E. Du and T. De-travail-détecteur, Les résultats obtenus ontégalementétéontégalementontégalementété validés expérimentalement en utilisant un collimateur. Ce travail a ´ eté publié dans la revue, 2016.

. Dans-cette-travail-de-thèse, nous avons développé une méthode de correction du diffusé flexible et adaptablè a de nombreux cas rencontrés en tomographie industrielle, pp.100-106

. Mev, La méthode développée s'applique sur les projections, elle est donc indépendante de l'algorithme de reconstruction utilisée ensuite. La méthode nécessite de simuler que quelques cas

. Le-modèle-basé-sur-la-carte, Dans lapremì ere approche, nous avons adopté la méthode simple de calcul d'´ epaisseur en utilisant la loi de Beer-Lambert. Pour tenir compte davantage de l'effet de durcissement du faisceau de l'´ epaisseur a ´ eté calculée sur la base des tables de consultation. Cependant, cette approche estégalementestégalement limitée sur la modélisation du spectre du logiciel simulant. Une des méthodes de calcul de l'´ epaisseur au niveau de chaque pixel peut se faire par l'utilisation de la méthode de lancer de rayon

. Mev, ´ energie les processusélectroniquesprocessusélectroniques comme le rayonnement de freinage deviennent non négligeable. CIVA ne tenant pas compte de ces processus, il faudra simuler les noyaux avec des codes plus complet comme MCNP ou Penelope

J. Insa-lyon and . Lifton, The influence of scatter and beam hardening in X-ray computed tomography for dimensional metrology

M. Berger, J. Hubbell, and S. Seltzer, photon cross sections database. NIST, 2016. x, xi, 6, 67, XXIX, pp.25-44

M. Costin and D. Tisseur, Civa CT, an advanced simulation platform for NDT. iCT, p.7, 2016.

M. Sun and J. Star-lack, Improved scatter correction using adaptive scatter kernel superposition, Physics in Medicine and Biology, vol.55, issue.22, pp.6675-6720, 2010.
DOI : 10.1088/0031-9155/55/22/007

A. Peterzol, J. Létang, and D. Babot, A beam stop based correction procedure for high spatial frequency scatter in industrial cone-beam X-ray CT, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.266, issue.18, pp.4042-4054, 2008.
DOI : 10.1016/j.nimb.2008.07.005

J. Briesmeister, MCNP-A general Monte Carlo code for neutron and photon transport. 1986. xi, xiii

R. Gordon, G. Bender, and . Herman, Algebraic Reconstruction Techniques (ART) for three-dimensional electron microscopy and X-ray photography, Journal of Theoretical Biology, vol.29, issue.3, pp.471-481, 1970.
DOI : 10.1016/0022-5193(70)90109-8

T. Buzug, Computed Tomography, 2008.
DOI : 10.1007/978-3-540-74658-4_16

A. Kak and M. Slaney, Principles of computerized tomographic imaging

L. Feldkamp, L. Davis, and J. Kress, Practical cone-beam algorithm, Journal of the Optical Society of America A, vol.1, issue.6, pp.612-619, 1984.
DOI : 10.1364/JOSAA.1.000612

URL : http://www.engineering.uiowa.edu/~mchen/reconstruction/practical feldkamp.pdf

F. Xu, K. Xu, and . Mueller, On the efficiency of iterative ordered subset reconstruction algorithms for acceleration on GPUs, Computer Methods and Programs in Biomedicine, vol.98, issue.3, pp.261-270, 2010.
DOI : 10.1016/j.cmpb.2009.09.003

C. Byrne, Iterative image reconstruction algorithms based on cross-entropy minimization, TMP, vol.2, issue.7, pp.261-270, 1993.

E. Sidky, C. Kao, and X. Pan, Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT, JXST, vol.14, issue.7, pp.119-139, 2006.

R. Schulze, D. Heil, . Bruellmann, . Dranischnikow, E. Schwanecke et al., Artefacts in CBCT: a review, Dentomaxillofacial Radiology, vol.24, issue.5, pp.265-273, 2011.
DOI : 10.1109/TNS.2005.852703

R. Mckinley, M. Toraai, M. Samei, and . Bradshaw, Initial study of quasimonochromatic X-ray beam performance for X-ray computed mammotomography, 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515), pp.1243-1250, 2005.
DOI : 10.1109/NSSMIC.2003.1352515

G. Zentai, Signal-to-Noise and contrast ratio enhancements by quasimonochromatic imaging, pp.908-915, 2011.
DOI : 10.1109/tim.2010.2045441

G. Herman, Correction for beam hardening in computed tomography, Physics in Medicine and Biology, vol.24, issue.1, pp.81-106, 1979.
DOI : 10.1088/0031-9155/24/1/008

P. Hammersberg and M. Mangard, Correction for beam hardening artefacts in computerised tomography, JXST, vol.8, issue.8, pp.75-93, 1998.

J. Meagher, C. Mote, and H. Skinner, CT image correction for beam hardening using simulated projection data, IEEE Transactions on Nuclear Science, vol.37, issue.4, pp.1520-1524, 1990.
DOI : 10.1109/23.55865

J. Hsieh, R. Molthen, C. Dawson, and R. Johnson, An iterative approach to the beam hardening correction in cone beam CT, Medical Physics, vol.1, issue.1, pp.23-29, 2000.
DOI : 10.1364/JOSAA.1.000612

A. Coleman and M. Sinclair, A beam-hardening correction using dual-energy computed tomography, Physics in Medicine and Biology, vol.30, issue.11, pp.1251-1256, 1985.
DOI : 10.1088/0031-9155/30/11/007

A. Bub, . Gondrom, . Maisl, W. Uhlmann, and . Arnold, Image blur in a flat-panel detector due to Compton scattering at its internal mountings, Measurement Science and Technology, vol.18, issue.5, pp.1270-1277, 2007.
DOI : 10.1088/0957-0233/18/5/013

P. Wils, J. Létang, and J. Bruandet, Secondary radiations in cone-beam computed tomography: simulation study, Journal of Electronic Imaging, vol.21, issue.2, p.21113, 2012.
DOI : 10.1117/1.JEI.21.2.021113

URL : https://hal.archives-ouvertes.fr/hal-00822442

G. Poludniowski, P. Evans, S. Kavanagh, and . Webb, Removal and effects of scatter-glare in cone-beam CT with an amorphous-silicon flat-panel detector, Physics in Medicine and Biology, vol.56, issue.6
DOI : 10.1088/0031-9155/56/6/019

M. Hoheisel, J. Korn, and . Giersch, Influence of backscattering on the spatial resolution of semiconductor X-ray detectors, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.546, issue.1-2, pp.252-257, 2005.
DOI : 10.1016/j.nima.2005.03.028

D. Nikolopoulos, D. Kandarakis, and . Cavouras, Investigation of radiation absorption and X-ray fluorescence properties of medical imaging scintillators by Monte Carlo methods, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.565, issue.2, pp.821-832, 2006.
DOI : 10.1016/j.nima.2006.05.170

J. Boone, J. Seibert, J. Sabol, and M. Tecotzky, A Monte Carlo study of x-ray fluorescence in x-ray detectors, Medical Physics, vol.24, issue.6, pp.905-916, 1999.
DOI : 10.1118/1.598100

R. Luhta and J. Rowlands, Origins of flare in x-ray image intensifiers, Medical Physics, vol.17, issue.5, pp.913-921, 1990.
DOI : 10.1118/1.596447

L. Dimitrios and W. Jeffrey, Impact of flat panel-imager veiling glare on scatterestimation accuracy and image quality of a commercial on-board cone-beam CT imaging system, Med. Phys, vol.39, issue.10, pp.5639-5651, 2012.

L. Alexander, J. Boone, and N. Shah, Evaluation of X-ray scatter properties in a dedicated cone-beam breast ct scanner, Med. Phys, vol.32, issue.11, pp.2967-2975, 2005.

S. Shen, A. Bloomquist, G. Mawdsley, J. Yaffe, and I. Elbakri, Effect of scatter and an antiscatter grid on the performance of a slot-scanning digital mammography system, Medical Physics, vol.27, issue.4, pp.1108-1115, 2006.
DOI : 10.1118/1.1287052

H. , C. , and K. Dio, Investigation of the performance of antiscatter grids: Monte carlo simulation studies, Phys. Med. Biol, vol.27, issue.11, pp.785-803, 1982.

H. Chan, Y. Higashida, and K. Dio, Performance of antiscatter grids in diagnostic radiology: Experimental measurements and Monte Carlo simulation studies, Medical Physics, vol.12, issue.4, pp.449-454, 1985.
DOI : 10.1118/1.595670

J. Boone and O. Makarova, Development and Monte Carlo Analysis of Antiscatter Grids for Mammography, Technology in Cancer Research & Treatment, vol.5, issue.6, pp.441-448, 2002.
DOI : 10.1088/0031-9155/27/6/002

J. Wiegert, . Bertram, . Schaefer, . Conrads, . Timmer et al., Performance of standard fluoroscopy antiscatter grids in flat-detector-based conebeam CT, Proc. SPIE, pp.67-78, 2004.

U. Neitzel, Grids or air gaps for scatter reduction in digital radiography: A model calculation, Medical Physics, vol.19, issue.2, pp.475-81, 1992.
DOI : 10.1118/1.596836

A. Krol, D. Bassano, C. Chamberlain, and S. Prasad, Scatter reduction in mammography with air gap, Medical Physics, vol.23, issue.7, pp.1263-1270, 1996.
DOI : 10.1118/1.597869

J. Sorenson and J. Floch, Scatter rejection by air gaps: An empirical model, Medical Physics, vol.12, issue.3, pp.308-324, 1985.
DOI : 10.1118/1.595690

R. Chityala, K. Hoffmann, D. Bednarek, and S. Rudin, Region of interest (ROI) computed tomography, Medical Imaging 2004: Physics of Medical Imaging, pp.534-575, 2004.
DOI : 10.1117/12.534568

L. Chen, C. Shaw, and M. Altunbas, Feasibility of volume-of-interest (VOI) scanning technique in cone beam breast CT-a preliminary study, Medical Physics, vol.50, issue.8, pp.3482-90, 2008.
DOI : 10.1088/0031-9155/50/8/012

D. Kolditz, Y. Kyriakou, and W. Kalender, Volume-of-interest (VOI) imaging in C-arm flat-detector CT for high image quality at reduced dose, Medical Physics, vol.29, issue.4, pp.2719-2749, 2010.
DOI : 10.3174/ajnr.A1237

C. Lai, H. Chen, and . Zhang, Reduction in x-ray scatter and radiation dose for volume-of-interest (VOI) cone-beam breast CT???a phantom study, Physics in Medicine and Biology, vol.54, issue.21, pp.6691-709, 2009.
DOI : 10.1088/0031-9155/54/21/016

J. Maltz, M. Gangadharan, and . Vidal, Focused beam-stop array for the measurement of scatter in megavoltage portal and cone beam CT imaging, Medical Physics, vol.9, issue.6Part1, pp.2452-2462, 2008.
DOI : 10.1109/IEMBS.2007.4352937

R. Ning, D. Tang, and . Conover, X-ray scatter suppression algorithm for conebeam volume CT, SPIE Proceedings, vol.13, pp.774-81, 2002.

R. Ning, D. Tang, and . Conover, X-ray scatter correction algorithm for cone beam CT imaging, Medical Physics, vol.1, issue.6, pp.1195-202, 2004.
DOI : 10.1364/JOSAA.1.000612

W. Cai, D. Ning, and . Conover, Simplified method of scatter correction using a beam-stop-array algorithm for cone-beam computed tomography breast imaging, Opt Eng, vol.47, issue.13, p.97003, 2008.

X. Liu, C. Shaw, T. Altunbas, and . Wang, TU-D-I-611-07: A Scanning Sampled Measurement (SSM) Technique for Scatter Measurement and Correction in Cone Beam Breast CT, Medical Physics, vol.32, issue.6Part16, p.2093, 2005.
DOI : 10.1118/1.1998386

L. Zhu, R. Strobel, and . Fahrig, X-ray scatter correction for cone-beam CT using moving blocker array, Medical Imaging 2005: Physics of Medical Imaging, pp.251-259, 2005.
DOI : 10.1117/12.594699

L. Zhu, N. Bennett, and R. Fahrig, Scatter Correction Method for X-Ray CT Using Primary Modulation: Theory and Preliminary Results, IEEE Transactions on Medical Imaging, vol.25, issue.12, pp.1573-1587, 2006.
DOI : 10.1109/TMI.2006.884636

J. Maltz and W. Blanz, Cone beam X-ray scatter removal via image frequency modulation and filtering, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp.1854-1857, 2005.
DOI : 10.1109/IEMBS.2005.1616811

H. Gao, N. Fahrig, and . Bennett, Scatter correction method for x-ray CT using primary modulation: Phantom studies, Medical Physics, vol.25, issue.10, pp.934-980, 2010.
DOI : 10.1109/TMI.2006.882141

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826390/pdf

A. Colijn and F. Beekman, Accelerated simulation of cone beam X-ray scatter projections. TMI, pp.584-590, 2004.

Y. Kyriakou and W. Kalender, X-ray scatter data for flat-panel detector CT, Physica Medica, vol.23, issue.1, pp.3-15, 2007.
DOI : 10.1016/j.ejmp.2006.12.004

A. Malusek, M. Sandborg, and G. Carlsson, Simulation of scatter in cone beam CT: effects on projection image quality, Medical Imaging 2003: Physics of Medical Imaging, pp.740-51, 2003.
DOI : 10.1117/12.479940

D. Lazos and J. Williamson, Impact of flat panel-imager veiling glare on scatterestimation accuracy and image quality of a commercial on-board cone-beam CT imaging system, Phys. Med. Biol, vol.39, issue.16, pp.5639-5651

G. Jarry, S. Graham, and D. Moseley, Characterization of scattered radiation in kV CBCT images using Monte Carlo simulations, Medical Physics, vol.8, issue.11, pp.4320-4329, 2006.
DOI : 10.1118/1.595027

W. Zbijewski and F. Beekman, Efficient Monte Carlo based scatter artifact reduction in cone-beam micro-CT, IEEE Transactions on Medical Imaging, vol.25, issue.7, pp.817-844, 2006.
DOI : 10.1109/TMI.2006.872328

G. Jarry, S. Graham, D. Jaffray, D. J. Moseley, and F. Verhaegen, Scatter correction for kilovoltage cone-beam computed tomography (CBCT) images using Monte Carlo simulations, Medical Imaging 2006: Physics of Medical Imaging, p.614254, 2006.
DOI : 10.1117/12.653803

M. Bertram, . Sattel, J. Hohmann, and . Wiegert, Monte-Carlo scatter correction for cone-beam computed tomography with limited scan field-of-view, Medical Imaging 2008: Physics of Medical Imaging, p.69131, 2006.
DOI : 10.1117/12.771103

E. Mainegra-hing and I. Kawrakow, Fast Monte Carlo calculation of scatter corrections for CBCT images, Journal of Physics: Conference Series, vol.102, issue.14, p.12017, 2008.
DOI : 10.1088/1742-6596/102/1/012017

E. Mainegra-hing and I. Kawrakow, Variance reduction techniques for fast Monte Carlo CBCT scatter correction calculations, Physics in Medicine and Biology, vol.55, issue.16, pp.4495-507, 2010.
DOI : 10.1088/0031-9155/55/16/S05

A. Badal and A. Badano, Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit, Medical Physics, vol.175, issue.11, pp.4878-80, 2009.
DOI : 10.1016/j.cpc.2006.05.009

X. Jia, . Yan, . Cervino, S. Folkerts, and . Jiang, A GPU tool for efficient, accurate, and realistic simulation of cone beam CT projections, Medical Physics, vol.38, issue.12, pp.7368-78, 2012.
DOI : 10.1118/1.3591994

V. Hansen, P. Swindell, and . Evans, Extraction of primary signal from EPIDs using only forward convolution, Medical Physics, vol.42, issue.9, pp.1477-1484, 1920.
DOI : 10.1016/S0167-8140(96)01895-6

L. Spies, B. Ebert, . Groh, T. Hesse, and . Bortfeld, Correction of scatter in megavoltage cone-beam CT, Physics in Medicine and Biology, vol.46, issue.3, pp.821-833, 2001.
DOI : 10.1088/0031-9155/46/3/316

J. Maltz, S. Gangadharan, and . Bose, Algorithm for X-ray scatter, beamhardening , and beam profile correction in diagnostic (kilovoltage) and treatment (megavoltage) cone beam CT. TMI, pp.1791-1810, 2008.

S. Petit, W. J. Elmpt, S. Nijsten, A. Dekker, and P. Lambin, Correction of cupping artifacts in megavoltage cone beam computed tomography, Department of Radiation Oncology, vol.15

L. Love and R. Kruger, Scatter estimation for a digital radiographic system using convolution filtering, Medical Physics, vol.14, issue.2, pp.178-85, 1987.
DOI : 10.1118/1.596126

J. Seibert and J. Boone, X-ray scatter removal by deconvolution, Medical Physics, vol.15, issue.4, pp.567-75, 1988.
DOI : 10.1118/1.596208

S. Naimuddin, C. Hasegawa, and . Mistretta, Scatter-glare correction using a convolution algorithm with variable weighting, Medical Physics, vol.14, issue.3, pp.330-334, 1987.
DOI : 10.1118/1.596088

D. Kruger, W. Zink, D. Peppler, C. Ergun, and . Mistretta, A regional convolution kernel algorithm for scatter correction in dual-energy images: Comparison to single-kernel algorithms, Medical Physics, vol.21, issue.2, pp.175-84, 1994.
DOI : 10.1118/1.597297

M. Meyer, W. Kalender, and Y. Kyriakou, A fast and pragmatic approach for scatter correction in flat-detector CT using elliptic modeling and iterative optimization, Physics in Medicine and Biology, vol.55, issue.1, pp.99-120, 2010.
DOI : 10.1088/0031-9155/55/1/007

J. Rinkel, . Gerfault, J. Esteve, and . Dinten, A new method for x-ray scatter correction: first assessment on a cone-beam CT experimental setup, Physics in Medicine and Biology, vol.52, issue.15, pp.4633-4652, 2007.
DOI : 10.1088/0031-9155/52/15/018

N. Bhatia, . Tisseur, J. Buyens, and . Létang, Scattering correction using continuously thickness-adapted kernels, NDT & E International, vol.78, issue.64, pp.52-60, 2016.
DOI : 10.1016/j.ndteint.2015.11.004

URL : https://hal.archives-ouvertes.fr/hal-01272912

M. Baer and M. Kachelrieß, Hybrid scatter correction for CT imaging, Physics in Medicine and Biology, vol.57, issue.21, pp.6849-6867, 2012.
DOI : 10.1088/0031-9155/57/21/6849

W. Zhao, . Brunner, S. Niu, . Schafer, G. Royalty et al., Patient-specific scatter correction for flat-panel detector-based cone-beam CT imaging, Physics in Medicine and Biology, vol.60, issue.3, pp.1339-65, 2015.
DOI : 10.1088/0031-9155/60/3/1339

H. Li, X. Mohan, M. Zhu, . Meyer, W. Lapp et al., Scatter kernel estimation with an edge-spread function method for cone-beam computed tomography imaging, Histogram-driven cupping correction (HDCC) in CT. Proc. SPIE, pp.6729-6777, 2008.
DOI : 10.1088/0031-9155/53/23/006

J. Wiegert, M. Hohmann, and . Bertram, Iterative scatter correction based on artifact assessment, Medical Imaging 2008: Physics of Medical Imaging, p.69132, 2008.
DOI : 10.1117/12.771029

C. Altunbas, C. , C. Shaw, and L. Chen, A post-reconstruction method to correct cupping artifacts in cone beam breast computed tomography, Medical Physics, vol.17, issue.7, pp.3109-3127, 2007.
DOI : 10.1007/s10552-006-0071-1

J. Tabary, . Guillemaud, . Mathy, P. Gliere, and . Hugonnard, Combination of high resolution analytically computed uncollided flux images with low resolution Monte Carlo computed scattered flux images, TNS, vol.51, pp.212-217, 2004.

N. Bhatia, J. Tisseur, and . Létang, Scattering correction in cone beam computed tomography using scatter kernel superposition, p.82

N. Bhatia, . Tisseur, J. Valton, and . Létang, Separable scatter model of the detector and??object contributions using continuously thickness-adapted kernels in CBCT, Journal of X-Ray Science and Technology, vol.55, issue.22, p.82, 2016.
DOI : 10.1088/0031-9155/55/22/007

URL : https://hal.archives-ouvertes.fr/hal-01438209

N. Bhatia, J. Tisseur, and . Létang, Convolution-based scatter correction using kernels combining measurements and Monte Carlo simulations, Journal of X-Ray Science and Technology, vol.39, issue.22, p.82, 2016.
DOI : 10.1118/1.4747260

G. Poludniowski and P. Hasen, An efficient Monte Carlo-based algorithm for scatter correction in keV cone-beam CT, Physics in Medicine and Biology, vol.54, issue.12, pp.3847-3864, 2009.
DOI : 10.1088/0031-9155/54/12/016

E. Spezi and P. Downes, Monte Carlo simulation of an x-ray volume imaging cone beam CT unit, Medical Physics, vol.53, issue.1, pp.127-136, 2009.
DOI : 10.1088/0031-9155/53/11/005

M. Randazzo and M. Tambasco, A rapid noninvasive characterization of CT x-ray sources, Medical Physics, vol.54, issue.19, pp.3960-3968, 2015.
DOI : 10.1002/9783527617135

E. Sidky and L. Yu, A robust method of x-ray source spectrum estimation from transmission measurements: Demonstrated on computer simulated, scatter-free transmission data, Journal of Applied Physics, vol.48, issue.12, p.83, 2005.
DOI : 10.1088/0031-9155/46/5/316

H. Liu, T. Mackie, T. , and E. Mccullough, Correcting kernel tilting and hardening in convolution/superposition dose calculations for clinical divergent and polychromatic photon beams, Med. Phys, vol.24, pp.1729-1770, 1997.

. Ecole-doctorale:-Électronique, A. Électrotechnique, and . Spécialité, La nature des matériaux et les épaisseurs traversées conduisent inévitablement à la génération de rayonnement diffusé Ce dernier est généré par l'objet mais également par le détecteur. La présence de rayonnement parasite conduit à ne plus respecter l'hypothèse de la loi de Beer-Lambert. Par conséquent, on voit apparaitre sur les coupes tomographiques des artefacts de reconstruction comme des streaks, des effets ventouses ou des valeurs d'atténuation linéaire erronée. Par conséquence, on retrouve dans la littérature de nombreuses méthodes de correction du diffusé. Ce travail vise à mettre en point et tester une méthode originale de correction du diffusé. Le premier chapitre de cette étude, dresse un état de l'art de la plupart des méthodes de corrections existantes. Nous proposons, dans le deuxième chapitre, une évolution de la méthode de superposition des noyaux de convolution (Scatter Kernel Superposition) Notre méthode repose sur une description continue des noyaux en fonction de l'épaisseur traversée. Dans cette méthode, les noyaux de diffusion sont paramétrés analytiquement sur toute la plage d'épaisseur. Le procédé a été testé pour des objets à la fois mono-matériaux et poly-matériaux, ainsi que sur des données expérimentales et simulées. Nous montrons dans le troisième chapitre l'importance de la contribution du diffusé détecteur dans la qualité de l'image reconstruite. Mais également l'importance de décrire les noyaux de convolution à l'aide d'un modèle à quatre gaussienne

C. Département-d-sijbers and I. Lyon, Imagerie et de Simulation pour le Contrôle (DISC) Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS) Directeur de thèse: Jean Michel Létang Président de jury : Composition du jury Alessandro Olivo et Dimitris Visvikis Cette thèse est accessible à l'adresse : http://theses.insa-lyon