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Introduction

This thesis lies in the framework of a multidisciplinary project that gathers three lab-
oratories: ONERA, Institut Fresnel and INMED. The purpose of this collaboration is
the development of a two photon microscope assisted by adaptive optics for the study
of neuronal calcium activity in the hippocampus of the living mouse.
In vivo calcium imaging using two-photon microscopy is a method increasingly used to
study neuronal activity at microcircuit level. In the hippocampus, this technique allows
for the recording, in the dorsal CA1 region, of large fields of view containing hundreds
of cells. It has led to pioneering descriptions of multineuron dynamics including, for
example, spatial navigation, epilepsy or quiet rest [Dombeck et al., 2010; Lovett-Barron
et al., 2014; Sheffield and Dombeck, 2015; Danielson et al., 2016; Villette et al., 2015;
Muldoon et al., 2015]. However, the implementation of this technique requires a surgery
to remove the overlying cortex in order to implement a cranial window, which introduces
a high variability of “optical access” to the tissue.
In order to obtain more detailed information on the origin of the epileptic events but
also on the processes that originates the propagation of information in the hippocampus,
it is necessary to image the dentate gyrus. However, the dentate gyrus is positioned
deep in the hippocampus (approximately 700 µm deep). Due to light scattering and
optical aberrations, the focusing of the excitation beam decreases as one goes deeper
into the biological medium. As a consequence, the amount of generated fluorescence
also decreases.
This problem must be tackled in order to recover the fluorescence signal, which is asso-
ciated to an improvement of the image contrast. Thus, even a mild increase in contrast
should lead to the detection of neural activity that otherwise would be masked by back-
ground fluorescence. This increase can be achieved using adaptive optics, a promising
tool increasingly used for microscopy. Adaptive optics is the process of quantifying op-
tical aberrations through wavefront measurement and correcting them by the use of an
adaptive correction element (deformable mirror DM or spatial light modulator SLM).
The key issue is the sensing of the wavefront. The latter can either be directly measured
or indirectly estimated.

Direct wavefront sensing methods rely on introducing a wavefront sensor such as a Shack-
Hartmann in the detection part of the microscope. A point source in the sample is then
imaged on the sensor, which allows to directly measure the aberrations.
However, the return flux which is often in the visible range (green) is strongly multi-
diffused and the wavefront measurement is very difficult to perform. Besides, even if one
could perform such a measurement, it would not guarantee an efficient correction at the
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wavelength of the excitation beam (red) because of chromaticity. To overcome this, one
can use specific fluorescent markers whose two photon emission wavelength is close to
the excitation wavelength [Wang et al., 2015]. It however adds complexity and is not
compatible with all bio-applications.
Indirect wavefront sensing does not require a wavefront sensor as it relies on the esti-
mation of aberrations through the analysis of the image scans obtained with the science
imaging channel. The two main indirect wavefront sensing approaches for two photon
microscopy are the pupil segmentation [Ji et al., 2010] and the modal sensorless wavefront
sensing [Débarre et al., 2009] approaches.
The pupil segmentation method is based on the acquisition of sub-pupil scan images,
the various sub-pupils being distributed so as to pave the full pupil. [Ji et al., 2010]
have shown that shifts observed between two sub-pupil scan images are related to the
differential wavefront slope (local tilt) between sub-pupils. This approach can therefore
be seen as an adaptation of the Shack-Hartmann wavefront sensor. This method has
been implemented in two photon microscopes, successfully correcting aberrations at
depths over 400 µm in brain tissue [Ji et al., 2012] and has the advantage that it is
able to estimate large aberration amplitudes. However, some authors have claimed that,
with a small sub-pupil, the signal is strongly reduced because of the increase of the
diffraction effect. The signal detection thus requires a longer integration time making it
impracticable for in vivo imaging.
The modal sensorless wavefront estimation is based on an iterative procedure that
aims at optimizing the deformable mirror correction in order to optimize an image quality
metric. In two-photon microscopy [Débarre et al., 2009] selected, as a metric, the return
flux (mean image intensity). They have shown that this criterion can be expressed,
in the small phase approximation, as a quadratic form in the aberration coefficients.
This technique has the main advantage that it only requires a corrective element in
the illuminating excitation path and thus is very easy to implement. However, as it is
indirectly inferred, the “optimized” wavefront that maximizes the quality metric is not
only linked to the wavefront deformation but also to the distribution of the object used
for optimization.
This phenomenon known as the sample dependence can severely bias the wavefront
estimation when the sample presents a complex heterogeneous distribution. This was
observed by [Débarre et al., 2005; Olivier et al., 2009; Thayil et al., 2010] for THG mi-
croscopy. [Thayil et al., 2010] performed a detailed study of this phenomenon for THG,
where different sample geometries were considered. In this study the authors also briefly
demonstrated the sample dependence for two photon microscopy considering a partic-
ular sample distribution. Later, [Thayil and Booth, 2011] considered that the sample
dependence is mainly caused by the displacement of the point spread function (PSF)
induced by the aberrations. Then, it has been suggested to construct a “displacement-
free” basis mode [Thayil and Booth, 2011; Facomprez et al., 2012]. This particular flavor
of the modal sensorless approach has been demonstrated with great success on ex vivo
biological samples [Zeng et al., 2012; Facomprez et al., 2012].

Although the displacement-free modal sensorless approach appears to be efficient in
practice, a comprehensive study of the impact of the sample dependence in two pho-
ton microscopy and of the validity of the displacement-free approach has never been
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performed.

The main objective of this thesis is to perform such a detailed study of the modal sensor-
less wavefront sensing approach for two photon microscopy and to present an improved
original approach that performs a correct wavefront estimation at large depths and that
is suitable for use in very heterogeneous samples such as the hippocampus.

This thesis is divided in 4 Chapters.

Chapter 1 is an introductory chapter. I present here the biomedical context that moti-
vates this thesis and the different notions that are useful to read the following chapters.
I also present the different approaches developed in recent years for wavefront sensing
in two photon microscopy.

In Chapter 2, a study of the impact of aberrations in two photon microscopy is presented.
In order to obtain a better physical understanding of the effect of aberrations and of the
sample structure in the mean image intensity M1 (return flux), I present a mathematical
formulation of M1 that clearly describes the interplay between the 3D PSF of the exci-
tation beam and the sample distribution. I develop a tool called numerical microscope
and I define the simulation parameters that should be considered to adequately compute
the 3D PSF with a reasonable computation time. With this tool, I present a study of
the impact of aberrations in M1 for different sample geometries. I also study the impact
of aberrations in M1 for different numerical apertures, which allows me to briefly discuss
the pupil segmentation approach limitations.

In Chapter 3, I analyze the standard modal sensorless (SMS) wavefront sensing approach
for different sample geometries. Using the numerical microscope, I perform a detailed
analysis of the sample dependence for two-photon microscopy and I identify the lim-
itations of the displacement-free variant of the SMS approach (SMS-DF). Taking into
account these different analyses, a new modal sensorless approach, named Axially-Locked
Modal Sensorless wavefront sensing (ALMS), is defined. This approach is designed to
be capable of doing a correct estimation of aberrated wavefronts with any heterogeneous
sample such as the hippocampus. This approach was developed during this thesis with
the collaboration of our colleagues from Institut Fresnel and INMED [Champelovier*
et al., 2017]. The ex vivo and in vivo experimental application of the approach are pre-
sented as well as the test bench used.

In Chapter 4, through numerical end-to-end closed loop simulations, I present a com-
parison of the aberration estimation accuracy between the SMS (with and without
displacement-free modes) and the ALMS approaches. For each approach, different
regimes of aberrations and different modalities of modal sensorless wavefront sensing
are explored. Following [Facomprez et al., 2012], I compare modal sensorless modalities
which differ in the number K of transverse scan acquisitions (measurements) used for a
given aberration estimation and differ in the optimization strategy (global or sequential
DM update). I also briefly study the impact of the detection noise on the SMS-DF and
on the ALMS approach.
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Chapter 1

Adaptive optics for two photon
scanning microscopy and
application to calcium imaging of
neuronal networks

In this chapter, I present the different notions that are useful to the reading of this thesis.
The first part (Sect. 1.1 and Sect. 1.2). I briefly present the biomedical context, the
principle of the two photon fluorescence imaging and the difficulties one can encounter
when imaging biological tissues.
In Sections 1.3 and 1.4 I present the principles and equations that describes the propa-
gation of Gaussian beams and the image formation, based on Fourier optics.
Finally, in Sect. 1.5, I present a summary of the different methods that are used to
correct optical aberrations in two-photon microscopy. Among the selected approaches,
the modal sensorless wavefront sensing approach is selected and motivates this thesis.

Contents
1.1 Calcium imaging of neuronal networks in the hippocampus . 6
1.2 Two photon microscopy and its limitations . . . . . . . . . . . 8

1.2.1 Two photon microscopy . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Limitations in biological imaging . . . . . . . . . . . . . . . . . 9

1.3 Propagation of Gaussian excitation beams . . . . . . . . . . . 11
1.4 Point spread function and image formation through a finite

aperture and in the presence of aberrations . . . . . . . . . . 13
1.4.1 Modal representation of aberrations . . . . . . . . . . . . . . . 13

1.4.1.1 Zernike polynomials . . . . . . . . . . . . . . . . . . . 13
1.4.1.2 Phase decomposition . . . . . . . . . . . . . . . . . . 14

1.4.2 3D Point Spread Function (3D PSF) . . . . . . . . . . . . . . . 14
1.4.3 Two photon 3D Point Spread Function (3D PSF2) . . . . . . . 16
1.4.4 Image formation . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Correction of aberrations by adaptive optics . . . . . . . . . . 18
1.5.1 Direct methods for aberration correction . . . . . . . . . . . . . 20
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1.5.2 Indirect methods for aberration correction . . . . . . . . . . . . 20
1.5.2.1 The pupil segmentation approach . . . . . . . . . . . 20
1.5.2.2 The modal sensorless approach . . . . . . . . . . . . . 21
1.5.2.3 Sample dependence of the modal sensorless approach 22
1.5.2.4 Displacement-free approach to reduce the sample de-

pendence . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.1 Calcium imaging of neuronal networks in the hippocam-
pus of the living mouse

The brain is the most important and complex organ of the human body. It is composed
of a network of billions of neurons connected by thousands of synapses. Among the
six functional regions of the brain, one of them, the temporal lobe is the center of
many cognitive functions such as memory, learning, or spatial navigation. One of the
structures of this lobe, the hippocampus, located near the brain stem, has a central
role in the functioning of the lobe and is particularly impacted by certain pathologies
such as epilepsy of the temporal lobe [Williamson and Engel, 2008]. The hippocampus
plays important roles in the consolidation of information from short-term to long-term
memory, and in spatial memory that enables navigation [Tulving and Markowitsch,
1998; Sheffield and Dombeck, 2015; Danielson et al., 2016; Villette et al., 2015].
The hippocampus is composed of four substructures respectively called CA1, CA2, CA3
(forming an assembly called the Ammon horn) and the dentate gyrus. These substruc-
tures are composed of a compact layer of cells: pyramidal cells for CA1, CA2 and CA3;
granular and mossy cells for the dentate gyrus.
Information from other parts of the brain travels through the hippocampus and is treated
by the hippocampus through an internal circuit called a trisynaptic circuit [Andersen,
1975]. This circuit corresponds to a series of connections between the dentate gyrus
(input of the hippocampus), CA3 and CA1.

In rodents as model organisms, the hippocampus has been studied extensively as part of
a brain system responsible for spatial memory and navigation. Many neurons in mouse
hippocampus respond as place cells: that is, they fire bursts of action potentials when
the animal passes through a specific part of its environment.
Since different neuronal cell types are neatly organized into layers in the hippocampus,
it has frequently been used as a model system for studying neurophysiology.

In the mouse, the study of the hippocampus can be done in different ways, but if one
wants to measure in real time the activity of the neurons composing the networks present
in this region, only two techniques are possible. These are electrophysiology [Hubbard
et al., 1971; Kandel and Spencer, 1961] and fluorescence imaging [Stosiek et al., 2003].
The first consists of recording directly the action potentials via electrodes inserted in the
area of the brain studied. The advantage of this technique lies in the temporal resolution
of the acquired signals up to several kilohertz. However, even if multiple cells can be
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measured at the same time, the number of cells studied remains small and it is difficult
to obtain spatial information linking them.
Fluorescent microscope imaging modes can be categorized as point-scanning or widefield
methods. In widefield microscopes, a whole 2D image in acquired by imaging the field
onto a camera. In point-scanning microscopes or scanning fluorescence microscopy, the
image is acquired by scanning a laser focus through a sample.
This technique makes it possible to visualize a large part of neuronal networks (several
hundred cells at the same time). Nevertheless, the acquisition of such large images takes
time, the acquisition speed of this technique is much lower than in electrophysiology and
the response time of the used fluorescent markers also limits this speed.
Despite this, the possibility of observing a large population of neurons at the same time
is essential to better understand the overall behavior of neural networks, the use of scan-
ning fluorescence imaging techniques is then favored.

To visualize neuronal activity, the use of specific fluorescent markers (called calcium
markers) are necessary. These fluorophores have the property of having their rate of
generation of fluorescence photons related to the concentration of calcium ions Ca2`

present in the labeled cells.
The adoption of fluorescent labels inherently involves the use of fluorescence imaging
techniques, but not only. Indeed, in the mouse the hippocampus is about one millimeter
deep under the skull. It is therefore impossible to image it directly by a simple cran-
iotomy (removal of a small piece of skull). It is then necessary to remove a small volume
of cortex to reach the upper layers of the hippocampus [Dombeck et al., 2010].
The presence of blood (from the capillaries and also sometimes from small hemorrhage)
as well as the quality of the interface between the glass window and the brain surface are
a main limitation to the imaging process. The former causes optical absorption and can
be reduced by performing the surgery following water restriction to increase the viscosity
of the blood. The latter causes optical aberrations. Furthermore, the densely packed
layer of CA1 pyramidal neurons is located 200 µm below the glass window covering the
brain: the incoming laser beam becomes more by light scattering and optical aberrations
during the propagation within the tissue.
This problem should be tackled in order to improve the fluorescence signal which is
associated to an improvement of the image contrast. Even a modest improvement in
contrast should lead to the detection of neuronal activity that otherwise is masked by
background fluorescence from brain tissue.
To reduce the light scattering issue, one technique commonly used is the two photon
scanning microscopy.

Obs: A more detailed explanation of the biomedical context and the principles of fluo-
rescence imaging can be found in the thesis of our colleague Dorian Champelovier from
Institut Fresnel.
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1.2 Two photon scanning microscopy for neuronal imaging
of the hippocampus and its limitations

Before introducing the principle of two photon scanning microscopy I present the prin-
ciples of single and multi photon absorption.

Single photon absorption

One-photon absorption fluorescence is the simplest and most widely used imaging tech-
nique in laboratories. It directly uses the phenomenon of absorption of the excitation
photons emitted by a monochromatic source to directly generate fluorescence photons.
This process is called a linear process because the absorption of a photon results in the
generation of a fluorescence photon, making the intensity of the generated signal pro-
portional to that of the incident signal.

Multi photon absorption

Let’s consider that the energy necessary to activate the transition from an electron to
an excited state is E “ hc{λ where h corresponds to the Planck’s constant, c the speed
of light and λ the wavelength of the incident photon. One can think of an alternative
way to activate this transition not with a single photon but with the accumulation of
several photons.
To obtain fluorescence photons resulting from the simultaneous absorption of several
photons, it is therefore necessary to excite the fluorophore with photons whose energy is
a sub-multiple of the transition energy of the molecule. This means that, for example, to
achieve two photon absorption, photon energy should be equal to half the single photon
absorption energy of the fluorophore. Figure 1.1 illustrates the emission process in the
case of single, two and three photon absorption.

Figure 1.1: Representation of the emission process by the absorption of one, two and three
photons (1PEF, 2PEF and 3PEF).

Since the likelihood of such phenomena is low, this will require a large number of photons
in the same place and at the same time to hope to achieve sufficient levels of fluorescence.
Thus, it is necessary to carry out a spatio-temporal concentration of the photons. Spatial
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concentration will be achieved using a lens with a large numerical aperture, while the
use of femtosecond pulsed laser sources will allow the temporal concentration of the
photons. These very short pulses delivered by the laser make it possible to retain an
average power of the incident beam sufficiently low so as not to damage the samples
while having a gigantic peak power, making the local density of photons sufficient for
the effect to be possible.

1.2.1 Two photon microscopy

The two photon absorption phenomenon was first predicted by [Göppert-Mayer, 1931]
and then observed 30 years later by [Kaiser and Garrett, 1961]. It consists in the
simultaneous absorption by a molecule of two photons of energy Ei causing the de-
excitation of the latter by the emission of a fluorescence photon of energy Ef “ 2Ei.
The wavelength of the excitation photons must be then equal to λi “ 2λf , where λF
represents the wavelength of the fluorescence photon.
The first application in an organic medium was performed by [Peticolas et al., 1963].
Some years later, laser microscopy based on two photon absorption was proposed by
[Sheppard and Kompfner, 1978]. The first experimental application of the laser mi-
croscopy based on two photon absorption was reported by [Denk et al., 1990].

Two photon microscopy uses a pulsed laser source emitting in the near infrared to excite
the fluorescent markers. This technology offers the possibility of imaging at large depths
(the pyramidal layer of CA1 being approximately 200 µm deep under the imaging win-
dow) and the use of a scanning microscope will allow in vivo observation of this region
at a rate large enough to measure neuronal activity. The advantages of this technique
related to the conventional fluorescence microscopy relies in two facts:

• Since the two photon absorption process is non-linear, an enormous photon density
is required. Therefore, only the area where the excitation laser is most confined
allows to sufficiently concentrate the photons to generate the fluorescence. This
constraint makes it possible to have a highly localized fluorescence photon emission
volume.

• The second advantage is due to the excitation wavelengths required to obtain
the two photon effect. In fact, the working wavelengths must be in the near-
infrared, which positions us in the so-called window of the water. Since the tissues
are composed of 70% water, working in the near-infrared will allow us a better
penetration in the tissue compared to the wavelengths in the visible range.

1.2.2 Limitations in biological imaging

By the use of two photon microscopy it is possible to observe epileptic events in the
hippocampus [Muldoon et al., 2015] but also to observe the cells taking part in the
processes of spatial memory [Villette et al., 2015]. However, as explained above, on the
upper layer of the hippocampus CA1, one measures an epileptic event in this region that
results of an event located elsewhere in the hippocampus or temporal lobe.
In order to obtain more detailed information on the origin of the epileptic events but also
on the processes originating the propagation of the information in the hippocampus, it
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is necessary to image the dentate gyrus (Figure 1.2).

Figure 1.2: Two photon imaging of the CA1 (left) and dentate gyrus (DG) (right) layers of
the hippocampus. For each region, one need to image approximately 200 µm and 700 µm deep
in the hippocampus respectively.

However, even with the use of microscopy techniques allowing deep fluorescence imag-
ing, the dentate gyrus (DG) is positioned far too deep in the brain (about 500 µm below
the pyramidal layer of CA1) to be observed with the conventional techniques currently
available. In fact, the imaging quality of the system will decrease as one enters the
tissue and thus will gradually decrease the amount of fluorescence photons generated.
The progressive deterioration of the imaging conditions will be caused by the diffusion
and absortion of the exciting photons and by optical aberrations generated by the sam-
ple itself, the effects of which will increase with the portion of matter traversed by the
incident wave. These disturbances will thus evolve during the crossing of the pyramidal
layer of CA1 but also when the incident wave will encounter the region having a strong
presence of blood vessels lying exactly between the end of CA1 and the beginning of the
dentate gyrus.

Optical aberrations alter the quality of beam focusing, which in turn leads to reduced
spatial resolution but also to lower signal and contrast. Thus, even when objects of
interest are one order of magnitude larger than the diffraction limited laser focus (e.g.
neurons’ somas are 10 ´ 15 µm in diameter), the reduction of optical aberrations is
critical to increase the contrast of the fluorescence images. This improvement can be
achieved using adaptive optics, a promising tool increasingly used for microscopy [Booth,
2014; Kubby, 2013; Booth et al., 2015].
Its contribution to two photon microscopy gives the possibility of greatly reduce the
impact of optical aberrations on the incident wave. This makes it possible to retain
sufficiently good excitation properties to attempt to reach the dentate gyrus (approxi-
mately 700 µm deep) and thus allows imaging the origins of the hippocampus neuronal
activity.

I will now present the principles and equations that describe the propagation of Gaussian
beams and the image formation based on Fourier optics. Then, in Sect. 1.5, I present a
summary of the most recent adaptive optics methods used to correct these aberrations
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in two photon microscopy.

1.3 Propagation of Gaussian excitation beams

The propagation of the Gaussian excitation beam is described by the electromagnetic
field equation [Verdeyen, 1995].

Epx, y, zq “ E0 ˆ
w0
wpzq

exp
„

´
r2

w2pzq



ˆ exp
„

´i

ˆ

kz ´ tan´1
ˆ

z

zR

˙˙

ˆ exp
„

´i
kpr2q

2Rpzq



(1.1)

where, r “ x2` y2 is the radial distance from the center axis of the beam, z is the axial
distance from the beam’s focus, k “ 2π{λ is the wave number for a wavelength λ,

wpzq “ w0

d

1`
ˆ

λz

πw2
0

˙2
“ w0

d

1`
ˆ

z

zR

˙2
, (1.2)

is the radius at which the field amplitudes fall to 1{e of their axial values, at the plane
z along the beam, w0 “ wpz “ 0q is the waist size,

Rpzq “ z

«

1`
ˆ

πw2
0

λz

˙2ff

(1.3)

is the radius of curvature of the beam’s wavefront at z and

zR “
πw2

0
λn

(1.4)

is called the Rayleigh distance.

The first term in Eq. (1.1) describes the amplitude of the field as a function of the radial
coordinate r and how this changes as the beam propagates along z (Figure. 1.3).
The intensity of the excitation beam, also called focal volume or 3D point spread function
(3D PSF), is represented by the squared modulus of the electromagnetic field equation:

hpr, zq “ |Epr, zq|2 “ E2
0 ˆ

w2
0

w2pzq
ˆ

ˆ

exp
„

´
r2

w2pzq

˙2
. (1.5)

The peak of the 3D PSF is then given by E0. Assuming that E0 “ 1, the evolution of
the 3D PSF along the z-axis (optical axis) is given by the following equation:

hpr “ 0, zq “ |Epr “ 0, zq|2 “ w2
0

w2pzq
. (1.6)

At a distance from the waist equal to the Rayleigh distance zR, the width w of the beam
is
?

2 larger than it is at the focus where w “ w0 the beam waist
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Figure 1.3: Propagation of the Gaussian excitation beam. Extracted from [Verdeyen, 1995].
The 1{e point of the field is plotted as a function of the z coordinate. As the beam propagates
along z, the spot size, w, becomes larger; hence, the 1{e points become farther from the axis.
The beam expands from its minimum value of w0 by a factor of

?
2 when z “ z0 the Rayleigh

distance (to avoid a misunderstanding later in this thesis I adopted the notation zR instead of
z0 to represent the Rayleigh distance).

wpzRq “ w0

d

1`
ˆ

zR
zR

˙2
“
?

2w0. (1.7)

We then obtain that

hpr “ 0, z “ zRq “
w2

0
w2pzRq

“
1
2 , (1.8)

the intensity of the excitation beam drops in half at z “ zR.
In two photon microscopy the 3D PSF is equivalent to calculated the square of the single
photon 3D PSF. We obtain then:

h2pr “ 0, z “ zRq “

ˆ

w2
0

w2pzRq

˙2
“

1
4 . (1.9)

This means that the axial resolution rz for two photon 3D PSF can be estimated taking
the value z1 where h2pr “ 0, z “ z1q “ 1

4 .

In microscopy, the half of angle of divergence θ of the Gaussian beam is related to the
numerical aperture

NA “ n sin θ (1.10)

and the waist can then be defined by the expression:

w0 “
λn

πNA . (1.11)

The Rayleigh distance can also be expressed as a function of the numerical aperture:

zR “
πw2

0
λn

“
π

λn

ˆ

λn

π

˙2 1
NA2 “

λn

πNA2 . (1.12)
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The axial resolution can be defined as 2 times de Rayleigh distance, so:

rz “ 2zR “
2λn
πNA2 (1.13)

and the transverse resolution is often defined by the waist

rxy “ w0 “
λn

πNA . (1.14)

This model (Eq. (1.1)) is an accurate description of the propagation of the excitation
beam, however it does consider neither the diffraction effects induced by the finite aper-
ture nor the perturbation of the wavefront phase induced by the optical aberrations.

1.4 Point spread function and image formation through a
finite aperture and in the presence of aberrations

I present here the imaging formation process and the general equations, based on Fourier
optics, that allow to calculate the 3D point spread function for a finite aperture and in the
presence of aberrations. Optical aberrations induced by the biological medium distort
the wavefront phase of the excitation beam degrading its confinement and consequently
reducing the fluorescence excitation.

1.4.1 Modal representation of aberrations

In order to easily manipulate the phase, it is usual to express the wavefront phase on a
discrete mode basis. A very frequently used basis is the basis of the Zernike polynomials
[Zernike, 1934]. It is in this base that the phase will be described throughout the
remainder of this manuscript.

1.4.1.1 Zernike polynomials

The infinite number of Zernike polynomials form an orthonormal mathematical basis
where the radial and azimuthal components are separable. This basis presents many
interests to microscopy:

• the Zernike basis is defined is a circular domain;

• the first polynomials correspond to the most frequent optical aberrations;

The Zernike polynomials are represented for p0 ď r ď 1q by:

Zjpr, θq “ Zmn pr, θq “

$

&

%

?
n` 1Rmn prq

?
2 cospmθq for m ‰ 0, j even;

?
n` 1Rmn prq

?
2 sinpmθq for m ‰ 0, j odd;

?
n` 1R0

nprq
?

2 for m “ 0;
(1.15)

with

Rmn prq “

pn´mq{2
ÿ

k“0

p´1qkpn´ kq!
k!ppn`mq{2´ kq!ppn´mq{2´ kq!r

n´2k, (1.16)
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where m,n P IN are the radial and azimuthal components.
A conventional mapping of the two indices n and m to a single index j has been intro-
duced by [Noll, 1976].The association Zmn Ñ Zj for the first 11 modes (sequence A176988
in the OEIS) is presented in Fig. 1.4.

Figure 1.4: Association between radial and azimuthal order of the Zernike polynomials and the
Noll indexes.

1.4.1.2 Phase decomposition

The decomposition of the phase on the basis of Zernike polynomials is given by:

ϕ “
N
ÿ

i“1
aiZi (1.17)

where ai represent the decomposition coefficients, called Zernike coefficients, with N the
number of modes considered.

1.4.2 3D Point Spread Function (3D PSF)

The point spread function (PSF) affected by the set of aberrations a “ xa1, ..., aNy can be
theoretically calculated through the inverse Fourier transform of the complex amplitude
of the back aperture by the following expression:

hapx, yq “ |F´1 tApρx, ρyqu |
2 (1.18)



1.4. PSF and image formation 15

where

Apρx, ρyq “ P pρx, ρyqGpρx, ρyq exp ti ϕpρx, ρyqu (1.19)

represents the complex amplitude of the back aperture. Here

P pρx, ρyq “

"

1 if ||pρx, ρyq||2 ď D{2
0 otherwise

represents de pupil back aperture, G represents the excitation light distribution on the
back aperture and ϕ represents the wavefront phase. In this thesis, a Gaussian distri-
bution is considered to represent the excitation light distribution on the back aperture.
I will also briefly discuss in Chapter 3 the use of an uniform distribution and the perti-
nence of it to overcome some limitations that I will present in this thesis.

The PSF can be extended to the axial direction by extending the representation of the
complex amplitude to the axial direction. This can be done by different approaches. I
will explain in Sect. 2.2 p. 28 the approach adopted to calculate the 3D PSF for each
depth z.
The 3D point spread function (hereafter called 3D PSF) ha is described by:

hapx, y; zq “ |F´1 tApρx, ρy; zqu |2. (1.20)

The optical transfer function can be computed through the 2D Fourier Transform of
each 2D PSF:

OTFpfx, fy; zq “ Fthapx, y; zqu (1.21)

The cutoff frequency is given by:

f p1qc “
2NA
λn

. (1.22)

I denote it f p1qc to precise that it is the single photon cutoff frequency.
The transverse resolution of the PSF can be defined by the inverse of the cutoff frequency
of the PSF:

rxy “ 1{f p1qc “
λn

2NA . (1.23)

Another definition is the full width at half the maximum (FWHM)

rxy “ FWHMphq « λn

2NA . (1.24)

The axial resolution can be defined as the distance, along the axial direction, between
the maximum and the first minimum of intensity [Sibarita, 2005]:

rz “
2λn
NA2 . (1.25)
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1.4.3 Two photon 3D Point Spread Function (3D PSF2)

In two photon microscopy, the two photon fluorescence excitation is directly proportional
to the square value of the power density of the excitation light at the focal volume. So,
the focal volume of the two photon excitation beam (3D PSF2) is given by:

h2
apx, y; zq “ |F´1 tApρx, ρy; zqu |4. (1.26)

The Figure 1.5 and Figure 1.6 represents the transverse and axial evolution respectively
of the 3D PSF and the equivalent 3D PSF2 for a circular truncated uniform excitation
beam and diffraction-limited.
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Figure 1.5: Illustration of the single and two photon Point Spread Function (PSF) at the
focusing plane for a circular truncated Gaussian excitation beam and diffraction-limited. (a)
Single-photon 3D PSF xy profile at z “ 0; (b) Two-photon 3D PSF xy profile at z “ 0; (c)
Single and two photon 3D PSF cut along x at z “ 0 and y “ 0.

The out-of-focus fluorescence excitation drops off significantly faster than in single-
photon excitation which, in turn produces less background fluorescence in the imaging.
It can be shown that the OTF for a two photon 2D PSF is twice larger, the cutoff
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Figure 1.6: Illustration of the single and two photon Point Spread Function (PSF) along the axial
direction, for a circular truncated excitation beam and diffraction-limited. (a) Single-photon 3D
PSF xz profile at y “ 0; (b) Two-photon 3D PSF xz profile at z “ 0; (c) Single and two photon
3D PSF cut along z at x “ 0 and y “ 0.

frequency is then given by:

f p2qc “
4NA
λn

(1.27)

and consequently, the transverse resolution in two photon microscopy is

rxy “
λn

4NA . (1.28)

One can also measure the full width as one quarter of the maximum (FWQM), which
corresponds to the FWHM of the single photon 3D PSF

rxy “ FWQMph2q “ FWHMphq « λn

2NA . (1.29)
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Following the same definition of the single photon 3D PSF case, the two photon 3D
PSF2 axial resolution remains

rz “
2λn
NA2 . (1.30)

1.4.4 Image formation

A z-stack image is obtained by the 3D-convolution of the 3D PSF2 with the sample
distribution η:

I3Dpx, y; zq “ h2
apx, y; zq ‹3D ηpx, y; zq

“

y
h2

apx´ x
1, y ´ y1; z ´ z1q ¨ ηpx1, y1; z1q dx1 dy1 dz1. (1.31)

A transverse scan at z “ z0 is obtained by integrating along z the transverse 2D-
convolution of each plane of the 3D PSF2 centered at z “ z0 with the sample distribution
η:

I2Dpx, y; z “ z0q “
y

h2
apx´ x

1, y ´ y1; z0 ´ z
1q ¨ ηpx1, y1; z1q dx1 dy1 dz1

“

ż

“

h2
ap¨, ¨, z0 ´ z

1q ‹2D ηp¨, ¨, z
1q
‰

px, yq dz1. (1.32)

The return flux, or mean image intensity, of the transverse scan at z “ z0 can be
calculated by the expression:

M1pa; z “ z0q “
x

I2Dpx, y; z “ z0q dx dy

“

x ż

“

h2
ap¨, ¨, z0 ´ z

1q ‹2D ηp¨, ¨, z
1q
‰

px, yq dz1 dx dy. (1.33)

1.5 Correction of aberrations by adaptive optics

Adaptive optic is a technique, developed first for astronomy, that allows to correct in
real-time, with an adaptive element such as a deformable mirror (DM), the deformations
of the phase measured by a wavefront sensor.
The first idea of this system was published by [Babcock, 1953] and the first astronomical
demonstration has been made by [Rousset et al., 1990]. A more detailed description of
the principle of classical adaptive optics systems can be found in [Roddier, 1999].
Adaptive optics has been, in the last 20 years, applied in ophthalmology [Roorda and
Duncan, 2015] and microscopy [Booth, 2014]. A more detailed presentation of the ap-
plication of adaptive optics to biological imaging can be found in [Kubby, 2013].

One of the main challenges of the integration of an adaptive optics system in scanning
fluorescence microscopy is the aberration measurement. It is this challenge that drives
this PhD work.
Figure 1.7 is a schematic illustration of an adaptive optics system for two photon scanning
microscope.
Both direct methods, using wavefront sensors, and indirect methods, using optimization



1.5. Correction of aberrations by adaptive optics 19

Figure 1.7: Adaptive optics system for point-scanning microscopy. The excitation beam or
laser (dark orange) propagates in the near-infrared and its focused on the sample. For each
point of the scan, the fluorescence emission (light green) is collected by a photomultiplier tube
(PMT). The measured fluorescence values for each of the scanning points form an image. The
image formed can be used to indirectly measure the wavefront and control the adaptive element
(option 1 green). The alternative is to directly measure the wavefront with a wavefront sensor
(option 2 red).
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routines, have been employed in recent years for two photon microscopy. I discuss in
this section the main methods and their limitations.

1.5.1 Direct methods for aberration correction

Conventional wavefront sensing devices, such as the Shack-Hartmann sensor, are widely
used in adaptive optics. However, their use in microscope systems are strongly limited.
The return flux is strongly multi-diffused and, due to their cromaticity, one can not
efficiently correct at the wavelength of excitation (red) the aberrations measured in the
visible range (green).
To overcome this, one should use specific fluorescent markers which two photon emission
wavelength is near to the excitation wavelength [Wang et al., 2015] or fluorescent beads
[Aviles-Espinosa et al., 2011]. The first approach was demonstrated to be able to perform
a direct wavefront measurement down to 700 µm depth in the mouse cortex in vivo.
Yet, these approaches require the injection of additional markers/beads that may affect
the biological properties or the behavior of the living mouse. Also, they are not compat-
ible with many other bio-imaging applications, requiring thus the preparation of animal
models for a specific application, which can not be easily performed in all laboratories.
A solution to this issue could be the use of auto-fluorescent feature of the sample to
produce the localized point source [Azucena et al., 2011; Aviles-Espinosa et al., 2011; Tao
et al., 2012; Tao et al., 2013].

1.5.2 Indirect methods for aberration correction

The most common approaches to aberration correction in adaptive optic microscopy are
based on indirect measurements, where the wavefront phase is not measured directly
with a dedicated sensor, but rather via a sequence of measurements obtained with the
science imaging channel. These methods are easier to implement as they only require
an adaptive element in the illumination path.
These methods can be divided in two categories: intensity-based methods and image-
based methods.

In intensity-based methods, the aberrations are estimated through the maximization of
the return flux of a single fixed point (no scan is used) [Tang et al., 2012; Galwaduge
et al., 2015]. Image-based methods, rely on successive image measurements with an
engineered illuminating laser beam displaying different spatial shapes either in intensity
(pupil segmentation) or in phase (modal sensorless). We concentrate here in image-based
methods since for heterogeneous media, such as the mouse brain, images provide useful
information for the wavefront estimation.

1.5.2.1 The pupil segmentation approach

The pupil segmentation [Ji et al., 2010] technique is based on the acquisition of sub-pupil
scan images, the various sub-pupils being distributed so as to pave the full pupil. [Ji
et al., 2010] have shown (see Fig. 1.8 for illustration) that shifts observed between two
sub-pupil scan images are related to the differential wavefront slope (local tilt) between
sub-pupils. This approach can therefore be seen as an adaptation of the Shack-Hartmann
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Figure 1.8: Principle of the pupil segmentation method

wavefront sensor to the context of laser scanning two-photon imaging where the return
beam can not be directly used for wavefront sensing.
This method has been implemented in two photon microscopes, successfully correcting
aberrations at depths over 400 µm in brain tissue [Ji et al., 2012] and has the advantage
to be able to estimate large aberration amplitudes.
However, this method, using the fluorescence signal is considered slow: with a small
pupil segment, the diffraction effect increases leading to a strongly reduced signal, whose
detection requires longer integration time making it impracticable for in vivo. [Wang
et al., 2014]. In this thesis I don’t study this approach but I will discuss this disadvantage
of the pupil segmentation method (see Sect. 2.5 p. 50).

1.5.2.2 The modal sensorless approach

The modal sensorless wavefront sensing approach (originally developped for two photon
microscopy by [Débarre et al., 2009]) is a very common method used to estimate aberra-
tions in many different applications [Débarre et al., 2007; Débarre et al., 2008; Jesacher
et al., 2009; Olivier et al., 2009; Bourgenot et al., 2012; Gould et al., 2012; Antonello
et al., 2014; Wong et al., 2015; Wahl et al., 2016; Tao et al., 2017].

This method is based on an iterative procedure that aims at optimizing the deformable
mirror correction in order to optimize an image quality metric (see illustration on
Fig. 1.9). In two-photon microscopy [Débarre et al., 2009] selected, as a metric, the
maximization of the mean image intensity M1 (Eq. (1.33)). They have shown that this
criterion can be expressed, in the small phase approximation, as a quadratic form in the
aberration coefficients. The optimum aberration coefficients can then be deduced from
full aperture scan images recorded with an adequate sequence of trial aberrations. For a
correction by N aberration modes, one has to record pK´1qN `1 or KN scans, with K
between 3 and 9, depending on the chosen trial strategy [Facomprez et al., 2012]. This
technique has been demonstrated with great success on ex vivo biological samples [Zeng
et al., 2012; Facomprez et al., 2012].
The ability to estimate aberrations with the minimal image acquisition is important to
avoid the exposure of the sample which can increase the photobleaching effect. This
PhD work concentrates on the modal sensorless wavefront sensing approach.
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Figure 1.9: Principle of the modal sensorless method. Figure extracted from [Booth et al., 2012].

1.5.2.3 Sample dependence of the modal sensorless approach

With the modal sensorless approach it is expected that the mean image intensity metric
is maximized when there are no aberration in the system. However, for certain spatial
distributions of fluorophores, the modal sensorless method may lead to a biased wavefront
estimation. This so-called sample dependence was observed by [Débarre et al., 2005;
Olivier et al., 2009; Thayil et al., 2010] for THG microscopy.
[Thayil et al., 2010] performed a detailed study of this phenomenon for THG, where
different sample geometries were considered. In this study the authors also briefly
demonstrated the sample dependence for two photon microscopy: they consider two
thin fluorescent layers axially separated by a distance larger than twice the diffraction-
limited axial resolution. When the focus is located between the two layers, a negligible
amount of fluorescence is detected in a diffraction-limited system. When aberrations are
added, the axial spreading of the 3D PSF can lead to an increase in the detected signal
at this point, even though the total detected signal drops (see Fig. 1.10).
This effect in two photon microscopy is also mentioned by [Zeng et al., 2012; Galwaduge
et al., 2015] but has never been strictly studied. In this PhD thesis I perform a detailed
study of the aberrations impact and of the sample dependence on two photon microscopy.

1.5.2.4 Displacement-free approach to reduce the sample dependence

It was observed that the image shifts induced by some aberration modes are one of the
effects at the origin of the sample dependence. It was therefore proposed to build a new
modal basis that does not induce transverse and axial displacements [Thayil and Booth,
2011; Facomprez et al., 2012], the so-called displacement-free mode.

The displacement-free approach [Thayil and Booth, 2011] consists in the construction of
a new mode basis Z’ “ pZ 11, ..., Z 1nq which result from the combination of Zernike modes
Z “ pZ1, ..., Znq with tip, tilt and defocus such that Z’ do not induce any transverse or
axial 3D PSF displacements.
The relative displacements for each direction are estimated by an image cross-correlation
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Figure 1.10: (a) Sample geometry. (b) Variation of two-photon fluorescence signal from the
focal plane z “ 0 as the separation between the two fluorescent slabs increases for different
amplitudes of spherical aberration. Figure extracted from [Thayil et al., 2010].

method. This process is performed as a calibration step with a specimen consisting of
glass beads (of approximate diameter 10 µm) suspended in gelatin.
For example, the axial displacement estimation consists in the following steps:

1. the DM is set such that all system aberrations are corrected and a reference z-stack
I0px, y; zq is acquired;

2. a chosen amplitude ai of a basis mode Zi was added to the DM and a new z-stack
I1px, y; z; aiq is acquired;

3. Then, the relative displacement between the two z-stacks is calculated by finding
the value of z1 that maximizes the correlation given by:

Rzpz
1; aiq “

y

x,y;z
I0px, y; zq I1px, y; z ´ z1; aiq dx dy dz ; (1.34)

4. After repeating step 2. and step 3. for a range of different mode amplitudes a set
of z-stack displacements is obtained. Then, from a linear fit to the measurements,
the slope of this linear fit or “gradient” szi is used to quantify the amount of image
displacement per unit amplitude of basis mode Zi.

The procedure is then repeated for each basis mode Zi and for each direction. Assuming
that the effects of each mode add linearly, the total image displacements s can be derived
from the measurements and are represented by the matrix equation
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s “ Ma , (1.35)

where s “
´

řN
i“1 s

x
i ai,

řN
i“1 s

y
i ai, um

řN
i“1 s

z
i ai

¯

and the N coefficients ai are the ele-
ments of the vector a. The elements of the 3 ˆ N matrix M are the values sxi , syi and
szi .
Finally, the displacement modes (tip, tilt and defocus) are removed from the basis modes
Z providing the displacement-free basis modes Z’ using the orthogonal projection cal-
culation:

Z1 “
`

I´M:M
˘

Z. (1.36)

where M: is the pseudo inverse of M

M: “ pMTMq´1MT (1.37)

The matrix
`

I´M:M
˘

is the projection matrix that removes the 3D displacement com-
ponents.

This approach is based on the assumptions that displacements induced by a summation
of aberration modes add linearly and on a stronger assumption that, for a given mode,
the displacements are linearly dependent on the mode coefficient. I intend to test the
validity of this second assumption.

1.6 Conclusion

Two photon scanning microscopy is limited by optical aberrations induced by the bi-
ological medium. These aberrations can be corrected using adaptive optics. However,
the direct measurement of the aberrated wavefront requires the injection of specific ad-
ditional markers that may affect the biological properties or the behavior of the living
mouse and are not compatible with some other bio-applications.
We must then use indirect methods to estimate the aberrated wavefront. The pupil
segmentation approach can perform a good correction of aberration up to 400 µm but
it is considered slow due to a longer integration time of the fluorescence emission. The
modal sensorless wavefront sensing approach has the advantage to perform an efficient
aberration estimation with few image acquisitions of short exposition to the excitation
beam.
In this PhD work I concentrate my study on the modal sensorless wavefront sensing
approach.



Chapter 2

Study of the impact of
aberrations on two photon
microscopy

There are several techniques to estimate and correct the aberrations induced by bio-
logical media. I discussed them in Chapter 1 and this discussion led us to select the
modal sensorless approach. The modal sensorless approach consists in the maximization
of an image quality metric by changing the shape of a deformable mirror (DM) which
controls the excitation beam wavefront phase. The shape of the DM that maximizes this
metric is expected to pre-compensate the aberrations induced by both the optical setup
and the biological medium. The Standard Modal Sensorless (SMS) approach uses the
mean image intensity M1 (Eq. (1.33) p. 18) of the transverse scan as a quality metric
and the wavefront phase is expanded on a basis of Zernike modes (Sect. 1.4.1.1 p. 13).
Here, the tip, tilt and defocus modes (also called displacement modes) are excluded as
they only induce a translation effect in the image in both transverse and axial directions.

To perform a good estimation of aberrations it is important to physically understand the
impact of aberrations and of the sample on the image quality metric. Before performing
a study of the Standard Modal Sensorless (see Chapters 3 & 4), I first study the impact
of aberrations both on the two photon excitation beam and on the mean image intensity
M1. I therefore aim at answering the following questions:

• Could we describe by a simple analytical expression the interplay between the two
photon excitation beam focal volume (also known as two photon excitation 3D
point spread function, denoted here 3D PSF2) and the sample structure?

• What are the properties of the 3D PSF2: axial and transverse resolution, influence
of aberrations?

• What is the sensitivity of the mean image intensity M1 to aberrations? How does
it evolve with the sample geometry? And the numerical aperture? How does it
evolve in the N -dimensional space of aberrations? Can we approximate M1 by a
quadratic function?

I decided to study all these aspects through refined numerical simulations. Thus, I

25
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have developed a tool called numerical microscope which consists in computing the 3D
PSF2 and convolving it with a sample (a.k.a. object). I describe here how the 3D PSF2 is
computed. I will also discuss the numerical sampling parameters one should consider to
correctly compute the 3D PSF2 with a reasonable computation time.

In Section 2.1 I derive an new analytical expression for the mean image intensity metric.
In Section 2.2 I present the numerical microscope used to simulate the 3D PSF2 and the
adequate sampling parameters.
Then I characterize the diffraction limited 3D PSF in Sect. 2.3 and the aberrated 3D
PSF2 in Sect. 2.4. I characterize in Sect. 2.5 and Sect. 2.6 the evolution of the mean
image intensity for different values of aberrations, different numerical aperture values
and different sample distribution.
Finally, I analyze in Sect. 2.7 the evolution of M1 in the N -dimensional aberration
space.
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2.1 A new mathematical formulation for the mean image
intensity as a function of aberrations

In Sect. 1.4 p. 13 I defined the mean image intensity M1 of a transverse scan at depth
z “ z0 by the equation:

M1pa; z “ z0q “
x

I2Dpx, y; z “ z0q dx dy

“

x ż

“

h2
ap¨, ¨, z0 ´ z

1q ‹2D ηp¨, ¨, z
1q
‰

px, yq dz1 dx dy (2.1)

where h2
a represents the 3D PSF2 which depends on the aberrations a, η represents the

sample, ‹2D represents the 2D-convolution and I2Dpx, y; z “ z0q represents the transverse
scan obtained at z “ z0. The focusing depth of the excitation beam corresponds to
z0 “ 0. This formulation implicitly assumes that the field of view encompasses the
entire sample on the transverse scan.
By changing the integration order and using the equality

ş

IRn fpxq dx “ F tfu p0q, where
F stands for a 2D Fourier transform, we obtain:

M1pa; z “ z0q “

ż x
“

h2
ap¨, ¨, z0 ´ z

1q ‹2D ηp¨, ¨, z
1q
‰

px, yq dx dy dz1

“

ż

“

F
 

h2
apz0 ´ z

1q
(

p0, 0q ˆ F
 

ηpz1q
(

p0, 0q
‰

dz1

“

ż

”x
h2

apx, y; z0 ´ z
1q dx dy ˆ

x
ηpx, y; z1q dx dy

ı

dz1

“

ż

h2
apz0 ´ z

1q ˆ ηpz1q dz1 (2.2)

where

h2
apz

1q “

x
h2

apx
1, y1; z1q dx1 dy1 (2.3)

and

ηpz1q “
x

h2
apx

1, y1; z1q dx1 dy1 (2.4)

are called hereafter the axial distribution of, respectively, the 3D PSF2 and the sample
(integrated along the transverse coordinates).
Equivalently,

M1pa; z “ z0q “

ż

|

h2
apz

1 ´ z0q ˆ ηpz
1q dz1 (2.5)

where

|

h2
apz

1q “ h2
ap´z

1q (2.6)

represents the flipped axial distribution of the 3D PSF2. In what follows I will call
combined axial distribution the multiplication of the 3D PSF2 axial distribution
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h2
apz0 ´ z1q with the sample axial distribution ηpz1q, or equivalently, the multiplication

of the flipped 3D PSF2 axial distribution |

h2
apz

1 ´ z0q with the sample axial distribution
ηpz1q:

h2
apz0 ´ z

1q ˆ ηpz1q “
|

h2
apz

1 ´ z0q ηpz
1q. (2.7)

These two equivalent equations (2.2) and (2.5) will later be useful to understand the
interaction of the 3D PSF2 with the sample.
This new formulation makes explicit the interplay between the 3D PSF2 (embedding the
influence of aberrations) and the sample distribution. More precisely, it shows that the
mean image intensity M1 does not depend on the transverse distribution of the sample,
it depends only on the 3D PSF2 axial distribution and on the sample axial distribution.
I will show in Chapter 3 the importance of this observation.

2.2 Modeling the numerical two photon microscope

To study the impact of aberrations in two photon microscopy one needs to simulate the
image formation process. To this aim, I developed a numerical microscope which consists
in computing the two photon 3D PSF2 and convolving it with a numerical sample to
obtain a z-stack image.
With this tool, on the one hand I can study the evolution of the 3D PSF2 for different
aberrations, which will give us a better understanding of the aberrations impact on the
excitation beam. On the other hand I can study the evolution of the z-stack image and of
the quality metric for different aberrations, sample distribution and numerical aperture.
The computation of the 3D PSF2 is based on the construction of the single photon 3D
PSF using Eq. (1.20) p. 15. Then I compute the square of this 3D PSF to obtain the
two photon 3D PSF2. This could be generalized to n-photon microscopy by taking the
n-th power of the single photon PSF.

2.2.1 Simulation of the 3D PSF for single and two photon imaging

The computation of the single photon 3D PSF along the axial direction is performed
plane by plane by computing the single photon 2D PSF at different values of depth z. To
simulate this axial displacement, I use a defocus method which consists in introducing
a supplementary amount of defocus on the complex amplitude phase.
Thus, the equation that describes the complex amplitude in the back aperture plane
(illustrated in Fig. 2.1) becomes:

Apρx, ρy; zq “ P pρx, ρyqGpρx, ρyq exp tpi ϕpρx, ρyq ` i adpzqZ4pρx, ρyqu (2.8)

where
P pρx, ρyq “

"

1 if ||pρx, ρyq||2 ď D{2
0 otherwise (2.9)

represents the pupil back aperture support, Gpρx, ρyq the illumination distribution on
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the back aperture,

ϕpρx, ρyq “
N
ÿ

i“1
aiZipρx, ρyq (2.10)

the wavefront phase and

adpzq “
πNA2

2
?

3λn
z (2.11)

corresponds to the amount of defocus that must be added to simulate a 2D PSF at
a distance z from the focal plane, where NA represents the numerical aperture, λ the
wavelength of the excitation beam and n the refractive index of the medium (see Ap-
pendix A p. 127). Note that using a defocus (therefore a parabolic wave-front rather
than a portion of sphere) is an approximation for the computation of the 3D PSF in
the various transverse planes along z. It could be of course interesting to investigate
the consequences of this approximation. This aspect is however beyond the scope of the
present study.

Figure 2.1: Computation of the complex amplitude Apρx, ρy; zq. The truncated Gaussian distri-
bution is the multiplication of the Gaussian distribution Gpρx, ρyq with a binary mask P pρx, ρyq

representing the back aperture. The complex amplitude is calculated by multiplying the trun-
cated Gaussian distribution with the exponential of the phase plus the right amount ad of defocus
that must be added to simulate a 2D PSF at a distance z from the focal plane.

Numerically, a set of z values is fixed by defining the number of z values Nz to simulate
and the pitch δz (distance between two consecutive values of the set). By multiplying
these two values we obtain the axial excursion of the 3D PSF:

∆z “ δz ˆNz. (2.12)

The axial excursion is explored symmetrically around the focusing plane z “ 0, i.e.,

z P r´∆z{2, ∆z{2s.

I compute the square modulus of the inverse 2D Fourier transform of each complex
amplitude to obtain then, for each value z, a single photon PSF:

hapx, y; zq “ |F´1 tApρx, ρy; zqu |2. (2.13)

For each value z, the 2D optical transfer function can be computed through the 2D
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Fourier Transform of the PSF:

OTFpfx, fyq “ Fthapx, y; zqu. (2.14)

The cutoff frequency is given by:

f p1qc “
2 NA
λn

. (2.15)

I denote it f p1qc to specify that it is the single photon cutoff frequency.
The transverse resolution of the PSF is defined by the inverse of the cutoff frequency of
the PSF:

rxy “ 1{f p1qc “
λn

2 NA . (2.16)

The Nyquist-Shannon theorem states that in order to adequately sample a signal it
should be periodically sampled at a rate that is at least two times the highest frequency
of the signal. In our case, to reproduce the single photon PSF adequately, it should be
sampled at at least two times its cutoff frequency. The sampling frequency is then given
in the form:

sf “ 2k ˆ f p1qc “
4kNA
λn

, k ě 1. (2.17)

Consequently, the pixel size of the 2D PSF is given by the inverse of the sampling
frequency:

δxy “
λn

4k NA , k ě 1. (2.18)

For k “ 1 we obtain the Nyquist-Shannon sampling frequency for the single photon PSF.
For k ą 1 we are oversampling, which can be useful to observe a more detailed single
photon 2D PSF.

In practice, for each value z, I compute the back aperture plane complex amplitude
in a Nxy ˆ Nxy size array, where Nxy represents the number of pixels that represents
the diameter D of the back aperture diameter. In order to fulfill the Nyquist-Shannon
criterion for the single photon PSF, it can be shown that one has to perform a zero-
padding on the complex amplitude Apρx, ρy; zq to obtain a 2kNxy ˆ 2kNxy array with
k ě 1.
Figure 2.2 illustrates the computation of the single photon PSF (2D PSF).
By multiplying the number of pixels of the 2D PSF with the pixel size we obtain the
transverse field of view ∆xy, which is independent of the sampling factor k:

∆xy “ 2kNxy ˆ δxy “ 2kNxy ˆ
λn

4k NA
“ Nxy ˆ

λn

2NA “ Nxy ˆ rxy. (2.19)

After ensuring that each computed PSF array (one for each value of z) has a unitary
total energy, i.e.,

s
x,y hapx, yq dx dy “ 1, I stack them together to form the 3D PSF.

Then, we just compute the two photon 3D PSF (3D PSF2) by taking the square of the
single photon 3D PSF.
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Figure 2.2: Computation of the 2D PSF with the zero-padding. Here, k “ 1, i.e., the PSF is
Nyquist-sampled.

However, it can be easily shown that, since we take the square of the PSF, the two
photon PSF is more confined and its OTF is twice as large as the single-photon OTF.
Equivalently, the two photon cutoff frequency is twice larger than the single photon
cutoff frequency:

f p2qc “ 2f p1qc “
4 NA
λn

. (2.20)

Consequently, by the Nyquist-Shannon criterion, the sampling frequency should be at
least two times the two photon cutoff frequency

sf “ 2k ˆ 2f p2qc “
8k NA
λn

, k ě 1 ô sf “
4k1 NA
λn

, k1 ě 2 (2.21)

and the pixel size should be

δxy “
λn

8k NA, k ě 1 ô δxy “
λn

4k1 NA, k
1 ě 2. (2.22)

This shows that, in practice, to adequately sample the two-photon 3D PSF2, one must
consider at least a double zero-padding (k ě 2) in the computation of the single photon
3D PSF.

Once the 3D PSF2 array is constructed, one can convolve it with a numerical sample
array (through the multiplication of the respective Fourier transform) to obtain a z-stack
image. To avoid any effect of aliasing of the field of view during the convolution, one
has to perform a single 3D zero-padding on both arrays before computing the respective
Fourier transforms (see Fig.2.4).
Now, one can use the 3D PSF2 and the z-stack image to study the aberration impact on
the excitation beam confinement and the resulting image quality. One can also study
the impact of the sample distribution on the image quality.
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Figure 2.3: Computation of the 2D PSF and 2D PSF2 with the double zero-padding. Here,
k “ 2.

Figure 2.4: Computation of the z-stack image through the convolution of the 3D PSF2 array
with the numerical sample array. In the frequency domain it is equivalent to a multiplication.

To summarize, I present in Table 2.1 the list of parameters that are important for the
computation of the 3D PSF2. The parameters to be chosen are the oversampling factor
k (which defines the transverse sampling frequency), the number of pixels used to repre-
sent the diameter of the back aperture Nxy, the number of planes Nz and the pitch δz.
The remaining quantities are deduced from these four parameters.

In order to study the evolution of the image quality metric as a function of aberrations,
one must define an adequate set of simulation parameters for each array such that the
computation time is not too demanding and the 3D PSF2 is correctly simulated. This
is the object of Sect. 2.2.2, Sect. 2.2.3 and Sect. 2.2.4.
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Axial
parameters

Ñ Pitch δz

Ñ Number of planes Nz

Axial excursion ∆z “ δz ˆNz

Transverse
parameters

Ñ Back aperture diame-
ter in pixels

Nxy

Ñ Oversampling factor k, k ě 2

Transverse pixel size δxy “
rxy

2k “
λn

4k NA

Transverse field of view ∆xy “ 2kNxy ˆ δxy “ Nxy ˆ rxy

Table 2.1: Numerical microscope simulation parameters. The parameters to be chosen are
indicated in bold and with an arrow. The remaining parameters are deduced from the chosen
ones. NA represents the numerical aperture of the microscope, λ represents the wavelength of
the excitation beam, n the refractive index of the medium in which is inserted the objective of
the microscope and rxy “ λn{p2 NAq represents the transverse resolution.

2.2.2 Choice of the transverse sampling in two photon imaging

As defined before, to respect the Nyquist-Shannon criterion, the sampling frequency
should be equal to 4k NA

λn , with k ě 2, for the computation of the two photon PSF.

In Figure 2.5 is illustrated the single and two photon 2D PSF at the focusing depth and
their respective 2D OTF’s (absolute values) when considering the sampling factor k “ 2.
One can verify that the two photon 2D PSF is more confined than the single photon
2D PSF, which results in a larger 2D OTF. The lower left plot shows a transverse cut
of the single and the two photon 2D PSF. One can observe the “Airy rings” which
are created due to the diffraction of the excitation beam and a first minimum located
at x « 1.5 λn

2 NA . I will discuss in Sect. 2.3 the effects of the Gaussian illumination
distribution on the PSF’s structures.
In the lower right plot of Figure 2.5 are illustrated the two transverse cuts of the single
and two photon 2D OTF’s at the focusing depth (blue and red curves). The two cutoff
frequencies f p1qc and f p2qc can clearly be identified at 2 NA{λn and 4 NA{λn respectively.
It is also illustrated what would occur to the 2D OTF if the two photon 2D PSF was
constructed by considering an oversampling factor k “ 1: the part of the 2D OTF (red
curve) which is located after 2 NA{λn is folded into the lower frequencies (purple dashed
curve) and then it is added to the 2D OTF resulting in the green dashed curve. This
changes the 2D OTF shape, however it does not change the value of the 2D OTF at the
zero frequency: the quantity that is folded at the zero frequency is the value of the 2D
OTF at the cutoff frequency f p2qc , which is equal to zero.

From Equation (2.2) one can observe that the mean image intensity metric M1 at a
given depth z0 can be expressed by integrating, along the axial direction z, the multi-
plication of the 3D PSF2 axial distribution at a given depth z0 which corresponds to
the multiplication of the associated 2D OTF at zero-frequency with the sample axial
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Figure 2.5: Illustration of the two photon 2D PSF and respective 2D OTF (absolute values) at
the focusing depth with two photon Shannon sampling. The pixel size is λn{8NA. (upper left)
single photon 2D PSF at the focusing depth; (upper right) single photon 2D OTF (absolute
values) at the focusing depth; (center left) two photon 2D PSF at the focusing depth; (center
right) two photon 2D OTF (absolute values) at the focusing depth; (lower left) transverse cuts
of the single and two photon 2D PSF’s at the focusing depth and y “ 0; (lower) transverse cuts
of the single and two photon 2D OTF’s at the focusing depth and fy “ 0.

distribution:
M1pa; z “ z0q “

ż

F
 

h2
a
(

p0, 0, z0 ´ z
1q ˆ ηpz1q dz1. (2.23)
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The 2D OTF at the zero-frequency does not change if one undersamples the 3D PSF2,
provided that k ě 1 and consequently the value of M1 is also preserved. Thus, in order
to compute the mean image intensity of a transverse scan, I can take k “ 1 to reduce
the size of the numerical arrays and consequently to reduce the computation time.

2.2.3 Choice of the back aperture diameter in pixels

In what follows, the figures are presented in physical units. For that, I used the settings
of the experimental bench presented in Sect. 3.6, i.e. excitation beam wavelength in
air λ “ 0.92 µm, medium refractive index n “ 1.33 (water) and numerical aperture
NA “ 0.8.
To simulate the aberrated 3D PSF2 I explore two different Zernike modes separately
(coma and spherical aberrations). I also use a set of seven different aberration amplitudes
adapted from the set of amplitudes presented in Fig. 2.6 and extracted from [Wang et al.,
2015].
Aberrations are the two astigmatisms (Z5, Z6), the two comas (Z7, Z8), the two trefoils
(Z9, Z10) and the spherical aberration (Z11). We discard here the tip, tilt and defocus
(Z2, Z3, Z4, also called displacement modes) as they only induce translations of the image
in both transverse and axial directions. This set of aberration amplitudes is multiplied
by a scalar to obtain a chosen amplitude (σpaq “

b

řN
i“5 a

2
i ).

Figure 2.6: Zernike modes for the corrective wavefront measured at 600 µm depth in the mouse
cortex. The notation differs from the notation used in this thesis (see Figure 1.4. Figure
extracted from the Supplementary Information of [Wang et al., 2015].

To choose the adequate number of pixels Nxy which discretize the back aperture diam-
eter, and implicitly choose the transverse field of view (see Eq. (2.19)), I will compute
M1 at the focusing depth (z0 “ 0) for different aberrations and different values of Nxy

and for a uniformly distributed infinite 3D sample (fluorescent dye pool).
Mathematically, this sample is represented by
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ηpx, y, zq “ 1 @x, y, z ñ ηpzq “ c, c P IR`. (2.24)

The mean image intensity of the scan obtained at the focusing depth and diffraction-limit
is given by the integration of the two-photon 3D PSF2 :

M1pz “ 0q “
ż

h2pz1q ˆ ηpz1q dz1 “ c

ż

h2pz1q dz1, c P IR`

“ c
y

h2px, y, z1q dx dy dz1, c P IR`. (2.25)

We obtain then a metric that globally involves all the planes of the 3D PSF2.

In Figure 2.7 is illustrated the evolution of M1 as a function of the number of pixels
Nxy in the back aperture for different aberrations. In each case k “ 1, which results in
a pixel size of « 0.3824 µm, and the axial sampling parameters were chosen to match
the parameters that will be defined later in Sect. 2.2.4 (δz “ 0.375, Nz “ 401 ô ∆z “

150 µm).
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for different levels of aberrations a and a sample uniformly distributed along all directions. Axial
sampling parameters: δz “ 0.375 µm, Nz “ 401 ô ∆z “ 150 µm. All points are normalized
to the case of 512 pixels for each aberration type. The blue curve with circles correspond to
the diffraction-limited 3D PSF2. The red curve with crosses correspond to the Wang set of
aberrations with 5 rad rms of amplitude. The yellow curve with diamond symbols corresponds
to the spherical aberration (5 rad rms of amplitude).

One can observe that for 64 pixels one obtains non physical results with higher values
of M1 when the 3D PSF2 is aberrated.
From 128 to 512 pixels, M1 value increases monotonically and tends to converge. With
respect to the maximum number of pixels simulated (512 pixels), we obtain for 256 pixels
an underestimation of the mean image intensity of « 0.5%.
To better understand this figure, the two photon 2D PSF2’s at the farthest plane from
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the focusing depth (z0 “ 0) are illustrated in Figure 2.8 for different values of Nxy and
for different level of aberrations including the diffraction-limited case. I am interested
in the farthest plane, because it is where the 3D PSF2 becomes the largest and where
we can observe the strongest impact of Nxy, i.e., the field of view.

One can observe that for 64 pixels, at the plane most distant from the focus plane, the
aberrated PSF2’s (and also the diffraction-limited one) are too large to fit in the simu-
lated field of view hence a strong field aliasing (Figure 2.8 first row). One should consider
a higher number of pixels. By increasing the field of view one eventually encompasses
the 3D PSF2 which results on the convergence of M1 on Fig. 2.7.

Regarding the computation time1, the simulation of a 3D PSF2 with a 512 pixel pupil
width takes around 18.5 seconds to compute. The equivalent 3D PSF2 with 256 pixels
takes around 4.3 seconds (4 times faster). I consider that, by using Nxy “ 256, the gain
in computation time is very advantageous considering that I only have a reduction of M1
of « 0.5%. Thus, in what follows, unless specified otherwise, we will consider 256ˆ 256
pixels to represent the pupil, which in our case corresponds to a« 196ˆ196 µm transverse
field of view (512ˆ 512 pixels on the image plane).

1MATLAB R2015a. PC Specifications: quad-core 4x3.6 GHz processor, 1600 MHz 16Gb RAM
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Figure 2.8: Illustration of the 2D PSF at z “ ∆z{2 “ 75 µm for each case of aberration and for
4 values of Nxy. z0 is the focusing depth. (left) diffraction-limited PSF at z “ ∆z{2 “ 75 µm
for Nxy P r64, 128, 256, 512s; (center) PSF at z “ ∆z{2 “ 75 µm for Nxy P r64, 128, 256, 512s
aberrated by the Wang’s set of aberrations and amplitude 5 rad rms; (right) PSF at z “ ∆z{2 “
75 µm for Nxy P r64, 128, 256, 512s aberrated by the spherical aberration and amplitude 5 rad
rms.
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2.2.4 Choice of the axial sampling parameters: pitch and axial excur-
sion

As explained before, the 3D PSF is constructed plane by plane using a defocus in pupil
plane to simulate an axial displacement. Choosing the number of planes Nz and the
pitch δz means computing a 3D PSF2 along the axial excursion ∆z “ δz ˆ Nz. It is
possible to make the pitch δz very small to obtain a very detailed 3D PSF2, however for
a given choice of ∆z it would take a large number of planes to represent the 3D PSF2 and
consequently a large computation time.
In order define appropriate axial sampling parameters, for both diffraction-limited and
aberrated 3D PSF2, one should explore the two parameters simultaneously. I will first set
δz to 0.1 µm which is much smaller than the axial resolution of the 3D PSF2 approximated
by (see Sect. 1.4.2 p. 14):

rz «
2λn
NA2 ñ rz « 3.8 µm. (2.26)

Then, I calculate M1 at the focusing depth for different axial excursion ∆z (between 10
and 250 µm) and for an uniformly infinite sample.
As the axial excursion increases the numerical array encompasses a larger fraction of
the 3D PSF2. It is then expected a convergence of M1 as the axial excursion increases.
Here, I simulate the diffraction-limit, the Wang’s set of aberration with 5 rad rms of
amplitude and the spherical aberration with 5 rad rms of amplitude.

Figure 2.9 illustrates the evolution of M1, at the focusing depth, as a function of the
axial excursion ∆z for these different aberrations and for the diffraction-limited case.
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Figure 2.9: Normalized M1pa; z “ 0q as a function of the axial excursion ∆z for different levels of
aberrations a and a sample uniformly distributed along all directions. All points are normalized
to ∆z “ 250 µm of the diffraction-limited case. The blue curve with circles corresponds to
the diffraction-limited 3D PSF2. The red curve with crosses corresponds to the Wang set of
aberrations with 5 rad rms of amplitude. The yellow curve with diamond symbols corresponds
to the spherical aberration with 5 rad rms of amplitude.
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We can verify the convergence of M1 for all scenarios. The convergence is obtained at
around 100 µm for the most demanding case. Thus, for the considered aberration levels,
any axial excursion larger than 100 µm can be used. Unless otherwise specified, I take
an additional margin and I will consider an axial excursion of 150 µm.

Now, with a fixed 150 µm axial excursion, I calculate M1 as a function of δz for all
aberration levels considered before and for the same sample. Figure 2.10 illustrates the
results.
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Figure 2.10: Normalized M1pa; z “ 0q as a function of the axial excursion ∆z for different levels
of aberrations a and a sample uniformly distributed along all directions. For each aberration
case, the curve is normalized to the value observed at δz “ 0.1 µm. The blue curve corresponds
to the diffraction-limited 3D PSF2. The red curve corresponds to the Wang aberrations with
5 rad rms of amplitude. The yellow curve corresponds to the spherical aberration with 5 rad rms
of amplitude.

One can observe an important difference between the diffraction-limited case and the
aberrated ones: for δz ą 2 µm, the values M1 for the diffraction-limited case severely
increases while the aberrated cases do not vary considerably. Indeed, the 3D PSF2 when
diffraction-limited is more confined than in the presence of aberrations, it therefore
requires a finer axial sampling to obtain a accurate estimation of M1. Any δz lower than
2 µm would be suitable to the simulation of the 3D PSF2 imposed by the diffraction-
limited case.
In two-photon microscopy and for a truncated Gaussian excitation beam the axial res-
olution is approximately rz « 3.8 µm (see Sect. 2.3). The value δz “ 2 µm is there-
fore not surprising since it approximately corresponds to half of the axial resolution
rz{2 « 1.9 µm.
In the 3D PSF2 simulations, unless specified otherwise, I take an additional margin and
I will consider a pitch δz “ 0.375 µm for the axial sampling parameters. This value also
corresponds to the sampling of a specific numerical sample that I will use in Chapter 3
and 4.
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Default simulations parameters

In summary the analysis of the simulations parameters and of their influence on the
estimation of the metric M1 (see Sect. 2.2.2, 2.2.3 and 2.2.4) leads to the selection of a
set of default values given in Table 2.2.

Axial
parameters

‹ Pitch δz “ 0.375 µm

‹ Number of planes Nz “ 401

Axial excursion ∆z “ δz ˆNz “ 150 µm

Transverse
parameters

‹ Back aperture diameter
in pixels

Nxy “ 256

‹ Oversampling factor k “ 1

Transverse pixel size δxy “
rxy

2k “
λn

4k NA “ 0.3824 µm

Transverse field of view ∆xy “ 2kNxy ˆ δxy « 196 µm

Table 2.2: Default numerical microscope simulation parameters. Numerical values are given
for: NA “ 0.8 the numerical aperture of the microscope, λ “ 0.92 µm the wavelength of the
excitation beam, n “ 1.33 the refractive index of the medium in which is inserted the objective
of the microscope (water) and rxy “ λn{p2 NAq “ 0.765 µm the transverse resolution.

2.3 Characterization of the diffraction-limited 3D PSF2

In this section, I discuss the evolution of the transverse and axial resolution in the
diffraction-limited case for different scenarios: uniform illumination of a finite back aper-
ture, Gaussian distribution illumination (for different values of waist) on a finite back
aperture and Gaussian distribution illumination without back aperture truncation.
This study requires a fine sampling on the 3D PSF2. I therefore do not use the default
sampling parameters of Table 2.2. I use instead the parameters given by Table 2.3.

Axial
parameters

‹ Pitch δz “ 0.1 µm

‹ Number of planes Nz “ 1001

Axial excursion ∆z “ δz ˆNz “ 100 µm

Transverse
parameters

‹ Back aperture diameter
in pixels

Nxy “ 256

‹ Oversampling factor k “ 24

Transverse pixel size δxy “
rxy

2k “
λn

4k NA “ 0.0159 µm

Transverse field of view ∆xy “ 2kNxy ˆ δxy « 196 µm

Table 2.3: Numerical microscope simulation parameters fo a very detailed 3D PSF2. Numerical
values are given for: NA “ 0.8, λ “ 0.92 µm, n “ 1.33 and rxy “ λn{p2 NAq “ 0.765 µm
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2.3.1 Characterization of the 3D PSF2 in the transverse directions

Figure 2.11 illustrates the transverse cuts at the center of the diffraction-limited 3D
PSF2 (y “ 0) obtained at the focusing plane (z “ 0) for each considered illumination
distribution case.
For the uniform distribution illumination of a finite back aperture (black continuous
curve) we retrieve the cut of the square of a classic Airy pattern with a first zero located
at x “ 1.22 λn

2NA .
The red continuous curve corresponds to the non-truncated Gaussian distribution illumi-
nation case with waist w “ 0.5D, derived from the theoretical Gaussian beam equations
(see Sect. 1.3 p. 11). This Gaussian beam case, of course, exhibits neither zeros nor
rings.
The red dashed curve represents the case of a truncated Gaussian distribution illumi-
nation still with w “ 0.5D. The truncation creates secondary lobes (diffraction effect)
enlarging the excitation beam relatively to the non-truncated case. The curve resembles
the Airy pattern (black continuous curve) but is slightly wider: the first minimum is
located at « 1.5 λn

2NA .
We can also observe that with a reduced waist w “ 0.25D (blue dashed curve) the
3D PSF2 is even wider and now resembles to the case of a non-truncated Gaussian
illumination distribution. With a larger waist w “ D and w “ 2D (yellow and green
dashed curves), the truncated Gaussian distribution converges towards the Airy pattern.

As presented in Sect. 1.4 p. 13, the transverse resolution of a two photon 3D PSF2 can
be estimated as the full width at one quarter of the maximum (FWQM) to match the
full width at half maximum (FWHM) of the single photon 3D PSF. A smaller FWQM
results in a better resolution.
For non-truncated Gaussian distribution cases, the transverse resolution can be defined
by the waist (see Sect. 1.3 p. 11), i.e., the distance at which the field amplitude fall
to 1{e of the maximum. This is equivalent to the distance at which the field intensity
drops to 1{e2 and to 1{e4 of the maximum for the single and the two photon 3D PSF
respectively. In this Figure, the horizontal red dashed line represents the quarter of the
maximum. The horizontal blue dashed line represents the 1{e4 of the maximum.

For the non-truncated case, the FWQM is « 2 ˆ 0.2868 µm « 0.57 µm. The distance
where the 3D PSF2 is equal to 1{e4 is « 0.5 µm. One can observe that the two measured
transverse resolutions match.
For the truncated back aperture cases (dashed curves and black continuous curve) the
FWQM is at least « 2ˆ0.3983 µm « 0.8 µm. From Eq. 2.16, the transverse resolution for
a truncated pupil can be expressed by rxy “ λn{p2NAq « 0.765 µm which approximately
matches the measured FWQM.
We observe here, that the truncation of the back aperture clearly induces an enlargement
of the transverse resolution.

2.3.2 Characterization of the 3D PSF2 in the axial direction

For what concerns the axial direction, I illustrate in Fig. 2.12 the axial cuts through the
center of the 3D PSF2 (x “ 0, y “ 0) for each pupil case.
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Figure 2.11: Transverse cuts at the center of the diffraction-limited 3D PSF2 (y “ 0) at the
focusing depth (z “ 0) for each scenario. (upper) logarithmic scale; (lower) linear scale; The
black continuous curve corresponds to the 3D PSF2 with truncated uniform distribution of illu-
mination. The dashed curves corresponds to the 3D PSF2 with truncated Gaussian distribution
of illumination for different values of waist. The red continuous curve corresponds to the 3D
PSF2 with a non-truncated Gaussian distribution of illumination with waist w “ 0.5D. The
red dashed horizontal line represents the quarter of the maximum. The blue dashed horizontal
line represents the 1{e4 of the maximum. The transverse resolution can be estimated by the
full width of the 3D PSF2 at the quarter of its maximum. All plots are normalized to their
maximum.
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Figure 2.12: Axial cuts at the center of the diffraction-limited 3D PSF2 (x “ 0, y “ 0). (up-
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maximum. The transverse resolution is given by the full width of the 3D PSF2 at the quarter of
its maximum. All plots are normalized to their maximum.
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One can observe for the uniform distribution illumination case (black continuous curve)
the side lobes induced by the back aperture truncation. As presented in Sect. 1.4 p. 13,
the axial resolution can be defined as the distance, along the longitudinal axis, between
the maximum of intensity and the first minimum of intensity which corresponds to the
equation rz “

2λn
NA2 « 3.8 µm.

The red continuous curve corresponds to the non-truncated Gaussian distribution illumi-
nation case with waist w “ 0.5D, derived from the theoretical Gaussian beam equations
(see Sect. 1.3). The FWQM is « 2 ˆ 0.6 µm « 1.2 µm. The distance where the 3D
PSF2 is equal to 1{e4 is « 1.5 µm. The two measured transverse resolutions approxi-
mately match.
The red dashed curve represents the case of a truncated Gaussian distribution illumina-
tion with waist w “ 0.5D. Similarly to the case of the truncated uniform distribution
illumination, the truncation creates secondary lobes. The first minimum can still be
observed at z “ 2λn

NA2 as in the case of the truncated uniform distribution. The FWQM
is « 2ˆ 1.7 µm « 3.4 µm. This approximately matches with the definition of axial res-
olution for truncated back apertures: rz « 3.8 µm. The truncation also enlarges axially
the 3D PSF2 confinement relatively to the non-truncated case. This enlargement is a
lot more accentuated than in the transverse direction.
As we observed for the transverse cuts, the reduction of the waist also enlarges the 3D
PSF2 in the axial direction (blue dashed curve) relatively to the case of waist w “ 0.5D.
The increasing of the waist tends to converge the truncated Gaussian distribution to
a truncated uniform distribution resulting on the overlap between the green and black
curves.

To summarize, the theoretical equation for the propagation of Gaussian beams (Eq. (1.1)
p. 11) can not be used to correctly characterize the propagation of the excitation beam
through the finite back aperture. As one could expect, the truncation by the back
aperture widens the 3D PSF2 in both transverse and axial directions, with the axial
direction being more impacted.

2.4 Characterization of the 3D PSF2 in the presence of
aberrations

In this section I study the impact of aberrations on the 3D PSF2. I simulate two 3D
PSF2’s with 2 rad of coma aberration and 2 rad of spherical aberration respectively.
Here, the 3D PSF2’s are simulated with a truncated Gaussian distribution illumination
and a waist w “ 0.5D. To better observe the effects of the aberrations on each 3D
PSF2, I consider the same sampling parameters as those used in Sect. 2.3 except the
oversampling factor which was set to k “ 8 instead of k “ 24 (see Table 2.3).

Figure 2.13 illustrates three different 2D profiles of the 3D PSF2 for 2 rad of coma
aberration. These cuts were extracted at the position px, y, zq where the 3D PSF2 is
maximal.
We can observe that the coma aberration induces a transverse displacement on the main
lobe of the 3D PSF2. It also induces an elongation of this lobe in both transverse and
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Figure 2.13: Illustration of the 3D PSF2 for 2 rad of coma aberration (Z7). The maximum of
the 3D PSF2 is located at x “ ´1.44 µm, y “ 0 µm and z “ 0 µm. (left) Transverse scan at
z “ 0 µm; (center) Axial profile yz at x “ ´1.44 µm; (right) Axial profile xz at y “ 0 µm.

axial directions, the elongation being more accentuated in the axial direction.

Figure 2.14 illustrates the three cuts that cross the maximum of the 3D PSF2 for 2 rad
of coma aberration.
As expected, one can verify the elongation of the 3D PSF2. The FWQM corresponds
now to 8.4 µm instead of 3.4 µm, a degradation of the 3D PSF2 axial resolution by a
factor 2.47 relatively to the diffraction-limited case. We can also observe a larger trans-
verse resolution: « 3.11 µm in the x-direction and « 1.06 µm in the y-direction instead
of 0.8 µm on both directions on the diffraction-limited case. This represents a degrada-
tion of the 3D PSF2 transverse resolution by a factor 3.89 and 1.33 on each direction
respectively.

For what concerns the spherical aberration, Fig. 2.15 illustrates three different 2D profiles
of the 3D PSF2 for 2 rad of spherical aberration. These profiles were extracted at the
point where the 3D PSF2 is maximal.
We can observe that the spherical aberration induces an axial displacement (and not
transverse) of the main lobe of the 3D PSF2. It also induces an elongation of this lobe
in both transverse and axial directions.

In Figure 2.16 I illustrate the three cuts that cross the maximum of the 3D PSF2 for 2
rad of coma aberration.
We can verify that the FWQM has increased to « 9.9 µm. When diffraction-limited the
FWQM is « 3.4 µm. This represents an degradation of the 3D PSF2 axial resolution by
a factor 2.9.
We can also observe a larger FWQM: « 1.2 µm in both transverse directions instead
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Figure 2.14: 3D PSF2 cuts for 2 rad of coma aberration (Z7). The maximum of the 3D PSF2 is
located at x “ ´1.44 µm, y “ 0 µm and z “ 0 µm. (upper) Cut along the transverse x direction
(y “ 0, z “ 0); (center) Cut along the transverse y direction (x “ ´1.44 µm, z “ 0 µm);
(lower) Cut along the axial z direction (x “ ´1.44 µm, y “ 0 µm); The red dashed horizontal
curve represents the quarter of the maximum. The transverse resolution is given by the full
width of the 3D PSF2 at the quarter of its maximum

of 0.8 µm of the diffraction-limited case. This represents a degradation of the 3D
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Figure 2.15: Illustration of the 3D PSF2 for 2 rad of spherical aberration (Z11). The maximum
of the 3D PSF2 is located at x “ 0 µm, y “ 0 µm and z “ 7.9 µm. (left) Transverse scan at
z “ 7.9 µm; (center) Axial profile yz at x “ 0 µm; (right) Axial profile xz at y “ 0 µm.

PSF2 transverse resolution by a factor 1.5.
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Figure 2.16: 3D PSF2 cuts for 2 rad of spherical aberration (Z11). The maximum of the
3D PSF2 is located at x “ 7.9 µm, y “ 0 µm and z “ 7.9 µm. (upper) Cut along the
transverse x direction (y “ 0 µm, z “ 7.9 µm); (center) Cut along the transverse y direction
(x “ 0 µm, z “ 7.9 µm); (lower) Cut along the axial z direction (x “ 0 µm, y “ 0 µm); The
red dashed horizontal line represents the quarter of the maximum. The transverse resolution is
given by the full width of the 3D PSF2 at the quarter of its maximum.
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2.5 Evolution of M1 as a function of aberrations and nu-
merical aperture

I discuss in this section the evolution of the mean image intensity M1 in the presence
of different levels of aberrations, for different numerical apertures. As the numerical
aperture is directly related to the back aperture diameter (NA “ D{2f), in order to
increase/decrease NA one can respectively increase/decrease the back aperture diameter
D.

In the discussion of the pupil segmentation approach (Sect. 1.5.2 p. 20), we recalled that
recording transverse scans with a reduced aperture is often considered as a limitation.
It is indeed known that, when diffraction-limited, reducing the numerical aperture in-
creases the diffraction effects on the 3D PSF2 resulting in a reduction of the value of M1
proportional to NA2. Through a detailed analytical analysis and numerical simulations,
I verify here that, for a uniform planar object, the mean image intensity is proportional
to NA2 when diffraction-limited.
In the presence of aberrations, one can expect that, for a large numerical aperture, the
value of M1 is mainly dictated by aberrations. Thus, one should be able to reduce
NA with no significant reduction of M1. This behavior has been shown by [Meimon
et al., 2014a] considering a planar uniform sample and using analytical developments
with strong approximations. This behavior is here demonstrated.

An other interesting limit case to consider for the sample is the 3D uniform case. It
can be shown in this case that, when diffraction-limited and considering a uniform back
aperture distribution, the mean image intensity M1 does not depend on the numerical
aperture. I demonstrate it here through an analytical analysis and numerical simulations.
I also evaluate numerically if this independence is verified in the case of a Gaussian beam
with fixed waist truncated by an aperture of variable diameter. The evolution of M1
as a function of aberrations and numerical aperture is also verified for the 3D uniform
sample.

2.5.1 Analytical analysis of M1 for the diffraction limited case

2.5.1.1 M1 as a function of numerical aperture for a planar sample

Consider a uniform planar sample at the focusing depth z0 “ 0, i.e. a uniform sample
concentrated only in a unique plane.

ηpz1q “ δpz1q pdelta Diracq. (2.27)

The mean image intensity of the scan obtained at z0 “ 0 at the diffraction-limit is given
by the integral of the two photon PSF at the focusing depth:

M1pz “ 0q “
ż

|

h2pz1q ˆ ηpz1q dz1 “
ż

|

h2pz1q ˆ δpz1q dz1

“

ż

h2pz1 “ 0q dz1 “
x

h2px, y, z1 “ 0q dx dy. (2.28)
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Hypothesis 1: We adjust the laser power so that the flux of the excitation beam that
passes through the back aperture is constant regardless of the selected diameter of the
back aperture (let’s say unitary flux). As a consequence:

x
hαpx, y, z

1q dx dy “ 1, @z1@α (2.29)

where hαpx, y, z1q represents the 3D PSF2 obtained by reducing the back aperture by a
factor α.

Hypothesis 2: Changing the numerical aperture by a factor α, i.e. NAα “ αNA, is
to perform a homothecy of a factor α to the complex amplitude of the back aperture
plane. Consequently:

hαpx, y, z
1q “ γh1pαx, αy, α

2z1q (2.30)

where h1 is the 3D PSF2 obtained with the full diameter back aperture (α “ 1) and γ

is a scalar factor.
Hypothesis 1 implies that @z1

x
h1px, y, z

1q dx dy “
x

hαpx, y, z
1q dx dy “ 1 ñ γ

x
h1pαx, αy, α

2z1q dx dy “ 1

x “ αx, y “ αy, dx dy “ dx dy
α2 ñ

γ

α2

x
h1px,y, α2z1q dx dy

loooooooooooooomoooooooooooooon

“1

“ 1

ñ γ “ α2. (2.31)

Therefore:

hαpx, y, z
1q “ α2h1pαx, αy, α

2z1q. (2.32)

Thus, the mean image intensity at the focusing plane for a numerical aperture NAα,
which is denoted by Mα

1 becomes

Mα
1 pz “ 0q “

x
h2
αpx, y, z

1 “ 0q dx dy “
x

“

α2h1pαx, αy, z
1 “ 0q

‰2 dx dy

“ α4
x

h2
1pαx, αy, z

1 “ 0q dx dy

x “ αx, y “ αy, dx dy “ dx dy
α2 “ α2

x
h2

1px,y, z1 “ 0q dx dy
looooooooooooooomooooooooooooooon

“M1
1

ôMα
1 pz “ 0q “ α2M1

1 pz “ 0q
ñMα

1 pz “ 0q 9 NA2 (2.33)

where M1
1 pz “ 0q is the mean image intensity at the focusing depth obtained with a full

diameter back aperture.
We have verified that, at diffraction-limit and with a planar sample, M1 is proportional
to NA2.
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2.5.1.2 M1 as a function of numerical aperture and for a 3D uniform sample

Let us consider a 3D sample. In particular a 3D uniformly distributed sample (see
Eq. 2.24). The mean image intensity of the scan obtained at z0 “ 0 at the diffraction-
limit is given by the integration of the two-photon 3D PSF2(see Eq. 2.25).

From Hypothesis 1 and Hypothesis 2 and from Eq. 2.32 we have that the mean image
intensity at the focusing plane for a numerical aperture NAα becomes

Mα
1 pz “ 0q “ c

y
h2
αpx, y, z

1q dx dy dz1

“ c α4
y

h2
1pαx, αy, α

2z1q dx dy dz1

x “ αx, y “ αy, z’ “ α2z1, dx dy dz1 “ dx dy dz’
α4

“ c
y

h2
1px,y, z’q dx dy dz’

“ c M1
1 pz “ 0q, c P IR` (2.34)

We demonstrate here the well known property that states that, at the diffraction limit
and for a 3D uniform sample, the mean image intensity does not depend of the numerical
aperture.

Remark: The Hypothesis 2 related to the homothecy in the back aperture plane applies
when considering a uniformly illuminated back aperture plane with variable diameter
and also to the case of a non-truncated Gaussian beam with variable waist. It does not
strictly apply to the case of a Gaussian beam with fixed waist truncated by an aperture
of variable diameter. This case is of course the most relevant in practice and will be
treated in the numerical analysis that follows.

2.5.2 Numerical analysis of M1 as a function of NA and of aberrations

In this section, I make use of the numerical microscope. To simulate the 3D PSF2 with
a reduced numerical aperture, I reduce the diameter of the back aperture but keeping
the excitation beam distribution and the phase defined on the full back aperture D.
Figure. 2.17 illustrates the procedure. The aberrations used are the usual Wang’s set of
aberration with a adjustment of the amplitude. When comparing the different numerical
apertures, I normalize each 3D PSF2 to ensure that the same quantity of energy passes
through the back aperture following the Hypothesis 1 of Sect. 2.5.1.1. This is verified
by setting the integral of the 2D PSF at each plane equal to 1.
Here, I intend to use the default parameters presented in Table 2.2. However, if I consider
the default parameter (Nxy “ 256) for the full back aperture diameter, reducing the back
aperture diameter down to 30% of the full diameter will result in a 77 pixels diameter.
As we observed in Sect. 2.2.3, a very small Nxy can results in undesirable non-physical
effects. Thus, I use Nxy “ 512 pixels to represent the full back aperture diameter. The
smallest diameter is represented by 153 pixels which I consider acceptable.
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Figure 2.17: Computation of the complex amplitude Apρx, ρy; zq for a reduced back aperture. α
represents the factor reduction: for example, α “ 1 correspond to the full back aperture diameter
and α “ 0.5 correspond to a truncation by half of the full back aperture diameter. The truncated
Gaussian distribution is the multiplication of the Gaussian distribution Gpρx, ρyq with a binary
mask P pρx, ρyq representing the reduced back aperture. The complex amplitude is calculated by
multiplying the truncated Gaussian distribution with the exponential of the phase plus the right
amount ad of defocus needed to axially displace the PSF.

2.5.2.1 Evolution of M1 as a function of numerical aperture and of aberra-
tions for a planar sample

Here, I intend to analyze the evolution of M1 as a function of numerical aperture and of
aberrations for a planar sample and for different illumination distributions. We consider
both the truncated Gaussian distribution (with waist w “ D{2) and the truncated
uniform distribution. Figure 2.18 presents the results.
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Figure 2.18: Mean image intensity M1 at the focusing depth as function of back aperture
diameter and of aberrations (Wang’s set of aberration) for an uniform planar sample. α “ 1
correspond to the full aperture diameter (512px), α “ 0.5 corresponds to 256 pixels and α “ 0.3
corresponds to 154 pixels. All the plots are normalized to the case of an Gaussian illumination
distribution at the smallest aperture.
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One can observe that, in the case of the uniform illumination, M1 follows a clear
quadratic dependence in NA when diffraction-limited. This is consistent with the ana-
lytical analysis of Sect. 2.5.1.1. For the case of a truncated Gaussian beam, it follows a
similar trend although not strictly quadratic.
One can also observe, that for large numerical apertures, M1 is mainly dictated by the
aberrations as suggested by [Meimon et al., 2014b]. One can therefore somewhat reduce
the numerical aperture with no significant reduction of M1. In this example, one can
observe that M1 can even be increased with a reduced numerical aperture. Of course,
eventually for small numerical apertures the beam is again diffraction-limited and M1
follows again the quadratic trend.

2.5.2.2 Evolution of M1 as a function of numerical aperture and of aberra-
tions for a uniform 3D sample

I analyze here the evolution of M1 as a function of the numerical aperture and of aber-
rations for a uniform 3D sample. We consider the same two illumination cases of the
previous section.
For a start I analyze the diffraction-limited case. The results are presented in Figure 2.19.
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Figure 2.19: Mean image intensity M1 at the focusing depth as a function of back aperture
diameter for different axial excursions ∆z and for an infinite 3D sample uniformly distributed
in the volume. α “ 1 correspond to the full aperture diameter (512px), α “ 0.5 corresponds to
256 pixels and α “ 0.3 corresponds to 154 pixels. All the plots are normalized to the case of an
Gaussian illumination distribution at full aperture and with a axial excursion of 150 µm.

Verification of the axial excursion simulation parameter:

In Sect. 2.5.1.2 we recall that, when imaging a uniform 3D object, the mean
image intensity is obtained by integrating the 3D PSF2 along the three direc-
tions (see Eq. 2.25). Of course, in the numerical simulations one has to limit
the computation domain and in particular, the axial excursion ∆z. The re-
sults presented in Fig. 2.19 are therefore given for variable ∆z values in order
to check convergence. Of course the convergence is more difficult to obtain in
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the case of small numerical apertures since the focal volume is very extended
in this case.

As said before, it is expected for the uniform distribution illumination case that M1 does
not depend on the numerical aperture. One can observe that the mean image intensity
remains globally constant when reducing the back aperture diameter (colored dashed
curves). When ∆z “ 150 µm, we observe a reduction of « 6% and « 2% of M1 when
reducing the back aperture respectively to 0.3D and 0.5D (blue dashed curve). This
reduction is clearly a numerical effect induced by the limited axial excursion. As we
can observe, for an axial excursion of 750 µm there is almost no reduction of M1 (green
dashed curve).
In the case of the variable truncated Gaussian distribution, since the Hypothesis 2 from
Sect. 2.5.1.1 does not apply, one do not expect a constant mean image intensity when
reducing the numerical aperture. Indeed, one can observe that M1 decreases monoton-
ically as NA decreases (continuous curves). Also, along with the reduction of NA, the
Gaussian distribution illumination converges to a uniform distribution. This justify the
convergence of M1 values, at small NA, to the values of M1 obtained for the uniform
distribution illumination case.

To analyze the behavior of M1 in the presence of aberrations and different NA values, I
compute M1 as a function of the back aperture diameter for different aberration ampli-
tude (Wang’s set of aberration) and different illumination distribution for a uniform 3D
sample. This time, the results are given for a fixed ∆z “ 150 µm. Figure. 2.20 presents
the results.
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Figure 2.20: Mean image intensity M1 at the focusing depth as function of back aperture
diameter and of aberrations (Wang’s set of aberration) for an uniform 3D sample. All the curves
are normalized to the case of an Gaussian illumination distribution at full aperture.

For comparison, the curves from Fig. 2.18 for the diffraction-limited case with ∆z “

150 µm are plotted again (blue curves). Analogously to the case of the planar sample,



56 Chapter 2. Study of the impact of aberrations

one can observe that for large numerical apertures M1 is dictated by the aberrations (red
and yellow curves). One can reduce the numerical aperture with no reduction of M1. In
this example, one can even obtain a large increase of M1 by reducing the diameter.
With a fixed numerical aperture, for example α “ 1, one can observe that M1 is sensitive
to aberrations. This indicates that one would be able to perform a standard modal
sensorless approach to estimate aberrations in a fluorescent dye pool, i.e. with a 3D
infinite uniform sample. I analyze with further details the sensitivity ofM1 to aberrations
for different sample geometries in the next section.

2.6 Evolution of M1 as a function of aberrations and sample
structure

The efficiency of the modal sensorless approach is related (among other factors) to the
sensitivity of the image quality metric to aberrations. I investigate here the the evolution
of M1 at the focusing depth as a function of aberration amplitudes (Wang’s set of
aberrations) for different sample geometries (fluorescent bead and fluorescent uniform
slab). I do not consider here any aspects related to the signal to noise ratio.
For instance, one can quantify the sensitivity for a given set of aberrations a0 (for
example σpa0q “ 1 rad rms) with the ratio

R “
M1pa “ 0, z “ z0q ´M1pa “ a0, z “ z0q

M1pa “ 0, z “ z0q
. (2.35)

R quantifies the relative decrease of the metric with aberrations. Large values of R
represent a better sensitivity.
Alternatively the sensitivity to aberrations can be quantified by the amount of aberration
a0 one needs to introduce to obtain half the metric at diffraction-limit:

a0 : M1pa “ a0, z “ z0q “ 0.5M1pa “ 0, z “ z0q. (2.36)

This metric is equivalent to computing the aberration amplitude a for which R “ 0.5.

2.6.1 Uniform fluorescent bead with varying diameter

Figure 2.21 illustrates the evolution of M1 as a function of aberration standard deviation
for a in-focus fluorescent bead with varying diameter.
First, we observe that, for any bead radius, the maximum is obtained in the absence of
aberration. We obtain a higher sensitivity of M1 for any aberration amplitudes for the
small fluorescent beads (continuous blue curve to yellow curve). One can observe that
between a 1 µm diameter bead (blue continuous curve) and a 2 µm diameter bead (light
red dashed curve) there is no noticeable difference. Indeed, we observed in Sect. 2.3 that,
in the case of a truncated Gaussian distribution illumination, the axial resolution is not
smaller than « 3.4 µm when diffraction-limited. Then, structures with size smaller than
the axial resolution can not be distinguished, resulting in the same impact in M1.

For a 1 µm diameter bead (blue continuous curve), the ratio is R “ 0.71. The second
sensitivity metric is equivalent to measuring the half width at half maximum (HWHM)
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Figure 2.21: M1 at the focusing depth (z “ 0) as a function of aberrations standard deviation
for a in-focus fluorescent bead with varying diameter. Each curve is normalized to its maximum.

of the curve. One obtains a HWHM for σpa0q “ 0.72 rad rms.
For a very large bead with a diameter of 60 µm (blue dashed curve) and with σpa0q “ 1
rad rms of aberration amplitude, one obtain a ratio of R “ 0.3. In this case, one obtains
a HWHM for a0 “ 2 rad rms.
For each sensitivity metric respectively, M1 is 2.4 and 2.8 times more sensitive than in
the case of the 60 µm diameter bead.

Another case of interest is the 10 µm diameter bead, which is representative of a neuron
soma. One can observe that, for 1 rad of aberration amplitude, one obtains a ratio
R “ 0.5. M1 has a good sensitivity to aberrations when considering a 10 µm bead.

2.6.2 Uniform fluorescent slab with varying thickness

Figure 2.22 illustrates the evolution of M1 as a function of aberration standard deviation
for an in-focus fluorescent slab uniformly distributed along the transverse directions
(perpendicular to the line of sight) with different thicknesses.
Analogously to Fig. 2.21, the maximum is obtained in the absence of aberrations.
We obtain a higher sensitivity of M1 for any aberration amplitudes for the finer fluores-
cent slabs. Between a 1 µm thick slab (blue continuous curve) and a 2 µm thick slab
(light red dashed curve) there is no noticeable difference in what concerns the sensitivity
to aberrations. I recall that structures which size is smaller than the axial resolution
can not be distinguished, resulting in the same impact in M1.
For a 1 µm thick slab (blue continuous curve), the ratio is R “ 0.71 and one obtains a
HWHM for σpa0q “ 0.71 rad rms.
For a slab with a thickness of 60 µm (blue dashed curve) and with σpa0q “ 1 rad rms
of aberration amplitude, one obtain a ratio of R “ 0.28 and a HWHM at a0 “ 2.2 rad
rms.
For each sensitivity metric respectively, M1 is 2.5 and 3.1 times more sensitive than in
the case of the 60 µm diameter bead.
In what concerns the 150 µm thick slab (black continuous curve), it corresponds to the
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Figure 2.22: M1 at the focusing depth (z “ 0) as a function of aberrations for a in-focus
fluorescent slab with different thickness. Each curve is normalized to its maximum.

case of an infinite and uniformly distributed 3D sample (Eq. (2.24) p. 36). In particular
it corresponds to the truncated Gaussian distribution case at α “ 1 of Fig. 2.20. Indeed,
one retrieves on the black curve of Fig. 2.22 at « 0.7 and 1 rad rms the same values of
M1 obtained in the yellow and red curves of Fig 2.20 at α “ 1.

To summarize, M1 has a good sensitivity to aberrations for small and large samples.
The modal sensorless wavefront sensing approach can be performed with a sample with
large features, like neuron’s somas (between 10 and 15 µm diameter). It could even be
performed in a infinite uniform 3D sample such as a fluorescent dye pool.

Note also that, when imaging at very large depths, the signal to noise ratio is very weak,
the large quantities of aberrations degrade the 3D PSF2 resolution and one is not able
to observe the small features of the sample. The results here presented ensure us that
the wavefront sensing could be performed at large depth if one is able to image large
structures.

2.7 Evolution of M1 in the N-dimensional aberration space

In the first application of the modal sensorless approach to two-photon microscopy
[Débarre et al., 2009] it is stated that, for weak aberrations, the mean image inten-
sity can be approximated by a quadratic approximation

M1paq «M0 ´
ÿ

i,j

aiajxZi, Zjy, (2.37)

where M0 represents the metric value when diffraction-limited, ai and aj represent the
coefficients of the Zernike modes Zi and Zj respectively and xZi, Zjy the correlation
between the two modes.

In order to understand how M1 evolves for a large range of aberration amplitudes, I
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intend here to observe, through 2D projections, the evolution of M1 in the N -dimensional
space of aberrations and to verify in which domain of aberration a quadratic function is
a good approximation.
I use then the numerical microscope to measure M1 at the focusing depth as a function
of two aberrations simultaneously when scanning a 10 µm in-focus fluorescent bead.
For each aberration I explore a range of amplitudes between -5 and 5 rad rms. The
aberrations explored are the astigmatism (Z5 and Z6), coma (Z7 and Z8), trefoil (Z9
and Z10) and spherical aberration (Z11).
Figures 2.23, 2.24 and 2.25 illustrate the results.
We observe that for small aberration amplitudes, between approximately -1 and 1 rad
rms, the mean image intensity is well approximated by a quadratic function. But, when
looking at higher amplitudes, the evolution becomes more complex and a quadratic
approximation is no longer appropriate.
This 2D projections allow to evaluate the eigenvectors of the mean image intensity. One
can observe, from the illustrated 2D projections, that in a regime of weak aberration
amplitudes, the Zernike mode basis correspond to the eigenvectors of M1. Observe in
Fig. 2.26 the case of Z5 and Z11: if one draw an ellipse that represents all the points
where M1 is equal to a constant (to stay on a regime of weak aberrations let us consider
a constant near to the maximum: 0.7), the minor and major axes of the ellipse (the
eigenvectors of M1) are parallel to the cartesian axes. This indicates that the Zernike
modes form a orthoganal basis mode for M1, but only in a regime of weak aberrations.
When in a regime of strong aberration amplitudes the notion of eigenvectors is however
no longer applicable as one can not draw such ellipse.

2.8 Conclusion

In this chapter I performed a general study of the impact of aberrations in two photon
microscopy. I presented a new mathematical expression that describes the mean intensity
M1 of a transverse scan as a function of aberrations and of the sample axial distribution.
This new formulation makes explicit the interplay between the 3D PSF2 (embedding the
influence of aberrations) and the sample distribution. More precisely, it shows that the
mean image intensity M1 does not depend on the transverse distribution of the sample,
it depends only on the 3D PSF2 axial distribution and on the sample axial distribution.
Then, I modeled a numerical microscope which consists in the computation of the two
photon 3D PSF2 and in its convolution with a numerical sample to obtain a z-stack
image.
With this numerical microscope I verified the different definitions of transverse and axial
resolutions. And I characterized the main 3D PSF2 deformations caused by the coma
and spherical aberrations. We observed that the coma aberration displace the main
lobe of the 3D PSF2 in the transverse directions and elongate it mainly in the axial
direction. We also observed that the spherical aberration displaces and elongates the
3D PSF2 along the axial direction. I will show in Chapter 3 how these displacement
and elongation effects can be problematic when estimating aberrations with the modal
sensorless approach.
I also studied the impact of aberrations on the mean image intensity for different nu-
merical apertures and different sample distributions. I could observe that, for larger
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Figure 2.23: Evolution of M1 as a function of two aberrations between -5 and 5 rad rms of
amplitude. (1/3)
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Figure 2.24: Evolution of M1 as a function of two aberrations between -5 and 5 rad rms of
amplitude. (2/3)

values of NA, M1 is dictated by the aberrations. One can therefore reduce the numerical
aperture without reducing the mean image intensity. This result shows that the pupil
segmentation still can be an interesting approach to the wavefront sensing.
I verified that for an in-focus sample the mean image intensity is maximized in absence of
aberrations. M1 is more sensitive to aberrations when imaging small structured samples.
But, we still have a good sensitivity to aberrations when imaging very large structures.
This ensures that one can perform an estimation of aberrations by the modal sensorless
approach at larger depths where only the larger structures can be imaged.
Finally, we observed that the mean image intensity does not have a quadratic depen-
dence on aberrations in a regime of strong aberrations. For the lower modes studied,
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Figure 2.25: Evolution ofM1 as a futon of two aberrations between -5 and 5 rad rms of amplitude.
(3/3)

Figure 2.26: The ellipse (purple) represents the point where M1 “ 0.7. The minor and major
axes of the ellipse (white dashed lines) are parallel to the cartesian axes.

the Zernike mode basis correspond globally to the eigenvector of M1 in a regime of weak
aberration amplitudes. For a regime of strong aberrations, some aberrations present a
important crosstalk between them.
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To summarize, I performed a detailed study of the impact of aberrations, numerical
aperture and sample structure on the mean image intensity. I used some very simple
sample examples as a planar sample uniformly distributed, a infinite uniform 3D sample,
in-focus beads and in-focus slabs.
In Chapter 3 and 4, I will study the modal sensorless approach for an in-focus bead, and
also for an out-of-focus bead. We will see how a more complicated sample can affect the
mean image intensity and the Standard Modal Sensorless approach.
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Chapter 3

Aberration estimation: Standard
Modal Sensorless (SMS) and
Axially-Locked Modal Sensorless
(ALMS) approaches

As the mean image intensity M1 depends both on aberrations and on the sample’s ax-
ial distribution, one may wonder how the sample can impact the aberration estimation
procedure. In Sect. 2.4 p. 45 I presented the impact of aberrations on the 3D PSF2.
I observed that the spherical aberration displaces the 3D PSF2 in the axial direction.
Also, I observed that the coma aberration elongates the 3D PSF2 symmetrically along
the axial direction. When imaging a densely labeled biological medium, the presence
of coma or spherical aberration can create the optical illusion of being focused on a
feature of interest when, in reality, the feature is out-of-focus. One may wonder how this
phenomenon associated to a labeled sample with bright out-of-focus features may affect
the aberration estimation.

In this chapter I present the Standard Modal Sensorless (SMS) approach. We will
see that, when performing SMS for some particular sample structures, the image quality
metric is maximized when aberrations are present. This phenomenon induces a bias in
the estimation of aberrations, this corresponds to the so-called sample dependence
problem. It has been observed [Débarre et al., 2005; Olivier et al., 2009] and studied
[Thayil et al., 2010], in third harmonic generation (THG) microscopy, for different sample
structures.
This effect in two photon microscopy has been also briefly discussed [Thayil et al.,
2010; Zeng et al., 2012; Galwaduge et al., 2015] but it has never been strictly studied. I
intend here to elaborate this study for two photon microscopy.
I discuss the several attempts to solve the sample dependence In particular, I demonstrate
that the displacement-free approach does not fully solve the problem.
To fully overcome the sample dependence, we developed a new approach that we call
Axially Locked Modal Sensorless (ALMS). This approach does not require the con-
struction of a new set of modes and is based on an automatic and controlled adjustment

65
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of focusing depth to target a feature of interest by the use of a specifically designed
image quality metric. The ALMS approach is then demonstrated on ex and in vivo
experiments. The test bench used to execute this experiment is also presented.

In Section 3.1 I present the standard modal sensorless approach for an in-focus fluores-
cent bead. In Section 3.2 I present an example of the sample dependence problem and
I discuss in Sect. 3.3 the limitations of the displacement-free approach. After a brief
summary of other approaches in Sect. 3.4, I describe in Section 3.5 the ALMS approach,
detailing the aspects of the choice of the image quality metric. Section 3.6 presents the
experimental demonstration of the ALMS approach. And in Sect. 3.7 the choice of the
modal basis and the notion of orthonormality are discussed.

The work presented in this chapter was partially published in our Scientific Reports
article that is incorporated in Sect. 3.6.2. Meanwhile, some aspects of the theoretical
development of this approach are developed with more details in Sect. 3.1 to Sect. 3.5 of
this chapter. The reader mainly interested in the experimental application of the ALMS
approach can directly read the paper, which gives a concise overview of both theoretical
and experimental results.
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3.1 Standard modal sensorless for an in-focus fluorescent
bead

The modal sensorless approach estimates the aberrations through the maximization of
an image quality metric by adjusting a deformable mirror (DM) to control the excitation
beam wavefront phase. The shape of the DM that maximizes this metric is expected to
pre-compensate the aberrations induced by both optical setup and biological medium.
The standard approach uses the mean image intensity of the transverse scan M1 (Eq.
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(1.33) p. 18) as a maximization metric and the wavefront phase is expanded on a basis
of Zernike modes (Sect. 1.4.1.1 p. 13). Here, the tip, tilt and defocus modes (also called
displacement modes) are excluded as they only induce a translation effect in the image in
both transverse and axial directions. Additionally, in experimental tests, M1 is globally
decreasing along the depth because of the increase of scattering and absorption effects.
So, adjusting the defocus mode while maximizing M1 would progressively result in mov-
ing the focusing depth to the surface of the sample. For this reason, the maximization
of M1 is performed at a fixed depth.

Let us consider an object whose consider a fluorescent bead centered at the focusing
depth z “ 0 µm. As we could observe in Sect. 2.3 p. 41, when diffraction-limited, the
3D PSF2 is well confined resulting in a narrow and peaked distribution. It is expected
that the integral of the “combined axial distribution” (as defined in Sect. 2.1 - Eq.(2.7)
p. 28) is then maximized when the 3D PSF2 is the most confined, i.e. diffraction-limited.

Figure 3.1 illustrates the interaction between the diffraction-limited 3D PSF2 and the
fluorescent bead in this considered scenario. I illustrate a 2D axial profile xz at the
center of the 3D PSF2 and the bead, a 2D axial profile xz at the center of the z-stack
image and the evolution of the different axial distributions. I recall that the mean image
intensity of the transverse scan M1 at z0 “ 0 µm can be calculated by the integration of
the combined axial distribution along the axial direction (Eq.(2.7) p. 28).
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Figure 3.1: Schematic illustration of the interaction between the diffraction-limited 3D PSF2 and
the in-focus fluorescent bead. (a) Schematic illustration of the 2D axial profile xz of the point
spread function and of the fluorescent bead (in green). (b) Schematic illustration of the 2D axial
profile xz of the z-stack image. The horizontal white dashed line represents the center focusing
depth, here z0 “ 0; (c) Axial distributions interaction. The green line represents the bead axial
distribution. The orange line correspond to the 3D PSF2 axial distribution h2

apzq. The blue line
represents the combined axial distribution. The excitation beam propagates along the z axis.

As we can observe, the diffraction-limited 3D PSF2 is centered on the fluorescent bead,
which results, by convolution, in an image centered at the focusing depth. In this
ideal scenario, we obtain a maximal M1 metric value. In Figure 3.2 is presented the
evolution of M1 as a function of coma aberration (Z7) between -5 and 5 radians of
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amplitude for a in-focus fluorescent bead. One verify a maximum of mean image intensity

Figure 3.2: Mean image intensity metric M1 as a function of coma (Z7) amplitude for an in-focus
bead.

when the amplitude of coma is equal to zero. The presence of aberrations will decrease
the 3D PSF2 peak and enlarge it and it will consequently decrease the combined axial
distribution resulting in a lower M1 metric value. We can observe this effect in Fig. 3.3:
here we represent the interaction between an aberrated 3D PSF2 (with 2.1 rad of coma
aberration) and the in-focus fluorescent bead.
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Figure 3.3: Schematic illustration of the interaction between the aberrated 3D PSF2 (with
2.1 rad of coma aberration) and the out-of-focus fluorescent bead. The figure follows the same
description of Fig. 3.1.

As expected, for an in-focus fluorescent bead M1 is maximal for a diffraction-limited 3D
PSF2. In experimental tests, this scenario of a single in-focus structure may not occur.
For instance, one can have at a given focusing depth both in-focus and out-of-focus
bright features.
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3.2 Standard modal sensorless for an out-of-focus fluores-
cent bead: sample dependence

In this section we analyze the case of an out-of-focus fluorescent structure.
Consider now the scenario where the same 10 µm diameter fluorescent bead is located
12 µm out-of-focus. With a diffraction-limited 3D PSF2, one expects a metric value M1
smaller than the metric value of the in-focus bead case. That is obvious because, in this
case, the peaks of 3D PSF2 and bead axial distributions will not be located at the same
depth, resulting in a larger and less peaked combined axial distribution. Figure. 3.4
illustrates the interaction between the out-of-focus fluorescent bead and the diffraction-
limited 3D PSF2. In this particular case, we can observe that the two axial distributions
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Figure 3.4: Schematic illustration of the interaction between the diffraction-limited 3D PSF2 and
the out-of-focus fluorescent bead. The figure follows the same description of Fig. 3.1.

hardly overlap and the combined axial distribution is very weak. Also, because the bead
is out-of-focus, at z0 “ 0 µm we collect only fluorescence provided by the axial elongation
of the diffraction-limited 3D PSF2.

One may therefore wonder ifM1 is maximized in the absence of aberrations. In Figure 3.5
is presented the evolution of M1 as a function of coma aberration (Z7) between -5 and
5 radians of amplitude. One can actually observe a minimum of mean image intensity
when the amplitude of coma is equal to zero. This figure also shows that M1 is maximized
around 2.1 rad and -2.1 rad.
Figure 3.6 shows the interaction between an aberrated 3D PSF2 with 2.1 rad of coma
aberration and the out-of-focus bead.
It can be seen that, when adding a moderate value of coma aberrations, we elongate the
3D PSF2 which induces an increase of the overlapping with the fluorescent bead and
consequently it increases the collected fluorescence. However, the reduction of the 3D
PSF2’s confinement results in an important reduction of the fluorescence emission. He
have then two opposite effects which maximize the fluorescent for ˘2.1 rad of coma.
Because the coma aberration is axially symmetric, the axial elongation is equivalent
for two symmetrical amplitude values. This explains why one obtains two symmetrical
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Figure 3.5: Mean image intensity metric M1 as a function of coma (Z7) amplitude for an
out-of-focus bead.
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Figure 3.6: Schematic illustration of the interaction between the aberrated 3D PSF2 (with
2.1 rad of coma aberration) and the out-of-focus fluorescent bead. The figure follows the same
description of Fig. 3.1.

maxima. When performing the standard modal sensorless in this scenario, M1 is always
calculated for a transverse scan at a fixed depth (here z “ 0 µm), thus the metric is
maximized by adding a significant amount of aberrations.

Figure 3.7 presents the evolution of M1 as a function of spherical aberration (Z11).
It can observed that a maximum of M1 is obtained for a11 “ ´2.3 rad. Like for the
coma aberration, by adding spherical aberration one deforms the 3D PSF2 which results
in an increasing of the mean image intensity.

In Figure. 3.8 is illustrated the interaction between the aberrated 3D PSF2 (with´2.3 rad
of a11) and the out-of-focus bead.
We observe that the 3D PSF2 is displaced in the axial direction to compensate the
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Figure 3.7: Mean image intensity metric M1 as a function of spherical aberration (Z11) amplitude
for an out-of-focus bead.

distance of the bead center to the focusing depth. This is equivalent to displacing the
symmetrical 3D PSF2 in the opposite axial direction to increase the overlap with the
bead. As a result, the obtained z-stack image is axially displaced so that M1 is now
calculated at the depth where the z-stack image presents the most fluorescence quantity.
However, this is a very awkward and inefficient way to refocus the microscope. Also, the
spherical aberration does not only displaces the 3D PSF2, it also induces an elongation
on the 3D PSF2 and on the z-stack image degrading the axial resolution of the micro-
scope (similarly to the coma aberration). These two different effects (displacement and
elongation) of the spherical aberration can strongly bias the wavefront estimation by the
SMS approach.

In summary, I have shown here that the maximization of M1 also depends on the struc-
ture sample and that, for samples that present bright out-of-focus features, M1 is max-
imized for a important amount of aberration amplitudes. This effect induces a strong
bias in the SMS aberration estimation approach.
We have thus demonstrated here the existence of the sample dependence in two-photon
microscopy.

Remark: When considering a pupil back-aperture with a non-uniform illumination
distribution (here we considered a Gaussian illumination distribution), it is known that
the Zernike modes basis is no longer orthogonal in the phase space contrary to the
case of a pupil back-aperture with a uniform illumination [Noll, 1976]. However, the
notion of orthogonality on the phase space should not be confused with the notion of
orthogonality of a basis relatively to a metric to be maximized [Débarre et al., 2009].
More generally, one may wonder how the back aperture illumination distribution may
influence the aberrated 3D PSF2, the mean image intensity M1 and sample dependence.
In Appendix B p. 129 I present a brief analysis of the 3D PSF2’s deformations in the
presence of the spherical aberration considering a uniformly illuminated pupil back-
aperture. One could observe that the 3D PSF2 is again elongated and distorded such as
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Figure 3.8: Schematic illustration of the interaction between the aberrated 3D PSF2 (with -2.3
rad of spherical aberration) and the out-of-focus fluorescent bead. (a) Schematic illustration of
the 2D axial profile xz of the point spread function and of the fluorescent bead. (b) Schematic
illustration of the 2D axial profile xz of the symmetrical point spread function and of the flu-
orescent bead. (c) Schematic illustration of the 2D axial profile xz of the z-stack image. The
horizontal white dashed line represents the theoretical focusing depth, here z0 “ 0; (d) Axial
distributions interaction. The green line represents the bead axial distribution. The orange line
correspond to the 3D PSF2 axial distribution h2

apzq. The orange dashed line represent the sym-
metrical axial distribution |

h2
apzq. The blue line represents the combined axial distribution. The

excitation beam propagates along the z axis.

the main lobe is axially displaced relatively to the focusing plane. This analysis shows
that even with a uniformly illumination distribution, the 3D PSF2’s displacements are
still present and, we also demonstrate that the sample dependence remains (see Fig. B.3
p. 132).

3.3 Displacement-free approach and its limitations

As observed in Sect. 3.2, the axial displacement induced by spherical aberration is one
of the effects at the origin of the sample dependence. With a finite transverse field of
view one can also similarly show that modes inducing transverse displacements can also
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cause sample dependence.
Staying on the original spirit of SMS that forbids to adjust the displacement modes (tip,
tilt and defocus), several authors [Thayil and Booth, 2011; Facomprez et al., 2012] have
therefore proposed to build a new modal basis that does not induce transverse and axial
displacements.
Although this approach obviously does not alleviate the elongation issue (illustrated on
coma in Sect. 3.2) I still investigate here the displacement-free procedure. More precisely,
I discuss the underlying hypothesis of linearity of the displacement with the aberration
amplitude.
Section 1.5.2.4 p. 22 of Chapter 1 recalls how the ”displacement” is defined and this
linearity hypothesis.
With the purpose of testing the linearity hypothesis, I calculate the displacements in-
duced by aberrations on the 3D PSF2 and on a 10 µm fluorescent bead. Because one
uses a fluorescent bead which is centered in a very large field of view relatively to the size
of the bead, the transverse displacements do not impact the mean image intensity of the
transverse scan. Thus, to simplify, only the axial displacements induced by the spherical
aberration are calculated as it is the first aberration that induces an axial displacement
(it is also the only mode concerned among the modes considered in this thesis).
The axial displacement are estimated by the same procedure as the one presented in
Sect. 1.5.2.4 p. 22.

Figure 3.9 represents the evolution of the 3D PSF2 axial displacement expressed in
equivalent radians of defocus ad (see, Appendix A. p. 127), as a function of spherical
aberration a11 between -5 and 5 rad. I calculated a linear fit to the data between: -5:5
rad, -2:2 rad and -1:1 and the respective slopes of the fits a.k.a. gradients.
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Figure 3.9: Measured axial displacement, by cross-correlation, of the 3D PSF2 as function of
aberration (blue line) and three different linear fits; (left) overall view between -5 to 5 rad;
(right) zoom between -1 and 1 rad; Linear fit between -5 and 5 rad (red dashed line); Linear
fit between -2 and 2 rad (yellow dashed line); Linear fit between -1 and 1 rad (green dot-dashed
line). The gradient of each fit is given on the legend.

As it can be observed, ∆1 fits reasonably well for the large amplitudes of aberrations
(red dashed line) and ∆3 fits better the measurements for the small amplitudes (green
dashed line). To better understand the impact of these different fits in the construc-
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tion of the spherical mode Z 111, I used the gradients ∆1 and ∆3 to define two different
displacement-free spherical aberration modes Z 111 “ Z11 `∆Z4.

Figures 3.10 and 3.11 represent the axial profiles XZ at the center of the 3D PSF2 for
different values of Z 111 and for ∆1 and ∆3 respectively. For comparison, in Fig. 3.12 is
illustrated the axial profiles XZ at the center of the 3D PSF2 for different values of the
standard spherical aberration Z11.
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Figure 3.10: XZ cuts of the 3D PSF2 for different values of Z 1
11 “ Z11 `∆1 Z4
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Figure 3.11: XZ cuts of the 3D PSF2 for different values of Z 1
11 “ Z11 `∆3 Z4

It can be seen that, none of the different displacement-free spherical aberration fully
correct the displacement for the whole range of spherical aberration. For ∆1 one obtain
a new spherical aberration that corrects the axial displacement for large amplitudes,
however the 3D PSF2 is still displaced for 1 and 2 rad of Z 111. For ∆3, it can not fully
correct the axial displacement for larger amplitudes: for 5 rad the 3D PSF2 displacement
(originally « 30 µm) is still « 10 µm.
The displacement-free procedure therefore partially neutralizes the axial displacement
induced by the spherical aberration and in any case the elongation effect remains. As in
the case of coma this is of course a source of sample dependence.

Figure 3.13 illustrates the z-stack axial profile xz, as function of a displacement-free
spherical aberration Z 111 “ Z11 ` ∆1 Z4 when imaging the out-of-focus bead, and the
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Figure 3.12: XZ cuts of the 3D PSF2 for different values of spherical aberration Z11

evolution of the mean image intensity M1 as a a function of this displacement-free
spherical aberration.
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Figure 3.13: Illustration of the displacement-free spherical aberration impact on the image and
metric quality. (upper) XZ cuts of the z-stack image for different values of displacement-free
spherical aberration amplitude for an out-of-focus bead. (lower) Mean image intensity metric
M1 as a function of spherical aberration amplitude for an out-of-focus bead.
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One can see that the displacement-free spherical aberration tries with difficulty to keep
the z-stack image at the depth where is located the fluorescent bead. Also, one can
observe from Fig. 3.13 that M1 is still maximized for a non-zero amount of aberration.
This results from the residual displacement that is not corrected and also from the elon-
gation effect.

In summary, the displacement-free approach does not fully cancel the displacements of
the 3D PSF2 because they are not linearly dependent on aberrations besides one still
faces, for an out-of-focus bead, the elongation problem presented in Fig. 3.6.

3.4 Other attempts to solve the sample dependence

[Thayil et al., 2010] proposed to solve the sample dependence by measuring the mean
image intensity in an axially scanned plane. Instead of fixing a focusing depth z “ z0,
the image is obtained by fixing one transverse direction and scan in the other transverse
direction for a range of focusing depths (line by line). For example, by fixing x “ x0 one
obtains the following image:

I˚2Dpy, z;x0q “
y

h2
apy ´ y

1, z ´ z1;x0 ´ x
1q ¨ ηpy1, z1;x1q dy1 dz1 dx1

“

ż

“

h2
ap¨, ¨;x0 ´ x

1q ‹2D ηp¨, ¨;x1q
‰

py, zq dx1. (3.1)

The metric would be now the integration of this image in the transverse and axial
direction:

M˚
1 pa;x0q “

x
I˚2Dpy, z;x0q dy dz “

x ż

“

h2
ap¨, ¨;x0 ´ x

1q ‹2D ηp¨, ¨;x1q
‰

py, zq dx1 dy dz.

(3.2)

However, I consider that this would only solve the problem when considering an uni-
form transverse distribution of fluorosphore. For a more complex sample with structures
sparsely distributed in both transverse and axial direction this will not solve the problem.
Indeed, in the same way that the mean image intensity of a transverse scan is affected by
bright features dispersed on the axial distribution, the mean image intensity of a axial
scan will be affected by the bright features dispersed in the transverse directions.

Another solution for the sample dependence could be the choice of the mean z-stack
image intensity as the image quality metric. Because it performs a 3D integration, this
metric should be independent of the sample structure. However, the standard modal
sensorless wavefront sensing approach would require a large number of z-stack image
acquisitions, which would be very time-consuming, and it would surely increase the
photobleaching phenomenon.
All these issues of the sample dependence severely limit the efficiency of the current
modal sensorless approaches. Because none of the attempts presented here are capable
to fully solve the sample dependence issue, one needs to rethink the SMS approach.
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3.5 The Axially-Locked Modal Sensorless approach

To fully overcome the sample dependence limitation, we have suggested to exploit our
prior knowledge on the sample, in our case the presence of 10 µm size neurons’ somas,
in order to obtain a unbiased aberration estimation.
Instead of constraining the optimization to “stay away” from a strong fluorophore con-
centration, we take the opposite strategy to “lock” on it, and then we estimate the
aberrations on this bright feature of the sample. In this sense, we make use of the
strongest light source in the vicinity, instead of fighting its influence during the opti-
mization procedure.

3.5.1 Description of the estimation procedure

We thus designed a procedure that we called “Axially-Locked Modal Sensorless” (ALMS)
wavefront sensing and correction, which consists in performing the following steps (the
procedure is illustrated on Fig. 3.14):

1. Find a local maximum of an intensity related metric in the axial pzq dimension
and set the focus to this depth;

2. At this focusing depth, estimate the aberrations beyond focus and apply the cor-
responding shape to the deformable mirror;

3. Repeat step 1 and step 2 to perform a fine tuning of both aberration estimation
and focusing depth.

Figure 3.14: Illustration of the Axially-Locked Modal Sensorless (ALMS) approach.

Contrary to previous works, the ALMS strategy therefore allows controlled shifts in fo-
cusing depth - initially the procedure operates a coarse focusing while fine tuning of
defocus is performed iteratively. ALMS uses bright structures as guide stars naturally
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present in the sample to eliminate the risk of introducing aberrations during the opti-
mization process.

However, as already mentioned before, the mean image intensity globally decreases along
with the imaging depth, due to scattering and absorption. Using M1 as optimization
metric would therefore progressively move the focusing depth towards the sample’s sur-
face. We therefore have to look for another metric capable to target a feature of interest,
in our case 10 µm size neurons’ somas.

3.5.2 Choice of the adequate image quality metric for the axial locking

The axial locking step of the ALMS approach requires an intensity-related metric that
presents local axial maxima around the structures of interest. In the case of neuronal
imaging, this structure is a labeled soma. To study the locking efficiency of various met-
rics, I used a 3D digitized sample representing a brain slab, including two neuron’ somas
(centered at z « ´7.5 µm and z « 8 µm) as well as dendrites. The digitized brain slab
was built using confocal images of GFP-expressing neurons in fixed hippocampus slices
(Fig. 3.15). With this sample I calculate the metric for each focusing depth and then
I analyze the efficiency of the metric to perform the axial locking on both neurons’ somas.

Figure 3.15: 3D view of the digitized sample representing a brain slab.

Figure 3.16 shows the mean image intensity M1 of the transverse scan as a function of
focusing depth when diffraction-limited. For comparison, the object axial distribution is
also illustrated.

We observe that M1 presents two main local maxima at z “ ´7.5 µm and z “ 1.125 µm,
and does not have a local maximum around 8 µm (where the second soma is located).
To understand this, I illustrate in Fig. 3.17 three diffraction-limited transverse scans
obtained at z “ ´7.5 µm, z “ 1.125 µm (i.e. the 2 maxima) and z “ 7.875 µm (the
plane nearest to 8 µm due to the sampling parameters: δz “ 0.375 µm). The mean
image intensity for each scan are 0.27, 0.21 and 0.17, respectively.
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Figure 3.16: Mean image intensity M1 as a function of focusing depth when diffraction-limited
and object axial distribution.
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Figure 3.17: Transverse scans at z “ ´7.5 µm (upper left), z “ 1.125 µm (upper right) and
z “ 7.875 µm (lower) extracted from the z-stack obtained from the 3D digitized sample.

The maximum located at z “ ´7.5 µm corresponds to a scan where is located one of
the two neurons’ somas together with dendrites. The second local maximum correspond
to a scan where only dendrites are imaged. Actually, I recall that Eq. (2.2) shows that
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the mean image intensity does not depend on the transverse structure of the object,
it depends on its mean axial distribution. So, a scan where we have only few bright
pixels (like the scan at z “ 7.875 µm) can obtain a lower mean value than a scan where
we have many bright pixels (even if these are not so bright, like the scan at z “ 1.125 µm).

In order to perform a good axial locking it is important to be able to detect efficiently
a neuron’s soma in the neighborhood of the initial focusing depth. In this example we
fortunately obtained a maximum of M1 on one of the neurons’ somas. However, this is
not always the scenario encountered. For instance, if I consider only the digitized slab
from -3 to 20 µm in the axial direction, axial locking does not target a neuron’s soma.
I therefore need to investigate other intensity-related metrics which are able to better
detect neurons’ somas and exhibit a clear local maximum on each of them. Ideally, the
difference between the metric values of a scan with a neuron’s soma and a scan with
other structures must be as high as possible.

3.5.2.1 Image intensity variance (M2)

A metric widely used in signal and image-processing is the image intensity variance (also
known as image sharpness) [Fienup and Miller, 2003]. This metric is given here by the
equation:

M2pzq “ Var rIpx, y; zqs , (3.3)

where Var denotes the empirical variance in 2 dimensions px, yq.

Figure 3.18 shows the image intensity variance M2 of the transverse scan as a function
of focusing depth z when imaging is diffraction-limited. For comparison, M1 is also
illustrated (normalized to the maximum value of M2).
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Figure 3.18: Image intensity variance M2 and mean image intensity M1 as a function of focusing
depth

One can observe a new local maximum at z “ 7.5 (near the second neuron’s soma) and
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a strong reduction of the second maximum at z “ 1.125 µm. To evaluate the efficiency
of M2, I will compare the metric values at z “ ´7.5 µm, z “ 1.125 µm and z “ 7.875
(scans of Fig. 3.17). The image intensity variance for each scan are 5.53, 2.32 and 3.36,
respectively. For M1 one obtains at z “ 7.875 µm a metric value 0.81 times smaller that
the metric value at z “ 1.125 µm (Fig. 3.16). With M2 one obtains a metric value at
z “ 7.875 µm that is 1.44 times higher than the metric value at z “ 1.125 µm. This
shows that one now clearly detects the second neuron’s soma. Indeed, it is known that
the image variance will emphasize scans with few and very bright pixels instead of scans
with many not so bright pixels, which makes M2 better than M1 for the axial locking
on neuron’s somas.

3.5.2.2 Pre-filtered Image intensity variance (M3)

However, one can still exploit more information from the obtained scans. Neurons’ so-
mas are „ 10 µm diameter compact structures. The presence of such structures can be
highlighted by pre-filtering out low and high spatial frequencies of the image, to increase
the contrast between somas and dendrites, before computing the image intensity vari-
ance. We call this metric “pre-filtered image variance” M3. The filter here considered is
illustrated in Fig. 3.19 and the metric can be expressed by:

M3pzq “ Var rIpx, y; zq ‹2D F px, yqs , (3.4)

with F the filter kernel which is written in the form:

F px, yq “ F´1
„

exp
ˆ

´pρ´ ρ0q
2

2σ2

˙

(3.5)

where F´1 represents the inverse Fourier transform and ρ “ pρx, ρyq represents the
frequency coordinates. I use here σ “ ρ0 “ 1{20 µm´1.
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Figure 3.19: Band-pass filter used to pre-filter the image before calculating the image intensity
variance. (left) 2D view; (right) Cut of the filter at the position indicated by the white line if
the plot on the left (ρy “ 0).
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Figure 3.20 shows the pre-filtered image variance M3 of the transverse scan as a func-
tion of the focusing depth and Figure 3.21 presents the pre-filtered scans for the same
focusing depths considered before.
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Figure 3.20: Pre-filtered image variance M3 and image intensity variance M2 as a function of
focusing depth.

We can observe that we enhanced the contrast between the plane where no neuron’s
soma is located (z “ 1.125 µm) and the planes where are centered the two neuron’s
somas (z “ ´7.5 µm and z “ 7.875 µm). Also the second maximum is now located at
the exact depth of the second neuron’s soma: z “ 7.875 µm. M3 locates the neuron’s
somas with a better precision than M2.
The pre-filtered image intensity variances for each scan are 0.25, 0.04 and 0.18, respec-
tively. We obtain a metric value at z “ 7.875 µm that is now 4.31 times higher than
the metric value at z “ 1.125 µm. By increasing the metric difference between the scan
of interest and the other ones the axial locking step is likely to require less iterations
to converge onto a neuron’s soma. As consequence, the ALMS procedure is likely to
converge faster to the better solution. All this makes M3 a strong candidate for the
image quality metric to consider for the ALMS approach.

Remark: Other metrics were considered for the axial locking step. I choose to not
present them here as they does not present additional advantages relatively to the M3
metric. For instance, we considered the mean intensity of the squared image

M˚
2 “

x
I2px, yq dx dy

and the mean image intensity of the pre-filtered image

M˚
3 “

x
rIpx, y; zq ‹2D F px, yqs dx dy.

M˚
2 can perform a detection of the neuron’s somas, but it is not better than the M2

or M3 metrics. M˚
3 is equal to the zero-frequency of the pre-filtered image which is in

turn proportional to the zero-frequency of the image unfiltered. Thus, the mean image
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Figure 3.21: Transverse scans at z “ ´7.5 µm (upper left), z “ 1.125 µm (upper right)
and z “ 7.875 µm (lower) extracted from a 3D numerical model simulating a brain slab; The
pre-filtered image intensity variance for each scan are 0.25, 0.04 and 0.18, respectively.

intensity of the pre-filtered image M˚
3 is proportional to the mean image intensity of the

image unfiltered M1. It is therefore strictly equivalent to M1 and brings no advantage.

Comparison of the metrics by their sensitivity to aberrations

We saw that M3 is better than M2 and M1 for the axial locking on neurons’ somas. One
may also wonder if M3 can perform better than M1 and M2 on the aberration estimation
step. In that sense, one can observe the sensitivity of each metric to aberrations. As
presented in Sect. 2.6 p. 56, the sensitivity to aberrations can be quantified by the
amount of aberration a0 one needs to introduce to obtain one half of the metric at
diffraction-limit:

a0 : M1pa “ a0, z0q “ 0.5M1pa “ 0, z0q. (3.6)

Figure 3.22 presents the evolution of the three metrics presented as functions of coma
and spherical aberration when imaging the digitized brain slab at z “ 7.875 µm (second
maximum given by M3).
We can clearly observe that M2 and M3 presents a better sensitivity than M1 with al-
most no difference between the two. However, I have not included detection noise in the
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Figure 3.22: Sensitivity of aberrations at z “ 7.875 µm. (left) Metrics as function of coma;
(center) Metrics as function of spherical aberration;

scans before measuring each metric. It could be interesting to study the sensitivity to
aberrations with the presence of detection noise.

Comparison of the metrics by their sensitivity to aberrations with detection
noise

In Figure 3.23 I illustrate the evolution of the three metrics as functions of coma and
spherical aberration at the same focusing depth. I added to the simulated transverse
scan a homogeneous white Gaussian noise. The standard deviation of noise added is the
same for each transverse scan computed: 1/35 of the z-stack image maximum.
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Figure 3.23: Sensitivity of aberrations at z “ 7.875 µm. (left) Metrics as function of coma;
(right) Metrics as function of spherical aberration;

It can be observed that M3 is less affected by the detection noise.(indeed M3 filters out
a large portion of the noise) and presents globally a better sensitivity to aberrations.
Thus, using M3 on the aberration estimation step should lead to a better solution of the
optimization procedure.
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Comparison of the metrics by their sensitivity to aberrations with detection
noise with an out-of-focus neuron’s soma

One may also wonder how the metrics evolve as a function of aberrations when we are
not focused on a neuron’s soma. Figure 3.24 presents the evolution of the three metrics
presented as functions of coma and spherical aberration when imaging the digitized brain
slab at z “ ´0.875 µm (focusing depth between the two neuron’s somas).
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Figure 3.24: Sensitivity of aberrations at z “ ´1.125 µm. (left) Metrics as function of coma;
(center) Metrics as function of spherical aberration;

We can observe that at this depth, M3 can be maximized when adding aberrations. Of
course, M3 is designed to be more sensitive to the presence of neuron’s somas, so it is
more affected by the presence of out-of-focus bright neurons’ somas. This shows that,
when performing the SMS approach (no axial locking), M2 and M3 may be less efficient
than M1 for the aberration estimation.
Note that when performing the ALMS approach, by adjusting the focusing depth to
match the center of a neuron’s soma, this scenario (Fig. 3.24) will not occur and we will
find us with an in-focus neuron’s soma (Fig. 3.23) where M3 is maximized for a zero
amount of aberrations and has a better sensitivity to aberrations.

In summary, the axial locking step of our approach (step 1 of Fig. 3.14) consists in
computing M3 values as a function of the focusing depth, and then setting the imaging
plane at the focusing depth that maximizes M3. Comparing the different metrics, we
observed that M3 has a higher sensitivity to aberrations. Thus, we also use M3 in the
aberration estimation step of the ALMS procedure (step 2 of Fig. 3.14).

The end-to-end simulations of the estimation and correction by the ALMS procedure
are described in Chapter 4.
The experimental application of the procedure is performed and presented in the follow-
ing pages.

The ALMS approach is a result of the collaborative work between the three laboratories.
The axial locking idea came from the joint analysis and discussion of the sample depen-
dence systematic study I performed during my thesis. The pre-filtered image variance
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metric M3 was first proposed in this application by our colleague Arnaud Malvache from
INSERM. A preliminary exploration and a first experimental evaluation of the three
metrics was performed during his thesis by our colleague Dorian Champelovier from
Institut Fresnel.

3.6 Ex vivo and in vivo application of ALMS

Now that we have defined the ALMS approach and selected a metric that allows to per-
form a good axial locking, we present a first ex vivo and in vivo experimental application
of ALMS. The ex vivo application is performed on hippocampus samples and the in vivo
application is performed on the hippocampus of the living mouse. A first version of the
ALMS approach and its experimental application was the subject of an article submitted
in September 2016 and published in February 2017 in the journal Scientific Reports.
The paper summarizes the main elements of this chapter, it presents and discusses the
results obtained from the experiments ex vivo and in vivo application of the ALMS
approach. A schematic representation of the test bench used for this experiments is pre-
sented in Fig. 3.25 and is detailed in the paper’s section Two-photon Laser Scanning
AO microscope.

Figure 3.25: Schematic representation of the microscope.

3.6.1 Reader’s guide

The text from page 1 to the first 3 paragraphs of page 4 summarizes the theoretical work
presented in this chapter of the thesis. This part can be skipped if the reader has read
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Sect. 3.1 to 3.5 of the current chapter.

The text from the second to the last paragraphs of page 4 discusses the sensitivity to
aberrations of the different metrics used. We compare the numerical simulation already
presented in Fig. 3.23 with experimental results (Figure 3 of the paper). Note that
there are slight differences between the numerical results of the two figures. The range
of aberrations is different. In Figure. 3.23 we calculated the different metrics between
-5 and 5 radians of amplitude, while in the article the metrics were calculated between
-1.5 and 1.5 radian of amplitude. Also, since the publication of the paper in September
2016, the simulation parameters and the 3D digitized brain slab were slightly modified
to match the new simulation parameters that were defined later and presented here in
Sect. 2.2.1 p. 28. These updates do not modify the comments and conclusions of the
article.

From the last paragraph of page 3 to the end of page 5 (before In vitro use of the
method) we present the procedure performed during the experimental tests. This
procedure slightly differs from the one presented in this chapter. We redesigned the
procedure after the publication of the paper to better differentiate the axial locking step
and the aberration estimation step:

• in the procedure presented in Sect. 3.5.1 the best focus is always estimated and
directly applied to the setup separated from the estimated aberrations;

• in the procedure presented at the end of page 3 of the article, we perform a first
focus estimation which is directly applied, however during the estimation of the
N aberrations the axial locking (focus) is treated together with aberrations and is
only applied to the setup after the N estimations. And we repeat this step until
convergence.

By performing the axial locking step separately of the aberration estimation step, one
ensures that the axial locking is performed with the “best” 3D PSF2.

From the end of page 5 to first paragraph of page 7 we present the experimental test
performed on fixed slices of the hippocampus (Figure 4 of the paper).
Finally, on page 7 we present the in vivo experimental resultS obtained on an anes-
thetized mouse (Figure 5 of the paper), then we discuss the results. At the end of page
7 the experimental setup is described.

3.6.2 Scientific Reports paper: Image-based adaptive optics for in vivo
imaging of the hippocampus
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Image-based adaptive optics for  
in vivo imaging in the hippocampus
D. Champelovier1,2,*, J. Teixeira3,*, J.-M. Conan3, N. Balla2, L. M. Mugnier3, T. Tressard1, 
S. Reichinnek1, S. Meimon3, R. Cossart1, H. Rigneault2, S. Monneret2 & A. Malvache1,2

Adaptive optics is a promising technique for the improvement of microscopy in tissues. A large palette 
of indirect and direct wavefront sensing methods has been proposed for in vivo imaging in experimental 
animal models. Application of most of these methods to complex samples suffers from either intrinsic 
and/or practical difficulties. Here we show a theoretically optimized wavefront correction method for 
inhomogeneously labeled biological samples. We demonstrate its performance at a depth of 200 μm in 
brain tissue within a sparsely labeled region such as the pyramidal cell layer of the hippocampus, with 
cells expressing GCamP6. This method is designed to be sample-independent thanks to an automatic 
axial locking on objects of interest through the use of an image-based metric that we designed. Using 
this method, we show an increase of in vivo imaging quality in the hippocampus.

In vivo imaging of neuronal calcium dynamics using two-photon microscopy is an increasingly used method of 
choice to study neuronal activity at microcircuit level. In the dorsal region CA1 of the hippocampus (the most 
optically accessible), this technique allows neuronal activity recording, in large fields of view containing hundreds 
of cells1. It has led to pioneering discoveries of multineuron dynamics including, for example fear conditioning2, 
spatial navigation3–5, epilepsy6 or quiet rest7. However, the implementation of this technique remains challenging 
as it requires, prior to cranial window implantation, surgery to remove the overlaying cortex, which introduces a 
high variability of “optical access” to the tissue. The main issues are the presence of blood from the capillaries and 
sometimes from small hemorrhage as well as the quality of the interface between the glass window and the brain 
surface. The former causes optical absorption and can be reduced by performing the surgery following water 
restriction to increase the viscosity of the blood1,5, while the latter causes optical aberrations. Furthermore, the 
densely packed layer of CA1 pyramidal neurons is located 200 μ m below the glass window covering the brain; the 
incoming laser beam is also perturbed by light scattering and optical aberrations during the propagation within 
the tissue. This problem should be tackled in order to improve detection of calcium probes which is impaired by 
the lowered contrast of the aberrated images. Even a modest improvement in contrast should lead to the detection 
of neural activity that otherwise is masked by background fluorescence from brain tissue.

Optical aberrations alter the quality of beam focusing, which in turn leads to reduced spatial resolution but 
also to lower signal and contrast. Thus, even when objects of interest are one order of magnitude larger than the 
diffraction limited laser focus (e.g. neurons’ somata are 10–15 μ m in diameter), the reduction of optical aberra-
tions is critical to increasing the contrast of the fluorescence images. This improvement can be achieved using 
adaptive optics, a promising tool increasingly used for microscopy8. Adaptive optics is the process of quantify-
ing optical aberrations through wavefront measurement and correcting them by the use of an adaptive correc-
tion element (deformable mirror DM or spatial light modulator SLM). Note that in point-scanning two-photon 
microscopy the correction is applied on the excitation beam alone and no correction is needed on the detection 
path. In such microscopes, the wavefront can either be directly measured or indirectly estimated. Direct wave-
front measurement relies on introducing a wavefront sensor such as a Shack-Hartmann in the detection part of 
the microscope. A point source in the sample is then imaged on the sensor. Direct methods have been proposed 
for two-photon imaging in weakly scattering samples where auto-fluorescence signals can be used to generate 
a highly localized signal9,10, but more complex methods such as coherence gating11 or near-IR guide stars12 are 
required to avoid out-of-focus fluorescence in highly scattering samples. Indirect or sensorless wavefront estima-
tion has the advantage of being easy-to-implement on existing systems as it relies on conventional imaging sys-
tems. Indeed, this technique, called image-based adaptive optics, relies on successive image measurements with 
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an engineered illuminating laser beam displaying different spatial shapes either in intensity (pupil segmentation) 
or in phase (modal optimization).

The pupil segmentation method is based on illuminating the sample through one pupil segment at a time 
and measuring the image shift induced by an optical aberration consisting mainly of a local phase gradient. By 
comparing a reference image to images acquired with these different segments of the illuminating laser beam 
or beamlets, one can quantify the local phase gradient (tip/tilt) of each segment13,14. A potential issue is the loss 
of signal and resolution due to lower NA focusing with a truncated laser beam15. In the modal optimization 
method, one maps signal intensity or an image quality metric in phase space by applying successive wavefront 
deformations to the adaptive optics element. These image-based techniques, which rely on fluorescence metrics, 
have the main advantage that they merely require a corrective element in the illuminating laser path. However, 
as the aberration is indirectly inferred, the “optimized” wavefront that maximizes the quality metric is not only 
linked to the wavefront deformation but also to the object used for optimization. For certain spatial distributions 
of fluorophores, the modal optimization method may lead to a biased wavefront estimate. Thus, the quality metric 
and the basis used to describe the phase space as well as the method used to find the metric maximum should 
be carefully chosen. To address this issue we propose here an improvement of the original modal optimization 
scheme16. Note that recent so-called multiplexed methods17–19 can be seen as variations of the modal optimization 
scheme designed to speed up the wavefront control. Although in practice these methods may also limit the bias18, 
this has not been thoroughly studied.

The basic solution for modal optimization is the use of the mean image intensity as a metric and the Zernike 
modes as a basis for the phase space, the Zernike modes for tip, tilt and defocus being excluded. This intuitive 
approach was demonstrated in vivo in the mouse retina20. However, Zernike modes are not an orthogonal basis 
for our optimization problem; to be rigorous, one should iterate several times the Zernike optimization cycle to 
converge onto the optimal wavefront21. One could think of improving the optimization convergence through 
the use an orthogonal basis defined for the considered metric. This basis can be either theoretically computed22 
or experimentally calibrated16,23. Such an orthogonal basis allows in principle to perform the optimization in a 
unique cycle, reducing the total number of measurements to a minimum of 2 images per mode plus a reference 
image (2 N +  1 method23). Note however that the very notion of orthogonal modes is only properly defined for 
quadratic metrics, and thus the validity of methods based on orthogonality is restricted to small aberrations for 
which the quality metric can be approximated by a quadratic function of the aberrations. Additionally, even in 
the quadratic setting, the orthogonal modes are difficult to compute theoretically because they depend on the 
relative geometry of {laser beam, deformable mirror, back-aperture plane}, which is not perfectly known. And 
the alternative experimental calibration of these modes is not an ideal solution either because it is subject to the 
unavoidable noise and other measurement errors. Also, as discussed in the results Section, the volumetric distri-
bution of fluorophores induces limitations to modal optimization24. These limitations are only partially addressed 
with the construction of displacement-free modes21,25,26.

Even though they do not overcome all the problems, the previously proposed methods are suitable in homo-
geneously labeled samples21,25,26 or in sparsely labeled samples by selecting isolated objects27. However, in other 
cases such as in vivo calcium imaging in the CA1 region of hippocampus, the presence of highly inhomogeneous 
labeling can induce a bias in the correction (explained in the next section) that should be removed. We propose 
a new easy-to-implement image-based method suitable for calcium imaging in brain tissue where all these lim-
itations are addressed. We demonstrate its performance in imaging the hippocampus both in vitro and in vivo.

Results
As the amount of aberrations increases, the focal volume (i.e. the point spread function of the input beam) is 
distorted and enlarged, so that the maximum intensity in the focal volume decreases. It is therefore expected that 
the image intensity metric (mean intensity in the image) is maximum when there is no aberration in the system. 
However, when considering a heterogeneously labeled 3D sample, this is not true anymore. For instance, if a high 
fluorophore concentration is in the vicinity of the focal plane, an iterative modal optimization of the aberration will 
lead to adding tip/tilt and defocus to shift the focal plane onto this location. This is why one generally forbids tip/tilt 
and defocus to avoid changing the actual location of the scan. Still, even with these precautions, the optimization 
will lead to “stretching” the point spread function so that it reaches the location of the bright fluorophore source. 
In other words, for some fluorophore distributions, an increase of aberrations can increase the intensity metric 
value while worsening the quality of the laser beam focus and thus degrading the overall resolution and contrast 
of the data. In such undesirable situations, the wavefront estimation is thus biased and is called “sample depend-
ent”. Note that this bias effect has been shown in third harmonic generation (THG) microscopy, where increas-
ing the amount of aberrations could increase the THG mean intensity for some specific sample geometry22,24.  
This effect is also expected in two-photon excitation fluorescence microscopy24,27.

To quantify this phenomenon, we have developed a numerical tool simulating a two-photon laser scanning 
microscope. The two-photon excitation laser focal volume is calculated using a diffraction model, and then con-
volved with an object (see methods for more details). Figure 1 shows the evolution of the mean image intensity 
metric M1 for a given transverse scan for different amplitudes of coma and spherical aberration when imaging 
a 10 μ m fluorophore bead in-focus and out-of-focus. As expected, when focusing on the bead (Fig. 1A,B), the 
maximum is obtained in the absence of aberrations. However, we observe that, if the bead is 12 μ m out-of-focus 
(Fig. 1C,D) the metric maxima are obtained for a large amount of aberration. Increasing the amount of coma 
causes an elongation/distortion of the focal volume and increases its interaction with the bead (Fig. 1C). For the 
spherical aberration, increasing the amount of aberrations causes a distortion and a displacement of the focal 
volume also resulting in a better interaction with the bead (Fig. 1D). This example on an isolated object can be 
generalized to any heterogeneously labeled sample. The modal optimization method may therefore lead to a 
biased estimation of the aberration that is linked to the volumetric distribution of contrast agent in the object.
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Several groups have attempted to overcome this so-called sample dependency by the use of a basis of 
displacement-free modes21,25,26. However, with these displacement-free modes, the issue concerning the elon-
gation/distortion of the focal volume remains (for example, see the effect induced by the coma aberrations on 
Fig. 1), as already noted in ref. 27. To overcome the sample dependency problem one may also think of using 
a different metric. We however show that sharpness type metrics do not solve the elongation/distortion issue 
(see Fig. S1). A metric based not on a single image but on the volume intensity is a solution24, but it requires the 
acquisition of several z-stacks for each optimization mode. Such a time consuming procedure is not applicable 
to in vivo imaging.

The inhomogeneous labeling of biological media thus results in the sample dependency problem with the cur-
rent modal optimizations. In contrast, we wish here to exploit our prior knowledge on the object characteristics, 
in our case the presence of 10 μm size neurons, in order to access wavefront measurements that are not biased 
by the detailed 3D structure of the sample. Instead of constraining the optimization to “stay away” from a strong 
fluorophore concentration such as neuron somata, we take the opposite strategy of “locking” on it, and optimizing 
the aberrations around it. In this sense, we make use of the strongest light source in the vicinity, instead of fighting 
its influence on the optimization.

We thus designed a procedure called “axially-locked modal optimization”, which consists in performing the 
two following steps:

1. Find a local maximum of an intensity related metric in the axial (z) dimension.
2. At this depth, optimize the metric iteratively for each Zernike mode including defocus.

Figure 1. Sample-dependence of image-based correction methods. Simulated variation of the mean image 
intensity metric with respect to aberration amplitude with a 10 μ m fluorescent bead in focus (A,B) and 12 μm 
out-of-focus (C,D) for coma (A,C) and spherical aberration (B,D). Insets: schematics of the 2D axial profile 
(xz) of the point spread function and the fluorescent bead for different aberration amplitudes: − 2.1, 0, 2.1 rad of 
coma (A,C); − 2.3, 0, 2.3 rad of spherical aberration (B) and − 2.3, 0 rad of spherical aberration (D). The focused 
beam propagates along the Z axis.
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Contrary to previous works, our new strategy therefore allows controlled shifts in depth (defocus)- the first 
step operates a coarse focus while fine tuning of defocus is performed in the second step. Our approach is oppo-
site to the displacement-free modal optimization principle which implements optimization at a fixed depth and 
suffers from the inherent limitation mentioned earlier. In contrast, our strategy of locking focuses on bright struc-
tures to eliminate the risk of introducing aberrations during the optimization process which helps us to image 
structures of our interest with improved contrast.

The first step of our axially-locked modal optimization method requires a specific intensity-related metric that 
presents local maxima around the region of interest. In our case, it has to be able to locate the depth of labeled 
somata. To compute such a metric, we used a 3D digitized sample representing a brain slab (Fig. 2A) including 
two somata (centered at z =  − 8 μm and z =  8 μm, respectively) as well as dendrites, built using confocal images of 
GFP-expressing neurons in fixed hippocampal slices. Figure 2B shows the evolution of different intensity-related 
metrics as a function of depth, on simulated transverse scans of the 3D model. We observe that the mean image 
intensity M1 does not allow determining the depth of the somata; it does not distinguish layers with many small 
structures (e.g. around z =  0 μm) from layers with a well-defined soma (around z =  − 8 μm). One can actually 
show that the mean image intensity does not depend on the transverse (xy) structure of the object and only 
depends on its mean axial distribution (see Suppl. Mat.) which forbids object-locking. We therefore need to 
investigate other intensity-related metrics.

We can observe that the image intensity variance (also known as sharpness metric) M2 (see Suppl. Mat.) dis-
plays two local maxima close to the positions of the two somata (Fig. 2B). However, it also displays a local maxi-
mum in between the somata due to the presence of dendrites. We thus defined a new metric M3 which consists in 
filtering out low and high spatial frequencies of the image, to increase the contrast between somata and dendrites, 
before calculating the intensity variance (we call this metric “filtered image sharpness metric”, see Suppl. Mat.). 
The exact filtering parameters are defined such that the objects of interest (i.e. neurons somata) are highlighted. 
As displayed in Fig. 2B, M3 improves the precision in localization. Thus, step 1 of our method consists in comput-
ing M3 values as a function of depth, and then setting the imaging plane at the depth that maximizes M3.

In the next step of optimizing aberration corrections (step 2), the relative sensitivity of the different intensity 
related metrics to aberrations can be compared using our simulation with the digitized sample (Fig. 3A,B) and 
experimental results obtained in hippocampal slices GAD67KI-GFP of mice in which 10–20% of the neurons, 
the GABAergic ones, express GFP (Fig. 3C,D). We observed that the mean signal intensity M1 is less sensitive 
to aberrations than metrics M2 and M3. We also observed that M3 is the most sensitive, both in simulations and 
experiments. To conclude, the filtered image sharpness metric (M3) appears well-suited for both steps 1 and 2 of 
the axially-locked modal optimization method, in samples that contain objects well defined in shape.

In order to test our axially-locked modal optimization method, we built a custom-made point-scanning 
two-photon microscope (see methods and Fig. S1) similar to the commercial one we used for hippocampal 
in vivo large scale calcium imaging5–7. Wavefront control was performed using a deformable mirror (IrisAO, 

Figure 2. Simulated axial variation of different metrics. (A) 3D views of the neuron model: two neurons 
somata (dotted circles) and several dendrites built using fixed hippocampal slices of GFP-expressing neurons. 
(B) Axial variation of the three considered metrics, the somata positions are indicated by the blue and red 
dotted line respectively.
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PTT111-5) placed into the illuminating laser path. We applied the following procedure in fixed hippocampal 
slices of GAD67KI-GFP mice and in the hippocampus of living mice.

Experimental procedure for axially-locked modal optimization:

1. Acquisition of a 40 μ m z-stack around the field of view (FOV) of interest using a default wavefront (setup 
correction).

2. Calculation of M3 (z).
3. Setting the imaging plane at the depth z0 that maximizes M3.
4. Explore all the N Zernike modes amplitudes (4N +  1, including defocus) around the current wavefront 

from − 1.5 to 1.5 rad and compute M3. For each mode, store value of coefficient that maximizes M3.
5. Update the wavefront by using the coefficients computed in step 4.
6. Repeat steps 4 and 5 twice (i.e. 3 iterations in total).
7. Image the FOV with the final correction and with the initial wavefront for comparison.

For the method to be robust and efficient, we applied 4 different amplitudes to each Zernike mode (4N +  1 
method) with 3 iterations to account for the couplings between the Zernike modes21. As explained in the intro-
duction, couplings are difficult to avoid in practice hence our choice to rather iterate on a standard Zernike basis. 
The initial setup correction was first defined using the above procedure on calibration samples (1 μ m fluorescent 
beads), using the M1 metric.

In vitro use of the method. We tested this method on fixed hippocampal slices (see methods) from 
GAD67KI-GFP mice at depths ranging from 180 μ m to 200 μ m. We focused on 400 ×  400 μ m2 fields-of-view 

Figure 3. Sensitivity of the different metrics to aberrations. Variation of the three considered metrics with 
respect to coma (A,C) and spherical aberration (B,D), using simulated transverse scans, at z =  − 8 μm, on the 
3D reconstructed neurons with detection noise (A,B) and using experimental transverse scans of GAD67KI-
GFP hippocampal slices in a densely packed region 100 μ m deep (C,D). Insets represent the phase profiles of 
coma and spherical aberrations.
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(FOVs) with densely packed neurons (the pyramidal cell layer of CA1 and CA3 or the granular cell layer of 
the dentate gyrus). An example of FOV is displayed in Fig. 4A. We then applied our method with N =  8 
Zernike modes, for 5 different FOVs, 200 μ m deep (n =  3 slices). Photobleaching was compensated for by tak-
ing into account the exponential decay of intensity across all images. A local maximum of M3 was typically 
found within 10 μ m around the chosen ROI (Fig. 4B). To estimate the performance, 3D images were recorded 
(512 ×  512 ×  40px3, FOV 400 ×  400 ×  40 μ m3) with and without correction and the axial profile of selected somata 
was fitted (Fig. 4C). The axial profile was calculated by averaging the signal on a 12 μ m-diameter disk centered 

Figure 4. Axially-locked method in hippocampal slices. (A) Example ROI, 200 μ m deep in a GAD67KI-GFP 
hippocampal slice, without and with wavefront correction (No AO and Full AO), scale bar: 100 μ m. (B) Axial 
variation of the metric M3 in the same slice, the maximum of the metric was at 198 μ m. (C) Axial profiles of a 
representative neuron without and with wavefront correction (No AO and Full AO) and their respective fit. 
(D) Signal and resolution increase with wavefront correction, calculated using the axial fit of n =  36 somata; 
boxplots showing median (red lines) and inter-quartile range (IQR, rectangle), whiskers and outliers are 
calculated with a 1.5*IQR threshold. (E) Median amplitude of the correction (n =  5 FOVs) on each considered 
Zernike modes for setup correction and full (setup +  sample) correction, Zernike modes are indexed following 
the A176988 sequence.
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on the soma. The function used for the fit was the square of the Gaussian beam axial profile which is a reasonable 
approximation of the aberrated two-photon PSF convolved with a neuron (see methods). For a given neuron, the 
signal was defined as the difference between the maximum of the fit and its minimum (background signal), the 
axial resolution was defined as the Full Width at Quarter Maximum of the fit. We obtained a signal increase of 
14% and an axial resolution improvement of 8.5% (median value, n =  36 somata, Fig. 4D). The corrected wave-
front mainly contained astigmatism (Z5 and Z6) and spherical aberration (Z11) (Fig. 4E). It closely resembled 
the one obtained for setup correction only (Fig. 4E), which explains why the signal and resolution improvements 
with setup correction and sample correction were not statistically different. Thus, at depths of 200 μ m in fixed 
brain slices, the sample induced wavefront aberrations on the laser were minimal. However, this result shows that 
the axially-locked modal optimization can reliably be used in brain tissue with fluorescently labelled neurons.

In vivo use of the method. We finally used this correction method for in vivo imaging of the CA1 pyram-
idal cell layer through a previously developed chronic cranial window implanted above the hippocampus after 
the removal of the overlaying cortex1,5. The expression of the calcium indicator GCamP6f was virally-induced 
(see methods). Aberration correction was performed in anesthetized mice on a 400 ×  400 μ m2 FOV (Fig. 5A), 
no photobleaching was observed. Doing so, a local maximum of the metric M3 was found within the pyramidal 
cell layer (Fig. 5B). The axial profile of 11 somata located within this layer were calculated (Fig. 5C), and a signal 
enhancement of 21% and an axial resolution enhancement of 21% (median values, Fig. 5D) were obtained. This 
enhancement of image quality was significantly higher than just setup correction, which led to a 6% signal and 
4% resolution enhancement (median values, Wilcoxon rank-sum test, Fig. 5D). Most of the correction originated 
from the horizontal coma (Z6 in Fig. 5E) which can be explained by the curved shape of the different layers of 
CA1.

Discussion
We propose a new image-based adaptive optics method that is designed for imaging heterogeneously labeled scat-
tering samples such as the pyramidal cell layer of the hippocampus. It relies on a specific metric which consists in 
filtering out low and high spatial frequencies of the image before calculating the intensity variance. Thanks to this 
‘filtered image sharpness metric’, we exploit the stereotyped motif of the labeling (e.g. the neurons) to lock on the 
optimal layer depth before performing aberration estimation. Most importantly, we show that this axially-locked 
modal optimization is well-suited to enhance the image quality of CA1 pyramidal cells in in vivo large scale 
imaging of neural activity, where previously reported modal optimization methods are not optimal because of the 
highly inhomogeneous labeling.

Compared to direct measurement methods, our method is easy-to-implement as it only requires adding a 
wavefront correction device in a standard microscope to manipulate the canonical Zernike modes. Furthermore, 
it can readily be applied on biologically relevant samples such as GCamP expressing neuron because it does not 
require isolated objects thanks to its low sensitivity to inhomogeneous labeling. Thus, this technique is suitable 
for all kinds of applications which involve fluorescence imaging in deep tissues.

As far as acquisition time is concerned, 3 iterations of the 4 N +  1 scans of 8 Zernike modes requires 99 images 
which would take160 s for 512 ×  512px2 image size (in vitro) and 10 s for 128 ×  128px2 image size (in vivo). 
However, if one wants to apply this method to non-anesthetized mice, the variability in fluorescence related to 
spontaneous neuronal activity will have to be taken into account. One can take advantage of the sparse spontane-
ous activity - by performing multiple measurements and using quantification metrics which are robust to outliers, 
it should be possible to obtain a reliable correction.

Although a relatively mild improvement in signal and resolution (~20%) could be obtained, it should be 
sufficient to increase the probability of detecting small changes in fluorescence such as neurons firing sparsely 
in time. For example, in the case of hippocampal reactivations where assemblies of neurons fire a few action 
potentials7, the image quality was critical to reliably detect these events: typically 50% of detected events had 
calcium signals less than 20% above noise level. Signal enhancement could also be used to facilitate imaging 
the hippocampal dendritic activity in vivo, which also displays weak fluorescence changes3. We thus expect that 
applying axially-locked modal optimization will significantly improve the data quality of in vivo calcium imaging 
in the hippocampus and in other regions of the brain.

Methods
All protocols were performed under the guidelines of the French National Ethics Committee for Sciences and 
Health report on “Ethical Principles for Animal Experimentation” in agreement with the European Community 
Directive 86/609/EEC. The experimental protocols were approved by the French National Ethics Committee 
under agreement #01413.03.

Simulated imaging. A simulated two-photon laser scanning microscope based on a diffraction model for 
3D PSF in the presence of aberrations was used to compare intensity-related metrics (M1, M2 and M3) and the 
different strategies (standard and axially-locked). The parameters of the microscope were chosen to match the 
experimental setup. The 3D PSF is convolved by different objects (for example, beads and 3D model of brain 
slice, possibly adding detection noise) to obtain the z-stacks and the different metrics (see supplementary  
materials for more details).

Two-photon Laser Scanning AO microscope. The system is a wavefront corrected two-photon imag-
ing system (see Fig. S2). The NIR excitation beam (920 nm) from a pulsed laser (Chameleon Ultra II, Coherent 
Inc.) goes through a power control system consisting of a half-wave plate and a polarized beam splitter. Then 
it is expanded and collimated by a pair of lenses (L1 =  − 50 mm and L2 =  150 mm). The collimated NIR beam 
slightly overfills the aperture of a deformable mirror (DM, PTT111-5, IrisAO, Inc.) and is reflected with a shaped 
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wavefront. The DM is imaged onto the two scanning galvanometric mirrors (6200 H, Cambridge Technology, 
Novanta, Inc.) by two pairs of relay lenses (focal lengths: L3 =  750 mm, L4 =  1000 mm, L5 =  400 mm and 
L6 =  400 mm) and then to the back pupil of the objective (16X/0.8, Plan Fluorite Physiology, Nikon Instruments 
Europe B.V.) by another pair of relay lenses (focal lengths: L7 =  50 mm and F8 =  200 mm). The back-aperture of 
the objective was just filled with the image of DM in order to reach maximum numerical aperture. The objective 
focuses the beam into the sample and collects the excited fluorescence. Fluorescence is reflected by a dichroic 
mirror D (FF757-Di01, Semrock, Inc.) placed immediately after the objective and guided by a pair of lenses (focal 
length: L9 =  150 mm and L10 =  50 mm) onto a photomultiplier tube PMT (H7422P-40, Hamamatsu Photonics 
K.K.). Two short pass filters (2xSPF, FESH750, Thorlabs, Inc.) are added between the two lenses and a GFP emis-
sion filter (GFPEF, MF525-39, Thorlabs, Inc.) is added in front of the detector to clean the fluorescent signal from 
any unwanted light.

Figure 5. Axially-locked method in living mouse. (A) Example ROI, 175 μ m deep in the CA1 hippocampal 
region of a living mouse, without and with wavefront correction (No AO and Full AO), scale bar: 100 μ m.  
(B) Axial variation of the metric M3 in the same slice, the maximum of the metric was at 168 μ m, the pyramidal 
cell layer spanned from 162 to 187 μ m. (C) Axial profiles of a representative neuron without and with wavefront 
correction (No AO and Full AO) and their respective fit. (D) Signal and resolution increase with wavefront 
correction and setup correction, calculated using the axial fit of n =  11 somata; boxplots showing median 
(red lines) and inter-quartile range (IQR, rectangle), whiskers and outliers are calculated with a 1.5*IQR 
threshold. (E) Amplitude of the correction on each considered Zernike modes for setup correction and full 
(setup +  sample) correction, Zernike modes are indexed following the A176988 sequence.
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In vitro preparation. Adult GAD67-green fluorescent protein-knock-in (GAD67-GFP-KI) mice28 were 
anesthetized with a ketamine (250 mg/kg) and xylazine (25 mg/kg) solution (i.p.) and transcardially perfused 
with 4% paraformaldehyde in PBS (1 ml/g). Brains were postfixed overnight, washed in PBS, and kept at − 20 °C 
for long-term storage. 600 μ m thick coronal brain sections were prepared and processed.

In vivo preparation. Mice were handled before recording sessions to limit head restraint-associated stress 
and experiments were performed during the dark cycle. The analgesic (Buprenorphine, 0.1 mg/kg) was adminis-
trated before any surgery. Viral infection was previously described5, however the virus stock solution was diluted 
by 1:5 (D-PBS Sigma-Aldrich) and the resultant solution was injected 2 times 200 nl of AAV2/1.Syn.GCamP6f.
WPRE.SV40 (Penn Vector Core) (AP − 2.0/2.5, ML 1.6/2.1 and DV − 1.3). The head-fixation bar (custom-made 
aluminum bar) was firmly secured with dental cement (GripCement, SuperBond, Sun Medical). Behavioral han-
dling and imaging procedures were optimized and performed similarly as described previously5.

Axial profile fit. In order to fit the axial profile of neurons, we used the square of the Gaussian beam axial 
profile

= +
+ −( )

f z a b( )
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z c
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where a, b, c and d are adjustable parameters. a represents the background level, b is the maximal intensity of the 
neuron, c its depth and d its the Full Width at Quarter Maximum.

Data availability. Supporting data is accessible on Figshare: https://dx.doi.org/10.6084/m9.figshare.4012737.v1.
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3.7 Discussion about the construction of an orthogonal ba-
sis mode

In the context of methods aiming at the maximization of a multi-variable metric it can
be shown that if the metric is a quadratic form, and if the orthogonal modes are known,
then the maximum can be found in one iteration. I briefly discuss here in this section
the possibility to define such an orthogonal basis mode in our context.

First, there is the assumption that the chosen metric can be expressed by a quadratic
form. As observed in Sect. 2.7 p. 58, the quadratic form is generally only a local approx-
imation of the true metric to be optimized around zero or a local maximum. One can
for instance see in Fig. 3.23 and in Fig. 3.24 that none of the metrics here presented are
quadratic beyond a few 0.1 rad of aberration. Also, we can verify that the metric is not
always maximal for zero aberration (see Fig. 3.5, Fig. 3.7, Fig. 3.13 or Fig. 3.24).
We therefore understand that a truly orthogonal mode basis does not exists in our con-
text.

Even if one could assume that the chosen metric was a perfect quadratic form in a region
neighboring its maximum, the orthogonal modes are difficult to compute theoretically,
because since they depend on the relative geometry of laser beam, deformable mirror,
back aperture pupil and other characteristics, which are not perfectly known. Such a
computation would also imply a very precise model of the modes generated by the DM.
Attempts to build these orthogonal modes therefore generally rely on an experimental
calibration procedure [Débarre et al., 2008; Débarre et al., 2009]. Such an experimental
calibration has its inherent uncertainties (operating point, noise...) and leads only to
an imperfect estimation of these orthogonal modes, therefore the aberration estimation
step will need more than one iteration.

To conclude, the construction of an orthogonal basis mode could be performed only
to represent small amounts of aberrations and with no certainty about its efficiency.
In practice and as mentioned in the experimental application of the ALMS approach
(Sect. 3.6), only three iterations of the procedure were used, which is quite reasonable
in the context of scientific experiments.
We therefore decide to keep the Zernike modes as a basis. We then avoid performing a
delicate calibration which introduces more uncertainties into the study.

3.8 Conclusion

In this chapter I have presented the standard modal sensorless approach to aberration
estimation for two-photon microscopy. I demonstrated, through numerical simulations,
that for some structures the aberration estimation with the standard modal sensorless
can be biased, i.e., the maximization of the image quality metric is reached for a non-
zero amount of aberration. This occurs when we either displace or elongate the 3D
PSF2 such that it can maximize its interaction with out-of-focus bright features. This
bias is quantified for specific geometries. This effect had never been studied in detail.
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I have discussed several attempts proposed in the literature to solve these issues. In
particular, I analyzed the one that consists in the construction of a new basis, called
“displacement-free” modes. This new mode basis assumes that the 3D PSF2 displace-
ments are linearly dependent on aberrations. I demonstrated here that this linearity
is only an approximation. Also, it is shown that removing the displacements from the
modes does not fully solve the sample dependence issue. Aberrations like coma and
spherical aberration induce an elongation of the 3D PSF2 which also limits the efficiency
of the SMS approach.

To fully overcome the sample dependence, we have developed the Axially-Locked Modal
Sensorless (ALMS) wavefront sensing which is presented in our Scientific Reports pa-
per. To summarize the approach and its experimental application, I reproduce here the
discussion of the paper as it is.

“We propose a new image-based adaptive optics method that is designed
for imaging heterogeneously labeled scattering samples such as the pyramidal
cell layer of the hippocampus. It relies on a specific metric which consists in
filtering out low and high spatial frequencies of the image before calculating
the intensity variance. Thanks to this ‘filtered image sharpness metric’, we
exploit the stereotyped motif of the labeling (e.g. the neurons) to lock on
the optimal layer depth before performing aberration estimation. Most im-
portantly, we show that this axially-locked modal optimization is well-suited
to enhance the image quality of CA1 pyramidal cells in in vivo large scale
imaging of neural activity, where previously reported modal optimization
methods are not optimal because of the highly inhomogeneous labeling.

Compared to direct measurement methods, our method is easy-to-implement
as it only requires adding a wavefront correction device in a standard micro-
scope to manipulate the canonical Zernike modes. Furthermore, it can readily
be applied on biologically relevant samples such as GCamP expressing neu-
ron because it does not require isolated objects thanks to its low sensitivity
to inhomogeneous labeling. Thus, this technique is suitable for all kinds of
applications which involve fluorescence imaging in deep tissues.

As far as acquisition time is concerned, 3 iterations of the 4N+1 scans of
8 Zernike modes requires 99 images which would take 160 s for 512ˆ 512px2

image size (in vitro) and 10 s for 128ˆ128px2 image size (in vivo). However,
if one wants to apply this method to non-anesthetized mice, the variability
in fluorescence related to spontaneous neuronal activity will have to be taken
into account. One can take advantage of the sparse spontaneous activity -
by performing multiple measurements and using quantification metrics which
are robust to outliers, it should be possible to obtain a reliable correction. Al-
though a relatively mild improvement in signal and resolution („ 20%) could
be obtained, it should be sufficient to increase the probability of detecting
small changes in fluorescence such as neurons firing sparsely in time. For ex-
ample, in the case of hippocampal reactivations where assemblies of neurons
fire a few action potentials, the image quality was critical to reliably detect
these events: typically 50% of detected events had calcium signals less than
20% above noise level. Signal enhancement could also be used to facilitate
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imaging the hippocampal dendritic activity in vivo, which also displays weak
fluorescence changes. We thus expect that applying axially-locked modal
optimization will significantly improve the data quality of in vivo calcium
imaging in the hippocampus and in other regions of the brain.”

In Chapter 4 I will compare in more details the SMS approach with the ALMS approach
with the different metrics presented thorough end-to-end numerical simulations. I will
analyze the performance for what concerns: the bias of aberration estimation, speed of
convergence/number of iterations, and other aspects related to the aberration estimation.



Chapter 4

Study of the ALMS approach
performance through end-to-end
simulations

Chapter 3 presents a new approach to estimate aberrations called Axially-Locked
Modal Sensorless (ALMS). This approach is designed to perform a good estimation of
aberrations even for the most complex inhomogeneous samples. It relies on a two-step
iterative procedure which consists in: an axial locking step, where we seek to find a
optimal focusing depth and an aberration estimation step.
Contrary to the Standard Modal Sensorless (SMS), ALMS is designed to be sample
independent. An experimental application of the ALMS approach was presented and a
good improvement of the image quality was obtained. However, we have not performed
so far a direct comparison of the SMS and the ALMS approaches neither experimentally
nor numerically.

In this chapter, I intend to compare numerically, through end to end simulations, the
aberration estimation accuracy between the ALMS approach, the SMS approach and the
SMS approach with the use of displacement-free modes (SMS-DF). For each approach,
different aberration amplitudes and different modalities of modal sensorless wavefront
sensing are explored. Following [Facomprez et al., 2012], I compare modal sensorless
modalities with different number K of transverse scan acquisitions (measurements) used
for a given aberration estimation and different optimization strategy (global or sequen-
tial update of the DM). I also briefly study the impact of the detection noise on the
SMS-DF and on the ALMS approach.

In Section 4.1 I detail the different modalities considered for the modal sensorless
wavefront sensing and I discuss in Sect. 4.2 the results of the simulations.
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4.1 Optimization strategy

The main difference between the ALMS and the SMS approaches is the additional step
called the Axial Locking. At each iteration of the ALMS approach one performs an axial
locking before proceeding with the aberration estimation. The next two subsections
describe how these two steps are performed.

4.1.1 Axial locking

The axial locking step consists in selecting the better focusing depth to estimate the
aberrations. Through a z-stack image one measures a chosen image quality metric for
each transverse scan of the z-stack. The depth corresponding to the scan with the larger
value of the metric is then selected to be the new focusing depth.

We decided here not to worry about the practical axial locking algorithm. The z-stack
image is therefore acquired all along the axial excursion (150 µm) with a fine step
(1.125 µm).
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4.1.2 Aberration estimation - 1D optimization algorithm

Consider the initial state of the DM characterized by the Zernike coefficients adm “

pa1, ..., aN q (N represents the number of Zernike modes used). As explained is Sect. 3.1
p. 66, by changing the shape of the DM, I seek to find the values a˚dm “ pa˚1 , ..., a˚N q that
maximize a chosen image quality metric.
In the 1D optimization performed for each aberration mode Zi, i “ 1, ..., N , two different
algorithms can be performed to find a˚i : the exhaustive search of the maximum and the
estimation of the maximum through a Gaussian fit on the measurements.

4.1.2.1 Exhaustive search of the maximum algorithm

The exhaustive search algorithm consists in the following procedure:

1. Considering ai the current amplitude of the aberration Zi of the DM initial state
aDM , one applies to the DM K different amplitude values between ai ´ ∆a and
ai`∆a separately. For each amplitude (ai inclusive) one measures an image quality
metric mj pj “ 1, ...,Kq;

2. One identifies the larger value mk and the two adjacent measures mk´1 and mk`1.
Then one records their respective amplitude coefficients a1k´1 and a1k`1;

3. One applies now to the DM K different amplitude values equally spaced between
a1k´1 and a1k`1. For each one an image quality metric nj pj “ 1, ...,Kq is measured;

4. One identifies the larger value nk and the respective amplitude b1k

Figure 4.1 illustrates the exhaustive search algorithm.

1st measurements = mj

1st maximum = a'k
2nd measurements = nj

2nd maximum = b'k
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Figure 4.1: Illustration of the exhaustive search algorithm. The blue circles represent the first K
measurements mj , j “ 1 : K. The pink circle is the maximum mk of the first K measurements.
The yellow crosses are the second K measurements nj , j “ 1 : K. The red diamond represents
the maximum nk of the second K measurements.
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This algorithm has a final sampling step of

δa “
2∆a

pK ´ 1q2 ,

where 2∆a represents the range of exploration in the 1D optimization. To obtain a small
sampling step a large number of measurements is required which makes this approach
not suitable for experimental tests.

4.1.2.2 Estimation of the maximum through a Gaussian fit algorithm

In order to estimate the maximum of the metric through a reduced number of transverse
scans, one can perform a fit on the measurements. Following [Facomprez et al., 2012],
an adequate choice is a Gaussian fit using three free parameters per mode: the width,
centre and amplitude of the curve.
The estimation of the maximum through a Gaussian fit algorithm consists in the follow-
ing procedure:

1. Considering ai the current amplitude of the aberration Zi of the DM initial state
aDM , one applies to the DM K different amplitude values a1i i P t1, ...,Ku between
ai´∆a and ai`∆a separately. For each one (ai inclusive), one measures an image
quality metric mj j P t1, ...,Ku;

2. One computes a Gaussian fit through the K measurements and one estimates the
amplitude b corresponding to the maximum.

Figure 4.2 illustrates this algorithm.
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Figure 4.2: Illustration of the estimation of the maximum through a Gaussian fit algorithm.
The blue circles represent the first K measurements. The red curve is the Gaussian fit. The
yellow circle represents the maximum of the Gaussian fit.

As a consequence of the three free parameters of the Gaussian fit, a minimum of 3
measurements for each aberration mode are required to locate the maximum. A better
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accuracy of the algorithm can be obtained by increasing the number of measurements.
Following [Facomprez et al., 2012], to limit the exposition of the sample, 5 measurements
appears an optimal compromise between limited exposure of the sample and stability of
the algorithm. This small number of transverse scan acquisitions makes this algorithm
well suitable for experimental tests.

4.1.3 Updating the DM - ND optimization algorithm

During the aberration estimation step two optimization algorithms are used and differ
in their DM update strategy:

• global DM update algorithm - each 1D optimization is performed on the same DM
initial state. The result of all 1D optimizations are applied all together to update
the DM.

• sequential DM update algorithm - after each 1D optimization, one updates the
DM with the coefficient obtained.

In the case of the global DM update algorithm, when the Gaussian fit algorithm is used
for the 1D aberration estimation, the scan corresponding to the initial aberration is
commonly used for the N 1D aberration optimizations. One can therefore show that the
total number of measurements required is pK ´ 1qN ` 1. In the case of the sequential
DM update algorithm and the Gaussian fit algorithm, each 1D optimization requires K
scans, hence a total number of measurements equal to KN .
Figure 4.3 presents an illustration of the steps of these two optimization algorithms. In
this case, the maximum of the metric is estimated with a Gaussian fit algorithm with
K “ 3 and considering only coma and spherical aberrations (N “ 2).

Figure 4.3: Principle of the optimization algorithms. The metric M is plotted as a function of
the aberration amplitude of coma and spherical aberration. (left) global DM update algorithm;
(right) sequential DM update algorithm. Figure extracted and adapted from [Facomprez et al.,
2012]
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In the simulations here presented, I explore N “ 7 different aberrations in the aberration
estimation step. Considering K “ 5, the aberration estimation through a Gaussian fit
requires pK ´ 1qN ` 1 “ 4 ˆ 7 ´ 1 “ 29 transverse scans for the global DM update
algorithm andKN “ 5ˆ7 “ 35 transverse scans for the sequential DM update algorithm.
For instance, if one perform 3 iterations of the SMS approach, one obtain 87 and 105
transverse scans for each algorithm respectively.
In the case where the image quality metric is a quadratic function of aberrations and
the eigen vectors correspond to the Zernike modes, the aberration estimation should
converge in a single iteration with both ND optimization algorithms. In this case,
in what concerns the number of acquisitions, the global update algorithm is the most
advantageous as it requires fewer transverse scans.
However, in the case of a non-quadratic image quality metric (which is the practical case)
and depending on the level of aberrations, multiple iterations of the aberration estimation
procedure are needed. It is then not evident which ND optimization algorithm presents
a faster convergence or a better aberration estimation.
The two algorithms are therefore compared in Sect. 4.2.

4.1.4 Overall optimization strategies

In the comparisons presented in the following section, the three sensorless approaches are
performed with different optimization strategies. I describe in this section the different
strategies and parameter choices used for these simulations.

SMS ans SMS-DF approaches use the mean image intensity M1 as image quality metric
for the aberration estimation step. Before the aberration estimation, I also decided to
set the initial focus using the axial locking algorithm. This is performed only once in
these approaches. M1 is used also for this initial step.
The axial displacement, in the SMS-DF approach, is addressed by applying for each
radian of spherical aberration a given amount ∆DF of defocus. As observed in Sect. 3.3
p. 72, because of the non-linearity of the axial displacements, the choice of ∆DF is
somewhat arbitrary. Here I chose to use ∆DF “ ∆1 “ 2.3402 rad which corresponds to
a fit performed in the range -5 to 5 rad. (see Fig. 3.9 p. 73).
Unlike the standard approaches, ALMS uses M3, the pre-filtered image variance, as im-
age quality metric in both axial locking and aberration estimation steps.

To simulate the initial aberrated wavefront I used the Wang’s set of aberrations (see
Fig. 2.6 p. 35). The results obtained for this set of aberrations did not present a sig-
nificant difference between the SMS-DF and the ALMS approach. I observed that the
difference between the approach performances depends, in part, on the initial ampli-
tude of spherical aberration. In particular, ALMS performs better than the standard
approaches when the initial spherical aberration amplitude is equal to zero. I thus de-
cided to remove the spherical aberration from the Wang’s set and I used this set in the
simulations presented in this chapter.
An adjustment in the wavefront amplitude is performed to simulate the cases of weak,
strong and very strong aberrations (initial residual wavefront standard deviation: 1 rad
rms, 2.82843 rad rms and 5 rad rms respectively).



4.1. Optimization strategy 107

For the 1D optimization strategies, the exploration range is set to ∆a “ 2 rad. As
demonstrated in [Facomprez et al., 2012], this value allows to perform a better aberration
estimation for large aberration amplitudes.
For the weakly and strongly aberrated wavefront cases 5 iterations of each approach
were performed. In the cases of a very strongly aberrated wavefront, 10 iterations were
simulated so as to this would ensure the convergence of the aberration estimation.

In a first comparison, I don’t address the practicability of the optimization. I thus use
the exhaustive search of the maximum method for the 1D optimization strategy to study
the aberration estimation accuracy of the SMS, the SMS-DF and the ALMS approaches.
11+11 measurements are acquired and a sequential DM update algorithm is used. By
using these 22 measurements one obtains a final sampling step of δa “ 0.04 µm. I chose
the sequential DM update algorithm because it is considered in [Facomprez et al., 2012]
to be a more statistically accurate optimization strategy.
In a second comparison, the maximum of the image quality metric is estimated through a
Gaussian fit on the measurements. Here, I compare the different optimization strategies
for the ALMS approach. I compare the two DM update algorithms with K “ 3 and
K “ 5 measurements. I also compare these different cases with the SMS-DF approach
with K “ 5 and sequential DM update strategy. The detection noise is not simulated.
The same comparison was also made with detection noise. As it was performed in
Chapter 3, I added to the simulated transverse scan a homogeneous white Gaussian
noise. The standard deviation of noise added is the same for each transverse scan
computed: 1/35 of the image maximum.
To reduce the computation time of the simulations I adopted a set of numerical param-
eters different than the ones presented in the previous chapters. The main differences
are the axial sampling parameters: the number of planes is reduced from Nz “ 401 to
Nz “ 135 scans. To keep an axial excursion of ∆z “ 150 µm, the pitch is changed from
δz “ 0.375 µm to δz “ 1.125 µm. The numerical parameters used in this chapter are
presented in Table 4.1.

Axial
parameters

‹ Pitch δz “ 1.125 µm

‹ Number of planes Nz “ 135

Axial excursion ∆z “ δz ˆNz “ 150 µm

Transverse
parameters

‹ Back aperture diameter
in pixels

Nxy “ 256

‹ Oversampling factor k “ 1

Transverse pixel size δxy “
rxy

2k “
λn

4k NA “ 0.3824 µm

Transverse field of view ∆xy “ 2kNxy ˆ δxy « 196 µm

Table 4.1: End-to-end simulations numerical parameters. Numerical values are given for: NA “
0.8 the numerical aperture of the microscope, λ “ 0.92 µm the wavelength of the excitation
beam, n “ 1.33 the refractive index of the medium in which is inserted the objective of the
microscope (water) and rxy “ λn{p2 NAq “ 0.765 µm the transverse resolution.
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The simulations results here presented are performed on a single numerical sample (the
numerical sample presented in Fig. 3.15 p. 78) and with a unique set of aberrations where
the amplitude was adjusted to simulate different cases of weakly and strongly aberrated
wavefronts. In this context, the comparisons here presented should not be considered
as a generic comparison of the different approaches. A more developed statistical study
following, for example, the study of [Facomprez et al., 2012] should be performed.

4.2 Comparison of the SMS and the ALMS approach

The simulations results here presented are divided in three sections:

• In Section 4.2.1 I compare the accuracy of the aberration correction between the
SMS, the SMS-DF and the ALMS approaches. I intend here to demonstrate that
ALMS can perform a better correction that the standard approaches.

• In Section 4.2.2 I compare the accuracy and convergence speed of the aberration
correction between different optimization configurations of the ALMS approach.
The detection noise is not simulated. I intend here to define which optimization
strategy would be more suitable to be applied in experimental tests.

• As observed in Sect. ?? p. ??, M3 is less affected by the detection noise. I intend
here to briefly demonstrate the robustness to the noise of the ALMS approach com-
pared to the SMS-DF approach. Thus, Section 4.2.3 presents the same comparison
as Sect. 4.2.2 however, the detection noise is simulated.

Figure 4.4 summarizes the organization of the simulations results.

In order to compare the accuracy of the aberration estimation for the different cases, the
following simulation results are presented with figures illustrating the evolution of the
residual aberration standard deviation as a function of iterations. The evolution of the
focusing depth as a function of iterations is also illustrated. Remark that, in the case of
the SMS-DF approach, this figure does not truly represent a change of focusing depth.
It represents the amount of defocus aberration (in µm) meant to keep the 3D PSF2 ’s
main lobe at the same depth.

4.2.1 Aberration estimation accuracy comparison between the SMS,
the SMS-DF and the ALMS approaches

In order to compare the SMS, the SMS-DF and the ALMS approaches I use here the
exhaustive search method for the aberration estimation (1D optimization) and the se-
quential DM update strategy for the overall optimization.

4.2.1.1 Result for weak aberrations

Figure 4.5 presents the evolution of the focusing depth and the evolution of the residual
wavefront standard deviation as a function of iteration number considering an initial
wavefront weakly aberrated: 1 rad rms standard deviation.
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Figure 4.4: Diagram illustrating the organization of the simulation results. The background
colors correspond to the respective curves in the indicated figure.
precise

First, no adjustments of the focusing depth were observed. I recall that it was shown in
Sect. 3.5.2 p. 78 that, in the absence of aberrations (diffraction-limited case) the maxi-
mum of both M1 and M3 as functions of the focusing depth is at the center of a neuron’s
soma. The amount of aberrations here simulated is quite small and consequently, the 3D
PSF2 shape is nearly diffraction-limited. The initial focusing depth is then still near the
center of the neuron’s soma « ´8.5 µm (see Fig. D.1 p. 149 for the evolution of the met-
rics as a function of focusing depth). The focus is therefore not modified along iterations:
no mix of defocus + spherical aberration is added in SMS-DF and no modifications of
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Figure 4.5: Comparison of the accuracy of aberration correction between the SMS, the SMS-
DF and the ALMS approach with the exhaustive search algorithm. Initial wavefront standard
deviation: 1 rad rms (weak aberrations). The detection noise is not simulated. (left) Focusing
depth as a function iterations; (right) Residual wavefront standard deviation as a function of
iterations. The evolution of each aberration amplitudes can be found in Sect. C.1 p. 133.

the focusing depth are performed by the axial locking in ALMS.
One can observe that all approaches converge to the same good estimation of the aber-
rations: the standard deviation of the residual wavefront tends to « 0.048 rad rms which
is negligible. I recall that the exhaustive search with the 11 ` 11 measurements has a
final sampling step of 0.04 rad rms. If one observes the values at convergence for each
aberration (Sect. C.1 p. 133), one can observe that they are all smaller than 0.04 rad.
When added together, they form this residual wavefront amplitude, which is still very
small.

4.2.1.2 Result for strong aberrations

Figure 4.6 presents the evolution of the focusing depth and the evolution of the resid-
ual wavefront standard deviation as a function of iterations for the case of a strong
aberrations: 2.82843 rad rms standard deviation.
Both standard approaches set the initial focusing depth at « ´4.5 µm. Of course, by
construction, the SMS approach does not change defocus. The SMS-DF approach, how-
ever, adds a given amount of defocus together with spherical aberration to compensate
for the axial displacement.
The ALMS approach set the initial focusing depth at « ´10 µm, near the center of the
neuron’s soma (see Fig. D.2 p. 150) and after one iteration, the focusing depth converges
to near the neuron’s soma center. I recall that, to accelerate the simulation computation,
the axial sampling step was changed to 1.125 µmwhich defines the sampling step for the
axial locking.
For what concerns the aberration estimation, the three approaches converge in about
three iterations. The SMS-DF approach obtains a residual wavefront with « 0.24 rad
rms of amplitude. The SMS approach obtains a residual wavefront with « 0.16 rad rms
of amplitude. These two biases are due to the addition of spherical aberration. Because
the focusing depth is near the border of the neuron’s soma, by adding some amount of
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Figure 4.6: Comparison of the accuracy of aberration correction between the SMS, the SMS-
DF and the ALMS approach with the exhaustive search algorithm. Initial wavefront standard
deviation: 2.82843 rad rms (strong aberrations). The detection noise is not simulated. (left)
Focusing depth as a function of iterations; (right) Residual wavefront standard deviation as a
function of iterations. The evolution of each aberration amplitudes can be found in Sect. C.2
p. 135.

spherical aberration one increase M1 as predicted in Chapter 3. The SMS-DF approach
does not perform better than the SMS approach. This may be due to the value ∆DF

chosen to add defocus. Because the non-linearity of the axial displacements, the value ∆1
does not apply the adequate amount of defocus. Residual axial displacements remain. At
convergence, this results in a larger amplitude a11 than in the case of the SMS approach
(Fig. C.8 p. 136).
With the ALMS approach, the residual wavefront has « 0.03 rad rms of amplitude. I
consider then that the ALMS approach performs here a non-biased aberration estima-
tion.

4.2.1.3 Result for very strong aberrations

Figure 4.7 presents the evolution of the focusing depth and the evolution of the residual
wavefront standard deviation as a function of iterations for the case of very strong
aberrations: 5 rad rms standard deviation.
In this case, the ALMS approach set the initial focusing depth at « ´11.1 µm and
converges to the neuron’s soma center in two iterations.
For what concerns the aberration estimation, the results are similar to the previous case.
The three approaches converge in three iterations. At the last iteration, the residual
wavefront amplitudes for the SMS, SMS-DF and ALMS approaches are respectively 0.1,
0.17 and 0.06 rad rms: the SMS-DF performs slightly worse than the SMS and the
ALMS approaches. Like in the case of a weak aberrations, the small residual wavefront
obtained for the ALMS approach is due to the sampling step of the exhaustive search
algorithm (see Sect. C.3 p. 136).
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Figure 4.7: Comparison of the accuracy of aberration correction between the SMS, the SMS-
DF and the ALMS approach with the exhaustive search algorithm. Initial wavefront standard
deviation: 5 rad rms (very strong aberrations). The detection noise is not simulated. (left)
Focusing depth as a function of iterations; (right) Residual wavefront standard deviation as a
function of iterations. The evolution of each aberration amplitudes can be found in Sect. C.3
p. 136.

4.2.2 Accuracy and convergence speed comparison between the SMS-
DF and the ALMS approach without detection noise

In this section I compare the accuracy and convergence speed of the aberration correc-
tion between different optimization configurations of the ALMS approach. The detection
noise is not simulated. For comparison, the SMS-DF approach is also simulated with
K “ 5 and a sequential DM update algorithm. I intend here to define which opti-
mization strategy would be more suitable for the application of the ALMS approach in
experimental tests.

4.2.2.1 Result for weak aberrations

Figure 4.8 presents the evolution of the focusing depth and the evolution of the residual
wavefront standard deviation as a function of iterations for the case of weak aberrations:
1 rad rms standard deviation.
First, no relevant adjustments of the focusing depth are observed (ă 1 µm). The initial
focusing depth is set near the center of the neuron’s soma. The oscillations observed for
the different ALMS modalities are, in part, due to the sampling step of the axial locking
procedure which does not allow to focus at the real center of the neuron’s soma. Since
this effect was not observed in the previous section, where the exhaustive search was
used, these oscillations may be related to the Gaussian fit. A more detailed study about
the fit estimation error would thus be required. As a consequence of these oscillations,
very small oscillations are also observed for the spherical aberration (see Fig. C.16 p. 139)
which are reflected in the evolution of the residual wavefront standard deviation.
Globally, at convergence, the ALMS approach performs a better aberration estimation
than the SMS-DF approach. At the last iteration, the residual wavefront amplitudes
for the SMS-DF, the ALMS 2N+1, the ALMS 3N, the ALMS 4N+1 and the ALMS 5N
approaches are respectively 0.056, 0.015, 0.020, 0.012 and 0.029 rad rms. These ampli-
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Figure 4.8: Comparison of the accuracy of aberration correction between different modal sensor-
less modalities of the ALMS approach and the SMS-DF approach with the Gaussian fit algorithm.
Initial wavefront standard deviation: 1 rad rms (weak aberrations). The detection noise is not
simulated. (left) Focusing depth as a function of iterations; (right) Residual wavefront stan-
dard deviation as a function of iterations. The evolution of each aberration amplitudes can be
found in Sect. C.4 p. 138.

tudes obtained for the ALMS approach are very small and also affected by oscillations.
I thus consider that, for this case of weak aberrations and at convergence, one can not
take any conclusion about the aberration estimation accuracy for the different strategies.
However, considerable differences are observed at the first iterations. Some conclusions
can be obtained for what concerns the convergence speed of the optimization strategies.
One can observe that the approaches that use 5 measurements (SMS-DF inclusive)
achieve the convergence with less iterations than the approaches with 3 measurements.
In particular, by performing 2 iterations of the ALMS 5N approach (i.e 70 measurements)
one obtains a smaller residual wavefront amplitude than if one performs 4 iterations of the
ALMS 3N approach (84 measurements). Remark that the given number of measurements
exclude here the axial locking which number of measurements is the same for all ALMS
approaches. This is clearly an example where taking more measurements in the 1D
optimization can provide a better estimation with a smaller number of iterations.
For what concerns the choice of the DM update strategy, I can not observe relevant
differences in this particular case. When considering K “ 3, the global DM update
algorithm performs a better aberration estimation than the sequential algorithm at all
iterations except the last one. At the last iteration the sequential algorithm obtains a
smaller residual amplitude, but this may be due to the oscillations of the focusing depth.
When considering K “ 5, the sequential algorithm performs better than the global
algorithm in the first two iterations. In the remaining iterations, both DM update
algorithms change following the focusing depth oscillations.

4.2.2.2 Result for strong aberrations

Figure 4.9 presents the evolution of the focusing depth and the evolution of the residual
wavefront standard deviation as a function of iterations for the case of strong aberrations:
2.82843 rad rms standard deviation.
The SMS-DF approach sets the initial focusing depth at « ´4.5 µm. Small quantities
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Figure 4.9: Comparison of the accuracy of aberration correction between different modal sensor-
less modalities of the ALMS approach and the SMS-DF approach with the Gaussian fit algorithm.
Initial wavefront standard deviation: 2.82843 rad rms (strong aberrations). The detection noise
is not simulated. (left) Focusing depth as a function of iterations; (right) Residual wavefront
standard deviation as a function of iterations. The evolution of each aberration amplitudes can
be found in Sect. C.5 p. 140.

of defocus are added to compensate for the spherical aberration axial displacement.
The ALMS approach sets the initial focusing depth at « ´10 µm. After one iteration,
the focusing depth converges to the neuron’s soma center for all optimization strategies
except for the 4N+1 which converges after the second iteration. Small oscillations are
again observed for the ALMS modalities.
For what concerns the aberration estimation accuracy, the ALMS approach performs,
at the last iteration, a better aberration estimation than the SMS-DF approach: the
residual wavefront amplitudes for the SMS-DF, the ALMS 2N+1, the ALMS 3N, the
ALMS 4N+1 and the ALMS 5N approaches are respectively 0.113, 0.1014, 0.080, 0.026
and 0.013 rad rms. For the ALMS approach, the strategies that use K “ 3 measurements
(2N ` 1 & 3N) performs a less accurate aberration estimation than the strategies with
K “ 5 (4N`1 & 5N). However, these values obtained at the last iteration do not reflect
the aberration estimation accuracy at the convergence (at least not for 2N ` 1 & 3N):
more than 5 iterations are necessary to achieve the convergence.
Still, one can observe that the SMS-DF achieves the convergence after two iterations.
For the ALMS approach, the sequential DM update algorithms (3N & 5N) perform a
better estimation than the equivalent global DM update algorithms (2N ` 1 & 4N ` 1).
Only after the third iteration the ALMS approach performs better than the SMS-DF.
The two optimization algorithms that use 5 measurements performs better than the
other two after these three iterations.
In summary, in this simulation case, it is clear that the better strategy to adopt is the
ALMS approach with K “ 5 and the sequential DM update algorithm.

4.2.2.3 Result for very strong aberrations

Figure 4.10 presents the evolution of the focusing depth and the evolution of the residual
wavefront standard deviation as a function of iteration number for the case of very strong
aberrations: 5 rad rms standard deviation.
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Figure 4.10: Comparison of the accuracy of aberration correction between different modal sensor-
less modalities of the ALMS approach and the SMS-DF approach with the Gaussian fit algorithm.
Initial wavefront standard deviation: 5 rad rms (very strong aberrations). The detection noise
is not simulated. (left) Focusing depth as a function of iterations; (right) Residual wavefront
standard deviation as a function of iterations. The evolution of each aberration amplitudes can
be found in Sect. C.6 p. 141.

The SMS-DF approach sets the initial focusing depth at « ´5.8 µm. Again, small quan-
tities of defocus are added to compensate for the spherical aberration axial displacement.
The ALMS approach sets the initial focusing depth at « ´11 µm. After three itera-
tions, the focusing depth converges to near the neuron’s soma center for all optimization
strategies. Small oscillations are again observed for the ALMS approaches after the fifth
iteration.
For what concerns the aberration estimation accuracy, the ALMS approach performs
again a better aberration estimation than the SMS-DF approach: the residual wavefront
amplitudes for the SMS-DF, the ALMS 2N+1, the ALMS 3N, the ALMS 4N+1 and the
ALMS 5N approaches are respectively 0.094, 0.000, 0.020, 0.011 and 0.014 rad rms.
Similarly to the previous case, one can observe that the SMS-DF has a slightly faster
convergence. In that strongly aberrated case and in the first iterations (not considering
the first iteration), the global DM update algorithms (2N`1 & 4N`1) perform a better
estimation than the sequential DM update algorithms (3N & 5N).

4.2.3 Accuracy and convergence speed comparison between the SMS-
DF and the ALMS approach with detection noise

In this section I perform a comparison similar to Sect. 4.2.3 but this time a detection
noise is considered in the simulation. As it was performed in Chapter 3, I added to the
simulated transverse scan a homogeneous white Gaussian noise. The standard devia-
tion of noise added is the same for each transverse scan computed: 1/35 of the image
maximum.

4.2.3.1 Result for weak aberrations

Figure 4.11 presents the evolution of the focusing depth and the evolution of the residual
wavefront standard deviation as a function of iteration number for the case of weak
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aberrations: 1 rad rms standard deviation.
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Figure 4.11: Comparison of the accuracy of aberration correction between different modal
sensorless modalities of the ALMS approach and the SMS-DF approach with the Gaussian fit
algorithm. Initial wavefront standard deviation: 1 rad rms (weak aberrations). The detection
noise is simulated. (left) Focusing depth as a function of iterations; (right) Residual wavefront
standard deviation as a function of iterations. The evolution of each aberration amplitudes can
be found in Sect. C.7 p. 143.

First of all, one observes that, for the SMS-DF approach, the initial focusing depth is
different than in the case of weak aberrations in Sect. 4.2.2.1. This is clearly an effect
of the detection noise which affects M1 (see Sect. D.4 p. 151). For different occurences
of noise, different initial focusing depth are obtained. Again, small quantities of defocus
are added to compensate for the spherical aberration axial displacement. I recall that,
in the case of SMS-DF approach, this change of focus does not reflect the axial position
of the 3D PSF2. The convergence of the curve to ´8.3 µm is misleading and does not
represent an correction of the focusing depth to the center of the neuron’s soma.
The evolution of the focusing depth for the ALMS approach is similar to the case without
detection noise. The focus stays around the center of the neuron’s soma and small
oscillations are again observed.
For what concerns the aberration estimation accuracy, at the last iteration, the residual
wavefront amplitudes for the SMS-DF, the ALMS 2N+1, the ALMS 3N, the ALMS 4N+1
and the ALMS 5N approaches are respectively 0.145, 0.014, 0.020, 0.013 and 0.040 rad
rms. Once again, the values obtained for the ALMS approach are very small to be
compared and also depend on the oscillations induced by the focusing depth. Yet, the
ALMS approach clearly performs better than the SMS-DF approach. The differences
between SMS-DF and ALMS are more accentuated than in the case where detection
noise is not considered.
The impact of the detection noise is also observed on the convergence of the SMS-DF.
While in the absence of detection noise the SMS-DF converges after two iterations,
here, it converges in one iteration to a higher value (« 0.145 instead of « 0.05). This
shows that, once reaching a given amount of residual aberrations, the detection noise is
a dominant effect. For the ALMS approach, results very similar (if not the sames) to
Sect. 4.2.2.1 are obtained. I recall that M3 filters out a large portion of the noise. Thus,
it is less affected by detection noise than M1. Hence, the ALMS approach still performs
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a good aberration estimation.

4.2.3.2 Result for strong aberrations

Figure 4.12 presents the evolution of the focusing depth and the evolution of the residual
wavefront standard deviation as a function of iterations for the case of strong aberrations:
2.82843 rad rms standard deviation.
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Figure 4.12: Comparison of the accuracy of aberration correction between different modal
sensorless modalities of the ALMS approach and the SMS-DF approach with the Gaussian fit
algorithm. Initial wavefront standard deviation: 2.82843 rad rms (strong aberrations). The
detection noise is simulated. (left) Focusing depth as a function of iterations; (right) Resid-
ual wavefront standard deviation as a function of iterations. The evolution of each aberration
amplitudes can be found in Sect. C.8 p. 145.

The results are very similar to the results presented in Sect. 4.2.2.2. The observations
obtained for the case without detection noise are also here applied:

• In the SMS-DF approach small quantities of defocus are added to compensate for
the spherical aberration axial displacement. The ALMS approach focusing depth
converges to the neuron’s soma center for all optimization strategie and small
oscillations are again observed

• The ALMS approach performs, at the last iteration, a better aberration estimation
than the SMS-DF approach. However, these values obtained at the last iteration
do not reflect the aberration estimation accuracy at the convergence (at least not
for 2N`1 & 3N): more than 5 iterations are necessary to achieve the convergence.

• Again, the SMS-DF converges after two iterations. For the ALMS approach, it
is clear that the better strategy to adopt is the sequential DM update algorithm
with K “ 5.

In summary, this simulation shows that the detection noise does not clearly affect the
SMS-DF approach. For the noise level here considered, the aberrations are, in this case,
still a dominant effect.
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4.2.3.3 Result for very strong aberrations

Figure 4.13 presents the evolution of the focusing depth and the evolution of the residual
wavefront standard deviation as a function of iterations for the case of very strong
aberrations: 5 rad rms standard deviation.
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Figure 4.13: Comparison of the accuracy of aberration correction between different modal sen-
sorless modalities of the ALMS approach and the SMS-DF approach with the Gaussian fit algo-
rithm. Initial wavefront standard deviation: 5 rad rms (very strong aberrations). The detection
noise is simulated. (left) Focusing depth as a function of iterations; (right) Residual wavefront
standard deviation as a function of iterations. The evolution of each aberration amplitudes can
be found in Sect. C.9 p. 146.

For what concerns the evolution of the focusing depth, the results are very similar to
the results presented in Sect. 4.2.2.3.
Globally, the ALMS approach performs better than the SMS-DF approach. At the
last iteration, the residual wavefront amplitudes for the SMS-DF, the ALMS 2N+1,
the ALMS 3N, the ALMS 4N+1 and the ALMS 5N approaches are respectively 0.122,
0.006, 0.008, 0.003 and 0.015 rad rms. Compared to the case without detection noise
these amplitude values are slightly larger. However, for the ALMS approach, they are
still very small and are affected by the oscillations of the focusing depth.
Similarly to the previous case, one can observe that the SMS-DF has a slightly faster
convergence. For the ALMS approaches, the global DM update algorithms (2N ` 1 &
4N ` 1)perform better than the sequential DM update algorithms (3N & 5N).
This simulation shows that the detection noise does not clearly affect the SMS-DF ap-
proach. For the noise level considered, the aberrations are still a dominant effect. How-
ever, this represents one particular case of the detection noise. If a stronger noise level
is considered, a more significant impact may be visible in the strong aberrations cases.

4.3 Conclusion

In this chapter I presented a comparative study of the aberration estimation (and implic-
itly of the wavefront correction) accuracy of the ALMS approach and of the standard
approaches (with and without displacement-free modes). Different optimization algo-
rithms, which differ in the number of transverse scans required and in the DM update
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strategy, are considered.
This study was performed with an unique numerical sample and unique set of aberra-
tions which amplitude was adjusted to simulate the case of a weakly, strongly and very
strongly aberrated wavefront. Thus, this comparison reflects only a particular case and
should not be interpreted as a generic comparison of the different approaches and opti-
mization strategies. For that, a more elaborated statistical study is necessary following,
for example, the study elaborated for the SMS-DF approach presented in [Facomprez
et al., 2012]. Nevertheless, our study presents here an overview of the ALMS approach
performance that should be expected.

A first comparison is performed to study the aberration estimation accuracy of the
SMS, the SMS-DF and the ALMS approach. In this study, the aberration estimation is
performed through an exhaustive search algorithm with 11+11 measurements and with
the sequential DM update strategy.
As expected, one could observe that when the initial focusing depth does not corre-
spond to the presence of a neuron’s soma in the transverse scan, the ALMS approach
is progressively changing the focusing depth towards the center of the neuron’s soma.
Hence, the ALMS approach performs a more accurate aberration estimation than the
standard approaches: in the latter, spherical aberration is added to increase the mean
image intensity. This confirms the observations made in Sect. 3.3 p. 72.
Also, one can observe that the SMS-DF approach can perform worse than the SMS
approach. This is due to the non-linearity of the axial displacements. The slope ∆DF ,
used here for the construction of the displacement-free variant of the spherical aberra-
tion, corresponds to a fit performed in the range -5 to 5 rad. Some residual displacements
remain and affect the performance of the SMS-DF approach. This shows that the use
of displacement-free modes does not always lead to a better estimation.

A second comparison is performed to study the aberration estimation accuracy for the
ALMS approach with different optimization algorithms. The detection noise is not simu-
lated. K “ 3 andK “ 5 measurements are considered for the 1D aberration optimization
algorithm. For the overall optimization algorithms, a sequential and a global DM update
strategy are simulated. These cases are also compared to the SMS-DF approach with
K “ 5 measurements for the 1D optimization, and with a sequential DM update strat-
egy. Globally, all optimization algorithms considered for the ALMS approach perform,
at convergence, a non-biased aberration estimation. In line with the results obtained
in [Facomprez et al., 2012] for the SMS-DF approach, a faster convergence is observed
when considering K “ 5 measurements in the 1D optimization for the ALMS approach.
Relatively to the DM update strategy, one could not identify a considerable difference:
in some cases the sequential strategies present a faster convergence; in other cases the
global strategies converge faster or one can not observe any remarkable difference be-
tween them.
Finally, the same comparison was performed with detection noise. One could observe
that, for all cases of aberrations, the ALMS approach performance is not affected by
detection noise. For the SMS-DF approach, in the case of a weak aberrations, it is con-
siderably affected by the detection noise. This results in a worse aberration estimation
than in the case without detection noise. For the strong or very strong aberrations cases,
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the SMS-DF approach is not considerably impacted by detection noise. However, a more
significant detection noise may lead to a stronger impact in these cases.

One disadvantage of the ALMS approach is that it requires more iteration to converge
to a solution than the SMS-DF approach. This happens because, in the ALMS ap-
proach, one alternates between the aberration estimation step, which may induces a
focal volume displacement, and the axial locking step, which in particular compensates
for the displacement first introduced. An improvement of the ALMS approach could be
obtained considering the displacement-free modes (ALMS-DF) for the aberration esti-
mation step. This should indeed improve the decoupling between the axial locking step
and the aberration estimation step.
Several other parameters were not explored in this study and should be considered in
future studies, for example: the value ∆a of amplitude exploration in the 1D optimiza-
tion, the fit parameters, the order in which the Zernike mode are explored and the initial
focusing depth. Also, one should study different axial locking optimization and explore
different trials of aberration sets and of detection noise level. A more detailed statistical
study should also be performed.



Conclusion

In-depth imaging of neuronal networks in the hippocampus was greatly improved in
recent years by the use of adaptive optics. However, the optical accessibility of deep
brain structures such as deeper regions of the surgically exposed hippocampus remains
limited, due to aberrations created by the sample. Adaptive optics can correct for these
aberrations, the key issue being then the ability to perform an accurate and reliable
wavefront sensing (WFS). The approach called modal sensorless wavefront sensing is
an appealing method which consists in the estimation of the aberrated wavefront through
the maximization of a quality metric of the images obtained from the scientific channel.
However, this approach is affected by the sample dependence which may severely biases
the estimation of strong aberrations with strongly heterogeneous sample distributions.

The objective of this thesis was to analyze the Standard Modal Sensorless (SMS)
approach and its limitations, and then develop an improved approach capable to cor-
rectly estimate a strongly aberrated wavefront for a very heterogeneous sample.

I started by a detailed study of the impact of aberrations in two-photon microscopy. I
presented a new mathematical formulation to describe the mean image intensity (return
flux) of a transverse scan. This new formulation makes explicit the interplay between the
two photon 3D PSF and the object distribution. It shows that the mean image intensity
does not depend on the transverse distribution of the sample, it however depends on its
axial distribution in addition to the dependence on aberrations.
Through a tool, called numerical microscope, developed in this thesis, I explored various
aspects: the impact of aberrations on the mean image intensity for different sample
geometries and for different numerical apertures and the impact of the aberrations on
the two photon 3D PSF.
For what concerns the analysis for the different sample geometries, it was shown that
a better sensitivity to aberrations is obtained when imaging small structures, but that
one still obtains a good sensitivity when imaging very large fluorescent structures. This
is convenient since, at large depths, one has a weak signal-to-noise ratio and only large
structures can be observed. This result ensures that the modal sensorless approach can
be performed at large depths.

With regard to the analysis of the evolution of the mean image intensity as a function
of numerical apertures, we verified that in the absence of aberrations, the mean image
intensity is proportional to the square of the numerical aperture. We also demonstrated
that, in the presence of large amplitude of aberrations, it is possible to reduce the nu-
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merical aperture without reducing the mean image intensity. Contrarly to what some
authors assumed before, in certain situations the pupil segmentation can thus be per-
formed with negligible reduction of the mean image intensity.

Relatively to the impact of aberrations in the two photon 3D PSF, it could be observed
that aberrations induce an elongation and displacement of the 3D PSF’s main lobe. De-
pending on the sample distribution, this deformation can increase the interplay between
the two photon 3D PSF and the sample axial distribution. As a consequence, it may
increase the mean image intensity values and may induce a strong bias in the aberration
estimation by the Standard Modal Sensorless approach. This effect is known as the
sample dependence.
We performed here a first comprehensive analysis, in two photon microscopy, of this
effect. We also discussed one existing attempt to solve the sample dependence: the
displacement-free variant of the Standard Modal Sensorless approach (SMS-DF). This
approach is based on the hypothesis that the two photon 3D PSF displacements follows
a linear dependence on aberrations. I demonstrated that this linearity is only an approx-
imation, that residual displacements are still observed and that the elongation effect is
not adressed by this approach.

Taking into account these different analyses, a new modal sensorless approach, named
Axially-Locked Modal Sensorless wavefront sensing (ALMS), is presented. ALMS
is designed for imaging heterogeneously labeled samples such as the pyramidal cell layer
of the hippocampus.
It relies on a specific metric which consists in filtering out low and high frequencies
before calculating the variance of the image. With this metric one can exploit the
sample’s structure to iteratively lock on a bright feature of the sample before in parallel
of the aberration estimation step. This locking step allows us to change the focusing
depth in order to avoid the elongation and the displacement of the 3D PSF.
Most importantly, we show that the ALMS approach is well-suited to enhance the image
quality of CA1 pyramidal cells in in vivo large scale imaging of neural activity. This
technique is actually suitable for all kinds of applications which involve fluorescence
imaging in deep tissues.
Ex vivo and in vivo experimental tests at small depths of the ALMS approach were
presented. A relatively modest improvement was obtained in signal and resolution («
20%). Yet, this improvement should be sufficient to increase by « 50% the probability
of detecting neuronal activity.
By means of end-to-end simulations, for a particular case of aberrations and sample
distribution, I showed that the SMS approach does not perform a good estimation of
a strongly aberrated wavefront. Additionally, even considering its displacement-free
variant of the standard approach, a biased aberration estimation is obtained, mainly
due to the deformation of the 3D PSF2. Globally, the ALMS approach performs a
better aberration estimation than the standard approaches. However, for very strongly
aberrated wavefronts, such improvement requires more iterations. I also show an example
where the SMS approach is considerably affected by the detection noise while the ALMS
approach keeps a suitable estimation precision.
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Suggestions for future work

The work presented here can be further elaborated. Here below I describe different lines
of research that could be considered.

Further refinements and characterization of the ALMS approach based on
simulations

One can clearly think of the following developments to further refine and characterize
our ALMS approach:

• Definition an efficient axial locking algorithm

An efficient axial locking with a limited number of transverse scan acquisitions
remains to be defined. One could think of an initial locking with a rather large
depth exploration (say scans every micron in about a 50 µm initial range). The
following axial lockings could then be performed with an appropriate fit based on
a few scans in a restricted range around the maximum.

• Study of ALMS with displacement free modes

As mentioned previously, the ALMS convergence could probably be improved with
the use of displacement free modes in the aberration estimation step. This should
indeed improve the decoupling between the axial locking step and the aberration
estimation step.

• ALMS with progressively increasing aperture

We have shown that, in the presence of aberrations, reducing the aperture does not
mean reducing the return flux. To face very strong aberrations, one can therefore
think of applying ALMS with a reduced aperture to initiate the process and then
progressively come back to the full aperture configuration.

• Full statistical characterization of ALMS

A full characterization of the refined ALMS approach performance should then be
performed based on a statistical analysis (trials of aberration sets, different noise
occurences and levels...) following the work on SMS by [Facomprez et al., 2012].

Further experimental developments

• Experimental comparison between ALMS and SMS approaches

ALMS and SMS approaches have not been yet compared experimentally. Such a
direct comparison is essential to demonstrate the gain brought by ALMS compared
to SMS and SMS-DF approaches. These tests would also allow one to validate and
fine tune the ALMS refinements mentioned previously. Extensive experimental
tests at variable depths should in the meantime provide a better characterization
of the aberration nature and amplitude one can expect in the hippocampus. This
is an essential input to further improve AO strategies in this context.

• Application of ALMS to dynamical imaging of neuronal activity at large depth
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One should of course pursue the experimental demonstration of the ALMS ap-
proach with in vivo tests at large depth. Eventually the ALMS approach should
be applied on a awake mouse so has to image the dynamical neuronal activity
in the dentate gyrus and hence open the path to an overall understanding of the
hippocampus activity.

Other wavefront sensing and AO strategies

• Phase diversity for 3D imaging in two photon microscopy
The sensorless approaches studied here (SMS & ALMS) reduce the transverse
scan images obtained with the scientific channel to a scalar value (so-called image
quality metric). One could however think of exploiting the whole image so as to
obtain an explicit estimation of the wavefront. This is the principle of the phase
diversity technique [Mugnier et al., 2006]. This technique has been adapted to
3D imaging in single photon microscopy [Chenegros et al., 2007; Kner, 2013] and
could be extended to two photon microscopy. This would constitute an image
based direct wavefront sensing approach for two photon microscopy.

• Very high order multiplex techniques
Very high order correction techniques, such as the IMPACT method [Tang et al.,
2012; Kong and Cui, 2015], have not been analyzed in this thesis. Such techniques
are of course appealing for large depth since they may partially compensate for
scattering effects. Of course one should first evaluate carefully the possible sam-
ple dependence of these approaches. [Tang et al., 2012] have claimed that their
technique naturally forms a focal volume onto the strongest bright feature present
in the sample, but this was based on a mere qualitative analysis. If sample de-
pendence is observed one could probably revisit these approaches based on the
developments presented in this thesis.
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Appendix A

Amount ad of defocus Z4 to induce
a given axial displacement z

Figure A.1: Amount of defocus to induce a given axial displacement.

We intend here to calculate the amount of defocus one need to add to the wavefront
in order to displace the focus by δz. Note that using a defocus (therefore a parabolic
wave-front rather than a portion of sphere) is an approximation for the computation of
the 3D PSF in the various transverse planes along z. It could be of course interesting to
investigate the consequences of this approximation. This aspect is however beyond the
scope of the present study.

Consider a circular back aperture of diameter D. A planar wavefront that passes through
the back aperture is focused, by a lens inserted in a medium with refractive index n and
with a numerical aperture NA, at the focal distance fpnq “ nfp1q where fp1q is the
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focal distance in the air. Assuming here that we are in the paraxial approximation
NA“ α{2 “ nD{p2fpnqq. We have then that:

α “
nD

fpnq
ô αfpnq “ nD (A.1)

By adding an amount ad of defocus, one can move the focus point by δz (Fig. A.1).
Thus:

α “
npD ` 2hq
fpnq ` δz

ô αfpnq ` αδz “ npD ` 2hq

ô h “
nD ` pnD{fpnqqδz ´ nD

2n “
Dδz

2fpnq
. (A.2)

and

γ “
h

fp1q
“

δz

2fp1qfpnq
“

Dδz

2nf2
p1q
. (A.3)

If one approximates the defocused wavefront with an parabolic function, by the reflec-
tive property, it can be easily shown that the tangent of the parabola represent in the
figure intersects the back aperture plane at D{4, Thus, the distance δl between the two
wavefronts at the edge of the back aperture edge is then given by:

δl “
D

4 γ ô δl “
D2δz

8nf2
p1q
. (A.4)

As we are in the air, the optical path difference is

∆ “ δl (A.5)

and translates in a phase difference:

δϕ “
2π
λp1q

δl “
2πD2

λp1qn8f2
p1q
δz. (A.6)

Which is also given by a defocus adZ4prq where Z4prq “
?

3p2r2 ´ 1q, i.e.:

δϕ “ rZ4pr “ 1q ´ Z4pr “ 0qsad (A.7)

With the Equations (A.6) and (A.7) one obtains:

δz “
8λp1qnf2

p1q
2πD2 δϕ “ δz “

8
?

3λp1qnf2
p1q

πD2 ad “
2
?

3λp1qn
πNA2 ad,

ˆ

NA “
nD

2fpnq
“

D

2fp1q

˙

.

(A.8)
Finally, a defocus with amplitude ad displace the focus by δz is given by:

adpzq “
πNA2

2
?

3λp1qn
z. (A.9)
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Deformations of the 3D PSF2 and
sample dependence for a uniform
illumination back-aperture: case
of spherical aberration

We study here the case of a back-aperture uniform illumination for what concerns the
effect of spherical aberration on the 3D PSF2 and the related sample dependence. I first
perform an analysis of the 3D PSF2’s deformations considering a uniformly illuminated
pupil back-aperture.
For a set of spherical aberration amplitudes, I computed two 3D PSF2 for the two
cases of pupil back aperture illumination distribution (uniform and Gaussian cases of
Sect. 3.2 p. 69). I thus estimated the displacement for each aberrated 3D PSF2 using
three different criteria:

• the 3D PSF2’s axial center of mass - the unique point where the weighted relative
position of the distributed mass sums to zero. I use here the notation CDMzphq

to represent the axial center of mass (centre de masse):

z :
ÿ

x1,y1,z1

h2
apx

1, y1, z1q
“

px1, y1, z1q ´ px, y, zq
‰

“ 0

• the axial coordinate of the 3D PSF2’s maximum maxzphq

z : h2
apx, y, zq “ max

`

h2
a

˘

• the axial coordinate of the 3D PSF2’s axial distribution maximum maxphbarq

z : h2
apzq “ max

´

h2
a

¯

Figure B.1 presents the results obtained.
One can observe that, for both Gaussian and uniform cases, the 3D PSF2 is displaced
when one adds spherical aberration. Considering the criterion of the 3D PSF2’s axial
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Figure B.1: Axial displacement as a function of spherical aberration Z11 for Gaussian (left)
and uniform (right) illumination distribution. The blue curve represents the evolution of the
3D PSF2’s axial center of mass; The red curve represents the evolution axial coordinate of the
3D PSF2’s maximum; The green curve represents the evolution of the axial coordinate of the 3D
PSF2’s axial distribution. Lower figures are the same figures zoomed between -1.2 and 1.2 rad.

center of mass (blue curve), one observes that a larger aberration amplitude is required
to displace the 3D PSF2 for the case of a uniform illumination distribution: between -1.2
and 1.2 rad the blue curve remains flat contrary to the case of the Gaussian distribution.
If one considers the 3D PSF2 axial distribution maximum (green curve) one can observe
that the curve starts to change later for the case of the uniform distribution: after adding
more than 1 rad of spherical aberration. Considering now the case of the maximum’s
axial coordinate of the 3D PSF2, one can observe that, for the uniform case, the axial
displacement changes of sign regularly. This is because, in this case of a uniform illumi-
nation distribution, the 3D PSF2 presents an almost-symmetrical distribution along the
optical axis. Figure B.2 illustrates the deformations of the 3D PSF2 when adding 2.6
rad of spherical aberration for both illumination distribution. In this figure is presented
an axial cut of the 3D PSF2 at y “ 0, the 3D PSF2’s axial distribution h2

a and the 3D
PSF2’s distribution along the optical axis h2

apx “ 0, y “ 0, zq.
For the uniform case, we observe that the 3D PSF2’s distribution along the optical axis
is almost symmetrical relatively to the focusing depths z “ 0. It is then not possible
to define the main lobe of the 3D PSF2 from this curve. However, the XZ cut shows
that the 3D PSF2 is not really symmetric. We observe that a main lobe can be found,
similarly to the case of the Gaussian illumination distribution, around 12 µm. Thus, the
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Figure B.2: Illustration of the 3D PSF2’s deformation with 2.6 rad of spherical aberration Z11
for Gaus sian (upper) and uniform (lower) illumination distribution. (left) figures presents
the axial cut of the 3D PSF2 at y “ 0. On the (right) figures: the blue continuous curve
represents the axial distribution of the 3D PSF2; the green curve represents the evolution of
the 3D PSF2along the optical axis; the dashed lines represents respectively the locations for
the center of mass, the maximum of the 3D PSF2 and the maximum of the 3D PSF2’s axial
distribution.

3D PSF2 remains axially displaced and, as consequence, the sample dependence may
still occurs in this case of a uniform illumination distribution.
To quantify the sample dependence in the uniform illumination case, Figure B.3 presents
the evolution of the mean image intensity metric as a function of spherical aberration
and a 10 µmdiameter fluorescent bead centered at 12 µmout-of-focus (as in Sect. 3.2).
In this figure, the result obtained for the Gaussian case (Fig. 3.7 p. 71) is also recalled.
The results are similar: the metric is still maximized for a non-zero aberration amplitude.
As demonstrated in the Sect. 3.2, this results in the sample dependence effect.
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End-to-end simulations -
Evolution of the different
aberrations

C.1 Supplementary figures of Fig. 4.5 p. 110
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Figure C.1: Supplementary figure of Fig. 4.5. Evolution of the two astigmatism aberration
amplitudes as a function of iterations for a weakly aberrated wavefront.
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Figure C.2: Supplementary figure of Fig. 4.5. Evolution of the two coma aberration amplitudes
as a function of iterations for a weakly aberrated wavefront.
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Figure C.3: Supplementary figure of Fig. 4.5. Evolution of the two trefoil aberration amplitudes
as a function of iterations for a weakly aberrated wavefront.
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Figure C.4: Supplementary figure of Fig. 4.5. Evolution of the spherical aberration amplitude
as a function of iterations for a weakly aberrated wavefront.
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C.2 Supplementary figures of Fig. 4.6 p. 111
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Figure C.5: Supplementary figure of Fig. 4.6. Evolution of the two astigmatism aberration
amplitudes as a function of iterations for a strongly aberrated wavefront.
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Figure C.6: Supplementary figure of Fig. 4.6. Evolution of the two coma aberration amplitudes
as a function of iterations for a strongly aberrated wavefront.
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Figure C.7: Supplementary figure of Fig. 4.6. Evolution of the two trefoil aberration amplitudes
as a function of iterations for a strongly aberrated wavefront.
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Figure C.8: Supplementary figure of Fig. 4.5. Evolution of the spherical aberration amplitude
as a function of iterations for a strongly aberrated wavefront.
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Figure C.9: Supplementary figure of Fig. 4.7. Evolution of the two astigmatism aberration
amplitudes as a function of iterations for a very strongly aberrated wavefront.
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Figure C.10: Supplementary figure of Fig. 4.7. Evolution of the two coma aberration amplitudes
as a function of iterations for a very strongly aberrated wavefront.
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Figure C.11: Supplementary figure of Fig. 4.7. Evolution of the two trefoil aberration amplitudes
as a function of iterations for a very strongly aberrated wavefront.
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Figure C.12: Supplementary figure of Fig. 4.7. Evolution of the spherical aberration amplitude
as a function of iterations for a very strongly aberrated wavefront.
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Figure C.13: Supplementary figure of Fig. 4.8. Evolution of the two astigmatism aberration
amplitudes as a function of iterations for a weakly aberrated wavefront.
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Figure C.14: Supplementary figure of Fig. 4.8. Evolution of the two coma aberration amplitudes
as a function of iterations for a weakly aberrated wavefront.
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Figure C.15: Supplementary figure of Fig. 4.8. Evolution of the two trefoil aberration amplitudes
as a function of iterations for a weakly aberrated wavefront.
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Figure C.16: Supplementary figure of Fig. 4.8. Evolution of the spherical aberration amplitudes
as a function of iterations for a weakly aberrated wavefront.
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C.5 Supplementary figures of Fig. 4.9 p. 114
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Figure C.17: Supplementary figure of Fig. 4.9. Evolution of the two astigmatism aberration
amplitudes as a function of iterations for a strongly aberrated wavefront.
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Figure C.18: Supplementary figure of Fig. 4.9. Evolution of the two coma aberration amplitudes
as a function of iterations for a strongly aberrated wavefront.
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Figure C.19: Supplementary figure of Fig. 4.9. Evolution of the two trefoil aberration amplitudes
as a function of iterations for a strongly aberrated wavefront.
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Figure C.20: Supplementary figure of Fig. 4.9. Evolution of the spherical aberration amplitudes
as a function of iterations for a strongly aberrated wavefront.
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Figure C.21: Supplementary figure of Fig. 4.10. Evolution of the two astigmatism aberration
amplitudes as a function of iterations for a very strongly aberrated wavefront.
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Figure C.22: Supplementary figure of Fig. 4.10. Evolution of the two coma aberration amplitudes
as a function of iterations for a very strongly aberrated wavefront.
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Figure C.23: Supplementary figure of Fig. 4.10. Evolution of the two trefoil aberration ampli-
tudes as a function of iterations for a very strongly aberrated wavefront.
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Figure C.24: Supplementary figure of Fig. 4.10. Evolution of the spherical aberration amplitudes
as a function of iterations for a very strongly aberrated wavefront.
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Figure C.25: Supplementary figure of Fig. 4.11. Evolution of the two astigmatism aberration
amplitudes as a function of iterations for a weakly aberrated wavefront.
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Figure C.26: Supplementary figure of Fig. 4.11. Evolution of the two coma aberration amplitudes
as a function of iterations for a weakly aberrated wavefront.
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Figure C.27: Supplementary figure of Fig. 4.11. Evolution of the two trefoil aberration ampli-
tudes as a function of iterations for a weakly aberrated wavefront.
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Figure C.28: Supplementary figure of Fig. 4.11. Evolution of the spherical aberration amplitudes
as a function of iterations for a weakly aberrated wavefront.
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Figure C.29: Supplementary figure of Fig. 4.12. Evolution of the two astigmatism aberration
amplitudes as a function of iterations for a strongly aberrated wavefront.
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Figure C.30: Supplementary figure of Fig. 4.12. Evolution of the two coma aberration amplitudes
as a function of iterations for a strongly aberrated wavefront.
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Figure C.31: Supplementary figure of Fig. 4.12. Evolution of the two trefoil aberration ampli-
tudes as a function of iterations for a strongly aberrated wavefront.
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Figure C.32: Supplementary figure of Fig. 4.12. Evolution of the spherical aberration amplitudes
as a function of iterations for a strongly aberrated wavefront.
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Figure C.33: Supplementary figure of Fig. 4.13. Evolution of the two astigmatism aberration
amplitudes as a function of iterations for a very strongly aberrated wavefront.
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Figure C.34: Supplementary figure of Fig. 4.13. Evolution of the two coma aberration amplitudes
as a function of iterations for a very strongly aberrated wavefront.

0 1 2 3 4 5 6 7 8 9 10

iteration

-1.5

-1

-0.5

0

0.5

1

a
b

e
rr

a
ti
o

n
 a

m
p

lit
u

d
e

 [
ra

d
]

Z9

ALMS 2N+1

ALMS 3N

ALMS 4N+1

ALMS 5N

SMS-DF 5N

0 1 2 3 4 5 6 7 8 9 10

iteration

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

a
b

e
rr

a
ti
o

n
 a

m
p

lit
u

d
e

 [
ra

d
]

Z10

ALMS 2N+1

ALMS 3N

ALMS 4N+1

ALMS 5N

SMS-DF 5N

Figure C.35: Supplementary figure of Fig. 4.13. Evolution of the two trefoil aberration ampli-
tudes as a function of iterations for a very strongly aberrated wavefront.
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Figure C.36: Supplementary figure of Fig. 4.13. Evolution of the spherical aberration amplitudes
as a function of iterations for a very strongly aberrated wavefront.



Appendix D

Evolution of the different metrics
along the focusing depth for
different aberration amplitudes
level

D.1 Without detection noise
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Figure D.1: Evolution of M1 and M3 as a function of the focusing depth considering a weakly
aberrated wavefront (1 rad rms). For comparison, the object and 3D PSF2 axial distributions
are also plotted. All curves are normalized. Detection noise is not considered.
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Figure D.2: Evolution of M1 and M3 as a function of the focusing depth considering a strongly
aberrated wavefront (2.82843 rad rms). For comparison, the object and 3D PSF2 axial distribu-
tions are also plotted. All curves are normalized. Detection noise is not considered.
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Figure D.3: Evolution of M1 and M3 as a function of the focusing depth considering a very
strongly aberrated wavefront (5 rad rms). For comparison, the object and 3D PSF2 axial distri-
butions are also plotted. All curves are normalized. Detection noise is not considered.
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Figure D.4: Evolution of M1 and M3 as a function of the focusing depth considering a weakly
aberrated wavefront (1 rad rms). For comparison, the object and 3D PSF2 axial distributions
are also plotted. All curves are normalized. Detection noise is considered.
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Figure D.5: Evolution of M1 and M3 as a function of the focusing depth considering a strongly
aberrated wavefront (2.82843 rad rms). For comparison, the object and 3D PSF2 axial distribu-
tions are also plotted. All curves are normalized. Detection noise is considered.
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Figure D.6: Evolution of M1 and M3 as a function of the focusing depth considering a very
strongly aberrated wavefront (5 rad rms). For comparison, the object and 3D PSF2 axial distri-
butions are also plotted. All curves are normalized. Detection noise is considered.
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Résumé

L’imagerie en profondeur in vivo à deux pho-
tons est sévèrement limitée par les aberrations
optiques. L’optique adaptative est maintenant
une technique largement utilisée pour résoudre
ce problème. Elle repose sur une des nom-
breuses techniques possibles de mesure de
front d’onde. L’approche modale sans analyseur
(ou modal sensorless), développée initialement
pour l’imagerie à deux photons par Débarre et
coll., est devenue une technique standard fondée
sur la maximisation d’une métrique de qualité
d’image telle que l’intensité moyenne de l’image.
Cependant, cette technique est influencée par
la structure de l’échantillon, qui peut induire un
biais fort dans l’estimation du front d’onde. Cet
effet est connu sous le nom de dépendance en
l’échantillon.

Ce travail de doctorat vise à développer une
approche modale sans analyseur améliorée
qui n’est pas affectée par la dépendance
en l’échantillon. Elle s’insrit dans un projet
d’imagerie neuronale de in vivo de l’hippocampe
de la souris, projet qui rassemble l’INMED,
l’Institut Fresnel et l’Onera.
J’étudie d’abbord l’impact des aberrations et de la
structure de l’échantillon sur l’intensité moyenne
de l’image. Je donne une nouvelle expres-
sion analytique de l’intensité moyenne de l’image
qui rend explicite l’interaction entre la Fonc-
tion d’Etalement de Point 3D et la distribution
spatiale de l’échantillon. À partir de simula-
tions numériques, j’évalue la sensibilité de la
métrique aux aberrations pour différents types
d’échantillons.
J’étudie ensuite l’approche Standard Modal Sen-
sorless (SMS). Je caractérise nottament le
problème de la dépendance en l’échantillon
induit par des structures très fluorescentes
situées hors de la profondeur de focalisa-
tion. Je montre aussi que l’amélioration de
l’approche dite displacement-free n’élimine pas
complètement cette limitation. Cette anal-
yse aboutit au développement de notre ap-
proche nommée Axially-Locked Modal Sensor-
less (ALMS). Cette nouvelle approche résout
la dépendance en l’échantillon par un réglage
automatique et contrôlé de la focalisation afin
de verrouiller celle-ci sur des motifs brillants de
l’échantillon. En outre, l’approche ALMS se
fonde également sur une métrique de qualité
d’image spécialement conçue pour ce verrouil-
lage axial. La performance de cette approche est
numériquement comparée aux approches SMS.
Enfin, ALMS est appliquée et validée, ex vivo et
in vivo, dans le contexte de l’imagerie neuronale
de l’hippocampe.

Mots Clés
optique adaptative; Mesure de front d’onde
sans analyseur; microscopie à deux photons;
dépendence en l’échantillon.

Abstract

Deep in vivo two photon microscopy is severely
limited by optical aberrations. Adaptive optics
is now a widely used technique to overcome
this issue. It relies on one of several possible
wavefront sensing techniques. The modal sen-
sorless wavefront sensing approach, initially
developed for two photon imaging by Débarre
et al., has become a standard technique based
on the maximization of an image quality metric
such as the mean image intensity. However, this
technique is influenced by the sample, which may
induce a strong bias on the wavefront estimation,
the so-called sample dependence.

This PhD work aims at developing an improved
modal sensorless approach that is not affected by
sample dependence. It is part of a project of in
vivo neuronal imaging of the mouse hippocampus
which gathers three laboratories: INMED, Institut
Fresnel and Onera.
I first study the impact of aberrations and of the
sample structure on the mean image intensity. A
new analytical expression of the mean image in-
tensity is given and makes explicit the interplay
between the shape of the 3D PSF and the sam-
ple spatial distribution. Through numerical simu-
lations I evaluate the metric sensitivity to aberra-
tions for different samples structures.
Secondly, I study the Standard Modal Sensor-
less (SMS) approach for different sample scenar-
ios. I characterize the sample dependence issue
induced by strong fluorescent structures located
out-of-focus. I then show that the displacement-
free technique fails at fully removing the sample
dependence. This analysis leads to the devel-
opment of our Axially-Locked Modal Sensorless
approach (ALMS). This new approach solves the
sample dependence by an automatic and con-
trolled adjustment of the focusing depth to lock on
bright sample features. Furthermore, the ALMS
approach is based on an image quality metric
specifically designed for this axial locking. The
performance of this approach is numerically com-
pared to the SMS approaches. Finally, the ALMS
approach is demonstrated through ex vivo and in
vivo experimental tests in the context of neuronal
imaging of the hippocampus.

Keywords
adaptive optics; sensorless wavefront sensing;
two photon microscopy; sample dependence.
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