodowska-Curie

Summary

Within the framework of statistical spectroscopy, two features of highly ionized plasmas are
considered, namely the increasing importance of spin-orbit effect with respect to Coulomb in-
teraction, and of M;i-type transitions with respect to Fq. This thesis relies on mathematical
methods developed by the Bauche et al, as well as numerical analysis based on recent develop-
ments around the Flexible Atomic Code, with a special focus on the calculation of distribution
moments.

e The 1st and 2nd quantization techniques, together with angular momentum algebra have
been applied to derive analytical expressions of configuration averages. High-order mo-
ments for the spin-orbit energy in a N-electron system are determined and put to compu-
tation tests with success : excellent agreement is found between the computed averages
and numerical data from Cowan’s code, and convergence of the Gram-Charlier expansion
built with moments of spin-orbit energy is observed when a suitable convolution procedure
is performed.

o Absorption and emission spectra arising from magnetic dipole transitions in hot tungsten
plasmas have been investigated using the FAC code. A pseudo-UTA method has been
constructed and applied in the post-processing procedure. It is demonstrated that the
recent UTA formulas for M; transition arrays is limited. 2 categories of lines are missing
: from inner-configurational transitions — specific to magnetic type, as well as from inter-
configurational transitions due to configuration mixing effect.

Of course, it would be better if the above results could have been compared to experimental
data. ! Possible collaboration projects may be pursued later on, when opportunities arise.

1 We have attempted to establish research collaborations on tungsten spectroscopy project with the team of
M.G.O’Mullane from the University of Strathclyde — member of ADAS (Atomic Data and Analysis Structure)
organisation, unfortunately in vain by lack of a common timetable.
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Conclusion

While positioning in the overall areas of the statistical properties of complex atomic spectra,
the author is aware that the present thesis more likely touched upon this large topic. For
instance, the corrections at low temperatures for line modelling in a transition array have not
been considered, neither some general properties such as propensity rule nor generalized J-file
sum rule [A85][P61].

Perspectives

In what follows, for the purposes of contributing to forbidden-line spectroscopy, one may
develop UTA formulas for inner-configurational transitions — possibly using the analytical tech-
niques applied in the derivation of spin-orbit averages. Furthermore, a deeper insight can be
given into configuration interaction involved in inter-configurational transitions, as well as the
issue of plasma temperature in moments derivation.

In terms of numerical work, the FAC code is mostly considered in this thesis as a support
for our theoretical understanding, rather than a subject of study on its own. However, even
without exploring the large number of functions available for various radiative and collisional
processes computations, useful when plasmas are considered in NLTE conditions, the FAC code
retains a strong growth potential, for instance, parallelized calculations (eg. per ion or per
configuration) may represent an interesting development path to follow. Together with the
ongoing implementation tests of detailed-statistical hybrid models [A86][A87], more statistical
options — STA, PRTA (Partially Resolved Transition Array) [A88], etc. — may be considered,
which would provide FAC a wider range of applicability.
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Appendix A

Systems of units

Although the International System of Units (SI) was approved as the official system of
measurement in the 1960s, the use of variants of the metric system can be mainstream and more
convenient in a given area of study. For instance, the CGS system is commonly adopted in
theoretical physics, which is based on measuring lengths in centimetres (cm), mass in grams (g),
and time in seconds (s). While the MKS system, standing for meter-kilogram-second system of
units, is widely used in engineering and physics instruction [W89].

In order to guarantee the correctness in computer programming, it is important to ensure
the consistency of units used for various quantities in the implemented formulas. Otherwise, the
gap among numerical values can be of large orders of magnitude.

By way of illustration, let’s give some examples of units frequently associated to energy and
temperature.

o Energy (J, erg, eV)
In the CGS system, energy values are expressed in erg, where

lerg =1077J. (A1)
In atomic physics, it is customary to use the Rydberg unit of energy,

1 Ry = 13.605693009(84) eV , (A.2)

with
1 eV =1.602176487(40) x 10719 J . (A.3)

Actually, such units are constructed from experimental values ! with the standard uncer-
tainty in the last digits given in parenthesis. Namely, 1 Ry corresponds to the ionization
energy of the hydrogen atom, 1 eV is the kinetic energy acquired by an electron in passing
through a potential difference of 1 V in vacuum [090].

o Temperature (K, °C, eV)
The ST unit of temperature is Kelvin, denoted by K. Celsius temperature ¢ (°C) is defined

1 Other noteworthy examples can be found in the reference booklet [090]. For instance, the astronomical
unit (ua) is approximately equal to the mean Earth-Sun distance, 1 ua = 1.49597870691(6) x 10! m; the unified
atomic mass unit (u) is equal to 1/12 times the mass of a free carbon 12 atom, at rest and in its ground state, 1
u = 1.660538782(83) x 10~ 27 kg.
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Systems of units

in terms of thermodynamic temperature 7' (K) by the equation

t=T-T,

(A.4)

where Ty = 273.15 K by definition. It is customary to express plasmas temperatures
through their equivalent thermal energies, therefore, the Boltzmann constant kg[W91]

kp = 8.6173303(50) x 10~°eV /K,

may not appear in formulas.

Hartree atomic units

In this thesis, the preference is given to the Hartree atomic units (a.u.), where [B41]

the unit of mass is that of the electron :

me &~ 9.109 x 1073 kg |

the unit of charge is that of the proton :

e~1.602x107Y C,

the unit of length is the Bohr radius :

B Arregh?

ag = ~5.202x 107" m ,

mee?

the unit of energy is the Hartree energy :

62

E

= =a’me® 2 4.360x 10718 J ~27.211 6V ,
4megag

where the fine structure constant

e2 1
o= =~
4meghe  137.036

the unit of time :

h
= — ~2419x107 175 .
T , S

Notably, 2.

e=1, h=1, m.=1

(A.5)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

quantities like elementary charge e, etc. are set up as of dimension one and are expressed simply

as numbers, and the speed of light in vacuum is linked to o as c=a~".

1

21 a.u. of permittivity is 4reg = 1.113x 10710 C2.J7 . m™!. 1 a.u. of action is & =1.0546 x 107 J-s. In
the SI, the value of the velocity of light in vacuum is ¢ = 299 792 458 m/s exactly [090].
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Appendix B

Angular momentum in atomic
system

As a conservative quantity of system !, angular momentum is fundamental in theoretical
studies of atomic structure and transitions. For instance, selection rules for radiative transitions
between levels are governed by angular momentum addition rules [B42].

B.1 Angular momentum

B.1.1 Classical and quantum angular momenta

It is well known that in classic mechanics, a particle moving with linear momentum p at a
position r with respect to a given reference point has an orbital angular momentum L, defined
by

L=rxp. (B.1)

In quantum mechanics, the corresponding angular momentum operator — in the case of one
neutral particle without spin — can be obtained by expressing p as a function of the V operator

such as
p=—ihV, L= —ih[rxV]. (B.2)

Compared to angular momenta in classic mechanics for rotating systems, angular momentum
operators applied to atomic structure exhibit notable quantization and spin-related features.

e Similarly to quantized atomic level energies in the Bohr model of the atom, angular mo-
menta in quantum physics do not vary continuously, but only have allowed discrete values
involving Planck constant h (h=4-10"1%V-s).

Accounting for the intrinsic spin 1/2 (in units of &) of each electron, spin angular momentum
represented by spin operator S constitutes an additional angular momentum with respect to
a classical particle. Therefore, the conservation of angular momentum in quantum mechanics
applies to the total angular momentum J = L+ .S, but not to L (or S). For example, the spin-
orbit interaction as shown in Eq. (2.3) allows transfers of angular momentum between L and S
while their sum remains constant.

! Noether’s theorem proves that angular momentum is conserved whenever physical laws are rotationally
invariant.
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Angular momentum in atomic system

B.1.2 Characteristics of angular momentum operators

The fact that an electron is commonly characterized by the sets of quantum numbers 2
{nlmyms} (resp. {nljm}) is not insignificant. Actually, one-electron wave functions as de-
fined in Egs. (2.13)(2.14) are eigenfunctions of the one-electron angular and spin momentum
operators {L% L,,5% S,} (vesp.{L? L.,J,J.}) which constitute a complete set of commuting
observables (CSCO). A CSCO is a set of compatible observables {O1,02,...} among which each
pair commutes

[0a; 0p) = 0,04 — 040, = 0, (B.3)

and the number of operators involved or of quantum numbers related to the eigenvalues of
these operators is such that each physical state is fully characterized by them.The commutation
relation in Eq. (B.3) means that the order of measurement has no effect on the final eigenvalue
result, so that different observables may be measured simultaneously. Moreover, a common set
of basis states exits of which any state of the system can be expressed as a linear combination.
Angular momentum operators are self-adjoint operators j;,jy,j. that satisfy the following

commutation relation
[Jas bl = Jajb — Joja = €abcilije, (B.4)

where (a,b,c) ={z,y,z} and €y, denoting a permutation symbol with

1, in the case of circular permutation of (a,b,c)
€abe = ) (B.5)
0, otherwise.
Furthermore, operators defined as
j:l: :jac :I:ijy (Bﬁa)
3= ey H i = i I e = g+ G (B.6b)
are widely used, which satisfy commutation relations
72,5s] =0, [%5:] =0. (B.6c)

2 Recall that quantum numbers are discrete sets of integers and half-integers used to describe quantized
observable quantities.

e the principal quantum number : n=1,2,...
e the orbital (or azimuthal) quantum number : 1 =0,1,...,.n—1
« the orbital projection (or magnetic) quantum number : m; = —I,—l+1,...,1— 1,1

e the spin quantum number : s = %

NI—=

e the spin projection quantum number : ms = f%,
 the total angular momentum quantum number : j=|l+s|=|l+ %\

 the total angular momentum projection quantum number : m; =m = —j,—j+1,....,j—1,j
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B.2 Clebsch-Gordan coefficients and 3j symbols

For instance, denoting |jm) the eigenstates of {j2,j.} where j may stand for L, S, J, the following
eigenvalue equations are of great use in the matrix calculation :

2 . . . . 1.3

32 | jm) = ﬁ2j(j+1) |gm), j= {0,5,1,5,...}; (B.7a)
Jzlgm)=hm|jm), m={-j,—j+1,....5-1,4} (B.7b)
G| gm) =hes(jym) | j(m=£1)  ex(m) =1/i(G+1)—m(m£1) (B.7c)

As examples of angular momentum operators,

« In the case of j = L, the simultaneous eigenfunctions of {L?, L.} are called spherical har-
monics Yélll)(ﬁ,qﬁ). They are linked to their adjoints by the relation such as

Y9 (0,9) = (~1)";:0(,9). (B.8a)

my

Explicit values can be derived, for examples

I
=Yoo=/ 1= v =y = ,/43 cos. (B.8b)

o If j =S, the simultaneous eigenstates of {S2,5,} are called spinors x,, (v = £1/2) which

1
are 2-component vectors xp/, = <O)’ X-1/2 = (?) In the space spanned by x,, spin

operators can be represented as 2x2 matrices such as :

3,(1 0 1. (1 0 01 00
2 _ Y2 _ - _ _
§*="h (O 1), Sz—2h<0 1), 5+_h<0 o)’ S__h<1 o) (B.9)

It is common to represent S operator as a function of Pauli matrices o defined by :

Oy = <(1) é), oy = (? _OZ>, 0, = <(1] _01> (B.10)

so that S = %ha.

B.2 Clebsch-Gordan coefficients and 3j symbols

As expansion coefficients in basis changes, the Clebsch-Gordan coefficients or their closely
related Wigner 3j symbols arise from angular momentum coupling.

Clebsch-Gordan coefficients

When using a two-electron product function |j1mq)|jems) = |j1j2mime) to form its coupled
function |j;jojm) — eigenfunction of {JZ,J2,J% = (J1 + J2)%,J, = J1, + Jo. }, it turns out that

Ji J2
ujegm) =Y Y Cljrjamama;jm)|jijamima) (B.11)

m1=—jima=—/jz
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Angular momentum in atomic system

where C(j1jo2mima;jm) = (j1jamimsa | jm) are Clebsch-Gordan coefficients.
Similarly, coupled basis | nljm) and uncoupled basis | nlm;ms) are linked by Clebsch-Gordan
coefficients C'(lsmymg;jm) = (Ismyms | jm) as

| nljm) = Z C(Ismymg; jm) | nlmym) (B.12)
myms
Wigner 3j symbols

Symmetry properties of the Clebsch-Gordan coefficients are made more straigntforward by
introducing the Wigner 3j symbols [B42], which are algebraic functions with 6 arguments [B40]

. . . -1 Jj1—j2+ms3 o .
(531 b _J;B):(Lwc*(mmlmQ;th) (B.13)

nonvanishing only if my +mg —ms3 =0.
For example, the Clebsch-Gordan coefficients in Eq. (B.12) can be expressed in terms of the 3j
symbols as

C(Ismymy; jm) = (25 + 1)/ (=1)l=s+m ( Los ) (B.14)

m; ms —m

General expressions of C(jijamima;jm) and the 3j symbols can be found in [B42][B40].
Nevertheless, they are too cumbersome to be applied. In practice, built-in routines in Mathe-
matica as well as in Fortran can be used to evaluate the Clebsch-Gordan coefficients and the 3j
symbols.

Properties

Despite their cumbersome expressions, high symmetry properties of the 3j symbols are of
great use for explicit analytical calculation in angular momentum coupling.

e Symmetry under interchange of columns :

— symmetric under even (circular) permutation of the indices (123) :

Jvog2 g3\ _(J2 s i \_{(J3 J1 J2 (B.15)
mi1 Mo M3 mo M3 MMi m3 Mmjp M2 ’

— change by a phase under odd permutation of (123) :

<j2 J1 j3>:(_1)j1+j2+j3<j1 J2 j3> (B.16)

mo M1 M3 m1 Mg M3

e Change the sign of my,ms, ms :

< v J2 3 >:(_1)j1+j2+j3 <j1 g2 j3> (B.17)
3

—-miy —mo —m mi Mg Mms
which is equivalent to the previous equation.
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B.2 Clebsch-Gordan coefficients and 3j symbols

e Orthogonality relations :

i ; -/ . . )
Ju J2 J3 JuoJ2 I3 _ 1 » / B
m1272n2 <m1 ma mé) (ml mo m3> 2j3+15]3735m3m3 (B.18)
. jiogo ds\(An de d3\ _
Z (2]3 + 1) <m1 mo mg) (m’l m’2 m3> = 5m1m’1 6m2m’2 (B.19)

Js,ms
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Appendix C

Average calculations of product
VeeV2 operators

Context

Within the framework of statistical spectroscopy, one may analyze the interaction energy in
Eq.(4.2) at the 3rd order, whose Hamiltonian reads

(H') = (Voo + Vi) (C.1)
In terms of average values, the matrix elements can be decomposed into four parts '
((H'7)y = (V3 +3(V2Vio) +3(VeeV2) + (V). (C.2)
1. For symmetry reason, (V2Vs) = 0.

2. The derivation of (V23) is a lengthy process. The result of the centered moment 1§(Vee)
was firstly published by Kucas and Karazija [A67]. Some partial checks of Kucas and
Karazija’s formula for (V2) have been performed, a sign error was found out and the
correct formula was published, cf. Eq.(B3) in [A32].

3. The spin-orbit effects at any order <VSIZ> have been discussed in Sec.4.1, the result of (V2)
is shown in Eq.(4.18).

1 Actually, the combination of Vi, at the 2nd order and Vee at the 1st order in Hj,, is equal to VeeVis +
Vso Vee Vso —|—Vs%Vee. However, due to properties of a matrix trace, <VeeVS%> = (VsoVeeVso) = <V320Vee>.
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Average calculations of product Ve.V.2 operators

C.1 Product operator VeeVSZO

By definitions of Ve and Vg, operators, their product operator VeeV can be developed as

2
Vee Vit = (Z Tl) (prlp5p> (C.3a)

i<j

= (Z ) (pr (15 +2 3 &€allsy) g sq>) (C:3b)

1<J p<q
—ZZ (Ipsp) +2ZZ &, (lsp) (1gsq) (C.3¢)
<j P 1<jp<q Tij

where depending on various possible (p,q) values related to (i,7), the sum can be split as

szg (Ipsp)? Z 52” +Z 52zsj +Z E2(1ysp)? (C.4)

1<j P ’L<] z<] 1<J
p=i p=j p#(i, )

QZZ Epq(lpsp)(lgsq) =2 Z &fj (Lisi)(1585) +22 Z fpgq lpsp)(lgsq)

i<jp<q T'ij i<j i<j p<q Tij
p=i,q=j P,q7#(4,5)
—i—QZZ @gqlsz (I454) +2ZZ —&;€,(155)(1g54)
7,<j q>z 1<j q>j Tij
= p=j
+2ZZ £pfl »Sp)(1iSi) +QZZ é’p@ psp)(1js5).
Z<Jp<l i<j p<j "ij
q=i q=J

(C.5)

The various terms in the sums above can be regrouped into 3 categories Wy, characterized by
the number of particles k involved in each operator. One gets

TrVeo V2 = TeWo + TeWs + Tr W,y (C.6)

Separations into k-particle operators : Wi (k =2,3,4)

Wo=2-particle operator:

Wy = Z—fl (Lis;) +Z g (Ls;) +227% lisi)(1j5;) (C.7a)

1<J Z<j 1<J

= ZZ( &7 (Lisi) +Tijg]?(zjsj)Q+2w§igj(zisi)(5jsj)) (C.7hb)

W3=3-particle operator, can be divided into 2 parts, depending on whether (I;s;), (ljs;) product
is squared S or crossed C, so that (W3) = (S)+ (C):
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C.2 Evaluation of matrix elements (VeeV2)

i<j P 1<j<p <p<j p<i<j

ZZ=< S+ + > #3(:3;;;)(08

s=y3 B0y D) B) DA (0 (C.9)
i j p Y

i<j P

C=2x Z <7,1,,§i§q(li3i)(lq3q) fyfq (Lisi)(lgsq)
ij

1<j<q
1
+2 X Z (rfzfp(llsz)( psp)+ 5J§p (L) (Lpsp)
ij

p<i<j

i<p<j ij i<q<j Y

= - ZZZ( -&i&p(lisi) zsp)+2 gjgpzs] (Ipsp)
+3 ZZZ( &5 (57) (Lgsq) + angsz (lgq)

(C.10Db)

+2 x ( > - gjgp(z si)(Ipsp) + > r—gzngsl zsq) (C.10a)

because of the indistinguishability of electrons, p = ¢, thus

C= ZZZ( € (lisi)( psp>+;5j£p<zjsj><zpsp>> (C.10¢)

Wi=4-particle operator: as,

2.0 = Z+Z+Z+Z+Z+Z;‘6x24ZZZZ

1<j p<q 1<Jj<p<q I<p<j<q 1<p<g<y p<i<j<qg p<i<g<j p<g<i<j
(c 11)

SO:

4—2XZZ —&p€a(lpsp)(lgsq) = ZZZZ fpfq (Lpsp)(lgsq) (C.12)

i<j p<q Tij

C.2 Evaluation of matrix elements <VeeVS%>

Following the Eq. C.6 and remind that according to the Uylings’ theorem (cf.Eq.(4.4)), the
number of electrons to take into account in the basis states of a W}, operator can be restricted to
k, this section shows calculations of matrix elements (W) (k= 2,3,4) for a (nl)* configuration
in their respective k—particle coupled basis. The radial part for the considered subshell (&)k =
(nl|€(r)|nl)" is a common factor in all these formulas and will be dropped unless mentioned. In
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Average calculations of product Ve.V.2 operators

order to shorten the formulas derived, let’s take two notations as following

o 9 .o 3.\?
z(j1,j2,0) = (Jerh +]22+J2—2(l2+l+4)) (C.13a)
2
_ 2 (U kLY pwygp = ®) 1) &)
Xp=(20+1) (0 0 0) F (zz)_(zHc Hz) F® (1) (C.13b)

2
where X}, is the product of the squared reduced matrix element (l HC(’“) H l) and of the F®) (i)
Slater integral [B40].

C.2.1 Average of a 2-electron operator : (IW5)

In a two-particle coupled basis [12),, 2! permutation states are involved in the matrix
element calculation (Ws),. The average of configuration (nl)? is given by:

(Wa)y = — S (= 1)7 (12[Walr(1)7(2)) = ~

= —((12|W>]12) — (12|WW3|21)) (C.14)
92 % g2

where P,7 stand for permutations, and the degeneracy go such as

(C.15)

i 41 +2 2
g2

—\ 2 ) T (14 (2+40)
With respect to Eq.(C.7a), the matrix element (W5) can be decomposed by squared terms like

<%j(lksk)2> and crossed term <%_j(lisi)(ljsj)> such as :

<r1--<zk5k>2> = (il 137 Y (Kl @s)?IK) — (i1 ) (K10 (G168)

[

<;<z@-si><zjsj>> = Gltsi) Gltslg) (il lid )= (isl=i) (C.16D)
with (k,k") € {i,7} and k # k’. Furthermore, with
<7;(l131)2> + <7;(1232)2> = <<12|7;|12> - <12|7;\21>> (<1|(zs)211> T <2\(zs)2|2>)
(C.17a)
2 <1(z151)(1252)> — 25 (1)(18)[1) (2] (1) [2) <<12|r12|12> - <12|7;y21>) (C.17D)

12

one gets

<W2>2=g12; % <<12|7;\12>—<12|7;121>)(<1zs|1>+<2|zs|2>)2 (C.18)

J1,m1 j2,m2

where ((1|ls[1) 4 (2|1s[2))% = Lz (j1,j2,1).
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C.2 Evaluation of matrix elements (VeeV2)

The average formula of (W3), is given by

2
<W2>2 9 (ZFO ll ]17]2 ]17]27 Z Xk ]1a.]2 ]17]27” {jll s jZQ} )

J1,J2 J1,g2,k

-5 L p-p) (C.19)

where in terms of the ji,j9, k summations,

141/2 141/2

D = 3 > FUN[, g2z, da.0) (C.20)
j=l-1/2 j2
)
E = Y>> Xz szJ){]ll ) ‘712} (C.21)
kg1 J2

Using Mathematica for example, the double summation in the D term can be easily determined,
D =8F°(I)I(14+1)(20+1)? (C.22)

1k g2

2
I s 1 } , the E term requires more

whereas due to the sums over 6j-symbols >>; > {

development,

2
I+3 S S |
l }x(jl—l+27]2—l+2vl)

~ +
N[ =
o= I3

E= Zxk = z+;]{l

1 1 l—
Xpll— = -
+Z k|l o 2]

112 1
12} x(j1=1— ,]2—5—*0

—_——
~

~ |
N[ =
D=

—|—22Xk % ;]{l—lé l; lt%}zx(jlzl—i—;,jg:l—;,l) (C.23a)
decomposing further with
Elz[l,l,l+;,l+;]{“ﬁ ’g lt;}2:(1+2lk)(2+2l+k:)
E2_[z,z,1—;,1—;]{l_15 g 1;5}2_(21—/{)(1%”/{)
EgZ[l,l,l—f-;,l—;]{l_l; ’; lté}2:k(1+k)

1 1
. 1. 1
$(——) :x(jl :l_§7]2 :l_g) ):4(l+1)2
1 1
z(+-) =z(h :l+§7j2 :l*?l) =1
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Average calculations of product Ve.V.2 operators

the Eq.(C.23a) can be simplified as

E= ZXk z(++)E1 +2(——) By + 2z(+-) E3) /[1,1] (C.23b)
:—QZXk k(k+1)—41(1+1)) (C.23¢)
Therefore,
(Wa), = 912 <1(z+ D[LEFO (1) —1(1+ 1)2){#%21@(“ 1)Xk> (C.24)
k k

C.2.2 Average of 3-electron operator : (WW3)

In a three-particle coupled basis,

(Wa)s = — S ()7 {igp|Walr ()7 () (0)) (C.25)
93 “p
where .
1 4] +2 3
g ( 3 ) T2l + 4l (24l (C.26)

Furthermore, the summation over permutations of three particles contains 3! terms:
(+|Z]p>7 +|]p7’>7 +|pZ]>, _|jip>7 _|ipj>a - !p]l)), which means that
Y (=17 (igplOlr (i) (§)7(p)) = (ijplOlijp) + (ijplO|jpi) + (ijp|Olpij)
P
—(ijp|O|jip) — (ijp|Olipj) — (ijp|Olpji) (C.27)

Based on the expressions of W3 operator, cf. Egs. (C.9)(C.10c), one gets (W3) = (S)+(C),
where

(S) = ZZZ< (1psp) > (C.28)
) = ZZZ< (lis:) zsp)+;(zjsj>(zpsp)>. (C.29)

The squared term of the average over 6 permutation states : (S)

The trace over 6 permutation states is given by

<1,,<lpsp>2> — (il liz) = (al=—13t) ) ({plslp) = (i10s?1) ~ (i10s717)) - (C:30)

Tij
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C.2 Evaluation of matrix elements (VeeV2)

which can be further separated into 2 parts (S) = (Sp) + (Sk), with
- ;;;Qﬂi@zw (15)2Ip) - zz<w|bm>< 15)217) (C.31)
50 =5 X3 (il i) S (plasPlo) + S S (idlylid) (ilas?ld) - (ca
i J p i g

Using closure relation for matrix computation, one gets

(So) =2P(I+1)(1+20)*FO(ll), (Sk)=—-PI+1)(1+20)*> X
k

The crossed term of the average over 6 permutation states : (C)

Since

<;<lpsp><zksk>> = (it y sl = (il 1) (R sl ) ({plisl) — Gillsl) — (isl)
(C.34)
with (k,k') € {i,j} and k # K/,

<3<zisi><zpsp> + ;<zjsj><lpsp>> = (il 17 )  (lLsli) + (sl (plisl) = (ilLsli) — (isl)

Tij

= (i1t Glist) + GlLsLa) plslp) — Glist) ~ Glisli)

(C.35a)
All terms with (p|ls|p) as factor vanish, so that
<1j(li8i)(lp3p) + T:j(ljsj)(lpsp>> = (Co) +(Ck) (C.35Db)
with
(Co) = — <ij[i\ij> X (i) + GilEs]j)? = =201 +1)(1 +20)2F°(10) (C.350)

() = (i1 )it ) x (sl + G113 =~ Sh(b+ DX+ 2004 )Y Xe (€35
k k

Finally, in order to obtain (I¥3), it’s sufficient to sum up the direct part (Sp) + (Co) and the
exchange part (Sg)+ (Ck), which gives

(W3), = ;(A(l)[llFO (1) +B(1 Zxk—ch ) (C.36a)
3
with A(l)=20(1—-1)(I+1), Bl)=I1(1+1)(2-1), C(k)=k(k+1). (C.36b)
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C.2.3 Average of 4-electron operator : (W)

Similarly, in a four-particle coupled basis,

1

W)y = > (=17 (iipg|Wal (i) 7 ()7 (p) 7 (a)) (C.37)
P
one gets
1 (a1+2\ 6
g4_< 4 ) U4l -1)(4l+1)(4l+2) (C.38)
The summation over permutations — even (—1)” =1 and odd (—1)" = —1 ones — of four particles

(=17 =1 || lijpq) lipgs) ligip) ljigp) lipiq) liqpi) Ipijq) |piqi) Ipgij) lqi
(=17 =—1]lijgp) lipja) ligps) ljipa) livgi) ligip) |pigs) |pjiq) Ipaji) lqi
which can be regrouped into 10 categories, listed in Table C.1. Since due to the symmetry prop-
erties of the operator %(Z353)(l454), several matrix elements contribute to the average value
(W4), in the same way . The last 5 terms give null contribution to the average calculation,

contains 4!=24 terms :

Table C.1: Regroupment by symmetry: reduction of the 24 terms into 10 contribution terms.
Only the first five terms contribute to the average calculation.

Index States
1 (34) = |ijiqp)
2 (12)(34) = |jiqp)
3 (134) = |pjqi), (143) = |qjip), (234) = |ipgj), (243) = ligjp)
4 | (1234) = |jpqgi), (1342) = |pigj), (1243) = |jqip), (1432) = |qijp)
5 (1324) = |pgji), (1423) = [qpij)
6 identity=|ijpq)
7 (12) = |jipg)
8 (13) = [pjiq), (14) = |gjpr), (23) = lipjq), (24) = |igpj)
9 (13)(24) = |pqij), (14)(23) = |gpji)
10 (123) = |jpiq), (124) = |jqpi), (132) = |pijq), (142) = |gipj)

and the first 5 terms represent 5 types of matrix elements to be calculated applying the closure
relations.

L (34) + Xyjp0 (13pal 5 (sss) (lasa)liap) = ig, (341215 ) (pl(1s)?p)

> <z’ji]ij> > <py(zs)2\p> = 4(1420)2FO(11) - Z(HZ)Q(H%) =2(1+1)(1+20)>FO(11)
p

(C.39)

2. (12)(34) : Ziqu <Z']‘PQI%(5333)<l434>‘jiqp> = Zijp <ZJ’%|JZ> <p\(ls)2|p>

3 <¢j|iji>z (pl(1s)2Ip) = 22Xk1(1+z>2(1+21) — 11D+ 2) X, (CA0)
k

ij P k
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C.2 Evaluation of matrix elements (VeeV2)

3. (243) X500 (1l (sss) (lasa)ligip) = 5 (id12ig ) (31(1s)215)

o
5 il1ig ) (110s)713) = Sl el oy < LI D ZIEE 1y 42

ij JiJ2 4
(C.41)
4. (1432) 5 i (100l Gsse)laso)laign) = S (1312157 (7105)215)
5 il313 ) (3105713) = Bra () + Ban(o) + Bafal) +o(0) = L S5, (ca2)
ij k

where z(j) = (jl(15)*]7) = [(j(5 +1) — (I +1) = 3/4)%] /4

5. (1423) 1 X500 (ipal s (sss) (lasa)lapis ) = 5 (i3] 151) (il (s)1a) (51 (L)1)

T12

S (i) s Glesa) = g Sk 5+ U TR e
k k

ij

The non-zero part of (Wy), = 1(—(34) + (12)(34) +4- (243) —4- (1432) — 2- (1423)).

(Wy)y = 914 <l(1 DA =2)[LNFO ) +11+1)(1-1) > X+ i > k(k+ 1)Xk) (C.44)
k k

Finally, using the Uylings theorem, cf. Eq.(4.4), the average calculations of product Ve.V2
operators give rise to

<Veevs%>> = (27) (Wa)y+ (J‘;) <W3>3 + <JZ> (Wa)y, (C.45)

where the average values of k-particle operators Wy (k = 2,3,4) are derived previously whose
results are shown in the boxed equations above.
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