]. J. Hansen, R. Ruedy, M. Sato, K. Lo, G. Surface et al., Caloric materials near ferroic phase transitions, RG4004. doi:10.1029/2010RG000345. [2] Elastocaloric modeling of natural rubber, pp.439-50, 2010.

G. Xie, D. Sebald, L. R. Guyomar, . L. Treloar-]-s, R. L. Dart et al., Elastocaloric effect dependence on pre-elongation in natural rubber The physics of rubber elasticity Rise of Temperature on Fast Stretching of Synthetics and Natural Rubbers Saintier, G. Cailletaud, R. Piques, Multiaxial fatigue life prediction for a natural rubber, Rapid Stress-Induced Crystallization in Natural Rubber9] N. Saintier, G. Cailletaud, R. Piques, Cyclic loadings and crystallization of natural rubber: An explanation of fatigue crack propagation reinforcement under a positive loading ratio, pp.1340-1342, 1942.

S. M. Cadwell, R. Merrill, C. M. Sloman, and F. L. Yost, Dynamic Fatigue Life of Rubber, Rubber Chemistry and Technology, vol.13, issue.2, pp.304-315, 1940.
DOI : 10.5254/1.3539515

J. Tu?ek, K. Engelbrecht, R. Millán-solsona, L. Mañosa, E. Vives et al., The Elastocaloric Effect: A Way to Cool Efficiently, Advanced Energy Materials, vol.65, issue.482, 2015.
DOI : 10.1016/j.matdes.2014.09.007

J. Diani, B. Fayolle, and P. Gilormini, A review on the Mullins effect, European Polymer Journal, vol.45, issue.3, pp.601-612, 2009.
DOI : 10.1016/j.eurpolymj.2008.11.017

URL : https://hal.archives-ouvertes.fr/hal-00773015

L. Manosa, A. Planes, and M. Acet, Advanced materials for solid-state refrigeration, Journal of Materials Chemistry A, vol.43, issue.16, pp.4925-4936, 2013.
DOI : 10.1088/0022-3727/43/3/032002

K. A. Gschneidner and V. K. Pecharsky, Thirty years of near room temperature magnetic cooling: Where we are today and future prospects, International Journal of Refrigeration, vol.31, issue.6, p.31, 2008.
DOI : 10.1016/j.ijrefrig.2008.01.004

V. K. Pecharsky and K. Jr, Magnetocaloric effect and magnetic refrigeration, Journal of Magnetism and Magnetic Materials, vol.200, issue.1-3, pp.44-5610, 1999.
DOI : 10.1016/S0304-8853(99)00397-2

B. Yu, M. Liu, P. W. Egolf, and A. Kitanovski, A review of magnetic refrigerator and heat pump prototypes built before the year 2010, International Journal of Refrigeration, vol.33, issue.6, 2010.
DOI : 10.1016/j.ijrefrig.2010.04.002

M. Valant, Electrocaloric materials for future solid-state refrigeration technologies, Progress in Materials Science, vol.57, issue.6, pp.980-1009, 2012.
DOI : 10.1016/j.pmatsci.2012.02.001

X. Yin, J. Capsal, and D. Guyomar, A comprehensive investigation of poly(vinylidene fluoridetrifluoroethylene-chlorofluoroethylene ) terpolymer nanocomposites with carbon black for electrostrictive applications, Appl. Phys. Lett, vol.104

E. Bonnot, R. Romero, L. Mañosa, E. Vives, and A. Planes, Elastocaloric Effect Associated with the Martensitic Transition in Shape-Memory Alloys, Physical Review Letters, vol.100, issue.12, 2008.
DOI : 10.1007/BF02643695

J. Tu?ek, K. Engelbrecht, L. P. Mikkelsen, and N. Pryds, Elastocaloric effect of Ni-Ti wire for application in a cooling device, Journal of Applied Physics, vol.117, issue.12
DOI : 10.1063/1.4913878.3

J. Cui, Y. Wu, J. Muehlbauer, Y. Hwang, R. Radermacher et al., Demonstration of high efficiency elastocaloric cooling with large ??T using NiTi wires, Applied Physics Letters, vol.101, issue.7
DOI : 10.1063/1.3514255

S. Qian, A. Alabdulkarem, J. Ling, J. Muehlbauer, Y. Hwang et al., Performance enhancement of a compressive thermoelastic cooling system using

I. Lyon, tous droits réservés objective optimization and novel designs, Int. J. Refrig, vol.57, pp.62-76, 2015.

S. Qian, J. Ling, Y. Hwang, R. Radermacher, and I. Takeuchi, Thermodynamics cycle analysis and numerical modeling of thermoelastic cooling systems, International Journal of Refrigeration, vol.56, 2015.
DOI : 10.1016/j.ijrefrig.2015.04.001

M. Schmidt, A. Schütze, and S. Seelecke, Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes, International Journal of Refrigeration, vol.54, 2015.
DOI : 10.1016/j.ijrefrig.2015.03.001

C. J. William-goetzler, R. Zogg, and J. Young, Energy Savings Potential and RD & D Opportunities for Non-Vapor-Compression HVAC, Navig. Consult. Inc., Prep. US Dep. Energy, 2014.

O. Gutfleisch, M. A. Willard, E. Brück, C. H. Chen, S. G. Sankar et al., Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient, Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient, pp.821-842, 2011.
DOI : 10.1016/j.jmmm.2004.11.152

G. V. Brown, Magnetic heat pumping near room temperature, Journal of Applied Physics, vol.25, issue.8, 1976.
DOI : 10.1103/PhysRev.133.A219

W. A. Steyert, Stirling???cycle rotating magnetic refrigerators and heat engines for use near room temperature, Journal of Applied Physics, vol.49, issue.3, p.49, 1978.
DOI : 10.1063/1.325010

L. Shebanovs, K. Borman, W. N. Lawless, and A. Kalvane, Electrocaloric Effect in Some Perovskite Ferroelectric Ceramics and Multilayer Capacitors, Ferroelectrics, vol.273, issue.1, pp.137-142, 2002.
DOI : 10.1080/00150190211761

R. Chukka, J. W. Cheah, Z. Chen, P. Yang, S. Shannigrahi et al., Enhanced cooling capacities of ferroelectric materials at morphotropic phase boundaries, Applied Physics Letters, vol.98, issue.24, pp.10-13, 2011.
DOI : 10.1103/PhysRevB.81.214110

D. Saranya, A. R. Chaudhuri, J. Parui, and S. B. Krupanidhi, Electrocaloric effect of PMN-PT thin films near morphotropic phase boundary, Bulletin of Materials Science, vol.64, issue.3, pp.259-262, 2009.
DOI : 10.1080/00150198708016956

P. F. Liu, J. L. Wang, X. J. Meng, J. Yang, B. Dkhil et al., Huge electrocaloric effect in Langmuir???Blodgett ferroelectric polymer thin films, New Journal of Physics, vol.12, issue.2, pp.23035-23045, 2010.
DOI : 10.1088/1367-2630/12/2/023035

URL : https://hal.archives-ouvertes.fr/hal-00583234

K. , A. Müller, F. Fauth, S. Fischer, M. Koch et al., Cooling by adiabatic pressure application in Pr1?xLaxNiO3, Appl. Phys. Lett, p.73, 1998.

L. Manosa, D. Gonzalez-alonso, A. Planes, E. Bonnot, M. Barrio et al., Giant solid-state barocaloric effect in the Ni???Mn???In magnetic shape-memory alloy, Nature Materials, vol.78, issue.6, pp.478-481, 2010.
DOI : 10.1002/bbpc.19750791206

L. Mañosa, D. González-alonso, A. Planes, M. Barrio, J. Tamarit et al., Inverse barocaloric effect in the giant magnetocaloric La?Fe?Si?Co compound, Nat Commun, vol.2, issue.595, 2011.

S. Yuce, M. Barrio, B. Emre, E. Stern-taulats, A. Planes et al., Barocaloric effect in the magnetocaloric prototype Gd5Si2Ge2, Applied Physics Letters, vol.101, issue.7
DOI : 10.1103/PhysRevB.66.212402

C. Picornell, J. Pons, and E. Cesari, Stress-Temperature Relationship in Compression Mode in Cu-Al-Ni Shape Memory Alloys, MATERIALS TRANSACTIONS, vol.45, issue.5, pp.45-1679, 2004.
DOI : 10.2320/matertrans.45.1679

F. Xiao, T. Fukuda, and T. Kakeshita, Significant elastocaloric effect in a Fe-31.2Pd (at. %) single crystal, Applied Physics Letters, vol.102, issue.16
DOI : 10.1038/415150a

W. J. Buehler, J. Gilfrich, and R. C. Wiley, Effect of Low???Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi, Journal of Applied Physics, vol.221, issue.5, p.34, 1963.
DOI : 10.1063/1.1729603

J. Cui, Y. Wu, J. Muehlbauer, Y. Hwang, R. Radermacher et al., Demonstration of
URL : https://hal.archives-ouvertes.fr/hal-00873640

I. Lyon, tous droits réservés high efficiency elastocaloric cooling with large ??t using NiTi wires, Appl. Phys. Lett, vol.101, pp.25-28, 2012.

C. Bechtold, C. Chluba, R. Lima-de-miranda, and E. Quandt, High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films, Applied Physics Letters, vol.90, issue.9
DOI : 10.1080/09500341003725748

A. N. Gent, Engineering with Rubber
DOI : 10.3139/9783446428713

A. Lendlein, R. Langer, and . Biodegradable, Elastic Shape-Memory Polymers for, Potential Biomedical Applications, Sci, vol.296, pp.1673-1676, 2002.

B. Huneau, STRAIN-INDUCED CRYSTALLIZATION OF NATURAL RUBBER: A REVIEW OF X-RAY DIFFRACTION INVESTIGATIONS, Rubber Chemistry and Technology, vol.84, issue.3, pp.425-452, 2011.
DOI : 10.5254/1.3601131

URL : https://hal.archives-ouvertes.fr/hal-01007326

Y. Miyamoto, H. Yamao, and K. Sekimoto, Crystallization and Melting of Polyisoprene Rubber under Uniaxial Deformation, Macromolecules, vol.36, issue.17, pp.6462-647110, 2002.
DOI : 10.1021/ma0342877

J. E. Mark, E. Burak, and E. M. Roland, The science and technology of rubber, Academic press

M. Tosaka, S. Murakami, S. Poompradub, S. Kohjiya, Y. Ikeda et al., Orientation and Crystallization of Natural Rubber Network As Revealed by WAXD Using Synchrotron Radiation, Macromolecules, vol.37, issue.9, pp.3299-3309, 2004.
DOI : 10.1021/ma0355608

J. R. Katz, R??ntgenspektrographische Untersuchungen am gedehnten Kautschuk und ihre m??gliche Bedeutung f??r das Problem der Dehnungseigenschaften dieser Substanz, Die Naturwissenschaften, vol.25, issue.19, pp.410-416, 1925.
DOI : 10.1007/BF01560952

L. A. Wood and N. Bekkedahl, Crystallization of Unvulcanized Rubber at Different Temperatures, J. Appl. Phys, vol.17, 1946.

P. A. Albouy, J. Marchal, and J. Rault, Chain orientation in natural rubber, Part I: The inverse yielding effect, The European Physical Journal E, vol.40, issue.3, pp.247-259, 2005.
DOI : 10.1016/S0032-3861(99)00099-3

N. Candau, L. Chazeau, J. Chenal, C. Gauthier, J. Ferreira et al., Strain induced crystallization and melting of natural rubber during dynamic cycles, Physical Chemistry Chemical Physics, vol.84, issue.23, pp.15331-15338, 2015.
DOI : 10.6028/jres.084.018

J. M. Chenal, L. Chazeau, L. Guy, Y. Bomal, and C. Gauthier, Molecular weight between physical entanglements in natural rubber: A critical parameter during strain-induced crystallization, Polymer, vol.48, issue.4, 2007.
DOI : 10.1016/j.polymer.2006.12.031

URL : https://hal.archives-ouvertes.fr/hal-00434170

I. S. Choi and C. M. Roland, Strain-Crystallization of Guayule and Hevea Rubbers, Rubber Chemistry and Technology, vol.70, issue.2, pp.202-210, 1997.
DOI : 10.5254/1.3538425

K. Cui, L. Meng, Y. Ji, J. Li, S. Zhu et al., Extension-Induced Crystallization of Poly(ethylene oxide) Bidisperse Blends: An Entanglement Network Perspective, Macromolecules, vol.47, issue.2, pp.47-677, 2014.
DOI : 10.1021/ma402031m

Y. Ikeda, Y. Yasuda, K. Hijikata, M. Tosaka, and S. Kohjiya, Comparative Study on Strain-Induced Crystallization Behavior of Peroxide Cross-Linked and Sulfur Cross-Linked Natural Rubber, Macromolecules, vol.41, issue.15, pp.5876-5884, 2008.
DOI : 10.1021/ma800144u

J. B. Le-cam, J. R. Samaca-martinez, X. Balandraud, E. Toussaint, and J. Caillard, Thermomechanical Analysis of the Singular Behavior of Rubber: Entropic Elasticity, Reinforcement by Fillers, Strain-Induced Crystallization and the Mullins Effect, Experimental Mechanics, vol.45, issue.4, pp.771-782, 2014.
DOI : 10.1016/j.eurpolymj.2008.11.017

URL : https://hal.archives-ouvertes.fr/hal-01136498

W. Lin, M. Bian, G. Yang, and Q. Chen, Strain-induced crystallization of natural rubber as studied by high-resolution solid-state 13C NMR spectroscopy, Polymer (Guildf), 2004.

Y. Nie, H. Gao, and W. Hu, Variable trends of chain-folding in separate stages of strain-induced crystallization of bulk polymers, Polym. (United Kingdom), 2014.

L. Qu, G. Huang, Z. Liu, P. Zhang, G. Weng et al., Remarkable reinforcement of natural rubber by deformation-induced crystallization in the presence of organophilic montmorillonite, Acta Materialia, vol.57, issue.17, 2009.
DOI : 10.1016/j.actamat.2009.07.007

S. Toki, I. Sics, S. Ran, L. Liu, and B. S. Hsiao, Molecular orientation and structural development in vulcanized polyisoprene rubbers during uniaxial deformation by in situ synchrotron X-ray diffraction, Polymer, vol.44, issue.19
DOI : 10.1016/S0032-3861(03)00548-2

M. Tosaka, S. Kohjiya, Y. Ikeda, S. Toki, and B. S. Hsiao, Molecular orientation and stress relaxation during strain-induced crystallization of vulcanized natural rubber, Polymer Journal, vol.100, issue.6, pp.474-481, 2010.
DOI : 10.1021/ma034729e

G. S. Yeh, Strain-induced crystallization I. Limiting extents of strain-induced nuclei, Polymer Engineering and Science, vol.12, issue.3, pp.138-144, 1976.
DOI : 10.1007/BF01507982

N. Candau, R. Laghmach, L. Chazeau, J. Chenal, C. Gauthier et al., Strain-Induced Crystallization of Natural Rubber and Cross-Link Densities Heterogeneities, Macromolecules, vol.47, issue.16, pp.47-5815, 2014.
DOI : 10.1021/ma5006843

R. Dargazany, V. N. Khiem, and M. Itskov, A generalized network decomposition model for the quasi-static inelastic behavior of filled elastomers, International Journal of Plasticity, vol.63
DOI : 10.1016/j.ijplas.2013.12.004

R. Dargazany, V. N. Khiêm, E. Poshtan, and M. Itskov, Constitutive modeling of strain-induced crystallization in filled rubbers, Physical Review E, vol.81, issue.2, pp.1-12, 2014.
DOI : 10.1016/S0020-7683(00)00079-2

P. J. Flory, Thermodynamics of Crystallization in High Polymers. I. Crystallization Induced by Stretching, The Journal of Chemical Physics, vol.15, issue.6, pp.397-408, 1947.
DOI : 10.1039/tf9464200010

P. J. Flory, Thermodynamics of Crystallization in High Polymers. IV. A Theory of Crystalline States and Fusion in Polymers, Copolymers, and Their Mixtures with Diluents, The Journal of Chemical Physics, vol.10, issue.3, pp.223-240, 1949.
DOI : 10.1039/tf9464200010

R. J. Gaylord, A theory of the stress-induced crystallization of crosslinked polymeric networks, Journal of Polymer Science: Polymer Physics Edition, vol.14, issue.10, pp.1827-1837, 1976.
DOI : 10.1002/pol.1976.180141008

R. J. Gaylord and D. J. Lohse, Morphological changes during oriented polymer crystallization, Polymer Engineering and Science, vol.6, issue.3, pp.331-336, 1975.
DOI : 10.1098/rspa.1964.0040

N. Gent, Crystallization and the Relaxation of Stress in Stretched Natural-Rubber Vulcanizates, Rubber Chem. Technol, vol.28, 1955.

J. Guilié, T. Le, and P. L. Tallec, Micro-sphere model for strain-induced crystallisation and three-dimensional applications, Journal of the Mechanics and Physics of Solids, vol.81, 2015.
DOI : 10.1016/j.jmps.2015.05.004

M. Kroon, A constitutive model for strain-crystallising Rubber-like materials, Mechanics of Materials, vol.42, issue.9, pp.873-885, 2010.
DOI : 10.1016/j.mechmat.2010.07.008

C. Miehe, A micro-macro approach to rubber-like materials?Part I: the non-affine micro-sphere model of rubber elasticity, Journal of the Mechanics and Physics of Solids, vol.52, issue.11, 2004.
DOI : 10.1016/j.jmps.2004.03.011

S. J. Mistry and S. Govindjee, A micro-mechanically based continuum model for strain-induced crystallization in natural rubber, International Journal of Solids and Structures, vol.51, issue.2, pp.530-539, 2014.
DOI : 10.1016/j.ijsolstr.2013.10.027

E. A. Poshtan, R. Dargazany, and M. Itskov, Influence of strain induced crystallization on the mechanical behavior of natural rubbers, Const. Model. Rubber VII, pp.215-219, 2015.

K. J. Smith, Crystallization of networks under stress, Polymer Engineering and Science, vol.2, issue.3, pp.337-338, 1975.
DOI : 10.1098/rspa.1964.0040

M. Avrami, Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III, The Journal of Chemical Physics, vol.8, issue.2, 1941.
DOI : 10.1063/1.1750386

M. Avrami, Kinetics of Phase Change. I General Theory, The Journal of Chemical Physics, vol.22, issue.12, 1939.
DOI : 10.1002/zaac.19332140411

M. Avrami, Kinetics of Phase Change. II Transformation???Time Relations for Random Distribution of Nuclei, The Journal of Chemical Physics, vol.90, issue.2, pp.212-224, 1940.
DOI : 10.1007/BF01341256

M. Tosaka, Strain-Induced Crystallization of Crosslinked Natural Rubber As Revealed by Xray Diffraction Using Synchrotron Radiation, Polymer (Guildf), 2007.

C. W. Bunn, Molecular Structure and Rubber-Like Elasticity. I. The Crystal Structures of Formula Gutta-Percha, Rubber and Polychloroprene, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.180, issue.980, pp.40-66, 1942.
DOI : 10.1098/rspa.1942.0024

S. Toki, J. Che, L. Rong, B. S. Hsiao, S. Amnuaypornsri et al., Entanglements and Networks to Strain-Induced Crystallization and Stress???Strain Relations in Natural Rubber and Synthetic Polyisoprene at Various Temperatures, Macromolecules, vol.46, issue.13, pp.46-5238, 2013.
DOI : 10.1021/ma400504k

S. Trabelsi, P. A. Albouy, and J. Rault, Crystallization and Melting Processes in Vulcanized Stretched Natural Rubber, Macromolecules, vol.36, issue.20, pp.7624-7639, 2003.
DOI : 10.1021/ma030224c

P. J. Flory, Principles of Polymer Chemistry, 1953.

P. A. Albouy, G. Guillier, D. Petermann, A. Vieyres, O. Sanseau et al., A stroboscopic Xray apparatus for the study of the kinetics of strain-induced crystallization in natural rubber, Polymer (Guildf), pp.3313-3324, 2012.

P. A. Albouy, A. Vieyres, R. Pérez-aparicio, O. Sanséau, and P. Sotta, The impact of strain-induced crystallization on strain during mechanical cycling of cross-linked natural rubber, Polymer (Guildf), pp.4022-4031, 2014.

S. Toki, I. Sics, B. S. Hsiao, M. Tosaka, S. Poompradub et al., Probing the Nature of Strain-Induced Crystallization in Polyisoprene Rubber by Combined Thermomechanical and In Situ X-ray Diffraction Techniques, Macromolecules, vol.38, issue.16, pp.38-7064, 2005.
DOI : 10.1021/ma050465f

J. Che, C. Burger, S. Toki, L. Rong, B. S. Hsiao et al., -1,4-Polyisoprene by a New Two Dimensional Wide Angle X-ray Diffraction Simulation Method. I. Strain-Induced Crystallization, Macromolecules, vol.46, issue.11, pp.46-4520, 2013.
DOI : 10.1021/ma400420k

J. Che, C. Burger, S. Toki, L. Rong, B. S. Hsiao et al., Crystal and Crystallites Structure of Natural Rubber and Peroxide-Vulcanized Natural Rubber by a Two-Dimensional Wide-Angle X-ray Diffraction Simulation Method. II. Strain-Induced Crystallization versus Temperature-Induced Crystallization, Macromolecules, vol.46, issue.24, pp.46-9712, 1021.
DOI : 10.1021/ma401812s

S. Toki, Strain-induced crystallization of natural rubber as detected real-time by wide-angle Xray diffraction technique.pdf, Polymer (Guildf), 2000.

J. Rault, J. Marchal, P. Judeinstein, and P. , Chain orientation in natural rubber, Part II: 2H-NMR study, The European Physical Journal E, vol.37, issue.3, pp.243-261, 2006.
DOI : 10.1021/ma035985u

J. Rault, J. Marchal, P. Judeinstein, and P. , H NMR Study, Macromolecules, vol.39, issue.24, pp.8356-8368, 2006.
DOI : 10.1021/ma0608424

S. Toki, T. Fujimaki, and M. Okuyama, Strain-induced crystallisation of natural rubber as detected real-time bywide-angle X-Ray diffraction technique, Polymer (Guildf), pp.41-5423, 2000.

S. Poompradub, M. Tosaka, S. Kohjiya, Y. Ikeda, S. Toki et al., Mechanism of straininduced crystallization in filled and unfilled natural rubber vulcanizates, J. Appl. Phys, vol.97, 2005.

A. Sakata, N. Suzuki, Y. Higashiura, T. Matsuo, and T. Sato, Measurement of the mechanocaloric effect in rubber, Journal of Thermal Analysis and Calorimetry, vol.46, issue.3, pp.1555-1563, 2013.
DOI : 10.1007/BF01983618

J. R. Samaca-martinez, J. B. Le-cam, X. Balandraud, E. Toussaint, and J. Caillard, Mechanisms of deformation in crystallizable natural rubber. Part 1: Thermal characterization, Polymer, vol.54, issue.11, pp.2717-2726, 2013.
DOI : 10.1016/j.polymer.2013.03.011

URL : https://hal.archives-ouvertes.fr/hal-01131576

J. Tu?ek, K. Engelbrecht, R. Millán-solsona, L. Mañosa, E. Vives et al., The Elastocaloric Effect: A Way to Cool Efficiently, Advanced Energy Materials, vol.65, issue.482
DOI : 10.1016/j.matdes.2014.09.007

W. Mars and A. Fatemi, A literature survey on fatigue analysis approaches for rubber, International Journal of Fatigue, vol.24, issue.9, pp.949-96110, 2002.
DOI : 10.1016/S0142-1123(02)00008-7

S. Trabelsi, P. A. Albouy, and J. Rault, Stress-Induced Crystallization around a Crack Tip in Natural Rubber, Macromolecules, vol.35, issue.27, pp.10054-10061, 2002.
DOI : 10.1021/ma021106c

M. Tosaka, D. Kawakami, K. Senoo, S. Kohjiya, Y. Ikeda et al., Crystallization and

H. P. Zhang, J. Niemczura, G. Dennis, K. Ravi-chandar, and M. Marder, Toughening Effect of Strain-Induced Crystallites in Natural Rubber, Physical Review Letters, vol.79, issue.24, pp.4-7, 2009.
DOI : 10.1016/j.jmps.2005.10.002

S. Beurrot-borgarino, B. Huneau, E. Verron, and P. Rublon, Strain-induced crystallization of carbon black-filled natural rubber during fatigue measured by in situ synchrotron X-ray diffraction, International Journal of Fatigue, vol.47, 2013.
DOI : 10.1016/j.ijfatigue.2012.07.001

K. Brüning, K. Schneider, S. V. Roth, and G. Heinrich, Strain-induced crystallization around a crack tip in natural rubber under dynamic load, Polym. (United Kingdom), 2013.

J. B. Le-cam and E. Toussaint, The mechanism of fatigue crack growth in rubbers under severe loading, Macromolecules, vol.43, pp.4708-4714, 2010.
DOI : 10.1201/b11687-15

URL : https://hal.archives-ouvertes.fr/hal-01131581

P. Rublon, B. Huneau, N. Saintier, S. Beurrot, A. Leygue et al., synchrotron wide-angle X-ray diffraction investigation of fatigue cracks in natural rubber, Journal of Synchrotron Radiation, vol.59, issue.1, pp.105-109, 2013.
DOI : 10.1021/ma0303566

URL : https://hal.archives-ouvertes.fr/hal-01006961

P. Rublon, B. Huneau, E. Verron, N. Saintier, S. Beurrot et al., Multiaxial deformation and strain-induced crystallization around a fatigue crack in natural rubber, Engineering Fracture Mechanics, vol.123, pp.59-69, 2014.
DOI : 10.1016/j.engfracmech.2014.04.003

URL : https://hal.archives-ouvertes.fr/hal-01010899

N. Of, Factors That Affect the Fatigue Life of Rubber, History, vol.77, pp.419-423, 2004.

N. Saintier, G. Cailletaud, and R. Piques, Crack initiation and propagation under multiaxial fatigue in a natural rubber, International Journal of Fatigue, vol.28, issue.1, pp.61-72, 2006.
DOI : 10.1016/j.ijfatigue.2005.03.006

URL : https://hal.archives-ouvertes.fr/hal-00157190

A. F. Mars, W. V. , and A. Fatemi, Fatigue crack nucleation and growth in filled natural rubber, ?and Fract, Eng. Mater. ?, pp.779-789, 2003.

L. Munoz, L. Vanel, O. Sanseau, P. Sotta, D. Long et al., Fatigue crack growth dynamics in filled natural rubber, Plastics, Rubber and Composites, vol.27, issue.7, pp.273-276, 2012.
DOI : 10.1016/j.ijfatigue.2011.03.008

J. H. Fielding, Flex Life and Crystallization of Synthetic Rubber, Industrial & Engineering Chemistry, vol.35, issue.12, pp.1259-1261, 1943.
DOI : 10.1021/ie50408a008

P. B. Lindley, Relation between hysteresis and the dynamic crack growth resistance of natural rubber, Int. J. Fract, vol.9, pp.449-462, 1973.

P. B. Lindley, Non-Relaxing Crack Growth and Fatigue in a Non-Crystallizing Rubber, Rubber Chemistry and Technology, vol.47, issue.5, pp.1253-1264, 1974.
DOI : 10.5254/1.3540497

M. Tosaka, K. Senoo, K. Sato, M. Noda, and N. Ohta, Detection of fast and slow crystallization processes in instantaneously-strained samples of cis-1,4-polyisoprene, Polymer (Guildf), pp.864-872, 2012.

K. Brüning, K. Schneider, S. V. Roth, and G. Heinrich, Kinetics of Strain-Induced Crystallization in Natural Rubber Studied by WAXD: Dynamic and Impact Tensile Experiments, Macromolecules, vol.45, issue.19, pp.7914-7919, 2012.
DOI : 10.1021/ma3011476

N. Candau, L. Chazeau, J. M. Chenal, C. Gauthier, J. Ferreira et al., Characteristic time of strain induced crystallization of crosslinked natural rubber, Polymer (Guildf), pp.2540-2543, 2012.

N. Candau, R. Laghmach, L. Chazeau, J. Chenal, C. Gauthier et al., Influence of strain rate and temperature on the onset of strain induced crystallization in natural rubber, European Polymer Journal, vol.64, pp.244-252, 2015.
DOI : 10.1016/j.eurpolymj.2015.01.008

Y. Akagi, T. Katashima, Y. Katsumoto, K. Fujii, T. Matsunaga et al., Examination of the Theories of Rubber Elasticity Using an Ideal Polymer Network, Macromolecules, vol.44, issue.14, pp.5817-5821, 2011.
DOI : 10.1021/ma201088r

S. Amnuaypornsri, S. Toki, B. S. Hsiao, and J. Sakdapipanich, The effects of endlinking network and entanglement to stress???strain relation and strain-induced crystallization of un-vulcanized and vulcanized natural rubber, Polymer, vol.53, issue.15, pp.3325-3330, 2012.
DOI : 10.1016/j.polymer.2012.05.020

J. M. Chenal, C. Gauthier, L. Chazeau, L. Guy, and Y. Bomal, Parameters governing strain induced crystallization in filled natural rubber, Polymer (Guildf), pp.48-6893, 2007.

J. A. Harwood, L. Mullins, and .. R. Payne, Stress Softening in Natural Rubber Vulcanizates. Part II. Stress Softening Effects in Pure Gum and Filler Loaded Rubbers, Rubber Chemistry and Technology, vol.39, issue.4, pp.814-822, 1966.
DOI : 10.5254/1.3547145

C. Chluba, W. Ge, R. Lima-de-miranda, J. Strobel, L. Kienle et al., Ultralowfatigue shape memory alloy films, Sci, pp.1004-1007, 2015.

S. Crossley, N. D. Mathur, and X. Moya, New developments in caloric materials for cooling applications, AIP Advances, vol.3, issue.2
DOI : 10.1103/PhysRevB.78.184414

J. B. Le-cam, J. R. Samaca-martinez, X. Balandraud, E. Toussaint, and J. Caillard, Thermomechanical Analysis of the Singular Behavior of Rubber: Entropic Elasticity, Reinforcement by Fillers, Strain-Induced Crystallization and the Mullins Effect, Experimental Mechanics, vol.45, issue.4, pp.10-1007, 2014.
DOI : 10.1016/j.eurpolymj.2008.11.017

URL : https://hal.archives-ouvertes.fr/hal-01136498

X. Balandraud and J. Cam, Some specific features and consequences of the thermal response of rubber under cyclic mechanical loading, Archive of Applied Mechanics, vol.46, issue.19, pp.773-788, 2014.
DOI : 10.1021/j150422a005

URL : https://hal.archives-ouvertes.fr/hal-01005745

J. R. Samaca-martinez, J. B. Le-cam, X. Balandraud, E. Toussaint, and J. Caillard, New elements concerning the Mullins effect: A thermomechanical analysis, European Polymer Journal, vol.55, 2014.
DOI : 10.1016/j.eurpolymj.2014.03.014

URL : https://hal.archives-ouvertes.fr/hal-01063256

J. R. Samaca-martinez, E. Toussaint, X. Balandraud, J. Cam, and D. Berghezan, Heat and strain measurements at the crack tip of filled rubber under cyclic loadings using full-field techniques, Mechanics of Materials, vol.81, pp.62-71, 2015.
DOI : 10.1016/j.mechmat.2014.09.011

URL : https://hal.archives-ouvertes.fr/hal-01148252

J. R. Samaca-martinez, J. B. Le-cam, X. Balandraud, E. Toussaint, and J. Caillard, Mechanisms of deformation in crystallizable natural rubber, Polym. (United Kingdom), vol.54, pp.2727-2736, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01131576

C. M. Roland, Mechanical Behavior of Rubber at High Strain Rates, Rubber Chemistry and Technology, vol.79, issue.3, pp.429-459, 2006.
DOI : 10.5254/1.3547945

A. N. Gent and L. Zhang, Strain-induced crystallization and strength of elastomers. I. cis-1,4- polybutadiene, 7<811::AID-POLB1055>3.0.CO, pp.811-817, 2001.

E. H. Andrews, Resistance to Ozone Cracking in Elastomer Blends, Rubber Chem. Technol, vol.40, 1967.

B. C. Edwards and P. J. Phillips, High-pressure phases in polymers. II. Spherulitic growth morphology in cis-polyisoprene, Journal of Polymer Science: Polymer Physics Edition, vol.13, issue.11, 1975.
DOI : 10.1002/pol.1975.180131105

S. Toki, T. Fujimaki, and M. Okuyama, Strain-induced crystallization of natural rubber as detected real-time by wide-angle X-ray diffraction technique, Polymer (Guildf), pp.5423-5429, 2000.

G. Sebald, L. Seveyrat, J. F. Capsal, P. J. Cottinet, and D. Guyomar, Differential scanning calorimeter and infrared imaging for electrocaloric characterization of poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer, Applied Physics Letters, vol.101, issue.2, pp.2010-2013, 2012.
DOI : 10.1063/1.4734924.1

T. R. Emery and J. M. Dulieu-barton, Thermoelastic Stress Analysis of damage mechanisms in composite materials, Composites Part A: Applied Science and Manufacturing, vol.41, issue.12, pp.1729-1742, 2010.
DOI : 10.1016/j.compositesa.2009.08.015

S. Quinn, R. K. Fruehmann, and J. M. Dulieu-barton, Development of thermoelastic stress analysis as a non-destructive evaluation tool, 2009.

S. Murakami, K. Senoo, S. Toki, and S. Kohjiya, Structural development of natural rubber during uniaxial stretching by in situ wide angle X-ray diffraction using a synchrotron radiation, Polymer, vol.43, issue.7, pp.43-2117, 2002.
DOI : 10.1016/S0032-3861(01)00794-7

P. Ortiz-serna, R. Díaz-calleja, and M. J. Sanchis, Evaluation of natural rubber specific heat capacity at high pressures from DSC experimental data at atmospheric pressure, Journal of Applied Polymer Science, vol.13, issue.4, pp.2269-2272, 2012.
DOI : 10.1002/pol.1975.180130202

G. Natta and P. Corradini, General considerations on the structure of crystalline polyhydrocarbons, Nuovo Cim. Ser, vol.10, issue.15, pp.9-39, 1960.

C. W. Bunn, Molecular Structure and Rubberlike Elasticity, III. Molecular Movements in

P. G. De-gennes, Coil???stretch transition of dilute flexible polymers under ultrahigh velocity gradients, The Journal of Chemical Physics, vol.3, issue.12, pp.5030-5042, 1974.
DOI : 10.1038/226352a0

S. Toki, B. S. Hsiao, S. Amnuaypornsri, and J. Sakdapipanich, New insights into the relationship between network structure and strain-induced crystallization in un-vulcanized and vulcanized natural rubber by synchrotron X-ray diffraction, Polymer, vol.50, issue.9, pp.2142-2148, 2009.
DOI : 10.1016/j.polymer.2009.03.001

S. G. Lu, B. Ro?i?, Q. M. Zhang, Z. Kutnjak, R. Pirc et al., Comparison of directly and indirectly measured electrocaloric effect in relaxor ferroelectric polymers, Applied Physics Letters, vol.97, issue.20, 2010.
DOI : 10.1063/1.3077189

B. Lu and J. Liu, Mechanocaloric materials for solid-state cooling, Science Bulletin, vol.60, issue.19, pp.1638-1643, 2015.
DOI : 10.1007/s11434-015-0898-5

L. Mañosa, S. Jarque-farnos, E. Vives, and A. , Planes, Large temperature span and giant refrigerant capacity in elastocaloric Cu-Zn-Al shape memory alloys, Appl. Phys. Lett, vol.103

G. J. Pataky, E. Ertekin, and H. Sehitoglu, Elastocaloric cooling potential of NiTi, Ni 2 FeGa, and CoNiAl, Acta Materialia, vol.96, pp.420-427, 2015.
DOI : 10.1016/j.actamat.2015.06.011

N. Candau, R. Laghmach, L. Chazeau, J. Chenal, C. Gauthier et al., Strain-Induced Crystallization of Natural Rubber and Cross-Link Densities Heterogeneities, Macromolecules, vol.47, issue.16, pp.47-5815, 2014.
DOI : 10.1021/ma5006843

D. E. Hanson, Numerical simulations of rubber networks at moderate to high tensile strains using a purely enthalpic force extension curve for individual chains, The Journal of Chemical Physics, vol.131, issue.22, 2009.
DOI : 10.1063/1.2784018

L. R. Treloar, The photo-elastic properties of rubber II. Double refraction and crystallisation in stretched vulcanised rubber, Transactions of the Faraday Society, vol.43, pp.284-293, 1947.
DOI : 10.1039/tf9474300284

L. Mullins, Determination of degree of crosslinking in natural rubber vulcanizates. Part IV. Stress-strain behavior at large extensions, Journal of Applied Polymer Science, vol.2, issue.6, pp.257-263, 1959.
DOI : 10.1002/app.1959.070020601

L. Mullins, Determination of degree of crosslinking in natural rubber vulcanizates. Part I, J. Polym. Sci, vol.19, 1956.

J. A. Harwood, L. Mullins, and A. R. Payne, Stress softening in natural rubber vulcanizates. Part II. Stress softening effects in pure gum and filler loaded rubbers, Journal of Applied Polymer Science, vol.9, issue.9, pp.3011-3021, 1965.
DOI : 10.1002/app.1965.070090907

C. Miehe, S. Goktepe, and F. Lulei, A micro-macro approach to rubber-like materials?Part I: the non-affine micro-sphere model of rubber elasticity, Journal of the Mechanics and Physics of Solids, vol.52, issue.11, 2004.
DOI : 10.1016/j.jmps.2004.03.011

M. C. Boyce and E. M. Arruda, Constitutive Models of Rubber Elasticity: A Review, Rubber Chemistry and Technology, vol.73, issue.3, pp.504-523, 2000.
DOI : 10.5254/1.3547602

C. M. Roland and J. W. Sobieski, Anomalous Fatigue Behavior in Polyisoprene, Rubber Chemistry and Technology, vol.62, issue.4, pp.683-697, 1989.
DOI : 10.5254/1.3536268

N. Candau, L. Chazeau, J. Chenal, C. Gauthier, J. Ferreira et al., Strain induced crystallization and melting of natural rubber during dynamic cycles, Physical Chemistry Chemical Physics, vol.84, issue.23, pp.10-1039, 2015.
DOI : 10.6028/jres.084.018

K. K. Nielsen, J. Tusek, K. Engelbrecht, S. Schopfer, C. R. Kitanovski et al., Review on numerical modeling of active magnetic regenerators for room temperature applications, International Journal of Refrigeration, vol.34, issue.3, pp.603-616, 2011.
DOI : 10.1016/j.ijrefrig.2010.12.026

H. Bouchekara, C. Kedous-lebouc, F. Dupuis, and . Allab, Prediction and optimisation of geometrical properties of the refrigerant bed in an AMRR cycle, International Journal of Refrigeration, vol.31, issue.7, 2008.
DOI : 10.1016/j.ijrefrig.2008.02.007

M. Liu and B. Yu, Numerical investigations on internal temperature distribution and refrigeration performance of reciprocating active magnetic regenerator of room temperature magnetic refrigeration, International Journal of Refrigeration, vol.34, issue.3, pp.617-627, 2011.
DOI : 10.1016/j.ijrefrig.2010.12.003

J. Bouchard, H. Nesreddine, and N. Galanis, Model of a porous regenerator used for magnetic refrigeration at room temperature, International Journal of Heat and Mass Transfer, vol.52, issue.5-6, 2009.
DOI : 10.1016/j.ijheatmasstransfer.2008.08.031

G. Poignand, Réfrigérateur thermoacoustique: Étude du systeme compact et du comportement transitoire, 2006.

M. E. Tijani, S. Spoelstra, and G. Poignand, Study of a thermoacoustic???Stirling engine, The Journal of the Acoustical Society of America, vol.123, issue.5, 2008.
DOI : 10.1121/1.2934525

G. Poignand, B. Lihoreau, P. Lotton, E. Gaviot, M. Bruneau et al., Optimal acoustic fields in compact thermoacoustic refrigerators, Applied Acoustics, vol.68, issue.6, 2007.
DOI : 10.1016/j.apacoust.2006.03.009

P. Lotton, P. Blanc-benon, M. Bruneau, V. Gusev, S. Duffourd et al., Transient temperature profile inside thermoacoustic refrigerators, International Journal of Heat and Mass Transfer, vol.52, issue.21-22, pp.4986-4996, 2009.
DOI : 10.1016/j.ijheatmasstransfer.2009.03.075

URL : https://hal.archives-ouvertes.fr/hal-00461444

U. Legait, F. Guillou, A. Kedous-lebouc, V. Hardy, and M. Almanza, An experimental comparison of four magnetocaloric regenerators using three different??materials, International Journal of Refrigeration, vol.37, 2014.
DOI : 10.1016/j.ijrefrig.2013.07.006

URL : https://hal.archives-ouvertes.fr/hal-00932488

H. Ma, W. Wen, W. Y. Tam, and P. Sheng, Frequency Dependent Electrorheological Properties: Origin and Bounds, Physical Review Letters, vol.73, issue.12, pp.77-2499, 1996.
DOI : 10.1063/1.353351

URL : http://repository.ust.hk/ir/bitstream/1783.1-26273/1/PhysRevLett.77.2499.pdf

M. S. Cho, H. J. Choi, I. Chin, and W. Ahn, Electrorheological characterization of zeolite suspensions, Microporous and Mesoporous Materials, vol.32, issue.3, pp.233-239, 1999.
DOI : 10.1016/S1387-1811(99)00109-2

Y. Tian, Y. Meng, and S. Wen, ER fluid based on zeolite and silicone oil with high strength, Materials Letters, vol.50, issue.2-3, pp.120-123, 2001.
DOI : 10.1016/S0167-577X(00)00427-4

Y. Tian, M. Zhang, J. Jiang, N. Pesika, H. Zeng et al., Reversible shear thickening at low shear rates of electrorheological fluids under electric fields, Physical Review E, vol.9, issue.1, 2011.
DOI : 10.1021/ma9519122

B. Neese, B. Chu, S. Lu, Y. Wang, E. Furman et al., Large Electrocaloric Effect in Ferroelectric Polymers Near Room Temperature, Science, vol.47, issue.1, pp.821-823, 2008.
DOI : 10.1080/00150198708016945

Z. Xie, G. Sebald, and D. Guyomar, Elastocaloric effect dependence on pre-elongation in natural rubber, Applied Physics Letters, vol.107, issue.8
DOI : 10.1021/ma400504k