Skip to Main content Skip to Navigation

De l'exposition professionnelle aux hydrocarbures aromatiques polycycliques à l'estimation du risque de cancers professionnels

Abstract : Polycyclic aromatic hydrocarbons (PAHs) are a family of organic carcinogens substances, ranked second amongst priority targeted pollutants in the environment as well as in occupational settings where around 1.6 million workers are exposed in France. Sanitary risks assessment (SRA) is paramount but remains difficult to set up considering that PAHs are always emitted in complex mixtures of gas and particles whose composition depends on emission sources.The goals of this PhD were to characterize exposures within industries (levels and chemical composition of PAHs mixtures) in order to assess the cancer risk from occupational exposure to PAHs mixtures. This work was performed using the Exporisq-HAP database (E-HAP) that gathers more than 1,700 airborne exposure data as well as 40 independent variables collected in 130 companies with the same methodology and coded by the same toxicologist for 20 years.To conduct the SRA, data were structured following two dimensions (homogeneity and description accuracy), enabling the construction of similar exposure groups (SEGs) and the descriptive analysis of the French industrial landscape. Using the benzo[a]pyrene as indicator (BaP, the most dangerous PAH), about 40% of the occupational activities (most accurate description level in E-HAP) could be considered as SEGs (geometric standard deviation ≤ 3). Adding a new description level increased this percentage to 87%. High variabilities existed between and within industries in terms of concentrations levels, chemical mixtures composition and risk (between 2 for bitumen to 500 times within foundries) caused by mono-exposure to PAHs (e.g., BaP, naphthalene…). This underlines the importance of collecting detailed information on occupational activities performed by workers to accurately describe and characterize exposures. In the second step, multi-exposures to PAHs were analyzed in terms of similar exposure function groups (SEFG based on several PAHs). Exposure functions (PAHs concentrations distributions) were used to describe the French PAHs industrial landscape, to construct markers of the multi-exposures to airborne PAHs and to perform the preliminary assessment of the cancer risk caused by these mixtures. Besides BaP, benzo[k]fluoranthene and benzo[ghi]perylene were found to be indicators of the multi-exposures to airborne carcinogenic PAHs, which was not the case for pyrene (gaseous and particulate forms), naphthalene and phenanthrene. SEFGs were made up of groups with the same source origin –either from products derived from coal (SEFGH) or petroleum (SEGFP). SEFGH (aluminum, silicon, carbon product, coke production, and foundry) had high concentration levels and high risk of lung cancer (between 100,000 to 1 risk to 1,000 to 1 risk to observe one additional case of lung cancer). It was different for SEGFP (engine emissions, lubricating oil, combustion, bitumen) that had between 100,000 to 1 risk to a million to 1 risk of additional lung cancer. To reduce cancer risks, risk management measures still need improvements in all SEFGH.
Document type :
Complete list of metadatas
Contributor : Abes Star :  Contact
Submitted on : Thursday, January 25, 2018 - 2:48:08 PM
Last modification on : Wednesday, October 14, 2020 - 4:19:59 AM
Long-term archiving on: : Friday, May 25, 2018 - 3:57:32 AM


Version validated by the jury (STAR)


  • HAL Id : tel-01692845, version 1



Pascal Petit. De l'exposition professionnelle aux hydrocarbures aromatiques polycycliques à l'estimation du risque de cancers professionnels. Médecine humaine et pathologie. Université Grenoble Alpes, 2016. Français. ⟨NNT : 2016GREAS025⟩. ⟨tel-01692845⟩



Record views


Files downloads