A. Valencia, M. Talbaut, J. Yon, G. Godard, C. Gobin et al., Soot and velocity mapping and 2D soot sheet dimensions in a buoyant wall-fire, Proceedings of the Combustion Instintute, pp.3219-3226, 2017.
DOI : 10.1016/j.proci.2016.06.142

URL : https://hal.archives-ouvertes.fr/hal-01611165

A. Valencia, M. Talbaut, J. Yon, G. Godard, and C. Gobin, Alexis Coppalle . -Présentation orale -'Soot and velocity mapping and 2D soot sheet dimensions in a buoyant wall-fire, 36th International Symposium on Combustion, pp.31-36

A. Valencia, A. Coppalle, M. Talbaut, and G. Godard, Carole Gobin, -Poster 'Fully Soot sheet characterization in a Vertical Wall-Flame by Laser Induced Incandescence (LII)', 7th European Combustion Meeting, 2015.

A. Valencia, M. Talbaut, and B. Lecordier, Alexis Coppalle, -Présentation orale -'Mesures de vitesse par PIV dans une flame de paroi-verticale générant des suies et dominée par la flottabilité, 15ème Congrès Francophone de Techniques Laser (CFTL 2016), pp.13-16

A. Valencia and M. Talbaut, Alexis Coppalle. -Présentation orale -'Diagnosticos laser aplicado a la combistion'. Semana de mecanica UTP, Pereira -Colombia, 2016.

D. Hebert, A. Valencia, M. Talbaut, A. Coppalle, and J. , Yon -Poster -' Mesures in-situ et ex-situ de l'extinction optique dans des flammes de paroi verticale, dans le spectre visible et proche IR : Impact de la température des suies et du combustible sur les propriétés optiques des suies, pp.26-29, 2015.

D. Annexe, A. De-publications-et-conférences, M. Valencia, A. Talbaut, and . Coppalle, -Présentation orale-' Caractérisation des structures de suies dans une flamme verticale de PMMA par LII. Pré-étude sur brûleur gaz, pp.29-30, 2015.

A. Valencia, M. Talbaut, and A. Coppalle, -Poster -' ´ Etude statistique des structures de formation de suies. Pré-étude sur brûleur gaz '. 19ème journée du GDR Feux, pp.25-27, 2014.

P. Joulain, Convective and radiative transport in pool and wall fires: 20 years of research in Poitiers, Fire Safety Journal, vol.26, issue.2, pp.99-149, 1996.
DOI : 10.1016/0379-7112(96)00004-5

M. Annarumma, L. Audouin, J. Most, and P. Joulain, Wall fire close to an horizontal surface: Numerical modelling and experimental validation, Fire and Materials, vol.24, issue.1, pp.1-13, 1992.
DOI : 10.1002/fam.810160102

M. Talbaut, D. Hebert, and A. , Coppalle. 2d soot concentration and burning rate of a vertical pmma slab using laser-induced incandescence, Proceedings of the combustion institute, pp.2575-2582, 2013.

V. Babrauskas and S. J. Grayson, Heat release in fires, 1990.

L. Orloff, J. De-ris, and G. H. Markstein, Upward turbulent fire spread and burning of fuel surface, Symposium (International) on Combustion, vol.15, issue.1, pp.183-192, 1975.
DOI : 10.1016/S0082-0784(75)80296-7

J. De-ris and L. Orloff, The role of buoyancy direction and radiation in turbulent diffusion flames on surfaces, Symposium (International) on Combustion, vol.15, issue.1, pp.175-182, 1975.
DOI : 10.1016/S0082-0784(75)80295-5

G. Ellen, A. K. Brehob, and . Kulkarni, Experimental measurements of upward flame spread on a vertical wall with external radiation, Fire Safety Journal, vol.31, issue.3, pp.181-200, 1998.

Y. Pizzo, C. Lallemand, A. Kacem, A. Kaiss, J. Gerardin et al., Steady and transient pyrolysis of thick clear PMMA slabs, Combustion and Flame, vol.162, issue.1, pp.226-236, 2015.
DOI : 10.1016/j.combustflame.2014.07.004

URL : https://hal.archives-ouvertes.fr/hal-01417338

A. K. Kulkarni and J. J. Hwang, Vertical wall fire in a stratified ambient atmosphere, Symposium (International) on Combustion, pp.45-51, 1988.
DOI : 10.1016/S0082-0784(88)80230-3

H. Y. Wang, M. Coutin, and J. M. Most, Large-eddy-simulation of buoyancy-driven fire propagation behind a pyrolysis zone along a vertical wall, Fire Safety Journal, vol.37, issue.3, pp.259-285, 2002.
DOI : 10.1016/S0379-7112(01)00050-9

Y. Ning-ren, S. Wang, A. Vilfayeau, and . Trouvé, Large eddy simulation of turbulent vertical wall fires supplied with gaseous fuel through porous burners, Combustion and Flame, vol.169, pp.194-208, 2016.

F. A. Williams, Mechanisms of fire spread, Symposium (International) on Combustion, pp.1281-1294, 1977.
DOI : 10.1016/S0082-0784(77)80415-3

A. C. Fernandez-pello and T. Hirano, Controlling Mechanisms of Flame Spread, Combustion Science and Technology, vol.5, issue.2, pp.1-31, 1983.
DOI : 10.1080/00102207208952309

M. Sam, G. S. Dakka, J. L. Jackson, and . Torero, Mechanisms controlling the degradation of poly(methyl methacrylate) prior to piloted ignition, Proceedings of the Combustion Institute, pp.281-287, 2002.

R. T. Long, J. L. Torero, J. G. Quintiere, and A. C. Fernandez-pello, Scale And Transport Considerations On Piloted Ignition Of Pmma, Fire Safety Science, vol.6, pp.567-578, 2000.
DOI : 10.3801/IAFSS.FSS.6-567

K. Saito, J. G. Quintiere, and F. A. Williams, Upward Turbulent Flame Spread, Fire Safety Science, vol.1, pp.75-86, 1986.
DOI : 10.3801/IAFSS.FSS.1-75

J. Quintiere, M. Harkleroad, and Y. Hasemi, Wall Flames and Implications for Upward Flame Spread, Combustion Science and Technology, vol.48, issue.3-4, pp.191-222, 1986.
DOI : 10.6028/NBS.IR.84-2960

T. Isaac, S. I. Leventon, and . Stoliarov, Evolution of flame to surface heat flux during upward flame spread on poly(methyl methacrylate, Proceedings of the Combustion Institute, pp.2523-2530, 2013.

D. Hébert, Etude de la combustion des matériaux solides, application à la sécurité incendie, 2012.

J. L. Consalvi, Y. Pizzo, and B. Porterie, Numerical analysis of the heating process in upward flame spread over thick PMMA slabs, Fire Safety Journal, vol.43, issue.5, pp.351-362, 2008.
DOI : 10.1016/j.firesaf.2007.10.004

J. Fenghui, Flame radiation from polymer, Fire Safety Journal, vol.30, pp.383-395, 1998.

M. M. Khan, J. Fenghui, and J. L. De-ris, Absorption of thermal energy in pmma in-depth radiation, Fire Sa, vol.44, pp.106-112, 2009.

G. H. Markstein and J. De-ris, Wall-fire radiant emission???Part 2: Radiation and heat transfer from porous-metal wall burner flames, Symposium (International) on Combustion, vol.24, issue.1, pp.1747-1752, 1992.
DOI : 10.1016/S0082-0784(06)80204-3

J. X. Wen and L. Y. Huang, CFD modelling of confined jet fires under ventilation-controlled conditions, Fire Safety Journal, vol.34, issue.1, pp.1-24, 2000.
DOI : 10.1016/S0379-7112(99)00052-1

C. Sherman, R. K. Cheung, G. Yuen, G. W. Yeoh, and . Cheng, Contribution of soot particles on global radiative heat transfer in a two-compartment fire, Fire Safety Journal, vol.39, issue.5, pp.412-428, 2004.

H. Bedir and J. S. Tien, A computational study of flame radiation in PMMA diffusion flames including fuel vapor participation, Symposium (International) on Combustion, vol.27, issue.2, pp.2821-2828, 1998.
DOI : 10.1016/S0082-0784(98)80140-9

F. Jiang, J. L. De-ris, H. Qi, and M. M. Khan, Radiation blockage in small scale PMMA combustion, Proceedings of the Combustion Institute, pp.2657-2664, 2011.
DOI : 10.1016/j.proci.2010.08.007

H. A. Michelsen, Probing soot formation, chemical and physical evolution, and oxidation: A review of in situ diagnostic techniques and needs, Proceedings of the Combustion Institute, pp.717-735, 2017.
DOI : 10.1016/j.proci.2016.08.027

J. Yon, R. Lemaire, E. Therssen, P. Desgroux, A. Coppalle et al., Examination of wavelength dependent soot optical properties of??diesel and diesel/rapeseed methyl ester mixture by extinction spectra analysis and LII measurements, Applied Physics B, vol.1, issue.2, pp.253-271, 2011.
DOI : 10.1007/s00340-006-2260-8

URL : https://hal.archives-ouvertes.fr/hal-01613299

J. Nathan, M. B. Kempema, and . Long, Combined optical and {TEM} investigations for a detailed characterization of soot aggregate properties in a laminar coflow diffusion flame, Combustion and Flame, vol.164, pp.373-385, 2016.

F. X. Ouf, J. Yon, P. Ausset, A. Coppalle, and M. Maillé, Influence of Sampling and Storage Protocol on Fractal Morphology of Soot Studied by Transmission Electron Microscopy, Aerosol Science and Technology, vol.41, issue.11, pp.1005-1017, 2010.
DOI : 10.1016/S0017-9310(99)00382-8

URL : https://hal.archives-ouvertes.fr/hal-01613301

H. Wang, Formation of nascent soot and other condensed-phase materials in flames, Proceedings of the Combustion Institute, pp.41-67, 2011.
DOI : 10.1016/j.proci.2010.09.009

C. S. Mcenally, L. D. Pfefferle, B. Atakan, and K. Kohse-höinghaus, Studies of aromatic hydrocarbon formation mechanisms in flames: Progress towards closing the fuel gap, Progress in Energy and Combustion Science, pp.247-294, 2006.
DOI : 10.1016/j.pecs.2005.11.003

C. Schoemaecker-moreau, Diagnostique laser dans une flamme de diffusion : imagerie quantitative de nanoparticules de suies et d'espèces majoritaires et minoritaires, 2002.

B. Öktem, M. P. Tolocka, B. Zhao, H. Wang, and M. V. Johnston, Chemical species associated with the early stage of soot growth in a laminar premixed ethylene???oxygen???argon flame, Combustion and Flame, vol.142, issue.4, pp.364-373, 2005.
DOI : 10.1016/j.combustflame.2005.03.016

D. Aamir, N. Abid, E. D. Heinz, D. J. Tolmachoff, C. S. Phares et al., On evolution of particle size distribution functions of incipient soot in premixed ethylene?oxygen?argon flames, Combustion and Flame, vol.154, issue.4, pp.775-788, 2008.

R. A. Dobbins, Physical and Chemical Aspects of Combustion, chapter The Early Soot Particles Formation in Hydrocarbon Flames, pp.107-133, 1997.

R. A. Dobbins, Hydrocarbon Nanoparticles Formed in Flames and Diesel Engines, Aerosol Science and Technology, vol.52, issue.5, pp.485-496, 2007.
DOI : 10.1016/S1352-2310(02)00354-0

URL : http://www.tandfonline.com/doi/pdf/10.1080/02786820701225820?needAccess=true

M. Balthasar and M. Frenklach, Monte-Carlo simulation of soot particle coagulation and aggregation: the effect of a realistic size distribution, Proceedings of the Combustion Institute, pp.1467-1475, 2005.
DOI : 10.1016/j.proci.2004.07.035

R. Jullien and R. Botet, Aggregation and Fractal Aggregates, World Scientific, 1987.
DOI : 10.1080/00107518708213736

A. Bescond, Contribution à la métrologie des nanoparticules de suie et à la caractérisation des particules produites par un générateur de référence, 2015.

T. Ishiguro, N. Suzuki, Y. Fujitani, and H. Morimoto, Microstructural changes of diesel soot during oxidation, Combustion and Flame, vol.85, issue.1-2, pp.1-6, 1991.
DOI : 10.1016/0010-2180(91)90173-9

R. Puri, T. F. Richardson, R. J. Santoro, and R. A. Dobbins, Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame, Combustion and Flame, vol.92, issue.3, pp.320-333, 1993.
DOI : 10.1016/0010-2180(93)90043-3

A. D. Sediako, C. Soong, J. Y. Howe, M. R. Kholghy, and M. J. Thomson, Real-time observation of soot aggregate oxidation in an Environmental Transmission Electron Microscope, Proceedings of the Combustion Institute, pp.841-851, 2017.
DOI : 10.1016/j.proci.2016.07.048

K. G. Neoh, J. B. Howard, and A. F. Saforim, Particulate Carbon : Formation During Combustion, chapter Soot Oxidation in Flames, pp.261-282, 1981.

I. Glassman, Sooting laminar diffusion flames: Effect of dilution, additives, pressure, and microgravity, Symposium (International) on Combustion, pp.1589-1596, 1998.
DOI : 10.1016/S0082-0784(98)80568-7

S. J. Toner and R. C. Miake-lye, Laser soot-scattering imaging of a large bouyant diffusion flame, Combustion and Flame, vol.67, pp.9-26, 1987.

J. Cameron, D. M. Dasch, and . Heffelfinger, Planar imaging of soot formation in turbulent ethylene diffusion flames : Fluctuations and integral scales, Combustion and Flame, vol.85, issue.3?4, pp.389-402, 1991.

N. H. Qamar, G. J. Nathan, Z. A. , Z. T. Alwahabi, and K. D. King, The effect of global mixing on soot volume fraction: measurements in simple jet, precessing jet, and bluff body flames, Proceedings of the combustion institute, pp.1493-1500, 2005.
DOI : 10.1016/j.proci.2004.08.102

N. H. Qamar, Z. T. Alwahabi, Q. N. Chan, G. J. Nathan, D. Roekaerts et al., Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas, Combustion and Flame, vol.156, issue.7, pp.1561339-1347, 2009.
DOI : 10.1016/j.combustflame.2009.02.011

Z. T. Alwahabi, N. H. Qamar, and G. J. Nathan, Soot sheet dimensions in turbuent nonpremixed flames, Combustion and Flame, vol.158, pp.2458-2464, 2011.

S. Lee, S. R. Turns, and R. J. Santoro, Measurements of soot, OH, and PAH concentrations in turbulent ethylene/air jet flames, Combustion and Flame, vol.156, issue.12, pp.2264-2275, 2009.
DOI : 10.1016/j.combustflame.2009.09.005

M. Köhler, K. Geigle, T. Blacha, P. Gerlinger, and W. Meier, Experimental characterization and numerical simulation of a sooting lifted turbulent jet diffusion flame, Combustion and Flame, vol.159, issue.8, pp.2620-2635, 2012.
DOI : 10.1016/j.combustflame.2012.01.015

B. Franzelli, P. Scouflaire, and S. Candel, Time-resolved spatial patterns and interactions of soot, PAH and OH in a turbulent diffusion flame, Proceedings of the Combustion Institute, pp.1921-1929, 2015.
DOI : 10.1016/j.proci.2014.06.123

URL : https://hal.archives-ouvertes.fr/hal-01272973

K. Peter-geigle, M. Köhler, W. O?loughlin, and W. Meier, Investigation of soot formation in pressurized swirl flames by laser measurements of temperature , flame structures and soot concentrations, Proceedings of the Combustion Institute, pp.3373-3380, 2015.

M. Köhler, K. P. Geigle, W. Meier, B. M. Crosland, K. A. Thomson et al., Sooting turbulent jet flame: characterization and??quantitative??soot??measurements, Applied Physics B, vol.132, issue.2, pp.409-425, 2011.
DOI : 10.1115/1.4001825

M. Köhler, I. Boxx, K. P. Geigle, and W. Meier, Simultaneous planar measurements of soot structure and velocity fields in a turbulent lifted jet flame at 3 kHz, Applied Physics B, vol.160, issue.2, p.271, 2011.
DOI : 10.1080/00102200008935801

V. Narayanaswamy and N. T. Clemens, Simultaneous LII and PIV measurements in the soot formation region of turbulent non-premixed jet flames, Proceedings of the Combustion Institute, pp.1455-1463, 2013.
DOI : 10.1016/j.proci.2012.06.018

K. Peter-geigle, R. Hadef, M. Stöhr, and W. Meier, Flow field characterization of pressurized sooting swirl flames and relation to soot distributions, Proceedings of the Combustion Institute, pp.3917-3924, 2017.

R. W. Weeks and W. W. Duley, laser pulses, Journal of Applied Physics, vol.45, issue.10, pp.4661-4662, 1974.
DOI : 10.1109/JQE.1972.1076905

A. C. Eckbreth, Effects of laser???modulated particulate incandescence on Raman scattering diagnostics, Journal of Applied Physics, vol.3, issue.11, pp.4473-4479, 1977.
DOI : 10.1364/AO.3.000867

A. Lynn and . Melton, Soot diagnostics based on laser heating, Appl. Opt, vol.23, issue.13, pp.2201-2208, 1984.

C. J. Dasch, Continuous-wave probe laser investigation of laser vaporization of small soot particles in a flame, Applied Optics, vol.23, issue.13, pp.2209-2215, 1984.
DOI : 10.1364/AO.23.002209

L. Randall and . Vanderwal, Laser-induced incandescence : detection issues, Appl. Opt, vol.35, issue.33, pp.6548-6559, 1996.

R. Christopher, K. C. Shaddix, and . Smyth, Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames, Combustion and Flame, vol.107, issue.4, pp.418-452, 1996.

S. Will, S. Schraml, and A. Leipert, Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII), Symposium (International) on Combustion, vol.26, issue.2, pp.2277-2284, 1996.
DOI : 10.1016/S0082-0784(96)80055-5

J. Delhay, Y. Bouvier, E. Therssen, J. D. Black, and P. Desgroux, 2D imaging of laser wing effects and of soot sublimation in laser-induced incandescence measurements, Applied Physics B, vol.430, issue.2-3, pp.181-186, 2005.
DOI : 10.1007/s00340-005-1911-5

J. Reimann, S. Kuhlmann, and S. Will, Investigations on Soot Formation in Heptane Jet Diffusion Flames by Optical Techniques, Microgravity Science and Technology, vol.37, issue.4, pp.499-505, 2010.
DOI : 10.1016/S0082-0784(96)80055-5

H. Bladh, J. Johnsson, J. Rissler, H. Abdulhamid, N. Olofsson et al., Influence of soot particle aggregation on time-resolved laser-induced incandescence signals, Applied Physics B, vol.33, issue.2, pp.331-341, 2011.
DOI : 10.1016/j.proci.2010.06.166

R. Hadef, K. Peter-geigle, W. Meier, and M. Aigner, Soot characterization with laser-induced incandescence applied to a laminar premixed ethylene?air flame, International Journal of Thermal Sciences, issue.8, pp.491457-1467, 2010.
DOI : 10.1016/j.ijthermalsci.2010.02.014

R. Boman-axelsson, P. Collin, and . Bengtsson, Laser-induced incandescence for soot particle size measurements in premixed flat flames, Applied Optics, vol.39, issue.21, pp.3683-3690, 2000.
DOI : 10.1364/AO.39.003683

S. Bejaoui, S. Batut, E. Therssen, N. Lamoureux, P. Desgroux et al., Measurements and modeling of laser-induced incandescence of soot at different heights in a flat premixed flame, Applied Physics B, vol.104, issue.3, pp.449-469, 2015.
DOI : 10.1063/1.2973666

C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will et al., Laser-induced incandescence: recent trends and current questions, Applied Physics B, vol.94, issue.3, pp.333-354, 2006.
DOI : 10.1002/bbpc.19870910812

M. Hofmann, B. F. Kock, T. Dreier, H. Jander, and C. Schulz, Laser-induced incandescence for soot-particle sizing at elevated pressure, Applied Physics B, vol.59, issue.3-4, pp.629-639, 2008.
DOI : 10.1016/S0082-0784(88)80335-7

K. A. Thomson, D. R. Snelling, G. J. Smallwood, and F. Liu, Laser induced incandescence measurements of soot volume fraction and effective particle size in a laminar co-annular non-premixed methane/air flame at pressures between 0.5???4.0??MPa, Applied Physics B, vol.21, issue.3, pp.5-9, 2006.
DOI : 10.1016/S0082-0784(88)80342-4

P. Desgroux, X. Mercier, B. Lefort, R. Lemaire, E. Therssen et al., Soot volume fraction measurement in low-pressure methane flames by combining laserinduced incandescence and cavity ring-down spectroscopy : Effect of pressure on soot formation, Combustion and Flame, issue.1?2, pp.155289-301, 2008.

B. F. Kock, B. Tribalet, C. Schulz, and P. Roth, Two-color time-resolved LII applied to soot particle sizing in the cylinder of a Diesel engine, Combustion and Flame, vol.147, issue.1-2, pp.79-92, 2006.
DOI : 10.1016/j.combustflame.2006.07.009

H. Bladh, L. Hildingsson, and V. Gross, Anders Hultqvist, and Per-Erik Bengtsson . Quantitative soot measurements in an HSDI Diesel engine, 2006.

E. John and . Dec, Soot distribution in a d.i. diesel engine using 2-d imaging of laserinduced incandescence, elastic scattering, and flame luminosity, SAE Technical Paper. SAE International, 1992.

C. Crua, D. A. Kennaird, and M. R. Heikal, Laser-induced incandescence study of diesel soot formation in a rapid compression machine at elevated pressures, Combustion and Flame, vol.135, issue.4, pp.475-488, 2003.
DOI : 10.1016/S0010-2180(03)00183-4

E. Cenker, K. Kondo, G. Bruneaux, T. Dreier, T. Aizawa et al., Assessment of soot particle-size imaging with LII at Diesel engine conditions, Applied Physics B, vol.6, issue.4, pp.765-776, 2015.
DOI : 10.4271/2013-01-0912

URL : https://hal.archives-ouvertes.fr/hal-01176511

B. Bougie, L. C. Ganippa, A. P. Van-vliet, W. L. Meerts, N. J. Dam et al., Soot particulate size characterization in a heavy-duty diesel engine for different engine loads by laser-induced incandescence, Proceedings of the Combustion Institute, pp.31685-691, 2007.
DOI : 10.1016/j.proci.2006.08.040

R. Ryser, T. Gerber, and T. Dreier, Soot particle sizing during high-pressure Diesel spray combustion via time-resolved laser-induced incandescence, Combustion and Flame, vol.156, issue.1, pp.120-129, 2009.
DOI : 10.1016/j.combustflame.2008.08.005

K. Mark, D. L. Case, and . Hofeldt, Soot mass concentration measurements in diesel engine exhaust using laser-induced incandescence, Aerosol Science and Technology, vol.25, issue.1, pp.46-60, 1996.

O. Peter, S. P. Witze, J. M. Huff, B. H. Storey, and . West, Time-resolved laser-induced incandescence measurements of particulate emissions during enrichment for diesel lean nox trap regeneration, SAE Technical Paper. SAE International, 2005.

J. H. Kent and S. J. Bastin, Parametric effects on sooting in turbulent acetylene diffusion flames, Combustion and Flame, vol.56, issue.1, pp.29-42, 1984.
DOI : 10.1016/0010-2180(84)90003-8

A. Coppalle and D. Joyeux, Temperature and soot volume fraction in turbulent diffusion flames: Measurements of mean and fluctuating values, Combustion and Flame, vol.96, issue.3, pp.275-285, 1994.
DOI : 10.1016/0010-2180(94)90014-0

F. Bjjrn and . Magnussen, An investigation into the behavior of soot in a turbulent free jet c2h2-flame, Symposium (International) on Combustion Fifteenth Symposium (International) on Combustion, pp.1415-1425, 1975.

H. Geitlinger, . Th, R. Streibel, H. Suntz, and . Bockhorn, Two-dimensional imaging of soot volume fractions, particle number densities, and particle radii in laminar and turbulent diffusion flames, Twenty-Seventh Sysposium (International) on Combustion Volume One, pp.1613-1621, 1998.
DOI : 10.1016/S0082-0784(98)80571-7

J. P. Gore and Y. Xin, Two-dimensional soot distribution, Proceedings of the combustion institute, pp.719-726, 2005.

K. H. Tran, S. Courdert, P. Desgroux, S. Grout, A. Cessou et al., Combined measurements of velocity and soot volume fraction field in a turbulent jet flame, European Combustion Meeting, 2013.

K. Peter-geigle, O. William, R. Loughlin, W. Hadef, and . Meier, Visualization of soot inception in turbulent pressurized flames by simultaneous measurement of laser-induced fluorescence of polycyclic aromatic hydrocarbons and laser-induced incandescence, and correlation to OH distributions, Applied Physics B, vol.188, issue.481, pp.717-730, 2015.
DOI : 10.1524/zpch.1995.188.Part_1_2.159

H. A. Michelsen, C. Schulz, G. J. Smallwood, and S. Will, Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications, Progress in Energy and Combustion Science, pp.2-48, 2015.
DOI : 10.1016/j.pecs.2015.07.001

R. L. Vander-wal, T. M. Ticich, and A. B. Stephens, Optical and microscopy investigations of soot structure alterations by laser-induced incandescence, Applied Physics B: Lasers and Optics, vol.67, issue.1, pp.115-123, 1998.
DOI : 10.1007/s003400050483

H. Bladh, J. Johnsson, and P. Bengtsson, On the dependence of the laser-induced incandescence (LII) signal on soot volume fraction for variations in particle size, Applied Physics B, vol.123, issue.1, pp.109-125, 2008.
DOI : 10.1002/9783527618156

T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence, Applied Optics, vol.34, issue.30, pp.7083-7091, 1995.
DOI : 10.1364/AO.34.007083

M. L. Riethmuller, Vélocimétrie par image de particules ou piv : synthèse des travaux récents, 5ème congrès francophone de vélocimétrie laser, 1996.

A. Schröder and C. E. Willert, Particle Image Velocimetry - New Developments and Recents Applications, 2008.

Y. Hattori, T. Tsuji, Y. Nagano, and N. Tanaka, Effects of freestream on turbulent combined-convection boundary layer along a vertical heated plate, International Journal of Heat and Fluid Flow, vol.22, issue.3, pp.315-322, 2001.
DOI : 10.1016/S0142-727X(01)00094-7

Y. Hattori, T. Tsuji, Y. Nagano, and N. Tanaka, Turbulence characteristics of natural-convection boundary layer in air along a vertical plate heated at high temperatures, International Journal of Heat and Fluid Flow, vol.27, issue.3, pp.445-455, 2006.
DOI : 10.1016/j.ijheatfluidflow.2005.11.007

B. Lecordier, Etude de l'interaction de la propagation d'une flamme prémelangé avec le champ de vitesse aérodynamique, par association de la tomographie laser et de la vélocimétrie par images de particules, 1997.

A. Boutier, D. Arnal, B. Lecordier, P. Millan, J. Most et al., Vélocimétrie laser pour la mécanique des fluides, Hermes Science, 2012.

O. Park, R. A. Burns, R. H. Oliver, N. T. Buxton, and . Clemens, Mixture fraction, soot volume fraction, and velocity imaging in the soot-inception region of a turbulent non-premixed jet flame, Proceedings of the Combustion Institute, 2016.
DOI : 10.1016/j.proci.2016.08.048

M. Marin and F. Baillot, Experimental study of the lifting characteristics of the leading-edge of an attached non-premixed jet-flame: Air-side or fuel-side dilution, Combustion and Flame, vol.171, pp.264-280, 2016.
DOI : 10.1016/j.combustflame.2016.05.025

URL : https://hal.archives-ouvertes.fr/hal-01611244

M. Marin, Etude de l'influence de la dilution du combustible et de l'oxydant dans le processus de décrochage de fflamme-jet non-prémélangées et l'émission de polluants, 2016.

M. Coutin, Etude expérimental et théorique de l'influence de l'entraînement naturel de l'air sur le comportement d'une flamme représentative d'un incendie, 2000.

L. Audouin, G. Kolb, J. L. Torero, and J. M. Most, Average centreline temperatures of a buoyant pool fire obtained by image processing of video recordings, Fire Safety Journal, vol.24, issue.2, pp.167-187, 1995.
DOI : 10.1016/0379-7112(95)00021-K

G. Bertin, J. Most, and M. Coutin, Wall fire behavior in an under-ventilated room, Fire Safety Journal, vol.37, issue.7, pp.615-630, 2002.
DOI : 10.1016/S0379-7112(02)00016-4

T. Mouton, X. Mercier, M. Wartel, N. Lamoureux, and P. Desgroux, Laser-induced incandescence technique to identify soot nucleation and very small particles in low-pressure methane flames, Applied Physics B, vol.27, issue.1, pp.369-379, 2013.
DOI : 10.1016/S0082-0784(98)80565-1

URL : https://hal.archives-ouvertes.fr/hal-01056655

H. A. Michelsen, P. O. Witze, D. Kayes, and S. Hochgreb, Time-resolved laser-induced incandescence of soot: the influence of experimental factors and microphysical mechanisms, Applied Optics, vol.42, issue.27, pp.5577-5590, 2003.
DOI : 10.1364/AO.42.005577

F. Cignoli, S. Benecchi, and G. Zizak, Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames, Applied Optics, vol.33, issue.24, pp.5778-5782, 1994.
DOI : 10.1364/AO.33.005778

H. Freeman, On the Encoding of Arbitrary Geometric Configurations, IEEE Transactions on Electronic Computers, vol.10, issue.2, pp.260-268, 1961.
DOI : 10.1109/TEC.1961.5219197

B. ?alik and N. Lukac, Chain code lossless compression using move-tofront transform and adaptive run-length encoding, Signal Processing : Image Communication, vol.29, issue.1, pp.96-106, 2014.

K. Mark, D. L. Case, and . Hofeldt, Soot mass concentration measurements in diesel engine exhaust using laser-induced incandescence, Aerosol Science and Technology, vol.25, issue.1, pp.46-60, 1996.

E. Brugière, Le spectromètre thermoporéique circulaire, un nouvel instrument pour mesurer le thermophorèse : application aux agrégats de suies de morphologie fractale

S. Herman, Boundary-Layer Theory. McGraw-Hill's series in mechanical engineering, 1979.

B. M. Cetegen and S. Basu, Soot topography in a planar diffusion flame wrapped by a line vortex, Combustion and Flame, vol.146, issue.4, pp.687-697, 2006.
DOI : 10.1016/j.combustflame.2006.06.005

B. Franzelli, A. Cuoci, A. Stagni, M. Ihme, T. Faravelli et al., Numerical investigation of soot-flame-vortex interaction, Proceedings of the Combustion Institute, 2016.
DOI : 10.1016/j.proci.2016.07.128

URL : https://hal.archives-ouvertes.fr/hal-01480272

M. Annarumma, Modèlisation numérique et validation expérimental des fflamme de Diffusion turbuents dominées par les effets de gravité, 1989.

A. Attili, F. Bisetti, M. E. Mueller, and H. Pitsch, Damköhler number effects on soot formation and growth in turbulent nonpremixed flames, Proceedings of the Combustion Institute, pp.1215-1223, 2015.
DOI : 10.1016/j.proci.2014.05.084

T. R. Meyer, B. R. Halls, N. Jiang, M. N. Slipchenko, S. Roy et al., High-speed, three-dimensional tomographic laser-induced incandescence imaging of soot volume fraction in turbulent flames, Optics Express, vol.24, issue.26, pp.2429547-29555, 2016.
DOI : 10.1364/OE.24.029547.v001

T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00270731

H. Bladh, N. Olofsson, T. Mouton, J. Simonsson, X. Mercier et al., Probing the smallest soot particles in low-sooting premixed flames using laser-induced incandescence, Proceedings of the Combustion Institute, pp.1843-1850, 2015.
DOI : 10.1016/j.proci.2014.06.001

D. Veynante, Flamme de diffusion laminaire. Techniques de l'ingénieur Fluides et combustion, base documentaire : TIB213DUO.(ref. article : be8320), 2017.

T. Tsuji and Y. Nagano, Velocity and temperature measurements in a natural convection boundary layer along a vertical flat plate, Experimental Thermal and Fluid Science, vol.2, issue.2, pp.208-215, 1989.
DOI : 10.1016/0894-1777(89)90035-6

Y. Hattori, T. Tsuji, Y. Nagano, and N. Tanaka, Characteristics of turbulent combined-convection boundary layer along a vertical heated plate, International Journal of Heat and Fluid Flow, vol.21, issue.5, pp.520-525, 2000.
DOI : 10.1016/S0142-727X(00)00040-0

M. Holling and H. Herwing, Asymptotic analysis of the near-wall region of turbulent natural convection flows, Journal of Fluid Mechanics, vol.541, issue.-1, pp.383-397, 2005.
DOI : 10.1017/S0022112005006300

B. M. Kumfer, S. A. Skeen, and R. L. Axelbaum, Soot inception limits in laminar diffusion flames with application to oxy???fuel combustion, Combustion and Flame, vol.154, issue.3, pp.546-556, 2008.
DOI : 10.1016/j.combustflame.2008.03.008

R. J. Santoro, T. T. Yeh, J. J. Horvath, and H. G. Semerjian, The Transport and Growth of Soot Particles in Laminar Diffusion Flames, Combustion Science and Technology, vol.84, issue.2-3, pp.89-115, 1987.
DOI : 10.1016/0010-2180(85)90143-9

M. Y. Choi, G. W. Mulholland, A. Hamins, and T. Kashiwagi, Comparisons of the soot volume fraction using gravimetric and light extinction techniques, Combustion and Flame, vol.102, issue.1-2, pp.161-169, 1995.
DOI : 10.1016/0010-2180(94)00282-W

A. Valencia, M. Talbaut, J. Yon, G. Godard, C. Gobin et al., Soot and velocity mapping and 2D soot sheet dimensions in a buoyant wall-fire, Proceedings of the Combustion Institute, pp.3219-3226, 2017.
DOI : 10.1016/j.proci.2016.06.142

URL : https://hal.archives-ouvertes.fr/hal-01611165

M. Miyamoto and M. Okayama, An Experimental Study of Turbulent Free Convection Boundary Layer in Air along a Vertical Plate using LDV, Bulletin of JSME, vol.25, issue.209, pp.1729-1736, 1982.
DOI : 10.1299/jsme1958.25.1729