J. Et-de, 119 IV.1.1. Cas des rainures triangulaires isolées 120 IV.1.1.1. Influence des paramètres (pression, profondeur et demi-angle d'ouverture) : prédictions théoriques vs, IV.1. Vitesses de surface libre, p.133

E. Lescoute, Etude de la fragmentation dynamique de métaux sous choc laser, Thèse de doctorat, ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d'Aérotechnique, 2010.

D. Loison, Etude expérimentale et numérique du micro écaillage de cibles métalliques soumises à des chocs laser, Thèse de doctorat, ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d'Aérotechnique, 2012.

C. Mabire, Transformation polymorphique et fusion de l'étain sous choc dans la gamme 0-100 GPa

M. Werdiger, B. Arad, Z. Henis, Y. Horowitz, E. Moshe et al., Asymptotic measurements of free surface instabilities in laser-induced shock waves, Laser and Particle Beams, vol.5, issue.02, pp.133-147, 1996.
DOI : 10.1063/1.88425

W. Carter, Relation between dynamic and static phase transformation studies. Metallurgical effects at high strain rates, pp.171-184, 1973.
DOI : 10.1007/978-1-4615-8696-8_9

C. Mader, T. Neal, and R. Dick, LASL PHERMEX Data I, 1980.

J. Asay and L. Barker, Interferometric measurement of shock???induced internal particle velocity and spatial variations of particle velocity, Journal of Applied Physics, vol.45, issue.6, pp.2540-2546, 1974.
DOI : 10.1080/00387016908050206

J. Asay, Material ejection from shocked-loaded free surfaces of aluminium and lead., Sandia Laboratories, Albuquerque, NM (USA), 1976.

J. Asay, L. Mix, and F. Perry, Ejection of material from shocked surfaces, Applied Physics Letters, vol.47, issue.5, p.284, 1976.
DOI : 10.1063/1.1660986

J. Asay, Thick???plate technique for measuring ejecta from shocked surfaces, Journal of Applied Physics, vol.49, issue.12, pp.6173-6175, 1978.
DOI : 10.1063/1.1660986

J. Asay and L. Bertholf, A model for estimating the effects of surface roughness on mass ejection from shocked materials., Sandia Laboratories, Albuquerque, NM (USA), 1978.

P. Elias, Structure spatio-temporelle de la matière éjectée par une surface soumise à une onde de choc, Thèse de doctorat, 1988.

P. Chapron, P. Gandeboeuf, and B. Laurent, Ejection de matière à la surface d'un matériau sous choc, pp.29-37, 2000.

D. Sorenson, R. Minich, J. Romero, T. Tunnell, and R. Malone, Ejecta particle size distributions for shock loaded Sn and Al metals, Journal of Applied Physics, vol.75, issue.10, pp.5830-5836, 2002.
DOI : 10.1016/S0378-4371(01)00158-3

D. Sorenson, R. Minich, J. Romero, T. Tunnell, and R. Malone, Ejecta particle distributions for shock loaded Sn and Al targets, AIP Conference Proceedings, pp.531-534, 2002.
DOI : 10.1109/ppc.1999.823660

URL : https://digital.library.unt.edu/ark:/67531/metadc718141/m2/1/high_res_d/786019.pdf

W. Vogan, W. Anderson, M. Grover, J. Hammerberg, N. King et al., Piezoelectric characterization of ejecta from shocked tin surfaces, Journal of Applied Physics, vol.14, issue.11, p.113508, 2005.
DOI : 10.1117/12.456720

M. Zellner, M. Grover, J. Hammerberg, R. Hixson, A. Iverson et al., Effects of shock-breakout pressure on ejection of micron-scale material from shocked tin surfaces, Journal of Applied Physics, vol.10, issue.1, p.13522, 2007.
DOI : 10.1051/jp4:20009124

M. Zellner, M. Grover, J. Hammerberg, R. Hixson, A. Iverson et al., PRESSURE EFFECTS ON THE EJECTION OF MATERIAL FROM SHOCKED TIN SURFACES, AIP Conference Proceedings, vol.955, issue.1, pp.613-616, 2007.
DOI : 10.1063/1.2833168

M. Zellner, W. Vogan-mcneil, J. Hammerberg, R. Hixson, A. Obst et al., Probing the underlying physics of ejecta production from shocked Sn samples, Journal of Applied Physics, vol.955, issue.12, p.123502, 2008.
DOI : 10.1063/1.2906107

M. Zellner, W. Vogan-mcneil, I. Gray, G. Huerta, D. King et al., Surface preparation methods to enhance dynamic surface property measurements of shocked metal surfaces, Journal of Applied Physics, vol.10, issue.8, p.83521, 2008.
DOI : 10.1051/jp4:20009124

M. Zellner, M. Byers, G. Dimonte, J. Hammerberg, T. Germann et al., Influence of shockwave profile on ejction of micron-scale material from shocked Sn surfaces: An experimental study, DYMAT-International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading 1, pp.89-94, 2009.

S. Monfared, D. Oró, M. Grover, J. Hammerberg, B. Lalone et al., Experimental observations on the links between surface perturbation parameters and shock-induced mass ejection, Journal of Applied Physics, vol.5, issue.6, p.63504, 2014.
DOI : 10.1063/1.89066

S. Monfared, W. Buttler, D. Frayer, M. Grover, B. Lalone et al., Ejected particle size measurement using Mie scattering in high explosive driven shockwave experiments, Journal of Applied Physics, vol.5, issue.22, p.223105, 2015.
DOI : 10.1063/1.2336749

B. Jensen, F. Cherne, M. Prime, K. Fezzaa, A. Iverson et al., Jet formation in cerium metal to examine material strength, Journal of Applied Physics, vol.118, issue.19, p.195903, 2015.
DOI : 10.1063/1.3187929

W. Buttler, D. Oró, D. Preston, K. Mikaelian, F. Cherne et al., The study of high-speed surface dynamics using a pulsed proton beam, AIP Conference Proceedings, vol.1426, issue.1, pp.999-1002, 2012.
DOI : 10.1063/1.3686446

W. Buttler, D. Oró, D. Preston, K. Mikaelian, F. Cherne et al., Unstable Richtmyer???Meshkov growth of solid and liquid metals in vacuum, Journal of Fluid Mechanics, vol.10, issue.1, pp.60-84, 2012.
DOI : 10.1103/PhysRevE.81.016325

Y. Chen, H. Hu, T. Tang, G. Ren, Q. Li et al., Experimental study of ejecta from shock melted lead, Journal of Applied Physics, vol.17, issue.5, p.53509, 2012.
DOI : 10.1063/1.1780281

A. Mikhailov, V. Ogorodnikov, V. Sasik, V. Raevskii, A. Lebedev et al., Experimental-calculation simulation of the ejection of particles from a shock-loaded surface, Journal of Experimental and Theoretical Physics, vol.118, issue.5, pp.785-797, 2014.
DOI : 10.1134/S1063776114040153

G. Prudhomme, Etude du nuage de particules éjectées sous choc : apports de la Vélocimétrie Hétérodyne, Thèse de doctorat, ENSAM, 2014.

E. Lescoute, T. De-rességuier, J. Chevalier, M. Boustie, L. Berthe et al., Spallation and microjetting in laser-shock-loaded aluminium and gold, DYMAT 2009, 9th International Conferences on the Mechanical and Physical Behaviour of Materials under Dynamic Loading, pp.163-169, 2009.
DOI : 10.1051/dymat/2009022

URL : https://hal.archives-ouvertes.fr/hal-00422483

J. Cuq-lelandais, Etude du comportement dynamique de matériaux sous choc laser subpicoseconde

T. De-rességuier, E. Lescoute, A. Sollier, G. Prudhomme, and P. Mercier, Microjetting from grooved surfaces in metallic samples subjected to laser driven shocks, Journal of Applied Physics, vol.78, issue.4, p.43525, 2014.
DOI : 10.1063/1.1303429

G. Birkhoff, D. Macdougall, E. Pugh, and S. Taylor, Explosives with Lined Cavities, Journal of Applied Physics, vol.19, issue.6, pp.563-582, 1948.
DOI : 10.1063/1.1698173

E. Pugh, R. Eichelberger, and N. Rostoker, Theory of Jet Formation by Charges with Lined Conical Cavities, Journal of Applied Physics, vol.23, issue.5, pp.532-536, 1952.
DOI : 10.1063/1.1699625

J. Walsh, R. Shreffler, and F. Willig, Limiting Conditions for Jet Formation in High Velocity Collisions, Journal of Applied Physics, vol.1, issue.3, pp.349-359, 1953.
DOI : 10.1103/PhysRev.75.1561

D. Jones, A review of one dimensional shaped charge theory. Part 1 -Jet formation, Materials Research Laboratories, 1984.

W. Walters, Shock waves in the study of shaped charges, 1991.
DOI : 10.21236/ADA240999

W. Walters, Introduction to shaped charges, 2007.

H. Shekhar, Theoretical modelling of shaped charges in the last two decades (1990-2010): A review, Central European Journal of Energetic Materials, vol.9, issue.2, pp.155-185, 2012.

J. Petit, V. Jeanclaude, and C. Fressengeas, Breakup of Copper shaped-charge jets: Experiment, numerical simulations, and analytical modeling, Journal of Applied Physics, vol.80, issue.12, p.123521, 2005.
DOI : 10.1016/S0924-0136(98)00099-5

URL : https://hal.archives-ouvertes.fr/hal-00119280

S. Lim, Steady State Analytical Equation of Motion of Linear Shaped Charges Jet Based on the Modification of Birkhoff Theory, Applied Sciences, vol.2, issue.4, pp.35-45, 2012.
DOI : 10.1063/1.1698173

V. Frachet, P. Elias, and J. Martineau, Matter ejection from shocked material: a physical model to understand the effects of free surfac defects, Shock Waves in Condensed Matter, vol.87, pp.235-238, 1987.

J. Thouvenin, Détonique Série Synthèses edn, CEA, 1997.

G. Ben-dor, Shock Wave Reflection Phenomena, 2007.
DOI : 10.1007/978-1-4757-4279-4

URL : http://cds.cern.ch/record/1252390/files/978-3-540-71382-1_BookTOC.pdf

W. Walters, Fundamentals of shaped charges High Velocity Impact Dynamics, 1990.

R. Richtmyer, Taylor instability in shock acceleration of compressible fluids, Communications on Pure and Applied Mathematics, vol.13, issue.2, pp.297-319, 1960.
DOI : 10.1002/cpa.3160130207

E. Meshkov, Instability of the interface of two gases accelerated by a shock wave, Fluid Dynamics, vol.4, issue.no. 5/6, pp.101-104, 1969.
DOI : 10.1007/BF01015969

J. Zheng, T. Lee, and S. Winoto, Numerical simulation of Richtmyer???Meshkov instability driven by imploding shocks, Mathematics and Computers in Simulation, vol.79, issue.3, pp.749-762, 2008.
DOI : 10.1016/j.matcom.2008.05.005

K. Mikaelian, Analytic Approach to Nonlinear Rayleigh-Taylor and Richtmyer-Meshkov Instabilities, Physical Review Letters, vol.4, issue.3, pp.508-511, 1998.
DOI : 10.1007/BF01416035

G. Dimonte, G. Terrones, F. Cherne, and P. Ramaprabhu, Ejecta source model based on the nonlinear Richtmyer-Meshkov instability, Journal of Applied Physics, vol.10, issue.2, p.24905, 2013.
DOI : 10.1063/1.857613

K. Meyer and P. Blewett, Numerical Investigation of the Stability of a Shock-Accelerated Interface between Two Fluids, Physics of Fluids, vol.15, issue.5, pp.753-759, 1972.
DOI : 10.1063/1.1693980

G. Dimonte and P. Ramaprabhu, Simulations and model of the nonlinear Richtmyer???Meshkov instability, Physics of Fluids, vol.53, issue.1, p.14104, 2010.
DOI : 10.1109/MCSE.2004.44

K. Mikaelian, Effect of viscosity on Rayleigh-Taylor and Richtmyer-Meshkov instabilities, Physical Review E, vol.65, issue.1, p.375, 1993.
DOI : 10.1063/1.342999

K. Mikaelian, Richtmyer???Meshkov instability of arbitrary shapes, Physics of Fluids, vol.98, issue.3, p.34101, 2005.
DOI : 10.1063/1.327799

F. Cherne, J. Hammerberg, M. Andrews, V. Karkhanis, and P. Ramaprabhu, On shock driven jetting of liquid from non-sinusoidal surfaces into a vacuum, Journal of Applied Physics, vol.118, issue.18, p.185901, 2015.
DOI : 10.1063/1.3467496

A. Piriz, J. Lopez-cela, and N. Tahir, Richtmyer???Meshkov instability as a tool for evaluating material strength under extreme conditions, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.606, issue.1-2, pp.139-141, 2009.
DOI : 10.1016/j.nima.2009.03.094

A. Piriz, J. Lopez-cela, N. Tahir, and D. Hoffmann, Richtmyer-Meshkov instability in elastic-plastic media, Physical Review E, vol.4, issue.5, p.56401, 2008.
DOI : 10.1103/PhysRevLett.92.075002

A. Georgievskaya and V. Raevsky, Estimation of spectral characteristics of particles ejected from the free surfaces of metals and liquids under a shock wave effect, AIP Conference Proceedings: Shock Compression of Condensed Matter -2011 1426, pp.1007-1010, 2012.
DOI : 10.1063/1.3686448

O. Durand and L. Soulard, Mass-velocity and size-velocity distributions of ejecta cloud from shock-loaded tin surface using atomistic simulations, Journal of Applied Physics, vol.117, issue.16, p.165903, 2015.
DOI : 10.1088/0034-4885/71/3/036601

P. Maire, J. Breil, and S. Galera, A cell-centred arbitrary Lagrangian???Eulerian (ALE) method, International Journal for Numerical Methods in Fluids, vol.176, issue.8, pp.1161-1166, 2008.
DOI : 10.1080/10407799508914956

P. Maire and J. Breil, A second-order cell-centered Lagrangian scheme for two-dimensional compressible flow problems, International Journal for Numerical Methods in Fluids, vol.178, issue.8, pp.1417-1423, 2008.
DOI : 10.1002/fld.1564

S. Lyon and J. Johnson, Sesame: The Los Alamos National Laboratory equation of state database, 1992.

A. Bushman, I. Lomonosov, and V. Fortov, Equation of state of metals at high energy densities, Russian Academy of Sciences, 1992.

A. Bushman, I. Lomonosov, and V. Fortov, Models of wide-range equations of state for matter under conditions of high energy density, Soviet Technical Review B, vol.5, issue.1, 1993.

R. Barton, Development of a multimaterial two-dimensional, arbitrary Lagrangian-Eulerian mesh computer program Numerical Astrophysics, Jones and Bartlett, 1985.

R. Tipton, A 2D Lagrange MHD code Megagauss Technology and Pulsed Power Applications, 1987.

G. Mie, Zur kinetischen Theorie der einatomigen K??rper, Annalen der Physik, vol.11, issue.8, pp.657-697, 1903.
DOI : 10.1002/andp.18822531003

E. Grüneisen, Theorie des festen Zustandes einatomiger Elemente, Annalen der Physik, vol.14, issue.12, pp.257-306, 1912.
DOI : 10.1080/14786441008636949

D. Burton, Lagrangian hydrodynamics in the FLAG code., Los Alamos National Laboratory, 2007.

S. Dyachkov, A. Parshikov, and V. Zhakhovsky, Shock-produced ejecta from tin: Comparative study by molecular dynamics and smoothed particle hydrodynamics methods, Conference series 653, p.12043, 2015.
DOI : 10.1088/1742-6596/653/1/012043

URL : http://iopscience.iop.org/article/10.1088/1742-6596/653/1/012043/pdf

S. Dyachkov, A. Parshikov, and V. Zhakhovsky, Ejecta from shocked metals: Comparative simulations using molecular dynamics and smoothed particle hydrodynamics, AIP Conference Proceedings, vol.1793, issue.1, p.100024, 2017.
DOI : 10.1063/1.4891733

E. Fermi, J. Pasta, S. Ulam, and M. Tsingou, Studies of nonlinear problems, Los Alamos Scientific Laboratory, 1955.
DOI : 10.2172/4376203

D. Beazley and P. Lomdahl, Message-passing multi-cell molecular dynamics on the connection machine 5, Parallel Computing, vol.20, issue.2, pp.173-195, 1994.
DOI : 10.1016/0167-8191(94)90080-9

D. Beazley and P. Lomdahl, Feeding a large-scale physics application to Python, Proceedings of the 6th International Python Conference, 1997.

A. Voter, Embedded atom method potentials for seven fcc metals, 1993.

J. Shao, P. Wang, A. He, S. Duan, and C. Qin, Atomistic simulations of shock-induced microjet from a grooved aluminium surface, Journal of Applied Physics, vol.61, issue.15, p.153501, 2013.
DOI : 10.1063/1.329160

J. Mei and J. Davenport, Free-energy calculations and the melting point of Al, Physical Review B, vol.30, issue.1, p.21, 1992.
DOI : 10.1103/PhysRevB.30.578

M. Daw and M. Baskes, Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals, Physical Review Letters, vol.24, issue.17, p.1285, 1983.
DOI : 10.1103/PhysRevB.24.3037

J. Shao, P. Wang, and A. He, Influence of shock pressure and profile on the microjetting from a grooved Pb surface, Modelling and Simulation in Materials Science and Engineering, vol.25, issue.1, p.15011, 2016.
DOI : 10.1088/1361-651X/25/1/015011

X. Zhou, R. Johnson, and H. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Physical Review B, vol.53, issue.14, p.144113, 2004.
DOI : 10.1103/PhysRevB.53.8956

O. Durand and L. Soulard, Large-scale molecular dynamics study of jet breakup and ejecta production from shock-loaded copper with a hybrid method, Journal of Applied Physics, vol.2008, issue.4, p.44901, 2012.
DOI : 10.1029/JB091iB02p01921

A. Sutton and J. Chen, Long-range Finnis???Sinclair potentials, Philosophical Magazine Letters, vol.24, issue.3, pp.139-146, 1990.
DOI : 10.1103/PhysRevB.24.2254

A. Belonoshko, R. Ahuja, O. Eriksson, and B. Johansson, molecular dynamic study of Cu melting, Physical Review B, vol.9, issue.6, p.3838, 2000.
DOI : 10.1088/0022-3735/9/7/009

F. Sapozhnikov, G. Ionov, V. Dremov, L. Soulard, and O. Durand, The Embedded Atom Model and large-scale MD simulation of tin under shock loading, Journal of Physics: Conference Series, vol.500, issue.3, p.32017, 2014.
DOI : 10.1088/1742-6596/500/3/032017

O. Durand, L. Soulard, E. Bourasseau, and F. Filippini, Investigation of the static and dynamic fragmentation of metallic liquid sheets induced by random surface fluctuations, Journal of Applied Physics, vol.13, issue.4, p.45306, 2016.
DOI : 10.1007/s10704-009-9418-4

R. Ravelo and M. Baskes, Equilibrium and Thermodynamic Properties of Grey, White, and Liquid Tin, Physical Review Letters, vol.173, issue.13, p.2482, 1997.
DOI : 10.1063/1.445633

V. Zhakhovsky, K. Nishihara, Y. Fukuda, S. Shimojo, T. Akiyama et al., A new dynamical domain decomposition method for parallel molecular dynamics simulation, CCGrid 2005. IEEE International Symposium on Cluster Computing and the Grid, 2005., pp.848-854, 2005.
DOI : 10.1109/CCGRID.2005.1558650

A. Parshikov, S. Medin, I. Loukashenko, and V. Milekhin, Improvements in SPH method by means of interparticle contact algorithm and analysis of perforation tests at moderate projectile velocities, International Journal of Impact Engineering, vol.24, issue.8, pp.779-796, 2000.
DOI : 10.1016/S0734-743X(99)00168-2

A. Parshikov and S. Medin, Smoothed Particle Hydrodynamics Using Interparticle Contact Algorithms, Journal of Computational Physics, vol.180, issue.1, pp.358-382, 2002.
DOI : 10.1006/jcph.2002.7099

G. France, Available at

O. Strand, D. Goosman, C. Martinez, T. Whitworth, and W. Kuhlow, Compact system for high-speed velocimetry using heterodyne techniques, Review of Scientific Instruments, vol.77, issue.8, p.83108, 2006.
DOI : 10.1364/AO.30.003907

P. Mercier, J. Bénier, A. Azzolina, J. Lagrange, and D. Partouche, Photonic doppler velocimetry in shock physics experiments, Journal de Physique IV (Proceedings), vol.134, pp.805-812, 2006.
DOI : 10.1051/jp4:2006134124

P. Mercier, J. Bénier, P. Frugier, S. Sollier, M. Rabec-le-gloahec et al., PDV MEASUREMENTS OF NS AND FS LASER DRIVEN SHOCK EXPERIMENTS ON SOLID TARGETS, AIP Conference Proceedings: Shock Compression of Condensed Matter, pp.581-584, 2009.
DOI : 10.1063/1.3295205

URL : https://hal.archives-ouvertes.fr/hal-00471204

E. Brambrink, H. Wei, B. Barbrel, P. Audebert, A. Benuzzi-mounaix et al., X-ray source studies for radiography of dense matter, Physics of Plasmas, vol.16, issue.3, p.33101, 2009.
DOI : 10.1148/radiology.148.3.6878707

E. Brambrink, H. Wei, B. Barbrel, P. Audebert, A. Benuzzi-mounaix et al., Direct density measurement of shock-compressed iron using hard x rays generated by a short laser pulse, Physical Review E, vol.148, issue.5, p.56407, 2009.
DOI : 10.1364/OL.30.000920

E. Moshe, S. Eliezer, E. Dekel, A. Ludmirsky, Z. Henis et al., An increase of the spall strength in aluminum, copper, and Metglas at strain rates larger than 107???s???1, Journal of Applied Physics, vol.83, issue.8, pp.4004-4011, 1998.
DOI : 10.1007/BF02669805

S. Razorenov, G. Kanel, K. Baumung, and H. Bluhm, Hugoniot elastic limit and spall strength of aluminium and copper single crystals over a wide range of strain rates and temperatures, AIP Conference Proceedings, pp.503-506, 2002.

G. Kanel, Spall fracture: methodological aspects, mechanisms and governing factors, International Journal of Fracture, vol.12, issue.11, pp.173-191, 2010.
DOI : 10.1016/B978-0-444-89732-9.50189-8

E. Lescoute, T. De-rességuier, J. Chevalier, D. Loison, J. Cuq-lelandais et al., Ejection of spalled layers from laser shock-loaded metals, Journal of Applied Physics, vol.325, issue.9, p.93510, 2010.
DOI : 10.1016/S1251-8069(97)82333-0

URL : https://hal.archives-ouvertes.fr/hal-01136321

T. De-rességuier, L. Signor, A. Dragon, P. Severin, and M. Boustie, Spallation in laser shock-loaded tin below and just above melting on release, Journal of Applied Physics, vol.14, issue.7, p.73535, 2007.
DOI : 10.1063/1.2263260

L. Signor, Contribution à la caractérisation et à la modélisation du micro-écaillage de l'étain fondu sous choc, Thèse de doctorat, ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d'Aérotechnique, 2008.

3. Avizo, In: FEI Visualization Sciences Group Available at: https://www.fei.com/software/avizo-for-materials-science

T. De-rességuier, C. Roland, G. Prudhomme, E. Brambrink, J. Franzkowiak et al., Picosecond radiography combined with other techniques to investigate microjetting from laser shock-loaded grooves, AIP Conference Proceedings: Shock Compression of Condensed Matter -2017 En cours de publication

J. Colombier, P. Combis, F. Bonneau, L. Harzic, R. Audouard et al., Hydrodynamic simulations of metal ablation by femtosecond laser irradiation, Physical Review B, vol.83, issue.16, pp.71-165406, 2005.
DOI : 10.1103/PhysRevB.65.092103

URL : https://hal.archives-ouvertes.fr/hal-00121833

S. Bardy, B. Aubert, L. Berthe, P. Combis, D. Hébert et al., Numerical study of laser ablation on aluminum for shock-wave applications: development of a suitable model by comparison with recent experiments, Optical Engineering, vol.56, issue.1, p.11014, 2016.
DOI : 10.1117/1.OE.56.1.011014

URL : https://hal.archives-ouvertes.fr/hal-01494304

. Radioss, In: Altair Engineering Available at: http://www.altairhyperworks.com

J. Cuq-lelandais, M. Boustie, and T. De-rességuier, Utilisation de la suite Hyperworks V9.0 pour la modélisation de phénomènes de dynamique rapide avec Radioss Available at, In: Altair University FTP, 2009.

R. Courant, K. Friedrichs, and H. Lewy, ???ber die partiellen Differenzengleichungen der mathematischen Physik, Mathematische Annalen, vol.98, issue.6, pp.32-74, 1928.
DOI : 10.1002/zamm.19260060408

. Hyperworks, In: Altair Engineering Available at: http://www.altairhyperworks

F. Tuler and B. Butcher, A criterion for the time dependence of dynamic fracture, International Journal of Fracture Mechanics, vol.4, issue.4, pp.431-437, 1968.

L. Lucy, A numerical approach to the testing of the fission hypothesis, The Astronomical Journal, vol.82, pp.1013-1024, 1977.
DOI : 10.1086/112164

R. Gingold and J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Monthly Notices of the Royal Astronomical Society, vol.181, issue.3, p.375, 1977.
DOI : 10.1093/mnras/181.3.375

URL : https://academic.oup.com/mnras/article-pdf/181/3/375/3104055/mnras181-0375.pdf

J. Monaghan, Smoothed Particle Hydrodynamics, Annual Review of Astronomy and Astrophysics, vol.30, issue.1, pp.543-574, 1992.
DOI : 10.1146/annurev.aa.30.090192.002551

. Smoothed-particle and . Hydrodynamics, In: University of Southampton Computational Modelling Group Available at: http://cmg.soton.ac.uk/research/categories/algorithms-and-computational- methods/smoothed-particle-hydrodynamics

T. De-rességuier, C. Roland, E. Lescoute, A. Sollier, D. Loison et al., Experimental study of microjetting from triangular grooves in laser shock-loaded samples, AIP Conference Proceedings: Shock Compression of Condensed Matter, 2015.
DOI : 10.1063/1.4922180

P. Bauer, A. Chinnayya, and T. De-rességuier, Ondes de choc et détonations : De la théorie aux applications. Cours, exercices et problèmes corrigés Collection, 2015.

G. Prudhomme, J. Franzkowiak, T. De-rességuier, R. Brambrink, C. Roland et al., Ejecta from periodical grooves in tin foils under laser-driven shock loading, AIP Conference Proceedings: Shock Compression of Condensed Matter -2017 En cours de publication

R. Graham, Solids under high-pressure shock compression -Mechanics, Physics and Chemistry, 1993.
DOI : 10.1007/978-1-4613-9278-1

M. Boustie and F. Cottet, Experimental and numerical study of laser induced spallation into aluminum and copper targets, Journal of Applied Physics, vol.7, issue.11, pp.7533-7538, 1991.
DOI : 10.1007/BF02322829

S. Bless and D. Paisley, DYNAMIC TENSILE FRACTURE OF OFHC COPPER, AIP Conference Proceedings: Shock Compression of Condensed Matter, pp.163-166, 1983.
DOI : 10.1016/B978-0-444-86904-3.50038-5

L. Tollier and R. Fabbro, Study of the laser-driven spallation process by the VISAR interferometry technique. II. Experiment and simulation of the spallation process, Journal of Applied Physics, vol.6, issue.3, pp.1231-1237, 1998.
DOI : 10.1016/S0065-2156(08)70195-9

C. Debonnel, J. Vierne, F. Bonneau, and P. Combis, A numerical investigation of the LLNL/AWE/CEA fragmentation experiments on HELEN, Joint International Topical Meeting on Mathematics and Computation and Supercomputing in Nuclear Applications, 2007.

D. Preston, D. Tonks, and D. Wallace, Model of plastic deformation for extreme loading conditions, Journal of Applied Physics, vol.61, issue.1, pp.211-220, 2003.
DOI : 10.1016/0013-7944(85)90052-9