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Résumé en français

1.1 Motivation et contexte

Cette thèse est une contribution au problème de reconstruction de tomographie en 3D. Le
rayonnement X après sa découverte par Wilhelm Rontgen a été rapidement utilisé dans le do-
maine de la tomographie. Au début, on utilise uniquement les images radio permettant de voir la
projection de l’objet traversé par les rayons X sur la plaque radio. Mais la projection des rayons
X dans une seule direction perdait des informations, notamment l’information de profondeur.En
1917, Radon propose un algorithme afin de reconstruire les images, coupes 2D du patient mais
qui ne pouvait etre appliqué en pratique avant les années 1970 et l’arrivée des scanners CT
(Computed Tomography). Cette technique d’acquisition avec les projections appliquées dans
différentes directions est développée avec de nombreuses publications sur les méthodes analy-
tiques et itératives. Dans ces techniques, les données mesurées à différents angles sont utilisées
pour reconstuire le volume 3D. À la fin des années 1970, les méthodes de reconstruction à fais-
ceau en éventail (fan beam) ont été développées. La technique de tomographie en rayons X a
d’abord été utilisée dans les applications médicales rapidement après son invention puis a été
utilisée dans des nombreux autres domaines : la science marine, les géosciences, les applications
industrielles, etc.

La base de la technique CT de rayons X est basée sur l’atténuation des rayons X en passant
par un objet. Une vue de dessus d’un système de projection de rayons X est illustrée dans la fi-
gure 2.1. Différents matériaux avec une densité différente dans l’objet ont un taux d’atténuation
différent pour le rayon X. Cette atténuation est définie par la loi de Beer-Lambert :

I = I0e
−
∫
f(l) dl

, (1.1)

où l est le rayon X passant par un objet, I0 est l’intensité du faisceau incident, f(l) est le
coefficient d’atténuation linéaire local sur le rayonnement l et I est l’intensité de rayonnement
atténuée.
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CHAPITRE 1. RÉSUMÉ EN FRANÇAIS

L’un des défis de la CT est de diminuer le nombre de projections. L’absence de données
complètes est justifiée par des raisons différentes selon les applications. Le rayon X a été utilisé
pour la première fois dans les applications médicales depuis son introduction dans les années
1970. Il a été utilisé dans le diagnostic de la tête, des poumons, de l’angiographie pulmonaire, du
cardiaque, de l’abdomen et du pelvis, des extrémités, etc. En utilisant la tomographie en rayon
X, le diagnostic des organes peut être effectué avec une haute résolution afin de distinguer plus
de détails. Cependant, cette technique présente de nombreux inconvénients. Le plus important
est le risque pour les patients. Le rayon X utilisé peut endommager les cellules du corps, y
compris les molécules d’ADN, qui peuvent conduire à cancer, ou à un autre effet secondaire
indésirable. Par conséquent, les efforts de recherche récents se concentrent sur les techniques
de reconstruction CT avec une dose plus faible de rayonnement, également appelée ALARA
(As Low As Reasonably Achievable) et moins de temps d’exposition pour chaque projection.
Dans les applications industrielles, le CT à rayons X est souvent utilisé dans le Contrôle Non
Destructif (CND). Il est utilisé pour produire des représentations 3D de composants à l’externe
et à l’interne, pour la détection des défauts, l’analyse des pannes, etc. Dans les applications
industrielles, la dose de rayonnement n’est pas nécessairement faible. Le défi principal de l’ap-
plication industrielle est la détection dynamique. Dans certains cas, l’objet examiné n’est pas
statique, par exemple l’objet est imagé avec un liquide qui s’écoule. Dans certains autres exa-
mens industriels, les objets sont placés sur un convoyeur. Dans ces cas, la projection devrait
se faire en peu de temps, donc le nombre de projections doit être réduit. Par conséquent, les
reconstructions devraient être réalisées avec moins de projections.

Dans l’imagerie médicale et le CND industriel, un autre problème auquel nous pouvons
faire face est l’angle limité d’acquisition. Dans les cas général, le scanner CT teste un volume en
obtenant des rayonnements en projection pour des angles uniformément répartis entre [0◦, 180◦].
Mais dans certaines applications, la couverture angulaire totale n’a pas pu être obtenue. Un
exemple dans la demande médicale est la tomographie dentaire où toutes les projections ne
sont pas faites en raison d’encombrement du tomographe. Dans les applications industrielles,
ce problème apparaı̂t également lorsque le composant testé a une grande taille et est supérieure
à la portée du scanner, on obtient alors un angle de projections limité. Dans l’angle angulaire
limité, les projections sont réparties entre [0◦, θ], où θ < 180◦.

Dans les travaux précédents, un grand nombre d’articles sont publiés sur la reconstruction de
CT de rayons X, en s’appuyant sur différentes méthodes (analytique, algébrique, régularisation,
Bayesian, etc.) pour différents types de systèmes de projections (faisceau parallèle, faisceau en
éventail, faisceau conique, etc.), compte tenu de différents modèles de bruits (bruit de Poisson,
bruit gaussien) et en utilisant différentes méthodes d’estimation (Maximum A Posterior, Poste-
rior Mean, etc). À partir de ces travaux, nous pouvons voir que les méthodes sont plus robustes
au caractère incomplet des données lorsque des informations complémentaires sont prises en
compte.

Dans la tomodensitométrie 3D, en raison de la grande taille des données, les coûts de calcul
sont un frein aux développements de nouvelles méthodes. Au début de la tomographie en rayon
X, les méthodes statistiques n’étaient généralement pas utilisées en raison du calcul itératif
trop coûteux. Avec le développement du matériel informatique et l’utilisation des aspects de
l’accélération du calcul, les méthodes itératives deviennent abordables. Les processeurs many
cores de type GPU (Graphic Processing Unit) qui permettent une parallélisation massive des
calculs sont à présent largement utilisés dans la reconstruction d’objets 3D.

Un autre défi dans le rayon X est constitué par les artefacts de reconstruction. Il existe de
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Contributions

nombreux types d’artefacts causés par des raisons différentes : les artefacts métalliques, les
artefacts en anneaux, les artefacts dû au mouvement, etc. Le bruit d’acquisition est également
un défi communément rencontré dans les problèmes de reconstruction de tomographie. Les
méthodes itératives sont adaptées pour éliminer ces différents types d’artefacts. Au cours de ma
thèse, je ne considérerai que le bruit lié à l’acquisition.

Malgré le fait que les méthodes itératives obtiennent des résultats plus précis et peuvent sup-
primer les artefacts dans des conditions mal posées avec un ensemble de données insuffisantes,
limitées ou tronquées, il y a un autre problème crucial à considérer : la décision d’initialisation
des hyper-paramètres. Il existe de nombreux chercheurs qui travaillent sur ce problème. Avec
ces techniques, on peut obtenir une valeur optimale pour les paramètres qui conduisent à des
bons résultats de reconstruction, mais les coûts de calcul de ces méthodes sont coûteux. Dans
la plupart des cas, les personnes choisissent la valeur des paramètres de manière manuelle ou
empirique lors de simulations préalables. Dans cette thèse, la méthode bayésienne est utilisée
et les paramètres sont estimés simultanément pendant la reconstruction.

L’inférence bayésienne est une façon couramment utilisée de prendre en compte l’informa-
tion préalable et de la modélisée par une distribution a priori choisie afin de complexifier le mo-
nis possible les calculs. Dans les méthodes bayésiennes, le modèle markovien est fréquemment
utilisé pour définir la variable continue par morceaux. La valeur de chaque voxel n’est pas
indépendante des autres, mais dépendantes des voxels voisins.

Objet examiné dans la tomographie à rayons X étant composé de plusieurs matériaux ho-
mogènes, la propriété continue par morceaux de l’objet est l’une des informations les plus
fréquemment considérées dans la reconstruction tomographie de rayons X. Par ailleurs, la par-
cimonie d’une variable cachée qui est liée à la variable continue par morceaux est également
fréquemment considérée. Cette variable cachée qui a une propriété de parcimonie peut être,
par exemple, le gradient du volume, le coefficient de transformation d’ondelettes du volume
ou un coefficient de la transformée du volume à l’aide d’un dictionnaire. Le mot �parcimo-
nie� implique que le vecteur ne contient que quelques éléments non nuls. De nombreuses trans-
formations parcimonieuses sont réversibles. On peut reconstruire l’objet avec les coefficients
parcimonieux qui contiennent beaucoup moins de valeurs non nulles que l’objet lui-même. Le
problème inverse mal posé lié à la reconstruction de l’objet revient alors à l’estimation des
coefficients parcimonieux.

1.2 Contributions

Un aperçu de la contribution de cette thèse figure à l’annexe B.

Nous proposons dans cette thèse de doctorat principalement deux méthodes dans le contexte
bayésien. Ces deux méthodes ont un modèle de système hiérarchique, une variable cachée étant
considérée.

En reconstruction tomographique à rayons X, l’objet est typiquement continu par morceaux
et, dans certains cas, constant par morceaux. Ainsi, deux aspects du choix de la variable cachée
sont considérés dans notre travail : la transformation des ondelettes qui est utilisée dans la
méthode HHBM au chapitre 4, et l’operateur Laplacien qui est utilisé dans la méthode ROCC
au chapitre 5. Pour ces deux variables cachées, une distribution parcimonieuse leur est associée.
Une distribution Student-t généralisée est choisie en raison de sa propriété à queue lourde,
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modélisant ainsi la propriété de parcimonie, et elle s’exprime comme la loi marginale d’une
distribution Gamma Inverse. La structure marginale de deux distributions conjuguées facilite
l’estimation des variables dans les méthodes bayésiennes.

Parmi les transformations d’ondelettes, nous choisissons d’utiliser la transformation de Haar
discrète. Pour un objet continu par morceaux ou constante par morceaux, la transformation Haar
donne un coefficient faible pour la variable. Etant une transformée en ondelettes basique, la
transformation de Haar n’est pas cher en termes de calcul et peut être accélérée efficacement à
l’aide de processeurs GPU. Le Laplacian de l’objet est considéré comme une variable cachée
dans une autre méthode proposée, présentée au chapitre 5. Un modèle markovien non homogène
est utilisé pour définir la variable.

Dans cette thèse, le mot ”variables” représente les inconnues qui doivent être estimées, par
exemple les valeurs des pixels ou des voxels d’objet. Le mot ”variables cachées” représente
les variables intermédiaires qui sont souvent nécessaires pour modéliser l’objet comme les
contours, les étiquettes ou les classifications des régions ou les coefficients de transforma-
tion dans les modèles hiérarchiques. Le mot ”paramètres” représente les paramètres qui ap-
paraissent dans le modèle a priori des variables telles que la variance du bruit, et ils sont
également estimés pendant les itérations. Le mot ”hyper paramètres” représente les paramètres
des distributions a priori des paramètres, et ils doivent être fixés pour l’initialisation. Dans cette
thèse, l’initialisation des hyper paramètres est discutée. Au lieu de tester des différents hyper-
paramètres et de choisir le meilleur, nous discutons de la façon de fixer les hyper paramètres
directement en condiserant les modèles a priori et les informations préalables sur les variables.

1.3 Organisation de thèse

Au chapitre 2, nous présentons le modèle continu et discret du système CT, et le modèle di-
rect de l’opération de projection. Les méthodes conventionnelles, y compris les méthodes ana-
lytiques, les méthodes algébriques, les méthodes de régularisation, les méthodes statistiques et
l’inférence bayésienne sont présentées. Les avantages et les défauts de chaque type de méthode
sont discutés. Ensuite, nous montrons quelques résultats de simulation pour la reconstruction
CT en utilisant deux des méthodes les plus représentatives : la technique de rétro-projection
filtrée (FBP) et la méthode de Variation Totale (TV). Les résultats de la simulation en utilisant
ces deux méthodes avec différents paramètres de projection seront donnés dans ce chapitre.
Et je vais montrer l’influence du paramètre dans la méthode de regularisation et démontrer la
difficulté de choisir cette valeur.

Dans le chapitre 3, nous présentons le contexte de l’inférence bayésienne. Les propriétés
intrinsèques de l’objet (informations a priori) dans les applications industrielles sont discutées.
Dans ce chapitre, la propriété de la distribution Student-t généralisée est présentée et l’avantage
de l’utiliser est discuté.

Dans la deuxième partie de cette thèse, nous présentons les principales contributions de mon
travail.

Au chapitre 4, une méthode HHBM est présentée. Dans cette méthode, tout d’abord, un
modèle de synthèse est considéré avec un modèle de bruit non stationnaire. Dans ce modèle,
seulement les coefficients de transformation de Haar sont estimés et l’objet est obtenu par un
traitement a posteriori à partir des coefficients estimés. Ensuite, dans un modèle plus général,
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l’objet et les coefficients de la transformation de Haar sont simultanément estimés avec un
modèle de bruit non stationnaire. Comme le volume se compose de plusieurs blocs homogènes,
le coefficient de transformation est faible. Nous avons proposé d’utiliser la distribution Student-
t généralisée pour modéliser la répartition préalable du coefficient. Une fois que nous obtenons
la distribution a posteriori, un estimateur du Maximum A Posteriori (JMAP) est utilisé pour es-
timer les variables inconnues. Certaines extensions de cette méthode sont également discutées.
Une technique de scission des variables est appliquée sur cette méthode et il est démontré qu’en
l’utilisant, on peut considérer le bruit comme le mélange d’un bruit gaussien et d’un bruit par-
cimonieux. Grâce à cela, les résultats de la reconstruction dépassent la méthode originale. Une
autre extension consiste à comparer la transformation de Haar avec la transformation d’onde-
lettes complexes à double arbre (Dual Tree Complexe Wavelet Transformation DT-CWT). En
comparant avec la transformation de Haar, la transformation DT-CWT prend en compte plus de
directions d’ondelettes et est plus robuste lorsque les coefficients sont contaminés. Lorsqu’ils
sont utilisés dans la méthode bayésienne proposée, le DT-CWT offre une meilleure qualité de
reconstruction que la transformation de Haar.

Au chapitre 5, une méthode ROCC est proposée. Dans cette méthode, on considère les rela-
tions entre le Laplacien de projection et le Laplacien de l’objet. En utilisant le Laplacien de l’ob-
jet comme une variable cachée, nous bénéficions de sa propriété de parcimonie pour préserver
les contours de l’objet. Dans cette méthode, les voxels sont modélisés par un modèle marko-
vien non homogène. Dans ce modèle markovien non homogène, chaque voxel est modélisé par
une distribution qui dépend des valeurs laplaciennes et des valeurs des voxels voisins. Lorsque
son voxel voisin a une valeur Laplacienne plus grande, la valeur voxel voisine aura moins d’in-
fluence sur le modèle du voxel actuel.

Les résultats de la reconstruction, correspondant à un fantôme Shepp Logan simulé en 2D ou
3D et un objet Head en 3D, sont présentés au chapitre 4 et 5. Nous avons comparé les résultats
obtenues avec nos méthodes et les méthodes de l’état de l’art (FBP, QR et TV). Différents
paramètres pour les simulations sont également pris en compte. Le jeu de données avec un
nombre insuffisant de projections, avec un angle de projection limité, ou avec un SNR élevé sur
l’ensemble de données, sont testés.

Les conclusions et certaines perspectives sont données dans le chapitre 6. Dans des travaux
à venir, tout d’abord, d’autres estimateurs peuvent être utilisés, par exemple l’estimateur de la
Moyenne a Posteriori (PM). Les estimateurs PM sont généralement réalisés par les approches
bayésiennes variationnelles (VBA), avec les détails donnés dans l’annexe A. En utilisant la
méthode VBA, les coûts de calcul sont très coûteux pour les simulations de tomographie en 3D,
mais notre groupe a récemment trouvé un moyen de simplifier le calcul. Cet algorithme pour-
rait être mis en œuvre dans nos travaux à venir. L’analyse de l’influence des hyper-paramètres
et des explications de la robustesse des hyper-paramètres dans la méthode HHBM sera pour-
suivie. D’autres distributions de mélange de variance gaussienne seront également utilisées et
comparées avec la distribution de Stg. Pour la méthode ROCC, seul le cas de projection pa-
rallèle est discuté. Nous chercherons les solutions pour étendre cette méthode à d’autres types
de projections.
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1.4 La méthode HHBM

Dans cette méthode, le modèle direct du système est considéré comme suivant :

g = Hf + ε, (1.2)

où g ∈ RM×1 représente la projection estimé, f ∈ RN×1 représente l’objet, H ∈ RM×N

représente l’operateur linear de projection, et ε ∈ RM×1 représente le bruit additive. Dans notre
travail, on considère un bruit Gaussian dans cette modèle, donc on a :

p(ε|vε) = N (ε|0,V ε), where V ε = diag [vε] , (1.3)

où vε ∈ RM×1 représente la variance de bruit, qui est considéré comme un inconnues dans cette
méthode semi-supervisé. Considerant la propriété de variance de bruit, il est modélisé par la loi
Gamma Inverse :

p(vε|αε0 , βε0) = IG(vε|αε0 , βε0). (1.4)

Dans cette méthode, une autre relation linear est consideré :

f = Dz + ξ, (1.5)

où z ∈ RN×1 représente le coefficient parcimonieux de f via la transformation représenté par
l’opérateurD ∈ RN×N . ξ ∈ RN×1 représente les incertitude de cette transformation.

En choisissant le modèle précédent pour ξ, l’objectif est que f et Dz sont le plus ap-
proximatifs possible. Par conséquent, nous définissons ξ comme un bruit parcimonieux, avec
la plupart des valeurs proches de zéro. La distribution Student-t généralisée est utilisée pour
modéliser ξ. La distribution de Stg pour ξ est définie par le modèle hiérarchique :

p(ξ|0,vξ) = N (ξ|0,V ξ), where V ξ = diag [vξ] , (1.6)
p(vξ|αξ0 , βξ0) = IG(vξ|αξ0 , βξ0). (1.7)

À partir de la définition de la loi Stg :

Stg(x|α, β) =

∫
N (x|v)IG(v|α, β) dv, (1.8)

on peut trouver que tous les deux bruit ε et ξ sont modélisé par la loi Stg. Un autre variable
modélisé par la loi Stg est la variable cachée z :

p(z|vz) = N (z|0,V z), where V z = diag [vz] , (1.9)
p(vz|αz0 , βz0) = IG(vz|αz0 , βz0). (1.10)

Cette loi est utilisé considerant que la variable z est parcimonieuse.

Avec tous les loi définies, la distribution a postériori peut être obtenu par le théorème de
Bayes :

p(f , z,vε,vξ,vz|g) ∝ p(g|f ,vε)p(f |z,vξ)p(z|vz)p(vε|αε0 , βε0)p(vξ|αξ0 , βξ0)p(vz|αz0 , βz0).
(1.11)

Puis, l’estimation de Maximum a postériori joindre (JMAP) est utilisé pour estimer tous les
inconnus.
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1.5 La méthod ROCC

Dans cette méthode, les Laplacian de projection g̈ et Laplacian d’object f̈ sont consideré,
avec les définitions :

f̈ =

 0 −1 0
−1 4 −1
0 −1 0

 ∗ f = d2 ∗ f , (1.12)

g̈ = [−1 2 − 1] ∗ g = d1 ∗ g, (1.13)

où d1 et d2 sont des noyau de convolution, et les convolutions avec eux peuvent représenté
par multiplication avec matrices correspondants de la même taille de l’objet, qui sont présenté
comme suivant :

g̈ = D1g, (1.14)
f̈ = D2f . (1.15)

Dans cette method, on considère les relations suivant :

f → RT→ g, (1.16)
f̈ → RT→ g̈. (1.17)

En considerant les bruit du système, on a :

g = Hf + ε, (1.18)
g̈ = Hf + τ . (1.19)

En supposant que tous les deux sont bruit Gaussian, on a la loi de vraisemblance suivant :

p(g|f ,vε) = N (g|Hf ,V ε), V ε = diag [vε] , (1.20)
p(g̈|f̈ ,vτ ) = N (g̈|Hf̈ ,V τ ), V τ = diag [vτ ] , (1.21)

où les variances des bruit sont considéré comme inconnus et il sont modélisés par la loi de
Gamma Inverse :

p(vε|αε0 , βε0) = IG(vε|αε0 , βε0), (1.22)
p(vτ |ατ0 , βτ0) = IG(vτ |ατ0 , βτ0). (1.23)

Dans cette méthode, le parcimonie de la variable cachée f̈ est considerée, et il est modélisé
par la loi Student-t généralisé via le structure de Gaussian-Gamma Inverse :

p(f̈ |vc) = N (f̈ |0,V c), V c = diag [vc] , (1.24)
p(vc|αc0 , βc0) = IG(vc|αc0 , βc0). (1.25)

Dans cette modèle, la variable f est modélisé par une modèle Markovian, qui depend de la
valeur de f̈ estimés. Dans cette modèle, la loi de distribution pour chaque voxel fr est :

p(fr|f r, q, vfr) = N (fr|mr, vfr) ∝ v−1fr exp

−1

2
v−1fr

(
fr −

∑
r′∈N r(r)

(1− qr′) fr′∑
r′∈N r(r)

(1− qr′)

)2
 ,

(1.26)
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où f−r représente tous les voxels sauf fr, vfr est la variance de voxel r, et :

mr =

∑
r′∈N r(r)

(1− qr′) fr′∑
r′∈N r(r)

(1− qr′)
. (1.27)

La variance vf est considérée comme inconue et être modélisé par la loi de Gamma Inverse :

p(vf |αf0 , βf0) = IG(vf |αf0 , βf0). (1.28)

Dans ce méthode, nous présentons une méthode bayésienne qui utilise un modèle marko-
vien pour la variable continue par morceaux. De la propriété de la transformée de Radon, le
Laplacien de l’objet f̈ est lié au Laplacien de la projection sinogram g̈ par un modèle direct.
En utilisant simultanément les deux fonctions directes g = Hf + ε et g̈ = Hf̈ + τ , ces deux
variables sont estimées. Pendant ce temps, la valeur localisée Laplacienne est utilisée comme
coefficient de poids dans le modèle antérieur de f dans chaque itération. Enfin, toutes les va-
riables et les paramètres sont estimés simultanément via la distribution postérieure en utilisant
l’algorithme d’estimation JMAP. L’initialisation des hyper paramètres est proposée, et leur re-
lative insensibilité à la reconstruction est prouvée par les simulations. À partir des simulations,
nous concluons que la méthode ROCC proposée s’améliore pour préserver les contours en com-
paraison avec les méthodes conventionnelles de QR et de TV. Lorsque l’ensemble de données
est biaisé avec un bruit de SNR=40dB, l’erreur carrée moyenne relative de l’objet reconstruit
est plus petite que les méthodes QR et TV, et l’avantage est plus évident lorsqu’il y a moins
de projections. La valeur RMSE de la méthode ROCC en utilisant 36 projections est au même
niveau que la méthode TV en utilisant 90 projections. Cette méthode est adaptée à la reconstruc-
tion CT de projection de faisceau parallèle, où la transformée de radon est utilisée. Le travail
futur se concentre sur l’extension du faisceau parallèle aux projections du faisceau conique.

1.6 Conclusions et persipectives

Dans cette thèse, nous avons proposé principalement deux méthodes bayésiennes pour la
reconstruction 3D CT. Ces méthodes sont basées sur le contexte du Contrôle Non Destructif
(CND) dans les applications industrielles. La grande taille des données dans les applications 3D
et le coût de calcul sont pris en compte dans les algorithmes.

Dans le chapitre 4, nous avons proposé une méthode bayésienne basée sur le modèle direct
du système g = Hf + ε. Dans cette méthode, la nouveauté est qu’on considère une structure
hiérarchique dans le modèle du système, avec f = Dz + ξ. Avec le niveau supplémentaire
du système, la variable f est représentée par une variable cachée z. Pour le choix du modèle
précédent, la propriété considérée passe de la modélisation de la variable continue par mor-
ceaux à la modélisation de la variable cachée qui est parcimonieux. Une distribution Student-t
généralisée (Stg) est présentée dans ce chapitre. Grâce au fait que la distribution de Stg est mar-
ginale d’une distribution Gaussian-Gamma Inverse, les algorithmes d’estimation sont faciles à
appliquer.

Dans les algorithmes itératifs, y compris l’inférence bayésienne, l’initialisation des pa-
ramètres est cruciale pour les résultats finaux de la reconstruction. Dans la section 4.4.2 et
la section 5.6.3, nous avons présenté la stratégie d’initialisation des hyper-paramètres pour l’al-
gorithme d’optimisation dans l’inférence bayésienne avec le modèle proposé. Cette stratégie
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d’initialisation est démontrée expérimentalement. Dans l’analyse des hyper paramètres, nous
avons observé une influence des hyper-paramètres relativement faible sur le comportement de
l’algorithme itératif correspondant. L’intérêt de cette dépendance faible relative est qu’il offre
un moyen pratique d’initialisation qui n’est généralement pas trivial.

Dans la section 4.5, nous avons présenté une autre transformation orthonormée, la transfor-
mation des ondes ondulées à double arbre (DT-CWT). Cette transformation est comparée à la
transformation de Haar discrète. Dans la comparaison, nous constatons que la transformation
DT-CWT ne provoquera pas les artefacts du bloc dans les figures reconstruites et elle est plus
robuste à la contamination des coefficients. Lors de l’utilisation dans la méthode bayésienne
proposée, le DT-CWT a une meilleure performance de reconstruction que HT. L’inconvénient
est que le calcul du DT-CWT est relativement plus coûteux que l’utilisation de la transformation
Haar.

Dans la section 4.8, nous avons proposé d’utiliser un autre modèle avancé dans cette ap-
proche bayésienne. Dans ce modèle, le bruit additif est séparé en deux parties, l’un est modélisé
par une distribution Gaussien et un autre modélisé par une distribution Stg. Le modèle direct
considéré pour le système de projection est

g = Hf + ρ+ ε. (1.29)

Dans ce système direct, on considère un modèle de bruit plus compliqué. Les résultats de la
simulation montrent que ce modèle, en tenant compte d’un modèle de bruit plus complexe,
obtient de meilleurs résultats de reconstruction.

Au chapitre 5, une autre stratégie pour la reconstruction d’objets CT à rayons X est
présentée. Dans cette méthode, on considère la relation entre l’objet f , la projection de l’objet
g, le Laplacien de l’objet f̈ et le Laplacien de la projection sinogram g̈. Selon le système de
transformation du radon, les relations du système de projection directe que nous prenons en
compte sont :

g̈ = Hf + ε, (1.30)
g̈ = Hf̈ + τ , (1.31)

avec quelques relations entre g et g̈ et entre f et f̈ .

En considérant ces relations, le Laplacien de l’objet f̈ est considéré comme une variable
cachée dans le modèle du système. Un modèle Markovien non homogène est utilisé pour l’objet
continu par morceaux f . Dans ce modèle Markovien, la variable cachée f̈ est utilisée comme
paramètre. En utilisant ce modèle markovien en considérant la valeur de f̈ , les contours et les
zones homogènes sont modélisés avec le même modèle avec des paramètres différents, et donc
la continuité des zones homogènes et la discontinuité des contours sont à la fois considérées.
Cette stratégie préserve les bords lors de la reconstruction de l’objet.

Pour l’avenir, plusieurs aspects sont pris en considération. Tout d’abord, le temps de calcul
devrait prendre en compte. Le processeur GPU n’est utilisé que pour l’opérateur de projection
et l’opérateur de rétroprojecteur dans cette thèse. Afin d’accélérer le calcul, plus de calculs
dans le programme peuvent être mis en œuvre en utilisant un processeur GPU. Par exemple, la
transformation DT-CWT présentée au chapitre 4 présente de très bonnes propriétés en compa-
raison avec la transformation de Haar, mais il a un calcul plus compliqué. Une fois que nous
implémentons la transformation en utilisant le processeur GPU, l’utilisation du DT-CWT ou
des nombreuses autres transformations sera moins coûteuse.
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Dans cette thèse, nous avons utilisé l’estimateur Maximum A Posterior (MAP) pour l’es-
timation lorsque la distribution postériori est obtenue. Il existe d’autres algorithmes d’estima-
tion, et certains donnent plus d’informations pour les variables. Par exemple, l’estimation de la
moyenne postériori peut être utilisée pour estimer les variables. En utilisant la méthode Varia-
tion Bayesian Approach (VBA), la distribution a postériori est abordée par une autre distribution
séparable :

p(f ,θ|g) = q(f ,θ) = q1(f)q2(θ), (1.32)

où θ représente toutes les variables cachées et les paramètres du modèle. La moyenne et la
variance de la répartition approximative sont estimées.

Dans la méthode VBA, les distributions approches sont calculées en minimisant la diver-
gence de Kullback Leibler. Au cours du calcul de la méthode VBA, un calcul des éléments
diagonaux de HTH de la grande taille est nécessaire, montré à l’Annexe A. Certains résultats
de simulation de la méthode VBA sont présentés dans [WMDGD16] pour la reconstruction du
fantôme 2D Shepp Logan en considérant un bruit stationnaire. En raison de la taille énorme de
la matrice H dans le problème 3D, il est très coûteux de calculer directement par projection
et rétroprojection pour obtenir chaque élément diagonal. Maintenant, notre groupe est en train
de étudier ce sujet et rechercher des algorithmes qui calculent approximativement les éléments
diagonaux en utilisant les propriétés de projection et de rétroprojection.

Dans cette thèse, la distribution Stg est utilisée pour définir les variables parcimonieuses.
Comme nous l’avons mentionné, la distribution de Stg a une structure à queue lourde. Dans
le même temps, il peut avoir une variance très faible grâce au fait qu’il existe deux paramètres
pour contrôler la forme de cette distribution. Une autre propriété très utile dans le contexte
bayésien est que, elle peut être exprimée comme un marginal de la distribution de Gaussian-
Gamma Inverse bivariée. Comme la distribution normale et la distribution Gamma Inversée
sont conjuguées, l’estimation des variables dans les méthodes bayésiennes est plus simple.

Dans le cadre de travaux futurs, au lieu d’utiliser les distributions du mélange Gaussian-
Gamma Inverse, on cherche d’autres distributions similaires, par exemple les distributions du
mélange de variance normale. On va comparer les différentes distributions de mélange et com-
parer leurs propriétés, concernant la propriété de la distribution marginale et l’influence des
hyper paramètres des distributions marginales.

L’un des aspects les plus importants de notre travail futur est d’étudier l’influence de l’initia-
lisation des hyper-paramètres. Dans cette thèse, nous avons observé une influence par semaine
relative des hyper paramètres du modèle bayésien selon les modèles antérieurs. Dans le futur
travail, nous étudierons la raison de cette faible influence sur les hyper paramètres de ce modèle
et voir si la même propriété apparaı̂t lorsqu’on utilise les autres modèles de mélange de variance
normale.

Dans un futur travail à long terme, nous chercherons de nouveaux modèles a priori pour la
reconstruction de CDT. Nous nous concentrerons sur les cas mal posé où le nombre de projec-
tions est extrêmement limité. Pour cela, nous devrions optimiser le modèle a priori et éviter les
artefacts apparaissant dans les résultats de la reconstruction. Nous allons également étudier la
relation entre les méthodes de régularisation et les méthodes bayésiennes. Il existe des nom-
breuses méthodes de régularisation qui fonctionnent très bien pour le problème de reconstruc-
tion mal posé si un paramètre de régularisation approprié est choisi. Nous pouvons étudier, du
point de vue bayésien, le principe de la régularisation. Dans le même temps, nous pouvons
bénéficier des avantages de la méthode bayésienne selon laquelle les paramètres sont estimés
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pendant les itérations et les hyper paramètres sont relativement insensibles aux résultats de la
reconstruction.
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2
Introduction

2.1 Motivation and Context

This thesis is a contribution to the 3D X-ray Computed Tomography (CT) reconstruction
problem. After the discovery of the X radiation by Wilhelm Röntgen, it was quickly used in
the domain of tomography. At first, people uses the attenuation projection images to see the
object passed by the X radiation. In 1917, the proposition of the Radon transformation [Dea07]
solves the problem of the reconstruction. However, X-ray projection in one direction would
lose information, for example the depth information. Then the technique of acquisition with the
projections applied in different directions is developed in the 1970s, with many publications on
both analytic and iterative methods [AGU76, OMA+76]. In these techniques, the data measured
at different angles are used to reconstruct the 3D volume. At the end of 1970s, the fan-beam re-
construction methods were developped. The X-ray CT technique was firstly used in the medical
applications soon after its invention [GBDBM74, LWGR74, PA74]. Then it began to be used in
many other domains, for example the marine science [BLO95], the geosciences [WV+87], the
industrial applications [HME+81], etc. With the development of the reconstruction techniques
with full projection data, the interest changed to the study of incomplete data problems.

The foundation of the X-ray CT technique is based on the attenuation of the X rays when
passing through an object. A top view of a X-ray projection system is shown in Figure 2.1.
Different materials with different density in the object have different attenuation rate for the
radiation. This attenuation is defined by the Beer’s law :

I = I0e
−
∫
f(l) dl

, (2.1)

where l is the monochromatic X-ray passing an object, I0 is the incident beam intensity, f(l)
is the local linear attenuation coefficient along the radiation l and I is the attenuated radiation
intensity.

One of the challenges of the X-ray CT is to decrease the number of projections. X-ray CT
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FIGURE 2.1 – Top view of the X-ray CT projections system.

was firstly used in medical applications since its introduction in the 1970s. It was used in the
diagnosis of head, lungs, pulmonary angiogram, cardiac, abdominal and pelvic, extremities, etc
[Arr99]. By using the X-ray CT, the diagnosis of the organs can be done with high resolution,
in order to distinguish more details. However, this technique has many drawbacks. The most
important one is the risks for the patients. The radiation used in CT scans can damage body
cells, including DNA molecules, which can lead to cancer, or some other adverse side effect.
Therefore recent research efforts focus on techniques for the CT reconstruction with lower dose
of radiation, also known as ALARA(As Low As Reasonably Achievable), and less expose time
for each projection. In the industrial applications, the X-ray CT is often used in the Non Des-
tructive Testing (NDT) [HFU08]. It is used to produce 3D representations of components both
externally and internally, for the flaw detection, failure analysis, etc. In the industrial applica-
tions, the reduction of the radiation dose is not a crucial problem. The main challenge of the
industrial application is in the dynamic detection. In some cases the object under examination is
not static, for example the object with flowing liquid. In some other industrial examinations, the
objects are placed on a conveyor. In these cases, the projection should be done in a short time,
hence the number of projections need to be reduced. Hence the reconstructions are expected to
be done with less projections.

In both medical imaging and industrial NDT, another problem that we may face to is the
limited angle of projections. In typical works, the CT scanner tests a volume by obtaining pro-
jecting radiations for angles evenly distributed between [0◦, 180◦], with full angle coverage for
the volume. But in some applications, the full angle coverage could not be obtained. An example
in the medical application is the dentistry CT. The projection is sometimes not done for all the
angles because of the special structure of the mouth. In industrial applications, this problem
normally appears when the component under testing has a large size. When the size of the com-
ponent is larger than the scope of the scanner, one obtains a limited angle of projections. In the
limited angle CT, the projections are distributed between [0◦, θ], where θ < 180◦.

In the previous works, a great number of articles are published on the X-ray CT reconstruc-
tion, basing on different methods (analytical [FDK84], algebraic [GBH70, AK84, BYL+00], re-
gularization [CMRS00, GO09, SP08], Bayesian [GCSR14, BMD08, MD96, KVS+06], etc), for
different types of projections systems (parallel-beam [CLMT02], fan-beam [AZ05], cone-beam
[FDK84], etc), considering different noise models (Poisson noise [SB93, FDK84], Gaussian
noise [RLR+12]), and by using different estimation methods (Maximum A Posterior [QL00],
Posterior Mean [Eri69], etc). From these works we can see that the methods are more robust in
the ill-posed cases when supplementary prior information are considered.

In 3D X-ray CT, because of the large data size, the computational costs is crucial. At the
beginning of the development of X-ray CT, the statistical methods were not typically used be-
cause of the very costly iterative computation. With the development of the computational hard-
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ware and the utilization of the computation acceleration aspects, the iterative methods become
feasible in the X-ray CT reconstruction. The GPU processor is now commonly used in the
reconstruction of 3D CT objects.

Another challenge in the X-ray CT is the artifacts. There are many types of artifacts caused
by different reasons. For example the streak artifacts, ring artifact, motion artifact, etc. The noise
of acquisition is also a commonly faced challenge in the X-ray CT reconstruction problems. The
iterative methods are adapted to removing these different types of artifacts.

Despite the fact that the iterative methods get more precise results and can reduce the ar-
tifacts in ill-posed conditions with insufficient or limited or truncated dataset, there is another
crucial problem to consider : the decision for the initialization of hyper-parameters. There
are many researchers working on this problem [FSH15, MDA15, SC91, ZLQ97, SBS98]. With
these techniques, one can obtain an optimal value for the parameters which lead to good re-
construction results, but the computational costs of these methods are expensive. In most cases,
people choose the value of the parameters manually, or empirically with some beforehand si-
mulations. In this thesis, the Bayesian inference is considered and the parameters and unknown
variables are estimated simultaneously during the reconstruction.

Bayesian inference is a commonly used way to take into consideration the prior information.
In the Bayesian context the prior information is modeled by a prior distribution. The conve-
nience by using the Bayesian inference is that the prior properties could be taken into conside-
ration with a variaty of choice of prior distributions, and among the feasible prior distributions
we could choose those who simplifies the computation. In Bayesian inference, the Markovian
model is frequently used to define the piecewise continuous variable. The value of each voxel
is not independent from the others, but depending on the neighbor voxels.

Thanks to the fact that the object under examination in X-ray CT is composed of several
homogeneous materials, the piecewise continuous property of the object is one of the most
commonly considered prior information in the X-ray CT reconstruction. Besides, the sparsity
of a hidden variable which is related with the piecewise continuous variable is also considered
frequently. This hidden variable which has a sparsity property can be, for example, the gradient
of the volume, the wavelet transformation coefficient of the volume or a dictionary basis coef-
ficient of the volume. The word ”sparsity” implies that the vector contains only few non zero
entries. Many sparse transformations are reversible. One can reconstruct the object with the
sparse coefficient which contains much less non zero values than the object itself. The ill-posed
inverse problem of reconstructing the object can then be transferred to the reconstruction of the
sparse coefficients.

2.2 Contributions

An outline of the contribution of this thesis is given in Appendix B.

We propose in this PhD thesis mainly two methods in the Bayesian context. Both of these
two methods have a hierarchical system model, with a sparse hidden variable being considered.
A sparsity enforcing prior distribution is used to model the hidden variable.

In the X-ray CT reconstruction, the object is typically piecewise continuous, and in some
cases piecewise constant. So, two aspects for choosing the sparse hidden variable are conside-
red in our work : the wavelet transformation which is used in the HHBM method, Chapter 5,
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and the Laplacian which is used in the ROCC method, Chapter 6. Both of them are sparse, and
considered as a hidden variable, associated with a prior distribution which enforces the sparse
structure of the hidden variable. A generalized Student-t distribution [Dum16, DLGMD17] is
chosen because of its heavy-tailed property, modeling the sparsity property, and it is expres-
sed as the marginal of a Normal-Inverse Gamma distribution. The marginal structure of two
conjugate distributions facilitate the estimation of the variables in the Bayesian methods.

Among the wavelet transformations, we choose to use the discrete Haar transformation. For
a piecewise constant or piecewise continuous object, the Haar transformation gives a sparse
coefficient for the variable. As one of the basic wavelet transformation, the Haar transformation
is computationally cheap, and can be efficiently accelerated using the GPU processor. The gra-
dient of the object is considered as a hidden variable in another proposed method, presented in
Chapter 6, and a non-homogeneous Markovian model is used to define the variable.

In this thesis, the word ”variables” represents the unknowns which need to be estimated,
for example the object’s pixels or voxels values. The word ”hidden variables” represents the
intermediate variables which are often needed to model the object such as contours, region
or classification labels or the transformation coefficients in the hierarchical models. The word
”parameters” represents the parameters which appear in the prior model of the variables such
as the variance of the noise, and they are also estimated during the iterations. The word ”hyper-
parameters” are the parameters of the prior distributions of the parameters, and they need to be
fixed for the initialization. In this thesis, the initialization of the hyper-parameters is discussed.
Instead of testing for different hyper-parameters and choosing the best one, we discuss the way
to fix the hyper-parameters directly by taking into consideration the prior models and the prior
information on the variables.

2.3 Organization of thesis

In Chapter 3, we present the continuous and discrete model of the CT system, and the
direct model of the projection operation. The conventional methods, including the analytical
methods, the algebraic methods, the regularization methods, the statistical methods, and the
Bayesian inference are presented. The advantages and shortcomings for each different type of
methods are discussed. Then we show some simulation results for the CT reconstruction by
using two of the most representative methods : the Filtered Back Projection (FBP) technique
and the Total Variation (TV) method. The simulation results by using these two methods under
different settings of the projection system will be given in this chapter. And I am going to show
the influence of the parameter in TV and demonstrate the difficulty to choose this parameter
value.

In Chapter 4 we present the context of the Bayesian inference. The prior properties of the
object in the industrial applications are discussed. In this chapter, the property of the generalized
Student-t distribution is presented and the advantage of using it is discussed.

In the second part of this thesis, we present our main contributions.

In Chapter 5, a HHBM method is presented. In this method, first of all a synthesis model
is considered with a non-stationary noise model. In this model, only the Haar transformation
coefficients are estimated, and the object is obtained by a post-processing from the estimated
coefficients. Then, in a more general model, the object and the Haar transformation coefficients
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are simultaneously estimated with a non-stationary noise model. As the volume consists of
several homogeneous blocks, the transform coefficient is sparse. We proposed to use the ge-
neralized Student-t distribution to model the prior distribution for the coefficients. Once we
get the posterior distribution, a Joint Maximum A Posterior estimator (JMAP) is used to
estimate the unknown variables. Some extensions of this method are also discussed. A variable
splitting technique is applied on this method and it is shown that by using it, we can consider
the noise as the mixture of a Gaussian noise and a sparse noise. Thanks to that, reconstruction
results surpasses the original method. Another extension is to compare the Haar transforma-
tion with the Dual-Tree Complex Wavelet Transform (DT-CWT). Comparing with the Haar
transformation, the DT-CWT transformation takes into account more wavelet directions, and is
more robust when the coefficient is contaminated. When they are used in the proposed Bayesian
method, the DT-CWT offers a better quality of reconstruction than the Haar transformation.

In Chapter 6, a ROCC method is proposed. In this method, the relations between the La-
placian of projection sinogram and the Laplacian of the object is considered. By using the
Laplacian of the object as a hidden variable, we benefit from its sparse property to preserve
the contours of the object. In this method the voxels are modeled by a non-homogeneous
Markovian model. In this non-homogeneous Markovian model, each voxel is modeled by a
distribution which depends on the laplacian values and the voxel values of its neighbor voxels.
When its neighbor voxel has a bigger laplacian value, the neighbor voxel value will have less
influence on the model of the current voxel.

The reconstruction results, corresponding to a simulated 2D or 3D Shepp Logan phantom,
and a 3D Head object, are shown in Chapter 5 and Chapter 6. We compared the proposed me-
thods with the FBP, QR and TV methods. Different settings for the simulations are also conside-
red. Observations with insufficient number of projections, or limited angle of projections, with
both high and low SNR, are tested.

The conclusions and some perspectives are given in Chapter 7. In the future work, firstly,
other estimators can be use, for example the Posterior Mean (PM) estimator. PM are usually
realized by the Variational Bayesian Approach (VBA) method, with details given in Appendix
A. By using the VBA method, the computational costs is very expensive for the 3D CT simula-
tions, but our group have recently find a way to simplify the computation. This algorithm could
be implemented in our future work. The analysis of the influence of hyper-parameters and the
explanations of the robustness of the hyper-parameters in the HHBM method will be conti-
nued. Some other Gaussian variance mixture distributions [DGWMD17] will also be used and
compare with the Stg distribution. For the ROCC method, only the parallel projection case is
discussed. We will search for the solutions to extend this method to other projection geometries.
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3
X-ray CT and the state-of-the-art methods

3.1 Introduction

The 3D CT reconstruction is treated as a typical inverse problem but with a huge data size.
With the increase of the computing speed of computer hardware, the research interest changed
from the analytical methods to the iterative methods. The iterative methods are now more and
more frequently used in real applications.

This chapter is devoted to the presentation of the reconstruction methods for X-ray CT
reconstruction. The Filtered Back-Projection (FBP) based on the Radon transform is still the
most commonly used reconstruction algorithm in real applications. Research has been focu-
sed on the reconstruction with fewer projections, which makes it an ill-posed inverse problem.
In this case, the iterative methods are used to optimize the reconstruction results. Algebraic
Reconstruction Technique (ART) [BKK12, BKK12, CM15, GBH70], Simultaneous algebraic
reconstruction technique (SART) [AK84, RSD09] and Simultaneous Iterative Reconstruction
Technique (SIRT) [BYL+00, WLL14] are a few of those firstly proposed iterative methods.
Generally we get an under-determined system of equations for the reconstruction of X-ray
CT. In this context, the regularization methods are used such that complementary prior in-
formation is combined in the criterion. The statistical method are frequently used as the sta-
tistical models can be used to define the unknowns and be estimated by using the statistical
estimator. The Maximum Likelihood (ML) methods are one type of the statistical methods.
Together with their different algorithms such as the Expectation Maximization (EM) algo-
rithm [Moo96], the stochastic EM (SEM) [TET+04] and the Ordered subsets-EM (OS-EM)
[HL94], the ML methods are commonly used in PET-CT reconstruction problems. Another
widely used type of statistical methods for PET or X-ray CT reconstruction are the Bayesian
methods [AMD10, BMD08, FR12, KVS+06, ZHL+16], and they are attracting more and more
attentions in the field of tomography as the computation time is significant reduced by using the
GPU processor.

In this chapter, we are going to present the basic analytical methods, the regularization
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methods and the Bayesian methods for the X-ray CT reconstruction.

3.2 The X-ray Computed Tomography

The technique of the X-ray CT has been mainly used for medical imaging and for Non
Destructive Testing (NDT). Figure 3.1 and Figure 3.2 illustrate some examples of the X-ray CT
reconstruction images in industrial and medical applications.

FIGURE 3.1 – The industrial components tested by X-ray CT reconstruction. Top : the outward
appearance of the components, bottom : the corresponding reconstructed objects. (Image on the
left : http ://www.materialstoday.com/hardmetals-and-ceramics/features/2c-ceramics-moves-into-the-industrial-

reality-zone/ ; image on the right :
http ://www.npl.co.uk/science-technology/dimensional/x-ray-computed-tomography.)

3.3 The Radon Transform and Analytical reconstruc-
tion techniques

The Radon transform is based on the work of the mathematician Johann Radon in 1917
[Rad17]. The problem of reconstructing a function f(x, y) (in 2D case) or f(x, y, z) (in 3D
case) from the integrals along different directions is becoming widely used in many domains,
for example the seismology, the medical imaging, the astronomy, the industrial Non Destructive
testing, etc.

The Radon transformation is expressed by operator R, and g is the corresponding function
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FIGURE 3.2 – The medical images detected by X-ray CT reconstruction. Brain, bone, teeth,
etc. (Image on the top : http ://www.southlakeregional.org/Default.aspx ?cid=784 ; image on the bottom left :

http ://emedicine.medscape.com/article/355892-overview ; image on the bottom right :
http ://texas-dental-implants.com/wp-content/uploads/2015/02/PAN-X-rays-Small.jpeg.)

in the transformation domain :
g = Rf. (3.1)

In tomography, the function f(x, y, z) represents an unknown density, and the integrals of
the function is called the projection, or sinogram.

From the Beer’s law, Eq.(2.1), by applying the logarithm in both size, we obtain :

log I = log I0 −
∫
f(l) dl, (3.2)

and it leads to the Radon transform :

g(r, φ) = − log
I

I0
=

∫ +∞

−∞
f(x, y) dx dy. (3.3)

Figure 3.3 illustrate the Radon transform of a continuous function f(x, y). For any point
(x, y) on the integral line we have :

r = x cosφ+ y sinφ. (3.4)

And we obtain :

g(r, φ) =

∫ +∞

−∞

∫ +∞

−∞
f(x, y)δ (r − x cosφ− y sinφ) dx dy. (3.5)

Mathematically, the adjoint Radon transform, also known as the dual Radon transform, is
expressed as :

f̂(x, y) = R] [g(r, φ)] =
1

2π

∫ π

0

∫ +∞

−∞
g(r, φ)δ(x cosφ+ y sinφ− r) dφ dr. (3.6)

Figure 3.4 illustrate the Radon transform and its dual transform pair. The dual Radon trans-
form is also called the backprojection (BP) in CT, which is considered as the adjoint operator
of the projection. The relation of the backprojection and the real object is :

b(x, y) = f(x, y) ∗ ∗h(x, y), (3.7)
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3.3.1 - The central slice theorem
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FIGURE 3.3 – The Radon transform of continuous function.

where ∗∗ is the 2D convolution and

h(x, y) =
1√

x2 + y2
. (3.8)

Geometrically, it is simply a propagation of the measured sinogram back into the image space
along the projection paths.

f(x,y)

g(r, )

b(x,y)

Radon R

(Backprojection BP)

**h(x,y)

**: 2D convolutionDual Radon R#g

FIGURE 3.4 – The Radon transform and Backprojection operator.

In the following sections, I’m going to describe in a short and synthetic way the analytical
relations between f(x, y) and g(r, φ) which are the basis of many analytical reconstruction
methods.

3.3.1 The central slice theorem

The central slice theorem indicates that : the 1D Fourier Transformation (FT) of a projection
line G(ρ, φ) = F1D(r) {g(r, φ)} is equal to the 2D FT of F (u, v) = F2D {f(x, y)} evaluated at
angle φ :

G(ρ, φ) = F (u, v)|u=ρ cosφ,v=ρ sinφ = F (ρ, φ). (3.9)

The relations between the figure 2D f(x, y), the projection sinogram g(r, φ) and their Fourier
Transformations F (u, v), G(ρ, φ) are illustrated in Figure 3.5.

This property leads to a direct reconstruction strategy : the direct Fourier interpolation me-
thod. By using this method the object is reconstructed by the following steps :
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f(x,y) g(r, )

F(u,v) G( , )

Radon  R

FTFT

u=x cos� ,   v=y sin�

2D 1DF2D F1D

FIGURE 3.5 – The central slice theorem.

1. Apply 1D FT for each projection.
2. Convert from polar coordinates F (ρ, φ) to Cartesian coordinates F̂ (u, v) using u =
ρ cosφ and v = ρ sinφ.

3. Apply inverse 2D FT to F̂ (u, v) and obtain f̂(x, y).

3.3.2 The Back-projection filtering (BPF) algorithm

As presented previously, the back-projection is the adjoint operator of the Radon transform :

b(x, y) =
1

2π

∫ π

0

∫ +∞

−∞
g(r, φ)δ(x cosφ+ y sinφ− r) dr dφ. (3.10)

Consider that :

g(r, φ) = F−11D(ρ) {F (ρ, φ)} =

∫ +∞

−∞
F (ρ, φ) exp {i2πρr} dρ, (3.11)

we have :

b(x, y) =
1

2π

∫ +∞

−∞

∫ π

0

∫ +∞

−∞
F (ρ, φ)δ(x cosφ+ y sinφ− r) exp {i2πρr} dr dφ dρ

=
1

2π

∫ π

0

∫ +∞

−∞
F (ρ, φ) exp {i2πρ(x cosφ+ y sinφ)} dφ dρ.

(3.12)

From the definition of FT we have F (−ρ, φ) = F (ρ, φ+ π), so we obtain :

b(x, y) =
1

2π

∫ 2π

0

∫ +∞

0

F (ρ, φ)

ρ
exp {i2πρ(x cosφ+ y sinφ)} ρ dφ dρ

=
1

2π
F−12D

{
F (ρ, φ)

ρ

}
.

(3.13)

From the obtained relation we get : fBPF (x, y) = F−12D

{
ρF2D

{
f̂(x, y)

}}
, and the Back-

projection filtering method implies the following steps :
1. Back-projection from g(r, φ) to get b(x, y).

2. Apply 2D FT for b(x, y) and we get F (ρ,φ)
ρ

= F2D {b(x, y)}.
3. Filter with ρ and obtain F (ρ, φ).

4. Apply inverse 2D FT to get f̂BPF (x, y).
The BPF algorithm is illustrated in Figure 3.6.
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f(x,y)

g(r, )

b(x,y)

fBPF(x,y)

Radon

Backprojection
Convolution

            with r

FIGURE 3.6 – The Back-projection Filtering reconstruction algorithm.

3.3.3 The Filtered Back-projection

The Filtered Back-Projection (FBP), illustrated in Figure 3.7, is a conventional analytical
technique for the reconstruction, and it is the most commonly used technique in real medical
and industrial applications. In FBP, the projection data is convoluted by a filter function in the
Fourier space, and then a back-projection is applied. Mathematically it is presented by f̂FBP =
BF−11D |ρ| F1Dg whereB represents the back-projection. Comparing with back-projection, FBP
compensates the high frequency component of the phantom, and derives results with much
clearer contours than the back-projection.

f(x,y) g(r, ) G( , )

GF( , )gF(r, )fFBP(x,y)

Radon FT

Filter with |�|

FT-1

Backprojection

FIGURE 3.7 – The Filtered Back-projection reconstruction algorithm.

The algorithm of the FBP method implies the following two steps :

1. Filter the projection with |ρ| in the Fourier domain or by a convolution method.

2. Apply the back-projection.

With these two steps we have :

f̂FBP (x, y) =

∫ π

0

∫ +∞

−∞
F−11D {|ρ| F1D {g(r, φ)}} δ (x cosφ+ y sinφ− r) dr dφ

=

∫ π

0

∫ +∞

−∞
F−11D {|ρ|F (ρ, φ)} δ (x cosφ+ y sinφ− r) dr dφ

=

∫ +∞

−∞

∫ π

0

∫ +∞

−∞
|ρ|F (ρ, φ) exp {i2πρr} δ (x cosφ+ y sinφ− r) dρ dr dφ

=

∫ π

0

∫ +∞

−∞
F (ρ, φ) exp {i2πρ (x cosφ+ y sinφ)} |ρ| dρ dφ

=

∫ 2π

0

∫ +∞

0

F (ρ, φ) exp {i2πρ (x cosφ+ y sinφ)} ρ dρ dφ

= F−12D {F (ρ, φ)} = f(x, y).

(3.14)

In the real applications, a low-pass filter, for example the Hanning filter, is used during the filter
for the projection in order to reduce the noise.
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However, the presented analytical reconstruction methods, for example the most commonly
used FBP method, have a good performance only when there is sufficient number of projections
and that the projections are distributed from 0 to π. We can see from the results that, when there
are 64 projections distributed from 0 to π, the reconstructed figure is clear and we can distin-
guish the details. When there are only 32 projections, distributed from 0 to π, some obvious
artifacts appears in the reconstructed figure. In the case where the angle of projection is limited,
the reconstruction has a poor quality.

Figure 3.8 shows the original Shepp Logan figure of size 2562 and the projection sinogram
with 64 projections evenly distributed in [0, π]. The reconstruction results by using the conven-
tional Back-projection (BP) and Filtered Back-projection (FBP) methods are also shown.

Original f(x, y) Sinogram g(r, φ)

BP f̂BP (x, y) FBP f̂FBP (x, y)

FIGURE 3.8 – The Original Shepp Logan figure, the projection sinogram without noise by
using 64 projections and the reconstruction results by using the Back-projection and Filtered

Back-projection methods.

In Figure 3.9, the reconstruction of the Shepp Logan figure by using the FBP algorithm is
presented. As a conventional analytical method, we can see that when the number of projec-
tions is sufficient and the projections are obtained from 0 to π, the reconstruction result is clear.
However when the number of projections or the angle of projections are insufficient, the re-
construction results by using the FBP method are blurred and some obvious artifacts appear in
the results. Another shortcoming of the FBP method is its sensitiveness to the noise, because of
that the high frequency parameters corresponding to the noise are not filtered in the projection
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f̂ with 64 proj ∈ [0, π] f̂ with 32 proj ∈ [0, π] f̂ with 128 proj ∈
[
0, π

2

]
FIGURE 3.9 – The reconstructed figure by using 64 projections distributed in [0, π], 32

projections distributed in [0, π] and 64 projections distributed in [0, π
2
].

domain.

3.4 The algebraic methods

In imaging problems, the function f(x, y) is typically considered in a discrete form, and
is presented by a vector f . The projection is presented by vector g. In a discrete system, the
integral operation becomes the sum. Figure 3.10 illustrates the Radon transform of a discretized
2D image. After discretization, the image is represented by pixels. The value of each pixel is
the average of the continuous function f(x, y) in the pixel area.

x

y

r
�

fj
Hij

projection i

f1

fN

gi

projection i

Detector

FIGURE 3.10 – The Radon transform of discrete system.

From the figure, we can see that the projection line passes the pixels, with different length
of segment in different pixels. We use Hij to represent the length of the ith projection line in

30



The algebraic methods

the pixel j. According to the definition, we have :

gi =
N∑
j=1

Hijfj, (3.15)

where j ∈ [1, N ] and N is the size of the image f . It can also be expressed as :

gi = [Hi1 Hi2 · · · HiN ]


f1
f2
...
fN

 . (3.16)

We use the vector g ∈ RM×1 to represent the dataset of the projection, g =
[g1, g2, · · · , gM ]T , and we can obtain :

g1
g2
...
gM

 =


H11 H12 · · · H1N

H21 H22 · · · H2N
...

... . . . ...
HM1 HM2 · · · HMN



f1
f2
...
fN

 , (3.17)

and it can be expressed as :
g = Hf . (3.18)

This expression is used as the forward model of the projection system. Each row of matrix H
corresponds to a projection line, considering every pixel of the image. Each column of matrix
H corresponds to all the projection lines in all angles for one pixel fj .

Consequently, the transpose of the matrixH is used as the back-projection operator :

f̂BP = HTg. (3.19)

Based on the discrete forward model of the projection system in Eq.(3.18), the algebraic
methods are used, such as the algebraic reconstruction technique (ART) [Gor74, GBH70], the
related simultaneous ART (SART) [AK84] and the Simultaneous Iterative Reconstruction Tech-
nique (SIRT) [TL90, BYL+00]. The update step for a voxel fj in ART, SART and SIRT are
respectively expressed as :

ART : f
(k+1)
j = f

(k)
j + λ

gi −
∑N

n=1Hinf
(k)
n∑N

n=1H
2
in

Hij, (3.20)

SART : f
(k+1)
j = f

(k)
j + λ

∑
gi∈Gφ

(
gi−

∑N
n=1Hinf

(k)
n∑N

n=1Hin

)
Hij∑

gi∈Gφ Hij

, (3.21)

SIRT : f
(k+1)
j = f

(k)
j + λ

∑
gi∈G

(
gi−

∑N
n=1Hinf

(k)
n∑N

n=1Hin

)
Hij∑

gi∈GHij

, (3.22)

where λ is a relaxation parameter and Hij is the weight with which the voxel j contributes its
value to the projection i. In ART, only one ray in one projection direction is considered for one
iteration of voxel j. In SART, all rays in one projection Gφ in direction φ is considered for one
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iteration. In SIRT, all rays in all projections are considered for one iteration. A Discrete Alge-
braic Reconstruction Technique (DART) is presented in [BS11]. The DART technique considers
the reconstruction of the strictly piecewise constant objects, which consists of several different
homogeneous materials, and the gray level of each different material is known. For this special
types of problems, the DART method has a very good performance with insufficient number of
projections and is robust to the noise. However, in our work, we consider a more general case,
where we have no information on the number of materials and the gray level of each material.

In Figure 3.11, we show the reconstructed Shepp Logan figure of size 2562 by using the
SIRT method. From the results we can see that, when there are sufficient number of projections,
the shape of the reconstructed phantom is clear, but the contours in the phantom is a little
blurring. When there is insufficient number of projections, there will be many artifacts in the
reconstructed figure.

FIGURE 3.11 – Reconstruction of 2D Shepp Logan phantom of size 2562 by using the SIRT
method, with respectively 180 projections (left) and 60 projections (right).

From the definition and the simulation results, we can see that the limitation of the algebraic
reconstruction techniques is the very costly computation for the calculation of the weighted
sum. What’s more, the size of detected data g will have a big influence on the reconstruction
result. In the ill-posed reconstruction problems, where the number of observed data is much less
than the unknown data, the prior information need to be considered during the reconstructions.

In the following section, I am going to present the regularization methods, which are funda-
mental and widely used methods concerning the prior information.

3.5 The Regularization methods

In X-ray CT, generally the object under testing needs to be reconstructed with precise details
and the dimension of voxel is very small compared with the size of object. With a large size of
unknown variable, the acquisition of sufficient dataset is too expensive. In most of the cases we
get an under-determined system of equations (N > M ). The following direct model is used to
account for the modeling error and measurement noise :

g = Hf + ε, (3.23)
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where ε ∈ RM×1 corresponds to all the additive noise and uncertainties of the projection system.

The regularization methods are derived from this model. In regularization methods, we op-
timize a criterion which consists of generally two terms : the data consistency Q(g,f) and the
regularization term R(f) :

J(f) = Q(g,f) + λR(f), (3.24)

where λ is called the regularization parameter.

The data consistency term Q(g,f) describes the discrepancy between the observation
and estimation. Based on direct model defined in Eq.(3.24), it is commonly under form of
Q(|g −Hf |). The l2 norm is mostly used in the regularization methods, with :

Q(g,f) = ‖g −Hf‖22 . (3.25)

The Lq norm is a general form, with Q(g,f) = ‖g −Hf‖qq, for example q = 1.

The diversification of the criterion of regularization methods is normally on the regulariza-
tion termR(f). This term is fixed by considering the prior information that we known about the
unknown variable f . We can see that when R(f) = 0, we obtain a Least Square (LS) method
[YAT+97, SC00].

3.5.1 Different regularization criterion

The regularization term R(f) is typically a penalty on the complexity criterion of f . By
choosing different regularization function R(f), different regularization methods are referred
to.

When R(f) = ‖Φ(f)‖22, the ridge penalty, or the Quadratic Regularization (QR) [RSD09]
is derived, where the linear operator Φ(·) can be the multiplication by an identical matrix which
lead to R(f) = ‖f‖22. Φ(·) can also be the gradient operator. The L2 form of the regularization
term will result in the smoothness in the final results.

The Total Variation (TV) method [CL97, GO09, PTS+15] is defined by R(f) =
‖DTV f‖TV where DTV is the gradient operator. In the anisotropic form, R(f) = ‖Dxf‖1 +
‖Dyf‖1 for 2D image and R(f) = ‖Dxf‖1 + ‖Dyf‖1 + ‖Dzf‖1 for 3D object, where Dx,
Dy and Dz are respectively the gradient in the x, y and z direction of the Cartesian coordinate
system. L1 norm is used for sparse estimations, which enforces the sparsity of theDTV f term.

Sometimes there are more than one regularization terms in the criterion. For example in the
Elastic-net regularization method [WVVH10], the regularization term is R(f) = λ1 ‖f‖1 +
λ2 ‖f‖22. The elastic net penalty is a convex combination of the lasso and ridge penalty. When
λ1 = 0, it becomes a simple ridge regression.

More general regularization methods are developed basing on constrained and dual-variable
regularization method :

J(f , z) = Q1(g,f) + ηQ2(f , z) + λR(z). (3.26)

In such a model, the penalty regularization term is set on z, which is associated with f via
a linear transformation. The loss function Q1(g,f) and Q2(f , z) are generally quadratic, i.e.
Q1(g,f) = ‖g −Hf‖22 and Q(f , z) = ‖f −Dz‖22. They describe respectively the forward
model consistency and the prior model consistency. R(z) is the regularization term on z.
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3.5.2 Optimization algorithms

In the problem of optimizing large data size variable, the optimization result sometimes
contains the inversion of big size matrix, which is impossible to compute. In these cases, the
optimization algorithms are often used. The optimization of the variables are derived by mini-
mizing the loss function J(f) with respect to the unknowns.

f̂ = arg min
f
{J(f)} . (3.27)

The optimization algorithms fall in two major categories : the first order optimization algo-
rithms and the second order optimization algorithms.

The first order optimization algorithms minimize or maximize the loss functions by consi-
dering their gradient. The Gradient Descent (GD) algorithm [Bat92, VCR97], which is the most
important technique and the foundation of the optimization algorithms, belongs to the first order
optimization category. The GD algorithm takes steps proportional to the negative of the gradient
of the loss function at the current point and iteratively reaches the local minimum or maximum
of the loss function :

f (k+1) = f (k) − γ∇J(f), (3.28)

where∇J(f) is the derivative of loss function and γ is called the descent step length.

Though the most widely used algorithm, the GD algorithm has some drawbacks, for
example the convergence is slow and the final result might be the local minimum. Many
other first order algorithms are developed to overcome these problems, for example the
conjugate gradient algorithm [Bat92, Sca87, FB99], the stochastic gradient descent algorithm
[Bot10, NWS14, KPSV09], etc.

The second order optimization algorithms are less frequently used, as they use the second
order derivative, also known as the Hessian, to minimize or maximize the loss function, and is
more costly than the first order derivative. However, in some cases the form of the second order
derivative is known, they can be used for the big data size optimization problems. The most
famous second order optimization algorithm is the Newton’s method [Kel99, Fis92].

In gradient based optimization algorithms, the derivative of the criterion function always
need to be calculated. Note that the L1 norm is not derivable everywhere, the conventional
optimization algorithms can not be used. Many methods have been proposed to solve this L1

norm optimization problem, for example the Primal Dual method [CGM99], the Split Bregman
method [GO09] and so on.

Other methods are also used for the large scale regularization methods, for example the
augmented Lagragian method [TW09, ABDF11], the Alternating Direction Method of Mul-
tipliers (ADMM) [WBAW12], etc. These methods are often applied to solve the constrained
optimization problems. The ADMM method considers to minimize Φ(f) + Ψ(z) subject to
Af + Bz = C, and it covers a large amount of estimation forms. An example is when
Φ(f) = ‖g −Hf‖22, Ψ(z) = R(z), A = I , B = −D and C = 0, referring to the above
mentioned bi-variable regularization method corresponding to Eq.(3.26).
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The Regularization methods

3.5.3 The regularization parameter

In the above mentioned regularization methods, there is always a regularization parameter λ
to be fixed. This parameter compromise between not having enough regularization to reduce the
noise and too much regularization that the solution becomes too smooth. Sometimes there are
more than one regularization terms in the minimization criterion, for example the Elastic-net
method. Hence two or even more regularization parameters are introduced. These parameters
tune the terms of regularization. The value of these parameters will effect on the optimization
result.

Figure 3.12 and Figure 3.13 demonstrate respectively the influence of the regularization
parameter λ in the QR and TV method for the reconstruction of the Shepp Logan phantom.
From the figures we can see that the optimal regularization parameter value is different for the
cases with different number of projections or different SNR.
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FIGURE 3.12 – The influence of the regularization parameter on the relative mean square error
of the reconstruction results in the Quadratic Regularization method with 128 projections

(top) or 64 projections (bottom) with a noise of SNR=40dB (left) or SNR=20dB (right).

In order to fix the regularization parameter, many method have been proposed. A most in-
tuitive strategy is to fix them manually. In [KVS+06], the authors proposed to fix the parameters
with training dataset with similar distribution structure as the unknown variable. They demons-
trated that a fixed parameter usually performs well for similar imaging data. The reconstruction
program should be done many times for the training object in order to find the suitable parame-
ter. What’s more, the parameter is not ensured to be suitable for the same structured data with
different noise level.

The Generalized Cross Validation (GCV) [GHW79, RLR+12] and L-curve [CMRS00,
HO93] methods are also proposed to determine suitable values for this parameter. The prin-
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FIGURE 3.13 – The influence of the regularization parameter on the relative mean square error
of the reconstruction results in the Total Variation method with 128 projections (top) or 64

projections (bottom) with a noise of SNR=40dB (left) or SNR=20dB (right).

cipal strategy of the L-curve method is to set the data consistency term and the regularization
term of the criterion as the abscissa and the ordinate respectively, and by setting different value
of the parameter λ, we can get a curve which has a ’L’ shape. The point which has the biggest
curvature corresponds to the suitable parameter.

In the GCV method, a GCV function is defined depending on parameter λ. For example for
the Tikhonov regularization J(f) = ‖g −Hf‖22 + λ ‖Df‖22, the GCV function is :

G(λ) =

∥∥∥(H (
HTH + λDTD

)−1 − I) g∥∥∥2
2(

T r
(
I −H

(
HTH + λDTD

)−1
HT

))2 . (3.29)

Then the optimal parameter value is estimated by minimizing the GCV function. However,
in many cases the GCV function does not have an explicit minimum point and the parameter
obtained by the minimization is not accurate. For the reconstruction problem of large data size
object, this method is too costly.

3.6 The statistical methods

When data are corrupted by noise, statistical methods are often used. With the develop-
ment of Computer Science, the statistical inference [WSQ09] are used in X ray tomography
reconstruction. For the inverse problems which consider a large amount of data, the statistical
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methods set a probability model. Instead of estimating all the parameters, the parametric model
is examined.

In the forward model presented in Eq.(3.23), the noise ε is modeled by a probabilistic density
function (pdf). In tomography, the acquisition of photon count is obtained by detecting the
photons arrived at the detectors, which is modeled by a Poisson distribution :

p(g|f) =
M∏
i=1

[Hf ]gii
gi!

e−[Hf ]
i . (3.30)

where gi is the detected photon rate, as shown in Figure 3.14.

Emitter

Detector

gT

gi

FIGURE 3.14 – One X ray projection from emitter to detector.

In X-ray CT, the amount of photon is very big. With the large amount of photon, the Poisson
distribution can be approximate by a Gaussian distribution [FDK84].

The likelihood plays an important role in the statistical inference. It describes the probabi-
lity density function of parameters of the model knowing data. For a forward model shown in
Eq.(3.23), the likelihood is p(g|f). In X-ray CT, it is modeled by a Gaussian distribution :

p(g|f) = N (g|Hf ,V ε), (3.31)

where V ε = diag [vε], vε = [vε1 , · · · , vεi , · · · , vεM ] and vεi is the variance of noise of projec-
tion i.

When vεi = vε, ∀i, it refers to a stationary noise. However for the X-ray CT applications,
the noise depends on the projection system and also the object. The shape and the material
structure of the object will have an influence of the detection noise. Hence a non-stationary
noise is considered.

By using the Maximum Likelihood (ML) methods [RW84], the statistical parameters are
estimated by maximizing the likelihood of making the observations given the parameters :

f̂ = arg max
f
{p(g|f)} . (3.32)

In the Emission Computed Tomography, the detection of the photons is modeled by the
Poisson distribution, and so the logarithm of the likelihood is :

ln p(g|f) =
M∑
i=1

(
−

N∑
n=1

Hinfn + gi ln

(
N∑
n=1

Hinfn

)
− ln gi!

)
. (3.33)
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As demonstrated in [VSK85], the EM algorithm of this ML method can be written as :

f
(k+1)
j = f

(k)
j

1 +

∑
i∈Ij

(
gi−

∑N
n=1Hinf

(k)
n∑N

n=1Hinf
(k)
n

)
Hij∑

i∈Ij Hij


= f

(k)
j + f

(k)
j

∑
i∈Ij

(
gi−

∑N
n=1Hinf

(k)
n∑N

n=1Hinf
(k)
n

)
Hij∑

i∈Ij Hij

,

(3.34)

where Ij is the set of projections to which the pixel j contributes. We can see that this result has
a very similar form as the SIRT method shown in Eq.(3.22).

As mentioned before, the Poisson noise is approximated by a Gaussian noise in X-ray CT.
By using the Gaussian model, the maximization of the likelihood is equivalent to the weighted
Least Square regression method :

f̂ = arg max
f
{N (g|f ,V ε)}

= arg max
f

{
|V ε|−

1
2 exp

{
−1

2
(g −Hf)V −1ε (g −Hf)

}}
= arg min

f

{
(g −Hf)V −1ε (g −Hf)

}
= arg min

f

{
‖g −Hf‖V −1

ε

}
,

(3.35)

where V −1ε is the weight of the Least Square method.

The Expectation Maximization (EM) [Moo96] algorithms are used to solve the Maximum
Likelihood estimations when the equations are difficult to solve directly. Typically the models
depends on some other unobserved hidden variables. The EM iteration alternates between per-
forming an expectation (E) step, and a maximization (M) step.

Some of its extensions, for example the stochastic EM (SEM) [TET+04] or the Ordered
subsets-EM (OS-EM) [HL94] are also used for the tomography reconstruction problems.

The shortcomings of the Maximum Likelihood methods are that, the numerical estimation is
usually non-trivial, except for a few cases where the maximum likelihood formulas are simple,
and that they do not consider any prior information. Consequently, they are not robust in the ill-
posed reconstruction systems where the observations are much less the unknowns. Therefore,
we present the Bayesian methods, which combine the model and the prior information together
to estimate the unknowns.

3.7 The Bayesian inference

The Bayesian inference [SB92, GRL+93, MD96, BMD08, GCSR14, ZFR15] is a type of
statistical methods, which is widely used in the inverse problems. In Bayesian inference, Bayes’
theorem is used to update the probability for a hypothesis as more evidence or information
becomes available. The Bayes’ rule derives the posterior distribution as a consequence of the
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prior law and the likelihood, with the basic expression :

p(f |g) =
p(g|f)p(f)

p(g)
, (3.36)

with
p(g) =

∫
p(g|f)p(f) df , (3.37)

where p(g|f) is the likelihood, p(f) is the prior law and p(f |g) is the posterior law. p(g) is cal-
led the marginal likelihood or the evidence. As with the marginalization the variable f doesn’t
appear in this term, so it is normally not considered in the determination of the variables. Figure
3.15 shows the generative graph of the basic Bayesian model. In this model, the parameters θ1
and θ2 are fixed and are considered as known constant in the model.

θ2 θ1

f

gp(g|f ,θ1)

p(f |θ2)

FIGURE 3.15 – Generative graph of the basic Bayesian model.

In the supervised or semi-supervised systems, some parameters are also estimated. The unk-
nown variables contains not only f but also the parameters θ. In this case, Bayes’ rule derives
the joint posterior probabilistic law :

p(f ,θ|g) =
p(g|f ,θ1)p(f |θ2)p(θ)

p(g)
, (3.38)

where vector θ = [θ1,θ2] contains all the parameters to be estimated. This joint posterior
law can then be used with different Bayesian point estimation methods to infer on f and θ.
Figure 3.16 illustrate the basic Bayesian model corresponding to Eq.(3.38). In this model, the
parameters θ are unknown and depends on the fixed hyper-parameters κ = [κ1, κ2].

For a hierarchical structured model where a hidden variable z appears, a posterior law with
all the unknown variables is obtained via the Bayes’ rule :

p(f , z,θ|g) =
p(g|f ,θ1)p(f |z,θ2)p(z|θ3)p(θ)

p(g)
, (3.39)

where θ = [θ1, θ2, θ3] corresponds to the parameters which are estimated during reconstruc-
tion, and κ = [κ1, κ2, κ3] are the fixed hyper-parameters. This model is illustrated by the
generative graph shown in Figure 3.17.

3.7.1 Bayesian point estimators

In Bayesian inference, the posterior distribution is typically considered for the estimation
of parameters and variables. The Bayesian point estimators aims at choosing the ”best value”
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FIGURE 3.16 – Generative graph of the semi-supervised Bayesian model.
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FIGURE 3.17 – Generative graph of the model with hidden variable z.
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of the unknown variable from its posterior distribution. They imply the posterior distribution’s
statistics of central tendency, for example the mean, the median, or the mode.

Consequently, three types of point estimators are derived : Posterior Mean (PM) [Eri69],
Posterior Median [BS05] and the Maximum a Posterior (MAP) [QL00] estimation. For some
distributions, there is no explicit form for the median value. Hence typically only PM and MAP
estimation are used for the determination of variables is Bayesian inference.

With the posterior distribution obtained from an unsupervised Bayesian inference [MD96]
as in Eq.(3.38), we distinguish three estimation methods. The first is to integrate out θ from
p(f ,θ|g) to obtain p(f |g) and then use it to infer on f . Unfortunately, this approach does not
often give explicit expression for p(f |g). The second approach is that one can first marginalize it
with respect to f to obtain p(θ|g) =

∫
p(f ,θ|g) df and estimate θ̂ = arg maxθ {p(θ|g)}, then

use it as it was known. The third and easiest algorithm to implement is the joint optimization,
which estimates the variable f and parameter θ iteratively and alternately.

In MAP estimation, the unknown variables are estimated by maximizing the posterior dis-
tribution. When there are several variables, they are optimized jointly :

(f ,θ) = arg max
f ,θ
{p(f ,θ|g)} . (3.40)

The posterior distribution has normally an negative exponential form, and hence the maximi-
zation of the posterior distribution are normally considered as a minimization of the negative
logarithm of posterior distribution :

(f ,θ) = arg min
f ,θ
{− ln p(f ,θ|g)} . (3.41)

In Posterior Mean estimation, when there are several related variables and the posterior
distribution is not separable for the variables, the Variational Bayesian Approximation (VBA)
[FR12, TLG08, AMD10] is always used. The VBA method approximates the posterior distri-
bution p(f ,θ|g) by a separable distribution q(f ,θ) by minimizing the Kullback–Leibler diver-
gence [BMD08, CB01], p(f ,θ|g) ≈ q(f ,θ) = q(f)q(θ). The conjugate prior distributions are
normally used to define the prior model in order to simplify the computation of the posterior
model and the parameters.

3.7.2 Link between Bayesian and Regularization methods

By using the MAP estimation for the posterior distribution, the links between the Bayesian
inference and the regularization methods are derived. For example we consider the following
MAP problem :

p(f) = exp {−R(f)} , (3.42)
p(g|f) = exp {−Q(g,f)} . (3.43)

The posterior distribution obtained from the likelihood and prior model is :

p(f |g) ∝ p(g|f)p(f) = exp {−Q(g,f)−R(f)} . (3.44)
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By minimizing the negative logarithm of the posterior distribution, the variable is estimated
via :

f̂ = arg max
f
{p(f |g)} = arg min

f
{− ln p(f |g)} = arg min

f
{Q(g,f) +R(f)} , (3.45)

which is exactly the general model of the regularization method presented in Eq.(3.24).

As in X-ray CT we the noise is modeled by a Gaussian distribution, we have

p(g|f) = N (g|Hf ,V ε) ∝ |V ε|−
1
2 exp

{
−1

2
(g −Hf)T V −1ε (g −Hf)

}
, (3.46)

and we get :
p(f |g) ∝ exp

{
−‖g −Hf‖2V ε

−R(f)
}
, (3.47)

and
f̂ = arg max

f

{
‖g −Hf‖2V ε

+R(f)
}
. (3.48)

When the prior distribution of f is a Gaussian model, with zero mean and variance vf :

p(f) = N (f |0,vf ) ∝ exp

{
−1

2
‖f‖2V f

}
, (3.49)

we get f̂ = arg minf

{
‖g −Hf‖2V ε

+ ‖f‖2V f

}
. We can see that when V ε = vεIM and

V f = vfIN where I is an identity matrix, we obtain the Quadratic Regularization method.

When the prior distribution of f is a Laplacian model :

p(f) = L(f |0,V f ) ∝ exp

{
−1

2
‖f‖

1V f

}
, (3.50)

we get f̂ = arg minf

{
‖g −Hf‖2V ε

+ ‖f‖
1V f

}
. When V ε = v−1ε IM and V f = v−1f IN ,

we obtain the LASSO regularization method [Tib96]. If p(f) = L(f |0,
(
DTV fD

)−1
), we get

f̂ = arg minf

{
‖g −Hf‖2V ε

+ ‖Df‖
1V f

}
and it corresponds to the TV method.

3.8 Conclusions

In this chapter, a framework of the X-ray CT reconstruction methods is presented. Among
these conventional methods, the analytical and algebraic ones considering the forward model
without noise : g = Hf , are not robust to the noise, and no additional information is considered
except for the biased data.

The regularization methods and the statistical methods consider an additive noise in the for-
ward model g = Hf +ε. These methods, especially the Bayesian ones, take into consideration
the prior information as a supplement criterion for the ill-posed reconstruction problems. In the
Bayesian methods, the information on the object is modeled by some appropriate probability
density function (pdf). An important objective in the Bayesian method is to choose suitable pdfs
for the unknown variables.

In the next chapter, I am going to give a brief review of the Bayesian methods, and present
some conventional used prior models for the piecewise continuous variables in the X-ray CT
problems.

42



4
Bayesian method and sparse enforcing prior

distributions

4.1 Introduction

In this chapter, we present the Bayesian inference and its utilization in the CT reconstruction
problem. As the most important part of the Bayesian methods, the definition of the prior models
are discussed in this chapter. The prior model for defining the piecewise continuous images
or objects are typically realized by using a Markovian model or by introducing a sparse hidden
variable. The definition of the sparse prior model can be realized by using plenty of distributions.
In this chapter we present a generalization of the Student-t distribution and discuss its property.

Bayesian inference has provided a useful tool for the inverse problems in different domains,
especially in the ill-posed problems where the number of detected data is insufficient. This
advantage of the Bayesian inference comes from the fact that the prior information is considered
in the method in terms of the prior model of the variables. The prior information are combined
with the likelihood and the detected data in the reconstruction.

We recall the Bayes rule for the unsupervised system model :

p(f ,θ|g) =
p(g|f ,θ1)p(f |θ2)p(θ2)

p(g)

∝p(g|f ,θ1)p(f |θ2)p(θ2).
(4.1)

In this formula, p(f ,θ|g) is the posterior distribution, p(g|f ,θ1) is the likelihood, p(f |θ2) and
p(θ2) are the prior distributions.

We can see that the posterior distribution depends on the likelihood and the prior distribu-
tions. In the Bayesian methods, an essential work is to define the prior models. The prior in-
formation of the variable f and parameter θ = [θ1, θ2] are considered and described by some
suitable distribution. Some examples of the prior information are the ”positivity”, ”continuity”,
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”sparsity”, etc.

In X-ray CT, the objects under consideration are for example the brain or organs in medical
applications, or components of industrial objects in Non Destructive Testing (NDT).

The industrial components normally consist of several different homogeneous materials, for
example the steel, iron, air, etc. In medical CT, the brains, bones, teeth or other organs also
consist of some homogeneous substances. We can also see from the examples shown in Figure
3.1 and Figure 3.2 that the objects under examination are piecewise continuous.

In this thesis, the piecewise continuous property of the object is particularly considered in
the Bayesian methods when choosing the prior models. In the following sections I’m going to
present the choice of the prior models adapting to the piecewise continuous prior information.

4.2 Gradient and Markovian models

The ”homogeneous” property implies that the voxels in the object are not independent. Each
voxel depends on other voxels. But the coherence between two voxels decreases rapidly when
the distance between them increases. Consequently, only the nearest neighbor voxels are related
to the current voxel.

Noted by r the current voxel position, and f(r) the value of the voxel, we use r′ to represent
the neighbor voxels of r, r′ ∈N (r).

Four or eight neighbors are the most commonly used cases. In order to consider the coherent
relations between voxels, the Markovian method is generally used.

r

r'

FIGURE 4.1 – The positions of current pixel r and neighbor pixels r′ by considering left : 4
neighbor pixels or right : 8 neighbor pixels.

In many methods, the gradient of the piecewise continuous variable is used as a sparse
hidden variable. In the gradient-based methods, the difference between the neighbour pixels are
considered. As shown in Figure 4.2, for a piece-wise constant object, the gradient is zero in
most of parts except for the contours areas.

In the Markovian models, the strategy is also to consider the neighbour pixels in the prior
models of the piecewise continuous variables. There are mainly two types of Markovian models,
known as the homogeneous Markovian models and the inhomogeneous Markovian models. In
the homogeneous Markovian models, the big variation of the pixel values is penalized for all the
pixels, thus the noise is limited. However, the contours in the image are also obscured. The inho-
mogeneous Markovian models solves this problem by considering separately the homogeneous
areas and the contours.
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Shepp Logan phantom Contours of Shepp Logan

Head object Contours of Head

FIGURE 4.2 – The piecewise constant objects and their gradient.

4.2.1 Homogeneous Markovian model

The homogeneous Markovian model defines the same Markovian model for every voxel,
with the following prior model expression :

p(f) = Ψ (Φ (f(r), f(r′))) . (4.2)

The function Φ (f(r), f(r′)) describes the influence of the neighbor pixels on the current
pixel. In the Figure 4.1, we show the example of considering 4 and 8 neighbor pixels, and the
corresponding Φ(f(r), f(r′)) of these two cases are :

Φ (f(r)) = f(r)− 1

4

∑
r′∈N 4(r)

f(r′), (4.3)

Φ (f(r)) = f(r)− 1

8

∑
r′∈N 8(r)

f(r′), (4.4)

whereN 4(·) andN 8(·) represent respectively the set of 4 and 8 neighbor pixels.

The prior distribution Ψ with exponential form are commonly used :

p(f) = Ψ (Φ (f(r), f(r′))) ∝ exp

{
−λ
∑
r

‖Φ (f(r), f(r′))‖22

}
, (4.5)

where λ is a parameter of this prior distribution.
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The Laplacian Markovian model is also used in some methods :

p(f) = Ψ (Φ (f(r), f(r′))) ∝ exp

{
−λ
∑
r

‖Φ (f(r), f(r′))‖1

}
. (4.6)

By using these two prior models in Bayesian method and optimize via the MAP algorithm,
we obtain respectively the conventional Quadratic Regularization method (QR) and the Total
Variation method (TV) :

QR : J1(f) = ‖g − f‖22 + λ ‖Df‖22 ,
TV : J2(f) = ‖g − f‖22 + λ ‖Df‖1 , (4.7)

whereD is the gradient operator, corresponding to Φ (f(r), f(r′)).

4.2.2 Inhomogeneous Markovian models

The homogeneous Markovian models are frequently used, but a shortcoming is that these
models do not distinguish the homogeneous areas and the contours in the object, thus the
contours in the reconstructed image will not be preserved.

The inhomogeneous Markovian model solves this problem. In these models, one or seve-
ral hidden variables are defined to identify different areas. For example, the label of different
homogeneous zones, or the label of contours.

The word ”inhomogeneous” implies that the probability model for the pixels are not the
same for all the pixels. As shown in Figure 4.3, the pixels f1 and f4 have 2 neighbour pixels on
the contours, f2 has only 1 neighbour pixel on the contours, and f3 has no neighbour pixel on
the contours. In the inhomogeneous Markovian model, these four pixels have different prior dis-
tributions, depending on the neighbour pixels in the homogeneous areas (circles) while ignoring
the neighbour pixels on the contours (triangles).

f1

f2

f3

f4

: current pixel

: neighbour pixel 

  in homogeneous areas

: neighbour pixel 

  on contours

FIGURE 4.3 – Example of inhomogeneous Markovian model.

The inhomogeneous Markovian method depending on the label of different blocks is pre-
sented in [AMD10], and the prior model for the object is :

p(f |z) =
∏
R

N (µz(R), vz(R)), (4.8)
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where R ∈ R is the label of different blocks, µz(R) and vz(R) are respectively the mean and
variance of the pixel z in label R. From the model we see that in different blocks, f follows a
Gaussian distribution with different parameters, p(f |z) =

∏
RN (µz(R), vz(R)).

The gradient can also be used to control the Markovian model, separating the model for
voxels into homogeneous areas and contours areas. A method using the gradient value in the
prior model in proposed and presented in Chapter 6.

4.3 Sparse transformation base coefficients

The piecewise continuous variables can be represented by a optimally sparse base. A simple
example is the wavelet transformation. The wavelet transformation has been used in many works
of the X-ray CT reconstruction [BKW96, CKL01, RVJ+06] where the variable of interest is
piecewise continuous.

In Chapter 5, a Bayesian method basing on a prior model concerning the Haar transform
coefficients is presented.

With the wavelet transformation, or dictionary base transform, the piecewise continuous
prior property of the object become the sparse structured property of the coefficient of the
transformation. A prior model for enforcing the sparse structure is then used.

As it was presented in the previous section, the piecewise continuous variable can be repre-
sented by another sparse variable, via some linear or non linear transformation operations. We
present here some commonly used sparse representations.

The linear wavelet transformations include for example the Haar transformation [SF03], the
contourlet transformation [DV05], the curvelet transformation [SCD02], etc. We present here
the definition of an orthogonal transformation.

A linear transformation can be expressed as a multiplication by a matrix. Here we define a
linear transformation :

z = Df , (4.9)

where D ∈ RM×N represents the transformation matrix, f ∈ RN×1 is a vector and z ∈ RM×1

is the transform coefficient.

An orthogonal matrix is square, thus D ∈ RN×N , and z ∈ RN×1. In linear algebra, an
orthogonal matrix is a square matrix with real entries whose columns and rows are orthogonal
unit vectors (i.e., orthonormal vectors), and thus

DTD = I, (4.10)

where I is an identity matrix.

The equivalent characterization of the orthogonal matrix is that : its transpose is equal to its
inverse :

DT = D−1. (4.11)

One of the frequently used orthogonal transformation is the wavelet transformation. For
example the Discrete Haar transformation. The N ×N Haar transformation matrix is :

D =
[
dT0 , d

T
1 , · · · , dTN−1

]T
, (4.12)
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4.2.2 - Inhomogeneous Markovian models

and
DT = [d0, d1, · · · , dN−1] . (4.13)

dk is called the Haar function, and is defined as :

dk(t) =
1√
N


2p/2 (q − 1)/2p ≤ t < (q − 0.5)/2p

−2p/2 (q − 0.5)/2p ≤ t < q/2p

0 otherwise

, (4.14)

and d0(t) = 1/
√
N . p and q are defined as :

k = 2p + q − 1, (4.15)

and 2p is the largest power of 2 that is smaller than k.

when N = 2 :

D2 =
1√
2

[
1 1
1 −1

]
. (4.16)

When N = 4, we have :

D4 =
1

2


1 1 1 1
1 1 −1 −1√
2 −

√
2 0 0

0 0
√

2 −
√

2

 . (4.17)

In Figure 4.4, the wavelet shapes show the corresponding Haar functions. We can see that
the function has a shape as the step function and the period of the wavelet reduces by half when
level of p augments by 1.

FIGURE 4.4 – The wavelet shape of the Haar functions.

We can see that according to the definition, we have :

dTi ∗ dj =

{
1 if i = j

0 if i 6= j
(4.18)

Therefore we obtain :

DDT =


dT0
dT1
...

dTN−1

 [d0 d1 · · · dN−1] =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1

 , (4.19)

48



Sparsity enforcing prior distributions

and we obtain :
DDT = I. (4.20)

ConsequentlyDT = D−1.

In Figure 4.5, the Shepp Logan figure of size 2562 and its multilevel Haar transformation
coefficients are shown. The scale of the transformation coefficients are adapted such that they
are visually clearly.

FIGURE 4.5 – The Shepp Logan figure of size 2562 (left), its 2-level Haar transformation
coefficient (middle) and its 4-level Haar transformation coefficient (right).

There exist many orthogonal transformations, for example the wavelet transformation
[RVJ+06, BKW96], the curvelet transformation [SCD02, DS07], etc. By using the orthogo-
nal transformations in the Bayesian method, the transformation of the operator can be replaced
by the inversion of the operator, which is quick and convenient.

4.4 Sparsity enforcing prior distributions

As it was mentioned previously, the sparse transformation coefficients of a piecewise conti-
nuous variable is used as a hidden variable in many Bayesian methods. In a sparse vector, most
of the elements are zero. The sparse transformations are widely used in compressed sensing
problems [Don06, Bar07].

4.4.1 Distributions for sparse variables

In Bayesian inference, a sparse structured variable can be defined by some sparsity enforcing
prior distributions. Generally, three types of distributions are used to define the sparse variables :

1. The Generalized Gaussian distributions :

p(z) ∝ exp

{
−1

2
α ‖z‖ββ

}
. (4.21)

For example when β = 1, it becomes Lapacian distribution.
2. The Mixture distributions :

p(z) ∝
∏
k

exp

{
−1

2
αk ‖z‖22

}
. (4.22)
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4.4.2 - Generalized Student-t distribution

3. The heavy tailed distributions [Kle03], for example the Student-t distribution. The tails of
this type of distributions are not exponentially bounded, with the definition :

lim
x→∞

eλxp(X > x) =∞ ∀ λ > 0. (4.23)

The generalized Gaussian distribution or the Mixture distributions which can be used to
define the sparse variables are also heavy tailed.

4.4.2 Generalized Student-t distribution

Among all the sparsity enforcing distributions, the Laplacian distribution is frequently consi-
dered. However, the shortcoming is that the computation is complex and slow because of the
L1 norm optimization. The Student-t distribution is another well known sparsity enforcing dis-
tribution. In my work, I use a two-parameter version of the Student-t distribution, benefiting
the convenience that it can be derived via a hierarchical model and this model leads to a semi-
supervised system model for the Bayesian method.

As a heavy tailed distribution, the standard Student-t distribution has a probability density
function as :

St(x|ν) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) (1 +
x2

ν

)− ν+1
2

, ν > 0, (4.24)

where ν is the number of degrees of freedom and Γ represents the Gamma function.

The standard Student-t distribution can also be expressed as an Infinite Gaussian Scale Mix-
ture (IGSM) distribution [Tre01, PSWS03] :

St(x|ν) =

∫ ∞
0

N
(
x|0, 1

z

)
G
(
z|ν

2
,
ν

2

)
dz, (4.25)

where N (·) is the Gaussian distribution and G(·) is the Gamma distribution. A Normal-Inverse
Gamma marginalization can also be used to define the Student-t distribution :

St(x|ν) =

∫ ∞
0

N (x|0, z) IG
(
z|ν

2
,
ν

2

)
. (4.26)

Comparing with many other heavy tailed distributions, for example the Laplacian distribution
and the Generalized Gaussian distribution, the Student-t distribution is particularly interesting
thanks to the IGSM expression. What’s more, the IGSM expression is composed by a Normal
and a Gamma or Inverse Gamma distribution, which are conjugate likelihood and prior pairs.
This property facilitates the computation in Bayesian methods.

In our work, we replace the one-parameter Inverse Gamma distribution IG(z|ν
2
, ν
2
) by the

two-parameter Inverse Gamma distribution IG(z|α, β), and we call it the generalized Student-t
distribution. It is expressed as :

Stg (x|α, β) =

∫ ∞
0

N (x|0, z) IG (z|α, β) dz. (4.27)

And the explicit expression of the generalized Student-t distribution is :

Stg (x|α, β) =
Γ
(
α + 1

2

)
√

2βπΓ(α)

(
1 +

x2

2β

)−(α+ 1
2)
, α > 0, β > 0. (4.28)
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When α = β = ν
2
, we obtain the standard Student-t distribution.

In Figure 4.6, the form of the pdf of Gaussian distribution, Student-t distribution and the
generalized Student-t distribution are compared. From the comparison of the standard Student-t
distribution and the generalized Student-t distribution, we can see that the standard Student-t
distribution has a limitation : the shape of the pdf is either heavy tailed or with narrow peak.
These two properties can not be realized simultaneously. The generalized Student-t distribution,
however, can have a pdf with both narrow peak and a heavy tail, by choosing suitable values for
the parameters α and β.

-5 0 5
0

0.1

0.2

0.3

0.4

0.5
Normal

St-t

St-g

3 3.5 4 4.5 5
0

0.005

0.01

0.015

0.02
Normal

St-t

St-g

FIGURE 4.6 – The comparison of the pdfs of the Normal distribution, the Student-t distribution
and the generalized Student-t distribution.

In Bayesian inference, the sparse variables are defined belonging to a generalized Student-
t distribution. With the Normal-Inverse Gamma marginalization property, a sparse variable x
is defined as a Gaussian distributed variable, with mean equal to zero and variance z, and the
variance z is defined belonging to an Inverse Gamma distribution with parameters α and β :

p(x|z) = N (x|0, z),
p(z|α, β) = IG(z|α, β). (4.29)

By choosing different values for the (α, β) pair, we get different shape of the probability
distributed function. The standard Student-t distribution can be approached to a Gaussian dis-
tribution when ν →∞.

51



4.4.2 - Generalized Student-t distribution

Demonstration.

lim
ν→∞

p(x|ν) = lim
ν→∞

Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) (1 +
x2

ν

)− ν+1
2

. (4.30)

By using the theorem :

lim
ν→∞

Γ(ν + α)

Γ(ν)να
= 1, (4.31)

we have :

lim
ν→∞

Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) = lim
ν→∞

Γ
(
ν
2

+ 1
2

)
Γ
(
ν
2

) (
ν
2

) 1
2
√

2π
=

1√
2π
. (4.32)

And with the Taylor series we have :

lim
ν→∞

(
1 +

x2

ν

)− ν+1
2

= lim
ν→∞

exp

{
−ν + 1

2
ln

(
1 +

x2

ν

)}
= lim

ν→∞
exp

{
−ν + 1

2

(
x2

ν
− 1

2

x4

ν2
+

1

3

x6

ν3
+ · · ·

)}
= lim

ν→∞
exp

{
−1

2

ν + 1

ν
x2
}

= exp

{
−1

2
x2
}
.

(4.33)

And we get a Gaussian distribution. For the Stg distribution, we can also use the same strategy :

lim
α,β→∞

Γ
(
α + 1

2

)
√

2πβΓ(α)

(
1 +

x2

2β

)−(α+ 1
2)

= lim
α,β→∞

1√
2π

√
α

β
exp

{
−(α +

1

2
)

(
x2

2β
− 1

2

x4

4β2
+ · · ·

)}
= lim

α,β→∞

1√
2π

√
α

β
exp

{
−1

2

α + 1
2

β
x2
}
.

(4.34)

When α and β are both big enough and they are defined on the same scale, the approximation
is also a Gaussian distribution :

lim
α,β→∞

1√
2π

√
α

β
exp

{
−(α +

1

2
)

(
x2

2β
− 1

2

x4

4β2
+ · · ·

)}
=

1√
2π

exp

{
−1

2
x2
}
. (4.35)

2

4.5 Conclusion

We have introduced in this chapter the context of the Bayesian inference and discussed the
choice of the prior model for the piecewise continuous variable. The generalized Student-t dis-
tribution is presented in this chapter. From the discussion, we can see that the Stg distribution
could be used as the prior law for the sparse hidden variable in the Bayesian method. The or-
thogonal transformation is convenient as the inversion of operator and the transpose of operator
are identical.

52



Conclusion

In the next two chapters, we present the proposed Bayesian methods basing on two principal
strategies.

The first strategy is to define a hidden variable, z, which is a sparse transformation coef-
ficient of the object, f , in the prior model. A hierarchical model is proposed. We call it the
Hierarchical Haar based Bayesian Method (HHBM). In this method, both the coefficient z and
the object f are considered as unknown variables in the model, and the generalized Student-t
distribution is used as the prior distribution for the sparse coefficient z. This proposed method
and some extensions are presented in Chapter 5.

The second strategy (ROCC method), presented in Chapter 6, uses an inhomogeneous Mar-
kovian model. In this proposed method, the Laplacian of the object is considered as a hidden
variable, and is modeled by the generalized Student-t distribution because of its sparse structure.
The optimized Laplacian is used as a hyperparameter in the Markovian model for the object, and
the optimized object then is used in the optimization of Laplacian. Iteratively and alternately,
the object and the Laplacian are optimized.
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5
Sparsity Enforcing Unsupervised

Hierarchical Model

5.1 Introduction

As we have presented previously, the objects that we take into consideration in Non Destruc-
tive Testing (NDT) are commonly piecewise continuous. As presented in the previous chapter,
the prior models for the piecewise continuous variables are normally a Markovian model or a
hierarchical model with a hidden variable. This hidden variable is for example a sparse trans-
formation coefficient of the piecewise continuous variable.

In this chapter, a Bayesian method with a hierarchical structured prior model is proposed.
In this model, the coefficient of a sparse orthogonal transformation is considered as a hidden
variable. Meanwhile, the semi-supervised system is realized such that the parameters are esti-
mated simultaneously with the unknown variables. The initialization for the hyperparameters is
discussed and demonstrated in this chapter. The initialization of hyperparameters is insensible
to the final results, which is convenient comparing with the state-of-the-art methods.

5.2 The choice of the sparse transformation

In the big data size applications, the transformation is normally realized by a convolution
operator, as the multiplication matrix will have a huge size. In this case, the inverse of a trans-
formation is normally not expensive to compute. We use an orthonormal transformation in our
work. Thanks to the fact that the inversion and transpose of an orthonomal transformation are
identical, the computation with big data size can be simplified, with the transpose being replaced
by the inversion.

Wavelets and multiscale analysis have proved to be useful in a wide range of applications
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[FBS02, DB95, RVJ+06, LNDD07]. Some commonly used transforms are for example the
discrete wavelet transform (DWT) [AU96, TSP+08], the discrete cosinus transformation (DCT)
[RY14, SK13], the discrete Haar transformation [SF03], the discrete curvlet transformation
[CDDY06], the dual-tree Complex Wavelet Transform (DT-CWT) [SBK05, Kin98].

Among these transforms, the discrete Haar transformation is practical in the discrete phan-
toms, and especially for the piecewise constant or continous images. The Haar transform is one
of the earliest transformation. As one of the simplest and oldest orthonormal wavelet, the Haar
transformation is used in many applications as for example image coding [ABMD92, CDSB03],
edge extraction [GLPS07], and recently image restoration [PP10].

In the Bayesian method proposed in this chapter, the Haar transformation coefficient is used
as a sparse hidden variable. In this section, the details of the choice of the transformation level
are presented.

Figure 5.1 shows the 2 − level, 4 − level and 5 − level Haar transformation coefficient of
Shepp Logan phantom and the Head object, both of size 256 × 256. The scale of these figures
have been adapted to be visually more clearly. In general the degree of sparsity increases when
the transformation level augments.

Haar coefficient with l = 2 Haar coefficient with l = 4 Haar coefficient with l = 5

FIGURE 5.1 – The multilevel discrete Haar transformation coefficients of the 2D Shepp Logan
phantom (top) and the Head object (bottom). The transformation level are respectively 2 levels

(left), 4 levels (middle) and 5 levels (right).

In order to analyze the properties of HT of different levels, we present in Figure 5.2 and
Figure 5.3 the histograms of the transformation coefficients for the Shepp Logan object and the
Head object respectively. From the histogram we can see that, when l is small, the coefficients
are less compressed with bigger values. When l increases, the sparsity rate increases. We can see
from the figures that, when the transformation level is equal to or bigger than 4, the histograms
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are identical and hence the sparsity rate are on the same scale. Thus in our work, we choose to
use a 5-level HT in order to get a stable sparse structure.

l = 1 l = 2

l = 3 l = 4

l = 5 l = 6

FIGURE 5.2 – The histogram of the multilevel Haar transformation of the Shepp Logan
phantom. Comparison of the histogram of different transformation levels.

As we have presented previously, the sparse variable can be modeled principally by three
types of distributions : the generalized Gaussian distributions for example the Laplacian dis-
tribution, the Gaussian mixture distributions for example a mixture of two Gaussian distribu-
tions and the heavy tailed distributions for example the Student-t distribution. As presented in
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l = 1 l = 2

l = 3 l = 4

l = 5 l = 6

FIGURE 5.3 – The histogram of the multilevel Haar transformation of the Head object.
Comparison of the histogram of different transformation levels.
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Section 4.4, the generalized Student-t distribution is used to model the sparse transformation
coefficients.

5.3 A synthesis hierarchical Bayesian model

In the published works, the prior model types can be classified into two types : the analysis
type and the synthesis type [EMR07]. The analysis based approach derives the likelihood of the
target signal from a forward transform applied to it. An example is the gradient in TV method.
This analysis type commonly appears as a regularization term in optimization :

f̂ = arg min
f
{J(f)} with J(f) = ‖g −Hf‖22 + λR (Df) . (5.1)

The synthesis type of prior, on the other hand, changes the signal of consideration into the
coefficient of a forward transform which will be estimated. The coefficient then will be used
in a post processing to obtain the final result of the target signal. An example is as following :
with the forward model g = Hf + ε and the forward transform f = Dz, z is estimated by
optimizing :

f̂ = Dẑ with ẑ = arg min
z
{J(z)} with J(z) = ‖g −HDz‖22 + λR(z), (5.2)

and f̂ = Dẑ is derived as the final result of the reconstruction.

First of all, we consider a synthesis model with which we obtain directly the coefficient of
the transformation.

5.3.1 The Hierarchical Model.

Again, we mention here the forward system model :

g = Hf + ε, (5.3)

where ε is an additive noise representing the uncertainties of the projection system. In the X-ray
CT models, it is modeled by a Gaussian distribution, with mean equal to zero :

p(ε|vε) = N (ε|0, vεI). (5.4)

The variance of the distribution, vε, is a fixed scalar in a basic model, with the hypothesis of a
stationary noise.

In most of the cases, the variance of the additive noise in the forward model, Eq.(5.3), is
unknown. In that case, we consider it as an unknown variable and a prior probability distribution
is assigned to it.

To choose a prior model for the variance of a Gaussian likelihood, a conjugate distribution
is always preferred. Taking into consideration of the positivity of the variance, the Gamma
or Inverse Gamma distributions are commonly used. In our work, we use the Inverse Gamma
distribution to take advantage of the Normal-Inverse Gamma bivariate distribution property,
which will be presented later.
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Définition. The Inverse Gamma (IG) distribution’s probability density function over the support
x > 0 is :

p(x|α, β) =
βα

Γ(α)
x−α−1 exp

(
−β
α

)
, (5.5)

with shape parameter α and rate parameter β. Γ(·) denotes the gamma function :

Γ(x) =

∫ ∞
0

txe−t dt. (5.6)

As we can see in Figure 5.4 which presents the pdf of the inverse gamma distribution, the
variable is always positive, and most of the values are centralized at small values near zero,
which exactly adapt to the property of the variance. Indeed, the inverse gamma distribution is a
conjugate distribution for a Gaussian likelihood with unknown variance, the Bayesian inference
methods are therefore simplified with a simple and regular posterior distribution.
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0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

α=3, β=0.5

α=3, β=1

α=2, β=1

α=1, β=1

α=0.5, β=1

FIGURE 5.4 – The pdfs of Inverse Gamma distribution with different parameter values.

The inverse gamma model for vε is denoted by :

p(vε|αε0 , βε0) = IG(vε|αε0 , βε0). (5.7)

As is presented in Chapter 4, a Gaussian distribution, Eq.(5.4), with the variance belonging to
an inverse gamma distribution, Eq.(5.7), leads to a generalized Student-t distribution, which can
either approach a Gaussian distribution or tending to a heavy tailed sparse enforcing distribution
depending on the choice of the two hyperparameters αε0 and βε0 .

For a more general case, we consider a non-stationary noise, thus for each measurement the
variance of the noise is different. This appears for example in X ray CT for a slab material.
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The noise will be more important in the projection direction along the longer side of the object,
as there will be more absorption and scattering of photons when the radiations pass through
the object. In these cases, the variance of noise is defined as a vector, each element of which
corresponds to one projection direction. Therefore the prior system model and the noise model
are :

p(g|f ,vε) = N (g|Hf ,V ε), where V ε = diag [vε] , (5.8)
p(vε|αε0 , βε0) = IG(vε|αε0 , βε0), (5.9)

where vε = [vε1 , · · · , vεM ]. By supposing the independence of vεi , ∀i, we obtain :

p(vε|αε0 , βε0) =
M∏
i=1

IG(vεi |αε0 , βε0). (5.10)

Each element vεi belongs to an inverse gamma distribution.

Now, a prior model is defined for the additive noise ε. For the reconstruction of f , the most
important model to be defined is the prior model of the object f . As it is presented previously,
in the X ray CT the phantoms under consideration are generally piecewise continuous, and the
discrete multilevel Haar transform coefficient is a suitable representation of the phantom. We
take into consideration the sparsity of the Haar transform coefficient with the relation :

f = Dz, (5.11)

where z is the multilevel Haar transform coefficient of f andD−1 is the transformation opera-
tor, with z = D−1f . As this transformation operator is orthogonal with D−1 = DT , and we
have z = DTf .

With this relation, we could replace the variable f in Eq.(5.3) by the transformation coeffi-
cient z :

g = HDz + ε. (5.12)

By doing so, using the MAP estimation will lead to exactly the same criterion as the synthesis
method, shown in Eq. (5.2).

As the Haar transformation coefficient, the variable z is sparse. Consequently, we use the
generalized Student-t distribution, presented in Chapter 4, to define each element zj :

p(zj|αz0 , βz0) =
Γ
(
αz0 + 1

2

)√
2πβz0Γ (αz0)

(
1 +

z2j
2βz0

)−(αz0+
1
2)
. (5.13)

Thanks to the Gaussian-Inverse Gamma marginal structure of the Stg distribution, we could use
a hierarchical model to define the hidden variable :

p(z|vz) = N (z|0,V z), where V z = diag [vz] ,

p(vz|αz0 , βz0) =
N∏
j=1

IG(vzj |αz0 , βz0), (5.14)

where vz = [vz1 , · · · , vzN ], and its elements are supposed to be a priori independent and identi-
cally distributed.
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Now we have all the prior models with the hyper-parameters (αε0 , βε0) and (αz0 , βz0) :

p(g|z,vε) = N (g|HDz,V ε) ∝ |V ε|−
1
2 exp

{
−1

2
(g −HDz)T V −1ε (g −HDz)

}
,

p(z|vz) = N (z|0,V z) ∝ |V z|−
1
2 exp

{
−1

2
zTV −1z z

}
,

p(vε|αε0 , βε0) =
M∏
i=1

IG(vεi |αε0 , βε0) ∝
M∏
i=1

{
v
−(αε0+1)
εi exp

{
−βε0v−1εi

}}
,

p(vz|αz0 , βz0) =
N∏
i=1

IG(vzj |αz0 , βz0) ∝
N∏
j=1

{
v
−(αz0+1)
zj exp

{
−βz0v−1zj

}}
. (5.15)

Figure 5.5 present the generative graph of the hierarchical system. In this figure, the circles
stand for the unknown variables and hidden variables, and the squares stand for the fixed para-
meters and hyperparameters.

αz0 , βz0 αε0 , βε0

vz

z

g

vε

HD

p(g|z,vε)

p(z|vz)

p(vz|αz0 , βz0)

p(vε|αε0 , βε0)

FIGURE 5.5 – Generative graph of the synthesis model.

Then we use the Bayes rule to obtain the posterior distribution :

p(f ,vε,vz|g) ∝ p(g|z,vε)p(z|vz)p(vz)p(vε) (5.16)
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The posterior distribution is obtained by taking into consideration Equations (5.15) :

p(z,vz,vε|g) = |V ε|−
1
2 exp

{
−1

2
(g −HDz)T V −1ε (g −HDz)

}
·

|V z|−
1
2 exp

{
−1

2
zTV −1z z

}( M∏
i=1

v
−(αε0+1)
εi exp

{
−βε0v−1εi

})
·

N∏
j=1

(
v
−(αz0+1)
zj exp

{
−βz0v−1zj

})
=

M∏
i=1

v
− 1

2
εi exp

{
−1

2

M∑
i=1

v−1εi [g −HDz]2i

}
·

N∏
j=1

v
− 1

2
zj exp

{
−1

2

N∑
j=1

v−1zj z
2
j

}
M∏
i=1

v
−(αε0+1)
εi

M∏
i=1

exp
{
−βε0v−1εi

}
·

N∏
j=1

v
−(αz0+1)
zj

N∏
j=1

exp
{
−βz0v−1zj

}
.

(5.17)

From the posterior distribution we can apply a Bayesian point estimation to solve the recons-
truction problem.

5.3.2 Bayesian point estimation

The commonly used Bayesian point estimations are the Joint Maximum A Posterior (JMAP)
estimation and the Posterior Mean (PM) estimation via Variational Bayesian Approach (VBA).
JMAP estimation maximizes the posterior distribution with respect to each variable alternately.
This algorithm is convenient for the big data size problems. Meanwhile, the PM algorithm
is more complicated. By using a VBA method, the computation could be simplified, but the
computational costs are still very expensive for the simulations of 3D phantom. In my work, the
JMAP method is used.

In 3D phantom reconstruction, the size of data is so big that the elements of the matrix H
are not accessible. The only things that we have access to are the geometric operator of projec-
tion Hf and the geometric operator of back-projection HTg. MCMC method is theoretically
feasible but is too costly because of the huge data size and the huge amount of variables.

5.3.3 The Joint MAP estimation.

In the JMAP estimation, the maximization of the posterior distribution is changed to the
minimization of the negative logarithm of the posterior distribution. This comes from the fact
that the distributions are always in the form of an exponential of a negative polynomial, and that
the logarithm operation is monotonous :

(ẑ, v̂z, v̂ε) = arg max
z,vz ,vε

{p (z,vz,vε|g)}

= arg min
z,vz ,vε

{− ln p (z,vz,vε|g)} .
(5.18)
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From Eq.(5.17), we calculate the criterion of the optimization :

J(z,vz,vε) = − ln p (z,vz,vε|g)

=
1

2

M∑
i=1

ln vεi +
1

2

M∑
i=1

v−1εi [g −HDz]2i +
1

2

N∑
j=1

ln vzj +
1

2

N∑
j=1

v−1zj z
2
j

+ (αε0 + 1)
M∑
i=1

ln vεi + βε0

M∑
i=1

ln vεi + (αz0 + 1)
N∑
j=1

ln vzj + βz0

N∑
j=1

ln vzj .

(5.19)

In order to estimate three unknown variables from one joint criterion, we use an alternate opti-
mization method, which estimates each of the unknown variable alternately. When optimizing
one unknown variable, the others are fixed. It is called the Joint Maximum A Posteriori (JMAP)
estimation in this thesis.

The optimization criterion for variables are respectively :

J(z) =
1

2

M∑
i=1

v−1εi [g −HDz]2i +
1

2

N∑
j=1

v−1zj z
2
j , (5.20)

J(vz) =
1

2

N∑
j=1

ln vzj +
1

2

N∑
j=1

v−1zj z
2
j + (αz0 + 1)

N∑
j=1

ln vzj + βz0

N∑
j=1

ln v−1zj , (5.21)

J(vε) =
1

2

M∑
i=1

ln vεi +
1

2

M∑
i=1

v−1εi [g −HDz]2i + (αε0 + 1)
M∑
i=1

ln vεi + βε0

M∑
i=1

ln v−1εi .

(5.22)

By considering vzj , ∀j ∈ [1, N ] and vεi , ∀i ∈ [1,M ] separately accounting for the hypo-
thesis that each of them are independent, we obtain :

J(z) =
1

2

M∑
i=1

v−1εi [g −HDz]2i +
1

2

N∑
j=1

v−1zj z
2
j , (5.23)

J(vzj) =

(
αz0 +

3

2

)
ln vzj +

(
βz0 +

1

2
z2j

)
v−1zj , (5.24)

J(vεi) =

(
αε0 +

3

2

)
ln vεi +

(
βε0 +

1

2
[g −HDz]2i

)
v−1εi . (5.25)

The gradient of∇J(z) is :

∇J(z) =
d
(

1
2

(g −HDz)T V −1ε (g −HDz) + 1
2
zTV −1z z

)
dz

=
1

2

(
−DTHTV −1ε g −DTHTV −1ε g + 2DTHTV −1ε HDz

)
+

1

2
· 2V −1z z

=−DTHTV −1ε g +DTHTV −1ε HDz + V −1z z

=−DTHTV −1ε g +
(
DTHTV −1ε HD + V −1z

)
z.

(5.26)

A local minimum value ẑ appears when ∇J(z)|ẑ = 0 :

−DTHTV −1ε g +
(
DTHTV −1ε HD + V −1z

)
ẑ = 0. (5.27)
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And so :
ẑ =

(
DTHTV −1ε HD + V −1z

)−1
DTHTV −1ε g. (5.28)

However, this doesn’t work in the 3D X ray CT problems. As in the huge data size case, it is
impossible to calculate the inversion of the matrix

(
DTHTV −1ε HD + V −1z

)
, needless to say

to do this computation in each iteration.

Some algorithms are proposed and used to solve this problem, for example the gradient
descent algorithm [Bat92, VCR97], the conjugate gradient algorithm [FB99, Wu01], etc. In our
work we used the gradient descent method to optimize the variable, by iteratively computing :

ẑ(k+1) = ẑ(k) − γ(k)z ∇J(ẑ(k)), (5.29)

where∇J(ẑ(k)) = dJ(z)
dz is the gradient of the criterion and γ(k)z is the descent step length. γ(k)z

can either be fixed as a constant or change in every iteration adapting the gradient. The last case
is called the optimized step length strategy [BV04], in which γ(k)z is calculated in each iteration
by minimizing the criterion :

γ(k)z = arg min
γz

{
J(ẑ(k) − γz∇J(ẑ(k)))

}
, (5.30)

where J(z − γz∇Jz) is simplified as :

J(z − γz∇J(z))

=
1

2
(g −HD (z − γz∇J(z)))T V −1ε (g −HD (z − γz∇J(z)))

+
1

2
(z − γz∇J(z))T V −1z (z − γz∇J(z))

=
1

2

(
gT − zTDTHT + γz∇J(z)TDTHT

)
V −1ε (g −HDz + γzHD∇J(z))

+
1

2

(
zT − γz∇J(z)T

)
V −1z (z − γz∇J(z))

=
1

2

(
γzg

TV −1ε HD∇J(z)− γzzTDTHTV −1ε HD∇J(z) + γz∇J(z)TDTHTV −1ε g

−γz∇J(z)TDTHTV −1ε HDz + γ2z∇J(z)TDTHTV −1ε HD∇J(z)
)

+
1

2

(
−γzzTV −1z ∇J(z)− γz∇J(z)TV −1z z + γ2z∇J(z)TV −1z ∇J(z)

)
+ Cst

=
1

2
γz
(
2∇J(z)TDTHTV −1ε g − 2∇J(z)TDTHTV −1ε HDz − 2∇J(z)TV −1z z

)
+

1

2
γ2z
(
∇J(z)TDTHTV −1ε HD∇J(z) +∇J(z)TV −1z ∇J(z)

)
+ Cst

=γz∇J(z)T
[
DTHTV −1ε g −DTHTV −1ε HDz − V −1z z

]
+

1

2
γ2z
[
‖Y εHD∇J(z)‖22 + ‖Y z∇J(z)‖22

]
+ Cst,

where Y ε = V
− 1

2
ε and Y z = V

− 1
2

z . From Eq.(5.26) we have :

J(z) = −DTHTV −1ε (g −HDz) + V −1z z

= −DTHTV −1ε g +DTHTV −1ε HDz + V −1z z.
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So that :

J(z − γz∇J(z)) = −γz∇J(z)T∇J(z) +
1

2
γ2z
[
‖Y εHD∇J(z)‖22 + ‖Y z∇J(z)‖22

]
+ Cst

= −γz ‖∇J(z)‖22 +
1

2
γ2z
[
‖Y εHD∇J(z)‖22 + ‖Y z∇J(z)‖22

]
.

The gradient of the criterion is :

dJ(z − γz∇J(z))

dγz
= −‖∇J(z)‖22 + γz

[
‖Y εHD∇J(z)‖22 + ‖Y z∇J(z)‖22

]
.

By setting
dJ(z − γz∇J(z))

dγz

∣∣∣
γ
(k)
z

= 0,

we get :

γ(k)z =
‖∇J(z)‖22

‖Y εHD∇J(z)‖22 + ‖Y z∇J(z)‖22
.

Therefore, the gradient descent optimization for variable z is summarized as following :

ẑ(k+1) = ẑ(k) − γ(k)z ∇J(ẑ(k)), (5.31)

γ(k)z =
‖∇J(z)‖22

‖Y εHD∇J(z)‖22 + ‖Y z∇J(z)‖22
, (5.32)

with

J(z) =
1

2

M∑
i=1

v−1εi [g −HDz]2i +
1

2

N∑
j=1

v−1zj z
2
j , (5.33)

∇J(z) = −DTHTV −1ε g +DTHTV −1ε HDz + V −1z z. (5.34)

Back to the Eq.(5.21) and Eq.(5.22), we calculate the gradient of these two criterions :

∇J(vzj) =

(
αz0 +

3

2

)
v−1zj −

(
βz0 +

1

2
z2j

)
v−2zj , (5.35)

∇J(vεi) =

(
αε0 +

3

2

)
v−1εi −

(
βε0 +

1

2
[g −HDz]2i

)
v−2εi . (5.36)

Now we discuss if the local minimum is the global minimum. In order to consider both of
these two variables, we consider a general case, for the criterion of the form

J(x) = a lnx+ bx−1,

where a > 0, b > 0 and x ≥ 0. First of all, we look for the point where the gradient of the
criterion equals to zero :

∇J(x) =
a

x
− b

x2
=

1

x

(
a− b

x

)
,

where x = 0 is not defined in this case, so the only zero point is when x0 = b
a
.
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For x > x0 = b/a, we have :

1

x
<
a

b
=⇒ b

x
< a =⇒ − b

x
> −a =⇒ a− b

x
> 0 =⇒ 1

x

(
a− b

x

)
> 0

=⇒ ∇J(x) > 0.

For 0 < x < x0 = b/a

1

x
>
a

b
=⇒ b

x
> a =⇒ − b

x
> −a =⇒ a− b

x
< 0 =⇒ 1

x

(
a− b

x

)
< 0

=⇒ ∇J(x) < 0.

And when x → 0+ =⇒ ∇J(x) → −∞, where 0+ is a positive value infinitely approaching
zero.

We have demonstrated that when x < x0 the gradient is always negative and when x > x0
the gradient is always positive. So that the critical value x0 = b/a is exactly the global minimum
of the criterion. We get :

v̂zj =
βz0 + 1

2
z2j

αz0 + 3
2

, (5.37)

v̂εi =
βε0 + 1

2
[g −HDz]2i
αε0 + 3

2

. (5.38)

5.3.4 Algorithm and implementation

The variables ẑ, v̂zj and v̂εi are optimized alternately and iteratively by using Eq.(5.31)-
Eq.(5.34), Eq.(5.37) and Eq.(5.38). The computation algorithm for updating the variable z is
shown in Algorithm 1.

Algorithm 1 Gradient descent algorithm for ẑ
1: Input : H , D, g
2: Output : ẑ(k+1)

3: Initialization : ẑ(0)

4: k = 0
5: repeat
6: k = k + 1
7: Calculate∇J(ẑ(k)) according to Eq.(5.34)
8: Update γ(k)z according to Eq.(5.32)
9: Update ẑ(k+1) = ẑ(k) − γ(k)z ∇J(ẑ(k))

10: until convergence or max iteration

The entire optimization algorithm which estimate all the variables are shown in Algorithm
2.

After the estimation of the variable z, a post processing is applied in order to obtain the
reconstruction of phantom :

f̂ = Dẑ. (5.39)

67



5.3.5 - Simulation results

Algorithm 2 Summary of the JMAP algorithm for the synthesis Bayesian hierarchical method
1: Fix parameters αz0 , βz0 , αε0 , βε0
2: Input : H , D, g
3: Output : ẑ, v̂z, v̂ε
4: Initialization : ẑ(0) = D−1f̂FBP , where f̂FBP is the result of the FBP method.
5: repeat
6: Update ẑ according to Algorithm 1
7: Compute vz according to Eq.(5.37)
8: Compute vε according to Eq.(5.38)
9: until convergence or max iteration

5.3.5 Simulation results

We use the projections dataset of the Shepp Logan phantom of size 2563 to reconstruct
the phantom. The dataset is obtained respectively by using : 128 projections with a high
SNR=40dB, 128 projections with a low SNR=20dB, 64 projections with a high SNR=40dB
and 64 projections with a low SNR=20dB.

40dB 20dB

FIGURE 5.6 – Middle slice of reconstructed Shepp Logan phantom of size 2563 from
projection sinogram with 128 projections (top) or 64 projections (bottom) and a noise of

SNR=40dB (left) or SNR=20dB (right).

From the results, we can see that from the reconstructed coefficient, we obtain a reconstruc-
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ted phantom with block artifacts. This phenomena comes from the fact that, the inverse wavelet
transformation can only reconstruct to a perfect object when the coefficient is not contaminated.
We can see that the artifacts has square shapes as the Haar transformation considers only two
wavelet direction.

Obviously, this result with the square artifacts is unsatisfactory. We propose another Baye-
sian method basing on this method. The new Bayesian method estimates the object f and the
transform coefficient z simultaneously. The estimated coefficient is used during the reconstruc-
tion of the object in each iteration. This proposed method is named the HHBM (Haar transfor-
mation based Hierarchical Bayesian Method) in our work.

5.4 HHBM method

From the simulation results of the previously presented method, we find that the final result
of the reconstruction contains a lot of artifacts. This phenomenon comes from the last step of
the process : the transform from ẑ to f̂ . A small error on some of the coefficients, zj , affects
the image f greatly, in particular when zj is in the upper level. So we propose another Bayesian
method, basing on the previous method, but reconstruct the phantom f̂ simultaneously while
estimating the coefficient z and other variables.

The system forward model is the same :

g = Hf + ε. (5.40)

However, instead of using an exact discrete multilevel Haar transform from f to z, we
consider a relaxed relation :

f = Dz + ξ, (5.41)

where ξ is an additive noise representing uncertainties of the transformation. While choosing
the prior model for ξ, the objective is that f andDz are as approximate as possible. Therefore
we define ξ as a sparse noise with most of the values approaching to zero. The generalized
Student-t distribution is used to model ξ, enforcing its sparse structure. The Stg distribution for
ξ is defined via the hierarchical model :

p(ξ|vξ) = N (ξ|0,V ξ) ∝ |V ξ|−
1
2 exp

{
−1

2
ξTV −1ξ ξ

}
, (5.42)

p(vξ|αξ0 , βξ0) =
N∏
j=1

IG
(
vξj |αξ0 , βξ0

)
∝

N∏
j=1

(
v
−(αξ0+1)

ξj
exp

{
−βξ0v−1ξj

})
, (5.43)

where V ξ = diag [vξ], vξ =
[
vξ1 , · · · , vξj , · · · , vξN

]
, and vξj are iid. In this model, both z and

ξ are sparse and belong to a Stg distribution.

With this forward transform model and the prior model of ξ, we have :

p(f |z,vξ) =N (f |Dz,V ξ)

∝ |V ξ|−
1
2 exp

{
−1

2
(f −Dz)T V −1ξ (f −Dz)

}
.

(5.44)
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Vector z = [z1, z2, · · · , zN ] represents the discrete multi-level Haar transform coeffi-
cient of piece-wise continuous phantom f . We use the generalized Student-t distribution (Stg)
[Dum16] to model z, enforcing the sparsity property :

p(z|vz) = N (z|0,V z), (5.45)

p(vz|αz0 , βz0) =
N∏
j=1

IG(vzj |αz0 , βz0). (5.46)

Thanks to the fact that the Inverse Gamma distribution is conjugate for a Gaussian likeli-
hood with known experience and unknown variance, using this Stg distribution simplifies the
calculations when using the Bayesian point optimization methods, for example the Posterior
Mean via Variational Bayesian Approximation (VBA) method [AMD10].

We list out all the proposed likelihood and prior models depending on the prior property of
each variable :

p(g|f ,vε) ∝ |V ε|−
1
2 exp

{
−1

2
(g −Hf)T V −1ε (g −Hf)

}
(5.47)

p(f |z,vξ) ∝ |V ξ|−
1
2 exp

{
−1

2
(f −Dz)T V −1ξ (f −Dz)

}
, (5.48)

p(z|vz) ∝ |V z|−
1
2 exp

{
−1

2
zTV −1z z

}
, (5.49)

p(vz|αz0 , βz0) ∝
N∏
j=1

(
v
−(αz0+1)
zj exp

{
−βz0v−1zj

})
, (5.50)

p(vε|αε0 , βε0) ∝
M∏
i=1

(
v
−(αε0+1)
εi exp

{
−βε0v−1εi

})
, (5.51)

p(vξ|αξ0 , βξ0) ∝
N∏
j=1

(
v
−(αξ0+1)

ξj
exp

{
−βξ0v−1ξj

})
. (5.52)

In this model, vzj , vεi and vξj , ∀i ∈ [1,M ] , ∀j ∈ [1, N ], are supposed to be independent
and identically distributed (iid). The generative graph of this hierarchical structured model is
given in Figure 5.7.

By using the Bayes rule, Eq.(3.39), the posterior distribution is obtained :

p(f , z,vε,vξ,vz|g) =
p(g,f , z,vε,vξ,vz)

p(g)

=
p(g|f ,vε)p(f |z,vξ)p(z|vz)p(vz)p(vε)p(vξ)

p(g)

∝ p(g|f ,vε)p(f |z,vξ)p(z|vz)p(vz)p(vε)p(vξ).

(5.53)

Substituting the prior distribution models in Eq.(5.47)-Eq.(5.52), we get the posterior distri-
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αz0 , βz0 αε0 , βε0αξ0 , βξ0

vz

z

f

g

vε

vξ

D

H

p(g|f ,vε)

p(f |z,vξ)

p(z|vz)

p(vz|αz0 , βz0)

p(vξ|αξ0 , βξ0)

p(vε|αε0 , βε0)

FIGURE 5.7 – Generative graph of the HHBM method.

bution :

p(f , z,vz,vε,vξ|g)

∝ |V ε|−
1
2 exp

{
−1

2
(g −Hf)T V −1ε (g −Hf)

}
|V ξ|−

1
2 exp

{
−1

2
(f −Dz)T V −1ξ (f −Dz)

}
|V z|−

1
2 exp

{
−1

2
zTV −1z z

} N∏
j=1

(
v
−(αz0+1)
zj exp

{
−βz0v−1zj

})
M∏
i=1

(
v
−(αε0+1)
εi exp

{
−βε0v−1εi

}) N∏
j=1

(
v
−(αξ0+1)

ξj
exp

{
−βξ0v−1ξj

})
=

M∏
i=1

v
− 1

2
εi exp

{
−1

2
(g −Hf)T V −1ε (g −Hf)

}
N∏
j=1

v
− 1

2
ξj

exp

{
−1

2
(f −Dz)T V −1ξ (f −Dz)

}
N∏
j=1

v
− 1

2
zj exp

{
−1

2
zTV −1z z

} N∏
j=1

v
−(αz0+1)
zj

N∏
j=1

exp
{
−βz0v−1zj

}
M∏
i=1

v
−(αε0+1)
εi

M∏
i=1

exp
{
−βε0v−1εi

} N∏
j=1

v
−(αξ0+1)

ξj

N∏
j=1

exp
{
−βξ0v−1ξj

}
.

(5.54)

As the reasons presented in the previous section, the JMAP estimation algorithm is used to
optimize all the unknown variables.
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5.4.1 Joint Maximum A Posterior estimation

The Joint Maximum A Posterior (JMAP) method estimate all the unknown variables by
maximizing the posterior distribution obtained below :(

f̂ , ẑ, v̂z, v̂ε, v̂ξ

)
= arg max

f ,z,vz ,vε,vξ
{p(f , z,vz,vε,vξ|g)} . (5.55)

As the posterior distribution has the form of exponential distribution, it becomes a minimization
of the negative logarithm of the posterior distribution :(

f̂ , ẑ, v̂z, v̂ε, v̂ξ

)
= arg min

f ,z,vz ,vε,vξ
{− ln p(f , z,vz,vε,vξ|g)}

= arg min
f ,z,vz ,vε,vξ

{J(f , z,vz,vε,vξ)} .
(5.56)

So, the criterion of optimization is :

J(f , z,vz,vε,vξ) =− ln p(f , z,vz,vε,vξ|g)

=
1

2

M∑
i=1

ln vεi +
1

2
(g −Hf)T V −1ε (g −Hf) +

1

2

N∑
j=1

ln vξj

+
1

2
(f −Dz)T V −1ξ (f −Dz) +

1

2

N∑
j=1

ln vzj +
1

2
zTV −1z z

+ (αz0 + 1)
N∑
j=1

ln vzj + βz0

N∑
j=1

v−1zj + (αε0 + 1)
M∑
i=1

ln vεi

+ βε0

M∑
i=1

v−1εi + (αξ0 + 1)
N∑
j=1

ln vξj + βξ0

N∑
j=1

v−1ξj .

(5.57)

The variables are estimated alternately and iteratively. The optimization criterion for each
variable consist of the terms containing the corresponding variable :

J(f) =
1

2
(g −Hf)T V −1ε (g −Hf) +

1

2
(f −Dz)T V −1ξ (f −Dz) ,

J(z) =
1

2
(f −Dz)T V −1ξ (f −Dz) +

1

2
zTV −1z z,

J(vz) =
1

2

N∑
j=1

ln vzj +
1

2
zTV −1z z + (αz0 + 1)

N∑
j=1

ln vzj + βz0

N∑
j=1

v−1zj ,

J(vε) =
1

2

M∑
i=1

ln vεi +
1

2
(g −Hf)T V −1ε (g −Hf) + (αε0 + 1)

M∑
i=1

ln vεi + βε0

M∑
i=1

v−1εi ,

J(vξ) =
1

2

N∑
j=1

ln vξj +
1

2
(f −Dz)T V −1ξ (f −Dz) + (αξ0 + 1)

N∑
j=1

ln vξj + βξ0

N∑
j=1

v−1ξj .

(5.58)
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And the optimization results are obtained by minimizing the criterions :

f̂ = arg min
f
{J(f)} ,

ẑ = arg min
z
{J(z)} ,

v̂z = arg min
vz
{J(vz)} ,

v̂ε = arg min
vε
{J(vε)} ,

v̂ξ = arg min
vξ
{J(vξ)} . (5.59)

The minimization locate at the critical points, where the gradient of the criterion equal to
zero. In order to obtain these critical values, the gradient of the criterion are calculated :

∇J(f) = −HTV −1ε (g −Hf) + V −1ξ (f −Dz) , (5.60)

∇J(z) = −DTV −1ξ (f −Dz) + V −1z z. (5.61)

And for vectors vz, vε and vξ, each element of them are considered separately because of the
independence hypothesis :

∇J(vzj) =
1

2
v−1zj −

1

2
z2j v
−2
zj

+ (αz0 + 1) v−1zj − βz0v
−2
zj
, (5.62)

∇J(vεi) =
1

2
v−1εi −

1

2
[g −Hf ]2i v

−2
εi

+ (αε0 + 1) v−1εi − βε0v
−2
εi
, (5.63)

∇J(vξj) =
1

2
v−1ξj −

1

2
[f −Dz]2j v

−2
ξj

+ (αξ0 + 1) v−1ξj − βξ0v
−2
ξj
. (5.64)

From Eq.(5.60) and Eq.(5.61) :

∇J(f)
∣∣∣f̂ = 0 =⇒ f̂ =

(
HTV −1ε H + V −1ξ

)−1 (
HTV −1ε g + V −1ξ Dz

)
, (5.65)

∇J(z) |ẑ = 0 =⇒ ẑ =
(
DTV −1ξ D + V −1z

)−1
DTV −1ξ f . (5.66)

As we have mentioned previously, the inversion of the matrix
(
HTV −1ε H + V −1ξ

)
and

matrix
(
DTV −1ξ D + V −1z

)
are impossible in the reconstruction of 3D objects because of the

huge data size. The gradient descent algorithm is used to realize the optimization for these two
variables by computing :

f̂
(k+1)

= f̂
(k)
− γ(k)f ∇J(f̂

(k)
),

ẑ(k+1) = ẑ(k) − γ(k)z ∇J(ẑ(k)), (5.67)

where γ(k)f and γ(k)z are the gradient descent step length and are obtained by minimizing J(f̂
(k)
−

γf∇J(f̂
(k)

)) and J(ẑ(k) − γz∇J(ẑ(k))) respectively :

J(f − γf∇J(f))

=γf∇J(f)T
[
HTV −1ε (g −Hf)− V −1ξ (f −Dz)

]
+

1

2
γ2f
[
‖Y εH∇J(f)‖22 + ‖Y ξ∇J(f)‖22

]
+ Constant, where Y ε = V

− 1
2

ε and Y ξ = V
− 1

2
ξ .

(5.68)
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Substituting Eq.(5.60) we obtain :

J(f − γf∇J(f))

= arg min
γf

{
−γf∇J(f)T∇J(f) +

1

2
γ2f
[
‖Y εH∇J(f)‖22 + ‖Y ξ∇J(f)‖22

]
+ Cst

}
.

(5.69)

The gradient of the criterion is :

∇J(f − γf∇J(f)) = −‖∇J(f)‖22 + γf
[
‖Y εH∇J(f)‖22 + ‖Y ξ∇J(f)‖22

]
.

By setting
∇J(f − γf∇J(f))

∣∣∣
γ
(k)
f

= 0,

we get :

γ
(k)
f =

‖∇J(f)‖22
‖Y εH∇J(f)‖22 + ‖Y ξ∇J(f)‖22

, where Y ε = V
− 1

2
ε and Y ξ = V

− 1
2

ξ . (5.70)

For γ(k)z the same algorithm is used :

J(z − γz∇J(z)) =γz∇J(z)T
[
DTV −1ξ (f −Dz)− V −1z z

]
+

1

2
γ2z
[
‖Y ξD∇J(z)‖22 + ‖Y z∇J(z)‖22

]
+ Cst, where Y z = V

− 1
2

z .

(5.71)

Substituting Eq.(5.61) we have :

J(z − γz∇J(z))

= arg min
γz

{
−γz ‖∇J(z)‖22 +

1

2
γ2z
[
‖Y ξD∇J(z)‖22 + ‖Y z∇J(z)‖22

]
+ Cst

}
.

(5.72)

The gradient of the criterion is :

∇J(z − γz∇J(z)) = −‖∇J(z)‖22 + γz
[
‖Y ξD∇J(z)‖22 + ‖Y z∇J(z)‖22

]
. (5.73)

By setting
∇J(z − γz∇J(z))

∣∣∣
γ
(k)
z

= 0,

we get :

γ(k)z =
‖∇J(z)‖22

‖Y ξD∇J(z)‖22 + ‖Y z∇J(z)‖22
, where Y z = V

− 1
2

z . (5.74)

The optimizations for f and z by using gradient descent algorithm are :

for k = 1→ I2 : f̂
(k+1)

= f̂
(k)
− γ(k)f ∇J(f̂

(k)
), (5.75)

for k = 1→ I2 : ẑ(k+1) = ẑ(k) − γ(k)z ∇J(ẑ(k)), (5.76)

where I2 is the number of iterations for the gradient descent algorithm.

The optimization for the other variables : vzj , vεi and vξj are obtained by minimizing the
corresponding criterion. From Eq.(5.62)-Eq.(5.64), and considering the discussion of the global
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minimum point for the criterion of form a lnx+ bx−1 in Section 5.3.3, the critical point of each
criterion is the minimum :

∇J(vzj)
∣∣
v̂zj = 0 =⇒ v̂zj =

βz0 + 1
2
v−1zj

αz0 + 3
2

, (5.77)

∇J(vεi)
∣∣
v̂εi

= 0 =⇒ v̂εi =
βε0 + 1

2
[g −Hf ]2i

αε0 + 3
2

, (5.78)

∇J(vξj)
∣∣∣v̂ξj = 0 =⇒ v̂ξj =

βξ0 + 1
2

[f −Dz]2j
αξ0 + 3

2

, (5.79)

∀i ∈ [1,M ] and ∀j ∈ [1, N ].

The algorithms of the implementation of estimation for f̂ and ẑ are shown in Algorithm 3
and Algorithm 4.

Algorithm 3 Gradient descent algorithm for f̂

1: Input : H , D, g, ẑ, f 0

2: Output : f̂
3: Initialization : f̂ ini = f 0

4: k = 0
5: repeat
6: k = k + 1

7: Calculate∇J(f̂
(k−1)

) according to Eq.(5.65)
8: Update γ̂(k)f according to Eq.(5.70)

9: Update f̂
(k)

= f̂
(k−1)

− γ̂(k)f ∇J(f̂
(k−1)

)
10: until convergence or maximum iteration

Algorithm 4 Gradient descent algorithm for ẑ

1: Input : H , D, g, f̂ , z0
2: Output : ẑ
3: Initialization : ẑini = z0
4: k = 0
5: repeat
6: k = k + 1
7: Calculate∇J(ẑ(k−1)) according to Eq.(5.66)
8: Update γ̂(k)z according to Eq.(5.74)
9: Update ẑ(k) = ẑ(k−1) − γ̂(k)z ∇J(ẑ(k−1))

10: until convergence or maximum iteration

An integrated algorithm concerning the estimation of all the unknown variables is given in
Algorithm 5.

5.4.2 Analysis of hyper-parameters and initialization

In the regularization methods, there are always one or several regularization parameters.
One of the shortcoming of the regularization method is that the choice of these parameters is
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Algorithm 5 Summary of the JMAP algorithm for HHBM method
1: Fix parameters αz0 , βz0 , αε0 , βε0 , αξ0 , βξ0 , l
2: Input : H , D, g
3: Output : f̂ , ẑ, v̂z, v̂ε, v̂ξ
4: Initialization :
5: f̂

(0)
← normalized FDK

6: ẑ(0) ← l−level Haar transformation off̂
(0)

7: V z, V ε and V ξ according to Eq.(5.77)-Eq.(5.79)
8: repeat
9: Update f̂ according to Algorithm 3

10: Update ẑ according to Algorithm 4
11: Compute vzj , ∀j ∈ [1 : N ] according to Eq.(5.77)
12: Compute vεi , ∀i ∈ [1 : M ] according to Eq.(5.78)
13: Compute vξj , ∀j ∈ [1 : N ] according to Eq.(5.79)
14: until convergence or maximum iteration

crucial in the reconstruction, meanwhile, for different size and different quality of the measured
dataset, the optimal value of this parameter normally changes. Thus, for each different case, one
should always consider to initialize with suitable values for the parameters.

In the proposed Bayesian method, however, the case is different. Even though we should
always initialize the hyperparameters, we get a theoretical basis to fix the initialization values
of hyperparameters. The method is therefore semi-supervised, which is a priority property in
the ill-posed reconstruction problems.

The initialization for the hyperparameters is considered based on the hierarchical prior mo-
del chosen for the variables. For ε and ξ, both of them are modeled by a Gaussian distribution
with an unknown variance belonging to an Inverse Gamma distribution. ε is supposed to be a
Gaussian noise and ξ is supposed to be sparse such that f and z are satisfying the transfor-
mation relationship for most of elements. Hyperparameters αε0 , βε0 , αξ0 , βξ0 are initialized
according to these properties. The hidden variable z is sparse, and is defined by the Stg dis-
tribution. The hyperparameters αz0 and βz0 are initialized based on this sparse enforcing prior
model.

Fixing αz0 and βz0

As we can see in Figure 5.8, there are several different ranks of transformation coefficient
in the multilevel discrete Haar transformation coefficient. We use r ∈ [1, l + 1] to represent
the rank of the coefficient of the l-level Haar transformation (shown in Figure 5.8). The low
frequency part of the coefficient z, in the top-left of the coefficient Figure 5.8 with r = 1,
is less sparse than the other coefficients. The sparsity rate augments when when r is bigger.
Consequently, we set a different (αz0 , βz0) pairs for coefficients in different coefficient ranks.
For (αz0(j), βz0(j)) in rank r, we set (αr, βr). The strategy of the initialization is to fix one
hyperparameter, αz0 , and use different values for hyperparameter βz0 , to realize the definition
of different sparsity rate for different ranks. We set αz0 = 2.01, so that the variance of the Stg
distribution will be approximate to βz0 according to the definition Var[z|αz0 , βz0 ] = βz0/(αz0 −
1). When αz0 is fixed, we get a higher sparsity rate with a smaller value for βz0 = βr. We set
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βr = [β1, β2, · · · , βl+1] where βr = 10−r+1. When r = 1 we have β = 1. In the simulations,
we set l = 5, hence we have r = [1, 2, 3, 4, 5, 6], and the hyperparameters βz0(j) are initialized
with 6 ranks : βr = [100, 10−1, 10−2, 10−3, 10−4, 10−5].

FIGURE 5.8 – The illustration of rank r of a 5-level discrete Haar transformation coefficient.

Fixing αε0 and βε0

The noise ε depends on the SNR of the dataset. The biased dataset is expressed as the sum
of uncontaminated dataset and the additive noise :

g = g0 + ε. (5.80)

As the noise ε and the uncontaminated data g0 are supposed to be independent, we have :

‖g‖22 = ‖g0‖
2
2 + ‖ε‖22 . (5.81)

The SNR of the dataset is :

SNR = 10 log
‖g0‖

2
2

‖ε‖22
= 10 log

‖g‖22 − ‖ε‖
2
2

‖ε‖22
. (5.82)

As the expectation of ε is E[ε] = 0,

vε = E
[
ε2
]
≈ ‖ε‖

2
2

M
=
‖g‖22
M
× 1

1 + 10SNR/10
. (5.83)

Belonging to an Inverse Gamma distribution, the expectation of the variance E[vεi|αε0 , βε0 ] =
βε0

αε0−1
, therefore :

βε0 =
‖g‖22
M
× 1

1 + 10SNR/10
× (αε0 − 1) . (5.84)

The two hyperparameters αε0 and βε0 are combined according to Eq.(5.84) and hence ini-
tialization for one of them is sufficient. Figure 5.9 shows the influence of the value of αε0 on
the reconstruction. According to the results, a bigger value for αε0 results to a smaller value on
RMSE, for different number of projections and SNR of dataset. For the case with a low SNR
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FIGURE 5.9 – Influence of hyperparameter αε0 on RMSE of final reconstruction results for
different number of projections and noise.

and less projections numbers, there is a slight augment of RMSE when the hyperparameter in-
crease, however, it soon arrives at a platform and stay robust. This monotonous property solves
the problem of initialization of this hyperparameter, as a big value for αε0 satisfies all cases,
since when αε0 is greater than a certain value, the RMSE does not change by using different
initialization value αε0 .

In the reconstruction of a real data, we do not know the SNR of the data set. But we can
estimate the noise ε by some experiments. One could estimate the detected data of in two cases :
the first is when there is no source of X-ray, and the second is to emit X-rays without any
object. By using these two data sets, we could obtain a rough additive noise in order to get the
information of vε.

Fixing αξ0 and βξ0

For ξ, we do not have evident information on it, therefore the initialization for both αξ0 and
βξ0 is necessary. Figure 5.10 and Figure 5.11 show respectively the influence of the initialization
of αξ0 and βξ0 on the reconstruction. For αξ0 , Figure 5.10, the influence is monotone and the
reconstructed phantom has a lower RMSE when αξ0 is smaller.

Figure 5.11 shows the influence of the hyperparameter βξ0 on RMSE of reconstructed phan-
tom. From the curves we find that the minimum RMSE value appears when βξ0 is approaching
0.01. Consequently we use βξ0 = 0.01. There is an augment of the RMSE value when βξ0
increases, but it soon arrives at a platform which is slightly bigger than the minimum RMSE
value. So we conclude that the value of βξ0 is relatively insensitive to the reconstruction quality.
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FIGURE 5.10 – Influence of hyperparameter αξ0 , for different values of βξ0 , on RMSE of
reconstruction results for different number of projections and noise. Each different color

corresponds to a different value of βξ0 .
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FIGURE 5.11 – Influence of hyperparameter βξ0 , for different values of αξ0 , on RMSE of
reconstruction results for different number of projections and noise. Each different color

corresponds to a different value of αξ0 .
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5.4.3 - Simulation results with limited number of projections

In [Dum16], it is pointed out that when α and β of the Stg distribution are both big, it
approaches a Gaussian distribution, which is the case for the additive noise ε ; if α and β are
small (approaching to 0), it is an non-informative distribution (Jeffreys distribution) ; while α
and β are both small but not zero, then the Stg has the sparsity enforcing property, which is the
case for the additive noise ξ.

5.4.3 Simulation results with limited number of projections

We apply respectively 180, 90, 60, 45, 36 and 18 projections evenly distributed in [0◦, 180◦]
for reconstruction of the 3D Shepp Logan phantom of size 2563, each projection contains
256 × 256 detectors. The number of projections are chosen such that there are respectively
one projection every 1◦, 2◦, 3◦, 4◦, 5◦ and 10◦. The iterative methods have all been initiali-
zed with the FBP reconstruction which has a high frequency artifacts when limited number of
projections are used.

TABLE 5.1 – Comparison of relative error of reconstructed phantom with 50 global iterations
(10 iterations of gradient descent in each global iteration) and the computation time of each

iteration of different methods. The value of regularization parameter are respectively
λQR = 10 for SNR=40dB, λQR = 600 for SNR=20dB, λTV = 50 for SNR=40dB, λTV = 100

for SNR=20dB.

256*256*256
180 projections 90 projections

40dB 20dB 40dB 20dB
QR TV HHBM QR TV HHBM QR TV HHBM QR TV HHBM

RMSE 0.0236 0.0114 0.0069 0.1309 0.0209 0.0755 0.0401 0.0212 0.0092 0.1558 0.0491 0.1117
ISNR 5.5584 8.7217 10.9346 7.2024 15.1775 10.2162 6.6136 9.3832 12.9973 8.4583 13.4765 9.9056
PSNR 30.0675 33.2308 35.4437 22.6318 30.6069 25.0209 27.7743 30.5439 34.1579 21.8754 26.8937 23.3227
SSIM 0.9999 0.9999 1.0000 0.9992 0.9999 0.9995 0.9997 0.9999 0.9999 0.9990 0.9997 0.9993

60 projections 45 projections
40dB 20dB 40dB 20dB

QR TV HHBM QR TV HHBM QR TV HHBM QR TV HHBM
RMSE 0.0636 0.0321 0.0107 0.1656 0.0753 0.1293 0.0904 0.0474 0.0132 0.1854 0.0901 0.1414
ISNR 9.3826 12.3480 17.1346 9.1492 12.5701 10.2226 10.3301 13.1308 18.6839 10.0137 13.1476 11.1916
PSNR 25.7693 28.7347 33.5214 21.6116 25.0325 22.6849 24.2404 27.0412 32.5942 21.1195 24.2535 22.2974
SSIM 0.9996 0.9995 0.9999 0.9990 0.9995 0.9992 0.9994 0.9997 0.9999 0.9988 0.9994 0.9991

36 projections 18 projections
40dB 20dB 40dB 20dB

QR TV HHBM QR TV HHBM QR TV HHBM QR TV HHBM
RMSE 0.1177 0.0680 0.0169 0.1957 0.1116 0.1500 0.2581 0.2104 0.0574 0.2907 0.2313 0.2014
ISNR 10.6591 13.0424 19.0933 10.8633 13.3032 12.0187 10.7122 11.5992 17.2373 10.8088 11.8022 12.4036
PSNR 23.0949 25.4783 31.5292 20.8865 23.3264 22.0420 19.6263 20.5133 26.1514 19.1085 20.1020 20.7033
SSIM 0.9993 0.9996 0.9999 0.9988 0.9993 0.9990 0.9983 0.9987 0.9996 0.9981 0.9985 0.9987

In Table 5.1, different metrics of evaluation of the reconstructed 2563 Shepp Logan phan-
tom are compared. It is shown that the HHBM method performs not always better than the TV
method, especially when there are sufficient number of projections. But when there are insuf-
ficient detected data, for example in the case of 18 projections, the HHBM method stay more
robust than TV. On the other hand, as we all know that the choice of regularization parameter
plays an important role in the regularization methods like QR or TV, and the value for the regu-
larization parameter should be selected for each different case, the HHBM method solves this
problem. As we can see from Figure 5.9, Figure 5.10 and Figure 5.11, once we have chosen
the hyperparameters in a certain interval which is not difficult to fix according to the theoretical
base, we can get the appropriate reconstruction results. What is more important, in the Bayesian
approach, the prior model can be chosen by many other suitable distributions, which gives more
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possibilities for the models than the conventional regularization methods. We may also choose
different point estimators from the posterior distribution, for example the Posterior Mean, etc.

Figure 5.12 shows the reconstructed middle slice of ”Shepp Logan” phantom and ”Head”
object by using TV and HHBM methods with 36 projections and SNR=40dB. The red curve
illustrate the profile of the blue line position. In the reconstructed Shepp Logan phantom by
using TV method, the three small circles on the top of the slice are not evident. By using the
HHBM method, we can distinguish these three small circles. By comparing the profiles of the
slice of reconstructed Shepp Logan phantom, we can see that by using HHBM method, the
contour positions on the profile is closer to the original profile than the TV method. In the
reconstructed Head object, there are more details than the simulated Shepp Logan phantom,
especially in the zoom area in the second line in Figure 5.12. By comparing the results, we can
see that for the type of object which contains some small details, the TV method derives a results
with smoother homogeneous areas, but less details at the contour areas than the HHBM method.
For the Head object, we can also see that HHBM gives more details than TV, and is closer to
the original one. Some of the white material which is dispersed into discontinuous small blocks
in Head object are connected in result of TV method. From these images we conclude that in
the case of insufficient number of projections the proposed method gives results with clearer
contours and details.

Figure 5.13 shows the reconstructed Shepp Logan phantom from 18 projections and
SNR=40dB. In this very underdetermined case, the HHBM method can still get a result which
is clear enough to distinguish the primary zones and contours of the object.

Figure 5.14 and Figure 5.15 show the comparison between the QR, the TV and the HHBM
method with a high SNR=40dB and a low SNR=20dB dataset respectively. The abscissa corres-
ponds to the number of projections evenly distributed from 0◦ to 180◦, and the ordinate is the
RMSE after 50 iterations. When the number of projections becomes less and less sufficient, the
HHBM method outperforms the other two conventional methods.

5.4.4 Simulation results with limited angle of projections

In medical X-ray CT, a commonly faced problem is the limit of projection angles. In this
part of the simulation, we treat the dataset of projection evenly distributed in a limited range of
angles for the simulated 3D ”Shepp Logan” phantom and the 3D ”Head” object, both of which
have a size of 2563.

Figure 5.16 shows the middle slice of the reconstructed Shepp Logan phantom and the
Head object, from 90 projections distributed between 0◦ and 90◦. By using TV method, the
reconstructed object is blurry along the the diagonal direction where there is no projection data
estimated, and there is an obvious square corner while the object should have a round shape. By
using the HHBM method, we get results with closer shape and clearer contours.

Figure 5.17 and Figure 5.18 show the comparison of the performance in terms of RMSE
of different method with a high SNR=40dB and a low SNR=20dB. In this comparison, four
cases of limited angle of projections are considered. They are respectively : 45, 90, 135 and 180
projections evenly distributed in respectively [0◦, 45◦], [0◦, 90◦], [0◦, 135◦] and [0◦, 180◦]. Thus,
there is one projection every 1◦. From these two figures, we conclude that the proposed HHBM
method stay more robust than the other two conventional methods when there is limited angle
of projections.
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Original TV HHBM

FIGURE 5.12 – Slice of reconstructed ”Shepp Logan” and ”Head” phantom of size 2563, with
dataset of 36 projections and SNR=40 dB, by using TV and HHBM methods respectively.

Bottom figures are part of the corresponding top figures.
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Original TV HHBM

FIGURE 5.13 – Slice of reconstructed Shepp Logan phantom of size 2563, with dataset of 18
projections and SNR=40 dB, by using TV (left) and HHBM (right) methods respectively. The

red curves are the profile at the position of the corresponding blue lines.
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FIGURE 5.14 – The performance of different methods for reconstructing Shepp Logan
phantom in terms of RMSE with different number of projections evenly distributed in

[0◦, 180◦] and a high SNR=40dB.
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FIGURE 5.15 – The performance of different methods for reconstructing Shepp Logan
phantom in terms of RMSE with different number of projections evenly distributed in

[0◦, 180◦] and a low SNR=20dB.

5.5 Dual-tree complex wavelet transform (DT-CWT) Ba-
sed Hierarchical Bayesian Method

In the proposed method, the multilevel Haar transformation coefficient of the phantom is
considered as a hidden variable and is estimated during iterations. The reason of choosing Haar
transformation is that the phantom under consideration is normally discrete and strictly piece-
wise continuous. Haar transformation is one of the simpliest and basic transformation among
all the orthonormal transformations. Its computation can be efficiently accelerated thanks to a
parallelization on GPUs. What’s more, it is orthonormal and therefore it simplifies the compu-
tation in the Bayesian methods. Recently, there are more and more new transforms proposed
with very good properties, for example the curvelet [CDDY06, SCD02], the contourlet [DV05],
etc.

When the wavelet transformations are used, some disadvantages should be considered
[SBK05] :
• Oscillations. In the wavelet transformation, the coefficients tend to oscillate positive and

negative around the singularities. These oscillations around the singularities complicate
the wavelet-based processing, and makes the singularity extraction and signal modeling
more complicated.
• Shift variance. In the wavelet transformation, a small shift of the signal will perturb the

wavelet coefficient oscillation pattern around the singularities because of the positive-
negative oscillation property of the coefficients. This property also complicates the wa-
velet domain processing.
• Lack of directionality. While Fourier sinusoids in higher dimensions correspond to

highly directional plane waves, the standard tensor product construction of M-D wave-
lets produces a checkerboard pattern that is simultaneously oriented along only several
directions. This lack of directional selectivity complicates the modeling and processing
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Original TV HHBM

FIGURE 5.16 – Slice of reconstructed 3D Shepp Logan phantom and 3D Head object, with 90
projections evenly distributed in [0◦, 90◦].
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FIGURE 5.17 – The performance of different methods for reconstructing Shepp Logan
phantom in terms of RMSE with different limited angles of projections and a high SNR=40dB.
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FIGURE 5.18 – The performance of different methods for reconstructing Shepp Logan
phantom in terms of RMSE with different limited angles of projections and a low SNR=20dB.
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of geometric image features, for example the ridges and edges.
To overcome these problems, the Dual Tree Complex Wavelet Transform (DT-CWT), first

introduced by Kingsbury in 1998 [Kin98], is proposed. The dual-tree structure of wavelet filters
are used to obtain the real and imaginary parts of complex wavelet coefficients. Figure 5.19
shows the filter bank analysis of the DT-CWT. The DT-CWT employs two real DWTs. The first
DWT gives the real part of the transform while the second real DWT gives the imaginary part.
The two real DWTs use two different sets of filters. h0(n), h1(n) denote the low-pass/high-pass
filter pair for the upper filter bank, and g0(n), g1(n) denote the low-pass/high-pass filter pair
for the lower filter bank. These two filter banks are realized by a typical DWT with two pairs
of adapted filters. The inverse of DT-CWT is also a synthesis of two real DWTs. The real part
and the imaginary part are each inverted to obtain two real signals. These two real signals are
then averaged to obtain the final signal. If the two real DWTs are orthonormal transforms, then
so does the DT-CWT. It means that the inverse of the DT-CWT can be performed using its
transpose, so that the operatorD is orthogonal.

-
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h0(n)-↓ 2���
-

FIGURE 5.19 – Analysis Filter Bank for the dual-tree CWT with a different set of filters at
each stage.

Figure 5.20 illustrates the corresponding synthesis filter bank of the DT-CWT transforma-
tion.

Also, it was pointed out in [XYM+12] that the dictionary redundancy improves the sparsity
of representation. In the discrete Haar transform, the size of the coefficient is the same as the
size of image. In DT-CWT, the size of coefficients is two times the size of image in 2D cases
(see Figure 5.21) and 4 times the size of phantom in 3D cases. According to the definition,
dual-tree of wavelet filters is used to obtain the real and imaginary parts of complex wavelet
coefficients. So the coefficients can be divided into 2 groups, which correspond to the real and
imaginary parts, respectively.

In this section, I am going to show the comparison of the DT-CWT with the HT. Then DT-
CWT will be used in the proposed hierarchical Bayesian method and compared with the HHBM
method.
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FIGURE 5.20 – Synthesis Filter Bank for the dual-tree CWT with a different set of filters at
each stage.
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FIGURE 5.21 – The 5-level Haar transformation coefficient and 5-level DT-CWT
transformation coefficient of the 2D Shepp Logan phantom of size 256× 256. The scales are

adapted in order to be visually clearer.
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5.5.1 Comparison with Haar transform

The DT-CWT transform and the Haar transform is compared by analysing several different
cases of biased transform coefficient. Error of the coefficient will have an influence on the
inverse transformation results. We search for a transformation which is more robust against the
noise of coefficient, thus the corresponding inverse-transformed data depends less on the noise
of the coefficient.

In Figure 5.21, the HT coefficient and the DT-CWT coefficient are presented. It shows that
the DT-CWT transformation import a redundancy to the coefficient. Although the size of the
coefficient is two times the HT coefficient, thanks to the development of the computational
capacity, the computation can be fulfilled.

In order to compare the HT and DT-CWT, we consider two types of biased transformation
coefficients. First of all we truncate the coefficient and compare the recontructed image. Then,
a Gaussian noise is added to the coefficient and we compare the reconstructed results of these
two transformations.

5.5.2 Truncating parts of coefficients z

In image processing, the wavelet transformations are frequently used in many applications,
for example the denoising problem, the restoration, etc. In some of these applications, the co-
efficient of transformations are truncated. So here we analyse the influence of the truncation of
coefficient to the image.

In this simulation, the transformation coefficients are truncated. Noting that for Haar trans-
formation the coefficients matrix has size N = Nx × N y, and for DT-CWT is 2N =
Nx × 2N y. For both of the cases, the 80%, 90%, 95% and 99% smallest coefficients are remo-
ved. The image of the inverse transformation is obtained and compared.

The first comparison is given by doing the following steps :

1. computing the transform of image z = D−1f ,

2. truncating parts of the minimum coefficients in z (80%, 90%, 95% and 99%),

3. using the truncated coefficients to reconstruct the image f̂ .

The Relative Mean Square Error (RMSE) of f̂ are given below the corresponding images
which are given in Figure 5.22. From the results, we can see that when 80% of the smallest
coefficients are truncated, the reconstructed image is still clear by using both transformation.
When 90% coefficients are truncated, the reconstructed figures is still clear by using the Haar
transformation, but the figure becomes blurry when the DT-CWT is used. When more coeffi-
cients are truncated, for example 95% and 99%, both of the two transformations will reconstruct
a blurry image. The discrete Haar transformation generates square textures in the reconstructed
image, and the DT-CWT transformation gives a smoother image at the contours. From this si-
mulation we can conclude that, the coefficients of HT are more compressed than DT-CWT. The
results demonstrate that the proportion of the non-null coefficient is less than 10% while in DT-
CWT it is more than 10%. However, when there are more truncated coefficients, the DT-CWT
outperforms the HT. Visually, there is also less artifacts in the results of the inverse DT-CWT
transformation.
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FIGURE 5.22 – Inverse transformed images with different amount of truncated coefficients by
using different transformations, with the Relative Mean Square Error (RMSE) of image shown

below.
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5.5.3 Adding noise to coefficients z

When the coefficients are treated as a variable in the algorithms, there will be appearence of
noise in the coefficient. So in the second simulation, I am going to add noise to the coefficient
with different SNR values (30dB, 20dB, 10dB and 5dB) and compare the reconstructed image
f̂ and the RMSE of them. The comparison is shown in Figure 5.23.
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FIGURE 5.23 – Inverse transformed images with different noise added to coefficients by using
different transformations, with the Relative Mean Square Error (RMSE) of image shown

below.
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5.6.1 - Test 1 : Truncation in the transform coefficients z

From the comparison, we can see that when there is a noise on the coefficient, the inverse
transformed image will be biased. By using the DT-CWT, the reconstructed image is better than
the HT with a small RMSE value. We can conclude from the comparison that DT-CWT is more
robust than HT against the noise added to the transformation coefficients.

5.6 Test on different images

The Shepp Logan phantom is artificially created and is strictly piecewise constant. In
this case, the Haar transformation is appropriate. The same comparisons have been done by
using some real images of different types, for example the image with textures, the piecewise-
continuous image and the image with blocs and textures. The images used are the ”Period”,
”Stones”, ”Ground” and ”Stairs”, shown in Figure 5.24.
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FIGURE 5.24 – The images with different shape of textures.

5.6.1 Test 1 : Truncation in the transform coefficients z

Table 5.2 shows the Relative Mean Square Error, RMSE =
∥∥∥f̂ − f∥∥∥2

2
/ ‖f‖22, of the

images obtained by inverse transformation from the truncated coefficient of the Haar and the
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DT-CWT transformation. The 80%, 90%, 95% and 99% smallest part of the coefficients of Haar
transform and the DT-CWT transform are removed respectively. The results demonstrate that
when the coefficient is truncated in the algorithms, the DT-CWT transformation has a better
performance for the reconstruction from the transform coefficients.

TABLE 5.2 – Truncating the Transform Coefficients z

Period Stones Ground Stairs
truncate Haar DT-CWT Haar DT-CWT Haar DT-CWT Haar DT-CWT
80% 0.0008 4.1652e−5 0.0029 3.0084e−5 0.0017 4.5542e−5 0.0109 1.3460e−4

90% 0.0054 6.5086e−5 0.0094 4.8588e−5 0.0046 6.9940e−5 0.0258 2.0881e−4

95% 0.0242 8.0747e−5 0.0205 6.1184e−5 0.0089 8.5687e−5 0.0458 2.5838e−4

99% 0.1127 9.5165e−5 0.0658 7.2906e−5 0.0231 1.0029e−4 0.1011 3.0478e−4

5.6.2 Test 2 : Adding noise to the transform coefficients z

Table 5.3 shows the RMSE of the images obtained by inverse transformation from the biased
coefficient of the Haar and the DT-CWT transformation. A Gaussian noise of 5dB, 10dB, 15dB,
20dB and 30dB are added respectively. The same conclusion is drawn : by using the DT-
CWT transformation, the reconstructed images are more robust against the noise added to the
transform coefficient.

TABLE 5.3 – Adding noise to the Transform Coefficients z

Period Stones Ground Stairs
noise Haar DT-CWT Haar DT-CWT Haar DT-CWT Haar DT-CWT
5dB 0.3166 0.1596 0.3180 0.1586 0.3142 0.1592 0.3156 0.1563
10dB 0.0990 0.0495 0.1008 0.0501 0.1004 0.0497 0.0993 0.0498
15dB 0.0316 0.0158 0.0313 0.0159 0.0315 0.0160 0.0315 0.0159
20dB 0.0100 0.0050 0.0100 0.0050 0.0100 0.0050 0.0100 0.0050
30dB 0.0010 0.0005 0.0010 0.0005 0.0010 0.0005 0.0110 0.0005

5.7 The use of DT-CWT in Bayesian method

In the previously proposed Bayesian method, the Haar transformation is used and its trans-
formation coefficient is considered as a hidden variable. By comparing the DT-CWT with HT,
we demonstrated some advantages of the DT-CWT. In this section, we replace the HT coeffi-
cient in the HHBM method by the DT-CWT coefficient, and compare the new Bayesian method
with the HHBM method.

The system model depends always on the following two forward models :

g = Hf + ε, (5.85)
f = Dz + ξ, (5.86)

whereD is the DT-CWT and z the DT-CWT coefficient in this case.
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5.7.2 - Conclusions and perspectives

5.7.1 Simulation results

In the HHBM method, the discrete multilevel Haar transformation coefficient is considered
as the hidden variable. In this section, we replace the Haar transformation with the DT-CWT
transformation. The transformation coefficient, z, is the DT-CWT coefficient of the object f .
The generalized Student-t distribution is always used to model the coefficient z to enforce
its sparse structure. The method of reconstruction by considering the DT-CWT transformation
coefficient is named the BH-DTCWT method.

In the simulation, the 2D Shepp Logan phantom of size 2562 is considered as the original
object. The projections are evenly distributed from 0◦ to 180◦. In Figure 5.25, the Original
Shepp Logan figure and its projection sinogram are shown. For the illustration of reconstruction
phantom, we show the zone of the phantom which is in the red block areas shown in Figure 5.25.
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FIGURE 5.25 – Original Shepp Logan image of size 2562 and its (b) sinogram with 128
projections and (c) the same data with additive noise with SNR=20dB.

Figure 5.26 shows the comparison of the middle slice of the reconstructed Shepp Logan
phantom by using different reconstruction methods. From the comparison, we can see that, by
using the hierarchical structured Bayesian method, the reconstructed phantom is clearer than the
TV method when the number of projections is insufficient. Visually, there is no big difference
between the results of the HHBM method and the BH-DTCWT method.

Figure 5.27 shows the comparison of a segment of profile around the contour in the Shepp
Logan phantom. From the comparison, we see that the BH-DTCWT outperforms the TV me-
thod at the contour areas, as it is closer to the original profile.

In order to compare the HHBM and the BH-DTCWT methods, we show in Figure 5.28,
Figure 5.29 and Figure 5.30 the evolution of the RMSE during reconstruction of different me-
thods. The comparison shows that the convergence of BH-DTCWT is faster than the HHBM
method, and this advantage reduces when there is less number of projections. While comparing
with the TV method, the advantage of the HHBM and BH-DTCWT methods is obvious when
the projection number is limited.

5.7.2 Conclusions and perspectives

By comparing the Haar transformation and the DT-CWT transformation, we see that the
later is more robust when the coefficient is truncated or contaminated. By using DT-CWT trans-

94



The use of DT-CWT in Bayesian method

TV HHBM BH-DTCWT

FIGURE 5.26 – The middle slice of reconstructed Shepp Logan phantom by using different
reconstruction methods. The reconstructed form projection dataset with top : 64 projections

and bottom : 32 projections respectively.
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FIGURE 5.27 – Comparison of a zone of profile with TV method, from dataset of 64
projections on the top, and 32 projections on the bottom.
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FIGURE 5.28 – NMSE of reconstructed image along iterations from sinogram with 128
projections and a high SNR=40dB.

0 10 20 30 40 50 60

iteration

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

δ f

FBP

TV

HHBM

BH-DTCWT

FIGURE 5.29 – NMSE of reconstructed image along iterations from sinogram with 64
projections and a high SNR=40dB.
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FIGURE 5.30 – NMSE of reconstructed image along iterations from sinogram with 32
projections and a high SNR=40dB.

formation in the Bayesian method, the reconstructed phantom has clearer contours than the TV
method. Visually, the reconstructed phantom by using the Bayesian method with Haar trans-
formation or DT-CWT transformation does not have much difference, but the BH-DTCWT
converges faster than HHBM.

In future work we will compare some other wavelet transformations which consider the
property of the geometric figures and the direction of the contours, for example the curvelet
transformation [CDDY06, SCD02], the contourlet transformation [DV05], etc. Meanwhile, the
Bayesian method using DT-CWT transformation is being implemented in 3D simulations. The
computation of the DT-CWT transformation is expensive, particularly in 3D implementation.
So we will implement the transformation by using GPU processor in order to accelerate the
computation.

5.8 Variable Splitting Algorithm for HHBM

From the regularization point of view, variable splitting refers to the process of introducing
auxiliary constraint variables to separate coupled components in the cost function. This proce-
dure transforms the original minimization problem into an equivalent constrained optimization
problem that can be effectively solved using classical constrained optimization schemes. The
variable splitting approach has become popular recently for solving reconstruction problems in
image processing [ABDF10, RF12, NVL+13].
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5.8.1 Variable Splitting (VS)

Consider an unconstrained optimization problem in which the objective function is the sum
of two functions, one of which is written as the composition of two functions :

min
f

R1(f) +R2(Φ(f)), (5.87)

where Φ is a linear function. Variable splitting is a very simple procedure that consists in crea-
ting a new variable, z, to serve as the argument of R2, under the constraint that Φ(f) = z. This
leads to the constrained problem :

min
f ,z

R1(f) +R2(z),

subject to z = Φ(f). (5.88)

The convenience of the variable splitting methods is that it may be easier to solve the constrained
problem in Eq.(5.88) than that of Eq.(5.87). The splitting variable has been recently used in
many inverse problem methods, for example in [WYYZ08].

The constrained problem in Eq.(5.88) can be derived into a quadratic penalty approach, by
solving :

min
f ,z

R1(f) +R2(z) +
λ

2
‖Φ(f)− z‖22 (5.89)

by alternately minimizing f and z respectively.

While splitting the variable f , we get the criterion similar to the form of the MAP optimi-
zation criterion of the HHBM method proposed previously, with one penalty term on f , one on
z and one penalize the disparity between them.

5.8.2 VS in Bayesian inference

In the regularization methods, the splitting of variables normally leads to the splitting of
regularization terms. In the Bayesian inference, on the other hand, it is considered as a splitting
of the variables. By using MAP optimization, we can see the links between the regularization
methods and a Bayesian inference. However, the Bayesian approach provide the possibilities to
estimate the hyperparameters of the inverse problem which are often crucial in real applications.

In X-ray CT models, typically only one variable is used to represent all the additive noise.
Consequently, the system noise and the uncertainties of the forward model are all modeled by
the same prior distribution, for example the Gaussian distribution or the Student-t distribution
that we used previously. In our work, we propose a noise splitting model. This model considers
the system noise in different aspects and use different distributions for the modeling of prior
variables.

In a real projection system of X-ray CT, the acquisition of the sinogram dataset is obtained
mainly by two steps : the projection and the detection. The projection step is the attenuation
of the intensity of radiations when passing through the object, and the detection step is the
acquisition of the sinogram by the detectors.

Supposing that the true projection data before detection is g0, and the detected projection
data is g, and theoretically we have g = g0 if the detection noise is not considered. The noise of
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detection in tomography is typically modeled by a Poison distribution. In X-ray CT, the number
of the photon is big and the Poison distribution is approximated to a Gaussian distribution
[SB93]. So the detection of the attenuated radiation leads to an additive noise ε :

g = g0 + ε, (5.90)

where ε is a Gaussian additive noise, with mean equal to zero and variance vε.

Before the detection of the radiation, these rays are attenuated by the object. The exact
attenuated data g0 is obtained according to the Beer’s law, Eq.(3.3), and the linear system is
model by the direct model g0 = Hf .

Nevertheless, the physical phenomenons during the attenuation of X radiation exist, for
example the scattering of some photons, and sometimes the photons with low energies would
be absorbed by some materials, for example the metals. These kinds of physical phenomenons
will cause uncertainties for the linear model g0 = Hf , and hence an additive noise should be
added for the direct model :

g0 = Hf + ρ. (5.91)

The uncertainties caused by the scattering or the absorption appears only for few of the photons
among a large amount of photons, and hence ρ is sparse. It is modeled by the generalized
Student-t distribution in our work. Notice that in our work we consider only the additive noise
model.

By splitting the noise, the following model is considered :

g = Hf + ρ+ ε, (5.92)

where ε represents the measurement noise and ρ can represent the modelling errors. It can be
expressed as :

g = g0 + ε,

g0 = Hf + ρ, (5.93)

where g0 is the hidden variable of the system. Therefore, the additive noise ε stands for the
noise of the detectors, and ρ for the sparse noise.

With this model, by using the classical regularization methods, the solution is defined as the
optimizer of :

J(f , g0) = ‖g − g0‖
2
2 + λ1 ‖g0 −Hf‖

2
2 + λ2R(f), (5.94)

where parameter λ1 and λ2 are chosen beforehand, manually or using an ad-hoc algorithm. An
alternate optimization algorithm is :

f (k+1) = f (k) + α1

[
2λ1H

T
(
g0 −Hf (k)

)
− λ2∇R(f (k))

]
,

g
(k+1)
0 = g

(k)
0 + α2λ1

(
g −Hf (k)

)
. (5.95)

We can compare it with the ADMM method presented in Chapter 3 where g0 plays the role of
µ.
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5.8.3 Gaussian-Stg prior model for the variable splitting method
(HHBM-GS)

In Bayesian inference, prior models are defined according to the prior information. The
noise of detector, ε, is modeled by a Gaussian distribution, with a fixed variance vε, wile the
uncertainties ρ is modeled by a heavy tailed distribution, enforcing its sparse structure.

αz0 , βz0αξ0 , βξ0αρ0, βρ0

vz

z

f

g0

g

vε

vρ

vξ

D

H

p(g|g0,vε)

p(g0|f ,vρ)

p(f |z,vξ)

p(z|vz)

p(vz|αz0 , βz0)

p(vξ|αξ0 , βξ0)

p(vρ|αρ0, βρ0)

FIGURE 5.31 – Generative graph of the Gaussian-Stg Variable Splitting method.

The statistical model is expressed via the forward model, Eq.(5.93), and the generative graph
of this system model is illustrated in Figure 5.31.

100



Variable Splitting Algorithm for HHBM

p(g|g0,vε) = N (g|g0,V ε) ∝ exp

{
−1

2
(g − g0)

T V −1ε (g − g0)
}
,

p(g0|f ,vρ) = N (g0|Hf ,V ρ) ∝ |V ρ|−
1
2 exp

{
−1

2
(g0 −Hf)T V −1ρ (g0 −Hf)

}
,

p(f |z,vξ) = N (f |Dz,V ξ) ∝ |V ξ|−
1
2 exp

{
−1

2
(f −Dz)T V −1ξ (f −Dz)

}
,

p(z|vz) = N (z|0,V z) ∝ |V z|−
1
2 exp

{
−1

2
zTV −1z z

}
where V z = diag [vz] ,

p(vρ|αρ0, βρ0) = IG(vρ|αρ0, βρ0) =
M∏
i=1

IG(vρi|αρ0, βρ0) ∝
M∏
i=1

{
v−(αρ0+1)
ρi

exp
{
−βρ0v−1ρi

}}
,

p(vξ|αξ0 , βξ0) = IG(vξ|αξ0 , βξ0) =
N∏
j=1

IG(vξj |αξ0 , βξ0) ∝
N∏
j=1

{
v
−(αξ0+1)

ξj
exp

{
−βξ0v−1ξj

}}
,

p(vz|αz0 , βz0) = IG(vz|αz0 , βz0) =
N∏
j=1

IG(vzj |αz0 , βz0) ∝
N∏
j=1

{
v
−(αz0+1)
zj exp

{
−βz0v−1zj

}}
.

(5.96)

As previous, the posterior distribution is obtained from these models via the Bayes rule :

p(g0,f , z,vρ,vξ,vz|g)

∝p(g|g0,vε)p(g0|f ,vρ)p(f |z,vξ)p(z|vz)p(vρ|αρ0, βρ0)p(vξ|αξ0 , βξ0)p(vz|αz0 , βz0)

= exp

{
−1

2
(g − g0)

T V −1ε (g − g0)
}
|V ρ|−

1
2 exp

{
−1

2
(g0 −Hf)T V −1ρ (g0 −Hf)

}
|V ξ|−

1
2 exp

{
−1

2
(f −Dz)T V −1ξ (f −Dz)

}
|V z|−

1
2 exp

{
−1

2
zTV −1z z

}
M∏
i=0

v−(αρ0+1)
ρi

M∏
i=0

exp
{
−βρ0v−1ρi

} N∏
j=0

v
−(αξ0+1)

ξj

N∏
j=0

exp
{
−βξ0v−1ξj

}
N∏
j=0

v
−(αz0+1)
zj

N∏
j=0

exp
{
−βz0v−1zj

}
.

(5.97)

The negative logarithm of the posterior distribution is calculated to simplify the optimiza-
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tion :

J(g0,f , z,vρ,vξ,vz) = − ln p(g0,f , z,vρ,vξ,vz|g)

=
1

2
(g − g0)

T V −1ε (g − g0) +
1

2

M∑
i=1

ln vρi +
1

2
(g0 −Hf)T V −1ρ (g0 −Hf)

+
1

2

N∑
j=1

ln vξj +
1

2
(f −Dz)T V −1ξ (f −Dz) +

1

2

N∑
j=1

ln vzj +
1

2
zTV −1z z

+ (αρ0 + 1)
M∑
i=1

ln vρi + βρ0

M∑
i=1

v−1ρi + (αξ0 + 1)
N∑
j=1

ln vξj + βξ0

N∑
j=1

v−1ξj

+ (αz0 + 1)
N∑
j=1

ln vzj + βz0

N∑
j=1

v−1zj .

(5.98)

Then the unknowns are optimized alternately by minimizing the criterions :

ĝ0 = arg min
g0

{
1

2
(g − g0)

T V −1ε (g − g0) +
1

2
(g0 −Hf)T V −1ρ (g0 −Hf)

}
, (5.99)

f̂ = arg min
f

{
1

2
(g0 −Hf)T V −1ρ (g0 −Hf) +

1

2
(f −Dz)T V −1ξ (f −Dz)

}
, (5.100)

ẑ = arg min
z

{
1

2
(f −Dz)T V −1ξ (f −Dz) +

1

2
zTV −1z z

}
, (5.101)

v̂ρi = arg min
vρi

{
1

2
ln vρi +

1

2
[g0 −Hf ]2i v

−1
ρi

+ (αρ0 + 1) ln vρi + βρ0v
−1
ρi

}
, (5.102)

v̂ξj = arg min
vξj

{
1

2
ln vξj +

1

2
[f −Dz]2j v

−1
ξj

+ (αξ0 + 1) v−1ξj + βξ0v
−1
ξj

}
, (5.103)

v̂zj = arg min
vzj

{
1

2
ln vzj +

1

2
[z]2j v

−1
zj

+ (αz0 + 1) ln vzj + βz0v
−1
zj

}
. (5.104)

For the optimization of g0, f and z, the analytical expressions are :

ĝ0 =
(
V −1ε + V −1ρ

)−1 (
V −1ε g + V −1ρ Hf

)
, (5.105)

f̂ =
(
HTV −1ρ H + V −1ξ

)−1 (
HTV −1ρ g0 + V −1ξ Dz

)
, (5.106)

ẑ =
(
DTV −1z D + V −1z

)−1
DTV −1z f . (5.107)

In these three expressions, the analytical expression for ĝ0 is realizable because the matrix(
V −1ε + V −1ρ

)
is a diagonal matrix. The inversion of a diagonal matrix is another diagonal

matrix with each element equal to inversion of corresponding element of the original matrix.
Hence :

ĝ0 = diag
[

1

v−1εi + v−1ρi

] (
V −1ε g + V −1ρ Hf

)
(5.108)

But for f̂ and ẑ, the terms of matrix inversion is not realizable in the background of big data
size images reconstruction. So as we have presented previously, the gradient descent optimiza-
tion algorithm is used.
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The analytical expression for optimization of v̂ρi, v̂ξj and v̂zj are also obtained by calculating
the critical point of the corresponding criterion.

Consequently, the iterative optimization expressions of all the unknown variables are given
bellow :

ĝ0 =
(
V −1ε + V −1ρ

)−1 (
V −1ε g + V −1ρ Hf

)
,

for i = 1 : I2 f̂
(k+1)

= f̂
(k)
− γ(k)f ∇J(f̂

(k)
),

for i = 1 : I2 ẑ
(k+1) = ẑ(k) − γ(k)z ∇J(ẑ(k)),

v̂ρi =
βρ0 + 1

2
[g0 −Hf ]2i

αρ0 + 3
2

,

v̂ξj =
βξ0 + 1

2
[f −Dz]2j

αz0 + 3
2

,

v̂zj =
βz0 + 1

2
z2j

αz0 + 3
2

, (5.109)

where

∇J(f̂
(k)

) = −HTV −1ρ (g0 −Hf) + V −1ξ (f −Dz) , (5.110)

∇J(ẑ(k)) = −DTV −1z (f −Dz) + V −1z z, (5.111)

γ
(k)
f =

‖∇J(f)‖22
‖Y ρH∇J(f)‖22 + ‖Y ξ∇J(f)‖22

, where Y ρ = V
− 1

2
ρ and Y ξ = V

− 1
2

ξ , (5.112)

γ(k)z =
‖∇J(z)‖22

‖Y ξD∇J(z)‖22 + ‖Y z∇J(z)‖22
, where Y z = V

− 1
2

z . (5.113)

As we have demonstrated, the Normal distribution can be approximated by a Stg distribu-
tion. So in the variable splitting method, we also consider to use the Stg distribution to model
the noise ε, presented in the next section.

5.8.4 Stg-Stg prior model for the variable splitting method (HHBM-SS)

Another prior model for the variable splitting method is to model both the noise ρ and ε by
a generalized Student-t distribution. As we have mentioned previously, the Stg distribution can
be either heavy-tailed for modeling a sparse variable or approach to a Gaussian distribution for
non-sparse variable by choosing different pair of hyper-parameters α and β.

In this model, both two additive noises, ε and ρ are model by a generalized Student-t distri-
bution. Comparing with the previous model, ε is modeled with a Gaussian distribution with an
unknown variance vε belonging to an Inverse Gamma distribution :

p(ε|vε) = N (ε|0,V ε), where V ε = diag [vε] ,

p(vε|αε0 , βε0) = IG(vε|αε0 , βε0).

Figure 5.32 illustrates the Generative graph of this Variable Splitting model.
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FIGURE 5.32 – Generative graph of the Stg-Stg Variable Splitting method.

Consequently the posterior distribution is :

p(g0,f , z,vε,vρ,vξ,vz|g)

∝p(g|g0,vε)p(g0|f ,vρ)p(f |z,vξ)p(z|vz)p(vε|αε0 , βε0)p(vρ|αρ0, βρ0)p(vξ|αξ0 , βξ0)p(vz|αz0 , βz0)

= |V ε|−
1
2 exp

{
−1

2
(g − g0)

T V −1ε (g − g0)
}
|V ρ|−

1
2 exp

{
−1

2
(g0 −Hf)T V −1ρ (g0 −Hf)

}
|V ξ|−

1
2 exp

{
−1

2
(f −Dz)T V −1ξ (f −Dz)

}
|V z|−

1
2 exp

{
−1

2
zTV −1z z

}
M∏
i=0

v
−(αε0+1)
εi

M∏
i=0

exp
{
−βε0v−1εi

} M∏
i=0

v−(αρ0+1)
ρi

M∏
i=0

exp
{
−βρ0v−1ρi

}
N∏
j=0

v
−(αξ0+1)

ξj

N∏
j=0

exp
{
−βξ0v−1ξj

} N∏
j=0

v
−(αz0+1)
zj

N∏
j=0

exp
{
−βz0v−1zj

}
,

(5.114)
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and the negative logarithm of the posterior distribution is :

J(g0,f , z,vρ,vξ,vz) = − ln p(g0,f , z,vρ,vξ,vz|g)

=
1

2
(g − g0)

T V −1ε (g − g0) +
1

2

M∑
i=1

ln vρi +
1

2
(g0 −Hf)T V −1ρ (g0 −Hf)

+
1

2

N∑
j=1

ln vξj +
1

2
(f −Dz)T V −1ξ (f −Dz) +

1

2

N∑
j=1

ln vzj +
1

2
zTV −1z z

+ (αρ0 + 1)
M∑
i=1

ln vρi + βρ0

M∑
i=1

v−1ρi + (αξ0 + 1)
N∑
j=1

ln vξj + βξ0

N∑
j=1

v−1ξj

+ (αz0 + 1)
N∑
j=1

ln vzj + βz0

N∑
j=1

v−1zj .

(5.115)

The unknowns are optimized alternately :

ĝ0 = arg min
g0

{
1

2
(g − g0)

T V −1ε (g − g0) +
1

2
(g0 −Hf)T V −1ρ (g0 −Hf)

}
, (5.116)

f̂ = arg min
f

{
1

2
(g0 −Hf)T V −1ρ (g0 −Hf) +

1

2
(f −Dz)T V −1ξ (f −Dz)

}
, (5.117)

ẑ = arg min
z

{
1

2
(f −Dz)T V −1ξ (f −Dz) +

1

2
zTV −1z z

}
, (5.118)

v̂εi = arg min
vεi

{
1

2
ln vεi +

1

2
[g − g0]

2
i v
−1
εi

+ (αε0 + 1) ln vεi + βε0v
−1
εi

}
, (5.119)

v̂ρi = arg min
vρi

{
1

2
ln vρi +

1

2
[g0 −Hf ]2i v

−1
ρi

+ (αρ0 + 1) ln vρi + βρ0v
−1
ρi

}
, (5.120)

vξj = arg min
vξj

{
1

2
ln vξj +

1

2
[f −Dz]2j v

−1
ξj

+ (αξ0 + 1) v−1ξj + βξ0v
−1
ξj

}
, (5.121)

vzj = arg min
vzj

{
1

2
ln vzj +

1

2
z2j v
−1
zj

+ (αz0 + 1) ln vzj + βz0v
−1
zj

}
. (5.122)

As indicated previously, the estimation of variables f and z are realized by using the descent
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gradient algorithm. The iterative optimization expressions of all the unknown variables are :

ĝ0 =
(
V −1ε + V −1ρ

)−1 (
V −1ε g + V −1ρ Hf

)
,

for i = 1 : I2 f̂
(k+1)

= f̂
(k)
− γ(k)f ∇J(f̂

(k)
),

for i = 1 : I2 ẑ
(k+1) = ẑ(k) − γ(k)z ∇J(ẑ(k)),

v̂εi =
βε0 + 1

2
[g − g0]

2
i

αε0 + 3
2

,

v̂ρi =
βρ0 + 1

2
[g0 −Hf ]2i

αρ0 + 3
2

,

v̂ξj =
βξ0 + 1

2
[f −Dz]2j

αz0 + 3
2

,

v̂zj =
βz0 + 1

2
z2j

αz0 + 3
2

, (5.123)

where

∇J(f̂
(k)

) = −HTV −1ρ (g0 −Hf) + V −1ξ (f −Dz) , (5.124)

∇J(ẑ(k)) = −DTV −1z (f −Dz) + V −1z z, (5.125)

γ
(k)
f =

‖∇J(f)‖22
‖Y ρH∇J(f)‖22 + ‖Y ξ∇J(f)‖22

, (5.126)

γ(k)z =
‖∇J(z)‖22

‖Y ξD∇J(z)‖22 + ‖Y z∇J(z)‖22
. (5.127)

5.8.5 Initialization of hyperparameters for HHBM-GS and HHBM-SS
methods

The hyperparameters, αε0 , βε0 , αρ0 and βρ0, of the Stg distribution are initialized by consi-
dering the prior property of the two noises ε and ρ. According to the system model of X-ray CT,
the hyperparameters are initialized such that ε is sparse and ρ approach to a Gaussian noise.

As presented in Section 5.4.2, the initialization of the hyperparameters considers the SNR
of the dataset. The variance of noise vn can be estimated beforehand with the projection data
without any object. According to Eq.(5.83), we have :

vn ≈
‖g‖22
M
× 1

1 + 10SNR/10
. (5.128)

In our work, without any further information about the two different noise of system ε and ρ,
we suppose that vε = vρ, and each of them equal to half of the total noise variance :

vε = vρ =
1

2
vn. (5.129)

• For HHBM-GS method, we fix vε = vn, and the relation βρ0 = vρ (αρ0 − 1) is conside-
red. We fix αρ0 = 2.01 in order to have a sparse structure for ρ.
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• For HHBM-SS method, the following relations are considered :

βε0 = vε (αε0 − 1) , (5.130)
βρ0 = vρ (αρ0 − 1) . (5.131)

In our work, we initialized different values for αε0 and αρ0 in order to realize different
prior distributions. We set αρ0 = 2.01 in order to have a sparse structure for ρ, and we
set αε0 = 100 in order to have a Gaussian structured noise ε.

Next we use these two different noise splitting methods for the reconstruction of Shepp
Logan figure and compare the simulation results.

5.8.6 Simulation results of the noise splitting method

In the simulations, we compared the proposed HHBM method with the variable splitting
method. In our work, we considered to split the noise into two parts, and two strategies of the
prior modeling are proposed. In the first strategy, called HHBM-GS, the projection noise ρ is
modeled by a Stg distribution while the detection noise is modeled by a Gaussian distribution. In
the second strategy, called HHBM-SS, two Stg distributions are used to model these two noises,
ε and ρ, with different values for the initialization of the corresponding hyperparameters.

In the simulations, the Shepp Logan phantom of size 2562 is used as the original figure. The

projections are evenly distributed from 0◦ to 180◦. The initialization for the figure f̂
(0)

is the
reconstructed figure of the FBP method.

Figure 5.33 shows the comparison of the convergence of the RMSE of the reconstruction
by using the HHBM method, the variable splitting method with two Stg models (HHBM-SS)
and the variable splitting method with a Gaussian and a Stg model (HHBM-GS), with 128
projections and 64 projections, respectively.

From the comparisons, we can see that, by considering two Stg noises, the variable splitting
method (HHBM-SS) has a slightly better reconstruction result than the HHBM method in terms
of RMSE value. By modeling one of the noise by a Gaussian distribution and the other by the
Stg distribution, the reconstruction results surpasses that of the HHBM method and the HHBM-
SS method, with a faster convergence than the other methods.

5.9 Conclusions and perspectives

In this chapter, the HHBM method is presented. In this method, a hierarchical Bayesian
model is defined, in which a hidden variable is introduced. The posterior distribution in the
Bayesian method is obtained from the hierarchical structured prior model. From the posterior
distribution, the unknown variables and parameters are estimated via MAP algorithm. Compa-
red with the regularization approaching methods, the proposed Bayesian method estimates the
parameters and variables simultaneously. The hyperparameters which defines the prior distribu-
tion of the parameters are fixed during initialization. A proposition of the initialization for the
hyperparameters is presented in this chapter, and the simulation results proved a relative sensi-
tiveness of the hyperparameters’ values. Simulations with both limited number of projections
and limited angle of projections are done, and it is proved that the proposed Bayesian method
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FIGURE 5.33 – Comparison of the HHBM method and the variational splitting methods in
terms of the evolution of the RMSE during reconstruction from 128 projections and

SNR=40dB.
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FIGURE 5.34 – Comparison of the HHBM method and the variational splitting methods in
terms of the evolution of the RMSE during reconstruction from 64 projections and SNR=40dB.
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is more robust than the conventional quadratic regularization method or total variation method
when the number or angle of projection is limited.

We also compared the Dual-Tree complex wavelet transformation (DT-CWT) with the Haar
transformation. From the comparison, we observed that the DT-CWT transformation is more
robust to the contamination than the Haar transformaion. Thanks to that, the Bayesian me-
thod BH-DTCWT based on this wavelet transformation outperforms the HHBM method using
Haar wavelet transformation. The short term future work devote to find some other transfor-
mation which is computationally faster and considers more wavelet directions instead of only
two directions in Haar transformation. The DT-CWT could be implemented in GPU for 3D
simulations in the future in order to accelerate the computation.

Based on the proposed HHBM method, a noise splitting method is proposed and presented
in this chapter. The splitting of noise considers the noise in two parts : a Gaussian noise and a
Stg noise. By considering these two noise, the reconstruction surpasses the HHBM in terms of
convergence speed and the quality of reconstruction.
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6
Simultaneous Object-Contour Reconstruction

Model

6.1 Introduction

In the previous chapter, a hierarchical Bayesian method which uses a heavy tailed generali-
zed Student-t distribution to enforce the sparse structure of the discrete wavelet transformation
coefficient is used. As it was pointed out, the advantage of the wavelet transformation compa-
ring with the gradient operator, or the Laplacian operator, is that, while the inversion of gradient
operator is inconvenient, the wavelet transformation operator is reversible and orthogonal.

However, the most accurate transformation to obtain a sparse structured coefficient of a
piecewise continuous image is the gradient operator or the Laplacian operator, because in the
wavelet transformation coefficient, the part corresponding to the low-pass filtered coefficients
is not sparse.

In this chapter, we present a Bayesian method which combines the reconstruction of the
object and the reconstruction of the Laplacian operator of object. For a piecewise continuous
object, the Laplacian is sparse. The Stg distribution is used as the prior model for the sparse
variable. The prior distribution for the variable f is a non-homogeneous Markovian model. In
this non-homogeneous Markovian model, the distribution of each voxel fi depends not only
on its six neighbor voxels, but also the Laplacian value of the neighbor voxels. By taking into
consideration the Laplacian values, we can distinguish whether the element is in a homogeneous
area or on a contour, and the weight of impact of this neighbor voxel on the current voxel will
depend on this Laplacian value.
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FIGURE 6.1 – The Radon Transform with the direction of radiation defined by vector η.

6.2 Forward model : Radon Transform and notations

As presented in Chapter 3, the Radon transform is analytically expressed as :

g(r, φ) = Rf(x, y) =

∫
Lr,φ

f(x, y)dl, (6.1)

where R represents the operator which transforms f to Radon space, f(x, y) represents the
image, g the detected projection data, r the perpendicular length from center point of coordinate
and φ the considered X ray angle. Lr,φ is the length of ray (r, φ) passing through the image.

We can also use a vector to replace φ to define the direction of the radiation. As shown in
Figure 6.1, the direction of the radiation can be defined by the unit vector η, and r is always the
vertical distance from the origin to the radiation. The RT can be represented by the following
expression :

g(r,η) =

∫ +∞

−∞
f(x, y)δ (r − pη) dt (6.2)

where pη = xη1 + yη2 = x cosφ+ y sinφ, so that :

g(r,η)

∫ +∞

−∞

∫ +∞

−∞
f(x, y)δ(r − xη1 − yη2) dx dy (6.3)

6.3 Basic properties of Radon transformation

Lemma 6.3.1. The shifting property :

Rf(x− a, y − b) = g(r − aη1 − bη2,η) (6.4)

Demonstration. By using the definition given in Eq.(6.3), we have :

Rf(x− a, y − b) =

∫ +∞

−∞

∫ +∞

−∞
f(x− a, y − b)δ (r − xη1 − yη2) dx dy (6.5)
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By changing the variable : x′ = x− a and y′ = y − b, we get :

Rf(x′, y′) =

∫ +∞

−∞

∫ +∞

−∞
f(x′, y′)δ ((r − aη1 − bη2)− x′η1 − y′η2) dx′ dy′

=g (r − aη1 − bη2,η)

(6.6)

Hence, the following properties are derived :

Rf(x− a, y) = g(r − aη1,η)

Rf(x, y − b) = g(r − bη2,η) (6.7)

2

Lemma 6.3.2. Derivation :

R
[
∂2f

∂x2
+
∂2f

∂y2

]
=
∂2g

∂r2
(6.8)

Demonstration. The definition of the second order derivative is :

∂2f(x, y)

∂x2
= lim

ε→0

f(x+ ε, y) + f(x− ε, y)− 2f(x, y)

ε2

∂2f(x, y)

∂y2
= lim

ε→0

f(x, y + ε) + f(x, y − ε)− 2f(x, y)

ε2
(6.9)

The Radon transform of the derivatives are respectively :

R∂
2f(x, y)

∂x2
= lim

ε→0

Rf(x+ ε, y) +Rf(x− ε, y)− 2Rf(x, y)

ε2

R∂
2f(x, y)

∂y2
= lim

ε→0

Rf(x, y + ε) +Rf(x, y − ε)− 2Rf(x, y)

ε2
(6.10)

According to the shifting property, Lemma 6.3.1, we get :

R∂
2f(x, y)

∂x2
= lim

ε→0

g (r + εη1,η) + g (r − εη1,η)− 2g(r,η)

ε2

=η2
1 lim
(η1ε)→0

g (r + εη1,η) + g (r − εη1,η)− 2g(r,η)

(εη1)
2

=η2
1

∂2g(r,η)

∂r2
(6.11)

R∂
2f(x, y)

∂y2
= lim

ε→0

g (r + εη2,η) + g (r − εη2,η)− 2g(r,η)

ε2

=η2
1 lim
(η2ε)→0

g (r + εη2,η) + g (r − εη2,η)− 2g(r,η)

(εη2)
2

=η2
2

∂2g(r,η)

∂r2
(6.12)

As η2
1 + η2

2 = 1, we obtain :

R
[
∂2f(x, y)

∂x2
+
∂2f(x, y)

∂y2

]
=
(
η2
1 + η2

2

) ∂2g(r,η)

∂r2

=
∂2g(r,η)

∂r2

(6.13)
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2

According to the previous demonstrated property, we obtain the following relationships bet-
ween the objection f and projection g and between the Laplacian of object f̈ and the Laplacian
of projection g̈ :

f(x, y)→RT→ g(r, φ), (6.14)

f̈(x, y)→RT→ g̈(r, φ), (6.15)

where

f̈(x, y) =

(
∂2

∂x2
+

∂2

∂y2

)
f(x, y),

g̈(r, φ) =
∂2

∂r2
g(r, φ). (6.16)

The same property can also be demonstrated in 3D projection.

Figure 6.2 shows, from left to right and top to bottom, the Shepp Logan phantom of size
2562, the projection of Shepp Logan phantom with 256 projections, the Laplacian of the Shepp
Logan phantom and the Laplacian of the projection.

In the statistical methods, the discretized data are considered. In the discretized Radon trans-
form system, the transformation operation is represented via the multiplier of a matrix H . So
that :

g = Hf + ε. (6.17)

where an additive noise is presented by vector ε, representing the error of detection and uncer-
tainties of the projection system.

Meanwhile, the Radon transform from Laplacian of object to the derivation of projection,
shown in Eq.(6.15), is expressed as :

g̈ = Hf̈ + τ (6.18)

where the additive error represents the uncertainties of the transform system and other errors of
the Laplacian operation.

Noted by f̈ the discretized f̈(x, y) and by g̈ discretized g̈(r, φ), they are approximated by
convolution of the corresponding variable with kernels :

g̈ = [−1 2 − 1] ∗ g = d1 ∗ g (6.19)

f̈ =

 0 −1 0
−1 4 −1
0 −1 0

 ∗ f = d2 ∗ f (6.20)

As the convolution d1 ∗ g and d2 ∗ f are linear operations, they are expressed as a linear
multiplier with the corresponding matrixD1 ∈ RM×M andD2 ∈ RN×N :

g̈ = D1g,

f̈ = D2f . (6.21)
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f(x, y) g(r, φ)

f̈(x, y) g̈(r, φ)

FIGURE 6.2 – The original Shepp Logan figure of size 2562 (top-left) f(x, y), its Laplacian
(bottom-left) f̈(x, y), the projection sinogram (top-right) g(r, φ) and the Laplacian of

sinogram (bottom-right) g̈(r, φ).

f g

f
..

g
..

Radon R

Radon R

D2 D1

FIGURE 6.3 – The relations between the original figure, the projection, the Laplacian of the
object and the Laplacian of the projection.
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And the relations between the object, the projection, the Laplacian of object and the Laplacian
of projections are shown in Figure 6.3.

In the conventional image reconstruction methods, for example the TV method, the gradient
of phantom f is used as a criterion to preserve the edges of image. In the proposed Recons-
truction of Object and Contour Combined method (ROCC), the Laplacian of the object f̈ is
considered as an unknown variable and is estimated during the reconstruction of the object.

6.4 Proposed Method of Reconstruction of Object while
Considering Contours (ROCC)

In this proposed ROCC method, we propose to use the forward relations in Eq.(6.21) to
simultaneously reconstruct the image f and detect the contours f̈ by using a Bayesian approach.
A hierarchical inhomogeneous Markovian model is defined for the object f . A hidden variables
q, which is the normalized Laplacian,

(∣∣∣f̈ ∣∣∣−min(
∣∣∣f̈ ∣∣∣)) /(max(

∣∣∣f̈ ∣∣∣)−min(
∣∣∣f̈ ∣∣∣)), is used as

a parameter of this prior model. A sparsity enforcing Generalized Student-t prior distribution is
used to enforce the sparse structure of f̈ .

6.4.1 Noise model

Starting from the forward model in Eq.(6.17) and Eq.(6.18), by assuming that the additive
noise ε and τ are iid Gaussian distributed with variance vε and vτ , we obtain the likelihood :

p(g|f ,vε) = N (g|Hf ,V ε),

p(g̈|f̈ ,vτ ) = N (g̈|Hf̈ ,V τ ), (6.22)

where V ε = diag [vε] and V τ = diag [vτ ] are diagonal matrix. Considering that the variances
vεi and vτi are positive and are not very big, they are defined by Inverse Gamma distributions :

p(vε|αε0 , βε0) = IG(vε|αε0 , βε0),
p(vτ |ατ0 , βτ0) = IG(vτ |ατ0 , βτ0), (6.23)

where αε0 , βε0 , ατ0 and βτ0 are hyper parameters.

Another convenience of choosing the Inverse Gamma distribution for the variance is that,
when the likelihood is Gaussian distributed, they are therefore conjugate distributions, and the
form of the posterior distribution will still be Gaussian and Inverse Gamma distribution.

6.4.2 Sparsity enforcing Student-t prior model for f̈

As we have shown in Chapter 4, in X-ray CT, the object under consideration is commonly
piecewise continuous. The Laplacian of this type of object is sparse, as shown in Figure 6.2,
with most of the part approaching to zero except the contours.

As f̈ is sparse, we use a sparsity enforcing prior to define it. As presented in the previous
chapter, the generalized Student-t distribution is a suitable distribution and it has many appro-
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(ROCC)

priate properties in the Bayesian method. By considering its Normal-Inverse Gamma margina-
lization form, we model the hidden variable f̈ by :

p(f̈ |vc) = N (f̈ |0,V c),

p(vc|αc0 , βc0) = IG(vc|αc0 , βc0), (6.24)

where V c = diag [vc], and αc0 and βc0 are two hyper-parameters of generalized Student-t dis-
tribution.

6.4.3 The prior model for object

In the ROCC method, f is defined by an inhomogeneous Markovian distribution basing on
the Laplacian f̈ . In this Markovian model, the neighbor pixels are considered. For 2D image,
four neighbor pixels are considered, and for 3D object, six neighbor voxels are considered, as
shown in Figure 6.4.

fi,j

fi-1,j

fi,j+1fi,j-1

fi+1,j fi,j,k

fi+1,j,k

fi,j+1,kfi,j,k-1

fi-1,j,k

fi,j-1,k
fi,j,k+1

FIGURE 6.4 – The neighbour pixels of current pixel in 2D image (left) and the neighbour
voxels of current voxel in 3D object (right).

In the conventional homogeneous Markovian model, every neighbor pixel will have the
same weight on the current pixel. It works well for the pixels in the homogeneous areas. As
shown in Figure 6.5, when the pixel is around the contours between different homogeneous
areas, the neighbor pixels should have different weight of influence on the current pixel. Here
we use fr to represent the current pixel value, and fr′ to represent its neighbor pixels values.
When fr′ is not on the contour, it means that fr′ is in the same homogeneous zone as fr, and
that they are approach to each other. When fr′ is on the contour, on the other hand, fr′ should
not have much influence on fr.

By considering these relations, we propose to use a normalized Laplacian value q :

qr =

∣∣∣f̈ r∣∣∣−min
(∣∣∣f̈ r∣∣∣)

max
(∣∣∣f̈ r∣∣∣)−min

(∣∣∣f̈ r∣∣∣) . (6.25)

So qr′ is between 0 and 1, ∀r′ ∈ Nr(r) and ∀r ∈ [1, N ], where Nr(r) means the neighbor
pixels of r. When qr′ = 0, it corresponds to a minimum Laplacian value, and it means that the
neighbor pixels fr′ is in the same homogeneous areas as fr and fr should depend on the value
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fr′ . When qr′ = 1, it corresponds to a maximum Laplacian value, representing that the neighbor
pixel fr′ is on the contour and should not have influence on fr. Consequently, the influence of
the neighbors pixels in the Markovian model is inversely proportional to the value of qr′ .

We define the variable f by the following Gaussian distribution :

p(f |mf ,vf ) = N (f |mf ,V f ) (6.26)

where the variance vf are supposed belonging to an Inverse Gamma distribution, in order to
realize a semi-supervised model. The mean of this Gaussian distribution, mf , depends on the
neighbors of each pixel. The definition of the mean of the pixel r is :

mr =

∑
r′∈N r(r)

(1− qr′) fr′∑
r′∈N r(r)

(1− qr′)
. (6.27)

For each neighbor pixel, r′, the pixel value fr′ is considered with a weight (1− qr′). qr′ is the
normalized Laplacian value of the neighbor pixel r′, defined in Eq.(6.25). Term 1∑

r′∈N r(r)
(1−qr′ )

is added for the normalization.

Therefore, the expression of the prior distribution for each pixel fr is :

p(fr|f−r, q, vfr) =N (fr|mr, vfr)

∝v−1fr exp

−1

2
v−1fr

(
fr −

∑
r′∈N r(r)

(1− qr′) fr′∑
r′∈N r(r)

(1− qr′)

)2
 ,

(6.28)

where f−r represents all the elements in vector f except fr.

We show an example in Figure 6.5 as an explanation of this prior model.

In this example, fr is the value of the current pixel, qr is the normalized Laplacian of pixel
r. r′1, r′2, r

′
3 and r′4 are the four neighbor pixel of r. Among them, r′1 and r′4 are on the contour

with normalized Laplacian values qr′ equal to 1, while r′2 and r′3 are in the homogeneous areas
with qr′ equal to 0. Thus, qr′1 = qr′4 = 1 and qr′2 = qr′3 = 0. As defined in Eq.(6.27), the mean of
prior distribution for fr is :

mr =

(
1− qr′1

)
fr′1 +

(
1− qr′2

)
fr′2 +

(
1− qr′3

)
fr′3 +

(
1− qr′4

)
fr′4(

1− qr′1
)

+
(
1− qr′2

)
+
(
1− qr′3

)
+
(
1− qr′4

)
=
fr′2 + fr′3

2
.

(6.29)

So that fr belong to a Gaussian distribution :

p(fr) = N
(
fr|
fr′2 + fr′3

2
, vfr

)
. (6.30)

In a more complicated case, the value qr is distributed in [0, 1]. Consequently, a neighbor
pixel with a bigger value of qr′ will have less influence on the current pixel.
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fr,qr

fr'4
,qr'4

fr'1,qr'1

fr'3
,qr'3

fr'2
,qr'2

: q(r')=1

: q(r')=0

q=1

q=0

FIGURE 6.5 – Example of the inhomogeneous Markovian prior model of f

6.5 Semi-supervised ROCC method

In most of the cases, initializing the variance of phantom vf manually demand some prior
information, which is typically not accessible in real applications. A semi-supervised model is
considered in our work, in which vf is an unknown vector and the Inverse Gamma distribution
is defined for it :

p(vf |αf0 , βf0) = IG(vf |αf0 , βf0) ∝
N∏
j=1

v
−(αf0+1)

fj
exp

{
−βf0v−1fj

}
. (6.31)

6.5.1 The system model

Basing on the previously presented prior model for the object f , and by considering vf and
an unknown variable, belonging to an Inverse Gamma distribution, we get the following system
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model :

p(g|f ,vε) = N (g|Hf ,V ε) ∝ |V ε|−
1
2 exp

{
−1

2
(g −Hf)T V −1ε (g −Hf)

}
,

p(g̈|f̈ ,vτ ) = N (g̈|Hf̈ ,V τ ) ∝ |V τ |−
1
2 exp

{
−1

2

(
g̈ −Hf̈

)T
V −1τ

(
g̈ −Hf̈

)}
,

p(f |mf ,vf ) = N (f |mf ,V f ) ∝ |V f |−
1
2 exp

{
−1

2
(f −mf )

T V −1f (f −mf )

}
,

p(f̈ |vc) = N (f̈ |0,V c) ∝ |V c|−
1
2 exp

{
−1

2
f̈
T
V −1c f̈

}
,

p(vε|αε0 , βε0) = IG(vε|αε0 , βε0) ∝
M∏
i=1

v
−(αε0+1)
εi

M∏
i=1

exp
{
−βε0v−1εi

}
,

p(vτ |ατ0 , βτ0) = IG(vτ |ατ0 , βτ0) ∝
M∏
i=1

v
−(ατ0+1)
τi

M∏
i=1

exp
{
−βτ0v−1τi

}
,

p(vf |αf0 , βf0) = IG(vf |αf0 , βf0) ∝
N∏
j=1

v
−(αf0+1)

fj

N∏
j=1

exp
{
−βf0v−1fj

}
,

p(vc|αc0 , βc0) = IG(vc|αc0 , βc0) ∝
N∏
j=1

v
−(αc0+1)
cj

N∏
j=1

exp
{
−βc0v−1cj

}
, (6.32)

where

mf =

∑
r′∈Nr(1− qr′)fr′∑
r′∈Nr(1− qr′)

, (6.33)

and

q =

∣∣∣f̈ ∣∣∣−min
(∣∣∣f̈ ∣∣∣)

max
(∣∣∣f̈ ∣∣∣)−min

(∣∣∣f̈ ∣∣∣) . (6.34)

According to the Bayes rule, the posterior distribution is :

p(f , f̈ ,vε,vτ ,vf ,vc|g, g̈)

∝p(g|f ,vε)p(g̈|f̈ ,vτ )p(f |mf ,vf )p(f̈ |vc)p(vε|αε0 , βε0)
p(vτ |ατ0 , βτ0)p(vf |αf0 , βf0)p(vc|αc0 , βc0)

= |V ε|−
1
2 exp

{
−1

2
(g −Hf)T V −1ε (g −Hf)

}
|V τ |−

1
2 exp

{
−1

2

(
g̈ −Hf̈

)T
V −1τ

(
g̈ −Hf̈

)}
|V f |−

1
2 exp

{
−1

2
(f −mf )

T V −1f (f −mf )

}
|V c|−

1
2 exp

{
−1

2
f̈
T
V −1c f̈

}
M∏
i=1

v
−(αε0+1)
εi

M∏
i=1

exp
{
−βε0v−1εi

} M∏
i=1

v
−(ατ0+1)
τi

M∏
i=1

exp
{
−βτ0v−1τi

}
N∏
j=1

v
−(αf0+1)

fj

N∏
j=1

exp
{
−βf0v−1fj

} N∏
j=1

v
−(αc0+1)
cj

N∏
j=1

exp
{
−βc0v−1cj

}
.

(6.35)
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6.5.2 JMAP Estimation

By using the JMAP estimation, the unknown variables are estimated iteratively. The maxi-
mization of the posterior distribution is transferred into the minimization of the negative loga-
rithm of the posterior distribution, considering the exponential form of the distribution :(

f̂ , ̂̈f , v̂ε, v̂τ , v̂f , v̂c) = arg max
f , ¨f ,vε,vτ ,vf ,vc

{
p(f , f̈ ,vε,vτ ,vf ,vc|g, g̈)

}
= arg min

f , ¨f ,vε,vτ ,vf ,vc

{
J(f , f̈ ,vε,vτ ,vf ,vc)

}
,

(6.36)

where

J(f , f̈ ,vε,vτ ,vf ,vc)

=
1

2

M∑
i=1

ln vεi +
1

2
(g −Hf)T V −1ε (g −Hf)

+
1

2

M∑
i=1

ln vτi +
1

2

(
g̈ −Hf̈

)T
V −1τ

(
g̈ −Hf̈

)
+

1

2

N∑
j=1

ln vfj +
1

2
(f −mf )

T V −1f (f −mf )

+
1

2

N∑
j=1

ln vcj +
1

2
f̈
T
V −1c f̈ + (αε0 + 1)

M∑
i=1

ln vεi + βε0

M∑
i=1

v−1εi + (ατ0 + 1)
M∑
i=1

ln vτi + βτ0

M∑
i=1

v−1τi

+ (αf0 + 1)
N∑
j=1

ln vfj + βf0

N∑
j=1

v−1fj + (αc0 + 1)
N∑
j=1

ln vcj + βc0

N∑
j=1

v−1cj .

(6.37)

By estimating the unknown variables alternately, we estimate the unknowns by minimizing
their corresponding criterions :

J(f) =
1

2
(g −Hf)T V −1ε (g −Hf) +

1

2
(f −mf )

T V −1f (f −mf ) ,

J(f̈) =
1

2

(
g̈ −Hf̈

)T
V −1τ (g̈ −Hf) +

1

2
f̈
T
V −1c f̈ ,

J(vεi) =
1

2
ln vεi +

1

2
[g −Hf ]2i v

−1
εi

+ (αε0 + 1) ln vεi + βε0v
−1
εi
,

J(vτi) =
1

2
ln vτi +

1

2

[
g̈ −Hf̈

]2
i
v−1τi + (ατ0 + 1) ln vτi + βτ0v

−1
τi
,

J(vfj) =
1

2
ln vfj +

1

2
[f −mf ]

2
j v
−1
fj

+ (αf0 + 1) ln vfj + βf0v
−1
fj
,

J(vcj) =
1

2
ln vcj +

1

2
f̈ 2
j v
−1
cj

+ (αc0 + 1) ln vcj + βc0v
−1
cj
. (6.38)

By calculating the zero points of the derivation of each criterion, we get the updating rules
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for all the variables :

f̂ =
(
HTV −1ε H + V −1f

)−1 (
HTV −1ε g + V −1f mf

)
,̂̈f =

(
HTV −1τ H + V −1c

)−1
HTV −1τ g̈,

v̂εi =
βε0 + 1

2
[g −Hf ]2i

αε0 + 3
2

,

v̂τ i =
βτ0 + 1

2

[
g̈ −Hf̈

]2
i

ατ0 + 3
2

,

v̂fj =
βf0 + 1

2
[f −mf ]

2
j

αf0 + 3
2

,

v̂cj =
βc0 + 1

2
f̈ 2
j

αc0 + 3
2

. (6.39)

The updating of the variables v̂εi , v̂fj and v̂cj are explicit, but as we have pointed out in
Chapter 5 that, the inversion of the non-diagonal big size matrix

(
HTV −1ε H + V −1f

)
and(

HTV −1ε H + V −1c
)

are not realizable, we use the gradient descent algorithm to optimize the

unknown variables f̂ and ̂̈f :

f̂
(k+1)

= f̂
(k)
− γf∇J(f̂

(k)
),̂̈f (k+1)

= ̂̈f (k)

− γ ¨f
∇J(̂̈f (k)

), (6.40)

where∇J(·) represents the derivation of the corresponding criterion J(·), and γ· represents the
descent step length. The descent step length is obtained by minimizing the following criterion :

γf = arg min
γf

{
J(f̂ − γf∇J(f̂))

}
,

γ ¨f
= arg min

γ ¨f

{
J(̂̈f − γ ¨f

∇J(̂̈f))
}
, (6.41)

and the expressions of γf and γ ¨f
are respectively :

γf =
‖∇J(f)‖2

‖Y εH∇J(f)‖2 + ‖Y f∇J(f)‖2
, where Y ε = V

− 1
2

ε and Y f = V
− 1

2
f , (6.42)

γ ¨f
=

∥∥∥∇J(f̈)
∥∥∥2∥∥∥Y εH∇J(f̈)

∥∥∥2 +
∥∥∥Y c∇J(f̈)

∥∥∥2 , where Y c = V
− 1

2
c . (6.43)

The optimization of all the variables by using ROCC method follows the following iterative
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updating rules :

iter : f̂
(k+1)

= f̂
(k)
− γf∇J(f̂

(k)
), (6.44)

iter : ̂̈f (k+1)

= ̂̈f (k)

− γ ¨f
∇J(̂̈f (k)

), (6.45)

v̂εi =
βε0 + 1

2
[g −Hf ]2i

αε0 + 3
2

,

v̂τ i =
βτ0 + 1

2

[
g̈ −Hf̈

]2
i

ατ0 + 3
2

, (6.46)

v̂fj =
βf0 + 1

2
[f −mf ]

2
j

αf0 + 3
2

, (6.47)

v̂cj =
βc0 + 1

2
f̈ 2
j

αc0 + 3
2

. (6.48)

In this proposed method, the estimated Laplacian in each iteration is used in the optimiza-
tion of the phantom, via the non-homogeneous Markovian model. The normalized Laplacian is
considered for the weighted mean in the Gaussian distribution. By doing so, the neighbor pixels
are distinguished via the value of the Laplacian, hence the homogeneous areas and the contours
areas are separately considered. On the other hand, the optimized object f̂ is used to construct

the initialization variable for the optimization of Laplacian ̂̈f in each iteration.

Figure 6.6 shows the Directed Acyclic Graph (DAG) which presents the principal relation-
ship of the updating of all the variables in the iterative updating rule in Eq.(6.44)-Eq.(6.48).

g - Eq.(6.44) - f̂

?

D2
�̂̈f (0)

?

g̈ - Eq.(6.45) - ̂̈f

6̂

q6

- ̂̈f

- f̂

ROCC

D1

?

?

FIGURE 6.6 – DAG of proposed ROCC model.

6.6 Experiment results

Here we show the experimental results of 3D X-ray CT reconstruction of both simulated
phantom and real object. Comparison with conventional methods are also derived.
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6.6.2 - Simulation results of reconstructing 3D phantom with ROCC method

6.6.1 Implementation

In the simulation, the 3D ”Shepp Logan” phantom of size 2563 and the 3D ”Head” object of
size 2563 are considered. Parallel projection and back-projection are implemented via the AS-
TRA toolbox [vAPC+16]. For each projection, 2562 detectors are used to receive the attenuated
radiation, and hence an image of size 2562 is obtained for each projection. In our notation, N
and M represent respectively the size of object f and projection dataset g. np represents the
number of projections. According to the definition, we have M = 2562np.

In the proposed ROCC method, two types of gradient are used : the one of the object f , and
the one of the data g. First of all, we consider the 2D case. The 3D case then can be derived
with the same token.

6

-1

-1

-1

-1

-1

-1

FIGURE 6.7 – Laplacian kernel in 3D

In 3D cases, the Laplacian of f is the convolution of the object with a 3D Laplacian operator,
shown in Figure 6.7. In this operator, there is a value 6 in the middle, and a -1 on the left, right,
top, bottom, front and behind. It is represented by the operator :

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (6.49)

The derivation of g in 3D cases is the 2D derivation of each projection direction.

In each iteration, after the optimization of f and f̈ , the corresponding mf , Eq.(6.33), and
q, Eq.(6.34), are calculated. They are used in the optimization of the other variables.

The implementation algorithm of the ROCC method is illustrated in Algorithm 6.

6.6.2 Simulation results of reconstructing 3D phantom with ROCC me-
thod

The simulated Shepp Logan phantom and the real Head object are used in the simulations.
Both of these two objects have 2563 voxels. The datasets are obtained by projecting the object
using parallel beam radiations. For each projection direction, 2562 detectors are used to receive
the attenuated photons and hence an image of size 256 × 256 is obtained for each projection
direction. The projections are distributed evenly between 0◦ and 180◦.
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Algorithm 6 Summary of the JMAP algorithm for ROCC method
1: Input : H , D, g

2: Output : f̂ , ̂̈f
3: Initialization :
4: g̈ = Laplacian(g)

5: f̂
(0)
← normalized FDK

6: repeat
7: Compute m̂f according to Eq.(6.33)
8: Compute q̂ according to Eq.(6.34)
9: repeat

10: Compute γ̂f according to Eq.(6.42)

11: Compute∇J(f̂) from Eq.(6.38)
12: f̂ = f̂ − γ̂f∇J(f̂)

13: until convergence or maximum iteration

14: ̂̈f = Laplacian(f̂)
15: repeat
16: Compute γ̂ ¨f

according to Eq.(6.43)

17: Compute∇J(̂̈f) from Eq.(6.38)

18: ̂̈f = ̂̈f − γ̂ ¨f
∇J(̂̈f)

19: until convergence or maximum iteration
20: Compute vεi , ∀i ∈ [1 : M ] according to Eq.(6.39)
21: Compute vτi , ∀i ∈ [1 : M ] according to Eq.(6.39)
22: Compute vfj , ∀j ∈ [1 : N ] according to Eq.(6.39)
23: Compute vcj , ∀j ∈ [1 : N ] according to Eq.(6.39)
24: until convergence or maximum iteration
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6.6.3 - Initializations

6.6.3 Initializations

The initialization of the variables and hyperparameters of the ROCC method is discussed
in this section. The reconstruction result of the object by using the FBP technique is used to

initialize the variable f̂ . Another hidden variable, ̂̈f , is initialized as the Laplacian of the object
f̂ : ̂̈f =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
f̂ . (6.50)

The initialization of hyperparameters αε0 , βε0 , ατ0 , βτ0 , αf0 , βf0 , αc0 and βc0 depends on the
chosen prior model and the prior property of the parameters.

Initialization of αε0 and βε0

αε0 and βε0 are the hyperparameters of the prior model of the noise ε. In the simulation, a
Gaussian noise is added to datasets and consequently ε belong to a Gaussian distribution. Ho-
wever, in the real applications, the model of the noise ε is not known. In positron tomography
the noise is normally modeled by a Poisson distribution, but in X-ray CT the Gaussian distri-
bution is used to model noise. So that α and β are chosen such that Stg is approximate to a
Gaussian distribution.

As presented in Section 4.4.2, the Stg distribution approaches to a Gaussian distribution
when the value of αε0 and βε0 are both big.

Also, a relationship between αε0 and βε0 is obtained via the variance of the noise vε. In
the simulations, the value of vε is obtained via the value of the SNR and the variance of the
projection dataset vg. As presented in Eq.(5.84), we have :

βε0 =
‖g‖22
M
× 1

1 + 10SNR/10
× (αε0 − 1) . (6.51)

Therefore it is sufficient to initialize only the value of αε0 .

Figure 6.8 shows the influence of the value of hyperparameter αε0 on the performance of
reconstruction in terms of RMSE of the reconstructed object. We can see from the figures that,
for different cases of number of projections or different noise in the dataset, we always have
better results when the value of αε0 has a bigger value. Furthermore, when the value of αε0 is
bigger than a threshold value, its influence on the RMSE is relatively insensitive. This relative
insensitiveness facilitates the initialization of the hyperparameter αε0 .

Initialization of ατ0 and βτ0

The noise τ is also modeled by a Gaussian distribution. For the same reason as for ε, the
hyperparameters ατ0 and βτ0 are related by :

βτ0 =
‖g̈‖22
M
× 1

1 + 10SNR/10
× (ατ0 − 1) , (6.52)

where g̈ is the Laplacian of dataset g.
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FIGURE 6.8 – Influence of hyperparameter αε0 in ROCC method on RMSE of final
reconstruction results for different number of projections and different noise.

Figure 6.9 shows the influence of the value of ατ0 on the performance of reconstruction in
terms of RMSE of reconstructed object. In these figures, we can see that with different value of
ατ0 , the RMSE of the reconstruction is the same. In other words, the value ατ0 has almost no
influence on the final results of reconstruction.

Initialization of αf0 and βf0

The hyperparameters αf0 and βf0 appear in the Inverse Gamma distribution of the parameter
vf . Consequently, the variable f belongs to a Stg model. A rough value of the variance of the
variable f can be obtained via the initialization of the variable f : v̂f = Var[f̂ ]. According to
the property of the Stg distribution, we have v̂f |αf0 , βf0 = βf0/(αf0− 1), therefore we obtain :

βf0 = v̂f × (αf0 − 1) . (6.53)

As there exist a relationship between these two hyperparameters, it is sufficient to initialize αf0 .
In our work, the object f under consideration, which is modeled by the Stg distribution, is not
sparse. Theoretically the value of αf0 and βf0 should be initialized with a bigger value in order
to have better results.

Figure 6.10 shows the RMSE of the reconstruction results with different values of αf0 with
different number of projections and different noise level in dataset. The simulation results pro-
ved our proposition. When the dataset has a high SNR=40dB, the initilization of αf0 is not
sensitive. While there is a low SNR=20dB, the reconstruction has a better result when αf0 is
bigger.
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FIGURE 6.9 – Influence of hyperparameter ατ0 in ROCC method on RMSE of final
reconstruction results for different number of projections and different noise.
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FIGURE 6.10 – Influence of hyperparameter αf0 in ROCC method on RMSE of final
reconstruction results for different number of projections and different noise.
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Initialization of αc0 and βc0

In ROCC method, the Laplacian of the object, f̈ , is modeled by a Stg distribution depending
on two hyper-parameters αc0 and βc0 . Here we analysis the initialization of these two hyper-
parameters simultaneously. The variable f̈ is supposed to have a sparse structure, and could be
realized with small values for both αc0 and βc0 . Consequently, the ROCC method is expected to
have a better result when αc0 and βc0 are smaller.

Figure 6.11 and Figure 6.12 show the influence of the initialization of αc0 and βc0 . In Figure
6.11, different colors correspond to different values of βc0 , and in Figure 6.12 different colors
correspond to different values of αc0 . We can see from the results that, for different number
of projections and different noise levels in dataset, the value of αc0 and βc0 have almost no
influence on the RMSE of reconstruction.

This property is very interesting. As we have mentioned above, when the value of αc0 and
βc0 are smaller, the variable f̈ will have a sparser structure. In the ROCC method, the variable
f̈ is modeled by this Stg distribution. However, f̈ also depends on the observed data g̈. The
simulation results show us that the values of αc0 and βc0 don’t have much influence of the quality
of reconstruction because the relationship with g̈ plays a more important role in this method.
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FIGURE 6.11 – Influence of hyperparameter αc0 in ROCC method on RMSE of final
reconstruction results for different number of projections and different noise.

6.6.4 Simulation results

The initialization of the variables and hyperparameters are defined as following :

• f̂
(0)

is the reconstructed object from the dataset g by using the FBP method.

• ̂̈f (0)

is the Laplacian of the initialized f̂
(0)

.
• αε0 = 100, and βε0 = vε × (αε0 − 1) =

‖g‖22
M
× 1

1+10SNR/10
× (αε0 − 1).
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FIGURE 6.12 – Influence of hyperparameter βc0 in ROCC method on RMSE of final
reconstruction results for different number of projections and different noise.

• ατ0 = 100, and βτ0 = vτ × (ατ0 − 1) =
‖g̈‖2

2

M
× 1

1+10SNR/10
× (ατ0 − 1).

• αf0 = 100, and βf0 = vf × (αf0 − 1).
• αc0 = 0.01 and βc0 = 0.01.

Table 6.1 shows the comparison of different metrics of evaluation of reconstruction by using
different methods. Reconstruction with 180, 90, 60, 45, 36 and 18 projections are tested, and
they correspond to respectively 1 projection in every 1◦, 2◦, 3◦, 4◦, 5◦ and 10◦.

The ROCC method is compared with the QR and TV methods. To evaluate the simulation
results, the Relative Means Square Error (RMSE), the Improvement of SNR (ISNR), the Peak
SNR (PSNR) and the Structure Similarity of Image (SSIM) of the reconstruction are measured
and compared. The results show that TV performs better when a low SNR dataset is used in
the reconstruction. However, in the high SNR cases, and when the number of projections is
insufficient, the ROCC method outperforms the TV method. The ROCC method is more robust
than the two state-of-the-art methods when number of projections is limited.

Figure 6.13 represents the middle slice of the reconstructed Shepp Logan phantom by using
different methods, using projection sinogram of 60 projections and SNR=40dB. From the fi-
gures we can see that in the reconstructed phantom by using QR method, the edge of the phan-
tom and the contours of different blocks in the phantom are blurred, and in the background the
artifacts are obvious. The reconstructed phantom using TV and ROCC methods have clearer
contours than the QR method. When comparing with TV method, we see that TV method leads
to results with more blurry contours and smoother homogeneous areas. The ROCC method
gives clearer contours than the two state-of-the-art methods.

In Figure 6.14, the middle slices of the reconstructed Shepp Logan phantom using dif-
ferent methods are presented. In this simulation, the projection sinogram with 36 projections
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TABLE 6.1 – Comparison of RMSE, ISNR, PSNR and SSIM of reconstructed phantom with
50 globle iterations (10 iterations for gradient descent in each of globle iterations) by using

QR, TV or ROCC methods. The values of regularization parameters are respectively λQR = 10
and λTV = 50 for SNR=40dB, λQR = 600 and λTV = 100 for SNR=20dB.

256*256*256
180 projections 90 projections

40dB 20dB 40dB 20dB
QR TV ROCC QR TV ROCC QR TV ROCC QR TV ROCC

RMSE 0.0236 0.0114 0.0114 0.1309 0.0209 0.0688 0.0401 0.0212 0.0177 0.1558 0.0491 0.0914
ISNR 5.5584 8.7217 8.6386 7.2024 15.1775 9.9937 6.6136 9.3832 10.1605 8.4583 13.4765 10.7756
PSNR 30.0675 33.2308 33.2443 22.6318 30.6069 25.4231 27.7743 30.5439 31.3211 21.8754 26.8937 24.1928
SSIM 0.9999 0.9999 0.9999 0.9992 0.9999 0.9996 0.9997 0.9999 0.9999 0.9990 0.9997 0.9994

60 projections 45 projections
40dB 20dB 40dB 20dB

QR TV ROCC QR TV ROCC QR TV ROCC QR TV ROCC
RMSE 0.0636 0.0321 0.0218 0.1656 0.0753 0.1102 0.0904 0.0474 0.0259 0.1854 0.0901 0.1300
ISNR 9.3826 12.3480 14.0209 9.1492 12.5701 10.9191 10.3301 13.1308 15.7625 10.0137 13.1476 11.5572
PSNR 25.7693 28.7347 30.4076 21.6116 25.0325 23.3814 24.2404 27.0412 29.6728 21.1195 24.2535 22.6631
SSIM 0.9996 0.9995 0.9999 0.9990 0.9995 0.9993 0.9994 0.9997 0.9998 0.9988 0.9994 0.9992

36 projections 18 projections
40dB 20dB 40dB 20dB

QR TV ROCC QR TV ROCC QR TV ROCC QR TV ROCC
RMSE 0.1177 0.0680 0.0301 0.1957 0.1116 0.1451 0.2581 0.2104 0.0566 0.2907 0.2313 0.2252
ISNR 10.6591 13.0424 16.5786 10.8633 13.3032 12.1617 10.7122 11.5992 16.8020 10.8088 11.8022 11.8279
PSNR 23.0949 25.4783 29.0145 20.8865 23.3264 22.1849 19.6263 20.5133 26.2758 19.1085 20.1020 20.2758
SSIM 0.9993 0.9996 0.9998 0.9988 0.9993 0.9991 0.9983 0.9987 0.9996 0.9981 0.9985 0.9986

Original QR TV ROCC

FIGURE 6.13 – The reconstructed Shepp Logan phantom of size 2563 with 60 projections and
SNR=40dB, by using different reconstruction methods. Red curves represent the profile at the

position of the blue line.
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Original QR TV ROCC

FIGURE 6.14 – The reconstructed Shepp Logan phantom of size 2563 with 36 projections and
SNR=40dB, by using different reconstruction methods. Red curves represent the profile at the

position of the blue line.

and SNR=40dB is used. As shown in the results, by using the QR and TV, the contours of
the reconstructed phantom are blurry, and in the object there exist some circle artifacts. In the
reconstructed phantom by using ROCC method, the contours are clearer than the other state-of-
the-art methods.

Figure 6.15 and Figure 6.16 present a profile of the middle slice of the reconstructed Shepp
Logan phantom. By comparing the ROCC method with the state-of-the-art methods, we can see
that the shape of the reconstructed phantom is closer to the original one at the contour areas by
using the ROCC method. When the number of projections is insufficient, ROCC method stays
more robust than the other two state-of-the-art methods.

In Figure 6.17 and Figure 6.18, we compared the ROCC method with QR and TV method in
terms of the RMSE of reconstructed object. The evaluation are compared with projection sino-
grams with different number of projections. As we can see in the figures, the RMSE is smaller
when the number of projections is larger. When there are sufficient number of projections, both
these three methods perform very well. When there are insufficient number of projections, the
ROCC method stays more robust than QR and TV methods. In the cases where there is a high
SNR, the ROCC method stays robust when there are more than 36 projections.

6.7 Comparison of computation time

The computation time is a crucial problem in the real applications, especially for the itera-
tive methods for the three dimensional objects. In this section, we show the comparison of the
computation time by using the TV, HHBM and ROCC methods.

In Table 6.2, the reconstruction time by using different methods are compared for a Shepp
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FIGURE 6.15 – The profiles of the middle slice of reconstructed Shepp Logan phantom of size
2563 with dataset of 60 projections and SNR=40dB, by using different reconstruction methods.

The bottom figure is a zone of contour of the top figure.
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FIGURE 6.16 – The profiles of the middle slice of reconstructed Shepp Logan phantom of size
2563 with dataset of 18 projections and SNR=40dB, by using different reconstruction methods.

The bottom figure is a zone of contour of the top figure.
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FIGURE 6.17 – The Relative Mean Square Error (RMSE) of the reconstructed Shepp Logan
phantom with the dataset of different numbers of projections and SNR=40dB, by using

different reconstruction methods.
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FIGURE 6.18 – The Relative Mean Square Error (RMSE) of the reconstructed Shepp Logan
phantom with the dataset of different numbers of projections and SNR=20dB, by using

different reconstruction methods.

135



6.6.4 - Simulation results

TABLE 6.2 – Comparison of computation time by using different methods. * The threshold of
RMSE implies the critical condition of the end of iteration. When RMSE of the reconstruction

is smaller than the threshold, the iteration stops. ** For the TV method, the regularization
parameter is an optimized parameter, which is fixed by comparing the RMSE of reconstruction

with different parameter values. In the table, the number in the parentheses represents the
number of iterations till convergence.

Projection number 128 64 32
Threshold of RMSE* 0.02 0.04 0.1

TV** 722.8s (40)† 754.65s (43) 682.08s (42)
HHBM 1532.3s (13) 822.56s (8) 496.3s (5)
ROCC 673.2s (20) 440.7s (15) 82.65s (3)

Logan phantom of size 2563, by applying respectively 128, 64 and 32 projections. The com-
putation time represents the total time needed such that the RMSE of estimation f̂ is smaller
than the threshold of RMSE. For TV method, the optimal regularization parameter is fixed by
comparing the RMSE of reconstruction results with different parameter values. The threshold
of RMSE of the critical condition is chosen according to the RMSE of the final reconstruction
results of all the reconstruction methods.

In this table, we can conclude that the ROCC method has a much faster convergence rate
than the other two methods. For the cases of 128 projections and 64 projections, the HHBM
method is slower than the TV method. However, in order to fix the regularization parameter for
TV method, a test has to be done for each different parameter value, and normally more than
ten times tests are needed. Consequently, the computation time for TV method is much more
than the presented time.

6.8 Conclusion

In this chapter we present a Bayesian method which uses a Markovian prior model for the
piecewise continuous variable. From the property of the Radon transform, the Laplacian of the
object f̈ is related with the Laplacian of the projection sinogram g̈ by a direct model. By using
simultaneously the two direct functions g = Hf + ε and g̈ = Hf̈ + τ , these two variables are
estimated. Meanwhile, the updated normalized Laplacian value is used as a weight coefficient
in the prior model of f in each iteration. At last, all the variables and parameters are estimated
simultaneously via the posterior distribution by using the JMAP estimation algorithm.

The initialization for the hyperparameters is proposed, and the insensitiveness of them to
the reconstruction is proved by the simulations.

From the simulations, we conclude that the proposed ROCC method performs better for
preserving the contours comparing with the conventional QR and TV methods. When the dataset
is biased with a noise of SNR=40dB, the relative mean square error of the reconstructed object
is smaller than QR and TV methods, and the advantage is more obvious when there is less
number of projections. The RMSE value of the ROCC method by using 36 projections is the
same level as the TV method by using 90 projections.

This method is suitable for the parallel beam projection CT reconstruction, where the Radon
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transform is used. The future work focus on the extension from the parallel beam to the cone
beam projections.
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7
Conclusions and Perspectives

The 3D X-ray CT reconstruction has been a hot topic in the computational imaging and
medical imaging during several decades, and has been developed rapidly thanks to the develop-
ment of computation science. In both medical and industrial applications, researchers’ attention
are changing to the aspect of the data limitation problems. The limited angle or limited number
of detectors involves to an ill-posed problem. Motivated by these challenges, in this thesis, we
developed several Bayesian methods for X-ray CT reconstruction.

7.1 Conclusions

In this thesis, we proposed mainly two Bayesian methods for 3D CT reconstruction. These
methods are based on the context of the Non Destructive Testing (NDT) in industrial applica-
tions. The large data size in 3D applications and the expensive computational costs are consi-
dered in the algorithms.

In Chapter 5, we proposed a Bayesian method based on the forward system model g =
Hf + ε. In this method the novelty is that we considered a hierarchical structure in the system
model, with f = Dz + ξ. With the additional level of the system, the variable f is represented
by a hidden variable z. For the choice of the prior model, the considered property then changes
from the modelization of the piecewise continuous variable to the modelization of the sparse
hidden variable. A generalized Student-t distribution is introduced in this Chapter. Thanks to
the fact that the Stg distribution is a marginal of a Normal-Inverse Gamma distribution, the
estimation algorithms are easy to apply.

In the iterative algorithms, including the Bayesian inference, the initialization for the para-
meters is crucial for the final results of the reconstruction. In Section 5.4.2 and Section 6.6.3,
we presented the strategy of initializing the hyper-parameters for the optimization algorithm in
the Bayesian inference with the proposed model. This initialization strategy is experimentally
demonstrated. In the analysis of the hyper-parameters, we observed a relative weak influence of
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the hyper-parameters on the behavior of the corresponding iterative algorithm. The interest of
this relative weak dependency is that it offers a practical way to insure the initialization of the
algorithm which is typically not trivial.

In Section 5.5, we presented another orthonormal transformation, the Dual Tree Complex
Wavelet Transformation (DT-CWT). This transformation is compared with the discrete Haar
transformation. In the comparison, we find that the DT-CWT transformation will not cause the
bloc artifacts in the reconstructed figures and is more robust to the contamination in the coeffi-
cients. When using in the proposed Bayesian method, the DT-CWT has a better performance of
reconstruction than HT. The disadvantage is that the computation of the DT-CWT is relatively
more costly than using the Haar transformation.

In Section 5.8, we proposed to use another forward model in this Bayesian approach. In this
model, the additive noise is separated into two parts, one is modeled by a Gaussian distribution
and another modeled by a generalized Student-t distribution. The forward model considered for
the projection system is

g = Hf + ρ+ ε. (7.1)

In this forward system, a more complicated noise model is considered. The simulation results
show that this model with the consideration of a more complex noise model derives better
reconstruction results.

In Chapter 6, another strategy for the reconstruction of X-ray CT objects is presented. In
this method, the relationship between the object f , the projection sinogram of the object g,
the Laplacian of the object f̈ and the Laplacian of the projection sinogram g̈ are considered.
According to the Radon transform system, the relations of the direct projection system that we
take into consideration are :

g = Hf + ε, (7.2)
g̈ = Hf̈ + τ , (7.3)

with some relations between g and g̈ and between f and f̈ .

By considering these relationships, the Laplacian of the object f̈ is considered as a hidden
variable in the system model. A non-homogeneous Markovian model is used for the piecewise
continuous object f . In this Markovian model, the hidden variable f̈ is used as a parameter. By
using this Markovian model considering the value of f̈ , the contours and homogeneous areas
are modeled with the same model with different parameters, and therefore both the continuity of
the homogeneous areas and the discontinuity of the contours are both considered. This strategy
preserves the edges when reconstructing the object.

7.2 Perspectives

For the future work several aspects are considered. First of all, the computational time
should take into consideration. The GPU processor is only used for the projection operator and
back-projection operator in this thesis. In order to accelerate the computation, more computa-
tions in the program can be implemented by using GPU processor. For example, the DT-CWT
transformation presented in Chapter 5 has very good properties comparing with the Haar trans-
formation, but has a more complicated computation. Once we implement the transformation by
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using the GPU processor, the utilization of the DT-CWT or many other transformations will be
less costly.

In this thesis, we used the Maximum A Posterior estimator for the optimization when the
posterior distribution is obtained. There exists some other estimation algorithms, and some gives
more information for the variables. For example, the Posterior Mean estimation can be used to
estimate the variables. By using the Variational Bayesian Approach (VBA) method, the poste-
rior distribution is approached by another separable distribution :

p(f ,θ|g) = q(f ,θ) = q1(f)q2(θ), (7.4)

where θ represents all the hidden variables and parameters of the model. The mean and variance
of the approximating distribution are estimated.

In the VBA method, the approaching distributions are computed by minimizing the Kull-
back Leibler divergence. During the computation of VBA method, a calculation of the diagonal
elements of the large size matrix HTH is needed, shown in Appendix A. Some simulation
results of the VBA method are presented in [WMDGD16] for the reconstruction of 2D Shepp
Logan phantom by considering a stationary noise. Because of the huge size of the matrix H
in the 3D problem, it is very costly if we compute directly by projection and back-projection
to obtain each diagonal element. Now our group is studying on this subject and searching for
algorithms which calculate approximately the diagonal elements by using the projection and
back-projection properties.

In this thesis, the generalized Student-t distribution is used to define the sparse variables. As
we have mentioned, the Stg distribution has a heavy tailed structure. At the same time, it can
have a very small variance thanks to the fact that there are two parameters for the control of the
shape of this distribution. Another very useful property in the Bayesian context is that, it can
be expressed as a marginal of the bivariate Normal-Inverse Gamma distribution. As the Normal
distribution and the Inverse Gamma distribution are conjugate, the estimation of variables in the
Bayesian methods are more simple.

In future work, in place of using the Normal-Inverse Gamma mixture distributions, we look
for other similar distributions, for example the Normal variance mixture distributions. We will
compare different mixture distributions and compare their properties, concerning the sparsity
enforcing property of the marginal distribution and also the influence of the hyper-parameters
of the marginal distributions.

One of the most important aspects in our future work is to study the influence of the ini-
tialization of hyper-parameters. In this thesis, we have observed a relative weak influence of
the hyper-parameters of the Bayesian model under the prior models. In the future work we will
study on the reason of this weak influence of the hyper-parameters of this model, and see if the
same property appears when using the other Normal variance mixture prior models.

In a long term future work, we will search for new prior models for the X-ray CT recons-
truction. We will concentrate on the ill-posed cases where the number of projection is extremely
limited. For that, we should optimize the prior model and avoid the artifacts appearing in the re-
construction results. We are also going to investigate the relation of the regularization methods
and the Bayesian methods. There are many regularization methods which works very well for
the ill-posed reconstruction problem if a suitable regularization parameter is chosen. We can
study, from the Bayesian point of view, the principle of the regularization. At the same time,
we can benefit the advantages of the Bayesian method that the parameters are estimated during
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iterations and the hyper-parameters are relatively insensitive to the reconstruction results.
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A
Posterior Mean estimation via Variational
Bayesian Approach (VBA) algorithm for

HHBM method

The Posterior Mean estimation for the hierarchical Haar transformation based Bayesian
method is demonstrated in this Chapter. First of all, the posterior distribution is calculated via
the likelihood and the prior distributions :

p (f , z,vε,vξ,vz|g)

∝ p (g|f ,vε) p (f |z,vξ) p (z|vz) p (vz|αz0 , βz0) p (vε|αε0 , βε0) p (vξ|αξ0 , βξ0)
∝ N (g|Hf ,V ε)N (f |Dz,V ξ)N (z|0,V z) IG (z|αz0 , βz0) IG (vε|αε0 , βε0) IG (vξ|αξ0 , βξ0)

= |V ε|−
1
2 exp

{
−1

2
(g −Hf)T V −1ε (g −Hf)

}
|V ξ|−

1
2 exp

{
−1

2
(f −Dz)T V −1ξ (f −Dz)

}
|V z|−

1
2 exp

{
−1

2
zTV −1z z

} N∏
j=1

(
v
−(αz0+1)
zj exp

{
−βz0v−1zj

})
M∏
i=1

(
v
−(αε0+1)
εi exp

{
−βε0v−1εi

}) N∏
j=1

(
v
−(αξ0+1)

ξj
exp

{
−βξ0v−1ξj

})
=

M∏
i=1

v
− 1

2
εi exp

{
−1

2
(g −Hf)T V −1ε (g −Hf)

} N∏
j=1

v
− 1

2
ξj

exp

{
−1

2
(f −Dz)T V −1ξ (f −Dz)

}
N∏
j=1

v
− 1

2
zj exp

{
−1

2
zTV −1z z

} N∏
j=1

v
−(αz0+1)
zj

N∏
j=1

exp
{
−βz0v−1zj

}
M∏
i=1

v
−(αε0+1)
εi

M∏
i=1

exp
{
−βε0v−1εi

} N∏
j=1

v
−(αξ0+1)

ξj

N∏
j=1

exp
{
−βξ0v−1ξj

}
.

(A.1)
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ANNEXE A. POSTERIOR MEAN ESTIMATION VIA VARIATIONAL BAYESIAN
APPROACH (VBA) ALGORITHM FOR HHBM METHOD

First of all we consider a simplified model, in which the variance of noise ε and ξ are scalars,
so we have :

p(f , z, vε, vξ,vz|g)

∝v−
M
2

ε exp

{
−1

2
v−1ε ‖g −Hf‖

2
2

}
v
−N

2
ξ exp

{
−1

2
v−1ξ ‖f −Dz‖

2
2

}
N∏
j=1

v
− 1

2
zj exp

{
−1

2
zTV −1z z

} N∏
j=1

v
−(αz0+1)
zj

N∏
j=1

exp
{
−βz0v−1zj

}
M∏
i=1

v
−(αε0+1)
εi

M∏
i=1

exp
{
−βε0v−1εi

} N∏
j=1

v
−(αξ0+1)

ξj

N∏
j=1

exp
{
−βξ0v−1ξj

}
(A.2)

With the VBA method, the posterior law is approximated by a separable law
q (f , z,vz,vε,vξ) :

p (f , z,vz, vε, vξ|g) ' q (f , z,vz,vε,vξ) =
N∏
j=1

q1j (fj)
N∏
j=1

q2j (zj) q3j
(
vzj
)
q4 (vε) q5 (vξ)

The approximate distribution q (f , z,vz, vε, vξ) is obtained via the minimization of the Kull-
back Leibler divergence.

KL (q : p) =

∫ ∫
· · ·
∫

q (f , z,vz, vε, vξ) ln
q (f , z,vz, vε, vξ)

p (f , z,vz, vε, vξ | g)
df dz dvz dvε dvξ.

Now we want to minimize the term KL (q : p), for a hierarchical problem, we will optimize the
parameters alternatively.

q1j (fj) ∝ exp

{
〈ln p (f , z,vz, vε, vξ|g)〉q 1,m

m 6=j
(fm)q2(z)q3(vz)q4(vε)q5(vξ)

}
(A.3)

q2j (zj) ∝ exp

{
〈ln p (f , z,vz, vε, vξ|g)〉

q1(f)q 2,m
m 6=j

(zm)q3(vz)q4(vε)q5(vξ)

}
(A.4)

q3j
(
vzj
)
∝ exp

{
〈ln p (f , z,vz, vε, vξ|g)〉

q1(f)q2(z)q 3,m
m 6=j

(vzm )q4(vε)q5(vξ)

}
(A.5)

q4 (vε) ∝ exp
{
〈ln p (f , z,vz, vε, vξ|g)〉

q1(f)q2(z)q3(vz)q5(vξ)

}
(A.6)

q5 (vξ) ∝ exp
{
〈ln p (f , z,vz, vε, vξ|g)〉

q1(f)q2(z)q3(vz)q4(vε)

}
, (A.7)

where the defenition of the notation 〈u (x)〉v(x) is that 〈u (x)〉v(x) =
∫
u (x) v (x) dx.

In the following expressions, the notation C represents a constant.
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q1j (fj)

A.1 q1j (fj)

First step is to estimate the distribution on fj :

q1j (fj) ∝ exp


〈
−1

2
v−1ε ‖g −Hf‖

2
2 −

1

2
v−1ξ ‖f −Dz‖

2
2

〉
q 1,m
m 6=j

(fm)q2(z)q3(vz)q4(vε)q5(vξ)


∝ exp

{
−1

2

〈
v−1ε
〉
q4(vε)

〈
‖g −Hf‖22

〉
q 1,m
m 6=j

(fm)
− 1

2

〈
v−1ξ
〉
q5(vξ)

〈‖f −Dz‖〉q 1,m
m 6=j

(fm)q2(z)

}
.

(A.8)

A.1.1 Computation of
〈
‖g −Hf‖2

2

〉
q 1,m
m6=j

(fm)

We have :

‖g −Hf‖
= |g1 −H11f1 −H12f2 − · · · −H1NfN |2 + |g2 −H21f1 −H22f2 − · · · −H2NfN |2 +

· · ·+ |gM −HM1f1 −HM2f2 − · · · −HMNfN |2

=H2
1jf

2
j + 2H1jfj(H11f1 +H12f2 + · · ·+H1NfN −H1jfj)− 2H1jfjg1

+H2
2jf

2
j + 2H2jfj(H21f1 +H22f2 + · · ·+H2NfN −H2jfj)− 2H2jfjg2

+H2
Mjf

2
j + 2HMjfj(HM1f1 +HM2f2 + · · ·+HMNfN −HMjfj)− 2HMjfjgM + C

=
(
H2

1j +H2
2j + · · ·+H2

Mj

)
f 2
j − 2 (H1jg1 +H2jg2 + · · ·+HMjgM) fj

+ 2fj {(H1jH12 +H2jH22 + · · ·+HMjHM2) f2

+ · · ·
+ (H1jH1j−1 +H2jH2j−1 + · · ·+HMjHMj−1) fj−1

+ (H1jH1j+1 +H2jH2j+1 + · · ·+HMjHMj+1) fj+1

+ · · ·
+ (H1jH1N +H2jH2N + · · ·+HMjHMN) fN}+ C

(A.9)
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A.1.3 - Computation of q1j (fj)

Where C is a polynome which has no relation with fj , so that we have :〈
‖g −Hf‖2

〉
q 1,m
m 6=j

(fm)
=
(
H2

1j +H2
2j + · · ·+H2

Mj

)
f 2
j + 2fj

{
− (H1jg1 +H2jg2 + · · ·+HMjgM)

+ (H1jH11 +H2jH21 + · · ·+HMjHM1) 〈f1〉q11(f1)
+ (H1jH12 +H2jH22 + · · ·+HMjHM2) 〈f2〉q12(f2)
+ · · ·
+ (H1jH1j−1 +H2jH2j−1 + · · ·+HMjHMj−1) 〈fj−1〉q1j−1(fj−1)

+ (H1jH1j+1 +H2jH2j+1 + · · ·+HMjHMj+1) 〈fj+1〉q1j+1(fj+1)

+ · · ·
+ (H1jH1N +H2jH2N + · · ·+HMjHMN) 〈fN〉q1N (fN )}+ C

=Aff 2
j + 2Bffj + C,

(A.10)

where

Af = H2
1j +H2

2j + · · ·+H2
Mj =

[
HTH

]
jj
,

Bf = −
(
HTg

)
j

+ (HtH)j1 〈f1〉q11(f1) + (HtH)j2 〈f2〉q12(f2) + · · ·
+ (HtH)jN 〈fN〉q1N (fN ) − (HtH)jj 〈fj〉q1j(fj)

= −
(
HTg

)
j

+
(
HTHµf

)
j
−
[
HTH

]
jj
µfj (A.11)

= −
[
HT

(
g −Hµf

)]
j
−
[
HTH

]
jj
µfj . (A.12)

A.1.2 Computation of
〈
‖f −Dz‖2

2

〉
q 1,m
m 6=j

(fm)q2(z)

We have :

‖f −Dz‖22
= |f1 − (D11z1 +D12z2 + · · · )|2 + |f2 − (D21z1 +D22z2 + · · · )|2 + · · ·+
|fj − (Dj1z1 +Dj2z2 + · · · )|2 + · · ·+ |fN − (DN1z1 +DN2z2 + · · · )|2

=f 2
j − 2 (Dz)j fj + C

(A.13)

A.1.3 Computation of q1j (fj)

From the previous computation we obtain :

q1j (fj) ∝ exp

{
−1

2

〈
v−1ε
〉
q4(vε)

(
Aff 2

j + 2Bffj
)
− 1

2

〈
v−1ξ
〉
q5(vξ)

(
f 2
j − 2 (Dµz)j fj

)}
∝ exp

{
−1

2
Jf

}
,

(A.14)
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where

Jf =
〈
v−1ε
〉
q4(vε)

(
Aff 2

j + 2Bffj
)

+
〈
v−1ξ
〉
q5(vξ)

(
f 2
j − 2 (Dµz)j fj

)
=

(〈
v−1ε
〉
q4(vε)

Af +
〈
v−1ξ
〉
q5(vξ)

)
f 2
j + 2

(
Bf
〈
v−1ε
〉
q4(vε)

−
〈
v−1ξ
〉
q5(vξ)

(Dµz)j

)
fj

=

(〈
v−1ε
〉
q4(vε)

Af +
〈
v−1ξ
〉
q5(vξ)

)f 2
j + 2

〈v−1ε 〉q4(vε) Bf −
〈
v−1ξ
〉
q5(vξ)

[Dµz]j

〈v−1ε 〉q4(vε)Af +
〈
v−1ξ
〉
q5(vξ)

fj

 .

So we find that fj belongs to a Gaussian distribution, with mean and variance equal to :

µ̂fj = −

〈
v̂ε
−1〉

q4(vε)
B̂f −

〈
v̂ξ
−1〉

q5(vξ)
[Dµz]j〈

v̂ε
−1〉

q4(vε)
Af +

〈
v̂ξ
−1〉

q5(vξ)

(A.15)

σ̂fj =
1〈

v̂ε
−1〉

q4(vε)
Af +

〈
v̂ξ
−1〉

q5(vξ)

(A.16)

A.2 Computation of q2j (zj)

From the criterion we have :

q2j (zj) ∝ exp


〈
−1

2
v−1ξ ‖f −Dz‖

2
2 −

1

2
zTV −1z z

〉
q1(f)q 2,m

m 6=j
(zm)q3(vz)q4(vε)q5(vξ)


∝ exp

{
−1

2

〈
v−1ξ
〉
q5(vξ)

〈
‖f −Dz‖22

〉
− 1

2

〈
v−1zj

〉
q3j(vzj)

z2j

}
.

(A.17)

With the same calculation as we’ve used for
〈
‖g −Hf‖22

〉
q 1,m
m 6=j

(fm)
, we obtain :

〈
‖f −Dz‖22

〉
q1(f)q 2,m

m 6=j
(zm)

= Azz2j + 2Bzzj + C, (A.18)

where

Az =
[
DTD

]
jj

(A.19)

Bz = −
[
DTµf

]
j

+
[
DTDµz

]
j
−
[
DTD

]
jj
µzj . (A.20)

So that we have :

q2j (zj) ∝ exp

{
−1

2

〈
v−1ξ
〉
q5(vξ)

(
Azz2j + 2Bzzj

)
− 1

2

〈
v−1zj

〉
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z2j

}
∝ exp

{
−1

2
Jz

} (A.21)
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A.1.3 - Computation of q1j (fj)

where

Jz =
〈
v−1ξ
〉
q5(vξ)

(
Azz2j + 2Bzzj

)
+
〈
v−1zj

〉
q3j(vzj)
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=
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〉
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〉
q5(vξ)

Bzzj

=
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〉
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〉
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〉
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〈
v−1zj

〉
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(A.22)

From the formulation we can see that zj belong to a Gaussian distribution with mean and
variance equal to :

µ̂zj = −

〈
v̂ξ
−1〉

q5(vξ)
B̂z〈

v̂ξ
−1〉

q5(vξ)
Az +

〈
v̂−1zj

〉
q3j(vzj)

(A.23)

σ̂zj =
1〈

v̂ξ
−1〉

q5(vξ)
Az +

〈
v̂−1zj

〉
q3j(vzj)

(A.24)

A.3 Computation of q3j

(
vzj
)

From Eq.(A.5), we have :

q3j
(
vzj
)
∝ exp


〈
−1

2
ln vzj −

1

2
v−1zj z

2
j − (αz0 + 1) ln vzj − βz0v−1zj

〉
q1(f)q2(z)q 3,m

m 6=j
(vzm )q4(vε)q5(vξ)


∝ exp

{
−
(
αz0 +

1

2
+ 1

)
ln vzj −

(
βz0 +

1

2

〈
z2j
〉
q2j(zj)

)
v−1zj

}
(A.25)

From the definition of variance we have
〈
z2j
〉
q2j(zj)

= Var(zj) + 〈zj〉2q2j(zj) = µ2
zj

+σzj , so that :

α̂zj = αz0 +
1

2
(A.26)

β̂zj = βz0 +
1

2

(
µ̂2
zj

+ σ̂zj

)
(A.27)
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Computation of q4 (vε)

A.4 Computation of q4 (vε)

From Eq.(A.6) we have :

q4 (vε) ∝ exp

{〈
−
(
αε0 +

M

2
+ 1

)
ln vε − βε0v−1ε −

1

2
v−1ε ‖g −Hf‖

2
2

〉
q1(f)q2(z)q3(vz)q5(vξ)

}

∝ exp

{
−
(
αε0 +

M

2
+ 1

)
ln vε −

(
βε0 +

1

2

〈
‖g −Hf‖22

〉
q1(f)

)
v−1ε

}
(A.28)

A.4.1 Computation of
〈
‖g −Hf‖2

2

〉
q1(f)

The computation begin with :

〈
‖g −Hf‖2

〉
q1(f)

= 〈gtg − 2gtHf + f tHtHf〉q1(f)
=〈gtg − 2gtHf + f tHtHµ+ µtHtHf − µtHtHµ+ (f t − µt)HtH (f − µ)〉q1(f)
=gtg − 2gtHµ+ 2µtHtHµ− µtHtHµ+

〈
(f − µ)tHtH (f − µ)

〉
q1(f)

.

(A.29)

Because the term (f − µ)tHtH (f − µ) is a scalar, the Trace of it is the same.

〈
‖g −Hf‖2

〉
q1(f)

=gtg − 2gtHµ+ µtHtHµ+
〈
Tr
(
(f − µ)tHtH (f − µ)

)〉
q1(f)

.

(A.30)

By using the property that : Tr (AB) = Tr (BA), we obtain :

〈
‖g −Hf‖2

〉
q1(f)

=gtg − 2gtHµ+ µtHtHµ+
〈
Tr
(
HtH (f − µ) (f − µ)t

)〉
q1(f)

=‖g −Hµ‖2 + Tr
(
HtH

〈
(f − µ) (f − µ)t

〉
q1(f)

)
=‖g −Hµ‖2 + Tr (HtHΣf ) .

Finally we find that vε belong to an Inverse Gamma distribution with parameters equal to :

α̂ε = αε0 +
M

2
(A.31)

β̂ε = βε0 +
1

2

(∥∥g −Hµ̂f∥∥22 + Tr
(
HTHΣ̂f

))
(A.32)

where Σ̂f = diag
[
[· · · , σ̂fj , · · · ]

]
.
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A.4.1 - Computation of
〈
‖g −Hf‖22

〉
q1(f)

A.5 Computation of q5 (vξ)

From Eq.(A.7), we obtain :

q5 (vξ) ∝ exp

{〈
−
(
αξ0 +

N

2
+ 1

)
ln vξ − βξ0v−1ξ −

1

2
v−1ξ ‖f −Dz‖

2
2

〉
q1(f)q2(z)q3(vz)q4(vε)

}

∝ exp

{
−
(
αξ0 +

N

2
+ 1

)
ln vξ −

(
βξ0 +

1

2

〈
‖f −Dz‖22

〉
q1(f)q2(z)

)
v−1ξ

}
(A.33)

By using the same method as for the calculation of
〈
‖g −Hf‖22

〉
q1(f), we have :〈

‖f −Dz‖22
〉
q1(f)q2(z) =

∥∥µf −Dµz∥∥22 + Tr
(
DTDΣz

)
And finally we have that vξ belongs to an Inverse Gamma distribution with the parameters :

α̂ξ = αξ0 +
N

2
(A.34)

β̂ξ = βξ0 +
1

2

(∥∥µ̂f −Dµ̂z∥∥22 + Tr
(
DTDΣ̂z

))
. (A.35)

where Σ̂z = diag
[
[· · · , σ̂zj , · · · ]

]
.

A.6 The iterative optimization by using the VBA algo-
rithm

From the previous calculation, we obtain the updating formulations for all the parameters
of the approximated distribution of each variable :

q1j (fj) = N (fj|µ̂fj , σ̂fj) where


µ̂fj = −

〈v̂ε−1〉
q4(vε)

B̂f−〈v̂ξ−1〉
q5(vξ)[Dµ̂z]j

〈v̂ε−1〉
q4(vε)

Af+〈v̂ξ−1〉
q5(vξ)

σ̂fj = 1

〈v̂ε−1〉
q4(vε)

Af+〈v̂ξ−1〉
q5(vξ)

q2j (zj) = N (zj|µ̂zj , σ̂zj) where


µ̂zj = −

〈v̂ξ−1〉
q5(vξ)

B̂z

〈v̂ξ−1〉
q5(vξ)

Az+〈v̂−1
zj 〉q3j(vzj)

σ̂zj = 1

〈v̂ξ−1〉
q5(vξ)

Az+〈v̂−1
zj 〉q3j(vzj)

q3j
(
vzj
)

= IG(vzj |α̂zj , β̂zj) where

{
α̂zj = αz0 + 1

2

β̂zj = βz0 + 1
2

(
µ̂2
zj

+ σ̂zj

)
q4 (vε) = IG(vε|α̂ε, β̂ε) where

{
α̂ε = αε0 + M

2

β̂ε = βε0 + 1
2

(∥∥g −Hµ̂f∥∥22 + Tr
(
HTHΣ̂f

))
q5 (vξ) = IG(vξ|α̂ξ, β̂ξ) where

{
α̂ξ = αξ0 + N

2

β̂ξ = βξ0 + 1
2

(∥∥µ̂f −Dµ̂z∥∥22 + Tr
(
DTDΣ̂z

))
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The iterative optimization by using the VBA algorithm

where

Af =
[
HTH

]
jj
,

B̂f = −[HT (g −Hµ̂f )]j −
[
HTH

]
jj
µ̂fj ,

Az =
[
DTD

]
jj
,

B̂z = −
[
DT µ̂f

]
j

+
[
DTDµ̂z

]
j
−
[
DTD

]
jj
µ̂zj .

The computation of
〈
v̂−1zj

〉
q3j(vzj)

,
〈
v̂ε
−1〉

q4(vε)
and

〈
v̂ξ
−1〉

q5(vξ)
depends on the estimated va-

lues of the hyper-parameters
(
α̂zj , β̂zj

)
,
(
α̂ε, β̂ε

)
and

(
α̂ξ, β̂ξ

)
. It is shown in the results that

the three variances vzj , vε and vξ are all belonging to an Inverse Gamma distribution. Now let x
belonging to an Inverse Gamma distribution, so :

p(x|α, β) =
βα

Γ(α)
x−α−1 exp

{
−β
x

}
dx. (A.36)

So we have : 〈
x−1
〉

=

∫
1

x

βα

Γ(α)
x−α−1 exp

{
−β
x

}
dx

=

∫
βα

Γ(α)
x−α−2 exp

{
−β
x

}
dx

=
βα

Γ(α)

∫
x−(α+1)−1 exp

{
−β
x

}
dx

=
βα

Γ(α)

Γ(α + 1)

βα+1

∫
βα+1

Γ(α + 1)
x−(α+1)−1 exp

{
−β
x

}
dx

=
Γ(α + 1)

Γ(α)

1

β

∫
p(x|α + 1, β) dx

=
α

β

(A.37)

So we have : 〈
v̂−1zj

〉
q3j(vzj)

= α̂zj/β̂zj ,〈
v̂ε
−1〉

q4(vε)
= α̂ε/β̂ε,〈

v̂ξ
−1〉

q5(vξ)
= α̂ξ/β̂ξ.

(A.38)

151





B
My contributions

This Appendix shows my main contributions during the thesis. The publications and the
details are listed in Table B.1.

My work begins from the use of the basic Bayesian methods in CT reconstruction. 1©
[WGMD15] used the Bayesian method in 2D case with a stationary noise. Several conventional
prior models are used and compared. In this paper, the work mainly concentrate on the use of
the Bayesian method on the X-ray CT reconstruction problem. 2D simulations are realized by
using Bayesian method.

In 2© [WMDGD16], a hierarchical prior model is proposed to account for the sparse struc-
ture of the Haar Transformation coefficient of the image. We call this method the Hierarchical
structured Haar based Bayesian Method (HHBM). In this method, the transformation coefficient
is considered as a hidden variable, and is estimated simultaneously during reconstruction. The
noise is modeled by a stationary Gaussian model with unknown variance, which is modeled by
an Inverse Gamma distribution. The JMAP and the VBA methods are used for the optimization
of the variables. The VBA method is realized in the 2D simulation with stationary noise model,
however it is still computationally expensive.

In 3© [WMDG17b], the HHBM method is developed, by adding an additive uncertainty
variable in the Haar Transformation prior model : f = Hz + ξ. The simulation for 2D CT
reconstruction is done. In this paper, a non-stationary noise model is considered. The variance
of the noise of the forward projection model and the variance of the uncertainties of the for-
ward transformation model are considered as unfixed parameters, and are modeled by Inverse
Gamma distributions. The details and extensions of this conference paper is presented in the
published journal article 4© [WMDG17d]. Then, in 5© [WMDGD17], the HHBM method is de-
veloped for 3D CT reconstruction, in which the ASTRA toolbox is used in order to accelerate
the computation. A French version of this article is presented in 6© [WGMD17].

In the above published papers, the discrete Haar transformation coefficient is considered be-
cause it is computationally cheap and is suitable for the strict piecewise-constant or piecewise-
continuous objects. However, sometimes the object is not strictly piecewise-constant, and some
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ANNEXE B. MY CONTRIBUTIONS

other transformations may optimize the property of the proposed Bayesian method. In 7©
[WMDG17a], the DT-CWT transformation coefficient is used instead of Haar transformation.
A comparison of the performance of the two transformations is presented.

In 8© [WMDG17c], the ROCC method is proposed. In this method, We proposed a non-
homogeneous Markovian prior model to define the piecewise homogeneous object. In this mo-
del, the prior distribution of the variable f depends on the gradient of the neighbours. Meanw-
hile, the gradient of the object is considered as a hidden variable in this model. In this article,
a stationary noise model is considered and the 2D CT reconstruction is simulated. The 3D re-
construction with a non-stationary noise model is extended in the thesis.

In the submitted 9© IEEE journal paper, the HHBM method is considered in a 3D frame-
work, for both simulated and real datasets. The semi-supervised extension for the initialization
is demonstrated. The influence of the initialization for hyper-parameters and the theoretical ba-
sis for initializing the hyper-parameters are presented.

The following table shows the guideline.
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C
Author’s publications during 3 years of PhD

The list of my publications can be found online : https ://cv.archives-ouvertes.fr/li-wang-l2s.

Articles published in journals :

• [WMDG17d] L.Wang, A.Mohammad-Djafari and N.Gac, X-ray Computed Tomogra-
phy using a sparsity enforcing prior model based on Haar transformation in a Bayesian
framework, Fundamenta Informaticae, 2017, 155 (4), pp.449-480.
• L.Wang, A.Mohammad-Djafari, N.Gac and M.Dumitru, Sparse transformation coeffi-

cient based hierarchical Bayesian method for 3D X-ray Computed Tomography, IEEE
Transaction on Image Processing. (Submitted)

Article in preparation to be submitted in journals :

• M.Dumitru, L.Wang and A.Mohammad-Djafari, A generalization of Student-t based on
Normal-Inverse Gamma distribution and its application in controlling the sparsity rate.

Papers published in international conferences :

• [WGMD15] L.Wang, N.Gac and A.Mohammad-Djafari, Bayesian 3D X-ray computed
tomography image reconstruction with a scaled Gaussian mixture prior model, in AIP
Conference Proceedings (Vol. 1641, No. 1, pp. 556-563), AIP.
• [WMDGD16] L.Wang, A.Mohammad-Djafari, N.Gac and M.Dumitru, Computed to-

mography reconstruction based on a hierarchical model and variational Bayesian me-
thod, in Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International
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Conference on (pp. 883-887), IEEE.
• [WMDG17b] L.Wang, A.Mohammad-Djafari and N.Gac, Bayesian X-ray computed

tomography using a three-level hierarchical prior model, in AIP Conference Proceedings
(Vol. 1853, No. 1, p. 060003), AIP Publishing.
• [WMDG17c] L.Wang, A.Mohammad-Djafari and N.Gac, X-ray Computed Tomogra-

phy simultaneous image reconstruction and contour detection using a hierarchical Mar-
kovian model, in Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE Inter-
national Conference on (pp. 6070-6074), IEEE.
• [WMDGD17] L.Wang, A.Mohammad-Djafari, N.Gac and M.Dumitru, 3D X-ray Com-

puted Tomography reconstruction using sparsity enforcing hierarchical model based on
Haar transformation, in The 2017 International Conference on Fully Three-Dimensional
Image Reconstruction in Radiology and Nuclear Medicine.
• [WMDG17a] L.Wang, A.Mohammad-Djafari and N.Gac, Bayesian method with spar-

sity enforcing prior of dual-tree complex wavelet transform coefficients for X-ray CT
image reconstruction, in The 25th European Signal Processing Conference (EUSIPCO).
• [DWMDG17] M.Dumitru, L.Wang, A.Mohammad-Djafari and N.Gac, Model selection

in the sparsity context for inverse problems in Bayesian framework, in 37th Internatio-
nal Workshop on Bayesian Inference and Maximum Entropy Methods in Science and
Engineering.
• [DLGMD17] M.Dumitru, L.Wang, N.Gac and A.Mohammad-Djafari, Performance

comparison of Bayesian iterative algorithms for three classes of sparsity enforcing priors
with application in computed tomography, in Image Processing (ICIP), 2017 IEEE In-
ternational Conference on, IEEE.
• [DGWMD17] M.Dumitru, N.Gac, L.Wang and A.Mohammad-Djafari, Unsupervised

sparsity enforcing iterative algorithms for 3D image reconstruction in X-ray computed
tomography, in The 2017 International Conference on Fully Three-Dimensional Image
Reconstruction in Radiology and Nuclear Medicine.

Papers published in national conferences :

• [WGMD17] L.Wang, N.Gac and A.Mohammad-Djafari, Reconstruction 3D en tomo-
graphie à rayons X à l’aide d’un modèle a priori hiérarchique utilisant la transformation
de Haar, in Colloque GRETSI 2017.
• [DWGMD17] M.Dumitru, L.Wang, N.Gac and A.Mohammad-Djafari, Comparaison

des performances d’algorithmes itératifs bayésiens basés sur trois classes de modeles a
priori parcimonieux appliqués à la reconstruction tomographique, in Colloque GRETSI
2017.

158



Bibliographie
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Titre : Reconstruction d’image en tomographie 3D pour des applications en Contrôle Non 
Destructif (CND)

Mots clés : Tomographie, Problème inverse, Méthode Bayesian, Structure hiérarchique

Résumé : La tomographie 3D est  largement
utilisée dans l'imagerie médicale ainsi que
dans le Contrôle Non  Destructif (CND)
pour l’industrie. Pour ces deux applications,
il est  nécessaire de réduire le nombre de
projections.  Dans certains cas,  la
reconstruction  doit être faite avec un
nombre d’angle de projections limité. Nous
sommes donc presque toujours dans la
situation de problèmes inversés mal posés.
En plus, les données mesurées sont toujours
avec des erreurs. Le rôle des méthodes 
probabilistes et de la modélisation a priori 
devient crucial.

Pour la modélisation a priori, en particulier 
dans les applications NDT, l'objet à 
l'examen est composé de plusieurs 
matériaux homogènes, avec plusieurs blocs 
continus séparés par des discontinuités et 
des contours. Ce type d'objet est dit continu 
par morceaux.

L'objet de cette thèse est sur la 
reconstruction des objets continus ou 
constants par morceaux, ou plus 
généralement homogènes par morceaux. En 
résumé, deux méthodes principales sont 
proposées dans le contexte de l'inférence 
bayésienne.

La première méthode consiste à reconstruire
l’objet en imposant que sa transformée de 
Haar soit parcimonieuse. Un modèle 
bayésien hiérarchique est proposé. Dans 
cette méthode, les variables et les 
paramètres sont estimés et les hyper-
paramètres sont initialisés selon la 
définition des modèles antérieurs.

La deuxième méthode reconstruit les objets 
en estimant simultanément les contours. 
L'objet continu par morceaux est modélisé 
par un modèle markovien non-homogène, 
qui dépend du gradient de l'objet, et le 
gradient dépend aussi de l'estimation de 
l'objet. Cette méthode est également semi-
supervisé, avec les paramètres estimés 
automatiquement.

Ces méthodes sont adaptées aux reconstructions
de grande taille de données 3D, dans lesquelles
le processeur GPU est utilisé pour accélérer les
calculs.  Les  méthodes sont validées avec des
données simulées et des données réelles, et sont
comparées avec plusieurs méthodes classiques.
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Title : Fast and accurate 3D X ray image reconstruction for 3D X ray image reconstruction 
for Non Destructive Testing industrial applications

Keywords : Tomography, Inverse problem, Bayesian method, Hierarchical structure

Abstract  : 3D X-ray Computed  Tomography
(CT) is widely used in medical imaging as well
as  in  Non  Destructive  Testing  (NDT)  for
industrial  applications.  In  both  domains,
there  is  a  need  to  reduce  the  number  of
projections. In some cases we may also be
limited  in  angles.  Consequently,  we  are
always in the situation of ill-posed inverse
problems. What's more, the measured data
is  always  contaminated  by  noise.  Facing
these problems, the role of the probabilistic
methods and the prior  modelling becomes
crucial.

For prior modelling, in particular in NDT 
applications, objects under examination are
piecewise continuous, composing of 
several homogeneous materials with 
several continuous blocs separated by some
discontinuities and contours. The focus of 
this thesis on the reconstruction of the 
piecewise continuous or constant, or more 
generally piecewise homogeneous objects. 
In summary two main methods are 
proposed in the context of the Bayesian 
inference.

The first method consists in reconstructing 
the object while enforcing the sparsity of 
the discrete Haar transformation 
coefficients of the object. A hierarchical 
Bayesian model is proposed. In this 
method, the unknown variables and 
parameters are estimated and the hyper-
parameters are initialized according to the 
definition of prior models.

The second method reconstructs objects 
while the contours are estimated 
simultaneously. The piecewise continuous 
object is modeled by a non-homogeneous 
Markovian model, which depends on the 
Laplacian of the object, while the 
Laplacian also depends on the estimation of
the object. In this method, a semi-
supervised system model is also achieved, 
with parameters estimated automatically.

Both  methods  are  adapted  to  the  3D big
data size reconstructions, in which the GPU
processor  is  used  to  accelerate  the
computation.  The  methods  are  validated
with both simulated and real data, and are
compared with several conventional state-
of-the-art methods.
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