T. Kousksou, P. Bruel, A. Jamil, T. Rhafiki, and Y. Zeraouli, Energy storage: Applications and challenges, Solar Energy Materials and Solar Cells, vol.120, pp.59-80, 2014.
DOI : 10.1016/j.solmat.2013.08.015

URL : https://hal.archives-ouvertes.fr/hal-00930130

M. Winter and R. J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors?, Chemical Reviews, vol.104, issue.10, pp.4245-4270, 2004.
DOI : 10.1021/cr020730k

J. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, issue.6861, pp.414359-367, 2001.
DOI : 10.1142/9789814317665_0024

P. Simon, Y. Gogotsi, and B. Dunn, Where Do Batteries End and Supercapacitors Begin?, Science, vol.241, issue.6058, pp.1210-1211, 2014.
DOI : 10.1016/j.jpowsour.2013.05.003

URL : https://hal.archives-ouvertes.fr/hal-00979971

A. Burke, R&D considerations for the performance and application of electrochemical capacitors, Electrochimica Acta, vol.53, issue.3, pp.1083-1091, 2007.
DOI : 10.1016/j.electacta.2007.01.011

P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nature Materials, vol.45, issue.11, pp.845-854, 2008.
DOI : 10.1038/nmat2297

J. Zhang and X. S. Zhao, On the Configuration of Supercapacitors for Maximizing Electrochemical Performance, ChemSusChem, vol.196, issue.5, pp.818-841, 2012.
DOI : 10.1016/j.jpowsour.2010.07.066

V. Subramanian, C. Luo, A. M. Stephan, K. S. Nahm, S. Thomas et al., Supercapacitors from Activated Carbon Derived from Banana Fibers, The Journal of Physical Chemistry C, vol.111, issue.20, pp.7527-7531, 2007.
DOI : 10.1021/jp067009t

A. G. Pandolfo and A. F. Hollenkamp, Carbon properties and their role in supercapacitors, Journal of Power Sources, vol.157, issue.1, pp.11-27, 2006.
DOI : 10.1016/j.jpowsour.2006.02.065

M. Zhi, C. Xiang, J. Li, M. Li, and N. Wu, Nanostructured carbon???metal oxide composite electrodes for supercapacitors: a review, Nanoscale, vol.18, issue.338, pp.72-88, 2012.
DOI : 10.1126/science.1213003

V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy & Environmental Science, vol.1, issue.88, pp.1597-1614, 2014.
DOI : 10.1039/C3MH00070B

URL : https://hal.archives-ouvertes.fr/hal-01171774

P. Deepak, R. Dubal, and . Holze, Synthesis, properties, and performance of nanostructured metal oxides for supercapacitors, Pure and Applied Chemistry, vol.86, issue.5, 2014.

J. P. Cheng, J. Zhang, and F. Liu, Recent development of metal hydroxides as electrode material of electrochemical capacitors, RSC Adv., vol.4, issue.723, pp.38893-38917, 2014.
DOI : 10.1039/c3ra46387g

M. Huang, F. Li, F. Dong, Y. X. Zhang, and L. L. Zhang, -based nanostructures for high-performance supercapacitors, Journal of Materials Chemistry A, vol.5, issue.43, pp.21380-21423, 2015.
DOI : 10.1038/srep09771

T. Brousse, M. Toupin, and D. Bélanger, A Hybrid Activated Carbon-Manganese Dioxide Capacitor using a Mild Aqueous Electrolyte, Journal of The Electrochemical Society, vol.6, issue.4, pp.614-622, 2004.
DOI : 10.1149/1.1650835

V. Khomenko, E. Raymundo-piñero, and F. Béguin, Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2V in aqueous medium, Journal of Power Sources, vol.153, issue.1, pp.183-190, 2006.
DOI : 10.1016/j.jpowsour.2005.03.210

F. Wang, S. Xiao, Y. Hou, C. Hu, L. Liu et al., Electrode materials for aqueous asymmetric supercapacitors, RSC Advances, vol.57, issue.32, pp.13059-13084, 2013.
DOI : 10.1016/j.pmatsci.2011.08.003

M. Butel, L. Gautier, and C. Delmas, Cobalt oxyhydroxides obtained by 'chimie douce' reactions: structure and electronic conductivity properties, Solid State Ionics, vol.122, issue.1-4, pp.1-4271, 1999.
DOI : 10.1016/S0167-2738(99)00076-4

G. Godillot, L. Guerlou-demourgues, P. Taberna, P. Simon, and C. Delmas, Original Conductive Nano-Co3O4 Investigated as Electrode Material for Hybrid Supercapacitors, Original Conductive Nano-Co3o4 Investigated as Electrode Material for Hybrid Supercapacitors, pp.139-142, 2011.
DOI : 10.1016/j.electacta.2010.09.092

J. V. Stewart, Intermediate Electromagnetic Theory, World Scientific, 2001.
DOI : 10.1142/4564

R. Shelton and K. , Engineering in History. Dover Civil and Mechanical En- gineering

P. Helmholtz and . Xlii, ?On the modern development of Faraday's conception of electricity, pp.277-304, 1881.

. Low-voltage-electrolytic-capacitor, Classification aux États-Unis 361

A. Privat, Elementary Treatise on Natural Philosophy, volume Part 3 : Electricity and Magnetism

B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications, p.245751293, 1999.
DOI : 10.1007/978-1-4757-3058-6

M. Mallouki, F. Tran-van, C. Sarrazin, C. Chevrot, and J. F. Fauvarque, Electrochemical storage of polypyrrole???Fe2O3 nanocomposites in ionic liquids, Electrochimica Acta, vol.54, issue.11, pp.2992-2997, 2009.
DOI : 10.1016/j.electacta.2008.12.018

D. Girum-ayalneh-tiruye, J. Muñoz-torrero, M. Palma, R. Anderson, and . Marcilla, Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids, Journal of Power Sources, 2016.

A. Balducci, Electrolytes for high voltage electrochemical double layer capacitors: A perspective article, Journal of Power Sources, vol.326, 2016.
DOI : 10.1016/j.jpowsour.2016.05.029

Y. Xiang, J. Li, J. Lei, D. Liu, Z. Xie et al., Advanced Separators for Lithium-Ion and Lithium-Sulfur Batteries: A Review of Recent Progress, ChemSusChem, vol.101, issue.21, pp.3023-3039, 2016.
DOI : 10.1016/j.carbon.2016.02.007

B. E. Conway, V. Birss, and J. Wojtowicz, The role and utilization of pseudocapacitance for energy storage by supercapacitors, Journal of Power Sources, vol.66, issue.1-2, pp.1-14, 1997.
DOI : 10.1016/S0378-7753(96)02474-3

J. P. Zheng, P. J. Cygan, and T. R. Jow, Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors, Journal of The Electrochemical Society, vol.142, issue.8, pp.2699-2703, 1995.
DOI : 10.1149/1.2050077

A. N. Link, A. C. Connor, and T. J. Scott, Battery Technology for Electric Vehicles: Public Science and Private Innovation, Routledge, 2015.

M. Dahbi, F. Ghamouss, F. Tran-van, D. Lemordant, and M. Anouti, Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage, Journal of Power Sources, vol.196, issue.22, pp.9743-9750, 2011.
DOI : 10.1016/j.jpowsour.2011.07.071

H. Sato, D. Takahashi, T. Nishina, and I. Uchida, Electrochemical characterization of thin-film LiCoO2 electrodes in propylene carbonate solutions, Journal of Power Sources, vol.68, issue.2, pp.540-544, 1997.
DOI : 10.1016/S0378-7753(96)02589-X

H. Helmholtz, Studien ??ber electrische Grenzschichten, Annalen der Physik und Chemie, vol.22, issue.5, pp.337-382, 1879.
DOI : 10.1002/andp.18792430702

C. David and . Grahame, The Electrical Double Layer and the Theory of Electrocapillarity, Chemical Reviews, vol.41, issue.3, pp.441-501, 1947.

A. K. Geim, Graphene: Status and Prospects, Science, vol.94, issue.10, pp.1530-1534, 2009.
DOI : 10.1021/nl801774a

URL : http://www.condmat.physics.manchester.ac.uk/pdf/mesoscopic/publications/graphene/science review 2009.pdf

K. Jurewicz, K. Babe?, A. ?ió?kowski, and H. Wachowska, Ammoxidation of active carbons for improvement of supercapacitor characteristics, Electrochimica Acta, vol.48, issue.11, pp.1491-1498, 2003.
DOI : 10.1016/S0013-4686(03)00035-5

A. Lewandowski, A. Olejniczak, M. Galinski, and I. Stepniak, Performance of carbon???carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes, Journal of Power Sources, vol.195, issue.17, pp.5814-5819, 2010.
DOI : 10.1016/j.jpowsour.2010.03.082

J. Mi, X. Wang, R. Fan, W. Qu, and W. Li, Coconut-Shell-Based Porous Carbons with a Tunable Micro/Mesopore Ratio for High-Performance Supercapacitors, Energy & Fuels, vol.26, issue.8, pp.5321-5329, 2012.
DOI : 10.1021/ef3009234

E. Taer, M. Deraman, I. A. Talib, A. A. Umar, M. Oyama et al., Physical, electrochemical and supercapacitive properties of activated carbon pellets from pre-carbonized rubber wood sawdust by CO2 activation, Current Applied Physics, vol.10, issue.4, pp.1071-1075, 2010.
DOI : 10.1016/j.cap.2009.12.044

S. T. Mayer, R. W. Pekala, and J. L. Kaschmitter, The Aerocapacitor: An Electrochemical Double-Layer Energy-Storage Device, Journal of The Electrochemical Society, vol.140, issue.2, pp.446-451, 1993.
DOI : 10.1149/1.2221066

D. Yu and L. Dai, Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors, The Journal of Physical Chemistry Letters, vol.1, issue.2, pp.467-470, 2010.
DOI : 10.1021/jz9003137

M. Kaempgen, C. K. Chan, J. Ma, Y. Cui, and G. Gruner, Printable Thin Film Supercapacitors Using Single-Walled Carbon Nanotubes, Nano Letters, vol.9, issue.5, pp.1872-1876, 2009.
DOI : 10.1021/nl8038579

R. Rahul, Y. Salunkhe, . Lee, . Kuo-hsin, J. Chang et al., Nanoarchitectured Graphene-Based Supercapacitors for Next-Generation Energy-Storage Applications, Chemistry ? A European Journal, issue.43, pp.2013838-13852, 2014.

S. R. Vivekchand, C. Sekhar-rout, K. S. Subrahmanyam, A. Govindaraj, and C. N. Rao, Graphene-based electrochemical supercapacitors, Journal of Chemical Sciences, vol.165, issue.1, pp.9-13, 2008.
DOI : 10.1021/jp060936f

X. Du, P. Guo, H. Song, and X. Chen, Graphene nanosheets as electrode material for electric double-layer capacitors, Electrochimica Acta, vol.55, issue.16, pp.4812-4819, 2010.
DOI : 10.1016/j.electacta.2010.03.047

A. K. Geim and K. S. Novoselov, The rise of graphene, Nanoscience and Technology: A Collection of Reviews from Nature Journals, pp.11-19, 2009.

Q. Li, Z. Li, L. Lin, X. Y. Wang, Y. Wang et al., Facile synthesis of activated carbon/carbon nanotubes compound for supercapacitor application, Chemical Engineering Journal, vol.156, issue.2, pp.500-504, 2010.
DOI : 10.1016/j.cej.2009.10.025

K. M. Kwang-sun-ryu, N. Kim, Y. Park, S. H. Park, and . Chang, Symmetric redox supercapacitor with conducting polyaniline electrodes, Journal of Power Sources, vol.103, issue.2, pp.305-309, 2002.

Z. Huang, Y. Song, . Xin-xin, X. Xu, and . Liu, Ordered Polypyrrole Nanowire Arrays Grown on a Carbon Cloth Substrate for a High-Performance Pseudocapacitor Electrode, ACS Applied Materials & Interfaces, vol.7, issue.45, pp.25506-25513, 2015.
DOI : 10.1021/acsami.5b08830

Y. Zhang, Z. Hu, Y. An, B. Guo, N. An et al., High-performance symmetric supercapacitor based on manganese oxyhydroxide nanosheets on carbon cloth as binder-free electrodes, Journal of Power Sources, vol.311, pp.121-129, 2016.
DOI : 10.1016/j.jpowsour.2016.02.017

R. Holze and Y. P. Wu, Intrinsically conducting polymers in electrochemical energy technology: Trends and progress, Electrochimica Acta, vol.122, pp.93-107, 2014.
DOI : 10.1016/j.electacta.2013.08.100

R. Holze, Copolymers???A refined way to tailor intrinsically conducting polymers, Electrochimica Acta, vol.56, issue.28, pp.10479-10492, 2011.
DOI : 10.1016/j.electacta.2011.04.013

G. A. Snook, P. Kao, and A. S. Best, Conducting-polymer-based supercapacitor devices and electrodes, Journal of Power Sources, vol.196, issue.1, pp.1-12, 2011.
DOI : 10.1016/j.jpowsour.2010.06.084

V. Tat-'yana, O. N. Vernitskaya, and . Efimov, Polypyrrole: a conducting polymer; its synthesis, properties and applications, Russian Chemical Reviews, vol.66, issue.5, pp.443-457, 1997.

S. H. Kwang-sun-ryu, S. Chang, E. J. Kang, and . Oh, Physicochemical and electrical characterization of polyaniline induced by crosslinking, stretching and doping, Bull. Korean Chem. Soc, vol.20, issue.3, p.333, 1999.

A. Laforgue, P. Simon, C. Sarrazin, and J. Fauvarque, Polythiophene-based supercapacitors, Journal of Power Sources, vol.80, issue.1-2, pp.142-148, 1999.
DOI : 10.1016/S0378-7753(98)00258-4

A. Laforgue, P. Simon, and J. Fauvarque, Chemical synthesis and characterization of fluorinated polyphenylthiophenes: application to energy storage, Synthetic Metals, vol.123, issue.2, pp.311-319, 2001.
DOI : 10.1016/S0379-6779(01)00296-X

A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, and J. P. Ferraris, Conducting polymers as active materials in electrochemical capacitors, Journal of Power Sources, vol.47, issue.1-2, pp.89-107, 1994.
DOI : 10.1016/0378-7753(94)80053-7

H. Talbi, P. Just, and L. H. Dao, Electropolymerization of aniline on carbonized polyacrylonitrile aerogel electrodes: applications for supercapacitors, Journal of Applied Electrochemistry, vol.33, issue.6, pp.465-473, 2003.
DOI : 10.1023/A:1024439023251

Y. Hee, J. B. Lee, and . Goodenough, Supercapacitor Behavior with KCl Electrolyte, Journal of Solid State Chemistry, vol.144, issue.1, pp.220-223, 1999.

C. P. De-pauli and S. Trasatti, Electrochemical surface characterization of IrO2 + SnO2 mixed oxide electrocatalysts, Journal of Electroanalytical Chemistry, vol.396, issue.1-2, pp.161-168, 1995.
DOI : 10.1016/0022-0728(95)03950-L

. Kuo-chuan, M. A. Liu, and . Anderson, Porous nickel oxide/nickel films for electrochemical capacitors, Journal of the Electrochemical Society, vol.143, issue.1, pp.124-130, 1996.

C. Arbizzani, M. C. Gallazzi, M. Mastragostino, M. Rossi, and F. Soavi, Capacitance and cycling stability of poly(alkoxythiophene) derivative electrodes, Electrochemistry Communications, vol.3, issue.1, pp.16-19, 2001.
DOI : 10.1016/S1388-2481(00)00139-9

M. Mastragostino, C. Arbizzani, and F. Soavi, Conducting polymers as electrode materials in supercapacitors, Solid State Ionics, vol.148, issue.3-4, pp.493-498, 2002.
DOI : 10.1016/S0167-2738(02)00093-0

A. Laforgue, P. Simon, J. F. Fauvarque, J. F. Sarrau, and P. Lailler, Hybrid Supercapacitors Based on Activated Carbons and Conducting Polymers, Journal of The Electrochemical Society, vol.370, issue.10, pp.1130-1134, 2001.
DOI : 10.1016/0022-0728(93)03158-L

P. Thierry-brousse, O. Taberna, R. Crosnier, P. Dugas, Y. Guillemet et al., Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor, Journal of Power Sources, vol.173, issue.1, pp.633-641, 2007.
DOI : 10.1016/j.jpowsour.2007.04.074

V. Khomenko, E. Raymundo-piñero, E. Frackowiak, and F. Béguin, High-voltage asymmetric supercapacitors operating in aqueous electrolyte, Applied Physics A, vol.78, issue.98, pp.567-573, 2005.
DOI : 10.1007/978-1-4757-3058-6

E. Raymundo-piñero, M. Cadek, and F. Béguin, Tuning Carbon Materials for Supercapacitors by Direct Pyrolysis of Seaweeds, Advanced Functional Materials, vol.47, issue.7, pp.1032-1039, 2009.
DOI : 10.1016/j.biortech.2005.10.014

Z. Lei, N. Christov, L. L. Zhang, and X. S. Zhao, Mesoporous carbon nanospheres with an excellent electrocapacitive performance, J. Mater. Chem., vol.19, issue.7, pp.2274-2281, 2011.
DOI : 10.1002/adfm.200900971

A. Izadi-najafabadi, S. Yasuda, K. Kobashi, T. Yamada, D. N. Futaba et al., Extracting the Full Potential of Single-Walled Carbon Nanotubes as Durable Supercapacitor Electrodes Operable at 4 V with High Power and Energy Density, Advanced Materials, vol.189, issue.35, pp.22-235, 2010.
DOI : 10.1002/adma.200904349

Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai et al., Carbon-Based Supercapacitors Produced by Activation of Graphene, Science, vol.81, issue.6, pp.3321537-1541, 2011.
DOI : 10.1063/1.1516635

Z. Wu, D. Wang, W. Ren, J. Zhao, G. Zhou et al., Anchoring Hydrous RuO2 on Graphene Sheets for High-Performance Electrochemical Capacitors, Advanced Functional Materials, vol.9, issue.20, pp.3595-3602, 2010.
DOI : 10.1002/adfm.201001054

T. Cottineau, M. Toupin, T. Delahaye, T. Brousse, and D. Bélanger, Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors, Applied Physics A, vol.150, issue.4, pp.599-606, 2006.
DOI : 10.1007/s00339-005-3401-3

G. Wendy, B. E. Pell, and . Conway, Peculiarities and requirements of asymmetric capacitor devices based on combination of capacitor and battery-type electrodes, Journal of Power Sources, vol.136, issue.2, pp.334-345, 2004.

C. Decaux, G. Lota, E. Raymundo-piñero, E. Frackowiak, and F. Béguin, Electrochemical performance of a hybrid lithium-ion capacitor with a graphite anode preloaded from lithium bis(trifluoromethane)sulfonimide-based electrolyte, Electrochimica Acta, vol.86, pp.282-286, 2012.
DOI : 10.1016/j.electacta.2012.05.111

X. Wang and J. P. Zheng, The Optimal Energy Density of Electrochemical Capacitors Using Two Different Electrodes, Journal of The Electrochemical Society, vol.47, issue.10, pp.1683-1689, 2004.
DOI : 10.1149/1.1787841

L. Yu and G. Z. Chen, Redox electrode materials for supercapatteries, Journal of Power Sources, vol.326, 2016.
DOI : 10.1016/j.jpowsour.2016.04.095

URL : http://eprints.nottingham.ac.uk/33642/1/JPS_YLP_Revision5%20for%20OpenAccess.pdf

F. Zhang, T. Zhang, X. Yang, L. Zhang, K. Leng et al., A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density, Energy & Environmental Science, vol.115, issue.5, pp.1623-1632, 2013.
DOI : 10.1016/S0378-7753(02)00718-8

A. Steven, G. P. Klankowski, G. A. Pandey, J. Malek, R. A. Wu et al., A Novel High-Power Battery-Pseudocapacitor Hybrid Based on Fast Lithium Reactions in Silicon Anode and Titanium Dioxide Cathode Coated on Vertically Aligned Carbon Nanofibers, Electrochimica Acta, vol.178, pp.797-805, 2015.

S. Makino, Y. Shinohara, T. Ban, W. Shimizu, and K. Takahashi, 4 V class aqueous hybrid electrochemical capacitor with battery-like capacity, RSC Advances, vol.49, issue.32, pp.12144-12147, 2012.
DOI : 10.1021/ic100176d

URL : https://soar-ir.repo.nii.ac.jp/?action=repository_action_common_download&item_id=13307&item_no=1&attribute_id=65&file_no=1

S. Makino, R. Yamamoto, S. Sugimoto, and W. Sugimoto, Room temperature performance of 4??V aqueous hybrid supercapacitor using multi-layered lithium-doped carbon negative electrode, Journal of Power Sources, vol.326, 2016.
DOI : 10.1016/j.jpowsour.2016.04.058

S. Gyoung-hwa-jeong, S. Baek, S. Lee, and . Kim, Metal Oxide/Graphene Composites for Supercapacitive Electrode Materials, Chemistry - An Asian Journal, vol.4, issue.7, pp.949-964, 2016.
DOI : 10.1038/srep04452

W. Wei, Y. Wang, H. Wu, A. M. Al-enizi, L. Zhang et al., Transition metal oxide hierarchical nanotubes for energy applications, Nanotechnology, vol.27, issue.2, pp.2-3, 2016.
DOI : 10.1088/0957-4484/27/2/02LT01

Z. Wu, G. Zhou, L. Yin, W. Ren, F. Li et al., Graphene/metal oxide composite electrode materials for energy storage, Nano Energy, vol.1, issue.1, pp.107-131, 2012.
DOI : 10.1016/j.nanoen.2011.11.001

G. Yu, X. Xie, L. Pan, Z. Bao, and Y. Cui, Hybrid nanostructured materials for high-performance electrochemical capacitors, Nano Energy, vol.2, issue.2, pp.213-234, 2013.
DOI : 10.1016/j.nanoen.2012.10.006

S. Sop?i?, M. Kralji?-rokovi?, Z. Mandi?, and G. Inzelt, Preparation and characterization of RuO2/polyaniline composite electrodes, Journal of Solid State Electrochemistry, vol.151, issue.11, pp.2021-2026, 2010.
DOI : 10.1007/978-1-4757-3058-6

M. Mallouki, F. Tran-van, C. Sarrazin, P. Simon, B. Daffos et al., Polypyrrole-Fe2O3 nanohybrid materials for electrochemical storage, Journal of Solid State Electrochemistry, vol.50, issue.3, pp.398-406, 2006.
DOI : 10.1016/j.jpowsour.2004.05.040

X. Qin, S. Durbach, and G. T. Wu, Electrochemical characterization on RuO2??xH2O/carbon nanotubes composite electrodes for high energy density supercapacitors, Carbon, vol.42, issue.2, pp.451-453, 2004.
DOI : 10.1016/j.carbon.2003.11.012

A. Ghosh, E. J. Ra, M. Jin, H. Jeong, T. H. Kim et al., High Pseudocapacitance from Ultrathin V2O5 Films Electrodeposited on Self-Standing Carbon-Nanofiber Paper, Advanced Functional Materials, vol.467, issue.13, pp.2541-2547, 2011.
DOI : 10.1016/j.jallcom.2007.12.017

Y. Liang, M. G. Schwab, L. Zhi, E. Mugnaioli, U. Kolb et al., Direct access to metal or metal oxide nanocrystals integrated with one-dimensional 209

D. Luo, C. J. Wallar, K. Shi, and I. Zhitomirsky, Enhanced capacitive performance of MnO 2 - multiwalled carbon nanotube electrodes, prepared using lauryl gallate dispersant, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.509, pp.504-511, 2016.
DOI : 10.1016/j.colsurfa.2016.09.065

T. M. Higgins, D. Mcateer, J. C. Mesquita-coelho, B. M. Sanchez, Z. Gholamvand et al., Effect of Percolation on the Capacitance of Supercapacitor Electrodes Prepared from Composites of Manganese Dioxide Nanoplatelets and Carbon Nanotubes, ACS Nano, vol.8, issue.9, pp.9567-9579, 2014.
DOI : 10.1021/nn5038543

G. Xin, Y. Wang, J. Zhang, S. Jia, J. Zang et al., A self-supporting graphene/MnO2 composite for high-performance supercapacitors, International Journal of Hydrogen Energy, vol.40, issue.32, pp.4010176-10184, 2015.
DOI : 10.1016/j.ijhydene.2015.06.060

Y. Su and I. Zhitomirsky, Influence of Dopants on Performance of Polypyrrole Coated Carbon Nanotube Electrodes and Devices, Journal of the Electrochemical Society, vol.162, issue.5, pp.5013-5019, 2015.
DOI : 10.1149/2.0031505jes

M. Toupin, T. Brousse, and D. Bélanger, Electrode Used in Aqueous Electrochemical Capacitor, Chemistry of Materials, vol.16, issue.16, pp.3184-3190, 2004.
DOI : 10.1021/cm049649j

C. Hu and T. Tsou, Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition, Electrochemistry Communications, vol.4, issue.2, pp.105-109, 2002.
DOI : 10.1016/S1388-2481(01)00285-5

M. Thierry-brousse, R. Toupin, L. Dugas, O. Athouël, D. Crosnier et al., Crystalline MnO[sub 2] as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors, Journal of The Electrochemical Society, vol.31, issue.12, pp.2171-2180, 2006.
DOI : 10.1016/S0378-7753(98)00038-X

D. Portehault, Synthèse par chimie douce en milieu aqueux d'oxydes de manganèse nano-structurés. Des matériaux pour batteries au lithium ?, 2008.

S. W. Donne, A. F. Hollenkamp, and B. C. Jones, Structure, morphology and electrochemical behaviour of manganese oxides prepared by controlled decomposition of permanganate, Journal of Power Sources, vol.195, issue.1, pp.367-373, 2010.
DOI : 10.1016/j.jpowsour.2009.06.103

S. Devaraj and N. Munichandraiah, on Its Electrochemical Capacitance Properties, The Journal of Physical Chemistry C, vol.112, issue.11, pp.4406-4417, 2008.
DOI : 10.1021/jp7108785

. Suh-cem, M. A. Pang, T. W. Anderson, and . Chapman, Novel Electrode Materials for Thin-Film Ultracapacitors: Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide, Journal of The Electrochemical Society, vol.147, issue.2, pp.444-450, 2000.

S. Wen, J. Lee, and I. Yeo, The role of cations of the electrolyte for the pseudocapacitive behavior of metal oxide electrodes, MnO2 and RuO2, Electrochimica Acta, vol.50, issue.2-3, pp.849-855, 2004.
DOI : 10.1016/j.electacta.2004.02.056

T. Mathieu-toupin, D. Brousse, and . Bélanger, Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide, Chemistry of Materials, vol.14, issue.9, pp.3946-3952, 2002.
DOI : 10.1021/cm020408q

S. Kuo and N. Wu, Investigation of Pseudocapacitive Charge-Storage Reaction of MnO[sub 2]???nH[sub 2]O Supercapacitors in Aqueous Electrolytes, Journal of The Electrochemical Society, vol.9, issue.7, pp.1317-1324, 2006.
DOI : 10.1073/pnas.96.7.3447

L. Athouël, F. Moser, R. Dugas, O. Crosnier, D. Bélanger et al., Electrolyte, The Journal of Physical Chemistry C, vol.112, issue.18, pp.7270-7277, 2008.
DOI : 10.1021/jp0773029

O. Ghodbane, F. Ataherian, N. Wu, and F. Favier, In situ crystallographic investigations of charge storage mechanisms in MnO2-based electrochemical capacitors, Journal of Power Sources, vol.206, pp.454-462, 2012.
DOI : 10.1016/j.jpowsour.2012.01.103

URL : https://hal.archives-ouvertes.fr/hal-00734842

L. Coustan, P. Lannelongue, P. Arcidiacono, and F. Favier, Faradaic contributions in the supercapacitive charge storage mechanisms of manganese dioxides, Electrochimica Acta, vol.206, pp.479-489, 2016.
DOI : 10.1016/j.electacta.2016.01.212

H. Zheng, F. Tang, M. Lim, A. Mukherji, X. Yanmax et al., Multilayered films of cobalt oxyhydroxide nanowires/manganese oxide nanosheets for electrochemical capacitor, Lianzhou Wang, and Gao Qing, pp.680-683, 2010.
DOI : 10.1016/j.jpowsour.2009.08.002

E. Liu, W. Li, J. Li, X. Meng, R. Ding et al., Preparation and characterization of nanostructured NiO/MnO2 composite electrode for electrochemical supercapacitors, Materials Research Bulletin, vol.44, issue.5, pp.1122-1126, 2009.
DOI : 10.1016/j.materresbull.2008.10.003

J. Duay, E. Gillette, R. Liu, and S. B. Lee, Highly flexible pseudocapacitor based on freestanding heterogeneous MnO2/conductive polymer nanowire arrays, Physical Chemistry Chemical Physics, vol.152, issue.10, pp.3329-3337, 2012.
DOI : 10.1149/1.1834913

P. Michael, W. Clark, D. G. Qu, and . Ivey, Nanostructured manganese oxide and manganese oxide/polyethylenedioxythiophene rods electrodeposited onto nickel foam for supercapacitor applications, Journal of Applied Electrochemistry, pp.1-11

W. Ni, D. Wang, Z. Huang, J. Zhao, and G. Cui, Fabrication of nanocomposite electrode with MnO2 nanoparticles distributed in polyaniline for electrochemical capacitors, Materials Chemistry and Physics, vol.124, issue.2-3, pp.2-31151, 2010.
DOI : 10.1016/j.matchemphys.2010.08.050

J. Liu, J. Essner, and J. Li, Hybrid Supercapacitor Based on Coaxially Coated Manganese Oxide on Vertically Aligned Carbon Nanofiber Arrays, Chemistry of Materials, vol.22, issue.17, pp.5022-5030, 2010.
DOI : 10.1021/cm101591p

M. Kim, Y. Hwang, and J. Kim, Super-capacitive performance depending on different crystal structures of MnO2 in graphene/MnO2 composites for supercapacitors, Journal of Materials Science, vol.227, issue.21, pp.7652-7663, 2013.
DOI : 10.1016/j.jpowsour.2012.11.040

S. Chen, J. Zhu, X. Wu, Q. Han, and X. Wang, Nanocomposites for Supercapacitors, ACS Nano, vol.4, issue.5, pp.2822-2830, 2010.
DOI : 10.1021/nn901311t

H. Jiang, C. Li, T. Sun, and J. Ma, High-performance supercapacitor material based on Ni (OH) 2 nanowire-MnO 2 nanoflakes core?shell nanostructures, Chemical Communications, issue.20, pp.482606-2608, 2012.

C. Yuan, H. Lin, H. Lu, E. Xing, Y. Zhang et al., composites, RSC Adv., vol.180, issue.110, pp.64675-64682, 2014.
DOI : 10.1016/j.jpowsour.2008.02.029

URL : https://hal.archives-ouvertes.fr/hal-00778424

Y. He, . Gao-ren, Z. Li, C. Wang, Y. Su et al., Single-crystal ZnO nanorod/amorphous and nanoporous metal oxide shell composites: Controllable electrochemical synthesis and enhanced supercapacitor performances, Energy & Environmental Science, vol.19, issue.4, pp.1288-1292, 2011.
DOI : 10.1039/b800264a

M. Douin, L. Guerlou-demourgues, M. Ménétrier, E. Bekaert, L. Goubault et al., Effect of Thermal Treatment on the Electronic Conductivity Properties of Cobalt Spinel Phases Synthesized by Electro-Oxidation in Ternary Alkaline Electrolyte (KOH, LiOH, NaOH), Chemistry of Materials, vol.20, issue.21, pp.6880-6888, 2008.
DOI : 10.1021/cm801775g

URL : https://hal.archives-ouvertes.fr/hal-00348669

W. Kian-keat-lee, C. Shong-chin, and . Sow, Cobalt-based compounds and composites as electrode materials for high-performance electrochemical capacitors, J. Mater. Chem. A, issue.241, pp.17212-17248, 2014.

K. Wishvender, J. E. Behl, and . Toni, Anodic oxidation of cobalt in potassium hydroxide electrolytes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.31, issue.1, pp.63-75, 1971.

F. Tronel, L. Guerlou-demourgues, M. Ménétrier, L. Croguennec, L. Goubault et al., New Spinel Cobalt Oxides, Potential Conductive Additives for the Positive Electrode of Ni???MH Batteries, Chemistry of Materials, vol.18, issue.25, pp.5840-5851, 2006.
DOI : 10.1021/cm060175t

URL : https://hal.archives-ouvertes.fr/hal-00123369

G. Godillot, Electrodes pour supercondensateurs à base d'oxydes de cobalt conducteurs, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00986640

P. Kumar-nayak and N. Munichandraiah, Cobalt Hydroxide as a Capacitor Material: Tuning Its Potential Window, Journal of The Electrochemical Society, vol.9, issue.11, pp.855-861, 2008.
DOI : 10.1149/1.2800163

S. Fedor, J. Fedorov, K. Linnemann, L. Tschulik, M. Giebeler et al., Capacitance performance of cobalt hydroxide-based capacitors with utilization of near-neutral electrolytes, Electrochimica Acta, vol.90, pp.166-170, 2013.
DOI : 10.1016/j.electacta.2012.11.123

E. Hosono, S. Fujihara, I. Honma, M. Ichihara, and H. Zhou, Synthesis of the CoOOH fine nanoflake film with the high rate capacitance property, Journal of Power Sources, vol.158, issue.1, pp.779-783, 2006.
DOI : 10.1016/j.jpowsour.2005.09.052

A. D. Jagadale, D. P. Dubal, and C. D. Lokhande, Electrochemical behavior of potentiodynamically deposited cobalt oxyhydroxide (CoOOH) thin films for supercapacitor application, Materials Research Bulletin, vol.47, issue.3, pp.672-676, 2012.
DOI : 10.1016/j.materresbull.2011.12.029

K. Zhang, X. Han, Z. Hu, X. Zhang, Z. Tao et al., Nanostructured Mn-based oxides for electrochemical energy storage and conversion, Chemical Society Reviews, vol.196, issue.82, pp.699-728, 2015.
DOI : 10.1016/j.jpowsour.2011.02.029

X. Tang, Z. Liu, C. Zhang, Z. Yang, and Z. Wang, Synthesis and capacitive property of hierarchical hollow manganese oxide nanospheres with large specific surface area, Journal of Power Sources, vol.193, issue.2, pp.939-943, 2009.
DOI : 10.1016/j.jpowsour.2009.04.037

P. Wang, Y. Zhao, L. Wen, J. Chen, and Z. Lei, Supercapacitor Electrode Materials, Industrial & Engineering Chemistry Research, vol.53, issue.52, pp.20116-20123, 2014.
DOI : 10.1021/ie5025485

M. Huang, R. Mi, H. Liu, F. Li, X. L. Zhao et al., Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes, Journal of Power Sources, vol.269, pp.760-767, 2014.
DOI : 10.1016/j.jpowsour.2014.07.031

B. Guo, Y. Zhao, W. Wu, H. Meng, H. Zou et al., Research on the preparation technology of polyaniline nanofiber based on high gravity chemical oxidative polymerization, Chemical Engineering and Processing: Process Intensification, vol.70, pp.1-8, 2013.
DOI : 10.1016/j.cep.2013.05.013

X. Lang, A. Hirata, T. Fujita, and M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nature Nanotechnology, vol.147, issue.4, pp.232-236, 2011.
DOI : 10.1149/1.1393216

Y. Li, H. Fu, Y. Zhang, Z. Wang, and X. Li, Nanocomposites for Supercapacitor Application, The Journal of Physical Chemistry C, vol.118, issue.13, pp.6604-6611, 2014.
DOI : 10.1021/jp412187n

J. Chen, Y. Huang, C. Li, X. Chen, and X. Zhang, Synthesis of NiO@MnO2 core/shell nanocomposites for supercapacitor application, Applied Surface Science, vol.360, pp.534-539, 2016.
DOI : 10.1016/j.apsusc.2015.10.187

Z. Wang, F. Wang, and J. Tu, Nickel foam supported hierarchical mesoporous MnO 2 /Ni(OH) 2 nanosheet networks for high performance supercapacitor electrode, Materials Letters, vol.171, pp.10-13, 2016.
DOI : 10.1016/j.matlet.2016.02.050

J. Bhagwan, V. Sivasankaran, K. L. Yadav, and Y. Sharma, Porous, one-dimensional and high aspect ratio nanofibric network of cobalt manganese oxide as a high performance material for aqueous and solid-state supercapacitor (2??V), Journal of Power Sources, vol.327, pp.29-37, 2016.
DOI : 10.1016/j.jpowsour.2016.07.040

C. J. Byung-chul-kim, W. Raj, W. Cho, H. T. Lee, K. Jeong et al., Enhanced electrochemical properties of cobalt doped manganese dioxide nanowires, Journal of Alloys and Compounds, vol.617, pp.491-497, 2014.

G. Zhang, F. Ding, L. Sang, G. Wang, M. Feng et al., Two-dimensional cobalt???manganese binary metal oxide porous nanosheets for high-performance supercapacitors, Journal of Solid State Electrochemistry, vol.42, issue.12, pp.1-8, 2016.
DOI : 10.1016/j.ceramint.2015.10.041

W. Lei, P. He, Y. Wang, and X. Zhang, Solvothermal preparation of microspherical shaped cobalt???manganese oxide as electrode materials for supercapacitors, Composites Science and Technology, vol.102, pp.82-86, 2014.
DOI : 10.1016/j.compscitech.2014.07.019

H. Che, Y. Lv, A. Liu, J. Mu, X. Zhang et al., Facile synthesis of three dimensional flower-like Co3o4@MnO2 core-shell microspheres as high-performance electrode materials for supercapacitors, Ceramics International, issue.8, pp.436054-6062, 2017.

D. Kong, J. Luo, Y. Wang, W. Ren, T. Yu et al., Hierarchical Nanoneedle Arrays: Morphology Control and Electrochemical Energy Storage, Advanced Functional Materials, vol.5, issue.24, pp.3815-3826, 2014.
DOI : 10.1021/nn200493r

J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang et al., Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High-Performance Pseudocapacitive Materials, Advanced Materials, vol.3, issue.18, pp.2076-2081, 2011.
DOI : 10.1021/nn900848x

P. Y. Rusi, S. R. Chan, and . Majid, Layer by Layer Ex-Situ Deposited Cobalt-Manganese Oxide as Composite Electrode Material for Electrochemical Capacitor, PLOS ONE, vol.103, issue.2, pp.10-0129780
DOI : 10.1371/journal.pone.0129780.t002

J. Chang, M. Lee, C. Huang, and W. Tsai, Physicochemical properties and electrochemical behavior of binary manganese???cobalt oxide electrodes for supercapacitor applications, Materials Chemistry and Physics, vol.108, issue.1, pp.124-131, 2008.
DOI : 10.1016/j.matchemphys.2007.09.013

X. Wang, Y. Xiao, D. Su, S. Xu, L. Zhou et al., Lifeng Han, Shaoming Fang, and Shaokui Cao. Hierarchical porous cobalt monoxide nanosheet@ultrathin manganese dioxide nanosheet core-shell arrays for high-performance asymmetric supercapacitor, International Journal of Hydrogen Energy, issue.31, pp.4113540-13548, 2016.

F. Gobal and S. Jafarzadeh, A comparative study of sequentially layer-deposited and co-deposited Co???Mn oxides as potential redox capacitors, Journal of Solid State Electrochemistry, vol.196, issue.4, pp.1561-1569, 2012.
DOI : 10.1016/j.jpowsour.2010.07.082

X. Wang, Y. Xiao, D. Su, L. Zhou, S. Wu et al., High-quality Porous Cobalt Monoxide Nanowires @ Ultrathin Manganese dioxide Sheets Core-Shell Nanowire Arrays on Ni Foam for High-Performance Supercapacitor, Electrochimica Acta, vol.194, pp.377-384, 2016.
DOI : 10.1016/j.electacta.2016.02.047

A. M. Nasser, M. S. Barakat, F. A. Khil, H. Sheikh, and . Kim, Synthesis and Optical Properties of Two Cobalt Oxides (CoO and Co 3 O 4 ) Nanofibers Produced by Electrospinning Process, The Journal of Physical Chemistry C, vol.112, issue.32, pp.12225-12233, 2008.

M. Oshitani, H. Yufu, K. Takashima, S. Tsuji, and Y. Matsumaru, Development of a Pasted Nickel Electrode with High Active Material Utilization, Journal of The Electrochemical Society, vol.136, issue.6, pp.1590-1593, 1989.
DOI : 10.1149/1.2096974

Q. S. Song, G. K. Aravindaraj, H. Sultana, and S. L. Chan, Performance improvement of pasted nickel electrodes with multi-wall carbon nanotubes for rechargeable nickel batteries, Electrochimica Acta, vol.53, issue.4, pp.1890-1896, 2007.
DOI : 10.1016/j.electacta.2007.08.040

G. Godillot, H. Huo, M. Ménétrier, L. Bourgeois, L. Guerlou-demourgues et al., Promising Nanometric Spinel Cobalt Oxides for Electrochemical Energy Storage: Investigation of Li and H Environments by NMR, The Journal of Physical Chemistry C, vol.116, issue.50, pp.26598-26607, 2012.
DOI : 10.1021/jp307458z

URL : https://hal.archives-ouvertes.fr/hal-00804974

G. Binotto, D. Larcher, A. S. Prakash, R. Herrera-urbina, M. S. Hegde et al., Powders, Chemistry of Materials, vol.19, issue.12, pp.3032-3040, 2007.
DOI : 10.1021/cm070048c

C. Delmas, C. Fouassier, and P. Hagenmuller, Structural classification and properties of the layered oxides, Physica B+C, vol.99, issue.1-4, pp.81-85, 1980.
DOI : 10.1016/0378-4363(80)90214-4

URL : https://hal.archives-ouvertes.fr/hal-00135169

O. Prieto, M. D. Arco, and V. Rives, Characterisation of K, Na, and Li birnessites prepared by oxidation with H2o2 in a basic medium. Ion exchange properties and study of the calcined products, Journal of Materials Science, vol.38, issue.13, pp.2815-2824, 2003.
DOI : 10.1023/A:1024472116151

E. Jeffrey, D. R. Post, and . Veblen, Crystal structure determinations of synthetic sodium, magnesium, and potassium birnessite using TEM and the Rietveld method, American Mineralogist, vol.75, pp.5-6477, 1990.

Q. Feng, H. Kanoh, Y. Miyai, and K. Ooi, Hydrothermal Synthesis of Lithium and Sodium Manganese Oxides and Their Metal Ion Extraction/Insertion Reactions, Chemistry of Materials, vol.7, issue.6, pp.1226-1232, 1995.
DOI : 10.1021/cm00054a024

Z. Liu, K. Ooi, H. Kanoh, W. Tang, and T. Tomida, Swelling and Delamination Behaviors of Birnessite-Type Manganese Oxide by Intercalation of Tetraalkylammonium Ions, Langmuir, vol.16, issue.9, pp.4154-4164, 2000.
DOI : 10.1021/la9913755

Y. Omomo, T. Sasaki, M. Wang, and . Watanabe, Redoxable Nanosheet Crystallites of MnO2 Derived via Delamination of a Layered Manganese Oxide., ChemInform, vol.125, issue.24, pp.3568-3575, 2003.
DOI : 10.1002/chin.200324215

K. Fukuda, I. Nakai, Y. Ebina, M. Tanaka, T. Mori et al., Structure Analysis of Exfoliated Unilamellar Crystallites of Manganese Oxide Nanosheets, The Journal of Physical Chemistry B, vol.110, issue.34, pp.17070-17075, 2006.
DOI : 10.1021/jp061402h

B. Ma, W. Hou, Y. Han, R. Sun, and Z. Liu, Exfoliation reaction of birnessite-type manganese oxide by a host???guest electrostatic repulsion in aqueous solution, Solid State Sciences, vol.10, issue.2, pp.141-147, 2008.
DOI : 10.1016/j.solidstatesciences.2007.09.003

A. Gaillot, V. A. Drits, A. Plançon, and B. Lanson, . 2. Phase and Structural Heterogeneities, Chemistry of Materials, vol.16, issue.10, pp.1890-1905, 2004.
DOI : 10.1021/cm035236r

URL : https://hal.archives-ouvertes.fr/hal-00944194

R. Chen, New Manganese Oxides by Hydrothermal Reaction of Permanganates, MRS Proceedings, vol.86, issue.88, pp.653-658, 1997.
DOI : 10.1103/PhysRev.111.1046

R. Giovanoli, E. Stähli, and W. Feitknecht, ??ber Oxidhydroxide des vierwertigen Mangans mit Schichtengitter 2. Mitteilung: Mangan (III)-manganat (IV), Helvetica Chimica Acta, vol.28, issue.3, pp.453-464, 1970.
DOI : 10.1002/hlca.19540370746

S. J. Sa-heum-kim, S. M. Kim, and . Oh, Preparation of Layered MnO2 via Thermal Decomposition of KMnO4 and Its Electrochemical Characterizations, Chemistry of Materials, vol.11, issue.3, pp.557-563, 1999.

S. Ching, J. A. Landrigan, and M. L. Jorgensen, Sol-gel synthesis of birnessite from KMnO4 and simple sugars, Chemistry of Materials, vol.7, issue.9, pp.1604-1606, 1995.
DOI : 10.1021/cm00057a003

P. , L. Goff, N. Baffier, S. Bach, and J. P. Pereira-ramos, Synthesis, ion exchange and electrochemical properties of lamellar phyllomanganates of the birnessite group, Materials Research Bulletin, vol.31, issue.1, pp.63-75, 1996.

B. Lanson, Structure of H-exchanged hexagonal birnessite and its mechanism of formation from Na-rich monoclinic buserite at low pH, American Mineralogist, vol.85, issue.5-6, pp.5-6826, 2000.
DOI : 10.2138/am-2000-5-625

B. Lanson, Structure of synthetic Na-birnessite: Evidence for a triclinic one-layer unit cell. The American mineralogist, pp.11-121662, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00193460

J. Luo, Q. Zhang, and S. L. Suib, Mechanistic and Kinetic Studies of Crystallization of Birnessite, Inorganic Chemistry, vol.39, issue.4, pp.741-747, 2000.
DOI : 10.1021/ic990456l

J. Luo, Preparative Parameters, Magnesium Effects, and Anion Effects in the Crystallization of Birnessites, The Journal of Physical Chemistry B, vol.101, issue.49, pp.10403-10413, 1997.
DOI : 10.1021/jp9720449

R. Chen, T. Chirayil, P. Zavalij, and M. S. Whittingham, The hydrothermal synthesis of sodium manganese oxide and a lithium vanadium oxide, Solid State Ionics, vol.86, issue.88, pp.1-7, 1996.
DOI : 10.1016/0167-2738(96)00086-0

S. Hirano, R. Narita, and S. Naka, Hydrothermal synthesis and properties of Na0.70MnO2.25 layer crystal, Materials Research Bulletin, vol.19, issue.9, pp.1229-1235, 1984.
DOI : 10.1016/0025-5408(84)90076-X

S. Ching, D. J. Petrovay, M. L. Jorgensen, and S. L. Suib, Sol???Gel Synthesis of Layered Birnessite-Type Manganese Oxides, Inorganic Chemistry, vol.36, issue.5, pp.883-890, 1997.
DOI : 10.1021/ic961088d

J. Luo, A. Huang, S. H. Park, S. L. Suib, and C. Young, Crystallization of Sodium???Birnessite and Accompanied Phase Transformation, Chemistry of Materials, vol.10, issue.6, pp.1561-1568, 1998.
DOI : 10.1021/cm970745c

A. Gaillot, Caractérisation structurale de la birnessite: Influence du protocole de synthese, 2002.

M. Douin, Etude de phases spinelle cobaltée et d'oxydes lamellaires dérivés de Na 0, 6 CoO 2 employés comme additifs conducteurs dans les accumulateurs Ni-MH, 2008.

S. Ching, R. P. Neupane, and T. P. Gray, Synthesis and Characterization of a Layered Manganese Oxide: Materials Chemistry for the Inorganic or Instrumental Methods Lab, Journal of Chemical Education, vol.83, issue.11, p.1674, 2006.
DOI : 10.1021/ed083p1674

M. Butel, Etude de nouveaux oxyhydroxydes de cobalt pouvant être utilisés comme additif conducteur électronique ajoutés à l'hydroxydes de nickel dans les accumulateurs nickel/cadmium et nickel/métal hydrure, 1998.

A. Victor, E. Drits, A. I. Silvester, A. Gorshkov, and . Manceau, Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite: I. Results from X-ray diffraction and selected-area electron diffraction, American Mineralogist, vol.82, pp.9-10946, 1997.

E. Silvester, A. Manceau, and V. A. Drits, Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite; II, Results from chemical studies and EXAFS spectroscopy, American Mineralogist, vol.82, issue.9-10, pp.9-10962, 1997.
DOI : 10.2138/am-1997-9-1013

K. S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure and Applied Chemistry, vol.57, issue.4, p.603, 2009.
DOI : 10.1351/pac198557040603

V. Pralong, A. Delahaye-vidal, B. Beaudoin, B. Gérand, and J. Tarascon, Oxidation mechanism of cobalt hydroxide to cobalt oxyhydroxide, Journal of Materials Chemistry, vol.9, issue.4, pp.955-960, 1999.
DOI : 10.1039/a807689h

R. Ma and T. Sasaki, Two-Dimensional Oxide and Hydroxide Nanosheets: Controllable High-Quality Exfoliation, Molecular Assembly, and Exploration of Functionality, Accounts of Chemical Research, vol.48, issue.1, pp.136-143, 2015.
DOI : 10.1021/ar500311w

G. A. Muller, J. B. Cook, H. Kim, S. H. Tolbert, and B. Dunn, High Performance Pseudocapacitor Based on 2D Layered Metal Chalcogenide Nanocrystals, Nano Letters, vol.15, issue.3, pp.1911-1917, 2015.
DOI : 10.1021/nl504764m

K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab et al., A roadmap for graphene, Nature, vol.335, issue.7419, pp.490192-200, 2012.
DOI : 10.1126/science.1211694

K. Qing-hua-wang, A. Kalantar-zadeh, J. N. Kis, M. S. Coleman, and . Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature Nanotechnology, vol.112, issue.11, pp.699-712, 2012.
DOI : 10.1080/00018737500101391

M. Osada and T. Sasaki, Exfoliated oxide nanosheets: new solution to nanoelectronics, Journal of Materials Chemistry, vol.69, issue.153, pp.2503-2511, 2009.
DOI : 10.1039/b820160a

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Letters, vol.9, issue.1, pp.30-35, 2009.
DOI : 10.1021/nl801827v

F. Paul, S. Luckham, and . Rossi, The colloidal and rheological properties of bentonite suspensions, Advances in Colloid and Interface Science, vol.82, issue.13, pp.43-92, 1999.

T. Tanaka, Y. Ebina, K. Takada, K. Kurashima, and T. Sasaki, Oversized Titania Nanosheet Crystallites Derived from Flux-Grown Layered Titanate Single Crystals, Chemistry of Materials, vol.15, issue.18, pp.3564-3568, 2003.
DOI : 10.1021/cm034307j

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi et al., Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions, Journal of the American Chemical Society, vol.131, issue.10, pp.1313611-3620, 2009.
DOI : 10.1021/ja807449u

K. Wang, A. Takada, M. Kajiyama, Y. Onoda, . Michiue et al., Nanosheets, and Its Electrochemical Properties, Chemistry of Materials, vol.15, issue.23, pp.4508-4514, 2003.
DOI : 10.1021/cm0217809

X. Yang, Y. Makita, Z. Liu, K. Sakane, and K. Ooi, Nanosheets from Birnessite Manganese Oxide Single Crystals, Chemistry of Materials, vol.16, issue.26, pp.5581-5588, 2004.
DOI : 10.1021/cm049025d

Z. Liu, R. Ma, Y. Ebina, K. Takada, and T. Sasaki, Synthesis and Delamination of Layered Manganese Oxide Nanobelts, Chemistry of Materials, vol.19, issue.26, pp.6504-6512, 2007.
DOI : 10.1021/cm7019203

M. Song, K. M. Lee, Y. R. Lee, I. Y. Kim, T. W. Kim et al., Porously Assembled 2D Nanosheets of Alkali Metal Manganese Oxides with Highly Reversible Pseudocapacitance Behaviors, The Journal of Physical Chemistry C, vol.114, issue.50, pp.22134-22140, 2010.
DOI : 10.1021/jp108969s

Z. Liu, R. Ma, M. Osada, N. Iyi, Y. Ebina et al., Synthesis, Anion Exchange, and Delamination of CoAl Layered Double Hydroxide: Assembly of the Exfoliated Nanosheet/Polyanion Composite Films and Magneto-Optical Studies, Journal of the American Chemical Society, issue.14, pp.1284872-4880, 2006.

Q. Gao, O. Giraldo, W. Tong, and S. L. Suib, Preparation of Nanometer-Sized Manganese Oxides by Intercalation of Organic Ammonium Ions in Synthetic Birnessite OL-1, Chemistry of Materials, vol.13, issue.3, pp.778-786, 2001.
DOI : 10.1021/cm000426c

Y. Cui, Z. Liu, M. Wang, and K. Ooi, New Approach to the Delamination of Layered Manganese Oxide, Chemistry Letters, vol.35, issue.7, pp.740-741, 2006.
DOI : 10.1246/cl.2006.740

R. Ma, M. Osada, L. Hu, and T. Sasaki, Self-Assembled Nanofilm of Monodisperse Cobalt Hydroxide Hexagonal Platelets: Topotactic Conversion into Oxide and Resistive Switching, Chemistry of Materials, vol.22, issue.23, pp.6341-6346, 2010.
DOI : 10.1021/cm1021678

Z. Liu, R. Ma, M. Osada, K. Takada, and T. Sasaki, Selective and Controlled Synthesis of ??- and ??-Cobalt Hydroxides in Highly Developed Hexagonal Platelets, Journal of the American Chemical Society, vol.127, issue.40, pp.13869-13874, 2005.
DOI : 10.1021/ja0523338

B. Schneiderová, J. Demel, J. Ple?til, H. Tarábková, J. Bohuslav et al., Electrochemical performance of cobalt hydroxide nanosheets formed by the delamination of layered cobalt hydroxide in water, Dalton Transactions, vol.17, issue.27, pp.4310484-10491, 2014.
DOI : 10.1007/s10008-012-1979-x

T. Kim, E. Oh, A. Jee, S. Lim, D. Park et al., Soft-Chemical Exfoliation Route to Layered Cobalt Oxide Monolayers and Its Application for Film Deposition and Nanoparticle Synthesis, Chemistry - A European Journal, vol.495, issue.153, pp.1510752-10761, 2009.
DOI : 10.1016/j.tsf.2005.08.304

C. Owen, A. Compton, Z. Abouimrane, M. J. An, L. C. Palmeri et al., Exfoliation and Reassembly of Cobalt Oxide Nanosheets into a Reversible Lithium-Ion Battery Cathode, Small, vol.8, issue.7, pp.1110-1116, 2012.

J. Kim, J. Kim, S. Choi, Y. S. Lim, W. Seo et al., Nanostructured thermoelectric cobalt oxide by exfoliation/restacking route, Journal of Applied Physics, vol.112, issue.11, p.112113705, 2012.
DOI : 10.1063/1.1992662

R. Ma and T. Sasaki, Nanosheets of Oxides and Hydroxides: Ultimate 2D Charge-Bearing Functional Crystallites, Advanced Materials, vol.433, issue.153, pp.5082-5104, 2010.
DOI : 10.1038/nature03261

L. Li, R. Ma, Y. Ebina, K. Fukuda, K. Takada et al., Layer-by-Layer Assembly and Spontaneous Flocculation of Oppositely Charged Oxide and Hydroxide Nanosheets into Inorganic Sandwich Layered Materials, Journal of the American Chemical Society, vol.129, issue.25, pp.8000-8007, 2007.
DOI : 10.1021/ja0719172

G. A. Parks, The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems, Chemical Reviews, vol.65, issue.2, pp.177-198, 1965.
DOI : 10.1021/cr60234a002

L. Pauling, THE PRINCIPLES DETERMINING THE STRUCTURE OF COMPLEX IONIC CRYSTALS, Journal of the American Chemical Society, vol.51, issue.4, pp.1010-1026, 1929.
DOI : 10.1021/ja01379a006

M. Kosmulski, Chemical Properties of Material Surfaces, volume 102 of Surfactants Surface Series, 2001.

A. Dimitri, N. Sverjensky, and . Sahai, Theoretical prediction of single-site enthalpies of surface protonation for oxides and silicates in water, Geochimica et cosmochimica acta, vol.62, issue.23, pp.3703-3716, 1998.

T. Hiemstra, P. Venema, and W. H. Van-riemsdijk, Intrinsic Proton Affinity of Reactive Surface Groups of Metal (Hydr)oxides: The Bond Valence Principle, Journal of Colloid and Interface Science, vol.184, issue.2, pp.680-692, 1996.
DOI : 10.1006/jcis.1996.0666

T. Hiemstra, J. C. De-wit, and W. Van-riemsdijk, Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: A new approach, Journal of Colloid and Interface Science, vol.133, issue.1, pp.105-117, 1989.
DOI : 10.1016/0021-9797(89)90285-3

T. Hiemstra and W. H. Van-riemsdijk, A Surface Structural Approach to Ion Adsorption: The Charge Distribution (CD) Model, Journal of Colloid and Interface Science, vol.179, issue.2, pp.488-508, 1996.
DOI : 10.1006/jcis.1996.0242

I. D. Brown and D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database, Acta Crystallographica Section B Structural Science, vol.41, issue.4, pp.244-247, 1985.
DOI : 10.1107/S0108768185002063

J. Westall and H. Hohl, A comparison of electrostatic models for the oxide/solution interface, Advances in Colloid and Interface Science, vol.12, issue.4, pp.265-294, 1980.
DOI : 10.1016/0001-8686(80)80012-1

M. Kosmulski, Isoelectric points and points of zero charge of metal (hydr)oxides: 50years after Parks' review, Advances in Colloid and Interface Science, vol.238, pp.1-61, 2016.
DOI : 10.1016/j.cis.2016.10.005

R. J. Hunter, Zeta Potential in Colloid Science: Principles and Applications, 2013.

X. Yang, G. Wang, R. Wang, and X. Li, A novel layered manganese oxide/poly(aniline-co-o-anisidine) nanocomposite and its application for electrochemical supercapacitor, Electrochimica Acta, vol.55, issue.19, pp.555414-5419, 2010.
DOI : 10.1016/j.electacta.2010.04.067

A. Lesne and M. Laguës, Invariance d'échelle. Des changements d'états à la turbulence: Des changements d'états à la turbulence. Humensis, 2015.

J. Badot, É. Ligneel, O. Dubrunfaut, D. Guyomard, and B. Lestriez, A Multiscale Description of the Electronic Transport within the Hierarchical Architecture of a Composite Electrode for Lithium Batteries, Advanced Functional Materials, vol.99, issue.17, pp.2749-2758, 2009.
DOI : 10.1021/jp0561524

URL : https://hal.archives-ouvertes.fr/hal-00431908

S. Berthumeyrie, J. Badot, J. Pereira-ramos, O. Dubrunfaut, S. Bach et al., Influence of lithium insertion on the electronic transport in electroactive MoO3 nanobelts and classical powders: Morphological and particle size effects, Journal of Physical Chemistry C, issue.46, pp.11419803-19814, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00555260

P. Keith, A. L. Mckenna, and . Shluger, Electron-trapping polycrystalline materials with negative electron affinity, Nature Materials, vol.7, issue.11, pp.859-862, 2008.

P. Keith, A. L. Mckenna, and . Shluger, Electron and hole trapping in polycrystalline metal oxide materials, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, p.20100518, 2011.

K. Suzanne, K. P. Wallace, and . Mckenna, Grain Boundary Controlled Electron Mobility in Polycrystalline Titanium Dioxide, Advanced Materials Interfaces, vol.1, issue.5, 2014.

Y. Chen, C. Wang, G. Liu, X. Song, V. S. Battaglia et al., Selection of Conductive Additives in Li-Ion Battery Cathodes, Journal of The Electrochemical Society, vol.37, issue.82, pp.154-978, 2007.
DOI : 10.1016/S0022-5096(97)00016-1

L. Athouël, P. Arcidiacono, C. Ramirez-castro, O. Crosnier, D. Guay et al., Outer and Inner Surface Contribution of Manganese Dioxides Energy Storage Characterization by Cavity Microelectrode Technique, ECS Transactions, vol.58, issue.27, pp.5853-59, 2014.
DOI : 10.1149/05827.0053ecst

L. Yu, Y. X. Yan, Q. Liu, J. Wang, B. Yang et al., Exfoliation at Room Temperature for Improving Electrochemical Performance for Supercapacitors of Layered MnO2, Journal of the Electrochemical Society, vol.161, issue.1, pp.1-5, 2014.
DOI : 10.1149/2.070311jes

L. Demarconnay, E. Raymundo-piñero, and F. Béguin, Adjustment of electrodes potential window in an asymmetric carbon/MnO2 supercapacitor, Journal of Power Sources, vol.196, issue.1, pp.580-586, 2011.
DOI : 10.1016/j.jpowsour.2010.06.013

V. Briois, C. L. Fontaine, S. Belin, L. Barthe, T. Moreno et al., ROCK: the new Quick-EXAFS beamline at SOLEIL, Journal of Physics: Conference Series, vol.712, issue.1, p.12149, 2016.
DOI : 10.1088/1742-6596/712/1/012149

B. Ravel and M. Newville, XAFS Data Interchange: A single spectrum XAFS data file format, Journal of Physics: Conference Series, vol.712, issue.1, p.12148, 2016.
DOI : 10.1088/1742-6596/712/1/012148

URL : http://iopscience.iop.org/article/10.1088/1742-6596/712/1/012148/pdf

J. Badot, B. Lestriez, and O. Dubrunfaut, Interest in broadband dielectric spectroscopy to study the electronic transport in materials for lithium batteries, Materials Science and Engineering: B, vol.213, pp.190-198, 2016.
DOI : 10.1016/j.mseb.2016.05.012

URL : https://hal.archives-ouvertes.fr/hal-01412780

S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society, vol.60, issue.2, pp.309-319, 1938.
DOI : 10.1021/ja01269a023

E. P. Barrett, L. G. Joyner, and P. P. Halenda, The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, Journal of the American Chemical Society, vol.73, issue.1, pp.373-380, 1951.
DOI : 10.1021/ja01145a126