D. A. Dombeck, C. D. Harvey, L. Tian, L. L. Looger, and D. W. Tank, Functional imaging of hippocampal place cells at cellular resolution during virtual navigation, Nature Neuroscience, vol.24, issue.11, pp.1433-1440, 2010.
DOI : 10.1073/pnas.1232232100

M. Lovett-barron, Dendritic Inhibition in the Hippocampus Supports Fear Learning, Science, vol.1, issue.1, pp.857-863, 2014.
DOI : 10.1038/nprot.2006.2

M. E. Sheffield and D. A. Dombeck, Calcium transient prevalence across the dendritic arbour predicts place field properties, Nature, vol.4, issue.7533, pp.200-204, 2015.
DOI : 10.1038/nmeth989

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4289090/pdf

N. B. Danielson, Sublayer-Specific Coding Dynamics during Spatial Navigation and Learning in Hippocampal Area CA1, Neuron, vol.91, issue.3, pp.652-665, 2016.
DOI : 10.1016/j.neuron.2016.06.020

V. Villette, A. Malvache, T. Tressard, N. Dupuy, and R. Cossart, Internally Recurring Hippocampal Sequences as a Population Template of Spatiotemporal Information, Neuron, vol.88, issue.2, pp.357-366, 2015.
DOI : 10.1016/j.neuron.2015.09.052

S. F. Muldoon, GABAergic inhibition shapes interictal dynamics in awake epileptic mice, Brain, vol.301, issue.10, pp.2875-2890, 2015.
DOI : 10.1111/j.1528-1167.2006.00972.x

A. Malvache, S. Reichinnek, V. Villette, C. Haimerl, and R. Cossart, Awake hippocampal reactivations project onto orthogonal neuronal assemblies, Science, vol.18, issue.6, pp.1280-1283, 2016.
DOI : 10.1038/nn.4151

M. Booth, D. Andrade, D. Burke, B. Patton, and M. Zurauskas, Aberrations and adaptive optics in super-resolution microscopy, Microscopy, vol.64, issue.4, pp.251-261, 2015.
DOI : 10.1038/nature10497

R. Aviles-espinosa, Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy, Biomedical Optics Express, vol.2, issue.11, pp.3135-3149, 2011.
DOI : 10.1364/BOE.2.003135

X. Tao, A. Norton, M. Kissel, O. Azucena, and J. Kubby, Adaptive optical two-photon microscopy using autofluorescent guide stars, Optics Letters, vol.38, issue.23, pp.5075-5078, 2013.
DOI : 10.1364/OL.38.005075.m001

J. Wang, Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer, Biomedical Optics Express, vol.3, issue.10, pp.2510-2525, 2012.
DOI : 10.1364/BOE.3.002510

URL : https://hal.archives-ouvertes.fr/hal-00716152

K. Wang, Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue, Nature Communications, vol.6, issue.1, p.7276, 2015.
DOI : 10.3389/fnmol.2013.00002

N. Ji, D. E. Milkie, and E. Betzig, Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues, Nature Methods, vol.30, issue.2, pp.141-147, 2010.
DOI : 10.1038/nmeth.1411

N. Ji, T. R. Sato, and E. Betzig, Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex, Proceedings of the National Academy of Sciences, vol.6, issue.12, pp.22-27, 2012.
DOI : 10.1038/nmeth.1398

S. Meimon, Adaptive optics for in vivo two-photon calcium imaging of neuronal networks, presented at MEMS Adaptive Optics VIII, 2014.

D. Débarre, Image-based adaptive optics for two-photon microscopy, Optics Letters, vol.34, issue.16, pp.2495-2497, 2009.
DOI : 10.1364/OL.34.002495.m002

C. Wang, Multiplexed aberration measurement for deep tissue imaging in vivo, Nature Methods, vol.2011, issue.10, pp.1037-1040, 2014.
DOI : 10.1038/nmeth.1453

J. Tang, R. N. Germain, and M. Cui, Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique, Proceedings of the National Academy of Sciences, vol.6, issue.7, pp.8434-8439, 2012.
DOI : 10.1038/nri1884

URL : http://www.pnas.org/content/109/22/8434.full.pdf

L. Kong and M. Cui, In vivo neuroimaging through the highly scattering tissue via iterative multi-photon adaptive compensation technique, Optics Express, vol.23, issue.5, pp.6145-6150, 2015.
DOI : 10.1364/OE.23.006145.m004

D. J. Wahl, Y. Jian, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice, Biomedical Optics Express, vol.7, issue.1, pp.1-12, 2016.
DOI : 10.1364/BOE.7.000001.v001

A. Facomprez, E. Beaurepaire, and D. Débarre, Accuracy of correction in modal sensorless adaptive optics, Optics Express, vol.20, issue.3, pp.2598-2612, 2012.
DOI : 10.1364/OE.20.002598

URL : https://hal.archives-ouvertes.fr/hal-00681943

N. Olivier, D. Débarre, and E. Beaurepaire, Dynamic aberration correction for multiharmonic microscopy, Optics Letters, vol.34, issue.20, pp.3145-3147, 2009.
DOI : 10.1364/OL.34.003145.m004

URL : https://hal.archives-ouvertes.fr/hal-00681948

D. Débarre, E. J. Botcherby, M. J. Booth, and T. Wilson, Adaptive optics for structured illumination microscopy, Optics Express, vol.16, issue.13, pp.9290-9305, 2008.
DOI : 10.1364/OE.16.009290

A. Thayil, A. Jesacher, T. Wilson, and M. J. Booth, The influence of aberrations in third harmonic generation microscopy, Journal of Optics, vol.12, issue.8, p.84009, 2010.
DOI : 10.1088/2040-8978/12/8/084009

A. Thayil and M. J. Booth, Self calibration of sensorless adaptive optical microscopes, Journal of the European Optical Society: Rapid Publications, vol.6, 2011.
DOI : 10.2971/jeos.2011.11045

J. Zeng, P. Mahou, M. Schanne-klein, E. Beaurepaire, and D. Débarre, 3D resolved mapping of optical aberrations in thick tissues, Biomedical Optics Express, vol.3, issue.8, pp.1898-1913, 2012.
DOI : 10.1364/BOE.3.001898.m007

P. T. Galwaduge, S. H. Kim, L. E. Grosberg, and E. M. Hillman, Simple wavefront correction framework for two-photon microscopy of in-vivo brain, Biomedical Optics Express, vol.6, issue.8, pp.2997-3013, 2015.
DOI : 10.1364/BOE.6.002997

N. Tamamaki, Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse, The Journal of Comparative Neurology, vol.326, issue.1, pp.60-79, 2003.
DOI : 10.1042/bj3260573

P. Andersen, Organization of hippocampal. The Hippocampus, Structure and Development, vol.1, issue.1, p.155, 1975.

. Antonello, Optimization-based wavefront sensorless adaptive optics for multiphoton microscopy, Journal of the Optical Society of America A, vol.31, issue.6, pp.311337-1347, 2014.
DOI : 10.1364/JOSAA.31.001337

URL : https://repository.tudelft.nl/islandora/object/uuid%3Ab9cf2755-d68c-4adc-80ce-5e5e2b4c3cdc/datastream/OBJ/download

. Aviles-espinosa, Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy, Biomedical Optics Express, vol.2, issue.11, pp.3135-3149, 2011.
DOI : 10.1364/BOE.2.003135

H. W. Babcock, The possibility of compensating astronomical seeing. Publications of the Astronomical Society of the Pacific, pp.229-236, 1953.

M. J. Booth, Adaptive optical microscopy: the ongoing quest for a perfect image, Light: Science & Applications, vol.8520, issue.4, p.165, 2014.
DOI : 10.1364/OE.20.016532

. Booth, Aberrations and adaptive optics in super-resolution microscopy, Microscopy, vol.64, issue.4, p.251, 2015.
DOI : 10.1038/nature10497

URL : https://academic.oup.com/jmicro/article-pdf/64/4/251/5857366/dfv033.pdf

. Booth, Adaptive Optics for Biomedical Microscopy, Optics and Photonics News, vol.23, issue.1, pp.22-29, 2012.
DOI : 10.1364/OPN.23.1.000022

URL : https://hal.archives-ouvertes.fr/hal-00817149

. Bourgenot, 3D adaptive optics in a light sheet microscope, Optics Express, vol.20, issue.12, pp.2013252-13261, 2012.
DOI : 10.1364/OE.20.013252.m002

URL : http://dro.dur.ac.uk/13169/1/13169.pdf

*. Champelovier, Image-based adaptive optics for in vivo imaging in the hippocampus, Scientific Reports, vol.467, 2017.
DOI : 10.1002/cne.10905

URL : https://hal.archives-ouvertes.fr/hal-01473381

. Danielson, Sublayer-Specific Coding Dynamics during Spatial Navigation and Learning in Hippocampal Area CA1, Neuron, vol.91, issue.3, pp.91652-665, 2016.
DOI : 10.1016/j.neuron.2016.06.020

URL : https://doi.org/10.1016/j.neuron.2016.06.020

. Débarre, Image based adaptive optics through optimisation of low spatial frequencies, Optics Express, vol.15, issue.13, pp.158176-8190, 2007.
DOI : 10.1364/OE.15.008176

. Débarre, Adaptive optics for structured illumination microscopy, Optics Express, vol.16, issue.13, pp.169290-9305, 2008.
DOI : 10.1364/OE.16.009290

. Débarre, Image-based adaptive optics for two-photon microscopy, Optics Letters, vol.34, issue.16, 2009.
DOI : 10.1364/OL.34.002495.m002

. Débarre, Structure sensitivity in third-harmonic generation microscopy, Optics Letters, vol.30, issue.16, pp.302134-2136, 2005.
DOI : 10.1364/OL.30.002134

. Denk, Two-photon laser scanning fluorescence microscopy, Science, vol.248, issue.4951, pp.24873-76, 1990.
DOI : 10.1126/science.2321027

. Dombeck, Functional imaging of hippocampal place cells at cellular resolution during virtual navigation, Nature Neuroscience, vol.24, issue.11, pp.131433-1440, 2010.
DOI : 10.1073/pnas.1232232100

. Facomprez, Accuracy of correction in modal sensorless adaptive optics, Optics Express, vol.20, issue.3, pp.2598-2612, 2012.
DOI : 10.1364/OE.20.002598

URL : https://hal.archives-ouvertes.fr/hal-00681943

J. R. Fienup and J. J. Miller, Aberration correction by maximizing generalized sharpness metrics, Journal of the Optical Society of America A, vol.20, issue.4, pp.609-620, 2003.
DOI : 10.1364/JOSAA.20.000609

. Galwaduge, Simple wavefront correction framework for two-photon microscopy of in-vivo brain, Biomedical Optics Express, vol.6, issue.8, pp.62997-3013, 2015.
DOI : 10.1364/BOE.6.002997

M. Göppert-mayer-]-göppert-mayer, ??ber Elementarakte mit zwei Quantenspr??ngen, Annalen der Physik, vol.38, issue.3, pp.273-294, 1931.
DOI : 10.1002/andp.19314010303

. Hubbard, Electrophysiological analysis of synaptic transmission, American Journal of Physical Medicine & Rehabilitation, issue.6, p.50303, 1971.

. Jesacher, Adaptive harmonic generation microscopy of mammalian embryos, Optics Letters, vol.34, issue.20, pp.343154-3156, 2009.
DOI : 10.1364/OL.34.003154

URL : https://hal.archives-ouvertes.fr/hal-00681947

. Ji, Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues, Nature Methods, vol.30, issue.2, pp.141-147, 2010.
DOI : 10.1038/nmeth.1411

. Ji, Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex, Proceedings of the National Academy of Sciences, pp.22-27, 2012.
DOI : 10.1038/nmeth.1398

. Kandel, . Spencer, E. Kandel, and W. Spencer, ELECTROPHYSIOLOGY OF HIPPOCAMPAL NEURONS: II. AFTER-POTENTIALS AND REPETITIVE FIRING, Journal of Neurophysiology, vol.24, issue.3, 1961.
DOI : 10.1152/jn.1961.24.3.243

P. Kner, Phase diversity for three-dimensional imaging, Journal of the Optical Society of America A, vol.30, issue.10, pp.1980-1987, 2013.
DOI : 10.1364/JOSAA.30.001980

C. Kong, L. Kong, and M. Cui, In vivo neuroimaging through the highly scattering tissue via iterative multi-photon adaptive compensation technique, Optics Express, vol.23, issue.5, 2015.
DOI : 10.1364/OE.23.006145.m004

J. A. Kubby, Adaptive Optics for Biological Imaging, 2013.
DOI : 10.1201/b14898

. Meimon, Adaptive optics for in vivo two-photon calcium imaging of neuronal networks, Proc. of SPIE, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01228276

. Meimon, Sensing more modes with fewer sub-apertures: the LIFTed Shack???Hartmann wavefront sensor, Optics Letters, vol.39, issue.10, pp.392835-2837, 2014.
DOI : 10.1364/OL.39.002835

URL : https://hal.archives-ouvertes.fr/hal-01442006

. Mugnier, Phase Diversity: A Technique for Wave-Front Sensing and for Diffraction-Limited Imaging, Advances in Imaging and Electron Physics, pp.1-76, 2006.
DOI : 10.1016/S1076-5670(05)41001-0

URL : https://hal.archives-ouvertes.fr/hal-00408562

. Muldoon, GABAergic inhibition shapes interictal dynamics in awake epileptic mice, Brain, vol.301, issue.10, pp.1382875-2890, 2015.
DOI : 10.1111/j.1528-1167.2006.00972.x

R. J. Noll, Zernike polynomials and atmospheric turbulence*, Journal of the Optical Society of America, vol.66, issue.3, pp.207-211, 1976.
DOI : 10.1364/JOSA.66.000207

. Olivier, Dynamic aberration correction for multiharmonic microscopy, Optics Letters, vol.34, issue.20, pp.3145-3147, 2009.
DOI : 10.1364/OL.34.003145.m004

URL : https://hal.archives-ouvertes.fr/hal-00681948

F. Roddier, Adaptive optics in astronomy, 1999.

D. Roorda, A. Roorda, and J. L. Duncan, Adaptive optics ophthalmoscopy . Annual review of vision science, pp.19-50, 2015.
DOI : 10.1146/annurev-vision-082114-035357

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786023/pdf

. Rousset, First diffraction-limited astronomical images with adaptive optics, Astronomy and Astrophysics, vol.230, pp.29-32, 1990.

. Sheffield, . Dombeck, M. E. Sheffield, and D. A. Dombeck, Calcium transient prevalence across the dendritic arbour predicts place field properties, Nature, vol.4, issue.7533, pp.517200-204, 2015.
DOI : 10.1038/nmeth989

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4289090/pdf

. Sheppard, . Kompfner, C. Sheppard, and R. Kompfner, Resonant scanning optical microscope, Applied Optics, vol.17, issue.18, pp.2879-2882, 1978.
DOI : 10.1364/AO.17.002879

J. Sibarita, Deconvolution Microscopy, Microscopy Techniques, pp.1288-1291, 2005.
DOI : 10.1007/b102215

. Tang, Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique, Proceedings of the National Academy of Sciences, pp.8434-8439, 2012.
DOI : 10.1038/nri1884

URL : http://www.pnas.org/content/109/22/8434.full.pdf

. Tao, Live imaging using adaptive optics with fluorescent protein guide-stars, Optics Express, vol.20, issue.14, pp.2015969-15982, 2012.
DOI : 10.1364/OE.20.015969.m004

URL : http://europepmc.org/articles/pmc3601654?pdf=render

. Tao, A three-photon microscope with adaptive optics for deep-tissue in vivo structural and functional brain imaging, 2017.

A. Thayil and M. J. Booth, Self calibration of sensorless adaptive optical microscopes, Journal of the European Optical Society: Rapid Publications, vol.6, issue.0, 2011.
DOI : 10.2971/jeos.2011.11045

. Thayil, The influence of aberrations in third harmonic generation microscopy, Journal of Optics, vol.12, issue.8, p.12084009, 2010.
DOI : 10.1088/2040-8978/12/8/084009

M. Tulving, E. Tulving, and H. J. Markowitsch, Episodic and declarative memory: Role of the hippocampus, Hippocampus, vol.33, issue.3, pp.198-204, 1998.
DOI : 10.1016/S0010-9452(13)80200-6

J. T. Verdeyen, Laser Electronics. Prentice Hall series in solid state physical electronics, 1995.

. Villette, Internally Recurring Hippocampal Sequences as a Population Template of Spatiotemporal Information, Neuron, vol.88, issue.2, pp.357-366, 2015.
DOI : 10.1016/j.neuron.2015.09.052

. Wahl, Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice, Biomedical Optics Express, vol.7, issue.1, pp.1-12, 2016.
DOI : 10.1364/BOE.7.000001.v001

. Wang, Multiplexed aberration measurement for deep tissue imaging in vivo, Nature Methods, vol.2011, issue.10, pp.111037-1040, 2014.
DOI : 10.1038/nmeth.1453

. Wang, Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue, Nature Communications, vol.6, issue.1, p.7276, 2015.
DOI : 10.3389/fnmol.2013.00002

. Williamson, . Engel, P. D. Williamson, and J. Engel, Anatomic classification of focal epilepsies. Epilepsy: A Comprehensive Textbook, pp.2465-2477, 2008.

. Wong, In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography, Biomedical Optics Express, vol.6, issue.2, pp.580-590, 2015.
DOI : 10.1364/BOE.6.000580.m002

F. Zernike, Diffraction Theory of the Knife-Edge Test and its Improved Form, The Phase-Contrast Method, Monthly Notices of the Royal Astronomical Society, vol.94, issue.5, pp.377-384, 1934.
DOI : 10.1093/mnras/94.5.377