P. Pincus, Colloid stabilization with grafted polyelectrolytes, Macromolecules, vol.24, issue.10, pp.2912-2919, 1991.
DOI : 10.1021/ma00010a043

F. Lo-verso, S. A. Egorov, A. Milchev, and K. Binder, Spherical polymer brushes under good solvent conditions: Molecular dynamics results compared to density functional theory, The Journal of Chemical Physics, vol.33, issue.18, p.184901, 2010.
DOI : 10.1021/ma071770z

B. Jaquet, D. Wei, B. Reck, F. Reinhold, X. Zhang et al., Stabilization of polymer colloid dispersions with pH-sensitive poly-acrylic acid brushes, Colloid and Polymer Science, vol.119, issue.7, pp.1659-1667, 2013.
DOI : 10.1063/1.1592496

M. Kobayashi, H. Tanaka, M. Minn, J. Sugimura, and A. Takahara, Interferometry Study of Aqueous Lubrication on the Surface of Polyelectrolyte Brush, ACS Applied Materials & Interfaces, vol.6, issue.22, pp.20365-20371, 2014.
DOI : 10.1021/am505906h

J. Klein, E. Kumacheva, D. Mahalu, D. Perahia, and L. Fetters, Reduction of frictional forces between solid surfaces bearing polymer brushes, Nature, vol.370, issue.6491, pp.634-636, 1994.
DOI : 10.1038/370634a0

M. Chen, W. Briscoe, S. Armes, and J. Klein, Lubrication at Physiological Pressures by Polyzwitterionic Brushes, Science, vol.77, issue.11, pp.1698-1701, 2009.
DOI : 10.1016/j.jbiomech.2004.02.017

URL : http://eprints.whiterose.ac.uk/8528/2/Armes_Lubrication.pdf

S. N. Ramakrishna, R. M. Espinosa-marzal, V. V. Naik, P. C. Nalam, and N. D. Spencer, Adhesion and Friction Properties of Polymer Brushes on Rough Surfaces: A Gradient Approach, Langmuir, vol.29, issue.49, pp.15251-15259, 2013.
DOI : 10.1021/la402847z

L. Landherr, C. Cohen, P. Agarwal, and L. Archer, Interfacial Friction and Adhesion of Polymer Brushes, Langmuir, vol.27, issue.15, pp.9387-9395, 2011.
DOI : 10.1021/la201396m

E. P. Schmidt, Y. Yang, W. J. Janssen, A. Gandjeva, M. J. Perez et al., The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis, Nature Medicine, vol.428, issue.8, pp.1217-1223, 2012.
DOI : 10.1073/pnas.90.23.11029

C. Murphy and V. Turner, Glycocalyx carbohydrates of uterine epithelial cells increase during early pregnancy in the rat, Journal of Anatomy, vol.17, pp.109-115, 1991.

B. Button, L. Cai, C. Ehre, M. Kesimer, D. B. Hill et al., A Periciliary Brush Promotes the Lung Health by Separating the Mucus Layer from Airway Epithelia, Science, vol.122, issue.1, pp.937-941, 2012.
DOI : 10.1063/1.1829255

J. H. Luft, Fine structures of capillary and endocapillary layer as revealed by ruthenium red, Federation proceedings, vol.25, issue.6, pp.1773-83, 1966.

L. N. Broekhuizen, H. L. Mooij, J. J. Kastelein, E. S. Stroes, H. Vink et al., Endothelial glycocalyx as potential diagnostic and therapeutic target in cardiovascular disease, Current Opinion in Lipidology, vol.20, issue.1, pp.57-62, 2009.
DOI : 10.1097/MOL.0b013e328321b587

S. Weinbaum, J. M. Tarbell, and E. R. Damiano, The Structure and Function of the Endothelial Glycocalyx Layer, Annual Review of Biomedical Engineering, vol.9, issue.1, pp.121-167, 2007.
DOI : 10.1146/annurev.bioeng.9.060906.151959

S. T. Milner, T. A. Witten, and M. E. Cates, A Parabolic Density Profile for Grafted Polymers, Europhysics Letters (EPL), vol.5, issue.5, p.413, 1988.
DOI : 10.1209/0295-5075/5/5/006

S. T. Milner, Polymer Brushes, Science, vol.31, issue.14, pp.905-914, 1991.
DOI : 10.1016/0021-9797(90)90423-L

M. J. Hore, J. Ford, K. Ohno, R. J. Composto, and B. Hammouda, Direct Measurements of Polymer Brush Conformation Using Small-Angle Neutron Scattering (SANS) from Highly Grafted Iron Oxide Nanoparticles in Homopolymer Melts, Macromolecules, vol.46, issue.23, pp.9341-9348, 2013.
DOI : 10.1021/ma401975a

E. Currie, M. Wagemaker, M. C. Stuart, and A. Van-well, Structure of grafted polymers, investigated with neutron reflectometry, Physica B: Condensed Matter, vol.283, issue.1-3, pp.17-21, 2000.
DOI : 10.1016/S0921-4526(99)01883-9

D. I. Dimitrov, A. Milchev, and K. Binder, Polymer brushes in solvents of variable quality: Molecular dynamics simulations using explicit solvent, The Journal of Chemical Physics, vol.2, issue.8, p.84905, 2007.
DOI : 10.1209/epl/i2004-10520-y

K. Binder, Monte Carlo and molecular dynamics simulations in polymer science, 1995.

J. L. Barrat, A possible mechanism for swelling of polymer brushes under shear, Macromolecules, vol.25, issue.2, pp.832-834, 1992.
DOI : 10.1021/ma00028a050

P. Lai and C. Lai, Polymer brush under strong shear, Physical Review E, vol.2, issue.6, p.6958, 1996.
DOI : 10.1051/jp2:1992148

Y. Rabin and S. Alexander, Stretching of Grafted Polymer Layers, Europhysics Letters (EPL), vol.13, issue.1, p.49, 1990.
DOI : 10.1209/0295-5075/13/1/009

J. Klein, D. Perahia, and S. Warburg, Forces between polymer-bearing surfaces undergoing shear, Nature, vol.352, issue.6331, pp.143-145, 1991.
DOI : 10.1038/352143a0

J. F. Danielli, Capillary permeability and oedema in the perfused frog, The Journal of Physiology, vol.98, issue.1, pp.109-129, 1940.
DOI : 10.1113/jphysiol.1940.sp003837

S. P. Drummond, The vascularity of the brain of the hibernating frog and its relation to function, The Journal of Comparative Neurology, vol.18, issue.1, pp.1-18, 1945.
DOI : 10.1001/archneurpsyc.1928.02210140160013

E. M. Landis, CAPILLARY PERMEABILITY AND THE FACTORS AFFECTING THE COMPOSITION OF CAPILLARY FILTRATE, Annals of the New York Academy of Sciences, vol.15, issue.8, pp.713-731, 1946.
DOI : 10.1113/jphysiol.1940.sp003837

R. Chambers and B. W. Zweifach, INTERCELLULAR CEMENT AND CAPILLARY PERMEABILITY, Physiological Reviews, vol.27, issue.3, pp.436-463, 1947.
DOI : 10.1152/physrev.1947.27.3.436

B. Klitzman and B. R. Duling, Microvascular hematocrit and red cell flow in resting and contracting striated muscle, American Journal of Physiology-Heart and Circulatory Physiology, vol.237, issue.4, pp.481-490, 1979.
DOI : 10.1152/ajpheart.1979.237.4.H481

A. R. Pries, T. W. Secomb, T. Gessner, M. B. Sperandio, J. F. Gross et al., Resistance to blood flow in microvessels in vivo, Circulation Research, vol.75, issue.5, pp.904-915, 1994.
DOI : 10.1161/01.RES.75.5.904

H. Vink and B. R. Duling, Identification of Distinct Luminal Domains for Macromolecules, Erythrocytes, and Leukocytes Within Mammalian Capillaries, Circulation Research, vol.79, issue.3, pp.581-589, 1996.
DOI : 10.1161/01.RES.79.3.581

H. S. Bennett, MORPHOLOGICAL ASPECTS OF EXTRACELLULAR POLYSACCHARIDES, Journal of Histochemistry & Cytochemistry, vol.11, issue.1, pp.14-23, 1963.
DOI : 10.1177/11.1.14

J. W. Vanteeffelen, J. Brands, E. S. Stroes, and H. Vink, Endothelial Glycocalyx: Sweet Shield of Blood Vessels, Trends in Cardiovascular Medicine, vol.17, issue.3, pp.101-105, 2007.
DOI : 10.1016/j.tcm.2007.02.002

J. Rostgaard and K. Qvortrup, Electron Microscopic Demonstrations of Filamentous Molecular Sieve Plugs in Capillary Fenestrae, Microvascular Research, vol.53, issue.1, pp.1-13, 1997.
DOI : 10.1006/mvre.1996.1987

B. M. Van-den-berg, H. Vink, and J. A. Spaan, The Endothelial Glycocalyx Protects Against Myocardial Edema, Circulation Research, vol.92, issue.6, pp.592-594, 2003.
DOI : 10.1161/01.RES.0000065917.53950.75

B. Fu and J. Tarbell, Mechano-sensing and transduction by endothelial surface glycocalyx: composition, structure, and function, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol.295, issue.Pt 13, pp.381-390, 2013.
DOI : 10.1016/j.yexcr.2003.12.025

M. Nieuwdorp, M. C. Meuwese, H. Vink, J. B. Hoekstra, J. J. Kastelein et al., The endothelial glycocalyx: a potential barrier between health and vascular disease, Current Opinion in Lipidology, vol.16, issue.5, pp.507-511, 2005.
DOI : 10.1097/01.mol.0000181325.08926.9c

M. Nieuwdorp, H. L. Mooij, J. Kroon, B. Atasever, J. A. Spaan et al., Endothelial Glycocalyx Damage Coincides With Microalbuminuria in Type 1 Diabetes, Diabetes, vol.55, issue.4, pp.1127-1132, 2006.
DOI : 10.2337/diabetes.55.04.06.db05-1619

C. Alphonsus and R. Rodseth, The endothelial glycocalyx: a review of the vascular barrier, Anaesthesia, vol.293, issue.Suppl, pp.777-784, 2014.
DOI : 10.1152/ajplung.00390.2006

K. P. Arkill, C. R. Neal, J. M. Mantell, C. C. Michel, K. Qvortrup et al., 3D Reconstruction of the Glycocalyx Structure in Mammalian Capillaries using Electron Tomography, Microcirculation, vol.290, issue.4, pp.343-351, 2012.
DOI : 10.1152/ajpheart.00695.2005

L. Lanotte, S. Guido, C. Misbah, P. Peyla, and L. Bureau, Flow Reduction in Microchannels Coated with a Polymer Brush, Langmuir, vol.28, issue.38, pp.13758-13764, 2012.
DOI : 10.1021/la302171a

URL : https://hal.archives-ouvertes.fr/hal-00968061

W. C. Aird, Phenotypic Heterogeneity of the Endothelium: I. Structure, Function, and Mechanisms, Circulation Research, vol.100, issue.2, pp.158-173, 2007.
DOI : 10.1161/01.RES.0000255691.76142.4a

M. C. Gouverneur, Fluid shear stress directly stimulates synthesis of the endothelial glycocalyx: perturbations by hyperglycemia, 2006.

S. Reitsma, D. Slaaf, H. Vink, M. Van-zandvoort, and M. Egbrink, The endothelial glycocalyx: composition, functions, and visualization, Pfl??gers Archiv - European Journal of Physiology, vol.279, issue.Pt 1, 2007.
DOI : 10.1016/0005-2728(92)90119-M

J. B. Williams, Comparative Nonmammalian Renal Physiology Comparative Physiology of the Vertebrate Kidney. Zoophysiology Vol. 21 W. H. Dantzler, BioScience, vol.39, issue.9, pp.652-654, 1989.
DOI : 10.2307/1311103

P. F. Davies, Flow-mediated endothelial mechanotransduction, Physiological Reviews, vol.75, issue.3, pp.519-560, 1995.
DOI : 10.1152/physrev.1995.75.3.519

B. L. Langille and S. L. Adamson, Relationship between blood flow direction and endothelial cell orientation at arterial branch sites in rabbits and mice, Circulation Research, vol.48, issue.4, pp.481-488, 1981.
DOI : 10.1161/01.RES.48.4.481

R. M. Nerem, M. J. Levesque, and J. Cornhill, Vascular Endothelial Morphology as an Indicator of the Pattern of Blood Flow, Journal of Biomechanical Engineering, vol.103, issue.3, pp.172-176, 1981.
DOI : 10.1115/1.3138275

G. M. Rubanyi, J. C. Romero, and P. M. Vanhoutte, Flow-induced release of endothelium-derived relaxing factor, American Journal of Physiology-Heart and Circulatory Physiology, vol.250, issue.6, pp.1145-1149, 1986.
DOI : 10.1152/ajpheart.1986.250.6.H1145

M. Gouverneur, J. A. Spaan, H. Pannekoek, R. D. Fontijn, and H. Vink, Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx, American Journal of Physiology-Heart and Circulatory Physiology, vol.290, issue.1, pp.458-452, 2006.
DOI : 10.1073/pnas.1332808100

A. I. Barakat and D. K. Lieu, Differential Responsiveness of Vascular Endothelial Cells to Different Types of Fluid Mechanical Shear Stress, Cell Biochemistry and Biophysics, vol.38, issue.3, pp.323-343, 2003.
DOI : 10.1385/CBB:38:3:323

B. Mazzag and A. I. Barakat, The Effect of Noisy Flow on Endothelial Cell Mechanotransduction: A Computational Study, Annals of Biomedical Engineering, vol.94, issue.8, pp.911-921, 2010.
DOI : 10.1073/pnas.94.8.3726

URL : https://hal.archives-ouvertes.fr/hal-00997998

Y. C. Fung, BIOMECHANICS, SHOCK, vol.9, issue.2, 2013.
DOI : 10.1097/00024382-199802000-00018

A. I. Barakat, Blood flow and arterial endothelial dysfunction: Mechanisms and implications, Comptes Rendus Physique, vol.14, issue.6, pp.479-496, 2013.
DOI : 10.1016/j.crhy.2013.05.003

URL : https://hal.archives-ouvertes.fr/hal-00995143

G. Stoll and M. Bendszus, Inflammation and Atherosclerosis: Novel Insights Into Plaque Formation and Destabilization, Stroke, vol.37, issue.7, pp.1923-1932, 2006.
DOI : 10.1161/01.STR.0000226901.34927.10

URL : http://stroke.ahajournals.org/content/strokeaha/37/7/1923.full.pdf

H. Vink, A. A. Constantinescu, and J. A. Spaan, Oxidized Lipoproteins Degrade the Endothelial Surface Layer : Implications for Platelet-Endothelial Cell Adhesion, Circulation, vol.101, issue.13, pp.1500-1502, 2000.
DOI : 10.1161/01.CIR.101.13.1500

C. Michel, Starling: the formulation of his hypothesis of microvascular fluid exchange and its significance after 100 years, Experimental Physiology, vol.82, issue.1, pp.1-30, 1997.
DOI : 10.1113/expphysiol.1997.sp004000

S. Weinbaum, 1997 Whitaker Distinguished Lecture: Models to Solve Mysteries in Biomechanics at the Cellular Level; A New View of Fiber Matrix Layers, Annals of Biomedical Engineering, vol.26, issue.4, pp.627-643
DOI : 10.1114/1.134

A. H. Salmon and S. C. Satchell, Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability, The Journal of Pathology, vol.172, issue.4, pp.562-574, 2012.
DOI : 10.1111/j.1365-2818.1993.tb03405.x

S. Guido and G. Tomaiuolo, Microconfined flow behavior of red blood cells in vitro, Comptes Rendus Physique, vol.10, issue.8, pp.751-763, 2009.
DOI : 10.1016/j.crhy.2009.10.002

S. Chien, Red Cell Deformability and its Relevance to Blood Flow, Annual Review of Physiology, vol.49, issue.1, pp.177-192, 1987.
DOI : 10.1146/annurev.ph.49.030187.001141

E. Evans and R. Hochmuth, Membrane viscoelasticity, Biophysical Journal, vol.16, issue.1, pp.1-11, 1976.
DOI : 10.1016/S0006-3495(76)85658-5

URL : https://doi.org/10.1016/s0006-3495(76)85658-5

R. Waugh and E. Evans, Thermoelasticity of red blood cell membrane, Biophysical Journal, vol.26, issue.1, p.115, 1979.
DOI : 10.1016/S0006-3495(79)85239-X

E. A. Evans, Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests, Biophysical Journal, vol.43, issue.1, p.27, 1983.
DOI : 10.1016/S0006-3495(83)84319-7

J. Mills, L. Qie, M. Dao, C. Lim, and S. Suresh, Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers, pp.169-180, 2004.

E. W. Merrill, Rheology of blood, Physiological Reviews, vol.49, issue.4, pp.863-888, 1969.
DOI : 10.1152/physrev.1969.49.4.863

R. Fåhraeus and T. Lindqvist, THE VISCOSITY OF THE BLOOD IN NARROW CAPILLARY TUBES, American Journal of Physiology-Legacy Content, vol.96, issue.3, pp.562-568, 1931.
DOI : 10.1152/ajplegacy.1931.96.3.562

S. Chien, Shear Dependence of Effective Cell Volume as a Determinant of Blood Viscosity, Science, vol.168, issue.3934, pp.977-979, 1970.
DOI : 10.1126/science.168.3934.977

A. Pries, D. Neuhaus, and P. Gaehtgens, Blood viscosity in tube flow: dependence on diameter and hematocrit, American Journal of Physiology-Heart and Circulatory Physiology, vol.263, issue.6, pp.1770-1778, 1978.
DOI : 10.1152/ajpheart.1992.263.6.H1770

M. Abkarian and A. Viallat, Vesicles and red blood cells in shear flow, Soft Matter, vol.6, issue.4, pp.653-657, 2008.
DOI : 10.1039/b716612e

URL : https://hal.archives-ouvertes.fr/hal-00321718

C. Misbah, Vacillating Breathing and Tumbling of Vesicles under Shear Flow, Physical Review Letters, vol.34, issue.27, p.28104, 2006.
DOI : 10.1002/andp.19113390313

Y. Sui, Y. Chew, P. Roy, Y. Cheng, and H. Low, Dynamic motion of red blood cells in simple shear flow, Physics of Fluids, vol.20, issue.11, p.112106, 1994.
DOI : 10.1115/1.2112907

V. Lebedev, K. Turitsyn, and S. Vergeles, Nearly spherical vesicles in an external flow, New Journal of Physics, vol.10, issue.4, p.43044, 2008.
DOI : 10.1088/1367-2630/10/4/043044

D. Cordasco and P. Bagchi, Orbital drift of capsules and red blood cells in shear flow, Physics of Fluids, vol.28, issue.11, p.91902, 1994.
DOI : 10.1063/1.4820472.3

A. Z. Yazdani and P. Bagchi, Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow, Physical Review E, vol.84, issue.2, p.26314, 2011.
DOI : 10.1016/j.jcp.2008.01.034

X. Grandchamp, G. Coupier, A. Srivastav, C. Minetti, and T. Podgorski, Lift and Down-Gradient Shear-Induced Diffusion in Red Blood Cell Suspensions, Physical Review Letters, vol.283, issue.10, p.108101, 2013.
DOI : 10.1103/PhysRevLett.104.168101

URL : https://hal.archives-ouvertes.fr/hal-00809337

P. Steffen, C. Verdier, and C. Wagner, Quantification of Depletion-Induced Adhesion of Red Blood Cells, Physical Review Letters, vol.42, issue.1, p.18102, 2013.
DOI : 10.1016/j.jmps.2003.09.019

URL : https://hal.archives-ouvertes.fr/hal-00673358

M. Brust, O. Aouane, M. Thiébaud, D. Flormann, C. Verdier et al., The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows Scientific reports, 2014.

E. Damiano, B. Duling, K. Ley, and T. Skalak, Axisymmetric pressure-driven flow of rigid pellets through a cylindrical tube lined with a deformable porous wall layer, Journal of Fluid Mechanics, vol.75, issue.-1, pp.163-189, 1996.
DOI : 10.1161/01.RES.75.5.904

S. Weinbaum, X. Zhang, Y. Han, H. Vink, and S. C. Cowin, Mechanotransduction and flow across the endothelial glycocalyx, Proceedings of the National Academy of Sciences, vol.6, issue.2, pp.7988-7995, 2003.
DOI : 10.1002/cm.970060207

Y. Han, S. Weinbaum, J. A. Spaan, and H. Vink, Large-deformation analysis of the elastic recoil of fibre layers in a Brinkman medium with application to the endothelial glycocalyx, Journal of Fluid Mechanics, vol.554, issue.-1, pp.217-235, 2006.
DOI : 10.1017/S0022112005007779

A. Vink, G. Warnier, F. Brombacher, and J. Renauld, Interleukin 9???induced In Vivo Expansion of the B-1 Lymphocyte Population, The Journal of Experimental Medicine, vol.373, issue.9, pp.1413-1423, 1999.
DOI : 10.1002/eji.1830190315

M. Deng, X. Li, H. Liang, B. Caswell, and G. E. Karniadakis, Simulation and modelling of slip flow over surfaces grafted with polymer brushes and glycocalyx fibres, Journal of Fluid Mechanics, vol.1, pp.192-211, 2012.
DOI : 10.1007/s10439-009-9743-9

T. W. Secomb, R. Hsu, and A. Pries, A model for red blood cell motion in glycocalyx-lined capillaries, American Journal of Physiology-Heart and Circulatory Physiology, vol.273, issue.42, pp.1016-1022, 1998.
DOI : 10.1017/S0022112095002321

E. R. Damiano and T. M. Stace, A Mechano-Electrochemical Model of Radial Deformation of the Capillary Glycocalyx, Biophysical Journal, vol.82, issue.3, pp.1153-1175, 2002.
DOI : 10.1016/S0006-3495(02)75474-X

M. L. Smith, D. S. Long, E. R. Damiano, and K. Ley, Near-Wall ??-PIV Reveals a Hydrodynamically Relevant Endothelial Surface Layer in Venules In Vivo, Biophysical Journal, vol.85, issue.1, pp.637-645, 2003.
DOI : 10.1016/S0006-3495(03)74507-X

E. Damiano, D. Long, and M. Smith, Estimation of viscosity profiles using velocimetry data from parallel flows of linearly viscous fluids: application to microvascular haemodynamics Cyclic motion and inversion of surface flow direction in a dense polymer brush under shear, Journal of Fluid Mechanics EPLEurophysics Letters), vol.512, issue.81 2, pp.1-19, 2004.

F. Léonforte, J. Servantie, C. Pastorino, and M. Müller, Molecular transport and flow past hard and soft surfaces: computer simulation of model systems, Journal of Physics: Condensed Matter, vol.23, issue.18, p.184105, 2011.
DOI : 10.1088/0953-8984/23/18/184105

D. Gennes and P. G. , Scaling theory of polymer adsorption, Journal de Physique, vol.49, issue.B, pp.1445-1452, 1976.
DOI : 10.1051/jphys:0197600370120144500

URL : https://hal.archives-ouvertes.fr/jpa-00208546

P. G. De-gennes, Conformations of Polymers Attached to an Interface, Macromolecules, vol.13, issue.5, pp.1069-1075, 1980.
DOI : 10.1021/ma60077a009

W. Pan, I. Pivkin, and G. Karniadakis, Single-particle hydrodynamics in DPD: A new formulation, EPL (Europhysics Letters), vol.84, issue.1, p.10012, 2008.
DOI : 10.1209/0295-5075/84/10012

N. Spenley, Scaling laws for polymers in dissipative particle dynamics, Europhysics Letters (EPL), vol.49, issue.4, p.534, 2000.
DOI : 10.1209/epl/i2000-00183-2

R. D. Groot and T. J. Madden, Dynamic simulation of diblock copolymer microphase separation, The Journal of Chemical Physics, vol.108, issue.20, pp.8713-8724, 1998.
DOI : 10.1021/ma00112a015

R. D. Groot, Mesoscopic Simulation of Polymer???Surfactant Aggregation, Langmuir, vol.16, issue.19, pp.7493-7502, 2000.
DOI : 10.1021/la000010d

S. Jury, P. Bladon, M. Cates, S. Krishna, M. Hagen et al., Simulation of amphiphilic mesophases using dissipative particle dynamics, Physical Chemistry Chemical Physics, vol.1, issue.9, pp.2051-2056, 1999.
DOI : 10.1039/a809824g

R. D. Groot, Electrostatic interactions in dissipative particle dynamics???simulation of polyelectrolytes and anionic surfactants, The Journal of Chemical Physics, vol.112, issue.24, pp.11265-11277, 2003.
DOI : 10.1103/PhysRevLett.39.95

J. B. Avalos and A. Mackie, Dissipative particle dynamics with energy conservation, Europhysics Letters (EPL), vol.40, issue.2, p.141, 1997.
DOI : 10.1209/epl/i1997-00436-6

URL : http://arxiv.org/pdf/cond-mat/9706217

R. D. Groot and K. Rabone, Mesoscopic Simulation of Cell Membrane Damage, Morphology Change and Rupture by Nonionic Surfactants, Biophysical Journal, vol.81, issue.2, pp.725-736, 2001.
DOI : 10.1016/S0006-3495(01)75737-2

D. A. Fedosov, Multiscale modeling of blood flow and soft matter, 2010.

D. Frenkel and B. Smit, Understanding Molecular Simulation, Computers in Physics, vol.11, issue.4, 2001.
DOI : 10.1063/1.4822570

P. Hoogerbrugge and J. M. Koelman, Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics, Europhysics Letters (EPL), vol.19, issue.3, p.155, 1992.
DOI : 10.1209/0295-5075/19/3/001

B. M. Forrest and U. W. Suter, Accelerated equilibration of polymer melts by time???coarse???graining, The Journal of Chemical Physics, vol.102, issue.18, p.7256, 1995.
DOI : 10.1007/BFb0080201

V. Symeonidis, G. E. Karniadakis, and B. Caswell, Schmidt number effects in dissipative particle dynamics simulation of polymers, The Journal of Chemical Physics, vol.145, issue.18, p.184902, 2006.
DOI : 10.1016/j.jcp.2004.11.020

R. D. Groot and P. B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, The Journal of Chemical Physics, vol.107, issue.11, p.4423, 1997.
DOI : 10.1209/epl/i1997-00260-6

P. Español and P. B. Warren, Statistical Mechanics of Dissipative Particle Dynamics, Europhysics Letters (EPL), vol.30, issue.4, p.191, 1995.
DOI : 10.1209/0295-5075/30/4/001

G. S. Grest and K. Kremer, Molecular dynamics simulation for polymers in the presence of a heat bath, Physical Review A, vol.76, issue.5, pp.3628-3631, 1986.
DOI : 10.1063/1.443476

A. G. Goicochea, E. Mayoral, J. Klapp, and C. Pastorino, Nanotribology of biopolymer brushes in aqueous solution using dissipative particle dynamics simulations: an application to PEG covered liposomes in a theta solvent, Soft Matter, vol.98, issue.1, pp.166-174, 2014.
DOI : 10.1039/fd9949800173

I. V. Pivkin and G. E. Karniadakis, A new method to impose no-slip boundary conditions in dissipative particle dynamics, 114] M. Revenga, I. Zúñiga, and P. Español, pp.114-128, 1999.
DOI : 10.1016/j.jcp.2005.01.006

M. Karttunen, I. Vattulainen, and A. Lukkarinen, Novel methods in soft matter simulations, 2004.
DOI : 10.1007/b95265

I. V. Pivkin and G. E. Karniadakis, Accurate Coarse-Grained Modeling of Red Blood Cells, Physical Review Letters, vol.26, issue.11, p.118105, 2008.
DOI : 10.1016/j.jmps.2003.09.019

D. A. Fedosov, B. Caswell, and G. E. Karniadakis, Systematic coarse-graining of spectrin-level red blood cell models, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.29-32, pp.1937-1948, 2010.
DOI : 10.1016/j.cma.2010.02.001

D. A. Fedosov, B. Caswell, and G. E. Karniadakis, A Multiscale Red Blood Cell Model with Accurate Mechanics, Rheology, and Dynamics, Biophysical Journal, vol.98, issue.10, pp.2215-2225, 2010.
DOI : 10.1016/j.bpj.2010.02.002

G. Li, R. Zhu, and Y. Yang, Polymer solar cells, Nature Photonics, vol.6, issue.3, pp.153-161, 2012.
DOI : 10.1038/nphoton.2011.356

URL : https://hal.archives-ouvertes.fr/hal-01390647

C. W. Hsu, F. Sciortino, and F. W. Starr, Theoretical Description of a DNA-Linked Nanoparticle Self-Assembly, Physical Review Letters, vol.105, issue.5, p.55502, 2010.
DOI : 10.1039/b901436e

L. Rovigatti, F. Smallenburg, F. Romano, and F. Sciortino, Gels of DNA Nanostars Never Crystallize, ACS Nano, vol.8, issue.4, pp.3567-3574, 2014.
DOI : 10.1021/nn501138w

L. Rovigatti, F. Bomboi, and F. Sciortino, Accurate phase diagram of tetravalent DNA nanostars, The Journal of Chemical Physics, vol.140, issue.15, p.154903, 2014.
DOI : 10.1038/nphys2693

P. E. Rouse and . Jr, A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers, The Journal of Chemical Physics, vol.21, issue.7, pp.1272-1280, 1953.
DOI : 10.1063/1.1724075

K. Binder, T. Kreer, and A. Milchev, Polymer brushes under flow and in other out-of-equilibrium conditions, Soft Matter, vol.123, issue.16, p.7159, 2011.
DOI : 10.1063/1.1946749

C. Pastorino, K. Binder, T. Kreer, and M. Müller, Static and dynamic properties of the interface between a polymer brush and a melt of identical chains, The Journal of Chemical Physics, vol.124, issue.6, 2006.
DOI : 10.1007/3-540-69711-X_1

S. Alexander, Adsorption of chain molecules with a polar head a scaling description, Journal de Physique, vol.2, issue.8, pp.983-987, 1977.
DOI : 10.1051/jphys:01977003808098300

URL : https://hal.archives-ouvertes.fr/jpa-00208666

S. Brinkers, H. R. Dietrich, F. H. De-groote, I. T. Young, and B. Rieger, The persistence length of double stranded DNA determined using dark field tethered particle motion, The Journal of Chemical Physics, vol.96, issue.21, p.215105, 2009.
DOI : 10.1002/bip.10151

S. T. Milner, T. A. Witten, and M. E. Cates, Effects of polydispersity in the end-grafted polymer brush, Macromolecules, vol.22, issue.2, pp.853-861, 1989.
DOI : 10.1021/ma00192a057

W. M. De-vos and F. A. Leermakers, Modeling the structure of a polydisperse polymer brush, Polymer, vol.50, issue.1, pp.305-316, 2009.
DOI : 10.1016/j.polymer.2008.10.025

S. M. Balko, T. Kreer, P. J. Costanzo, T. E. Patten, A. Johner et al., Polymer Brushes under High Load, PLoS ONE, vol.2, issue.3, p.58392, 2013.
DOI : 10.1371/journal.pone.0058392.t001

URL : https://doi.org/10.1371/journal.pone.0058392

T. W. Secomb, R. Hsu, and A. R. Pries, Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity, American Journal of Physiology-Heart and Circulatory Physiology, vol.13, issue.2, pp.629-636, 2001.
DOI : 10.1017/S0022112095002321

G. Taylor, Analysis of the Swimming of Microscopic Organisms, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.209, issue.1099, pp.447-461, 1951.
DOI : 10.1098/rspa.1951.0218

D. Das and S. Sabhapandit, Accurate Statistics of a Flexible Polymer Chain in Shear Flow, Physical Review Letters, vol.24, issue.18, p.188301, 2008.
DOI : 10.1103/PhysRevLett.77.2871

S. N. Zhurkov and V. E. Korsukov, Atomic mechanism of fracture of solid polymers, Journal of Polymer Science: Polymer Physics Edition, vol.12, issue.2, pp.385-398, 1974.
DOI : 10.1002/pol.1974.180120211

S. Gerashchenko and V. Steinberg, Statistics of Tumbling of a Single Polymer Molecule in Shear Flow, Physical Review Letters, vol.52, issue.3, p.38304, 2006.
DOI : 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G

C. Schroeder, R. Teixeira, E. Shaqfeh, and S. Chu, Characteristic Periodic Motion of Polymers in Shear Flow, Physical Review Letters, vol.14, issue.1, p.18301, 2005.
DOI : 10.1122/1.1648643

D. E. Smith, H. P. Babcock, and S. Chu, Single-Polymer Dynamics in Steady Shear Flow, Science, vol.283, issue.5408, pp.1724-1727, 1999.
DOI : 10.1126/science.283.5408.1724

R. Delgado-buscalioni, Cyclic Motion of a Grafted Polymer under Shear Flow, Physical Review Letters, vol.96, issue.8, p.88303, 2006.
DOI : 10.1017/S0022112096004302

P. S. Doyle, B. Ladoux, and J. Viovy, Dynamics of a Tethered Polymer in Shear Flow, Physical Review Letters, vol.78, issue.20, p.4769, 2000.
DOI : 10.1103/PhysRevLett.78.1182

G. K. Batchelor, An introduction to fluid dynamics, 2000.
DOI : 10.1017/CBO9780511800955

M. Saphiannikova, I. Neelov, V. Pryamitsyn, A. Darinskii, and F. Sundholm, Computer simulation of polymer brushes under shear, Rheologica Acta, vol.39, issue.5, pp.469-475, 2000.
DOI : 10.1007/s003970000092

G. H. Fredrickson, A. Ajdari, L. Leibler, and J. P. Carton, Surface modes and deformation energy of a molten polymer brush, Macromolecules, vol.25, issue.11, pp.2882-2889, 1992.
DOI : 10.1021/ma00037a015

H. Xi and S. T. Milner, Surface Waves on Polymer Brushes, Macromolecules, vol.29, issue.13, pp.4772-4776, 1996.
DOI : 10.1021/ma951325g

L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd, 1986.

H. U. Sverdrup and W. H. Munk, Wind, sea, and swell: theory of relations for forecasting, 1947.

V. Kumaran and R. Muralikrishnan, Spontaneous Growth of Fluctuations in the Viscous Flow of a Fluid past a Soft Interface, Physical Review Letters, vol.294, issue.15, pp.3310-3313, 2000.
DOI : 10.1017/S0022112095002886

S. Mandre and L. Mahadevan, A generalized theory of viscous and inviscid flutter, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.408, issue.6814, 2009.
DOI : 10.1038/35048530

J. Elgeti and G. Gompper, Emergence of metachronal waves in cilia arrays, Proceedings of the National Academy of Sciences, pp.4470-4475, 2013.
DOI : 10.1038/nrm2278

J. R. Blake, A model for the micro-structure in ciliated organisms, Journal of Fluid Mechanics, vol.20, issue.01, pp.1-23, 1972.
DOI : 10.1098/rspa.1922.0078

F. Gosselin and E. De-langre, Destabilising effects of plant flexibility in air and aquatic vegetation canopy flows, European Journal of Mechanics - B/Fluids, vol.28, issue.2, pp.271-282, 2009.
DOI : 10.1016/j.euromechflu.2008.06.003

URL : https://hal.archives-ouvertes.fr/hal-01021131

C. Py, E. De-langre, and B. Moulia, A frequency lock-in mechanism in the interaction between wind and crop canopies, Journal of Fluid Mechanics, vol.568, pp.425-449, 2006.
DOI : 10.1017/S0022112006002667

URL : https://hal.archives-ouvertes.fr/hal-01023348

M. Dabagh, P. Jalali, P. J. Butler, and J. M. , Shear-induced force transmission in a multicomponent, multicell model of the endothelium, Journal of The Royal Society Interface, vol.4, issue.7303, p.20140431, 2014.
DOI : 10.1038/ncomms2560

Y. Yao, Three-dimensional flow-induced dynamics of the endothelial surface glycocalyx layer, 2007.

D. A. Fedosov, M. Peltomäki, and G. Gompper, Deformation and dynamics of red blood cells in flow through cylindrical microchannels, Soft Matter, vol.84, issue.24, pp.4258-4267, 2014.
DOI : 10.1103/PhysRevE.84.026314

T. W. Secomb, R. Skalak, N. Ozkaya, and J. Gross, Flow of axisymmetric red blood cells in narrow capillaries, Journal of Fluid Mechanics, vol.17, issue.-1, pp.405-423, 1986.
DOI : 10.1016/0025-5564(77)90078-5

G. Tomaiuolo, M. Simeone, V. Martinelli, B. Rotoli, and S. Guido, Red blood cell deformation in microconfined flow, Soft Matter, vol.33, issue.15, pp.3736-3740, 2009.
DOI : 10.1039/b904584h

T. W. Sirk, Y. R. Slizoberg, J. K. Brennan, M. Lisal, and J. W. Andzelm, An enhanced entangled polymer model for dissipative particle dynamics, The Journal of Chemical Physics, vol.136, issue.13, p.134903, 2012.
DOI : 10.1016/B978-012267351-1/50016-X

R. Potestio, S. Fritsch, P. Espanol, R. Delgado-buscalioni, K. Kremer et al., Hamiltonian Adaptive Resolution Simulation for Molecular Liquids, Physical Review Letters, vol.110, issue.10, p.108301, 2013.
DOI : 10.1140/epje/i2008-10413-5

C. Pozrikidis, Boundary integral and singularity methods for linearized viscous flow, 1992.
DOI : 10.1017/CBO9780511624124

H. Bekker, Molecular dynamics simulation methods revised, 1996.