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General Introduction 

Human behavior is the subject of a lot of studies in numerous fields, spanning the social, natural, 

technological sciences and beyond. Being defined as the capacity of mental, physical, emotional, 

and social activities experienced during the five stages of a human being's life, important 

progress in understanding human behavior can only be achieved through a multidisciplinary 

community effort. The study we carried out aims to foster that effort by trying to understand 

basic human behavior and perception. It was realized in the frame of LABEX  Persyval-Lab, 

Work package  (WP2) Authoring Augmented Reality, research axis Real-time capture and 

simulation of the real world. Representation and editing of virtual prototypes. Natural 

interaction with the augmented world. Thus, the study federated skills in mechanics, bio-

mechanics and computer sciences in order to better understand how virtual reality (VR) 

technologies,  influence  on human behavior with using biomechanical analysis methods in 

general and its application for Complex Regional Pain Syndrome (CRPS) rehabilitation in 

particular. 

Fatigue in human is a natural response observed in workers or during sport activities. 

Understanding and evaluating fatigue remains a great challenge in physiology and 

biomechanics. Fatigue depends on several factors, such as: motivational, physiological and 

nervous, and it may be defined as the failure to maintain the required or expected force. Poorly 

designed working station or reduced rest can result in fatigue, accidents, injuries and illnesses. 

Fatigue reduces human reactions, decreases information processing accuracy, induces lack of 

attention and can be the cause of major accidents. In that way, evaluating fatigue of human 

operator during disassembly operation is of great importance. Disassembly operation is a very 

important issue often considered in the different stages of Product Life Cycle starting by its 

initial design and ending by its end of life. Note, that evaluating disassembly sequence with 

considering ergonomic factors, which influence the manufacturing and recycling efficiency, is 

also an important question in different industrial fields in general and in recycling activities in 

particular. Comparing with evaluation in real environment after  product prototyping, it is more 

convenient and low-cost to evaluate the disassembly operation in VR environment which  

provides a potential way for creating a real-time visual/audio/haptic experience with computer 

systems [GoZa99, JiPu06, LaFP10, AlCa10, PKVD13]. As haptic device can provide force 

feedback to users, disassembly operation simulation with using haptic device in VR 

http://www.businessdictionary.com/definition/capacity.html
http://www.businessdictionary.com/definition/stages.html
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environment is broadly used in operation training, ergonomic design verification etc. 

[AGLN09].  

The importance of haptic sensation in real environment being high, simulating haptic feedback 

in virtual reality (VR) environment is a domain worth of exploring.  Haptic feedback simulation 

provides the sense of touch to user by applying forces and vibrations or using information 

coming from other sensory modalities.  Several industrial applications have utilized the 

simulated haptic feedback to create more realistic scenarios of training and operation 

simulations. Thus, coupling Haptic feedback simulations with biomechanical techniques may 

be useful to better understand human movement, especially the motor strategy for the muscle 

recruitment during a given task. 

In order to avoid disturbing oscillations, 1000 Hz is necessary for the system who 

provide the haptic rendering. Comparing with the minimal updating frequency of haptic real-

time loop, the visual scene-graph loop requires a lower minimal frequency of 60 Hz. Then some 

researchers tried to use the visual feedback to simulate the haptic feedback. Srinivasan et al. 

[SrBB96], Wu et al. [WuBS99] and [LCKR00] have influenced  subject’s perception of 

stiffness by manipulating the visual feedback in different amounts. Pseudo-haptics being “the 

generation, augmentation or deformation of haptic sensations by information coming from 

other sensory modalities”  [LBCC01], Lécuyer et al. used it in order to provide the haptic 

sensations to subjects during spring stiffness estimation. This provides a new method to explore 

the possibilities for simulating the haptic feedback in VR environment. In [Lécu01], pseudo-

haptic feedback allows  “to combine visual feedback with a passive haptic information related 

to or caused by a user action” while perceiving the stiffness of pseudo-haptic spring.  Several 

physical properties have been simulated by using the pseudo-haptic feedback such as: stiffness, 

friction, texture, weight, force field amongst others. Comparing with haptic device, pseudo-

haptic feedback can use less computation resource to provide a high frequency haptic sensation.  

Virtual reality has been proved to be a relevant technique in healthcare through surgery 

training and simulation, psychological treatment or robotic surgery. In health domain, there 

exist some diseases which influence patient’s motor behavior.  Complex Regional Pain 

Syndrome (CRPS), for instance, is one of those diseases. It is characterized by specific 

symptoms and often accompanied with motor disorders. Although the reasons of CRPS are not 

clear yet, it is believed that it is caused by the damages of the central nervous system. One of 

the key physiological symptoms of CRPS is the prolonged pain which can be unbearable in 

http://www.vrs.org.uk/
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some extremely cases. Different levels of pain, provoked by this disease,  not only change the 

motor strategy of painful muscle, but also change the synergistic muscles while performing 

dynamic exercises [EFAG05]. When CRPS patient is performing some painful movements, 

peripherical adaptation may happen on movement-involved muscles. This implies that the pain 

can create alterations in skeletal muscle. Another symptom frequently observed in CRPS is the 

limited range of movement and the maladaptation due to abnormal posture of the affected limb. 

Structural alterations in skeletal muscle tissue and pain-induced adaptations  may contribute to 

a deficient muscle activation in CRPS patient [BPMB13]. In order to prevent deterioration of 

CRPS on patient, encouraging them to actively participate in physical therapy is an important 

issue today. The virtual reality technology may be a useful tool which can respond this issue.  

Research problematic 

 Human behavior and perception under the influence of VR-based application is an important 

issue, and investigation in this area can help researchers and professionals to understand and 

better utilize VR technology. In this context, one part of our research was conducted in order 

to better understand how haptic simulation applications will influence on human behavior and 

perception with using biomechanical analysis methods. As visual feedback can influence the 

physiological aspect of human [GPRS14], we try to manipulate this feedback by using 

computer-based application in order to improve the rehabilitation performance of CRPS 

patients.   

For evaluating disassembly sequences with considering ergonomic factors, different tools 

and VR human-computer interfaces are proposed [GoZa99, RaMS99]. Platforms with haptic 

device, which can provide force feedback, are the example of those different tools. However, 

many of the platforms using haptic device are facing difficulties for evaluating muscles fatigue 

induced while performing disassembly operations.  

Previous  existing methods for evaluating  disassembly sequences include the calculation  

of the energy expenditure [TLKC12], predicting the muscle fatigue  associated with a specific 

task [RoFD04, DNHÅ11], predicting the energy consummation associated with  a  specific task 

[BSHG11] and modeling the work-recovery ratios [RNHK14]. However, most of these 

methods either use parameters obtained in too subjective way without corresponding physical 

considerations either require some physiological parameters with poor availability. Due to the 

complexities of the existing models and the necessity of requiring too many input data, their 
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usages are often limited. Hence, another method of evaluating the fatigue levels associated with 

different disassembly operations in VR environment is necessary.   

A few research started to investigate pseudo-haptic influence on user’s motor behavior, 

muscle involvement and limb coordination. Stiffness simulation, for instance, is an aspect for 

the experience in VR. Although there are many works investigating how the human perception 

may change with the influence of the pseudo-haptic feedback, to our knowledge how does 

pseudo-haptics influence subject’s motor behavior in stiffness discrimination has not been 

investigated yet. Some previous works investigated  finger forces applied  in stiffness 

discrimination with real springs [Endo16, Fuji04]. However, the force during pressing on spring 

simulated by using pseudo-haptic feedback is not known yet. From biomechanical point of view, 

two questions arise: 

- how does the pseudo haptic feedback influence the perception and force applied on the 

spring during stiffness discrimination task?  

- can pseudo-haptic feedback induce different muscle activities in general and different 

muscle involvements in particular?   

For improving the motor function of affected limb and reducing the pain, CRPS patients are 

encouraged to participate in physical therapy. One of the existing methods in such a therapy is 

mirror therapy which requires patient to fix the orientation of his/her head to the mirror and 

ignore his/her healthy limb. Those requirements limit patients to actively use the affected limbs 

and to associate mirror reflection with the movement of the affected limbs.  

In VR rehabilitation platforms, visual feedback plays an important role in motor control 

[MoAr13, SMRB09], restoring brain function [RaAl09] and perception of physical properties. 

Virtual reality has been applied in rehabilitation tasks for many diseases, such as: stoke, 

phantom limb, … ([MJBT02, MPCH06]).  Hoffman et al. mentioned in [HDPC00] that during 

treating the pain, virtual reality can be used to distract the patients and provide  them relaxation 

and encouragement.  

As we are aware the visual feedback can influence some physiological characteristics of 

humans. Thus, we try to manipulate the visual feedback to improve the rehabilitation 

performance of patients with CRPS on upper limbs. In order to manipulate the relationship 

between the motion of patients’ physical limb and the rendered avatar hand motion, it is 
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necessary to track and reconstruct their hand motion. It is also necessary to test whether 

amplification of the movement can benefit the patient in rehabilitation. 

Research contribution 

In this context, our research attempts to understand how VR-based application will influence 

on human behavior and perception with using biomechanical analysis methods. It will enable 

to help researchers and professionals to understand and utilize VR technology better. Thus, we 

propose to amplify the hand movement of the patient in order to study the benefit of this 

amplification in the rehabilitation. 

Thus, our contribution consists of: 

- The development of a new method for evaluating the fatigue associated with a 

disassembly task. The fatigue evaluation is based on metabolic energy expenditure and 

electromyography (EMG) signal analysis. For this purpose, a VR application is 

developed and applied for disassembly task simulation which confirmed the efficiency 

of the proposed method.  

- A better understanding on how does pseudo haptic feedback influences: the perception 

of stiffness; some kinematic parameters; force and EMG (surface electromyogram), 

signals during perceiving stiffness.  For this purpose, we proposed a similar stiffness 

discrimination task as in [LCKR00] consisting in discriminating the stiffness of one 

amongst three real springs, with eleven virtual ones (pseudo-haptic spring). Through 

analyzing and comparing the pressing force, the kinematic parameters and the EMG 

signals recorded from subjects’ arms during stiffness discrimination task, we firstly 

found that pressing forces on both real and virtual springs have similar behavior and the 

muscle co-activation induced by pseudo-haptic spring behaves as in dynamic movement 

task, even if the subjects’ fingers were almost static. 

- Proposing the first steps toward an application for hand rehabilitation for CRPS patients.  

Thus, new rehabilitation application based on low-cost device with acceptable accuracy 

of hand tracking is developed. Based on the Leap Motion and Unity3D, the application 

provides an avatar of the user’s hand with an amplified or reduced motion. For this 

purpose, a pilot study for testing the feasibility of this application was conducted at the 

Central University Hospital (CHU) in Grenoble (France) in the Service of hand surgery. 

Some feedback from the involved subjects (a hospital practitioner, two physical 

therapists, a patient and a health subject) during the experiment have been collected. It 
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has been shown that all subjects had no uncomfortable feeling with using the application. 

The medical staff expressed interest in pursuing this work for potential rehabilitation 

applications.    

Application area 

Concerning the proposed method for evaluating the fatigue levels associated with different 

disassembly tasks, it is useful to provide a reference for product designers allowing them to 

estimate which disassembly sequence, among all the possible ones, induces least fatigue.  

The results related to the pseudo-haptics, show that the force and the muscle co-activation 

behavior may be useful to better understand the pseudo-haptic feedback in stiffness 

discrimination task.  

The application for CRPS patients’ rehabilitation based on the Leap motion can be useful 

in kinesiological therapy. When the motion of the avatar hand is amplified, one hypothesis is 

that it may encourage patients to overcome the limited range of their movements due to pain or 

stiffer joint. On the other hand, when the motion of the avatar hand is reduced, one hypothesis 

is that it can help patients to amplify the range of their hand movements.     

 

Limits of the work 

- Concerning the model for evaluating the fatigue associated with a disassembly task, as 

the energy consumption of rotation movement is not considered, it only evaluates the 

fatigue levels associated with translation movement of disassembly tasks simulation. 

Since the method is proposed toward considering the muscle fatigue factor with one 

hand disassembly operation simulation in the initial stage of product design, it might 

not be adapted for the disassembly operation simulation during a real disassembly task 

which often involves two-hand gestures and different body positions. 

 

- Concerning the biomechanical analysis of pseudo-haptics, only its influence on hand 

behavior during stiffness discrimination task was investigated. Other potential 

influences of pseudo-haptic feedback to simulate friction, force field are not 

investigated in the frame of our study. 
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- Concerning the feasibility test of application developed toward CRPS rehabilitation, it 

involves with the medical staff of Hand Surgery department at CHU Grenoble and one 

patient which is not enough to ensure the safety usage of the developed application. Due 

to the limited accuracy of Leap Motion device, the avatar hand motion is not stable. 

Consequently, this instability results in the dissatisfaction during using the application.     

 

Structure of the manuscript    

The manuscript consists of two parts: 

The first part (Part I), entitled “Biomechanical analysis of haptic-based concepts and tasks” 

consists of two chapters: 

A new method for disassembly task fatigue evaluation based on metabolic energy 

expenditure and muscle fatigue estimation is presented in Chapter 1. The analytical model for 

mechanical energy expenditure is presented in details where the required mechanical work is 

used as main parameter thus allowing to compare relationships among different fatigue levels 

associated with different disassembly operations in VR environment. The fatigue levels are 

evaluated by analyzing the recorded EMG signals on operator’ arm. The proposed method is 

validated by a set of experimental loading tests performed in the realized Virtual Reality 

environment allowing to simulate rehabilitation tasks. Finally, the analytical and experimental 

results are compared thus showing very good correlation between them.                                                                   

Chapter 2 focusses on the force, kinematic parameters and the EMG signal on flexors 

and extensors of subject’s forearm induced by the pseudo-haptics during stiffness 

discrimination task. The performed series of tests for stiffness discrimination between real 

spring and virtual spring (with pseudo-haptic feedback) are presented. The materials and the 

method including measurement items, experiment protocol, participants and data analysis are 

detailed then. The results concerning the perception under different stiffness, the pressing force, 

the kinematic parameters, and EMG signals and co-activation are also presented and then 

analyzed. Finally, how the pseudo-haptic feedback underestimates the stiffness and how the 

muscle co-activation levels change under the influence of pseudo-haptic feedback are discussed. 

The second part (Part II), entitled “Application in CRPS rehabilitation”, consists in one 

chapter.  
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Chapter 3 introduces the basic notions and situations of CRPS including its symptoms, 

the traditional physical therapy and some existing physical methods for rehabilitation. The 

mirror neuron system and the mirror therapy as one of the effective methods for treatment are 

presented. Comparing with the traditional method for physical therapy, some virtual reality 

environments and platforms for CRPS rehabilitation applications in general, and for hand 

movement reconstruction in particular are presented in this chapter as well. The developed 

platform for CRPS patients’ rehabilitation, based on Leap Motion, and the series of pilot tests 

performed with patients and Hand surgery medical staff in Grenoble University Hospital are 

presented. The range of hand movement of subject-controlled avatar during the experiments, 

under different conditions, were reported and their feedbacks were analyzed thus allowing to 

improve the performances of the platform in future.            

This Ph.D. thesis work was realized in a multidisciplinary collaborative environment in 

the frame of LABEX PERSYVAL Lab (Pervasive Systems and Algorithms) 

(http://www.persyval-lab.org/index.html) where G-SCOP (Sciences for Design, Optimisation 

and Production Laboratory of Grenoble), GIPSA Lab (Grenoble Images Speech Signal and 

Control) Grenoble, and INRIA (National research Institute in Computer sciences and 

Automation) Grenoble, are involved. The whole work during the Ph.D. is under the co-direction 

of Dr. Peter MITROUCHEV associate professor HDR at University Grenoble Alpes (UGA), 

Dr. Franck QUAINE associate professor HDR at UGA and Dr. Sabine COQUILLART research 

director at INRIA. The experimental part presented in Chapter 1 was conducted in Gi-Nova 

Plateforme Technologique, Systèmes de Production, AIP-PRIMECA, Dauphiné-Savoie, 

Grenoble. The experiments presented in Chapter 2 were conducted in Biomechanical platform 

of GIPSA Lab, SAIGA Team, Grenoble. The experiments presented in Chapter 3 were 

conducted in CHU (Centre Hospitalier Universitaire) Grenoble under the supervision of prof. 

François MOUTET, Chef of Hand surgery center.  
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Part I 

Biomechanical analysis of haptic-based 

concepts and tasks   

 

This part presents two researches which are related with evaluating the fatigue levels 

associated with VR-based application for disassembly task evaluation in VR environment, and 

biomechanical analysis of pseudo-haptics in the aspect of human perception and behavior.  

Disassembly operation simulation in VR environment is a novel way to evaluate the disassembly 

sequences in the initial design stage, product maintenance and product recycling process.   

First, we evaluate the muscle fatigue levels associated with different disassembly tasks 

simulated in VR environment using haptic device. For this purpose: i). a new method for 

disassembly task fatigue evaluation based on metabolic energy expenditure and muscle fatigue 

estimation is proposed; ii). the fatigue levels are evaluated by EMG (electromyography) signals 

analysis when performing disassembly task. The proposed method is validated by a set of 

experimental loading tests performed in a Virtual Reality environment.  

Usually Pseudo-haptics utilizes not only visual feedback, but also information from the other 

sensory modalities to provide perception of different physical properties such as: shape or 

texture without providing the same physical existence in reality.  Secondly, we focus on force 

induced by pseudo-haptics during stiffness discrimination task. For this purpose, series of tests 

for stiffness discrimination between real spring and virtual spring (with pseudo-haptic feedback) 

are performed. Thus, the materials and the method including measurement items, experimental 

protocol, participants and data analysis are presented. Then, the results concerning: the 

perception under different stiffness, the pressing force, the kinematic parameters, and EMG 

(Electromyography) signals and co-activation are presented. Finally, how does the subject 

underestimate the stiffness of pseudo-haptic spring and how does the Pseudo-haptic induce 

different muscle co-activation levels are discussed.
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Chapter 1                                                   

Evaluation of fatigue levels during disassembly task  

 

 

 

 

 

 

 

 

 

 

This chapter presents a new method for disassembly task fatigue evaluation based on 

metabolic energy expenditure and muscle fatigue estimation. A new analytical model for 

mechanical energy expenditure is proposed where the required mechanical work is used as 

main parameter allowing to compare relationships among different fatigue levels when 

performing disassembly task. Then, the fatigue levels are evaluated by analyzing the recorded 

EMG (electromyography) signals on some muscles of the operator’ arm. The proposed method 

is validated by a set of experimental loading tests performed in a specially realized Virtual 

Reality environment. Then the analytical and experimental results are compared showing a 

very good correlation between them.                                                                          
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1.1 Introduction 

Simulations closely related with Assembly/Disassembly (A/D) operations represent important 

research subject today. These A/D operations are often considered in the initial stage of product 

design.  

Virtual reality is “a simulation in which computer graphics is used to create a realistic 

looking world” [BuCo03]. It creates a real-time visual/audio/haptic experience with computer 

systems [PKVD13] and provides a potential way for A/D operation simulation [GoZa99, JiPu06, 

LaFP10, AlCa10]. In order to evaluate disassembly sequences in the initial stage of product 

design, different tools and VR human-computer interfaces are proposed [GoZa99, RaMS99]. 

As the Virtual reality set-up can be easily modified, designer can quickly adjust the design of 

product [PSBM13].  

As previously said, preliminary evaluation of disassembly sequences during product design 

is a very important issue. Thus, for disassembly task of complex products, two questions are 

arising, namely:  

- disassembly sequence generation,  

- disassembly sequence evaluation.  

This chapter is focusing on the second one. In this context, it considers the operator’s 

muscle fatigue factors in evaluation of fatigue associate with disassembly task. Thus, the new 

method for evaluating the fatigue associated with disassembly task by utilizing metabolic 

energy expenditure is presented here below.  

The two principal parameters for carrying out the calculation of metabolic energy 

expenditure for disassembly tasks, which potentially may be used for different applications are: 

- the weights of the components,  

- the disassembly paths of the components.  

 For this purpose, disassembly experiments in VR were performed in order to evaluate 

fatigue with EMG analysis during performing disassembly tasks.  
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Our method shows that using EMG data can give relevant information about the subject 

muscle state, which could be of interest in the field of evaluation of disassembly task.  The 

proposed method aims to give a fatigue level rank of disassembly task operations.  

The results of the study of this chapter may be useful for product designers as a decision-

making tool allowing them to evaluate the muscle fatigue level while performing different 

disassembly sequences. 

1.2 Previous work 

The literature analysis carried out within this study shown that certain existing approaches for 

disassembly evaluation, some integrated in VR, were proposed by taking into account different 

criteria such as: 

- visibility score [Wang14, WMLL15, MiWC16],  

- set of directions for removal (SDR) [PPTC04, LXGK13, WMLL15],  

- stability of sub-assembly [AlCa10, MiWC16], 

-  disassembly time [GuGu97] , 

- Combination of multiple ergonomic factors [YoAE11],  

- disassembly cost [MoZG09],  

- number of necessary tools for disassembly [MWLL15].  

- ……. 

However, they do not take into account the muscle fatigue of the operator for different 

conditions of requests (postures, efforts), which in our opinion is highly influencing work’s 

efficiency and very important today with the increasing of the retire age of the operators.     

For disassembly sequences evaluation disassembly cost function was proposed in by using 

parameters such as:  

- removing time of component and fasteners [DeMi03, CDPS07],  

- accessibility and orientation factors [JJSK06, SmCh11],  

- disassembly distances [SrFG99, TsYH11].  

However, simply multiplying or dividing a subjective weight value with a factor being 

considered in disassembly operation does not promise to obtain a convincing analytical model 

without corresponding physical essence.  
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The total time for disassembly was proposed as main evaluation indicator for disassembly 

operations’ evaluation in [GuGu97, KoGu05, GiFa07] by considering the disassembly direction 

and the joint type. However, using the total time for disassembly is not an appropriate indicator 

because the operator may expend different amount of energy for moving a given component 

with different velocities, i.e. with different powers.  

Trying to avoid uncertainty of disassembly operation process, Tian et al. [TLKC12] 

proposed a method to calculate the probability of disassembly energy's distribution and the 

minimal energy expenditure in a disassembly sequence. The minimal energy for each 

disassembly sequence is estimated. However, the authors pointed out that the probable energy 

expenditure intervals of several disassembly sequences had the possibility to overlap with each 

other. In this context, a new method is needed for choosing the less-energy-spending 

disassembly sequence.  

In order to model work-recovery ratios for optimizing the recovery time during tasks, Rose 

et al. [RNHK14] presented data from empirical study regarding how maximal pushing force, 

endurance time, recovery time and perceived discomfort vary with loading level and loading 

time. During the tests, subjects were asked to perform two trials which included a loading and 

a recovery trial. The results of the experiments show that:  

- shorter endurance time is found in high loading level, compared with low loading level;  

-  subjectively perceived discomfort increases linearly with the increase of loading level;  

-  recovery time does not monotonically vary with loading levels.  

 However, this work does not present a general model allowing to describe the working-

recovery ratios.  

Some bio-mathematical models of fatigue (BMMF) based on work hours data have been 

proposed in [DNHÅ11] to predict the levels of fatigue associated with a pattern of work. 

Fatigue Audit Inter Dyne (FAID) is one of the BMMFs which has been commercially used to 

estimate work related fatigue. The hours of work are the input in the model allowing to estimate 

the work related fatigue associated with shift workers’ duty schedules [RoFD04]. The output 

fatigue score represents a predicted sleep opportunity. One of the benefits of FAID model is the 

good availability of hours of work, which is the input data in the organizational records.  
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Predicting metabolic energy consumption associated with a disassembly sequence can be 

a criterion for evaluating the fatigue level induced by a disassembly sequence. In this optic Bisi 

[BSHG11] proposed an EMG (Electromyography1) driven model for predicting metabolic 

energy consumption during physical effort. It includes EMG signals from active muscles 

associated with some kinematic joint parameters. For using this method to predict the metabolic 

energy consumption of all the possible disassembly operation, it needs to measure the EMG 

signal of certain muscles and kinematic parameters of certain task-related muscles and joints 

during performing disassembly operation. However, it is too complex to be applied in the 

disassembly operation evaluation, because it is quite time consuming to perform erery 

disassembly sequence and predict its metabolic energy consumption which requires a motion 

capture analysis system coupled with EMG data processing.  

A long time repeatedly performed training may activate the neural adaption of muscles by 

changing their activation mode. Rube and Secher [RuSe91] performed leg task experiment in 

three phases. During the first one all subjects were asked to perform one hundred and fifty 

maximum voluntary contractions (MVCs) in isometric leg extension task. On the second phase, 

subjects were assigned into two groups: one performing a training task with one-leg, the other 

performing the same training with two-legs. During five weeks, one-leg and two-leg trainings 

have been respectively performed by each group. After training, both groups were asked to 

perform once again one hundred and fifty MVCs in isometric one- and two- legged extension 

task, which was the third phase of the experiment. The results of comparison between the MVCs 

values before and after training shown that one-legged group of subjects was less tired when 

performing one-legged task, and two-legged group was less tired during two-legged task. It was 

mentioned  in [Roge01]  that the effect of training on fatigue depends on training mode. For a 

disassembly sequence, for instance, loading level, loading time and operation posture are not 

always the same. 

Note, that evaluating   disassembly sequence is also an important question in the industrial 

manufacture and recycling. Considering the ergonomic factor during the disassembly task, 

many works focus on:  

- calculating the energy expenditure [TLKC12],  

- predicting the muscle fatigue  associate with the specific task [RoFD04, DNHÅ11], 

- predicting the energy assumption associate with the specific task [BSHG11], 

                                                 
1 All the EMG below means surface EMG after normalization 
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-  modeling the work-recovery ratios [RNHK14].    

1.3 Summary synthesis and critical analysis 

The bibliographical analysis shows that the existing methods for disassembly sequence 

evaluation; developed so far, as we are aware, satisfy only partially the needs of designers and 

professionals.  

The aim of disassembly sequence evaluation is to evaluate the cost of carrying out 

disassembly sequence. Different considerations for evaluating the disassembly cost product 

different evaluation methods. According to the applied techniques two large groups of methods 

for disassembly cost emerge, namely: disassembility, time cost and physiological cost. 

The review of current approaches, a part of which was briefly presented here, and other 

works we have studied, leads to the following remarks:   

- Considering the disassembility mainly evaluate the disassembly sequence by taking into 

account the disassemblility of disassembled components in each sequence. The 

parameters used in this type method includes the visibilities of component, removing 

time of component and fasteners, accessibility and orientation, disassembly distances 

etc. In order to calculate a disassemblility score for each disassembly sequence, 

subjective coefficients should be allocated to parameters to indicate their importance in 

disassembility. Without providing the corresponding physical meaning of value of 

subjective coefficient, the calculation has a potential to be subjective value which can’t 

be used in disassembly sequence evaluation.  

- Considering disassembly time is a direct method to evaluate the cost for disassembly 

sequence. In the case of automatic manufacturing or recycling, this method is effective. 

- Considering physiological cost require to evaluate the fatigue or metabolic energy 

consumption associated with disassembly sequence. This type method is suitable for the 

case where human participant is real important for the process such as design 

verification, or manually performed manufacturing or maintenance. However, those 

existing methods always require hard-obtained data of human body.    

The fatigue being an important factor which can affect the efficiency of performing the 

disassembly task, how to evaluate the level of fatigue in the muscles is also a part of our work. 

Muscle fatigue refers to the acute impairment of performance due to physical activity [Roge01]. 
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The level of muscle fatigue and the mechanism underlying the development of fatigue depend 

on several parameters such as: type of muscle exercise, contraction intensity, sustained or 

intermittent contraction or isometric and dynamic movement [EnSt92]. Mechanisms 

contributing to fatigue are metabolic subtracts and acidification into the muscle [Vøll95] as well 

as impairment of activation [Mert54].  One possibility for this evaluation  is to calculate  the 

decreasing slope of median frequency of EMG signals [SoKn00]. The more the slope of median 

frequency decreases, the more muscle fatigue there is [DGBA99]. It was proven that the peak 

value of EMG signals after root mean square (RMS) processing is also an index of fatigue 

[BoGu14] when subjects are performing the task at the same level of force. However, it is not 

convenient for designer to evaluate the fatigue from EMG signals recorded for each possible 

disassembly sequence. Hence, another method of predicting the fatigue during disassembly task 

in simulating environment is necessary.  

Hence, a new method of predicting the fatigue during disassembly task in VR environment 

should be proposed. As we are aware, in the literature there are not methods involving muscle 

fatigue to evaluate disassembly task. 

There exists some previous works which focus on comparing the motor control, fatigue 

and motor adaptations while performing task in real and virtual environment [Koch08, 

KSCK09, PDSM14]. However, it is not the object of our study since we propose to focus 

more on a method for fatigue evaluation in virtual reality environment without direct 

comparison with the real environment.  

 

1.4 Method for fatigue level evaluation 

While performing disassembly task in VR environment subject interacts with the virtual object 

with or without force feedback. In the next of this chapter, we consider that the disassembly 

task provides force feedback. The method for evaluation of fatigue associated with disassembly 

task, proposed here, is based on metabolic energy expenditure estimation model.  

1.4.1 Hypotheses and basic principles 

Considering muscle fatigue factor in disassembly task evaluation, a rank of fatigue levels should 

be available for designers and operators allowing them to choose a disassembly task inducing 

less fatigue. As the operator uses his/her the arm to perform the disassembly operation 

simulation, only the consumption of the energy on the arm is taken into account of the model. 
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For this purpose, the arm’s energy expenditure is used as indicator for muscle fatigue estimation. 

The method presented here below is built upon the following hypotheses [CMCQ16]: 

Hypothesis 1: The more mechanical energy is required to complete the disassembly task, the 

more metabolic energy will be consumed in the human arm.   

Hypothesis 2: The arm muscles, involved in the disassembly task, perform in an environment 

with constant temperature. The task is performed in continuous way. The fatigue accumulated 

in the muscle is a monotonically increasing function of the metabolic energy expenditure.  

Hypothesis 3: During the disassembly task, the operator is moving the virtual objects with a 

given velocity in all allowed disassembly directions. The disassembly trajectory (path) is not a 

closed loop. 

Hypothesis 4: Under the conditions of Hypotheses 1, 2 and 3, if the consumed metabolic energy 

for performing disassembly task 1 is bigger than this for disassembly task 2, then disassembly 

task 1 induces more fatigue than 2.  

The reason why the hypothesis 1 cannot be obviously established is that the mechanical 

work is only a part of the energy consumed in the arm. Exerting force to move an object is not 

the only part that consumes the muscle metabolic energy. Let 𝐸̇ (in Jules/kg) be the total energy 

expenditure rate for a muscle. It can be expressed as  [ZBHR11]: 

𝐸̇ = ℎ𝑎̇ + ℎ𝑚̇ + ℎ𝑠𝑙
̇ + 𝑤𝑐𝑒̇                                                       (1-1) 

where: -  ℎ𝑎̇ is the muscle activation heat rate,  

-  ℎ𝑚̇ is the maintenance heat rate, 

-  ℎ𝑠𝑙
̇  is the shortening/lengthening heat rate, 

-  𝑤𝑐𝑒̇  the mechanical energy rate.  

The relationship between the increase of wcė  and the variations of hȧ + hṁ + hsl
̇  is not evident. 

Thus, hypothesis 1 is proposed, and its proof is presented in the next section.  

1.4.1.1 Proof for hypothesis 1 

 

Let η =
𝑤𝑐𝑒̇

𝐸̇
. 100% is the percentage of mechanical energy expenditure. Then one has: 
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       ℎ𝑎̇ + ℎ𝑚̇ + ℎ𝑠𝑙
̇ = 𝑤𝑐𝑒̇

1−𝜂

𝜂
                                                       (1-2) 

 

Let 
1−𝜂

𝜂
= 𝑓(𝜂). It is easy to prove that 𝑓(𝜂) is a monotonically decreasing function of 𝜂.  

However, the experimental results presented in [BrKP03] indicate that 𝜂 is a monotonically 

decreasing function of 𝑤𝑐𝑒̇ . Then it can be proved that 𝑤𝑐𝑒̇
1−𝜂

𝜂
 is a monotonically increasing 

function of 𝑤𝑐𝑒̇  (
𝑑(𝑤𝑐𝑒̇

1−𝜂

𝜂
)

𝑑𝑤𝑐𝑒̇
> 0). Since  𝑤𝑐𝑒̇

1−𝜂

𝜂
 is equivalent with 𝐸̇(1 − 𝜂) , consequently 

𝐸̇(1 − 𝜂) is also a monotonically increasing function of 𝑤𝑐𝑒̇ . Thus, 𝐸̇ = 𝐸̇(1 − 𝜂) + 𝑤𝑐𝑒̇  is a 

monotonically increasing function of 𝑤𝑐𝑒̇ .   

For example, from Figure 1.1 ([BrKP03]) is seen that the mechanical work and the total 

energy of a  muscle increase with the increase of the mechanical work during the simulation 

and experimental  phases. 

 
 
Figure 1.1.  Work, heat and total energy liberation during simulated and experimental cyclic 

concentric contractions [BrKP03].  
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Simulation data are shown for soleus (2 Hz) and rectus femoris (2.5 Hz) muscles. ST and FT 

are respectively the data for Slow Twitch and Fast Twitch fibers [BrKP03].  

1.4.1.2 Proof of hypothesis 2 

 

In the conclusions of [Lind00, Vern29] it is stated that:  

- i). The level and duration time of exerted tension varies with the changes of the 

successive contractions and the external temperature (in [Lind00] the muscles are 

immersed in water on two places with different temperatures);  

- ii). The durations of muscle’s contraction in 18℃ are much greater than ones in 34℃. 

Based on those two statements, duration time between two contractions is set to zero and the 

ambient temperature is fixed while performing disassembly task. 

According to Hypothesis 2, the fatigue accumulated in the muscle is a monotonically 

increasing function of the metabolic energy expenditure. In addition, according to the 

conclusions in [SHWP15], the force generation capacity after the exercise is monotonically 

decreasing with the increase of force level and consequently can be used as an index of fatigue 

level estimation. Thus, we may do the hypothesis that the fatigue accumulated in the muscle is 

monotonically increasing with the increasing of the force level.  

A consequence of Hypothesis 1 is that the mechanical energy is monotonically increasing 

with the increase of force level. The results in [RNHK14] clearly concluded that  higher load 

level leads to statistically significant shorter endurance time and recovery time increases with 

increasing loading time. Both shorter endurance time and longer recovery time indicate the 

accumulation of more fatigue.  

We present the fatigue as 𝐹𝐴 = 𝑓(𝐹𝐴𝑐 , 𝐹𝐴𝑝), where 𝐹𝐴𝑐  and  𝐹𝐴𝑝 are respectively the 

fatigue in central nervous system and peripheral system (muscle). Note, that central nervous 

system fatigue is not taken into account in the proposed method. The metabolic energy 

expenditure E being considered as a function of F, t and v, then the 𝐹𝐴𝑝 can be expressed as:  

𝐹𝐴𝑝 = 𝑓(𝐸(𝐹, 𝑡, 𝑣))                                                        (1-3) 

where: 𝐹 ∈ (0, 𝐹𝑚𝑎𝑥] is the loading level, 

     𝑡 ∈ (0, 𝑡𝑚𝑎𝑥] is the loading time, 
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      𝑣 = (0, 𝑣𝑚𝑎𝑥] is the velocity of the end of hand (arm).  

Based on the muscle mechanical model [SHWP15], maximal muscle fatigue may be reached 

for different values of F, t and v. Thus, the boundary conditions are respectively:  

- If F is near 0, t and v can respectively arrive at 𝑡𝑚𝑎𝑥 and 𝑣𝑚𝑎𝑥.  

- If F is equal to 𝐹𝑚𝑎𝑥 , t and v tend to 0 (zero).  

The 𝐹𝐴𝑝  derivative of F is: 
𝑑𝐹𝐴𝑝

𝑑𝐹
=

𝜕𝐹𝐴𝑝

𝜕𝐸
∙

𝜕𝐸

𝜕𝐹
. Thus, based on the data presented in 

[RNHK14] the FAp is a monotonically increasing function of F, which means that 
𝑑𝐹𝐴𝑝

𝑑𝐹
> 0. It 

is obvious that 
𝜕𝐸

𝜕𝐹
> 0 and consequently 

𝜕𝐹𝐴𝑝

𝜕𝐸
> 0 is correct in the range of loading level tested 

in [RNHK14] which are in agreement with those observed in our disassembly task. It means 

that 𝐹𝐴𝑝 is a monotonically increasing function of E.  

1.4.2 Mechanical work for performing disassembly task  

A long time repeatedly performed training may activate the neural adaption of muscles by 

changing their activation mode. That is the reason why we consider the effect of long-time task 

training on fatigue evaluation. 

Based on the proof for Hypothesis 1 (Section 1.3.1.1), if the mechanical work consumed 

to perform the disassembly task can be calculated, it can indicate which disassembly task 

consumes more metabolic energy and consequently induces more fatigue in the muscles.  

Note that for disassembling a target component from an assembly, there may be many 

possible disassembly sequences. Consequently, different disassembly sequences can be used as 

different disassembly tasks. Evaluating the fatigue levels associated with different disassembly 

sequences can also be applied in the evaluation of fatigue levels associated with different 

disassembly tasks. In disassembly task, the principal involved movement is to move the virtual 

object. The mechanical energy expenditure for component disassembling execution and the 

operator’s arm movements are presented in the following content of this chapter.  

1.4.2.1 Mechanical energy expenditure for moving disassembly components 

 

The mechanical work spent by the muscular force required to perform the task (moving an 

object) will transfer into potential and kinetic energies. Suppose that the 𝑖-th component should 
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be disassembled in disassembly sequence (task) 1. The variation of the total mechanical energy 

∆𝐸𝑖 is:   

             ∆𝐸𝑖 = ∆𝐸𝑘𝑖 + ∆𝐸𝑝𝑖 =
1

2
𝑚𝑖(𝑣𝑖

2 − 𝑣𝑖0
2) + 𝑚𝑖𝑔ℎ𝑖                      (1-4) 

 

where: - ∆𝐸𝑘𝑖 and ∆𝐸𝑝𝑖 are respectively the variations of kinetic and potential energy, 

-  𝑚𝑖 is the mass of the component, 

-  𝑣𝑖 and 𝑣𝑖0 are respectively the velocity of the component at ending point and starting 

point, 

-  ℎ𝑖 is the vertical displacement of the component.  

The system is evolving in Earth gravity field (gravity vector g is supposed in negative vertical 

direction). Let ℎ𝑖𝑢 and ℎ𝑖𝑑 be respectively the total vertical displacement of the mass center of 

the 𝑖th disassembled component along the positive (up) and negative (down) directions. The 

velocities 𝑣𝑖 and 𝑣𝑖0 are both equal to 0 m/s, then equation (1-4) can be written as:   

∆𝐸𝑖 = 𝑚𝑖𝑔(ℎ𝑖𝑢 − ℎ𝑖𝑑)                                  (1-5) 
 

Consider the disassembled component as an isolated system, and let ∆𝐸𝑖𝑢  and ∆𝐸𝑖𝑑  be 

respectively the variation of mechanical energy when the component moves upward and 

downward:   

∆𝐸𝑖𝑢 = 𝑚𝑖𝑔ℎ𝑖𝑢              (1-6) 
 

 ∆𝐸𝑖𝑑 = −𝑚𝑖𝑔ℎ𝑖𝑑          (1-7) 
 

Although ∆𝐸𝑖𝑢 and ∆𝐸𝑖𝑑 have opposite signs, they cannot offset with each other when 

calculating the mechanical energy expenditure of the arm. If the component is only affected by 

the gravity, the variation of its potential energy should be equal to the variation of the kinematic 

energy. But when the component is stopping at a highest or lowest point of the disassembly 

path, the kinetic energy is zero, which corresponds to the starting point of the disassembly path. 

The reason why the potential energy does not fully transform into kinetic energy is because of 

the mechanical work done by the arm. Hence, for disassembling the 𝑖 th component, the 

mechanical work done by the arm is:                                     

                        ∆𝐸𝑖𝑢 + |∆𝐸𝑖𝑑| = 𝑚𝑖𝑔(ℎ𝑖𝑢 + ℎ𝑖𝑑)                                     (1-8) 

1.4.2.2 Mechanical energy expenditure for moving the operator’s arm 
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The variation of mechanical energy of operator’s arm from the starting point of the 𝑖 th 

component to the position of the next disassembled component, ∆𝐸𝑎𝑖, can be express as: 

           ∆𝐸𝑎𝑖 = ∆𝐸𝑎𝑘𝑖 + ∆𝐸𝑎𝑝𝑖 =
1

2
𝑚𝑎(𝑣𝑞𝑖

2 − 𝑣𝑎𝑖0
2 ) + 𝑚𝑎𝑔ℎ𝑎𝑖                 (1-9) 

 

where: -  𝑚𝑎 is the mass of the arm, 

-  ℎ𝑎𝑖 is the vertical displacement of the mass center of the arm between the starting point 

of the 𝑖th component and the position of the next component; 

-  ∆𝐸𝑎𝑘𝑖 and ∆𝐸𝑎𝑝𝑖 are respectively the variation of the kinetic and potential energies of 

operator’s arm.  

Similarly, as the mechanical energy of the disassembly component (eq. (1-8)), ∆𝐸𝑎𝑖  can be 

written as:                  

 ∆𝐸𝑎𝑖 = 𝑚𝑎𝑔(ℎ𝑎𝑖𝑢 − ℎ𝑎𝑖𝑑)                                              (1-10) 

where: ℎ𝑎𝑖𝑢 and ℎ𝑎𝑖𝑑 are respectively the total vertical displacement of the arm’s mass center 

along the positive and negative direction of 𝑖th component.  

The mechanical work, done by the shoulder, to move the arm is: 

          𝐸ℎ𝑎𝑖𝑢 + |𝐸ℎ𝑎𝑖𝑑| = 𝑚𝑎𝑔(ℎ𝑎𝑖𝑢 + ℎ𝑎𝑖𝑑)                                  (1-11) 

Assuming that there are n components to be disassembled in sequence S (task). Thus, the 

required arm’s mechanical energy is: 

     ∆ES1 = ∑ (∆Ei + ∆Eai)
n
i=1     (i = 1,2,3 … 𝑛)                           (1-12) 

When the operator’s arm is coming back to the initial position after performing the 

task: ℎ𝑎𝑖𝑢 = ℎ𝑎𝑖𝑑. Thus, eq. (1-8) can be rewritten as:  

∆𝐸𝑆1 =  ∑ [𝑚𝑖𝑔(ℎ𝑖𝑢 + ℎ𝑖𝑑) + 2𝑚𝑎𝑔ℎ𝑎𝑖𝑢]      (𝑖 = 1,2,3 … n)𝑛
𝑖=1            (1-13) 

Note that ℎ𝑖𝑢 and ℎ𝑖𝑑 should be the real vertical displacements of the end point of the hand in 

the real world, not the vertical displacement of avatar’s hand in the VR world (see details in 

Section 1.4.1).   
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1.4.2.3 Vertical displacement of the arm’s mass center 

The vertical displacement of the center of the arm’s mass ℎ𝑎𝑖𝑢  (see eq. (1-13)) is also a 

parameter, which has to be calculated. The arm can be geometrically abstracted as a two DOF 

(degrees of freedom) mechanism with three segments as shown in Figure 1.2. Note that the first 

segment is the operator’s body, supposed to be the frame of the mechanism. 

 

 
 

Figure 1.2 Arm and its associated two joints mechanism 

 

Assume that the shoulder only rotates around Y axis. Consequently, the forearm and upper arm 

form the plane of ZOX. Let: 

- 𝑙1 and 𝑙2 be respectively the length of upper and lower arms;  

-  𝑎1 and 𝑎2 the relative position of mass center of upper and lower arms; 

 𝑚𝑢 and 𝑚𝑙 respectively the mass of the upper and lower arm; 

  𝜃1 and 𝜃2 the absolute rotation angles of each segment (upper and lower arms) related to the 

horizontal frame axe X.  

It is also assumed that the center of mass of each segment is stable inside each segment. 

Thus, the coordinates x and z of arm’s mass center are:   

 

x =
𝑚𝑢𝑎1𝑐𝑜𝑠𝜃1+𝑚𝑙(𝑙1cos𝜃1+𝑎2cos𝜃2)

𝑚𝑢+𝑚𝑙
                                        (1-14) 

 

z = −
𝑚𝑢𝑎1𝑠𝑖𝑛𝜃1+𝑚𝑙(𝑙1sin𝜃1+𝑎2sin𝜃2)

𝑚𝑢+𝑚𝑙
                                     (1-15) 

 

Y(O) 
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For a given disassembly path of the 𝑖th component, the vertical displacement of the hand end 

point 𝐴𝑖 between two dates 𝑡0 and 𝑡1 is: 

𝐴𝑖 = 𝑙1(𝑠𝑖𝑛𝜃1𝑖
𝑡1 − sin𝜃1𝑖

𝑡0) + 𝑙2(𝑠𝑖𝑛𝜃2𝑖
𝑡1 − sin𝜃2𝑖

𝑡0)                    (1-16) 

 

The vertical displacement of the arm’s mass center 𝐵𝑖 is: 

 

𝐵𝑖 =
(𝑚𝑢𝑎1+𝑚𝑙𝑙1)(𝑠𝑖𝑛𝜃1𝑖

𝑡1−𝑠𝑖𝑛𝜃1𝑖
𝑡0)+𝑚𝑙𝑎2(𝑠𝑖𝑛𝜃2𝑖

𝑡1−𝑠𝑖𝑛𝜃2𝑖
𝑡0)

𝑚𝑢+𝑚𝑙
                   (1-17) 

 

Let ∆1𝑖= 𝑠𝑖𝑛𝜃1𝑖
𝑡1 − 𝑠𝑖𝑛𝜃1𝑖

𝑡0 and ∆2𝑖= 𝑠𝑖𝑛𝜃2𝑖
𝑡1 − 𝑠𝑖𝑛𝜃2𝑖

𝑡0. Then, 𝐵𝑖 can be expressed as function of 

𝐴𝑖 and ∆1𝑖 (∆2𝑖 being eliminated): 

𝐵𝑖 =
𝑚𝑢𝑎1𝑙2+𝑚𝑙𝑙1(𝑙2−𝑎2)

(𝑚𝑢+𝑚𝑙)𝑙2
∆1𝑖 +

𝑚𝑙𝑎2

(𝑚𝑢+𝑚𝑙)𝑙2
𝐴𝑖                              (1-18)  

 

The relation between 𝐴𝑖 and 𝐵𝑖 implies that the rotation angle of upper arm 𝜃1𝑖 in ZOX 

plane at the starting and ending point of the trajectory of the 𝑖th component has to be measured. 

From eq. (1-18)), ℎ𝑎𝑖𝑢 can be expressed as:  

         ℎ𝑎𝑖𝑢 = |
𝑚𝑢𝑎1𝑙2+𝑚𝑙𝑙1(𝑙2−𝑎2)

(𝑚𝑢+𝑚𝑙)𝑙2
∆1𝑖 +

𝑚𝑙𝑎2

(𝑚𝑢+𝑚𝑙)𝑙2
𝐴𝑖|                                (1-19) 

 

Finally, Ai is calculated from the disassembly path of the 𝑖th component knowing the 

position of start and end points.  

1.4.2.4 Mechanical energy expenditure for fasteners’ disassembling  

 

We suppose that for fasteners’ disassembling special disassembly tools will be required. 

Consequently, these tools are considered as ordinary disassembly components moved by the 

operator during the disassembly process. Hence, calculating the energy expenditure for 

disassembling fasteners is performed by using the same model as for the disassembly 

components.   

Thus, with the proposed model, the mechanical energy expenditure for performing all 

the possible disassembly sequences (including moving the disassembly components, fasteners 

and tools) can be estimated by eq. (1-13) and (1-19). Note, that the different disassembly 

sequences are potentially different disassembly tasks which will induce different levels of 

fatigue in the patient muscles.  
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1.4.3 Example of calculation 

In order to illustrate the analytical model for evaluating the fatigue induced during disassembly 

sequence simulation, an example of a simple disassembly manufacturing process is presented 

here below. It consists in disassembling a five-component mechanical assembly. Let the target 

component be component 3 as presented in Figure 1.3. 

 
Figure 1.3 Mechanical assembly and parts’ trajectories for disassembling target component 𝑪𝟑   

Legend:  Each component (𝐶1, 𝐶2 … 𝐶5) is moved from its initial position to storage place 

(𝑆1, 𝑆2 … 𝑆5) following the corresponding disassembly path (𝑃1, 𝑃2 … 𝑃5)  

 

There are two possible disassembly sequences for disassembling the target component 

𝐶3  : Sequence S1= {𝐶1, 𝐶2, 𝐶3 } and Sequence S2= {𝐶5, 𝐶4, 𝐶3 }. In here, (𝑥𝑖𝑠, 𝑦𝑖𝑠, 𝑧𝑖𝑠)  and 

(𝑥𝑖𝑒 , 𝑦𝑖𝑒 , 𝑧𝑖𝑒) denote respectively the disassembly starting point and disassembly ending point 

coordinates of the mass center of 𝑖th component. The values of the three parameters, namely: 

mass and its starting and ending positions of each component are presented in Table 1.1. 

Table 1.1 Parameters for disassembly sequence evaluation 

Mass Value 

(kg) 

Starting point  Value 

(mm) 

Ending point Value 

(mm) 

𝑚1 1 (𝑥1𝑠, 𝑦1𝑠, 𝑧1𝑠) (0,20,0) (𝑥1𝑒 , 𝑦1𝑒 , 𝑧1𝑒) (0,60,60) 

𝑚2 1.5 (𝑥2𝑠, 𝑦2𝑠, 𝑧2𝑠) (0,10,0) (𝑥2𝑒 , 𝑦2𝑒 , 𝑧2𝑒) (0,60,30) 

𝑚3 3 (𝑥3𝑠, 𝑦3𝑠, 𝑧3𝑠) (0,0,0) (𝑥3𝑒 , 𝑦3𝑒 , 𝑧3𝑒) (0,60,0) 

𝑚4 1.8 (𝑥4𝑠, 𝑦4𝑠, 𝑧4𝑠) (0,-10,0) (𝑥4𝑒 , 𝑦4𝑒 , 𝑧4𝑒) (0,60,-20) 

𝑚5 0.8 (𝑥5𝑠, 𝑦5𝑠, 𝑧5𝑠) (0,-20,0) (𝑥5𝑒 , 𝑦5𝑒 , 𝑧5𝑒) (0,60,-40) 
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As previously said, the proposed method for evaluating the disassembly task by 

mechanical energy expenditure requires to measure angle 𝜃1  of the arm at the starting and 

ending point for all the components involved in the disassembly sequences. Kinect 2 was used 

to capture this angle and the data are as presented in Table 1.2.   

 

Table 1.2  Angle between operator upper arm and horizontal frame line for starting and ending 

point of the components 

                Component 1 2 3 4 5 

𝜃1𝑖
𝑡0  (rad) -0.550 -0.592 -0.627 -0.592 -0.550 

𝜃1𝑖
𝑡1 (rad) 0.500 0.159 -0.387 -0.429 -0.953 

 

Concerning the parameters of the arm, they are the same as in [SYMM97] presented in 

Table 1.3.  

 

Table 1.3 Parameters of the arm 

 𝑚𝑢(kg) 𝑚𝑙(kg) 𝑙1(m) 𝑙2(m) 𝑎1(m) 𝑎2(m) 

values 2.537 2.332 0.298 0.419 0.151 0.167 

 

The values of ℎ𝑎𝑖𝑢  for each component, calculated according to equation (4-19) are 

presented in Table 1.4. 

Table 1.4 Values of 𝒉𝒂𝒊𝒖 

component 1 2 3 4 5 

ℎ𝑎𝑖𝑢(m) 0.223 0.0837 0.025 0.006 0.158 

 

According to the proposed model, the mechanical energy for performing the 

disassembly Sequence 1 and Sequence 2 are respectively: ∆𝐸𝑆1 = 41.87𝐽 and ∆𝐸𝑆2 = 24.66𝐽. 

It is seen that ∆𝐸𝑆1 is bigger than ∆𝐸𝑆2. Based on Hypothesis 1, 2, 3 and 4, the results show that 

performing disassembly Sequence 1 induces more fatigue in the arm’s muscles than performing 

disassembly Sequence 2.  
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1.5 Experimental disassembly task evaluation by muscle fatigue estimation  

1.5.1 Experiments 

In order to prove the proposed model, series of experiments were carried out in the Virtual 

Reality environment GINOVA platform, Grenoble-INP (National Polytechnic Institute). The 

task consisted in handling a simulated electrical motor (weight of 1kg) in a restricted vertical 

space of 0.5m with repetitive bottom up and up down movement during 5 minutes with a 

frequency of 0.42 Hz (25 movements for one minute). The distance between subjects’ eyes and 

the display screen is fixed at 2.25 m.   

The visual feedback (displacement of the component in the VR screen) is the same as 

the displacement of the end of the hand in the real physical environment. That means there is 

no geometrical coefficient scale between both movements. During the operations, the upper 

arm of subject is in static position (𝜃1 is constant).  

1.5.1.1 Participants 

Nine subjects (eight male right-handed and one female left-handed), aged from 24 to 58, were 

involved in the experiments. Unfortunately, the female subject did not endure until the end of 

the task, so the effect of different sex on fatigue has not been investigated in this stage of the 

study.  

Subjects declared no performed intensive muscle efforts during 24 hours period. All 

participants reported no history of problem in upper limbs. Since 𝜃1  is constant, when 

calculating the mechanical work, the task is performed when only the lower arm is moving.    

1.5.1.2 Simulation tests  

The environment consists of (Figure 1.4):  

- VIRTUOSE 6D35-45 haptic device with force feedback,  

- Kinect tracking system,  

- stereoscopic display,  

- 3D glasses, 

- four channels EMG BIOPAC MP150 system.  

The software used to generate the simulation environment is IFC (Interactive Fitting for 

CATIA) which is a CAAV5-based plug-in for CATIA V5TM for interactive simulations. The 

weight of the component was simulated by the gravity environment in CATIA. Virtual objects 
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in the software are constrained by gravity field. The force feedback, during collisions, is sent 

to the subject via the haptic device. 

 

Figure 1.4 Virtual reality experimental environment 

The task was divided into two sub tasks in order to discriminate which one induces more 

muscle fatigue. The first 2.5 minutes period represents the task 1 (T1). The total 5 minutes 

period represents the task 2 (T2). The experiment protocol is presented in Appendix 1.   

1.5.1.3 EMG processing 

During the task (subjects in standing position), the EMG signals on four involved muscles 

extensor carpi radialis (ECR), flexor carpi radialis (FCR), biceps and triceps were recorded 

according to SENIAM (surface EMG for non-invasive assessment of muscles) location protocol 

with four sets of electrodes of EMG BioPac MP150 system. The signal from the electrode on 

the ulnar styloid process muscle was used as ground signal. 

The EMG signals for each subject have been normalized with EMG signals of each muscle 

detected during the task.  

After filtering, Fast Fourier Transfer (FFT) function was used to transfer the raw EMG 

signal. The power spectrum density of each muscle contraction was estimated by using 

Hamming window. The median frequency for each muscle contraction was approximated by 

straight line. Thus, bigger decreasing slope represents faster fatigue process.  

1.5.2 Results 

Figure 1.5 shows a filtered EMG data which was recorded for a 20 seconds period of 5 minutes 

task for the four involved muscles.  

http://www.researchgate.net/publication/228486725_Standards_for_surface_electromyography_the_european_project_surface_emg_for_non-invasive_assessment_of_muscles_%28seniam%29
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Figure 1.5 Filtered EMG data 

The EMG data after RMS processing and averaging are presented in Figure 1.6, where: 

A – is the Average of the RMS peak values of the first five muscle contractions for the 

involved muscles in T2,  

B – is the Average peak value of last five successive muscle contractions of T1, 

C – the Average peak value of last five successive muscle contractions of T2. 
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Figure 1.6 Average of peak values of NEMG signal for all subjects at A, B and C for each 

muscle. (* indicates significant difference and n.s indicates no significant difference)      

Student t test analysis (unilateral Student t test,𝛼 =0.05) shown that a significant difference 

appears between C and B for FCR and Biceps muscles only (respectively t=-1.848, t=-1.775). 

No significant statistical difference was found between A and B for all the muscles, neither 

between B and C for ECR and Triceps muscles. The significant difference between B and C of 

Biceps and FCR means that EMG signal for performing task 1 (T1) is significantly different 

from task 2 (T2). Hence the fatigue induced by T1 is less than T2 as the average of B is lower 

than C in FCR and Biceps.The results indicated also that T2 induced more fatigue than T1. It 

means that the task involves greatly flexor muscles (FCR, Biceps) with greater fatigue in T2 

than T1 for those two muscles.  

Table 1.5 shows the results of median frequency for FCR and Biceps muscles. It confirms 

that fatigue appears in both muscles. Moreover, slope values indicate that fatigue increases 

faster in T1 than in T2.   
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Table 1.5 Decreasing slope of median frequency of EMG 

 

T1 (2.5 minutes) T2 (5 minutes) 

FCR -0,13003878 -0,06598795 

BICEPS -0,03164797 -0,0023069 

1.5.3 Discussion 

The results of the performed tasks in the VRE show that Biceps and FCR muscles are the prime 

movers involved. On the other hand, fatigue develops faster in T1 than in T2. This could be 

resulted from the fact that the anaerobic exercise of fast twitch is the activity mainly involved 

in the T1 task and the aerobic exercise of slow twitch is the principle muscle behavior in T2 

task. The experimental results indicated also greater fatigue in T2 than in T1. 

In order to prove the validity of the proposed mechanical model (see Section 1.3.2), it was 

applied to calculate the mechanical energy expenditure in T1 and T2 performed in the VRE. 

The values of the mechanical energy expenditure are respectively ∆𝐸𝑇1 = 308 𝐽 and  ∆𝐸𝑇2 =

616 𝐽. Thus, according to the proposed methodology, the fatigue developed in T2 is bigger than 

in T1, which is in agreement with the experimental results.  

Note that purchasing the fatigue calculation formula and accurate fatigue value associated 

with specific tasks is not the aim of our research. Instead, the mechanical energy expenditure 

has been used as an index to compare the induced levels of fatigue while performing different 

tasks. 

In order to compare fatigue for different disassembly tasks, the associated mechanical 

energy expenditure values are calculated here by the proposed mechanical model (eq. (1-13) 

and (1-19)).  

From the aspect of loading level, since the gravity forces of the components were simulated, 

it is the same as in the real world. From the aspect of operation method of haptic device, it only 

allows simulating a single hand operation by holding the handler of the VIRTUOSE haptic 

device.  

The main application field of the results of this chapter is to enable designers to compare 

the fatigue levels associated with different disassembly tasks simulation performed in VR 

environment. Note that the difficulties of including physiological parameters and building 
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complete skeletal-muscle model makes it very difficult to achieve the accurate calculation of 

fatigue level associated with a specific task. The individual physiological parameters being 

different may also block the generalization of the model. Instead, the calculation of the 

mechanical energy expenditure here proposed is relatively simple.  

For the calculation of mechanical energy expenditure, the required parameters are: 

-  manipulated objects mass, 

- the starting and ending position of the manipulated objects, 

- angle 𝜃1  between operator upper arm and horizontal frame line for starting and ending 

position.  

For a given task, the first three parameters are easily obtained. If the positions of operator and 

manipulated objects are known, angle 𝜃1 can be calculated consequently.  

As previously said, BMMF models [RoFD04, DNHÅ11] are based on working hours to 

evaluate both central  nervous and peripheral fatigues. They focus more on the relationships 

among work hours, sleep and performance for a long-time period. Instead, our model focus 

only on peripheral fatigue for a short time period. Thus, the model proposed here is more 

suitable to evaluate the relationships among the muscle fatigue levels associated with different 

disassembly tasks.  

There are two reasons for explaining why more real and complex mechanical assembly, 

which could generate more realistic disassembly sequence, have not been employed here. The 

first reason is that in order to induce the fatigue in arm muscles, enough exercise should be 

performed. Pre-tests have shown that if subject is repetitively moving a component between 

two points with vertical displacement and with a given frequency, he/she will feel fatigue at 

least after performing the task for a short period time which is equivalent to effectively 

disassemble lot of components. Instead, a basic task, consisting in manipulating of only one 

component with sufficiently long trajectory and execution time could be much easier to perform. 

It also avoids to be effected by the factor of subjects’ lacking of experience in haptic device 

manipulation. Another reason is that this simple task is easy to perform by subjects and allows 

controlling the velocity of task execution according to Hypothesis 3.  
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1.6 Conclusion  

This chapter introduced a new method for disassembly task evaluation which aims at using the 

expenditure volume of metabolic energy to quantify fatigue. 

The proposed method is more efficient than the method of Bisi et al. [BSHG11] which 

requires so much data necessary for predicting metabolic energy consumption and consequently 

fatigue evaluation.  

The method is based upon four hypothesizes and proved by experimental tests. Thus, 

Hypothesis 1 has been proved from the theoretical derivation and experiment results.  

The agreement between the theoretical results and experimental ones indicated that the 

proposed method is pertinent for estimating the level of peripheral fatigue induced while 

performing a disassembly task in VR environment. The analysis of the median frequency of 

EMG signals proved the existence of fatigue in the involved muscles. Another interesting result 

is that subjects fatigue happens faster in T1 (beginning of the task) than in T2.  

However, in order to generalize the proposed method, the comparison between the fatigue 

in real versus virtual environment has to be realized.  
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Chapter 2                                                                     

Motor behavior analysis of pseudo-haptic in 

stiffness discrimination task  

 

 

 

 

 

Pseudo-haptics is the generation, augmentation or deformation of haptic sensations by 

information coming from other sensory modalities. This chapter focuses on force applied by 

subjects when testing pseudo-haptic springs while performing stiffness discriminations. Series 

of tests for stiffness discrimination between real spring and virtual spring (with pseudo-haptic 

feedback) were performed. Thus, the materials and the method including measurement items, 

experiment protocol, participants and data analysis are presented first. Then, the results 

concerning: the perception under different stiffness, the pressing force, some kinematic 

parameters, the EMG (Electromyography) signals and the co-activation are presented. 

Finally, how subjects applied forces according to the stiffness of pseudo-haptic spring and how 

does the pseudo-haptics induce different muscle co-activation levels on subjects’ forearm are 

discussed.  
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2.1 Introduction  

Visual feedback plays an important role in different aspect of human behavior and sensation 

such as: motor control [MoAr13, SMRB09], restoring brain function [RaAl09] and perception 

of physical properties [SrBB96]. Let us recall that from [LBCC01], “pseudo-haptics is the 

generation, augmentation or deformation of haptic sensations by information coming from 

other sensory modalities “.  

One amongst the first works about pseudo-haptics was reported in [LCKR00] where 

Lécuyer et al. showed that the haptic information can be provided to user by the illusion 

generated by the pseudo-haptic feedback (here the stiffness).  Several physical properties have 

been simulated by using the pseudo-haptic feedback such as stiffness, friction, shape, weight, 

force field etc.  

As we are aware there is no work focusing on how the pseudo-haptic feedback influences 

the user’s motor behavior in stiffness discrimination task. Thus, this chapter focuses to better 

understand how the pseudo haptic feedback influences the user’s perception and force applied 

on the spring during stiffness discrimination tasks.  Here we proposed to reuse the stiffness 

discrimination task presented in [LCKR00] consisting in discriminating the stiffness of real 

springs and virtual (pseudo-haptic) springs2. We choose a stiffness discrimination task   in order 

to be able to confirm the existence of the pseudo-haptic effect (by comparing the perception 

results with the results of previous existing work) before performing our experiments.  

In the stiffness discrimination task performed in here, the real springs have different stiffness 

levels and the stiffness of the virtual spring varies in 11 different percentages from the stiffness 

of the compared real spring (see details in Section 2.4.1). Subjects had to distinguish the stiffer 

between a real and a virtual spring. For this purpose, the subjects’ discrimination answers, force 

applied on springs and EMG signals of the involved muscles on subjects’ forearms were 

recorded and analyzed for investigating the trend of change in force following the change of 

springs’ stiffness.   

                                                 
2 In the remaining of thesis, virtual spring is used to represent the pseudo-haptic spring. 
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2.2 Previous work 

 2.2.1 Pseudo-haptics 

2.2.1.1 Definition of pseudo-haptics  

As previously said, the first work related with pseudo-haptics was presented in [LCKR00] 

where an isometric device, the Spacetec SpaceballTM 2003C model (Figure 2.1.a), together with 

visual feedback were used to provide a stiffness information during pressing on a virtual spring 

(Figure 2.1.b). The Spaceball was used as a force sensor which reacted to user’s applied force. 

The combination of displacement of virtual spring and the internal isometric device resistance 

is called pseudo-haptic feedback since it can provide a stiffness information perceived by user 

which is similar with haptic sensation. The definition of pseudo-haptics as proposed by Lécuyer 

et al.  in [LBCC01]  is:  “the generation, augmentation or deformation of haptic sensations by 

information coming from other sensory modalities”. Pseudo-haptic feedback uses vision to 

distort the user’s haptic perception and verges on haptic illusions.   

  

(a) (b) 

Figure 2.1 Pseudo-haptic device in [LCKR00]: a). Isometric input device called Spaceball; b). 

virtual display of a ‘virtual spring’. 

2.2.1.2 Vision dominance  

Simulating the spatial properties (distance, position, size, displacement amplitude, etc.) by 

using pseudo-haptic feedback probably relies on the sensory dominance of vision over touch 

[Lécu09]. Srinivasan et al. [SrBB96] pointed out the visual dominance over the kinesthetic of 

hand position in a proposed stiffness discrimination task. In the experiment, subjects were asked 

to compared the stiffness of two virtual springs. Through pressing the springs, they can feel the 



 

37 

 

displacement and the pressing force by the hand and see the deformation of spring displayed 

on computer screen. The results indicated that the subject’s perception of stiffness were greatly 

influenced by the visual information. 

Vision dominance is not always existence during perceiving the physical properties.     

Ernst and Banks proposed in [ErBa02] an experiment  asking subjects  to estimate the height of 

a bar in three situations with:  

- visual feedback,  

- haptic feedback,  

- and both visual and haptic feedback.  

Through measuring and analyzing the variance associated with visual and haptic estimation, it 

is indicated that the vision dominant occurs when the variance of the visual estimation is lower 

than the variance associated with haptic estimation [ErBa02]..   

2.2.1.3  Physical properties simulated by pseudo-haptics 

Since Lécuyer brought in the concept of pseudo-haptic feedback in 2000, different types of 

physical properties have been simulated based on pseudo-haptic feedback. 

a.) Friction simulation 

The first work contributing to the pseudo-haptics effect was to simulate the friction 

[LéCC01]. In the performed experiments, subjects had to manipulate a virtual cube, 

either by a 2D mouse or by Spaceball, to pass through the grey area (see Figure 2.2).  

The speed of the virtual cube was accelerated or deaccelerated comparing with subjects’ 

actual movement. This acceleration/deceleration is done by controlling the ratio 

between the subjects’ actual movement displacement and the displacement of the virtual 

cube with using 2D mouse while controlling the ratio between the subjects’ finger force 

and displacement of the virtual cube with using Spaceball. All subjects feel a light 

friction when the speed of virtual cube was accelerated and a heavy friction when the 

speed was decelerated. The results also indicated that subjects thought using the 

Spaceball, which is an isometric device, can conduct to better feel of the friction than 

the use of the 2D mouse, which is an isotonic device.  
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Figure 2.2  Lécuyer’s swap experiment display [LéCC01]. 

Three year later, Crison et al. [CLSM04] applied pseudo-haptic feedback to simulate the 

friction  of  milling. Through changing the ration between the users’ actual motion and the 

motion of the virtual cutting tools, subjects can feel their resistance according to different 

simulation parameter. 

b.) Stiffness simulation 

Before the appearance of  the pseudo-haptics concept, Srinivasan et al. [SrBB96] has 

controlled the visual feedback of spring to confuse subjects’ haptic sensation in stiffness 

discrimination task. The haptic stimulus was provided by virtual spring composed by a 

three degree of freedom haptic interface called Planer Grasper (see Figure 2.3.a).  Three 

years later, through using  PHANToM haptic interface (see Figure 2.3.b) Wu et al. 

[WuBS99] also changed subject’s perception of stiffness by manipulating the visual 

feedback in different levels. 

      

(a)                                                                           (b) 

Figure 2.3 (a). Planar Grasper [SrBB96]; (b). PHANToM haptic interface [MaSa94]; 

One year after, Lecuyér et al. [LCKR00] proposed a stiffness discrimination task which 

consists in comparing a real spring and a virtual one. They define the real spring as a 
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physically existing spring in reality with a known stiffness value while the virtual spring 

was graphically displayed on a computer screen and was dynamically animated when 

pushing the SpaceballTM.  Pseudo-haptic was utilized to provide the stiffness 

information of virtual spring to subject and change the value of simulated stiffness. 

Virtual spring was simulated from the subject’s finger force applied on an isometric 

device (SpaceBall, which is used as a force sensor). By applying different ratios between 

the actual finger force and the displacement of the virtual spring  

𝐾𝑉𝑖𝑟𝑡𝑢𝑎𝑙 =
𝐹𝑢𝑠𝑒𝑟

𝐷𝑣𝑖𝑟𝑡𝑢𝑎𝑙
    ( 2-1) 

the stiffness of virtual spring varies in different percentages from the stiffness of the 

compared real spring. The subjects’ perception results indicated that changing the 

virtual feedback in pseudo-haptic changes subjects’ perception on stiffness of virtual 

spring. From the results of this experiment, different PSE (Point of subjective equal) 

were found when the different real springs were compared with the virtual spring. There 

are three real springs (249, 363 and 544N/m) used in this experiment. The PSE value 

decrease when the stiffness of the compared real spring increases. That means that softer 

the compared real spring is, more underestimated the stiffness of the virtual spring is.  

Lécuyer et al. performed another experiment [LBCC01] where subjects were asked to  

participate  in a stiffness task involving  two virtual springs simulated by a system based 

on PHANToM.  The displacements of one realistic spring and pseudo-haptic spring 

being displayed on computer screen subjects had to answer which one was stiffer.  One 

spring has a realistic behavior since it had identical virtual and real displacements. The 

pseudo-haptic spring is either stiffer or softer than the first one. Different from the 

[LCKR00], the PSE point in this experiment are negative.  

Li et al. [LLLS12] introduced a low-cost haptic simulation systems for tissue stiffness 

simulation based on pseudo-haptic feedback. They created a softness map which can 

change the ration between the speed of cursor movement and the speed of finger 

movement when the subject touches different point in the softness map. The user will 

then experience a higher resistance when the cursor speed is slower.   

c.) Torque simulation 

Inspired from using a pseudo-haptic spring in stiffness discrimination, Paljic et al. 

[PaBC04] conducted an experiment which consisted in  torsion discrimination between 
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a real torsion spring (Figure 2.4.a) and a virtual (or pseudo-haptic) one . Two types of 

virtual torsion springs were used in the experiment: the first one is an isometric torsion 

spring with infinite physical stiffness (Figure 2.4.b) the other one is an elastic torsion 

spring with finite physical stiffness (Figure 2.4.c). When subject rotates the plastic cap 

of the real torsion spring, the pulley rotates synchronously and consequently pulls the 

torsion spring at two sides to create a torque which is opposite to the rotation direction 

of user’s hand.  There are two types of stiffness discrimination:  

- real torsion spring vs. isometric virtual torsion spring,  

- and real torsion spring vs. elastic virtual torsion spring.  

Each type of stiffness discrimination task had one group of subjects participated. 

Torques applied on the virtual torsion spring, answer time and subjects’ answer were 

recorded and analyzed. The results indicate that the subjects’ group who compared 

elastic virtual torsion spring with real torsion spring had a higher resolution in stiffness 

perception, but with higher distortion of perception.   

    

(a)                        (b)                                     (c)                                  (d) 

Figure 2.4 Two compared torsion springs [PaBC04]: a). Real torsion spring; b). Isometric 

virtual torsion spring; c). Elastic virtual torsion spring; d). Visual feedback of pseudo-haptic 

torsion spring. 

d.) Texture and shape simulations 

By changing the cursor speed, texture and shape can also be simulated by pseudo-haptic 

feedback. Lécuyer et al. [LéBE04] introduced a techniques of simulating textures in 

desktop applications without  haptic interface. What the subject sees is the top view of 

texture, which is the white disk in Figure 2.5. Subject manipulates the Green cursor to 

pass through the White disk in order to perceive the texture. The ratio between the hand 

motion and the cursor motion on the computer screen give subject a feeling of passing 



 

41 

 

different textures by using the green cursor. The acceleration or the deceleration of 

motion of the cursor indicates a negative or positive slope.   

 

Figure 2.5 The scenario of texture simulation by using pseudo-haptic feedback [LéBE04].   

 

e.) Weight and mass simulation 

Dominjon et al. [DLBR05] conducted an experiment discriminating the heavier ball 

between two. The force feedback was provided by PHANToM device (Figure 2.6.a). In 

order to feel the force subject had to grasp a foam ball while observing its motion on the 

computer screen (Figure 2.6.b). Through manipulating the ratio between the amplitudes 

of movements of the user's real hand and the virtual ball, subjects had different 

perceptions on ball mass. The discrimination results indicate that decreasing or 

amplifying the motions of users’ hand modified their perception of object’s mass. 

    

                                      (a)                                                                   (b) 

Figure 2.6 Mass discrimination task in [DLBR05]: a). Experiment setup; b).  Virtual ball 

displayed on computer screen. 
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Palmerius et al. [PJHS14] investigate  pseudo-haptic feedback effect in human weight 

perception through a series of experiments using Desktop PHANToM as haptic device. 

The subject wear shutter glasses for stereo vision. The user interface is fully 3D (Figure 

2.7.a). The experimental task consisted in selecting the heaviest box among three 

arranged horizontally (Figure 2.7.b). The results proofed that the pseudo-haptic 

feedback changed their weight perceptions.  

    

(a)                                                           (b) 

Figure 2.7 Simulation of weight based on pseudo-haptic feedback [PJHS14]: a). Experiment 

setup; b). Experiment task scenario. 

Recently, Jauregui et al. [JAOM14] used the pseudo-haptic feedback to make subjects 

successfully discriminate the weight of four objects. Subjects had to order the weights 

of four visual dumbbells according to the perceived virtual weight. During the weight 

lifting task, motions captured by subjects were reconstructed on a self-animated avatar 

which can be synchronously observed in computer screen (Figure 2.8)).  There are three 

methods for modifying the visual animation of the self-avatar:  

- Control/Display (C/D) ratio,  

- Angle of inclination  

- and motion profiles (speed and acceleration).   

The C/D ration, amplifies /decreases the detected gesture of subject’s hand in order to 

generate of feeling of holding objects with different weights. For the angle of inclination 

(upper-body inclination), different angles were associated with different weights.  The 

motion profile simulates this angle during the motion of lifting different objects.  
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Figure 2.8  Avatar’s animation corresponding to different motions during the lifting of the 

subject [JAOM14]. 

f.) Force fields simulation 

Pusch et al. [PuMC08] proposed an augmented virtual reality system  using  pseudo-

haptic feedback to simulate force fields. The positon of subjects’ head and the moving 

hand are tracking by a position sensory system (see Figure 2.9.a) while subjects are 

watching avatar hands movement though the head-mounted display (HMD) (Figure 

2.9.b). Subjects were asked to move their hands to control the avatar hand and put it in 

the force field which is limited inside a purple tube. The control of the strength simulated 

force field was realized by controlling the ration between subjects’ actual hand 

movement displacement and the avatar hand movement displacement. When subjects’ 

hands move against the force field direction, they feel strong force field if the avatar 

hand movement was slow down comparing with subjects’ actual hand movement, and 

less strong force field if the avatar hand movement was less slow down. In this way, 

subjects felt the resistance as when they put the hand in a wind stream.    
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(a)                                                               (b) 

Figure 2.9 HEMP (Hand-displacEMent-based Pseudo-haptics) systems [PuMC08]: a). Subject 

wear a head-mounted display while the head and hand positions were tracked; b). The scenario 

of feeling the force field.   

2.2.1.4 Analysis of previous pseudo-haptic works 

 Previous works, a part of which was presented here above, has shown that pseudo-haptic 

feedback can influence subject’s perception. Such as in [LCKR00], through analyzing the PSE 

point, Lécuyer et al.  concluded that there exists an underestimation of virtual spring stiffness. 

Just noticeable different and Weber fraction were used to provide the discrimination compliance.  

Palijic et al. analyzed  in [PaBC04] the influence of pseudo-haptic feedback  on subjects’ answer 

time in torque discrimination task. A year later, Dominjon et al. analyzed  in [DLBR05] how 

subjects’ answer in weigh discrimination changed following the change of pseudo-haptic 

feedback.   

Besides influencing the perception of stiffness and weight, pseudo-haptic feedback can 

also influence subject’s motor behavior, corresponding to the muscle involvement and limb 

coordination. Recently Ban et al. [YTFS13] proved that the brightness of object can change the 

perception of weight, and in turn of muscle involvement. The more brightness the object is, the 

more underestimated perception of weight is and less the produced muscle fatigue is.  The 

fatigue generated by holding object for a long time can be also reduced by this illusion. 

Tomohiro et al. [TaHi08] proposed an experiment which asked  subject to horizontally move a 

virtual ball into the target position on the computer screen. Once the virtual ball arrives at the 

target position, it starts vertically vibrating with a certain level of amplitude which provides a 

pseudo-vibration sense. It is reported that changing the vibration amplitude of the ball, changes 
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also the muscle involvement. But how the pseudo-haptic influences the subject’s motor 

behavior in stiffness discrimination has not been investigated. 

Although Lécuyer et al. [LCKR00] and Paljic et al. [PaBC04] have analyzed the subject 

answer in stiffness discrimination task, how  does pseudo haptic feedback influence pressing 

force and involved muscle activity is not known.  In their experiments, although the pseudo-

haptic feedback has been utilized to simulate the stiffness of torque, the visual feedback of the 

real spring and virtual spring were not uniformed. In [LBCC01], this drawback has been 

overcome by using PHANToM force feedback device to simulate virtual springs compared in 

stiffness discrimination task. The PSE value found in [LBCC01] (-24%) is different from the 

+9% found in  [LCKR00]. Although Paljic et al.  recorded the torque applied on the virtual 

spring, the force on real spring had not been recorded, so the comparison between the forces 

applied on both real and virtual springs cannot be achieved. In this context, we propose to put 

force sensors on both real and virtual springs, so the force   applied on the springs can be 

recorded, analyzed and compared. Secondly, in order to reduce the difference between the 

visual feedback of real and virtual springs, their displacements are displayed on the computer 

screen. Consequently, the forms of the visual stimulus for both real and virtual springs can be 

uniformed. 

2.2.2 Motor behavior during stiffness discrimination 

2.2.2.1 Force behavior in real stiffness discrimination  

Karadogon et al. [KWHC10]  analyzed the force in the stiffness discrimination task where the 

spring is simulated by  PHANToM haptic device. It is proved that the force and pressing speed 

are increasing following the increase of the stiffness of the simulated spring. However, this 

experiment does not involve pseudo-haptic feedback, because subjects’ actual hand motions 

were the same as the motion they saw in the computer screen. 

There are also many works investigating finger forces applied during stiffness 

discrimination with real springs. Fujita et al. [Fuji04], investigated  pinch movements. In their 

experiment two elastic objects have nonlinear stiffness while the other three have a linear 

stiffness. The objective was to study the applied pinch forces during stiffness discrimination 

task. The results shown that no matter the stiffness of object, the pinch force increases with the 

increase of object stiffness. In this optic, Endo [Endo16] investigated a stiffness discrimination 

task and the applied forces for springs within the stiffness range between 59 N/m and 2360 N/m. 

During the discrimination task, two specimens that differed by one or two levels of stiffness 
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were paired. In total nineteen pairs were used in the experiment (pair IDs: P1–P19). The results 

showed that the force applied on the springs increased with the stiffness of specimens until to 

reach a stabilization for the higher stiffness values ( Figure 2.10).    

 

Figure 2.10  Force applied on different compared specimens [Endo16]. 

2.2.2.2 Muscle co-activation  

For stabilizing the joint movement and improving the control of the limb movement, the muscle 

has a coordinate mechanism for co-activation which means that both agonist and antagonist 

muscles will be activated. The muscle co-activation which is normal during performing fine 

task has been widely studies [FrAv13]. 

In biomechanics, different results about co-activation were reported in static versus 

dynamic tasks. According to [GrOs98, SSGO01], muscle co-activation increases following the 

increase of maximal joint velocity in dynamic task. Conversely, in static conditions, 

antagonistic co-activation appears to increase with agonist activation which is proportionally 

greater during maximal voluntary contraction (MVC) [HéDA91, YaWi83]. With the increasing 

of MVC level, the net force exerting by the muscles, crossing the joint, increases also. This 

means that during performing the static task, the co-activation increases following the increase 

of the net force exerting by the muscles crossing the joint. 

For dynamic task (pressing the real spring for instance) the muscle co-activation should 

increase following the different maximal pressing velocity on real spring.  
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For static task when pressing the virtual spring (a pseudo-haptic spring), it is not clear 

what would be the co-activation pattern. In fact, the subject applies a static force on the spring 

but receives dynamic visual feedback as the spring length changes. Thus, the question whether 

the muscle co-activation will change following the change of visual feedback in pseudo-haptics 

as user press on a static real spring is open.   

2.3 Materials and Method 

2.3.1 Real Springs and Virtual Springs 

The purpose of the performed experiments is to discriminate the stiffness of two compared 

springs: one real and one virtual. The experimental protocol  in [LCKR00] was replicated. 

However, in order to uniform the stiffness stimuli of two compared springs (real spring and 

virtual ones) their displacements were displayed on the computer screen. Note that this method 

is different from the method of Lecuyér et al. [LCKR00] which only displayed the displacement 

of virtual spring. 

Figure 2.11 shows the realized test bench for the experiment. Inside a box (Figure 

2.11.a), there are four springs, labeled as 1, 2, 3 and 4 with stiffness of 202N/m, 304 N/m, 608 

N/m and 2500 N/m respectively. Each spring, situated in metallic tube, is loaded by the force 

via a bottom. Under each spring, a force sensor (KISTLER 9017B) allows to record the vertical 

force applied on the spring with 2000 Hz sampling frequency during each trial.    

    

(a)                                        (b) 

Figure 2.11 Experimental setup: a). four springs inside the box; b). two simulated springs 

presented on computer screen for each trial. 

The real spring is one amongst springs 1, 2 and 3. The stiffness of a spring is defined by 

the ratio between the applied force and its visual displacement. For the real spring, no mismatch 
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existed between the visual feedback and the real spring displacement. The force applied in 

spring 4 coupled with change in visual feedback displayed on computer screen generates 

different stiffness of virtual spring. For the virtual spring a difference existed according to 

compared real spring. Previous tests in [LCKR00] shown that below -40% and above +60% of 

real spring stiffness the subjects’ perception results were not influenced by the visual feedback 

anymore. Therefore, as proposed in [LCKR00] the stiffness of virtual springs vary -40%, -30%, 

-20%, -10%, 0%, +10%, +20%, +30%, +40%, +50% and +60% from the stiffness of 

compared real spring. The displacement D of each spring, visualized on the computer screen, 

is calculated based on the applied force and its stiffness, as:  

 D=F/k      ( 2-2) 

where:  F is the detected force that subject apply on spring  

 k is the stiffness.  

In order to prevent the contact between the button and the top of the tube, the message 

“Stop pressing” is displayed on the screen when the distance between the button and the top of 

tube is smaller than 1 mm. 

2.3.2 Measurement items 

Four force sensors (KISTLER 9017B) were installed in the bottom of each tube of the springs. 

While pressing the springs, the forces were recorded with 2000 Hz sampling frequency during 

each trial. The visual displacement of each spring, movement of the button, on the computer 

screen is calculated based on the applied force and the simulated stiffness. 

According to SENIAM (Surface ElectroMyoGraphy for the Non-Invasive Assessment 

of Muscles) [HFMS99] and Leouffre thesis [Leou14] recommendations, a total of six sets of 

electrodes respectively located in two flexors and two extensors on the forearm of subject were 

used to record the EMG3 (electromyography) signal. Both flexor digitorum superficials and 

flexor carpi radialis muscles, have two set of electrodes located on.  Two set of electrodes were 

separately located in extensor digitroum muscle and extensor carpi radialis longus muscle. The 

EMG signals were recorded with 2000 Hz sampling frequency during the experiment. Figure 

2.12 shows the electrodes’ placement on the forearm. 

                                                 
3 All the EMG mentioned in this chapter means surface electromyography 
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a)                                                             b) 

Figure 2.12 The placement of electrodes on forearm: a). Four sets of electrodes for flexors; b). 

Two sets of electrodes on extensors (the black electrode is for the ground). 

2.3.3 Experimental test 

The experiment includes two parts:  

- maximal voluntary contraction (MVC) measurement in order to calibrate force 

and EMG data, at the beginning of each test, 

- stiffness discrimination task. 

 During the tests, subjects have to use their predominant index finger while applying the forces. 

The forearm is in horizontal position and rests on two identical mats situated under the subject’s 

wrist and elbow. During the experiment, the subject is in sitting position (Figure 2.13). 

 

Figure 2.13 Subject performing the task in sitting position with using dominant hand to test the 

spring and non-dominant hand to manipulate the keyboard. 
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2.3.3.1 MVC Measurement 

As previously said measurement of MVC take place before stiffness discrimination task.  For 

this purpose, subjects are asked to perform three items:  

- maximal flexion force,  

- maximal extension force,  

- maximal co-contraction (without contact with the button).   

Each item is performed consecutively three times and consists in: performing the action 

(force/co-contraction) during 3 seconds followed by 5 seconds break. After performing each 

item, subject had 5 minutes to rest before starting the stiffness discrimination task. For the 

maximal flexion and extension forces, subject had to continuously apply the maximum force 

(as Figure 2.14.a) by vertically pulling and pushing a ring attached with the force sensor towards 

down and towards up (as Figure 2.14.b). The maximal co-contraction consists in keeping the 

palm and forearm horizontally and co-contracting all the forearm muscles (as Figure 2.14.c). 

During performing each item, the force and EMG signal were recorded.  

       

(a)                                                                           (b) 

 

(c) 

Figure 2.14 Three MVC items: a). MVC flexion; b). MVC extension; c). MVC co-contraction. 

2.3.3.2 Stiffness discrimination task 

There are three stiffness comparing pairs: real spring 1-%virtual spring1, real spring 2-%virtual 

spring 2 and real spring 3-%virtual spring 3 which gives 33 (=3x11) compared pairs in the 
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experiment. For each pair, as previously said, 11 virtual springs were compared to one real 

spring, and there are 6 trails for virtual spring of each pairs. Thus, each subject has to perform 

6x33=198 trails which takes about 45 minutes. 

As previously said, for each trial, subjects were asked to perform a stiffness 

discrimination task between a real spring and a virtual one. The button’s displacements of two 

compared springs were displayed on the screen libeled “Spring A” and “Spring B”. For each 

piston, the ID of the corresponding button was indicated just below “Spring A/B” (Figure 2.11 

b.).  

Each trial starts by pressing spring B (i.e. virtual spring) first. After, the subject can 

switch back and forth between the two springs as he/she wishes. For subject information, on 

the top of the screen were indicated the trails’ number and the time spent for this trail. During 

the pressing, subjects had to focus on the computer screens and were not allowed to observer 

the movements of their finger on the spring. For each trail, after testing the springs, the subjects 

had to push S button on the keyboard, with the non-dominant hand, in order to Stop the trail. 

Then the question: Which spring is stiffer was displayed on the computer screen. The subjects 

had to push key A or B in order to respond the question. The answer was automatically recorded. 

As previously said, in order to avoid the contact between the bottom and the tube, the message 

“Stop pressing” was displayed on the screen 1 mm before the contact.  

2.3.4 Participants 

Fifteen subjects (12 males and 3 females), aged from 20 to 33 participated in the experiments. 

All subjects have declared not having:  

- corrected visual impairments,  

- impairments of haptic sensitivity (sensitivity of touch, numbness of the fingers and loss 

of finger location perception), 

- diseases or symptoms which induce hand movement disorders.  

All subjects declared also being naive to the purpose of the experiment (Appendix 2).  

2.3.5 Experimental data analysis 

2.3.5.1 Perception results 

As there are 6 trails for each stiffness change percentage of each pairs the mean value 

of number of response “Spring B is stiffer” is calculated. The function, which express the 
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relationship between the proportion of “Spring B is stiffer” response and the stiffness change 

percentage, is called psychometric function [Gesc97]. In order to fit a mathematical function to 

the psychometric function, z score was used to convert the proportion values into z score based 

on the normal distribution table in [Gesc97].  

In order to compare the discrimination performance of our experiment with  other works, 

especially [LCKR00], the Just Noticeable Difference (JND) has been calculated.  

                                                                  JND=DLu-PSE                                                  ( 2-3) 

where: - PSE is the Point of Subjective Equal, 

-DLu the Differentiation Line upper). 

 Both of them are corresponding to the simulated stiffness which subject have a z score of 0 

(probability of 50%) and 0.67 (probability of 75%). The Weber fraction W: 

                                                             W=(DLu-PSE)/PSE                                              ( 2-4) 

provides the size of the observer’s difference threshold during the discrimination task 

[TDBS95].   

2.3.5.2 Pressing force 

 

Figure 2.15 shows the raw data of force and EMG signal on each muscle during a trail of 

stiffness discrimination. The  forces raw signals are filtered with using 2-nd order 12.5 Hz 

Butterworth low pass filter [SMRB09]. For each test, the maximal peak of each pressing force 

is automatically detected (Figure. 2.16). The average value of force peak on both real and virtual 

springs are then calculated.  
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Figure 2.15 Raw data of force and EMG on flexors and extensors during a trial of stiffness 

discrimination task. 

The force data recorded during the stiffness discrimination task is firstly filtered with 

the same filter in the process of maximal flexion force data. Then the realized MATLAB 

program finds the start and end point of each press, and also the peak of force of each press on 

both real spring (RS) and virtual spring (VS) as shown in Figure. 2.16. The average value of 

force peak on real spring and virtual spring in each trial are then calculated. The normalized 

force peak is also calculated by dividing the maximal flexion force of each subject per force 

peak detected.  
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     (a)                  (b) 

Figure. 2.16 Start and end point of force on each press and the peak of the force of each press. 

(a) Force on real spring; (b) Force on virtual spring. 

2.3.5.3 Kinematic parameters  

In order to investigate the kinematic performance of index finger when the subject is pushing 

on real and virtual springs three kinematic parameters are proposed and consequently calculated: 

- the number of pressing, defined by the number of detected peak on the force, 

- the pressing duration on real and virtual spring, defined by the time difference between 

the start and end point of each press, 

- and pressing frequency defined by the ratio between the number of pressing and 

pressing duration. 

Concerning the number of pressing, it is supposed that the pressing frequency of the finger is 

lower than 4Hz, then 500 data point (sampling frequency is 2000Hz) will be the minimal data 

length between two peak of force. Findpeaks function of MATLAB was used to detect the peak. 

This function can find the local maxima based on a customer defined requirement.  A local peak 

is a data sample that is either larger than its two neighboring samples or is equal to infinitive 

number. If a peak is flat, the function returns only the first point. The press duration is calculated 

by recording the time at start and end point of each press. The start and end points for pressing 

phase were automatically detected. A threshold was given to horizontally cross the force signal 

and guarantee that the cross point between the threshold line and the curve of force signal was 

even number which promises that each peak has a start and end point. The start and end point 

are respectively the first point of a peak in force beyond the threshold and the first point lower 

than the threshold.  
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According to [SSGO01], both agonist and antagonist muscles  are  involved during the 

task. This sharing pattern, labelled muscle co-activation, is described to vary with the joint 

velocity. One explanation for the variation of muscle co-activation is that it enables the subject 

to better control the joint stability and the movement accuracy. Then it is meaningful to analyze 

the maximal pressing velocity depending of the joint angle velocity. The pressing velocity is: 

𝑣 =
𝑑𝑥

𝑑𝑡
=

𝑑(
𝐹

𝑘
)

𝑑𝑡
                                                                  (2-5) 

where:  F is the detected force signal and k is the stiffness of the spring. 

Figure 2.17 shows the force value and the calculated velocity based on eq.                                                                  

(2-5). Note, that for the real spring, v is the velocity of the fingertip in vertical direction which 

is proportional to the angle velocity of the wrist joint.  The physical stiffness of virtual springs 

being too high (2500 N/m), the angle velocity of the wrist joint is almost zero. Thus,  v is the 

velocity of the virtual spring button without movement of the finger joint.  

 

Figure 2.17 Subject force applied on real spring (figure up), and velocity and the detected 

positive peak value on pressing velocity (figure down).  

2.3.5.4 EMG signal and co-activation 

The raw EMG were filtered with a 200 order of bandpass FIR filter between 20Hz and 500Hz 

which is the main frequency domain of EMG signal [DGKR10]. All EMG signals have been 
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processed by using RMS (root mean square). The epoch for the RMS processing is 500. Figure 

2.18 shows the raw data of EMG and the RMS EMG signals after filtering on two extensors 

during performing the MVC.  

For the EMG signals of six involved muscles during the MVC, two parameters were 

calculated.  

The first one is the average of the integrated EMG (IEMG) calculated as: 

𝐼𝐸𝑀𝐺 =
1

∆𝑡
∫ 𝐸𝑀𝐺𝑑𝑡

𝑡2

𝑡1
                                                  (2-6) 

where: -     EMG are the signals after RMS processing,  

- t1 and t2 are respectively the start moment and the end moment of performing MVC,  

- and Δt= t2- t1.  

For the flexors, t1 and t2 correspond the start and end points detected on EMG signals during 

performing the maximal flexion force. For the extensors, t1 and t2 correspond to the start and 

end point detected on EMG signals during performing the maximal extension force. The flexor 

which has the biggest IEMG value during performing the maximal flexion force is the most 

involved flexor. The most involved extensor is the extensor which has the biggest IEMG signal 

during performing the maximal extension force. For both flexors and extensors muscles, the 

averages of the integrated EMG were calculated during performing the MVC flexion and MVC 

extension.  

The second parameter is the average peak value calculated as: 

𝑃𝐸𝑀𝐺
̅̅ ̅̅ ̅̅ ̅ =

1

3
∑ 𝑝𝑖

3
𝑖=1                                                      (2-7) 

where: pi is the detected peak value during each muscle contraction. 

 For flexors and extensors  𝑃𝐸𝑀𝐺
̅̅ ̅̅ ̅̅ ̅  were calculated respectively based on their EMG signal 

recorded during performing the MVC flexion and MVC extension. The calculated  𝑃𝐸𝑀𝐺
̅̅ ̅̅ ̅̅ ̅  value 

for each muscle were used in the EMG normalization process. 
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Figure 2.18 Raw EMG and RMS EMG on two flexors during MVC flexion. The black dots 

represent the start and end point of the performing MVC. 

Then, all the EMG signals have been normalized by  𝑃𝐸𝑀𝐺
̅̅ ̅̅ ̅̅ ̅. The peaks of EMG on most 

power flexor were detected and the average of all detected peaks were calculated for each trial 

during the stiffness discrimination task. All the EMG values after RMS processing on most 

involved extensor at the moment of peaks in EMG on most involved flexor were taken and their 

average values were calculated for each trial as well. Figure 2.19 presents the peaks detected in 

the EMG RMS values in one trial during the stiffness discrimination task. The circles represent 

the detected start and end point of each peak of flexor EMG signals. The triangles represent the 

detected peaks. 

     According to [FaWi85, OHLR86, UDFV96, KeAP03], there are two different types of 

methods for calculating the co-activation index (CI). Those two method are shown respectively 

as (2-8) and (2-9).   

𝐶𝐼 =
2×𝐸𝑀𝐺𝐴𝑛𝑡

𝐸𝑀𝐺𝐴𝑔𝑜+𝐸𝑀𝐺𝐴𝑛𝑡
×100%                                           (2-8) 

                                                          𝐶𝐼 =
𝐸𝑀𝐺𝐴𝑛𝑡

𝐸𝑀𝐺𝐴𝑔𝑜
×100%                                                   (2-9) 
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where: EMGAnt and EMGAgo represent respectively the peak values of the most involved 

antagonist muscle (extensors) and agonist muscle (flexors). Ervilha et al. [ErGD12] point out 

that the muscle co-activation is more reliably estimated with using (2-8). 

The most involved antagonist muscle is defined as the extensor who has the highest 

IEMG value while performing the maximal extension force. The most involved agonist muscle 

is defined as the flexor who has the highest IEMG value while performing the maximal flexion 

force. The 𝐶𝐼̅̅̅ while pressing real spring and virtual spring for each trial is the average of CIs at 

detected peaks in the EMG signal on most involved flexor.  

 

Time (s) 

Figure 2.19 EMG signal on the most involved flexor and extensor with the peak detected.  

2.3.5.5 Statistical analysis 

Analysis of variance (ANOVA) was performed to test the force changes (i.e. dependent variable) 

applied either on the real or the virtual springs. The Shapiro-Wilk method [ShWi65] has been 

previously applied to verify the normality of the force data. Two-way ANOVA tests with 

repeated measures were used to ascertain the significance of the results. The task consisted to 

discriminate the stiffness of a simulated spring versus the stiffness of its corresponding real 

spring. The independent variables were: 

- the changes in virtual stiffness labeled 'virtual stiffness' (11 levels: from -40%, to+60% 

with a step of 10%),  

- the real stiffness values labeled 'stiffness scale' (3 levels: 202 N/m, 304 N/m and 608 

N/m), 

- and the type of spring labeled 'spring' : 2 levels: real and virtual (simulated).   

The first test consisted in characterizing the effect of change in 'virtual stiffness' versus 

the 'stiffness scale' for the following nine dependent variables separately on virtual and real 

springs: 
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-  pressing force,  

- normalized pressing force,   

- pressing duration,  

- number of pressing,  

- pressing frequency,  

- maximal pressing velocity,  

- peak of EMG signal on flexor,  

- peak of EMG signal on extensor,  

- co-activation at the peak of EMG on flexor.  

A second test was performed to compare the effect of change in 'stiffness scale' versus 

'spring' on force at 0% stiffness percentage (i.e. exactly for the same real and simulated 

stiffness).  

A third test was performed to compare the effect of change in 'stiffness scale' versus 

'spring' on variables:  

- pressing duration,  

- number of pressing,  

- and pressing frequency. 

The chosen level of significance was p<0.01.  All the statistical analyses above were 

performed under MATLAB Software (MATLAB 2014a, MathWorks).  

In order to test whether the slopes in the linear model are significantly different, a test 

of nested model has been performed in R software (version 3.2.5). Recall that the slopes express 

the relationship between the force and logarithm of stiffness for real and virtual springs. 

2.4 Results  

2.4.1 Perception under different stiffness  

Figure 2.20.a shows the Subjects’ perception of the stiffer spring for three different pairs (real 

spring 1-virtual spring, real spring 2-virtual spring and real spring 3-virtual spring) with element 

different stiffness change percentages of virtual spring. The RS and VS respectively represent 

the real and virtual spring.  
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Figure 2.20.b presents the results of transferring the subjects’ answer into z score. With 

the z score, subjects’ answers are presented in a linear model. The equation of linear regression 

for each comparison pair are also presented in Figure 2.20.b. 

 

(a) 

 

(b) 

Figure 2.20 Subjects’ stiffness discrimination results: a). Proportion of response “Spring B is 

stiffer”; b). z score of subjects’ perception.   

 The PSE point in Figure 2.21.a, confirms the conclusion of Lécuyer et al. in [LCKR00] 

that less stiffer the compared real spring is, more underestimated the stiffness of the virtual 

spring is. The JND for three curves had been calculated. The average JND is 19.3% (see Figure 
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2.21.b) which is bigger than the 13.4% reported in [LCKR00]. Based on the z score of subjects’ 

answers, the PSE, DLu and Weber fractions are calculated. The results are presented in Figure 

2.21.c. The Weber fractions obtained in here are above 1.  Their average value for the three 

compared pairs is 1.24.  

 

(a) 

 

(b) 

 

(c) 

Figure 2.21 Subjects’ answers t-score results (a). PSE; (b). JND (c). Weber fractions. 

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

0 200 400 600 800

P
SE

 in
 %

 o
f 

re
al

 s
p

ri
n

g 
st

if
ff

n
es

s

Stiffness of real spring (N/m)

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

0 200 400 600 800

JN
D

 in
 %

 o
f 

re
al

 s
p

ri
n

g 
st

if
fn

es
s

Stiffness of real spring (N/m)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0 200 400 600 800

w
eb

 f
ra

ct
io

n

Stiffness of real spring (N/m)



 

62 

 

2.4.2 Force 

2.4.2.1 Force applied on real springs 

The results presented in Figure 2.22.a. show a main effect for ‘stiffness scale’ (F=9.9012, p-

value<0.001). The force increases significantly from 5.88N to 11.31N for the stiffer spring.  No 

significant effect was noted for the ‘virtual stiffness’ as indicated in Figure 2.22.b (F=0.84234, 

p-value=0.58762), meaning that the forces applied on the real spring were not changed 

according to the stiffness of virtual spring.  No significant interaction between ‘stiffness scale’ 

of real spring and ‘virtual stiffness’ was observed either (F=0.96235, p-value=0.47438).   

 

(a)                   (b) 

 

(c) 

Figure 2.22 Average of force with standard error of mean (SEM4) applied on real spring without 

normalization: a). no matter what is the ‘virtual stiffness’ of compared virtual spring; b). under 

different ‘virtual stiffness’ of compared virtual spring, no matter which stiffness scale is; c). 

under different ‘virtual stiffness’. 

                                                 
4 All the average values presented in this chapter are with SEM 
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The statistical analysis of normalized force on real spring reveals the same information 

as found in force without normalization applied on real spring (Figure 2.23). The results indicate 

that: 

- The ‘stiffness scale’ of real spring has a significant effect on force applied on virtual 

spring (F=33.181, p-value<0.001);  

- The ‘virtual stiffness’ has no significant effect on force applied on different real spring 

(F=0.51883, p-value=0.87806);  

- There is no significant interaction between the ‘stiffness scale’ of real spring and 

‘virtual stiffness’ for all the force applied on real spring (F=0.62614, p-value=0.79267).  

This means that the task requirement is quite low since it requires force intensity 

between 20% and 40% of maximal capacity. One interesting conclusion is that the different 

force capacities of the subject does not influence the way he/she tests the springs.  In other 

words, the force applied on a real spring depends solely on its stiffness and not on the force 

capabilities of the subject. 

 

                                   (a)                                                                                               (b) 

 

(c) 

Figure 2.23 Average of normalized force applied on real spring without normalization: a). no 

matter what is the ‘virtual stiffness’ of compared virtual spring; b). under different ‘virtual 

stiffness’ of compared virtual spring, no matter which ‘stiffness scale’; c). under different 

‘virtual stiffness’.  
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2.4.2.2 Force applied on virtual spring 

The results presented in Figure 2.24  show that: 

- ‘Stiffness scale’ has a significant effect on force applied on virtual spring (F=31.495, p-

value<0.001. This means that the force applied on virtual spring increases with the real 

stiffness used for comparison, from 9.59N to 12.45N (Figure 2.24.a).  

- A significant effect was observed for the ‘virtual stiffness’ (F=8.6101, p-value<0.001). It 

means that the applied force significantly increases, whatever the stiffness of real spring is 

(Figure 2.24.b).   

- A significant interaction between ‘stiffness scale’ and ‘virtual stiffness’ was noted 

(F=3.3764, p-value<0.001). This indicates that different changes were noted between the 

change percentage and the real stiffness of real spring (Figure 2.24.c). 

Post-hoc analysis performed with the slopes of each curves (Figure 2.24.d) showed that the 

slopes were significantly different. They significantly decreased when the real stiffness 

increased. 

 

(a)                                                                                               (b) 

 

(c)                                                                                                 (d)                                                       

Figure 2.24 Average of force without normalization applied on virtual spring: a). compared 

with different real springs, no matter what is the ‘virtual stiffness’; b). under different ‘virtual 

stiffness’, no matter which the compared real spring was; c). under different ‘virtual stiffness’ 

for simulating different real springs; d). The average of slope for force without normalization 

under different ‘virtual stiffness’ on virtual spring (p-value<0.001).  
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The normalized force applied on virtual spring has the same tendency as in force without 

normalization (Figure 2.25). The results indicate also that ‘stiffness scale’ has a significant 

effect on force applied on virtual spring (F= 9.9012, p-value<0.001). The value increases from 

32.27% to 40.27% when the ‘stiffness scale’ change from 202 N/m to 608 N/m. The ‘virtual 

stiffness’ has a significant effect on force applied on virtual spring (F=7.6978, p-value<0.001). 

The normalized force increases from 33.63% to 37.52% under minimal and maximal ‘virtual 

stiffness’. There is a significant interaction between ‘stiffness scale’ and ‘virtual stiffness’ for 

all the normalized forces applied on virtual spring (F=2.8725, p-value<0.005).  Figure 2.25.d 

indicates the result of post-hoc analysis.  The slope of force for each simulated real spring in 

Figure 2.25.c are different. Following the increase of stiffness of simulated real spring, the slope 

decreases from 0.01135 to 0.000412. 

 

                                                  (a)                                                                                               (b) 

 

                                                   (c)                                                                                                (d) 

Figure 2.25 Average of normalized force applied on virtual spring: a). compared with different 

real springs, no matter what is the ‘virtual stiffness’ of virtual spring; b). different ‘virtual 

stiffness’ of virtual spring, no matter which the compared real spring was; c). under different 

‘virtual stiffness’ for simulating different real springs. d). Average of slope for force with 

normalization under different ‘virtual stiffness’ on virtual spring (p-value<0.001).   
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2.4.2.3 Comparison between the force on real spring and virtual spring under 

identical stiffness 

Figure 2.26 shows the comparison between the forces applied on real and virtual spring under 

identical stiffness (0% of change). A significant effect was noted for the spring type (F=118.32, 

p-value<0.0001) and for the stiffness (F=94.034, p-value<0.0001) meaning that the force 

applied on the real spring is lower than this applied on the virtual one, while the force increases 

from low to higher stiffness values. A significant interaction between the spring type and 

‘stiffness scale’ (F=8.907, p-value<0.001) was also observed. The force applied on real spring 

increases from 5.946N to 11.6N and from 9.5N to 12.79N on virtual spring.  This means that 

the forces applied on the real spring were statistically lower than those applied on the virtual 

spring when the stiffness of real and virtual springs are the same. But the difference in the forces 

decreases for the stiffer spring.  

 

 Figure 2.26 Comparison between the force on virtual spring and corresponding real spring 

during identical simulation. All the compared pairs have significant differences between force 

on virtual spring and real spring (p-value<0.0001). 

2.4.3 Kinematic parameters 

2.4.3.1 Pressing duration 

The pressing durations for different real springs were recorded and are presented in Figure 2.27. 

The results indicate that: 
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-  The stiffness of real spring has no significant effect on pressing duration (F=2.703, 

p-value=0.067251). That means the pressing duration on each real spring are not 

significantly different.  

- The ‘virtual stiffness’ has a significant effect on pressing duration (F=3.2489, p-

value<0.001). From  Figure 2.27.b, it seems that when the ‘virtual stiffness’ of 

virtual spring is+10% higher than the stiffness of virtual spring, the pressing duration 

on real spring are higher than the other conditions.  

- There is no significant interaction between the stiffness of real spring and ‘virtual 

stiffness’ (F=0.84841, p-value=0.58173). This means that comparing the stiffness 

for close values is more difficult for the subjects and requires more time to test the 

springs. 

  

(a)                                                                                 (b) 

 

(c) 

Figure 2.27 Average of pressing duration on different real springs: a). no matter what is the 

‘virtual stiffness’ of the compared virtual spring; b). under different ‘virtual stiffness’ of virtual 

spring; c). pressing duration under different ‘virtual stiffness’. 
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The relationship among pressing duration on virtual spring, ‘stiffness scale’ and ‘virtual 

stiffness’ are presented in the Figure 2.28. The statistical results indicate that: 

- The ‘stiffness scale’ has no significant effect on pressing duration (F=1.8122, p-

value=0.16357). That means the pressing duration on virtual spring when simulates different 

real springs are not significantly different.  

- The ‘virtual stiffness’ has a significant effect on pressing duration (F=2.3786, p-value<0.01). 

Figure 2.28.b shows that there is a peak when the stiffness of virtual spring is 10% higher 

than the stiffness of compared real spring.  

- There is no significant interaction between the ‘stiffness scale’ and ‘virtual stiffness’ 

(F=0.88655, p-value= 0.54505). These results corroborate previous ones, thus confirming 

that discriminating close stiffness values requires more time because the subjects are more 

confused.  

  

(a)                                                                               (b) 

 

(c) 

Figure 2.28  Average of pressing duration on virtual spring: a). compared with different real 

springs, no matter what is the ‘virtual stiffness’ of virtual spring; b). under different ‘virtual 

stiffness’ of virtual spring, no matter which the compared real spring was; c). under different 

‘virtual stiffness’ for different simulated real springs.  



 

69 

 

In order to compare the pressing duration on virtual spring and corresponding real spring, 

the two-way repeated measures ANOVA comparing spring type (real spring or virtual spring) 

vs. stiffness scale (202 N/m, 304 N/m and 608 N/m) have been performed and gave the following 

results:  

- The spring type has a significant effect on pressing duration (F= 9.516, p-

value<0.01), 

- The stiffness scale has a significant effect on pressing duration (F= 8.6786, p-

value<0.001), 

- There is no significant interaction between the spring type and stiffness scale (F= 

0.46635, p-value= 0.62732). 

The t-test analysis indicates that the pressing duration on virtual spring of compared pair real 

spring 1-virtual spring and real spring 2-virtual spring are significantly different from 

corresponding real spring (shown in Figure 2.29). This means that the test durations for virtual 

spring are higher than for the real spring. However, for higher stiffness values, the testing time 

is not differing between real and simulated springs. One probable explanation may be that for 

stiffer virtual and real springs, the discrimination depends more on the visual feedback which 

is more accurate than the proprioceptive feedback.  

 

Figure 2.29 Comparison between the pressing duration on virtual spring and the corresponding 

real spring. The compared pairs: Real spring1-Virtual spring and Real spring2-Virtual spring 

have significant differences inside the pressing duration on virtual spring and real spring (p-

value<0.01). 
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2.4.3.2 Number of pressing 

Figure 2.30 presents the number of pressing applied by the subjects on different real springs. 

The statistical results show that:  

- The stiffness of real spring has no significant effect on number of pressing (F=2.703, 

p-value= 0.067251) which reveals that subjects almost press the same times on each 

real spring,  

- The ‘virtual stiffness’ has a significant effect on number of pressing (F=3.2489, p-

value<0.001). Figure 2.30.b shows that there is a peak when the stiffness of virtual 

spring is 10% higher than the stiffness of the real one. That means subjects need to 

press more time at condition of +10%.  

- There is no significant interaction between the stiffness of real spring and ‘virtual 

stiffness’ (F= 0.84841, p-value= 0.58173) which means that changes are the same 

whatever the stiffness are. 

 

(a)                                                                                (b) 

 

(c) 

Figure 2.30  Average of number of pressing on different real springs: a). no matter what is the 

‘virtual stiffness’ of the compared virtual spring; b). under different ‘virtual stiffness’ of virtual 

spring; c). under different ‘virtual stiffness’.  
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The number of pressings on virtual spring are shown in Figure 2.31. The statistical 

results indicate that:  

-The ‘stiffness scale’ has no significant effect on number of pressing (F=0.21081, p-

value=0.80995) which means no matter which real spring is simulated by the virtual spring, the 

number of pressing does not significantly change.   

- The ‘virtual stiffness’ has a significant effect on number of pressing (F=3.3227, p-

value<0.001). As the pressing duration, there is also a peak when the stiffness of virtual spring 

is 10% higher than the stiffness of real spring (Figure 2.31.b).  

- There is no significant interaction between the ‘stiffness scale’ and ‘virtual stiffness’ 

(F=1.0151, p-value= 0.42766), meaning that the number of pressing increases in the same way 

whatever the virtual springs. 

 

(a)                                                                                (b) 

 

(c) 

Figure 2.31  Average of number of pressing on virtual spring: a). compared with different real 

springs, no matter what is the ‘virtual stiffness’ of the virtual spring; b). under different ‘virtual 

stiffness’ of virtual spring, no matter with which real spring it is compared; c). under different 

‘virtual stiffness’ for different simulated real springs.   
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Comparing the number of pressing on virtual spring and the corresponding real spring, 

gives the following results:  

- The spring type has a significant effect on number of pressing (F= 8.8493, p-

value<0.01). This indicates that the number of pressing on real spring is significantly 

lower than on virtual spring.  

- The ‘stiffness scale’ has a significant effect on number of pressing (F= 5.5828, p-

value<0.01). This means that both number of pressing on real and virtual springs 

vary following the change of the stiffness.  

- There is no significant interaction between the spring type and ‘stiffness scale’ 

(F=1.0838, p-value= 0.3384) meaning that the number of pressing on virtual spring 

are significantly higher than on the corresponding real spring. 

 

Figure 2.32  Comparison between the number of pressing on virtual spring and the 

corresponding real spring. All the compared pairs have significant differences between the 

number of pressing on virtual spring and real spring (p-value<0.01). 

2.4.3.3 Pressing frequency 

The subjects’ pressing frequencies while pushing the different real springs are presented in 

Figure 2.33. The results indicate that;  

- The stiffness of real spring has a significant effect on pressing frequency (F=13.926, 

p-value<0.001) and the pressing frequency on real spring 1 seems higher than the 

other two real springs. 
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- The ‘virtual stiffness’ has no significant effect on pressing frequency (F=1.1897, p-

value= 0.29256) which means that the pressing frequency were not influenced by 

the different ‘virtual stiffness’ whatever the real spring.  

- There is no significant interaction between the stiffness of real spring and ‘virtual 

stiffness’ (F= 0.62489, p-value=0.79376), meaning that the changes in pressing 

frequency is the same for each virtual stiffness, whatever the stiffness scale is. 

 

(a)                                                                                 (b) 

 

(c) 

Figure 2.33  Pressing frequency on different real springs: a). no matter what is the ‘virtual 

stiffness’ of the compared virtual spring; b). under different ‘virtual stiffness’ of virtual spring; 

c). under different ‘virtual stiffness’.  

Figure 2.34 presents the pressing frequency on virtual spring. The results indicate that: 

- The ‘stiffness scale’ has no significant effect on pressing frequency (F=0.17619, p-

value=0.83847). The pressing frequency on virtual spring varies around 1.5Hz no 

matter which real spring it simulates.  
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- The ‘virtual stiffness’ has no significant effect on pressing frequency (F=1.4241, p-

value=0.163).  

- There is no significant interaction between the ‘stiffness scale’ and ‘virtual stiffness’ 

(F=1.1651, p-value=0.30966) either.  

- The pressing frequencies on virtual spring when simulating different real springs are 

the same.  

 

(a)                                                                                 (b) 

 

 

(c) 

 

Figure 2.34  Average of pressing frequency on virtual spring: a). compared with different real 

springs, no matter what is the ‘virtual stiffness’ of virtual spring; b). under different ‘virtual 

stiffness’ of virtual spring, no matter with which real spring it is compared; c). under different 

‘virtual stiffness’ for simulating different real springs.   
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The statistical results comparing the pressing frequency on virtual spring and corresponding 

real spring shown that: 

- The spring type has no significant effect on pressing frequency (F= 1.7002, p-

value= 0.19237);  

- the ‘stiffness scale’ has a significant effect on pressing frequency (F= 8.4596, p-

value<0.001);  

- there is a significant interaction between the spring type and stiffness scale 

(F=10.464, p-value<0.001).  

The t-test of post-hoc analysis indicates that all forces on virtual spring are significantly 

different from the forces on corresponding real spring. From Figure 2.35,  is seen that the 

pressing frequency on virtual spring of compared pairs real spring 1-virtual spring and real 

spring 2-virtual spring are significantly higher than the corresponding real spring. 

 

Figure 2.35  Comparison between the pressing frequency on virtual spring and corresponding 

real spring. The compared pairs: Real spring2-Virtual spring and Real spring3-Virtual spring 

have significant differences between the pressing frequency on virtual spring and real spring 

(p-value<0.01). 

 

2.4.3.4 Pressing velocity 

The results presented in Figure 2.36.a. show  

- The main effect of stiffness on pressing velocity (F=440.62, p-value<0.001). The 

velocity decreased from 15.82 mm/s to 9.60 mm/s for the stiffer spring. That means 
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the maximal pressing velocity decreases following the increase of the stiffness of 

real spring.  

- No significant effect was noted for the ‘virtual stiffness’ as indicated in Figure 2.36.b 

(F=2.2269, p-value=0.0141), meaning that the subject pressing velocity on the real 

spring were not changed according to the stiffness of the simulated spring.   

- No significant interaction between stiffness of real spring and ‘virtual stiffness’ was 

observed (F=1.1417, p-value=0.32653).   

  

(a)                                                                   (b) 

 

(c) 

Figure 2.36 Average maximal pressing velocity on real springs: a). no matter what is the ‘virtual 

stiffness’ of compared virtual spring; b). with SEM on real springs under different ‘virtual 

stiffness’ of compared virtual spring, no matter which real spring; c). with SEM on each real 

spring under different ‘virtual stiffness’. 

The results in Figure 2.37.a show that:  

- There is a significant effect of the ‘stiffness scale’ on the maximal pressing velocity 

(F= 950.81, p-value<0.001). The velocity decreased from 23.54 mm/s to 10.85 mm/s. 
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This indicates that the maximal pressing velocity decreases with the increase of the 

‘stiffness scale’.  

- Significant effect of the ‘virtual stiffness’ had been observed on the maximal 

pressing velocity (F= 40.489, p-value<0.001) Figure 2.37.b. This means that the 

velocity on virtual spring decreases in the same way from lower virtual stiffness to 

the higher one, whatever the stiffness scale.  

- A significant interaction between ‘stiffness scale’ and ‘virtual stiffness’ was 

observed in Figure 2.37.c (F= 3.5302, p-value<0.001). This reveals that when the 

stiffness changes from -40% to +60%, the maximal pressing velocity decrease more 

as the virtual stiffness increases. Comparing with results on real springs, the 

maximal pressing velocity on virtual springs changed when the ‘virtual stiffness’ 

changed. 

 

(a)                                                                     (b)  

 

(c) 

Figure 2.37 Average maximal pressing velocity on virtual spring: a). no matter what is the 

‘virtual stiffness’ of compared real spring; b). under different ‘virtual stiffness’, no matter which 

real spring it is compared with; c). under different ‘virtual stiffness’.  
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2.4.4 EMG signal and muscle co-activation 

2.4.4.1 EMG signal on flexor 

From the EMG signals on most involved flexor during pressing on real springs, the results 

presented in Figure 2.38.a. showed: 

- A significant effect for stiffness (F= 49.351, p-value<0.001). The EMG on flexor increased 

from 0.2898 to 0.4678 for the stiffer spring.  No significant effect was noted for the ‘virtual 

stiffness’ as indicated in Figure 2.38.b (F=0.95322, p-value=0.48269), meaning that the 

subject’s EMG when pressing on the real spring were not changed according to the stiffness 

of virtual springs   

- No significant interaction between stiffness of real spring and ‘virtual stiffness’ (F=1.1698, 

p-value=0.30634).  

  

(a)                                                                  (b) 

 

(c) 

Figure 2.38  Average peak of normalized EMG signals on most involved flexor during pressing 

on real springs: a). no matter what is the ‘virtual stiffness’ of compared virtual spring; b). under 

different ‘virtual stiffness’ of compared virtual spring, no matter which real spring; c). under 

different ‘virtual stiffness’. 
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Figure 2.39 shows the EMG signals on most involved flexor during pressing the virtual 

spring. As shown in Figure 2.39.a, the ‘stiffness scale’ has a significant effect on EMG of flexor 

(F= 27.54, p-value<0.001). The EMG signals on flexor increase from 0.3571 to 0.4501 indicate 

that the EMG on flexor increases when the stiffness is higher. The significant effect of ‘virtual 

stiffness’ has been also found on the EMG signals on flexor (F= 2.9796, p-value<0.001) (Figure 

2.39.b). The values varied from 0.3783 to 0.4018 when ‘virtual stiffness’ changed from -40% 

to +60%. There is no significant interaction observed between the ‘stiffness scale’ and ‘virtual 

stiffness’ (F= 1.5552, p-value=0.11388) (Figure 2.39.c). This means that when the stiffness 

scale and the virtual stiffness are increasing, the EMG signals in flexor are also increasing. 

 

(a)                                                               (b) 

 

(c) 

Figure 2.39  Average peaks of normalized EMG signals on most involved flexor during pressing 

on virtual spring: a). with different ‘stiffness scale’; b). under different ‘virtual stiffness’ of 

compared real spring; c). with SEM on virtual spring under different ‘virtual stiffness’. 
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2.4.4.2 EMG signal on extensor 

 The EMG signals on most involved extensor during pressing on real springs, Figure 2.40.a 

shown that:  

- Stiffness had a significant effect on EMG of extensor (F=87.488, p-value<0.001). 

- No significant effect was noted for the ‘virtual stiffness’ as indicated in Figure 2.40.b 

(F=0.75626, p-value=0.67141), meaning that the EMG on extensor were not 

changed according to the spring stiffness.  This means that the extensor muscle 

remains at the same state, whatever the “stiffness scale” and “virtual stiffness”.  

- There was no significant interaction between them (F=0.88967, p-value=0.54208). 

   

(a)                                                                       (b) 

 

(c) 

Figure 2.40  Peaks of normalized EMG signal on most involved extensor for real springs: a). 

no matter what is the ‘virtual stiffness’ of compared virtual spring; b). under different ‘virtual 

stiffness’ of compared virtual spring, no matter which real spring; c). under different ‘virtual 

stiffness’. 
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From EMG signals of extensor during pressing on virtual spring, Figure 2.41.a shown 

that: 

 -The stiffness had a significant effect on EMG of extensor (F=4.7122, p-value<0.01).  

-No significant effect was noted for the ‘virtual stiffness’ as indicated in Figure 2.41.b 

(F=1.0389, p-value=0.40745), meaning that the EMG on extensor during pressing the virtual 

spring did not change, whatever the stiffness scale.   

- No significant interaction between ‘stiffness scale’ and ‘virtual stiffness’ was observed 

(F= 0.69752, p-value=0.72766) (Figure 2.41.c).  

 

(a)                                                                    (b) 

 

(c) 

Figure 2.41 Average peaks of normalized EMG signal on most involved extensor during 

pressing on virtual spring: a). with different ‘stiffness scale’; b). under different ‘virtual stiffness’ 

of compared real spring; c). under different ‘virtual stiffness’. 
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2.4.4.3 Muscle co-activation 

Figure 2.42.a shows that:  

- The stiffness has a significant effect on muscle co-activation of wrist joint 

(F=16.007, p-value<0.001).  

- No significant effect was noted for the ‘virtual stiffness’ as indicated in Figure 2.42.b 

(F=1.2415, p-value=0.2589), meaning that the muscle co-activation during pressing 

the real spring were not changed according to the virtual spring stiffness.   

- There is no significant interaction between stiffness of real spring and ‘virtual 

stiffness’ observed (F=1.0182, p-value=0.425) Figure 2.42.c.  

   

(a)                                                                   (b) 

 

(c) 

Figure 2.42  Muscle co-activation of wrist joints during pressing on real springs: a).  no matter 

what is the ‘virtual stiffness’ of compared virtual spring; b).  under different ‘virtual stiffness’ 

of compared virtual spring, no matter which real spring; c).  under different ‘virtual stiffness’. 

Figure 2.43.a shown that:  
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- The stiffness had a significant effect on muscle co-activation (F=29.93, p-

value<0.0001).   

- No Significant effect was noted for the ‘virtual stiffness’ as indicated in Figure 

2.41.b (F=0.89, p-value=0.543), meaning that the EMG on extensor during pressing 

the virtual spring did not change according to the spring stiffness.   

- No significant interaction between ‘stiffness scale’ and ‘virtual stiffness’ was 

observed (F=0.65, p-value=0.775) (Figure 2.41.c). This means that when the 

stiffness changes from -40% to +60%, the EMG signals on extensor are different 

based on the different stiffnesses. 

   

(a)                                                                   (b) 

 

(c) 

Figure 2.43  Muscle co-activation of wrist joints during pressing on virtual spring: a). no matter 

what is the ‘virtual stiffness’ of the compared virtual spring; b). under different ‘virtual stiffness’ 

of compared virtual spring, no matter which real spring; c). under different ‘virtual stiffness’. 
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2.4.5 Summary 

In this section, we presented the statistical results in the aim to know whether the independent 

variables have a significant influence on the dependent variables or not. We also wanted to 

know whether there is interaction between two independent variables. Table 2.1 provides a 

summary of the two-way ANOVA with repeated measures where ‘stiffness scale’ and ‘virtual 

stiffness’ are independent variables.  

Table 2.1 ANOVA test result summary. EMGflex=Normalized EMG signal on most involved 

flexor; EMGext= Normalized EMG signal on most involved extensor; CA=Muscle co-activation 

for wrist joints. (“*” indicates that there is a significant effect of the independent variable on 

the corresponding dependent variable, and “n.s” indicate the opposite). 

              Dependent variable 

 

Independent variable 

Force 

without 

normalization   

Normalized 

force 

Pressing 

duration 

Number 

of 

pressing 

Pressing 

frequency 

Pressing 

velocity 

EMGflex EMGext CA 

Real spring Stiffness 

scale 

* * n.s n.s * * * * * 

Virtual 

stiffness 

n.s n.s * * n.s n.s n.s n.s n.s 

Interaction n.s n.s n.s n.s n.s n.s n.s n.s n.s 

Virtual 

spring 

Stiffness 

scale 

* * n.s n.s n.s * * * * 

Virtual 

stiffness 

* * * * n.s * * n.s n.s 

Interaction * * n.s n.s n.s * n.s n.s n.s 

 

Among all the statistical results presented above, force without normalization, pressing 

velocity and muscle co-activation provide some important information. For the force applied 

on real springs, it is only influenced by ‘stiffness scale’. However, the force applied on virtual 

springs were not only influenced by ‘stiffness scale’, but also the ‘virtual stiffness’. The effect 

of two independent variables on maximal pressing velocity are the same as in force. The 

‘stiffness scale’ has significant effect on subjects’ muscle co-activations during pressing on 

both real and virtual springs.  

2.5 Discussion 

Figure 2.20.a shows how subjects’ answers change when the stiffness of virtual spring increases 

for each comparison pair. Thus, for comparison pairs: real spring 1-virtual spring and real spring 

2-virtual spring an underestimation of stiffness of virtual spring appears. When the proportion 

of response “Spring B is stiffer” is 50%, subjects consider that the two compared springs have 

the same stiffness. From Figure 2.20.a, is seen that less stiff the real spring is, bigger the 

difference between perceived stiffness of virtual spring and the compared real spring is. It seems 

that the subject’s answer varies with the stiffness of virtual spring. The bigger the difference 
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between the stiffness of real spring and virtual spring is, the closer to the correct answer the 

subject answer is.  

2.5.1 Confirmation of stiffness underestimation  

As demonstrated in [LCKR00], less stiff the compared real spring is, more the stiffness of the 

virtual spring is underestimated. The subjects consider that the stiffness of real spring 1 is the 

same as this of virtual spring when the stiffness of virtual spring is +30% higher than the 

stiffness of the real one. This value is bigger than the ‘virtual stiffness’ value of compared pair 

real spring 2-virtual spring (+20%) and compared pair real spring 3-virtual spring (0%). This 

confirms the conclusions reported in [LBCC01, LCKR00] that if the difference between the 

stiffnesses of real and virtual springs increases, bigger visual displacement is necessary in order 

to compensate this difference. Although in [LCKR00], the stiffness discrimination was 

performed by pinching,  it is reported in [PCDS14] that differential sensitivity for stiffness 

discrimination task is not significantly affected by the exploration method (pressing or 

pinching). This conclusion allows us  to compare our  results with those  in [LCKR00].  

Lécuyer et al. proposed two explanations for the underestimation of the virtual spring 

stiffness in [LCKR00]: 

a) As both real and virtual springs in the experiment have different locations and the 

graphic representor is a bilateral transition between these two springs, it may have a 

psychological effect on the stiffness perception; 

b)  While pushing the virtual spring, subject’s thumb is almost static. This results in the 

confliction between the proprioceptive feeling of motion of the thumb and the visual 

feedback of the displacement of the spring. Consequently, “visual feedback replaces 

proprioceptive sense in some extent”.   

In  his Ph.D. thesis Lécuyer [Lécu01], complemented some reasons to explain the 

underestimation: 

c) The subject always pressed the real spring first which might influence their perception 

of the stiffness of the virtual spring; 

d) As the subject needs to switch between the real spring (in real environment) and virtual 

spring (virtual environment) the monoscopic view may influence the results; 

e) On the computer screen the virtual spring moves in left and right direction while subjects’ 

fingers are pressing in up and down direction. 
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We are not concerned by explanations a) and d) because in our experiment both real and 

virtual springs have uniform graphic representors on computer screen (up and down direction). 

In our experiment, subjects were asked to press on the virtual spring first, hence we are not 

concerned by explanation c) either. As in our experiment both physical and simulated springs 

on computer screen move up and down, then the explanation e) is also excluded. At the end, 

the explanation b) concerns both Lécuyer’s and our experiment which might explain the 

underestimation.  

Based on the explanations given by Lécuyer concerning this underestimation, we 

propose here below our reflection.   

While pressing the virtual spring, the subject’s finger is almost static (Lecuyer et al.’s 

explanation b)). According to [ErBa02],  in the task involving visual and proprioceptive 

(perception) feedbacks, the most    dominant is  the perception. As the finger is almost static, 

subject’s perception error of his/her finger displacement is smaller than the perception error of 

virtual spring displacement rendered on the screen. Let us assume that the perceived 

displacement DP of the virtual spring is: 

𝐷𝑃 = 𝑤1×𝐷𝑉 + 𝑤2×𝐷𝐹                                                (2-10)                                                 

where:  

- DV is the displacement of virtual spring on the computer screen,  

- DF is the subject’s finger displacement,  

- w1 and w2 are respectively the weight of DV and DF.  

Then the difference between the perceived stiffness kP and the simulated stiffness kS can be 

expressed as: 

∆𝑘 = 𝑘𝑆 − 𝑘𝑃 = 𝐹𝑉(𝐷𝑉 − 𝐷𝑃) 𝐷𝑃𝐷𝑉⁄                                  (2-11) 

where FV is the subject’s force applied on virtual spring.  

As  DF is very small comparing with DV, then DF≈0.  Hence, the relative perception error Δk/kS 

is: 

∆𝑘/𝑘𝑆 = (1 − 𝑤1)/𝑤1                                              (2-12) 

The derivation of Δk/kS to w1 is: 
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𝑑(∆𝑘/𝑘𝑠)

𝑑𝑤1
=

−1

𝑤1
2 < 0                                                   (2-13) 

 Consequently, Δk/kS is a monotonically decreasing function of w1. 

  Following the decrease of the simulated stiffness of the virtual spring, DV becomes 

bigger, hence the difference between the perception error of DV and DF becomes bigger. In our 

opinion this is the reason why w1 decreases following the decrease of kS. This means that the 

coefficient weight of the virtual spring displacement decreases when the simulated stiffness of 

virtual spring decreases. Assuming w1 is function of kS, thus dw1/dkS>0. Then the derivation of 

Δk/kS to kS is: 

𝑑(∆𝑘/𝑘𝑠)

𝑑𝑘𝑆
=

𝑑(∆𝑘/𝑘𝑠)

𝑑𝑤1
∙

𝑑𝑤1

𝑘𝑆
< 0                                                 (2-14) 

where: Δk/kS is the ‘virtual stiffness’ corresponding to the PSE point in the subjects’ 

discrimination results.  

If Δk/kS=0, the perceived stiffness is equal with the simulated stiffness.  

If Δk/kS<0, the virtual spring stiffness is underestimated  

 Hence, Δk/kS increases following the decrease of kS, according to eq.                                                  

(2-14), the smaller the simulated stiffness of the virtual spring is, the bigger its underestimation 

is.  

The reflection  presented here above is a  possible explanation for conclusion presented in 

[LCKR00] that the bigger subject’s underestimation of the virtual spring stiffness is 

accompanied with less stiffness of virtual spring. 

After transferring the subjects’ answers into z score, the linear regression analysis results 

for the data of three comparison pairs indicated that they have different slope values. The PSE 

point, JND and Weber fraction reported in here are higher than those reported in [LCKR00]. 

One explanation may be that work cue in our experiment is different from this in Lécuyer 

[LCKR00]. In  Lécuyer’s experiment  ] there is  a red line  in the pole (see Figure 2.1.b) while 

our experiment shows a cue, “Stop pressing” when the distance between the pressing button 

and the top of tube is smaller than 1mm. In this way, the work cue in our experiment is limited 

comparing with [LCKR00]. As mentioned in [TDBS95] the compliance JND is poor when the 

work cues and terminal force cues are  eliminated or reduced.    
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2.5.2 Kinematic parameters 

When virtual spring’s stiffness is 10% higher than the stiffness of the real spring, both pressing 

duration and number of pressing values are bigger than the other ten conditions no matter for 

real or virtual spring. This means that subjects need more information for performing 

discrimination at +10% than at 0%. Based on the results in Figure 2.20.a, the discrimination 

answers ‘Spring B is stiffer’ for pairs: real spring 1-virtual spring, real spring 2-virtual spring 

and real spring 3-virtual spring, arrived at 50% when the ‘virtual stiffness’ of virtual spring are 

respectively 30%, 20% and 0% which have an average of 16%. In addition, 10% is closer to 

16% which is the average value of ‘virtual stiffness’ corresponding to the case when subjects 

have 50% correct answers. This indicates that averagely when the stiffness of virtual spring is 

10% higher than this of the real spring, it is more difficult to perceive the difference of stiffness.   

The number of pressing reflects similar problems/difficulties as the pressing duration in 

the stiffness discrimination task. Both number of pressing on real spring and virtual spring does 

not change following the change of the ‘stiffness scale’. However, there is a peak when the 

stiffness of the virtual spring is 10% higher than the stiffness of the real spring. That allows to 

say that averagely, the stiffness discrimination task was most difficult at the condition of +10%.  

The pressing frequency difference decreases following the increase of real spring’s 

stiffness.  Note that this difference does not exist on virtual spring when it simulates different 

real springs. The average value of pressing frequencies on the different real springs ( Figure 

2.33.a and Figure 2.34.a), and the statistical results about the effect  of real spring stiffness and 

the ‘stiffness scale’ of virtual spring on pressing frequency clearly indicate that: real spring 1 

(202 N/m) has higher pressing frequency than real spring 2 (304N/m) and real spring 3 (608N/m) 

while there is no significant difference between the pressing frequency on real spring 2 and real 

spring 3. The boundary between high and low spring pressing-frequency should be between 

202 N/m and 304 N/m. However, this phenomenon does not symmetrically exist on virtual 

spring. That means that concerning the pressing frequency, pseudo-haptic feedback does not 

induce different pressing frequency levels as the real spring do.   

In the pressing velocity aspect, both real and virtual springs show a decreasing tendency 

following the increase of the stiffness. Figure 2.36.a and Figure 2.37.a have clearly shown this 

tendency. The results shown in Figure 2.36.c revel that for a real spring, the pressing velocity 

is not influenced by the stiffness of the compared virtual spring while for the virtual spring, the 
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increase slopes following the increase of ‘virtual stiffness’ with different stiffness scales are 

significantly different.  

The pressing frequency reflects a complementary information about the manner of 

pressing:  fast press (tapping) or slow press. However, it (the pressing frequency) cannot reflect 

the maximal pressing velocity. That means two pressing movements with the same pressing 

frequency may have different average pressing velocity. From this aspect, the pressing velocity 

reflects more information than the pressing frequency.   

2.5.3 Force behavior 

The statistical results, shown that the forces with or without normalization provided 

quite the same information. For the real spring, for instance, higher stiffness induces higher 

force which is in agreement with the conclusions in [Endo16, KWHC10, PCDS14]. 

 Note that virtual stiffness does not have significant effect on the force applied on the 

real spring. That means whatever the virtual stiffness of the virtual spring is, it does not 

influence the force applied on the real spring.    

When the real stiffness of the compared real spring increases, the finger force applied 

on virtual spring increases. Following the increase of the virtual stiffness, the force applied on 

virtual spring also increases. It indicates that changing the stiffness simulated by the pseudo-

haptic can induce subjects to change their force applied on the virtual spring as in real spring. 

According to the statistical results, the significant interaction between the ‘virtual stiffness’ and 

‘real stiffness’ on the force applied on the virtual spring indicates that the relationship between 

the stiffnesses of the virtual spring and the force applied on it is not linear and the slope of force 

changes following the increase the stiffness of the virtual spring. 

When the virtual spring has the same stiffness as the real one, the force applied on real 

spring increases with 95.1% while on virtual spring, the force increases only with 34.63%. 

Comparing the augmentation of force applied on real and virtual springs, reveals that both 

forces induced by the real spring and the pseudo-haptic increase following the increase of the 

stiffness, but their increasing slopes are different. 

Following the change of stiffness of virtual spring, the force applied on it also increases. 

This means that the pseudo-haptic feedback can induce subject’s forces to increase or decrease 

as in the real spring in stiffness discrimination in reality. This conclusion is important for 
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potential medical applications requiring pseudo-haptic feedback such as: training or 

rehabilitation.  

However, the increase of force in both real spring and virtual spring have an upper limit. 

For instance, a stiffness discrimination task was performed  in [Endo16]. The forces without 

normalization applied on different compared specimens with different stiffness were evaluated. 

According to Weber-Fechner law, the relationship between the perception and stimulus should 

obey the following equation [Rich94, Vand10]: 

      𝑝 = 𝑘. 𝑙𝑛(
𝑆

𝑆0
)                                                                         (2-15) 

where: -  p is the volume of perception,  

- S is the volume of stimulus,  

- S0 is the threshold of stimulus below which it is not perceived at all,  

- k is the parameter to be estimated using the experimental data. 

We contacted Hiroshi Endo and he generously provided us the raw data used in  

[Endo16].  According to Weber-Fechner law, the force data in [Endo16] (Figure 2.44.a) may 

be expressed as a linear function of  the springs’ stiffness. Based on the original data provided 

by Endo, we found significant first order linear regression equation (F (1, 36) =2.32e+03, 

p<0.001), with an R2 of 0.985. This means that the predicted force is equal to -11.134+3.318 ln 

(stiffness) ln (N/m) where force is measured in N. Force increased with 3.318 for each ln (N/m) 

of stiffness.  

For the second order linear regression, the coefficient of term stiffness-square is not 

significantly different from 0 (p-value=0.69911). Then, the relationship between the force FR 

applied on real spring and its stiffness SR is expressed as: 

𝐹𝑅 = −11.175 + 3.345. 𝑙𝑛 (𝑘𝑅)                                                      (2-16) 

Figure 2.44.b presents the results of the first order linear fitting. According to eq.                                                      

(2-16), the derivation of FR to kR is FR’=3.345/kR. That means that increase rate will slow down 

following the increase of the stiffness. As the   finger’s force is limited, there should exist an 

upper limit in its increasing.  
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(a) (b) 

Figure 2.44  Force applied on real springs: a). Force according the data of Endo’s paper; b). 

linear regression for Endo’s force data. 

The force on virtual spring (pseudo-haptic) behaves in a similar way as the force on real 

spring. A first order equation of linear regression was performed for the force without 

normalization on virtual spring. A significant regression equation was found (F (1, 31) =208, 

p<0.001), with an R2 of 0.87. Predicted force on virtual spring is equal to -2.222+2.2522 .ln 

(stiffnessvirtual).  

For the second order linear regression, the coefficient of term stiffness-square is not 

significantly different from 0 (p-value=0.0017646). Thus, the relationship between the force on 

virtual spring and the stiffness SV, it expressed as: 

𝐹𝑉 = −2.148 + 2.232. 𝑙𝑛 (𝑘𝑉)                                                       (2-17) 

where: FV is the force on virtual spring and kV its stiffness.  

From equations  (2-16) and (2-17), there are: 

𝑑𝐹𝑅

𝑑𝑘𝑅
=

3.345

𝑘𝑅
                                                               (2-18) 

𝑑𝐹𝑣

𝑑𝑘𝑣
=

2.232

𝑘𝑣
                                                              (2-19) 

Both d(FR)/d(kR) and d(FV)/d(kV) are negative and consequently FR and FV are monotonically 

decreasing functions. This means that following the increase of the stiffness, the speed with 

which the force increases both in real and virtual springs decreases.  

Equations (2-16) and (2-17) also give that d(FR)/d(kR)> d(FV)/d(kV). It is seen that the 

slope of FV is always lower than of FR corresponding to the same stiffness. In order to verify 
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this statement, we proposed the nested model to express the linear relationship between the 

force and stiffness as:  

                                  𝐹𝑜𝑟𝑐𝑒𝑖𝑗 =  𝛼𝑗 + 𝛽log (𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠)𝑖𝑗 + 𝜀𝑖𝑗                                   ( 2-20) 

where: 

- 𝛼𝑗 represents the ordinate at the origin for the modality j (real spring or virtual spring),  

- 𝛽𝑗 represents the slope of the regression line for the modality j,  

- 𝜀𝑖𝑗 represents the residual error.  

The aim of testing the proposed nested model is to determine whether point clouds should be 

adjusted by different regression lines from the point of view of their regression coefficients 

(slopes, ordinates at the origin). To do this, the anova function of software R was used. The 

results of test of nested models indicates that it is preferable to keep the model (2-20) and to 

adjust the two points clouds (data of force on real spring and virtual spring) by two different 

regression lines (F = 40.76, p-value <0.0001). Table 2.2 below gives the estimated values of 

the regression coefficients of the model. 

Table 2.2 Regression coefficient of the nested model 

𝛼𝑅 𝛼𝑉 𝛽𝑅 𝛽𝑉 

-11.175 -2.148 3.345 2.232 

 

Figure 2.45 presents the relationship between the pressing force and the stiffness for real 

and virtual springs.  The two solid lines are the regression lines defined by the method of the 

least squares.  The dotted lines are the prediction intervals. Points represent the data used to 

construct the regression models. 
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Figure 2.45  Force-Log_Stiffness relations for real and virtual springs. 

Given the residual analysis (homoscedasticity, normality) and the adjusted coefficient 

of determination (R² = 0.973), the linear adjustment for both point clouds is appropriate. If the 

form of the link is the same between the force and the logarithm of stiffness for real and virtual 

springs, the point clouds should be adjusted by two different regression lines, the values of the 

regression coefficients being significantly different (p-value < 0.0001). This means that two 

slopes in Figure 2.45 are significantly different. 

  Figure 2.46 presents the curve of force on virtual spring and real spring calculated 

according to eq. (2-16) and (2-17). At this aspect, regarding the force, the subject's behavior in 

computer-based environment involving pseudo-haptic feedback has the same behavior 

tendency as in reality, although the forces on real and virtual springs have different slopes for 

equal stiffnesses. 
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Figure 2.46 Force on real and virtual springs plotted based on eq. (2-16) and eq. (2-17).   

Whether it is the force on real or virtual spring, the curves arrive at a tray with a 

decreasing gap between them when the stiffness increases. The derivation of the difference 

between FV and FR to stiffness k is: 

(𝐹𝑣 − 𝐹𝑅)′ =
−1.113

𝑘
                                                  (2-21) 

 

where: k is the stiffness of the spring.  

The negative slope of the difference between FV and FR indicates that this difference 

decreases with the increase of the stiffness. In another saying if the simulated stiffness of the 

pseudo-haptic feedback is higher, less difference exists in the force between pseudo-haptic 

spring and real spring. This also theoretically explain the conclusion reported in [Endo16] that 

the forces reach the same magnitude when the stiffness increases. 

For the same force magnitude, the stiffness of virtual spring is lower than the stiffness 

of real spring. This conclusion is also seen from Figure 2.46. It indicates that for inducing the 

same force as in real spring, the simulated stiffness of virtual spring is lower than the stiffness 

of real spring. The reason may be the physical stiffness of the virtual spring which is higher 

than the stiffness of the real springs.  

From Figure 2.46 is also seen that for same stiffness, the force applied on the virtual 

spring is higher than the force on real spring. According to Weber-Fechner law, the bigger force 

is associated with the bigger perceived stiffness. As the physical stiffness of virtual spring is 

bigger than the stiffness of real springs, naturally subjects applied bigger force on virtual spring 

comparing with the real one.  
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2.5.4 EMG signal on flexor and extensor 

During the pressing phase, the agonist muscle is the flexor. Then the tendency of EMG signal’s 

changes on flexor muscle should be in agreement with the force. For the real spring, only the 

‘stiffness scale’ has significant effect both on force applied on real spring and EMG signal on 

flexor. No significant effect was observed of ‘virtual stiffness’ and interaction between the 

‘stiffness scale’ and ‘virtual stiffness’ on both force applied on real spring and EMG signal on 

flexor. For the virtual spring, ‘stiffness scale’ and ‘virtual stiffness’ have significant effect on 

both the force applied on virtual spring and EMG signal on flexor. Then from the aspect of 

evaluating the significant effect of ‘stiffness scale’ and ‘virtual stiffness’ brought by the pseudo-

haptic feedback, EMG on flexor provides similar information as the pressing force. 

 The extensors being the antagonist muscle during the stiffness discrimination task, 

comparing with the flexor, its EMG signals have no significant change tendency following the 

change of the ‘stiffness scale’ and the ‘virtual stiffness’ no matter for real or virtual spring.       

2.5.5 Muscle co-activation 

For the real spring, the maximal joint velocity decreases following the increase of its stiffness 

(Figure 2.36.a). As pressing the real spring is a dynamic task, this observation confirms the 

conclusion in  [SSGO01]. The stiffness of real spring also has a significant effect on co-

activation. Although there is no significant different between the co-activation on real spring 2 

and real spring 3, the co-activation in real spring 1 is higher than the other two real springs. 

Then, we can conclude that for the real springs the muscle co-activation decreases following 

the increase of its stiffness.  

For the virtual spring, following the increase of its stiffness, the maximal pressing 

velocity decreases, the pressing force increases and the muscle co-activation decreases. From 

this aspect, the relationship between the force and muscle co-activation during pressing virtual 

spring is not the same as in static task as reported in [HéDA91, YaWi83]. Conversely, the 

relationship between the maximal pressing velocity and muscle co-activation, are the same as 

in dynamic task despite the finger applies a static fingertip force.  

Note, that the maximal pressing velocity, while pressing the real spring, depends on 

maximal joint’s velocity (relative velocity). While pressing the virtual spring this maximal 

pressing velocity represents the maximal velocity of the virtual spring displacement on 

computer screen. Our results indicate that the maximal pressing velocity is significantly 
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influence by the simulated stiffness. That means the pseudo haptics can induce different levels 

of muscle co-activation by changing the simulated stiffness of the virtual spring.  

Another interesting point is that co-activation does not depend solely on mechanical 

constraints associated with the task as it is classically reported.  It may depend on a component 

associated with the cognitive and/or central nervous system for muscle involvement planning 

of individual. With pseudo-haptic feedback, the relationship between the static force and the 

muscle co-activation is inverse as in static task. This phenomenon probably exists only in case 

of pseudo-haptic feedback.  

2.6 Conclusion  

Here the aim was to study the difference of hand force between the real spring and pseudo-

haptic (virtual) spring, and how the force is changing following the change of visual feedback. 

Through an experiment which involved real spring and pseudo-haptic feedback in a stiffness 

discrimination task, subjects’ pressing force of index finger on both real and virtual springs 

were recorded and analyzed. The Weber-Fechner law was used to analyze the relationship 

between the force and stiffness of real and virtual springs. 

In the force behavior aspect, both real spring and pseudo-haptic feedback have increased the 

subjects’ pressing force with the increase of stiffness. It was found that the relationships 

between stiffness and force are not linear, but adapted to Weber-Fechner law.  

Corresponding to the same stiffness, the force on virtual spring is higher than on the real 

spring, but the gap between them decreases following the increase of stiffness. 

The slope of force on both real and virtual springs (with pseudo-haptic feedback) decreases 

following the increase of the spring stiffness. Although the slope of the force on virtual spring 

is always lower than in the real spring corresponding to the same stiffness, the force change 

tendency induced by the pseudo-haptic feedback is similar with this induced by the real spring.    

An underestimation of the stiffness of virtual spring was found in the stiffness discrimination 

results which is in agreement with the results reported in [LCKR00]. An assumption about the 

relationship among the perceived displacement, virtual spring displacement and finger 

displacement was proposed and applied to explain the underestimation of the stiffness of the 

virtual spring. 
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In real spring, both the maximal pressing velocity and the muscle co-activation decrease 

following the increase of the stiffness. This phenomenon was also observed during pressing the 

virtual spring. As the subject’s index finger   was almost static, the change of the muscle co-

activation is associated with the stiffness of the virtual spring simulated by the pseudo-haptic 

feedback.        

In summary, the pseudo-haptic feedback can induce the similar force behavior as in real 

spring. But pseudo-haptic feedback causes a different level of stiffness underestimation of 

virtual spring which increases with the decrease of simulated stiffness scale. The pseudo-haptic 

can also induce different muscle co-activation levels as in the real spring. 

The meaning of this conclusion is that the pseudo-haptic feedback can be utilized to induce 

different levels of muscle co-activation without providing different virtual-haptic feedback in 

reality. Hence, the hand force changing between the real spring and the pseudo-haptic spring, 

following the change of the visual feedback, may be used as potential application for 

rehabilitation of motor disorder patients. In our opinion this will considerably decrease the cost 

of some existing rehabilitation therapies thus providing more possibilities for customized 

rehabilitation applications.  
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Part II 

Application in CRPS rehabilitation                                                                                                                                         

 

 

In this part a new application which manipulate the relationship between the actual motion and 

rendered motion in virtual reality is developed and its potential application for Complex 

Regional Pain Syndrome (CRPS) rehabilitation tested in CHU Grenoble is presented. It 

consists of   one chapter (Chapter 3). 
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Chapter 3                                                          

Virtual reality and CRPS rehabilitation 

 First this chapter, introduces the basic notions and characteristics of Complex Regional Pain 

Syndrome (CRPS), called also Reflex Sympathetic Dystrophy (RSD), including its symptoms 

and the traditional physical therapy for rehabilitation. As one of the effective methods, mirror 

therapy with its mechanism of back mirror therapy and the mirror neuron system are presented. 

Secondly, comparing with the traditional method for physical therapy, some virtual reality 

environments and platforms for CRPS rehabilitation applications in general, and for hand 

movement reconstruction in particular are presented.  In order to overcome some drawbacks 

of traditional physical therapy as mirror therapy, we need an application which allows to 

manipulate the relationship between the user’s physical hand motion and rendered avatar hand 

motion. For this purpose, a new developed application based on Leap Motion and Unity3D is 

developed and presented. To test the usage availability of this application, a pilot study was 

carried out at Central University Hospital (CHU) Grenoble. Two types of hand model, (normal 

human-like) skin and silver skin), for both right and left hands, were used in the performed tests. 

Five subjects (one healthy volunteer, two healthy physical therapists, one healthy hospital 

practitioner and one patient) participated in the tests.  During the tests subjects were asked to 

perform separately wrist and finger movements (four fingers movement except the thumb), for 

each type of hand model. The rendered hand motion (visual feedback) was shown with different 

ratios between the real subject’s physical hand motion and the rendered avatar’s hand motion. 

The rotation angles of avatar hand for the subjects were recorded and the range of movement 

calculated. All the subjects gave their feedback about the experiment. In particular the Medical 

staff expressed a strongly interest in using the application for kinesiological therapy. 
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3.1 Introduction 

Motor disorder or movement disorder is a concept proposed in the mid of 19th century, although 

many motor disorder related diseases have been discovered  [Lans09]. Generally, it affects the 

nervous system and causes unrests as abnormal and involuntary movements. CRPS (Complex 

Regional Pain Syndrome) is a disease which may companied with the motor disorder symptom. 

Although the reasons of CRPS are not very clear yet, it is believed that it is caused by the 

damage to the central nervous system [JäBa02].  The latter is composed by brain, spinal cord 

nervous system and peripheral nervous system and is responsible for the motor control. For the 

patients with motor disorder related diseases, the sensory restoring on the limbs or other 

affected parts engaged in the movement of daily life is the main purpose for rehabilitation.    

 Sandroni et al. [SBML03] estimated the incidence at 5.5 cases per 100,000 person years 

(database period from 1989-1999) while De Mos et al. [DDHD07] reported that an estimated 

overall incidence rate of CRPS was 26.2 per 100,000 person years (database period  from 

January 1996 to June 2005).. Note, that CRPS can happen at any one, although the results in 

[DDHD07, SBML03] indicate that the number of affected women is higher than the affected 

men. CRPS can affect any age but it is more common between 40 and 49 years [Seba11].  

The limited range of motion of the affected limb due to inhibition of intolerant pain of 

CRPS patients is the main obstacle which prevents them from actively using their affected limb 

in the physical therapy and daily life. Ervilha et al. [EFAG05] have investigated the relationship 

between the muscle pain and the motor control strategies in a dynamic task. The results showed 

that the different level of pain changes/influences the motor strategy of painful muscle and the 

synergistic muscles during performing a maximum speed dynamic exercise. Adaptation to pain 

(Figure 3.1)  has a short-term benefit, such as reducing the pain temporally, but has deleterious 

long-term negative consequences [HoTu11, HuLe16]. While performing daily live painful 

movements, the peripherical adaptation may happen on the muscles involved in the movement 

of affected CRPS joints. This implies that the pain can create irreversible alterations in skeletal 

muscle. In this optic, Bank et al. [BPMB13] have experimentally proved that the structural 

alterations in skeletal muscle tissue and pain-induced adaptations of motor function may 

contribute to the loss of voluntary modulation of muscle activity. In this context, increasing the 

muscle activity which is maladapted into an abnormal posture can help CRPS patients to 

improve their motion functions.  
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Hodges et al. [HoTu11] proposed a new theory of motor adaptation to pain (Figure 3.1). 

They indicate evidence of redistribution of muscle activation at micro and macro levels with a 

common goal of protection limit further pain or injury.  For achieving this goal, one possibility 

is to change the redistribution of muscles activities or the mechanical behavior of the muscles 

which are caused by changes in the nervous system. Especially, Moseley [Mose04a] and 

Geisser et al. [GGRG93] noted that changes in nervous system may be at different levels, such 

as: pain cognition, behavioral factors or somatic vigilance. The latter is related to pain tolerance. 

Virtual reality technologies may be used to change the visual feedback during the limb 

movement, which in turn confuse the central nervous system for the motor control of 

movements. One interesting and open question is thus: Can virtual reality help to adapt motor 

control at multiple levels of the nervous system in order to splint a painful part?  Or, in other 

words, does the pain tolerance increase while using visual feedback with virtual reality 

technology to confuse the central nervous system for improving the patient rehabilitation to 

return to the initial no pain pattern? To our knowledge, no study has addressed this point.    

    

Figure 3.1 New theory of motor adaptation to pain [HoTu11]. 

Although the treatment of mirror therapy on CRPS (see details in section 3.3.1.1) has 

been proved it still has some drawbacks such as: fixed head orientation and necessity to ignore 
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the intact limb. Different from mirror reflection, VR or computer-based applications can 

provide more possibility to patients in particular for visualizations.  

Thus, inspired from the previous work of Murray et al. [MPCH06] and Won et al. 

[WTCK15], an application based on the Leap Motion and Unity3D was developed and is 

presented in the following sections.  

3.2 Symptoms and treatments of CRPS 

3.2.1 Symptoms of CRPS 

CRPS has six main symptoms:  

- pain,  

- autonomic dysfunction,  

- edema,  

- dyskinesia,  

- malnutrition  

- and atrophy.  

There are two types of CRPS, called CRPS-I and CRPS-II, with similar symptoms and 

treatments. Patients suffering from CRPS-I have all the main symptoms, but without definable 

nervous injuries, while CRPS-II (called Causalgia) have definable nervous injuries.  

The symptoms of the CRPS-I with dyskinesia are:  

- motor weakness,  

- general weakness,  

- tremor,  

- muscle spasm and  

- dystonia. 

It has been rarely seen that both upper and lower limbs are affected. Although some researchers 

have identified the evident nervous injury in the CRPS-I, the essential differences between 

CRPS-I and CRPS-II are still waiting for validation.  

CRPS is often associated with surgery of the distal of upper limb [Seba11]. The diagnose 

conditions for the hand CRPS are:  

1. Most of patients had   hand injuries before;  
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2. The symptoms in the early stage exhibit as:  

- feeling pain and swelling in the end of the fingers,  

- inflexible motor in the finger joints,  

- unstable temperature of the skin in the end of fingers, 

- pallor or dark red color in the skin.  

The delay between the injury and the appearing of the CRPS may vary from a few hours, a few 

weeks or a few days after the injury. The course of the disease is divided into different phases: 

- acute,  

- dystrophic,  

- atrophic.  

Note that there is no obvious link between any two phases of the disease. For example, 

a patient has pain in the affected hand while in the next phase he/she has autonomic dysfunction 

which means that he/she cannot normally move the affected limb. 

The key physiological symptoms of the CRPS patient is the prolonged pain which can 

be unbearable in some extremely cases. Except the pain, the other common physiological 

symptoms are: 

 Changed stiffness in the affected joint, due to the abnormal tissue growing 

around the joint. 

  Sensitive skin to light touch.   

 Edema in the affected region (Figure 3.2). 

 Abnormal posture of the affected limb (mainly flexion of fingers and wrist) 

(Figure 3.3), sometimes accompanied with jerking and tremors [BPMB13]. 

 

Figure 3.2 CRPS patient with swelling wrist joints [BPMB13]. 
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Figure 3.3 Dystonic postures in CRPS. Most common postures in arm and leg in CRPS-related 

dystonia arranged to the severity from left to right [AMMA11]. 

Note that apart the physiological symptoms there are also some psychological symptoms 

in CRPS patients, including: 

 Depression. 

 Difficulties to relax. 

 Unconfident feeling in himself/herself. 

 Difficulty to accept the help from family and friends. 

No matter the physiological or psychological symptoms, their existences are big 

obstacles for preventing the patients from normally engaging in their social and professional 

lives.  

3.2.2 Treatment  

 The core of the therapy is to decrease the sympathetic excitability of the nervous system in the 

affected limb.  The sympathetic nervous system is causing the pain and sensitive skin. Thus, 

there are some techniques allowing to block or remove a part of sympathetic  nervous system 

[ScMc87]:  

- transcutaneous nervous stimulation therapy,  

- bier block technique,  

- partial blocking sympathetic,  

- paravertebral sympathetic block technique,  

- removal of peripheral arterial sympathectomy.  
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For patients in early stage Paravertebral sympathetic block technique is the better solution. For 

severe patients and patients on long-term Removal of peripheral arterial sympathectomy is 

recommended. 

Excepting treatment which perform operation on patient’s nervous system, physical 

exercise therapy is also widely used. This method is focusing on improving limb’s mobility by 

asking the patient to do physical exercises including kinesiological rehabilitation and 

occupational rehabilitation tasks. Improving the motor functions of the affected limb through 

exercising the motor component in the affected limbs is the key point on this treatment. 

Concerning the physical exercise therapy, once the patients being able to accept it, they are 

encouraged to exercise the affected limb. One of the most famous physical therapy is the mirror 

therapy (see details in section 3.3.1.1). 

3.3 Previous work  

3.3.1 Traditional rehabilitation for CRPS 

3.3.1.1 Mirror therapy 

Mirror therapy was introduced first time by Ramachandra and Rogers-Ramachandra in 1996 

[ViDi96]  to treat the so called phantom limb pain syndrome. This is a method which uses the 

visual feedback of the patient’s healthy limb reflection in the mirror to effect on the brain in 

order to reduce the pain associated with the phantom limb. The mirror therapy consists in: 

- placing a mirror in the sagittal plane of patient body, 

- presenting patient healthy limb and move it in front of the mirror while the residual limb 

is hiding behind the mirror and trying to symmetrically do the same movement as the 

healthy limb (Figure 3.4).  

This therapy gives patient’s the illusion that his/her lost limb still exist and can move as 

normally as before. The effect of the mirror therapy in reducing the pain associated with the 

phantom limb. It was proved by a randomized, sham-controlled trial of mirror therapy versus 

imagery therapy involving patients with phantom limb pain after the amputation of a leg or foot 

[CWCM07]. In the imagery therapy group patients close their eyes and imagine performing 

movements with their amputated limb. The number of the patients in the mirror therapy group 

who report a decrease in pain was significantly higher than in the imagery group. This results 

prove that visual feedback of mirror is indeed important comparing with the imagery therapy 
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alone. Simply saying, having an indeed visual feedback of limb motion is better than just 

imaging the motion in the mind for the phantom limb patients. 

 

Figure 3.4 Example of mirror therapy [RaAl09].  

After the successful application of mirror therapy in the treatment of phantom limb pain, 

it has recently been applied into the treatment of CRPS. Moseley [Mose04b] conducted a 

clinical trial incorporating the mirror therapy into a three stage motor imagery program (MIP). 

The latter consisted of: 

-  hand laterality recognition task,  

- imagery therapy,  

- and mirror therapy.  

The results show that there is significant treat effect on the patient in pain and movement 

function.  Other successive research proved the efficiency of applying the mirror therapy in 

reducing the pain and improving the motor functions of the affected limb.  Thus, Moseley 

[Mose05]  proved that the mirror therapy has decreased pain and increased the motor function 

of 20 patients  with CRPS type I. Cacchio et al. [CDND09] proved that the mirror therapy 

significantly improved the motor function and decreased the pain after performing mirror 

therapy in 24 patients with CRPS type I.  . 
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3.3.1.2 Mirror neuron system 

Although the mechanism behind the mirror therapy is not known yet, we might propose 

question why observing the same action can influence our nervous system and reduce pain? 

The answer should be find in a particular type of neuron which is called mirror neuron. A mirror 

neuron is a neuron that fires when an animal observe the same action performed by another 

animal [RiCr04]. The mirror neuron was first discovered by Giacomo Rizzolatti, et al. in the 

ventral premotor cortex of monkey  [DFFG92, RFGF96]. Later, Molenberghs et al. [MoCM09] 

found that it also exists in human perception system. Although there is no widely accepted 

model for explaining how the mirror neuron is supporting the cognitive functions, its possible 

functions include:  

- understanding intentions,  

- learning facilitation, 

- human self-awareness,  

- automatic imitation,  

- motor mimicry etc. 

Although the mechanism of how the does visual feedback can reduce the pain is not 

clear yet, the relation between the visual and motor properties is an important functional aspect 

of mirror neuron or mirror neuron system [RiCr04]. One fact is that observing the action of the 

healthy limb during the mirror therapy influences the cortical and spinal motor neuron 

excitability. H-reflex (or Hoffmann’s reflex) is a reflectory reaction of muscle induced by 

electrical stimulations.  It is a valuable tool for assessing the monosynaptic reflex activity in the 

spinal cord [PaIH04]. Baldissera et al.  [BCCF01] measured the value of the H-reflex while 

observing healthy subjects opening and closing their hands. The H-reflex of the antagonist 

muscle (flexors in the forearm when opening the hand) increases during hand opening and 

decreases during hand closuring. For the extensors, the conclusion is opposite as the flexor. 

That means that there exists an inhibitory mechanism which can prevent subjects to do as what 

they observe.   

3.3.2 Computer-based rehabilitation for CRPS 

Although the positive effect of mirror therapy on rehabilitation has been proved, it still has 

some disadvantages:  

- The spatial dimension is narrow and the patient’s head is required to be oriented into 

the mirror with the body held in midi-sagittal plane.  
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- The patient have to ignore the intact limb which provides the reflection.  

Different from mirror reflection, Virtual Reality (VR) can create a virtual scenario with 

complete vision on both healthy and affected limbs thus giving a stronger visual impact on 

patient. With VR applications more and more physical activities can be simulated and feed-

back visualized to the patient thus providing more possibilities than mirror. For those reasons, 

more and more researchers and physical therapists apply VR or computer-based applications in 

rehabilitation activities.   

Based on the effect of the mirror box therapy in the phantom limb pain, Eynard et al. 

[EyMB05]  developed an augmented reality (AR) application which  copy the movement of the 

healthy limb and symmetrically apply  on the residual limb with adapting its  positon and 

orientation. The mechanism of the application is shown in Figure 3.5. In this way, patient is 

allowed to have a desynchronized movement between the healthy arm and phantom arm.   

 

Figure 3.5 Copy movement of the part of healthy limb and symmetrically displayed  on the 

residual limb side [EyMB05].  

A year later, Murray et al. [MPCH06] replaced the mirror with VR environment. They 

created a platform involving the transposition of the movements of healthy limb into the 

movements of the virtual representor of residual limb in the VR environment (Figure 3.6). The 

main equipment includes: 

- 5DT-14 dataglove, 

- position sensors for monitoring the movements of upper-limb amputees, 

 - sensors for the movements of the legs.  

Three patients with phantom limb were involved into the experiment.  The results show that 

two of them reported a pain decrease.  The missing hand was visualized to patients with head-

mounted display. The movement of the virtual limb (left hand) is the symmetrical transposition 

of the healthy limb (right hand). Although this platform is not dedicated for CRPS rehabilitation 
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yet, it provides a good exhibition on how to build a virtual scenario to afford a visualization on 

the limb movement.  

 

Figure 3.6 VR environment for transposition of the movements of healthy limb [MPCH06]. 

 Although some patients in [MPCH06] reported the relief of the pain in the residual limb 

after performing the therapy in the VR platform, it  still has some limitations.   

- Firstly, head oriented into the mirror and ignoring the intact limb are not the key 

elements of restricting the effect of mirror box. The key problem is that mirror box in 

mirror therapy cannot arouse the voluntary movements of the stump which directly 

cause the restriction of its normal activities. Note that this problem exists not only in the 

mirror therapy for the phantom limb pain, but also for the CRPS patients.  

- Secondly, in both mirror therapy and virtual reality therapy system the patient has to 

associate the proprioception of movement of the healthy limb in the reality with the 

visual perception of the affected limb in the virtual reality. 

 As the motor pattern of right hand stored in the corpus striatum is different with the left hand, 

how does the mismatch between the proprioception in one side of the body and the visual 

perception of another side influence the patient is not known yet.  

  Note, that CRPS patients, have a complete limb comparing with the phantom limb pain 

patients. As previously said, because of the swelling and the pain in the affected joint,  they 

normally have a limited range of movement in the affected limb [Seba11] (Figure 3.7) which 

discourage them to actively use  it in the physical therapy and the daily lift. The patient shown 

in Figure 3.7 was diagnosed to have CRPS I at the wrist and fingers and started on gabapentin 

and oxycodone in May 2010. From the picture taken in Oct.2010, her wrist and finger show an 

evident limited movement range comparing with the beginning of the first report of CRPS. 
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Figure 3.7 Evolution of CRPS patient hand movement [Seba11]. 

In the frame of a pilot study, realized in parallel with our work, Won et al. 

[WTCK15]invited three patients, with pediatric CRPS in unilateral lower limb, to participate  

into a  VR therapy. Patients’ head and ankles positions were tracked.  They can see a silver-

color and undetailed avatar from first person perspective in the HMD (Figure 3.8, the dark 

human shape is the avatar and the deep one is the subject). Wearing head-mounted display 

patients were asked to use their limbs to manipulate the avatar in order to hit balloons. Won and 

his team proposed three conditions during the experiment:  

- normal condition; the leg of the avatar has the same movement as the tracked subject 

leg (Figure 3.8.a),  

- extended condition: the avatar’s leg has an amplified by 1.5 gain factor movement to 

the movement of subject’s leg (Figure 3.8.b.),  

- switched condition: participant’s physical leg controls the avatar arm (Figure 3.8.c).  

During the experiment   the movement distance of patients’ affected legs are recorded. The data 

shown that the total distance performance by the affected limb of patients was improved as 

more sessions has been performed by them (patients). It was also reported that all patients were 

remarkably calm while engaging in the experiment and this behavior were different from their 

behavior during standard physical therapy sessions. From the feedback of the participants, it 

seems that VR therapy proposed by Won et al. was tolerated by them.  However, their 

experiment cannot confirm the efficacy of using the virtual reality therapy to reduce the pain. 

In this experiment, effects of using different avatars haven’t been tested and the reason for using 

the silver undetailed avatar was not given either.  
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The discussion about using human-like avatar or unhuman-like avatar have started after the 

concept of uncanny valley proposed by Mori [Mori70]. The uncanny valley theory is making a 

hypothesis that human replicas that appear almost, but not exactly, like real human beings elicit 

feelings of eeriness and revulsion among some observers. When humans observe and interact 

with a robot, for instance, they have different expectations and movement predictions based on 

appearance of the robot. Once the behavior of robot does not meet the brain’s expectation, 

human will generate the prediction error. Saygin et al. [SCID12] proved that this  error increases 

when the robot appears like human but doesn’t move biologically. That means if robot looks 

too human, we will expect too much from it. This conclusion may also fit the situation of using 

avatar in VR environment.  But what is the effect or subject’s feeling when he/she sees different 

avatars with similar motion is worth to be tested.       

 

 a).     b).     c). 

Figure 3.8 (a). Normal condition; (b). Extended condition; (c). Switched condition [WTCK15].

  

Thus, based on the existing virtual reality platforms, a part of which were presented here 

above, we think that applying such platforms in CRPS physical therapy can provide more 

flexibility for the rehabilitation task design and potential application for CRPS rehabilitation 

without wearing pain, or with less pain.  

3.3.3 Hand tracking devices for movement reconstruction 

3.3.3.1 Based on glove system 

The early works about hand tracking started from tracking the position and the orientation 

of whole user’s hand. For example, LaViola and Zeleznik [LaZe99] created a Flex and Pinch 

glove  whit  eight sensors (Figure 3.9.a). It can recognize the palm flexion angle and pinch 

movement between thumb and index finger.   

Through almost 20 years’ development, there are several data gloves available today such 

as: 
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- wireless Cyberglove (Figure 3.9.b) with twenty-two sensors allowing to measure the 

rotations of fingers, palm and wrist. The Cyberglove was firstly commercialized in 1992. 

-  Humanglove (Figure 3.9.c) is equipped with twenty sensors to measure flexion/extension of 

five fingers, thumb abduction/adduction, wrist flexion and abduction/adduction. 

- 5DT data glove (Figure 3.9.d) whit  one sensor in each finger to measure the overall flexion 

of the five fingers [DiSD08].  

-  Multi-colored low-cost glove [WaPo09] (Figure 3.9.e) which can estimate the user hand 

pose.   

Note, that for patients with a sensitive or painful skin, there are not available data gloves yet 

allowing tracking their motions.   

 

                                 (a)                                                                      (b) 

 

                              (c)                                                                           (d) 

 

                                                                           (e) 

Figure 3.9 Glove tracking systems: a). Flex and Pinch glove [LaZe99]; b). Cyberglove, 

Immersion Corporation; c). Humanglove, Image courtesy Humanware; d). 5DT data glove 

www.5DT.com; e). Multi-colored glove [WaPo09]. 
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3.3.3.2 Based on marker tracking system 

Putting makers on fingers and using motion capture system is another way for tracking the 

motion hand’s joint. In order to explore a new way for user to have a direct interaction with the 

virtual object during a computer-aided sculpting task, Sheng et al. [ShBS06] used Vicon motion 

capture system to track the movements of three fingers attached with markers (Figure 3.10). 

However, the complexity of using markers and the expensive cost limit its usage in tracking all 

joints of the hand. 

 

Figure 3.10 Marker tracking System [ShBS06]. 

3.3.3.3 Based on EMG signals 

When subjects move fingers while performing different hand gestures, there exists different 

combinations of EMG signals for flexors and extensors muscles in the forearm. Saponas et al. 

[STMB09] proposed to use these  signals to reconstruct the user’s hand gesture. The basic idea 

is to use machine learning technology to offline train the artificial neural network which is 

supposed to automatically recognize the finger gestures by analyzing the EMG signals detected 

from user’s forearm (Figure 3.11.a). The platform, developed by the team of Saponas defines 

three scenarios (Figure 3.11.b) to perform the finger gesture recognition:  

- hand free,  

- holding a mug,  

- lifting a travel bag.  

The recognized finger gesture can be used as different commands. However, this technology is 

difficult to be applied in fine task of dexterous manipulation. The finger gesture that can be 

recognized strictly depends on those have been defined before artificial neural network offline 

training. 
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(a)                                                     (b) 

Figure 3.11 Finger gesture recognition platform in [STMB09]: a). The frame of the platform 

in; b). Three finger-gesture sets. 

 

3.3.3.4 Based on the image of hand  

The hand motion can be also tracked by the image of hand captured by a camera. In this optic, 

Oikonomidis et al. [OiKA11] applied the Particle Swarm Optimization method for  processing 

the image of the hand obtained from  Kinect sensor and achieved a robust 3D tracking of hand 

articulations with a frequency of 15Hz. Note, that this frequency is not smooth enough for a 

real-time hand tracking application. One year later, Kim et al. [KHIB12] presented a device for 

reconstructing fingers movement based on infrared camera and laser (Figure 3.12.a). The 

infrared light-emitting diode (LED) is for uniformly illuminating the user’s hand by extracting 

the 2D position of the fingertip. The infrared laser line projector is used for sampling a single 

3D point on each point. Finally, the infrared camera is used in the background subtraction. IMU 

(inertial measurement unit) provides absolute tri-axis orientation data of the forearm. The flow-

chart of the signal processing for reconstructing the finger movement is shown in Figure 3.12.b. 

The results of the test for reconstructing the five fingers gesture pre-defined are shown in 

(Figure 3.12.c). Despite its performances, there still exist some limitations for this device.  

-   The movement reconstruction for the thumb has very large error. It may be because 

the camera treats the thumb as a regular finger while the thumb has a more complex 

motion in reality.  

-  The pinky finger movement reconstruction also has a relatively big error. The reason 

may be that based on the position of the camera, the pinky finger may be not visible in 

certain positions. 
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(a) 

 

(b) 

 

(c) 

Figure 3.12 Hand image based tracking device in [KHIB12]: a). Main hardware of the device; 

b). Signal processing steps for reconstructing the finger movements; c). The finger movement 

reconstruction results of five finger gesture.   

Leap MotionTM is a low-cost device whit two monochromatic infrared cameras and three 

infrared LEDs allowing to detect a hemispherical area, of about 1 meter, situated above it.  The 

coordinate system of Leap Motion is shown in Figure 3.13.a. The hand is represented by a 

twenty-six points model as shown in Figure 3.13.b. To each detected point an ID is allocated. 

Thus, with Leap Motion SDK (software development kit), we consider that it will be easy to 
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obtain the position of each joint detected on fingers and wrists. The vertical working distance 

of Leap Motion ranges from 25mm to 600 mm.  

Note that one of Leap Motion limitations is when some parts of two hands are 

overlapping or are too close to each other. In the case of overlapping far parts of the hand are 

disappearing (Figure 3.14, red circle marks the missing part of avatar hand). Another limitation 

is that if the palm is parallel to ZY plan (see Figure 3.13), the motion tracking is unstable for 

all the fingers.  

  

Figure 3.13 Leap Motion: a). Leap Motion coordinate system, [www.leapmotion.com]; b). 

Leap Motion hand model, [www.leapmotion.com].  

 

Figure 3.14 Leap motion limits. The left thumb disappears because of overlapping of two 

thumbs.  

3.4 Experimental application 

The application used in the performed experiment of this chapter was developed by Charles-

Henry Dufetel in the frame of  his mater thesis [Dufe15].  
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In our opinion virtual reality can significantly increase the interest of the patients to 

actively devote themselves into physical therapy and consequently encourage them to actively 

use their affected limbs during rehabilitation. 

The main purpose for applying virtual reality into CRPS rehabilitations is to encourage 

them to participate in the physical therapy thanks of its advantages. Namely, the possibility to 

amplify the patient’s movements thus letting them to see some movements that they cannot 

achieve in the physical world.   

3.4.1 Software environment and hardware 

As our work focusses on the development of low-cost computer-based application for hand 

rehabilitation of CRPS patients, hand movement tracking and reconstruction is our first 

challenge. 

Comparing with the available technologies for hand tracking, some of which were shortly 

presented here above, we consider that Leap Motion does not need the preset figure gesture. 

However, it has acceptable reconstruction results for tracking the thumb and pinky fingers with 

a relatively lower cost. Note also, that Leap Motion can work in a relatively high accuracy of 

movement reconstruction with high frequency. The different applications can be built for 

Windows, iOS and Android systems. For the design of computer-based application for physical 

therapy, Unity3D can provide a strong support for the development of the human-computer 

interaction scenario. Thus, the development of the application is based on Unity3DTM which is 

a comprehensive software and widely applied for game developments and 3D animations.  

In order to realize functions in the application, several scripts have been developed based 

on  C# by Charles-Henry DUFETEL [Dufe15] in the frame of his MS training study. Figure 

3.15 presents the communications amongst the scripts. HandControl in Leap Motion API is 

detecting the actual motion of the hand. The detected motion parameters of palm center and 

fingers are transferred to PseudoHapticHandController in Core part. Then based on the 

amplification coefficients  PseudoHapticHand and  PseudoHapticFinger the avatar’s hand and 

fingers rotations are calculated and consequently applied on the HandModel and FingerModel 

of avatar’s hand. The relationship between the actual rotation angle of user hand joint θU and 

the rotation angle of the same joint in avatar hand θA is:   

𝜃𝐴 = 𝐶𝐴 ∙ 𝜃𝑈                                                   (3-1) 

where: CA is the joint amplification coefficient set in the interface of Unity3D.  
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Finally, the rotation angles of each joint of fingers and wrist of the avatar hand are recorded by 

the application.  

For CA <1 the joint movement of avatar’s hand is reduced comparing with the physical joint 

of user’s hand. For CA >1 the joint movement is amplified thus the rendered movement of 

avatar’s hand has a possibility to beyond the normal range of movement of human hand and 

becomes a weird hand posture.   

 

Figure 3.15 Application script diagramme [Dufe15]. 

 

A screen view of the interface is presented in Figure 3.16.  On the right side is situated the 

control panel allowing to modify the amplification coefficients of wrist and MCP joint of each 

finger. On the left side is displayed the application scenario including the avatar hand and 

background.  
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Figure 3.16 Virtual platform interface. 

3.4.2 Hand Model 

As the Leap Motion is not able to detect the movement of the whole arm, the hand model in the 

developed application is only limited of forearm. As mentioned in section 3.3.2, subjects have 

different feelings when they observe different avatars. High-quality human-like avatar hand 

might let the subject have high expectation on avatar movement. That means decreasing the 

similarity between the avatar hand and the subject hand might let the subject have more 

satisfaction on the avatar movement. There are two types of hand models used in the application:  

- hand model with normal skin texture (normal hand model) shown in Figure 3.17.a,  

- hand model with silver skin texture (silver hand model) shown in Figure 3.17.b.  

The normal hand looks more-like human hand while the silver one does not. With those two 

different models, we can get subjects’ feedback about whether the human-like skin or not 

detailed human skin help them to better associate the avatar motion with their own hand motion. 

Both the normal and silver hands have left and right models. Note that women hand models are 

not developed in this stage of the study. 
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(a)                                                                    (b) 

Figure 3.17 Two types of left hand models: a). with normal skin texture; b). with silver skin 

texture. 

In order to prevent the avatar hand moving beyond the normal range of human hand, 

limitations for rotation in flexion, extension, abduction and adduction have been imposed to 

wrist joint and metacarpophalangeal (MCP) of fingers according to [Appl93]. Table 3.1 

presents the rotation angles limitations for wrist and MCP of index finger. The limitations for 

MCP of the other four fingers are the same as the MCP of index finger.  

Table 3.1 Rotation angle limitations for the wrist and the MCP of index finger of avatar hand. 

 Flexion Extension Abduction Adduction 

Wrist 60° 50° 50° 20° 

MCP of index 

finger 

20° 90° 20° 20° 

 

3.5 Experiment in CHU Grenoble 

3.5.1 Experimental task 

The experiment includes two parts:  

- I. Using normal hand model to perform the experiment.  

- II. Using silver hand model to perform the experiment.  

For each part of experiment, subjects were asked to perform two movement tasks: 

- Wrist movement task: subjects perform flexion and extension around the wrist of 

right (or left) hand for 10 times with five different amplification coefficients (Figure 

3.18. a). All fingers should keep straight at the same plan as the palm.  



 

121 

 

- Fingers movement task: subjects perform flexion and extension around the first 

finger joint of index, middle, ring and pinky fingers of right (or left) hand for 10 

times with the same five amplification coefficients (Figure 3.18.b). The thumb 

should keep static without rotation for distal interphalangeal joint (DIP) and 

proximal interphalangeal joint (PIP).   

 

                                  (a)                                                                     (b) 

Figure 3.18 Movement tasks: a) Flexion and extension of wrist; b) Flexion and extension of 

first finger joint of index, middle, ring and pinky finger. 

There are five amplification coefficients from ranging from 0.25 to 4, namely: 0.25, 0.5, 

1, 2 and4. When subjects performed the wrist movement task, the CA of each finger is 1. When 

subjects performed the finger movement task, CA of the wrist is 1. In order to avoid the influence 

of sequence, the order of five amplification coefficients were randomly applied. They were the 

same for both wrist movement and finger movement tasks. 

3.5.2 Experimental protocol 

In order to let the avatar hand and user’s actual hand have the same size from the user’s point 

of view, it needs to fix the position of the experiment setup and subject as in Figure 3.19.a. 

During the experiment subjects (in fixed siting position, their palms situated in about 20 cm 

above the Leap Motion) were asked to look at the computer screen while performing the motion 

tasks (Figure 3.19).  A hand supporter was used in order to support subject’s hand in a fixed 

position.  
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(a)                                                                       (b) 

Figure 3.19 Experiment setup: a). top view. The user was located 20 cm in front and 22 cm 

near the hand support; b). scene.  

In order to evaluate subject’s feeling, especially the pain, they were asked to fill in a 

questionnaire before and after the experiment while using normal and silver hand models, (see 

Appendix 3). The pain assessment scale utilized in here is Wong-Baker FACES Pain Rating 

Scale [HoWW01].  The experimental process consists in: 

1. Answering the part of questionnaire ‘Before experiment’ 

2. Using the hand model with normal skin texture to perform the experiment. Asking the 

subject to perform the wrist movement under different amplification coefficients and 

recording: 

-  the wrist’s rotation angles, 

- fingers’ rotation angles. 

3. Answering the part of questionnaire ‘After experiment I’. 

4. Using the hand model with silver skin to perform the experiment. All operations are the 

same as in step 2. 

5. Answering the part of questionnaire ‘After the experiment II’. 

In each trail, subject performs one movement task with one amplification coefficient by 

using one hand model. As there are two types of hand model, two movement tasks and five 

amplification coefficients, totally each subject had to perform twenty trails. 
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3.5.3 Participants 

Five subjects (one healthy volunteer, two healthy physical therapists, one healthy hospital 

practitioner and one patient), aged from 31 to 61 participated in the experiments performed at 

CHU Grenoble. The patient had undergone a surgery on the left hand and is currently accepting 

the kinesiological training. Except the patient, none of subjects reported hand motor function 

problems. All subjects, except one physical therapist, declared not having previous experience 

on using virtual reality. 

3.5.4 Data analysis 

The range of movement of the wrist and the MCP joint of index finger of avatar hand in flexion 

and extension plan were calculated for all the subjects. Figure 3.20 shows the raw data of the 

rotation angles recorded for the avatar’s wrist. The peak and valley was detected by using the 

findpeaks function of MATLAB. To avoid the detection of two closed peaks, the minimal 

sample number between two peaks or valley was set as: 

                                                            𝐷𝑚𝑖𝑛 =
𝐿𝐷

𝑛
                                                                (3-2) 

where:  

-     LD is the length of the recorded data, equal with the recording time multiplied by the 

sampling frequency (50 Hz). 

- n is the total number for flexion and extension movements (here n=10).  

The range of movement for the wrist of the avatar hand during the wrist movement task and the 

range of movement of MCP of index finger of the avatar hand during the finger movement task 

were calculated as well. The ranges of movement for both wrist and MCP of fingers are 

calculated as: 

𝑅𝑂𝑀𝑖 = 𝜃𝑝𝑖 + |𝜃𝑠𝑖|          (𝑖 = 1, 2, … , 10)                        (3-3) 

where: - θp is the peak of the recorded angle, 

- θs is the valley value of the record angle, 

- i is the number of flexions or extensions. 

The range of movement of the joint for one trial is: 

                                                                𝑅𝑂𝑀̅̅ ̅̅ ̅̅ ̅ = ∑ 𝑅𝑂𝑀𝑖
𝑛
𝑖=1                                              (3-4) 
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Figure 3.20 Raw signal of angle rotation detected on the wrist with marked peak and valley 

for one subject as example. 

 When the amplification coefficient of each joint is 1, the motion of avatar hand is the 

same as subject’s hand. In this condition, the raw signal of angle rotation recoded by the 

application have been verified with goniometer. 

3.6 Results 

3.6.1 Range of movement 

As the physical therapists and the hospital practitioner are healthy subjects and the number of 

subjects are not enough to perform a statistical analysis, only the data on healthy subject and 

the patient were presented for individual level quantitative analysis and qualitative comparison.  

Figure 3.21 shows the range of movement of wrist (healthy subject and the patient) 

during performing wrist movement task with different amplification coefficients on the avatar 

hand. From Figure 3.21.a is seen that the wrist rotation angle of avatar hand controlled by the 

healthy subject ranges from 29.63° to 110° when the amplification coefficient increased from 

0.25 to 2, for the normal hand model. The wrist of the silver hand model controlled by healthy 

subject with a range of movement increased from 26.6° to 110°. No obvious difference has 

been observed between the data of normal hand avatar and silver hand avatar during the wrist 

movement.  That means that the healthy subject had the similar range of movement of wrist for 

the two hand models. 

Two close peaks 
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 Figure 3.21.b shows that following the increase of amplification coefficient, avatar 

hand movement controlled by the patient ranges from 20.20° to 110° with normal hand model 

and from 21.48° to 110° with silver hand model.  

The avatar hand controlled by both healthy subject and patient arrived at the limitation 

of flexion and extension when the amplification coefficient was 2.  

 

(a) 

 

(b) 

Figure 3.21 Ranges of movement of subjects’ wrist: a). Healthy subject; b). Patient. 

Figure 3.22 shows the range of movement of the MCP of index finger of avatar hand 

during finger movement. No matter the healthy subject or the patient, the range of movement 
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of MCP of index finger increases when the amplification coefficient increases which is similar 

with the wrist movement. Avatar hand controlled by both patient and healthy subject arrived at 

the limitation of flexion and extension of MCP of index finger when the amplification 

coefficient was 2.    

 

(a) 

 

(b) 

Figure 3.22 Ranges of movement of subjects’ MCP of index finger: a). Healthy subject; b). 

Patient. 

3.6.2 Pain estimation and feelings of participants 

All subjects have evaluated their pain states before the experiment, and after experiment I and 

experiment II. As presented in Table 3.2, there is no change between pain states before and after 
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the experiments which means that no one had uncomfortable feeling during the experiment. For 

the only patient among subjects, he has light pain in the hand. 

Table 3.2 Pain evaluation results before and during experiments. 

 Before experiment During experiment I During experiment II 

Healthy subject No Hurt No Hurt No Hurt 

Patient  Light pain Light pain Light pain 

Physical therapist 1 No Hurt No Hurt No Hurt 

Physical therapist 2 No Hurt No Hurt No Hurt 

 Hospital practitioner No Hurt No Hurt No Hurt 

 

From Table 3.3, three subjects thought that the normal hand model makes them more 

uncomfortable.  It means that they found the avatar undetailed silver hand better.  

Table 3.3 Subject’s feeling about uncomfortable hand avatar. 

 Normal hand avatar Silver hand avatar 

Healthy subject  √ 

Patient  The same The same 

Physical therapist 1 √  

Physical therapist 2 √  

Hospital practitioner √  

 

Table 3.4 presents subjects’ suggestions for improving the application. The suggestions focus 

on how to increase the identity of avatar hand. The hospital practitioner and the physical 

therapists focus mostly on increasing the robustness of the application and applicable conditions 

for future applications. However, due to some limitations of Leap Motion device, as its 

robustness, it may limit its medical application in short time period.  

Table 3.4 Subjects’ suggestions for improving the application. 

Subject Suggestions 

Healthy 

subject 

That the movements on the screen are more in tune with the real movement 

of the hand. 

 

 

 

 

 

Patient 

1. There exist some conflicts between the proprioceptive feedback 

about the hand position and the visual feedback from the avatar hand 

motion. 

2. To cover the hand in order to not see it will be better; 

3. To have a scenario closer to the real environment (for example add a 

table inside a kitchen room, desk in an office…)  

4. To put a specific marker, such as tattoo drawing, on both user’s and 

avatar hands to increase user’s identification of avatar hand. 
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Physical 

therapist 1 

1. The applicable situations for different amplification coefficients: 

- Amplification coefficient bigger than 1: Maintenance of the 

motor cortex of patient whose symptoms are restricted 

movements because of the damaged motor organs such as: 

tendons, section, stents; 

- Amplification coefficient less than 1: For patients with higher 

stiffness which results in a decreased range of movement; 

2. Coupling the device to a detection of activity such as: 

-     muscular activity (EMG signal), 

-     motor cortex (EEG (electroencephalogram) signal). 

      3.   Raises the question of rings, scars. 

 

 

 

 

 

 

Physical 

therapist 2 

1. To fix the shoulder and the elbow in order to suppress fluctuation of 

the forearm. 

2. To improve the bending movement which is more disturbed while 

approaching the Leap Motion. 

3. With the amplification of the movement, we could imagine allow 

patients to improve the mobility of their fingers and wrist. 

4.  Less applications for amplitude’s rehabilitation. Can be for people 

who are obliged to move their fingers in a precise and limited 

angulation (Ex. Expander Rehabilitation, Movement meta- Corpo 

phalangeal 0-30°). There are other constraints as passive return in 

extension. 

5. Interest to add objects at virtual hand: we are more in functional 

training, in the field of occupational therapy, while without object, 

we are on the analytical motorization (this is a plus for 

physiotherapy). 

 

Hospital 

practitioner 

Fixing the forearm more stably on the hand support.  

 

 

3.7 Discussion 

From the results of avatar hand movements, no matter for the wrist or the MCP of fingers, the 

range of rendered movements increases when the amplification coefficient increases. This 

means that the application has successfully created a rendered hand motion which changes 

following the change of amplification coefficients.  

As there are rotation limits for rendered motion of the avatar hand joints, it is possible 

to have an unused zone where the user’s hand is still moving while the avatar hand stops. For 

example, if the amplification coefficient for the wrist is 2, the avatar hand will stop when the 

user’s hand performs flexion more than30°. Thus, for user’s wrist the zone between 30° and 60° 

flexion is an unused zone (see Figure 3.23).  
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Figure 3.23 Unused zone for user. 

In order to avoid the unused zone, the amplification coefficient of each joint of the avatar 

hand should depend on corresponding user’s joint range movement. Assuming βj is the range 

of movement of joint j of avatar hand, then the constrain is: 

𝐶𝐴𝑗×𝛽𝑆𝑗 ≤ 𝛽𝑗 ⇒ 𝐶𝐴𝑗 ≤
𝛽𝑗

𝛽𝑆𝑗
                                                   (3-5) 

where: CAj is the amplification coefficient of joint j,  

βSj is the user’s range of movement of joint j.   

From equation (3-5), is seen that for given βj a smaller βSj allows bigger range of CAj. 

This result indicates that coefficient superior than 1 may be used just at the beginning of the 

rehabilitation process when patient cannot move his limb with a great amplitude, while this 

coefficient should decrease as the range of restored movement increases.  

Concerning the pain evaluation, the results shown that subjects did not feel any pain 

during the experiments, no matter the hand model or amplification coefficient are. This proves 

that the application can be tolerated by the patients and consequently may be potentially useful 

for rehabilitation. 

More than half of subjects felt that using the normal hand avatar is less comfortable, 

despite its human hand details (hair, skin color, blood vessel, …). From the subjects’ suggestion, 

the reason might be that more details that we provide on the avatar hand, more evidences are 

available for subject to deny similarity between his own hand and the avatar hand.  From this 

aspect, the silver hand obviously provides less characteristics and subjects focus more on the 

movement of the avatar hand instead of appearance details. This conclusion is in agreement 

with the uncanny valley and the conclusion presented by Saygin et al. in [SCID12]. As the 

silver hand model looks less human, subjects’ have less expectation on the avatar movement.  
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Note, that different from the mirror therapy, the patient’s hand is not hidden with a box. 

Previously performed test shown that covering the hand by a box changes the light environment 

around the hand which influences the operation of Leap Motion. 

Two physical therapists, specialized in hand movement reconstruction, have shown their 

interests for potential application when the movement of hand is amplified. They think that this 

can encourage patients to perform large movements in rehabilitation activities.  When the 

amplification coefficient is less than 1, one physical therapist thinks that the proposed 

environment can be useful to force patients to perform bigger ranges of movements when he 

thinks it is necessary to accelerate the training process while the patients do not want to.    

3.8 Conclusion 

In this chapter CRPS with its symptoms and available treatments were introduced. The most 

important thing after the medical treatment of CRPS patients is that they are encouraged to 

actively use their affected limbs once they can perform the physical therapy.  

 However, for participating in the physical therapy, the biggest obstacle for CRPS 

patients is the limited range of movement of the affected joints resulting from swelling, 

abnormal tissue growth or pain. Mirror therapy efficacy on releasing the pain of CRPS has been 

proved (see the reference cited in section 3.2.2.1), however the problem is that patients have to 

ignore the healthy limb or at least have a healthy limb which can be reflected on the mirror.  

  For humans, the visual feedback can influence the motor neuron excitability or directly 

the motor behavior because of mirror neuron system. In order to provide more flexibility and 

increase the functionalities in physical therapy scenario, virtual reality environment has been 

used in development of computer-based physical therapy application for CRPS. Several 

researchers have utilized the virtual reality for creating a rendered motion different from the 

real motion of patient’s affected limb. The positive feedback from the patients implies that is 

meaningful to explore deeper on how to create a virtual reality or computer-based scenario 

which can better encourage CRPS patients to actively use their affected limbs.  

Thus, an application based on Leap Motion for CRPS rehabilitation has been developed. 

With this application, the user hand motion can be tracked and reconstructed on avatar hand. 

The relationship between user’s physical hand motion and rendered motion of avatar hand can 

be modified also. In order to test the usage availability of this application for CRPS patients, an 

experiment has been performed as a pilot study at Grenoble CHU. In the experiment, two types 
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of hand models, normal and silver hand model, have been controlled by subjects to perform the 

wrist and finger movement while the rotated joints of avatar hand were either amplified or 

decreased. Even if lacking of sufficient number of subject, three of them indicated that the silver 

hand model is more comfortable to use.     

 The range of movement of the avatar changed following different amplification 

coefficients, no matter for patient or healthy subjects. That means that we have successfully 

provided a rendered hand motion. However, the choice of amplification coefficients depends 

on the actual range of movement of user in order to avoid the unused zone of avatar hand.  

 The developed application did not worse subjects’ pain during the experiments which 

proves its potential application for CRPS patients’ rehabilitation. As the no evident pain in the 

patient among the tested subjects, how the CRPS patient will react to the application need to be 

verified in the future. With this application, patient can perform the rehabilitation task in his/her 

home, and the recorded motion data can be sent back to the practitioner at the hospital. This is 

helpful for decentralizing the patient treatment from the hospital and realizing the remote 

monitoring rehabilitation which can save medical resource and time. However, before definitive 

conclusions can be drawn, further studies need to be performed with more subjects and with 

different pathologies.   
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General conclusion 

Some limitations of the available techniques and unknown physiological aspects for VR-based 

concepts and applications stimulated this research on understanding and evaluating the effect 

of simulated haptic feedback on the human perception and behavior in general, and its 

application for CRPS rehabilitation in particular. Different existing research methods and 

available tools in the field of fatigue evaluation in VR-based operations, and the effect of VR-

based concept in haptic simulation were presented. Some existing classical and computer-based 

methods for CRPS rehabilitation are also presented.  We pointed out that a simple method for 

evaluation of muscle fatigue levels associated with disassembly operations is needed for 

disassembly sequence evaluation during product design phase.  There exist two main problems 

in this field: 

-  One is the evaluation model using parameters obtained in a subjective way without 

corresponding physical considerations of the operator.  

- The other one is the evaluation method requiring some physiological parameters 

with poor availability.    

Stiffness simulation, being one of the key aspect in pseudo-haptics, has attracted some 

researchers to provided prospects on better understanding its effect on human perception and 

consequently human behavior.   As we are aware there is no work which analyzes the pseudo-

haptic from a biomechanical point of view. For the CRPS rehabilitation, VR has been applied 

to create more possibilities of manipulating the visual feedback and overcome some drawback 

of the existing classical physical therapy methods.  

We think that a low-cost device for hand tracking and movement reconstruction with acceptable 

accuracy is ideal for decentralizing the CRPS hand rehabilitation from hospital. Thus, we have 

led a biomechanical analysis of different aspects of Virtual Reality and its potential application 

for rehabilitation. Thus, the aim of our work was to contribute in better understanding the 

human perception and behavior under the influence of VR-based concepts, and to apply our 

findings in further studies into the design of low-cost computer-based solution for CRPS hand 

rehabilitation.  
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In Part I, entitled “Biomechanical analysis of haptic-based concepts and tasks”, we investigated 

the evaluation of operator’s muscle fatigue in disassembly operation simulation with haptic 

device in VR environment, and studied a stiffness discrimination task and its influence on 

human perception and behavior.   

First, we focused on muscle fatigue evaluation of the operator while performing disassembly 

task in VR environment with using haptic device. In here a new method for disassembly task 

evaluation which aims at using the expenditure volume of metabolic energy to quantify 

fatiguing disassembly tasks was proposed.  The method is based upon four hypothesizes proved 

by experimental tests. The proposed model was employed to calculate the associated fatigue 

levels while performing different tasks. For this purpose, the RMS value of EMG signals were 

recorded and analyzed. In order to verify the validity of the proposed method, series of 

experiments, consisting in performing basic operations with haptic device in VR environment, 

were performed. The theoretical results were compared with the experimental ones. The 

agreement between them indicated that the proposed method is pertinent for estimating the level 

of peripheral fatigue induced while performing disassembly tasks in VR environment. As a 

conclusion, the use of the current method should be extended to different VR tasks when fatigue 

evaluation is required. 

Secondly, we focused on the investigation for better understand the pseudo-haptic effect on 

human perception and motor behavior through a stiffness discrimination experiment between a 

real spring and a virtual one (pseudo-haptic spring). The PSE point analysis confirmed the 

underestimation of the stiffness of virtual spring which was firstly evoked  in [LCKR00].  Hand 

pressing force, some kinematic parameters of pressing movement, EMG signals on flexor and 

extensor, and muscle co-activation during pressing the real and virtual springs have been 

analyzed and compared. One major and novel result concerns the force behavior aspect, since 

both real and virtual springs have increased the subjects’ pressing force with the increase of the 

stiffness, with different rates. Corresponding to the same stiffness, the force on virtual spring is 

higher than on the real, but the gap decreases following the increase of the stiffness. During 

pressing on real spring, which is a dynamic task, since the fingertip moves, both the maximal 

pressing velocity and the muscle co-activation decrease following the increase of the stiffness. 

This phenomenon was also found while pressing the virtual spring which means that pseudo-

haptic feedback can induce the muscle co-activation as in a dynamic task for finger even if the 

fingertip is static.  These results are strong enough to indicate that pseudo-haptic effect is a tool 

that makes possible to manipulate pressing force and co-activation in the involved joints.  
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Finally, in Part II, entitled “Application in CRPS rehabilitation”, CRPS disease and the existing 

challenges in its physical therapy have been introduced. In order to help patients to improve 

performance in the rehabilitation task, a low-cost application based on Leap Motion device, has 

been introduced and applied in a pilot study at CHU Grenoble to test its availability of usage.  

This part of the study focusses on manipulating the visual feedback in the VR-based application 

to encourage CRPS patients to actively participate in physical therapy and better perform 

rehabilitation. For this purpose, as previously said, an application based on Leap Motion for 

CRPS rehabilitation has been developed. With this application, the relationship between user’s 

physical hand motion and rendered motion of avatar hand can be modified. In order to test the 

potential usage of this application for CRPS patients, experiments have been performed at CHU 

of Grenoble. The results shown that the range of movement of the avatar has changed following 

the applied amplification coefficients. This proved that the application successfully provides a 

rendered hand motion which changes following the values of the amplification coefficients. 

Through evaluating subjects’ pain during performing the experiment, it is shown that the 

application is safe to be use for CRPS patients in rehabilitation. 
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Future work  

Our research contributed to better understand the influence of haptic-based concepts and 

applications on human perception and behavior. However, there are still some improvements 

which can be considered in short time extended study: 

- Concerning the fatigue evaluation, its levels were calculated/estimated knowing the 

disassembly path of each component. One of the parameters appearing in the proposed 

mechanical model, angle 𝜃1 (between the forearm and the horizontal frame) had to be 

measured. In future work, instead of using Kinect to measure this angle, a geometrical 

model for its calculation should be built and after then integrated into the proposed 

mechanical model.  

- Concerning the pseudo-haptic it has been proved that through manipulating the visual 

feedback, different motor behaviors of user including pressing force and co-activation 

in the involved joints can be induced. As the performed experiments are only in the 

stiffness discrimination, this limits the generation about the conclusions obtained in 

pseudo-haptics.  There are many physical properties and parameters that have been 

simulated by using pseudo-haptic feedback, such as: friction, texture, shape, weight, 

force filed, torque etc. How the pseudo-haptic feedback influence on the human 

behavior during the simulation of those physical properties and parameters are unknown 

yet which can be investigated in the future. Moreover, before drawing conclusions about 

co-activation changes with pseudo-haptic feedback, further studies should be conducted 

on a simpler biomechanical joint, as the elbow joint which has less muscles involved in 

its   rotations. 

- Concerning the CRPS rehabilitation, all the subjects involved in the performed 

experiments expressed that the hand movement of the avatar was not always stable. We 

suppose that this is due may be of the accuracy or some limitations of Leap Motion 

device. In future, the improvement of the hand tracking and reconstruction with using 

other existing low-cost devices can be done in order to render avatar hand movement 

more robust. User’s identity may be also improved by using more personalized avatar 

hand model in the application. For instance, 3D scanner model may be used to rapidly 

generate a customized avatar hand. Note, that at this stage of the study, it is not known 

yet whether such a model or an undetailed one is better for CRPS patients.  We have 
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used two hand models in the application.  However, lacking of sufficient number of 

patients, and relative investigation on which model has better effect on improving 

patient motor functions and reducing the pain, makes these questions still open for future 

work.  

Let us recall, that there are two main types of rehabilitations: kinesiological and occupational. 

The first one focuses more on the basic motor function recover while the second one focuses 

more on motor function rehabilitation in occupational scenario.  

- We believe that the possibilities offered by the virtual reality environments with their 

rich sources of information and high level of innovative interaction may augment the 

patients’ interest to performing simple and repeated rehabilitation task. Thus, comparing 

with kinesiology rehabilitation training, the occupational rehabilitation training may 

provide scenarios which are closer to the daily or professional life. A disassembly task 

simulation, for instance, in virtual reality can be used as a rehabilitation task. Instead of 

traditional rehabilitation tasks which are often annoying and repeatable, a disassembly 

operation can give the patient a kind of feeling of great achievement which can 

enormously encourage him/her to perform the rehabilitation task. Due to the motor 

abnormal function of CRPS patients and chronic pain, their fatigue endurance is bigger 

or lower than the healthy people. This requires to consider the fatigue factor in the 

design and usage of the rehabilitation task according to the fatigue endurance capacity 

of each patient. We consider that the method proposed here for evaluating the fatigue 

levels associated with different disassembly tasks may allow the physical therapist to 

choose rehabilitation task for specific patient in order to consider patient’s fatigue 

tolerant capacities.   

- For the CRPS patients, the abnormal co-contraction, as the deficient activation, is 

resulting in their abnormal limb posture, as mentioned in [BPMB13].  In order to deal 

with the loss voluntary modulation of muscle activity or deficient muscle co-activation 

of CRPS patients, there is a chance for us to try to manipulate the relationship between 

the actual motion and rendered motion in virtual reality. It will induce a different motor 

strategy to compensate the lost voluntary of muscle activity, especially in kinesiological 

therapy which is principally aiming at helping the patients to recover the basic 

movement functions of their affected limbs.  

- The developed application for CRPS patients’ rehabilitation based on the Leap Motion 

can be useful in kinesiological therapy. When the rendered motion (visual feedback) is 
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bigger than the real motion of patient’s hand, it can encourage him/her to overcome the 

limited range of movement. However, the choice of amplification coefficients depends 

on the actual range of movement of user in order to avoid the unused zone. On the other 

hand, when the rendered motion is smaller than the motion of patient’s hand, it can 

induce the patient to move in a bigger range in order to accelerate the rehabilitation 

process. 
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Appendixes   

Appendix 1. Experimental plan 

Human arm muscles and Position of the strain sensors 

There are six sets of electrodes distributed on the operator’s hand in order to detect the EMG 

on each point (two for the flexor and extensor wrist muscles, one for the biceps and one for the 

triceps muscle). The electrode on the wrist is used as ground to reduce the noise.   

 

Figure 1.  Position of the electrodes. 

Parameters to be measured  

1. Operation completing time while each disassembly sequence is performed by each 

operator. 

2. EMG curve of each operator’s arm muscle involved to manipulate the haptic device. 

3. The velocities of some points on the operator’s arm. 

Experimental steps 

1. Each operator (subject) should be familiar with the basic operations including 

selecting component, achieve translation of component in any directions and rotations 

around any orientations. For this purpose, every operator has three minutes to get 

familiar with the haptic device before the experiment. 

2. To locate six sets of electrodes in the corresponding places of operator’s arm. 

3. Let the operator do the nine basic exertions to obtain the values of MVC of each 

joint. The movements are show in the following figures. 
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Figure 2. MVC 1 (left) and MVC 2 (right). 

      

Figure 3. MVC 3 (left) and MVC 4 (right). 

                  

Figure 4. MVC 5 (left) and MVC 6 (right). 
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Figure 5. MVC 7 (left) and MVC 8 (right). 

 

 

Figure 6. MVC 9. 

4. Let the operator to repeatedly manipulate the motor from the bottom of frame to the 

top of the frame for five minutes with standing position. 

5. To record the EMG signals for the six sets of electrodes of EMG system. 

Use the Kinect scanner to measure some angles of rotation and the speed of some 

points on the muscles.  
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Appendix 2. Experimental protocol 

1. Questionnaire 

1) Did you already hear about the experiment (from colleagues…)?  

□ Yes  □ No 

2) Gender:    □ Male            □Female 

3) Your age: □18-20      □21-30    □31-40   □41-50   □51-60   □ 61 and above 

4) Your dominant hand: □Left           □Right  

5) I conform that I have no:  

a. corrected visual impairments, 

b. impairments of haptic sensivity (sensivity of touch, numbness of the fingers, 

loss of finger location…) 

c. diseases or symptoms which induce hand movement disorders. 

2. Instructions 

The purpose of the experiment is to compare the stiffness of two simulated springs. A simulated 

spring (spring for short) is composed of a button (Fig.1.b), and a piston visualized on the screen 

(Fig.1.a).  

For each trial, you will be asked to perform a stiffness discrimination task between two springs.  

The pistons of two compared springs will be displayed on the screen titled “Spring A” and 

“Spring B”. For each spring, the ID of the corresponding button is indicated just below “Button 

N°i/ Button N° j”. In Figure 3a, the button associated with piston A is button No. 1 and the 

button associated with piston B is button No. 4. For each trial, you have to press spring B first.  

             

                     a).                 b). 

Fig. 1 Stiffness discrimination interface. 
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The information presented on the top of the screen (Fig.1a) indicates that you are performing 

Trial 1 and you have spent 10s. To evaluate a spring during the stiffness discrimination task, 

you have to use your index finger to press the button inside the box while continuously looking 

at the rendered piston movement on the computer screen.  

The experiment, includes 198 trials in total. 

The protocol for each trial is the following:  

1. You compare the stiffness of each of the two given springs (you can switch back and 

forth between the two springs as you wish). It is recommended to give your answer 

within 20 seconds.  

2. Once you have made your decision of which spring is stiffer, you have to push key ‘S’ 

to Stop the trial. 

3. Then the computer will ask the question ‘Which spring is stiffer?’ (Fig. 2.a).     

4. Pushing key ’A’ indicates that you found that spring A is stiffer (harder) than spring 

B. Pushing key ’B’ indicates that you found spring B stiffer than spring A.  

5. The system will then ask you to confirm your answer (Fig. 2b). To confirm your 

answer, you have to push key ‘Y’ (Yes). Otherwise, you can push key ‘N’ (No), and it 

will return to the question in order to let you correct your answer.  

6. You have to give an answer for each trial.  

    

3. Pay attention: 

1. As previously said, when you press the simulated spring’s button, you have to look at 

the computer screen.  When the “STOP PRESSING” message is appearing on the 

screen, you have to stop pressing immediately. If not, you may reach unoperational 

part of the spring. 

2. Your forearm must always be in contact with the two black blocks.  

3. After the experiment, please do not speak about the experiment with your colleagues 

(they may also be invited as subjects, and have to be naive to the purpose of the 

experiment. 

 

   a).      b). 

Fig. 2 Interactive “question” and “answer” interface. 

 



 

153 

 

Appendix 3. Questionnaire  

 

Before Experiment 

 

1. Gender:    Male □             Female □ 

2. Your age:     

3. Before the experiment, does your hand have pain? Please evaluate your pain, before the 

experiment; by crossing one of the following faces : 

 

 

After Experiment 1 (Normal skin) 
4. Please indicate your pain level during using the application by crossing one of the following 

faces : 

 

 

After Experiment 2 (Silver skin) 
5. Please indicate your pain level during using the application by crossing one of the following 

faces : 
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6. Do you have previous experience with using virtual reality? Yes□              No□ 

7. During the experiment, do you have any uncomfortable feeling?  Yes□              No□ 

If ‘yes’, indicate which one make you more uncomfortable 

Normal skin □                          Silver skin □ 

8. Do you think using this application will encourage you to better participant in the physical 

therapy? Yes□              No□ 

9. What is the most interesting thing that you want to do by controlling the hand in computer 

screen as physical therapy scenario? 
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Summary:  
Nowadays, Virtual reality (VR) is being more and more integrated into many fields of our daily life thus 

influencing some practices such as: human behavior, communication methods, cognition… amongst others. In this 

context, our research aimed to better understand how VR is influencing on human behavior with using 

biomechanical analysis methods and its application for Complex Regional Pain Syndrome (CRPS) rehabilitation 

in particular. Firstly, the muscle fatigue levels associated with different disassembly task simulations by using 

haptic device in VR environment are evaluated. For this purpose, a new analytical model for mechanical energy 

expenditure is proposed where the required mechanical work is used as main parameter. After then, the proposed 

method is validated by analyzing the recorded electromyography (EMG) signals on operator’ arm performed in a 

VR environment. Secondly, we focus to understand the effect of pseudo-haptic on human behavior. The task 

consisted in discriminating the stiffness between a real and a virtual spring. For this purpose, series of experiments 

were performed on the specially designed test bench. The pressing force, some kinematic parameters of the test 

and the EMG signals recorded from the involved muscles of subjects’ arms were analyzed and compared. It was 

found that pressing forces on both real and virtual springs have similar behavior and the muscle co-activation 

induced by pseudo-haptic spring behavior is as in dynamic task, even though subjects’ fingers were static while 

pressing on the virtual spring. Pain and muscular maladaptation, due to the abnormal posture of affected limbs, 

are big obstacles for CRPS patients in their physical therapy and daily lives. Thus, in order to overcome some 

drawbacks of the traditional physical therapy, an application based on Leap Motion and Unity3D was developed 

allowing to manipulate the relationship between the user’s physical hand motion and the rendered avatar virtual 

motion. The application was validated by a pilot study performed at University Hospital Center (CHU) Grenoble 

in the Service of Hand surgery. During the experiments the rendered avatar hand motion is shown identical, 

amplified or reduced compared to the users’ real hand motion. Users’ feedback, after each experience, allowed to 

positively conclude for the possibility to use the application in rehabilitation process. 

    

Key words: disassembly task evaluation; muscle fatigue; virtual reality; force; muscle co-activation; pseudo-

haptic feedback; stiffness discrimination; Complex Regional Pain Syndrome; rehabilitation. 

Résumé :  

Aujourd’hui la réalité virtuelle (RV) est de plus en plus intégrée dans de nombreux aspects de notre vie quotidienne 

et, par conséquent, elle influence certaines pratiques comme : le comportement humain, les méthodes de 

communication, la cognition… entre autres. Dans ce contexte, notre recherche a visé à mieux comprendre 

comment la réalité virtuelle (RV) influence le comportement humain en utilisant les méthodes d'analyse de la 

biomécanique et son utilisation dans la réhabilitation du Syndrome douloureux régional complexe (SDRC) en 

particulier. Premièrement les niveaux de fatigue musculaire associés à différentes tâches de désassemblage en 

utilisant un dispositif haptique dans un environnement RV ont été évalués. A cet effet, un nouveau modèle 

analytique pour la dépense d'énergie mécanique est proposé où le travail mécanique requis est utilisé comme 

paramètre principal. Ensuite, la méthode proposée a été validée par l'analyse des signaux EMG (électromyographie) 

enregistrés sur le bras de l’opérateur lors d’un exercice réalisé dans l’environnement de RV. En second lieu, nous 

nous sommes concentrés sur la compréhension de l'effet d’un retour pseudo-haptique sur le comportement humain. 

La tâche consistait à discriminer la raideur d’un ressort simulé par rapport à un ressort réel. A cet effet des 

expériences ont été effectuées sur un banc d'essai spécialement conçu. La force de compression, certains 

paramètres cinématiques du test et les signaux EMG, enregistrés sur les muscles impliqués des bras des sujets ont 

été analysés et comparés. Il a été constaté que les changements des forces de pression sur les ressorts réels et le 

ressort virtuel ont un comportement similaire tandis que la co-activation musculaire induite par le comportement 

du ressort virtuel est la même que dans le cas du test de ressort réel correspondant (tâche dynamique), en dépit du 

fait que les doigts des sujets étaient immobiles en appuyant sur le ressort virtuel. La douleur et la mal-adaptation 

musculaire associées à une posture anormale constituent des obstacles importants pour les patients souffrant de 

CRPS dans leur thérapie physique et leur vie quotidienne. Ainsi, afin de surmonter certains inconvénients de la 

thérapie physique traditionnelle, une application basée sur le Leap Motion et Unity3D a été développée permettant 

de manipuler la relation entre le mouvement de l'utilisateur et le mouvement virtuel rendu de l’avatar. L’application 

a été validée par une étude pilote menée au Centre Hospitalier Universitaire (CHU) de Grenoble (Service chirurgie 

de la main). Au cours des expériences, le mouvement de la main de l’avatar est rendu identique, amplifié ou réduit 

par rapport au mouvement réel de l’utilisateur. Les commentaires des utilisateurs, après chaque expérience, ont 

permis de conclure positivement sur la possibilité d’utiliser l'application dans le processus de réhabilitation. 

 

Mots-clés : évaluation des tâches de désassemblage; fatigue musculaire; réalité virtuelle; force; co-activation 

musculaire; retour pseudo-haptique; discrimination de raideur ; Syndrome douloureux régional complexe; 

réhabilitation ; 

 


