G. Arbre-de-transformations, 54 12 Second point de vue : déterminer la superposition à partir de la région candidate, p.57

.. Bruit-n-195, Les cent quatre-vingt quinze cibles, considérées comme négatives dans les benchmarks, p.115

M. A. Adams, D. Michael, J. Suits, Z. Zheng, and . Jia, Piecing together the structure???function puzzle: Experiences in structure-based functional annotation of hypothetical proteins, PROTEOMICS, vol.47, issue.16, pp.2920-2932, 2007.
DOI : 10.1080/02648725.1998.10647950

]. J. An, Pocketome via Comprehensive Identification and Classification of Ligand Binding Envelopes, Molecular & Cellular Proteomics, vol.5, issue.6, pp.752-761, 2005.
DOI : 10.1016/0022-2836(82)90515-0

M. E. Stefano-angaran, C. Bock, C. Garutti, and . Guerra, MolLoc: a web tool for the local structural alignment of molecular surfaces, Nucleic Acids Research, vol.16, issue.6, pp.565-570, 2009.
DOI : 10.1093/bioinformatics/16.6.566

R. Apweiler, A. Bairoch, H. Cathy, . Wu, C. Winona et al., UniProt: the Universal Protein knowledgebase, Database issue, pp.115-124, 2004.
DOI : 10.1093/nar/gkh131

URL : https://academic.oup.com/nar/article-pdf/32/suppl_1/D115/7622144/gkh131.pdf

D. Armon and . Graur, ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information, Journal of Molecular Biology, vol.307, issue.1, pp.447-463, 2001.
DOI : 10.1006/jmbi.2000.4474

]. Bajusz, A. Racz, and K. Héberger, Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations?, Journal of Cheminformatics, vol.44, issue.8, pp.1-13, 2015.
DOI : 10.1016/S1056-8719(00)00107-6

URL : https://jcheminf.springeropen.com/track/pdf/10.1186/s13321-015-0069-3?site=jcheminf.springeropen.com

M. Holst and . Wang, Adaptive Multilevel Finite Element Solution of the Poisson?Boltzmann Equation II . Refinement at Solvent-Accessible Surfaces in Biomolecular Systems, J. Comput. Chem, vol.21, issue.15, pp.1343-1352, 2000.

A. Bender, W. Daniel, . Young, L. Jeremy, M. Jenkins et al., Chemogenomic Data Analysis: Prediction of Small-Molecule Targets and the Advent of Biological Fingerprints, Combinatorial Chemistry & High Throughput Screening, vol.10, issue.8, pp.719-731, 2007.
DOI : 10.2174/138620707782507313

M. Biasini, S. Bienert, A. Waterhouse, K. Arnold, G. Studer et al., SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information, Nucleic Acids Research, vol.82, issue.Suppl. 2, pp.252-258, 2014.
DOI : 10.1002/prot.24347

URL : https://academic.oup.com/nar/article-pdf/42/W1/W252/7438166/gku340.pdf

J. Boissonnat, O. Devillers, S. Pion, M. Teillaud, J. Boissonnat et al., Triangulations in CGAL, Computational Geometry, vol.22, issue.1-3, pp.5-19, 2002.
DOI : 10.1016/S0925-7721(01)00054-2

URL : https://hal.archives-ouvertes.fr/hal-01179408

]. Bourne-1995, . Bourne, and . Others, The Macromolecular Crystallographic Information File {(mmCIF)}, Methods in Enzymology, 1995.

]. Brady, F. Pieter, and . Stouten, Fast prediction and visualization of protein binding pockets with PASS, Journal of Computer-Aided Molecular Design, vol.14, issue.4, pp.383-401, 2000.
DOI : 10.1023/A:1008124202956

M. Bredel and E. Jacoby, Chemogenomics: an emerging strategy for rapid target and drug discovery, Nature Reviews Genetics, vol.40, issue.4, pp.262-275, 2004.
DOI : 10.1124/mol.64.2.382

URL : http://cbio.ensmp.fr/~jvert/svn/bibli/local/Bredel2004Chemogenomics.pdf

]. L. Carvalho, G. Fernandes, M. V. O-de-assis, J. J. Rodrigues, and M. L. Proença, Digital signature of network segment for healthcare environments support, IRBM, vol.35, issue.6, pp.299-309, 2014.
DOI : 10.1016/j.irbm.2014.09.001

]. Chartier, E. Adriansen, and R. Najmanovich, IsoMIF Finder: online detection of binding site molecular interaction field similarities, Bioinformatics, vol.2, issue.4, pp.621-623, 2015.
DOI : 10.1371/journal.pcbi.1000387

URL : http://doi.org/10.1093/bioinformatics/btv616

]. Chikhi, L. Sael, and D. Kihara, Real-time ligand binding pocket database search using local surface descriptors, Proteins: Structure, Function, and Bioinformatics, vol.396, issue.Suppl 1, pp.2007-2028, 2010.
DOI : 10.4018/jkdb.2010100203

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3009464/pdf

C. , J. C. Cole, C. W. Murray, J. Willem, M. Nissink et al., Comparing protein-ligand docking programs is difficult, Proteins : Structure, Function and Genetics, vol.60, issue.3, pp.325-332, 2005.
DOI : 10.1002/prot.20497

G. Ryan, K. A. Coleman, and . Sharp, Travel Depth, a New Shape Descriptor for Macromolecules : Application to Ligand Binding, Journal of Molecular Biology, vol.362, issue.3, pp.441-458, 2006.

]. Connolly, Solvent-accessible surfaces of proteins and nucleic acids, Science, vol.221, issue.4612, pp.709-713, 1983.
DOI : 10.1126/science.6879170

W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz et al., A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules, Journal of the American Chemical Society, vol.117, issue.19, pp.5179-5197, 1995.
DOI : 10.1021/ja00124a002

]. Crick, On protein synthesis, Symposia of the Society for Experimental Biology, vol.12, pp.138-63, 1958.

S. Das, A. Kokardekar, and C. M. Breneman, Rapid Comparison of Protein Binding Site Surfaces with Property Encoded Shape Distributions, Journal of Chemical Information and Modeling, vol.49, issue.12, pp.2863-2872, 2009.
DOI : 10.1021/ci900317x

J. Matjaz-depolli, K. Konc, R. Rozman, D. Trobec, and . Janezic, Exact Parallel Maximum Clique Algorithm for General and Protein Graphs, Journal of Chemical Information and Modeling, vol.53, issue.9, pp.2217-2228, 2013.
DOI : 10.1021/ci4002525

]. K. Dill and J. L. Maccallum, The Protein-Folding Problem, 50 Years On, Science, vol.1804, issue.6, pp.1042-1046, 2012.
DOI : 10.1016/j.bbapap.2010.01.017

H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel, On the shape of a set of points in the plane, Cité en pages 41 et 95.) [Edelsbrunner 1992] H Edelsbrunner, 1983.
DOI : 10.1109/TIT.1983.1056714

H. Edelsbrunner, P. Ernst, and . Mücke, Three-dimensional alpha shapes, ACM Transactions on Graphics, vol.13, issue.1, pp.43-72, 1994.
DOI : 10.1145/174462.156635

URL : http://arxiv.org/pdf/math/9410208v1.pdf

]. T. Ewing, S. Makino, A. G. Skillman, and I. D. Kuntz, DOCK 4.0 : Search strategies for automated molecular docking of flexible molecule databases, Journal of Computer-Aided Molecular Design, vol.15, issue.5, pp.411-428, 2001.
DOI : 10.1023/A:1011115820450

R. D. Finn, A. Bateman, J. Clements, P. Coggill, R. Y. Eberhardt et al., Pfam: the protein families database, Nucleic Acids Research, vol.42, issue.D1, pp.222-230, 2014.
DOI : 10.1093/nar/gks1200

URL : https://hal.archives-ouvertes.fr/hal-01294685

]. E. Fischer, Einfluss der Configuration auf die Wirkung der Enzyme, Berichte der deutschen chemischen Gesellschaft, vol.6, issue.3, pp.2985-2993, 1894.
DOI : 10.1002/jlac.18802040214

R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic et al., Glide:?? A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy, Journal of Medicinal Chemistry, vol.47, issue.7, pp.1739-1749, 2004.
DOI : 10.1021/jm0306430

A. Fuhrmann, H. Rurainski, D. Peter-lenhof, and . Neumann, A new Lamarckian genetic algorithm for flexible ligand-receptor docking, Journal of Computational Chemistry, vol.28, issue.9, pp.1911-1918, 2010.
DOI : 10.1093/comjnl/7.4.308

]. Gao and J. Skolnick, APoc: large-scale identification of similar protein pockets, Bioinformatics, vol.62, issue.5, pp.597-604, 2013.
DOI : 10.1002/prot.20752

URL : https://academic.oup.com/bioinformatics/article-pdf/29/5/597/16919500/btt024.pdf

F. Glaser, T. Pupko, I. Paz, R. E. Bell, D. Bechor-shental et al., ConSurf: Identification of Functional Regions in Proteins by Surface-Mapping of Phylogenetic Information, Bioinformatics, vol.19, issue.1, pp.163-164, 2003.
DOI : 10.1093/bioinformatics/19.1.163

F. Glaser, Y. Rosenberg, A. Kessel, and T. Pupko-et-nir-ben-tal, The ConSurf-HSSP database: The mapping of evolutionary conservation among homologs onto PDB structures, Proteins: Structure, Function, and Bioinformatics, vol.31, issue.Suppl 1, pp.610-617, 2005.
DOI : 10.1093/bioinformatics/18.suppl_1.S71

F. Glaser, R. J. Morris, R. J. Najmanovich, R. A. Laskowski, and J. M. Thornton, A method for localizing ligand binding pockets in protein structures, Proteins: Structure, Function, and Bioinformatics, vol.340, issue.10, pp.479-488, 2006.
DOI : 10.1093/bioinformatics/18.suppl_1.S71

H. M. Grindley, P. J. Artymiuk, D. W. Rice, and P. Willett, Identification of Tertiary Structure Resemblance in Proteins Using a Maximal Common Subgraph Isomorphism Algorithm, Cité en page 30.) [Grosdidier 2011] Aurélien Grosdidier, Vincent Zoete et Olivier Michielin. Fast docking using the CHARMM force field with EADock DSS, pp.707-721, 1993.
DOI : 10.1006/jmbi.1993.1074

T. A. Halgren, R. B. Murphy, R. A. Friesner, H. S. Beard, L. L. Frye et al., Glide:?? A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening, Journal of Medicinal Chemistry, vol.47, issue.7, pp.1750-1759, 2004.
DOI : 10.1021/jm030644s

A. Thomas and . Halgren, Identifying and characterizing binding sites and assessing druggability, Journal of Chemical Information and Modeling, vol.49, issue.2, pp.377-389, 2009.

R. Michael, D. S. Garey, and . Johnson, Juris Hartmanis Computers and Intractability : A Guide to the Theory of NP- Completeness, 1982.

M. J. Hartshorn, M. L. Verdonk, G. Chessari, S. C. Brewerton, T. Wijnand et al., Diverse, High-Quality Test Set for the Validation of Protein???Ligand Docking Performance, Journal of Medicinal Chemistry, vol.50, issue.4, pp.726-741, 2007.
DOI : 10.1021/jm061277y

M. Hendlich, F. Rippmann, and G. Barnickel, LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins, Journal of Molecular Graphics and Modelling, vol.15, issue.6, pp.359-363, 1997.
DOI : 10.1016/S1093-3263(98)00002-3

B. Hoffmann, M. Zaslavskiy, J. Vert, and V. Stoven, A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: application to ligand prediction, BMC Bioinformatics, vol.11, issue.1, pp.24-26, 2010.
DOI : 10.1186/1471-2105-11-99

URL : https://hal.archives-ouvertes.fr/inserm-00663528

L. Andrew and . Hopkins, Network pharmacology : the next paradigm in drug discovery, Nature chemical biology, vol.4, issue.11, pp.682-90, 2008.

]. Huang and M. Schroeder, LIGSITEcsc : predicting ligand binding sites using the Connolly surface and degree of conservation, BMC Structural Biology, vol.6, issue.1, pp.19-31, 2006.
DOI : 10.1186/1472-6807-6-19

A. Hiba-abi-hussein, C. Borrel, M. Geneix, L. Petitjean, A. C. Regad et al., PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins, Nucleic Acids Research, vol.2013, issue.W1, pp.436-442, 2015.
DOI : 10.1038/nbt1273

C. Hiba-abi-hussein, M. Geneix, and . Petitjean, Alexandre Borrel, Delphine Flatters et Anne-Claude Camproux. Global vision of druggability issues : applications and perspectives, Drug Discovery Today, pp.2016-2050, 2016.

M. Jambon, A. Imberty, G. Deléage, and C. Geourjon, A new bioinformatic approach to detect common 3D sites in protein structures, Proteins: Structure, Function, and Bioinformatics, vol.228, issue.Suppl, pp.137-145, 2003.
DOI : 10.1016/0022-2836(92)90875-K

URL : https://hal.archives-ouvertes.fr/hal-00306913

]. J. Janin and C. Chothia, The structure of protein-protein recognition sites, Journal of Biological Chemistry, vol.265, issue.27, pp.16027-16030, 1990.

K. Janin, J. Henrick, and . Moult, CAPRI: A Critical Assessment of PRedicted Interactions, Proteins: Structure, Function, and Genetics, vol.11, issue.1, pp.2-9, 2003.
DOI : 10.1002/prot.10381

W. Kabsch and C. Sander, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, vol.33, issue.12, pp.2577-2637, 1983.
DOI : 10.1016/0005-2795(73)90350-4

A. Kahraman, R. J. Morris, R. A. Laskowski, and J. M. Thornton, Shape Variation in Protein Binding Pockets and their Ligands, Journal of Molecular Biology, vol.368, issue.1, pp.283-301, 2007.
DOI : 10.1016/j.jmb.2007.01.086

K. Kota-kasahara, T. Kinoshita, and . Takagi, Ligand-binding site prediction of proteins based on known fragment???fragment interactions, Bioinformatics, vol.11, issue.12, pp.1493-1499, 2010.
DOI : 10.1110/ps.0217002

J. Michael, V. Keiser, . Setola, J. John, C. Irwin et al., Predicting new molecular targets for known drugs, Nature, vol.462, issue.7270, pp.175-181, 2009.

]. Kellenberger, C. Schalon, and D. Rognan, How to Measure the Similarity Between Protein Ligand-Binding Sites ? Current Computer -Aided Drug Design, pp.209-220, 2008.
DOI : 10.2174/157340908785747401

K. Lutz and Z. Eth, Designing a Data Structure for Polyhedral Surfaces, pp.1-9, 1997.

]. , S. Kim, J. Seo, D. Kim, J. Ryu et al., Threedimensional beta shapes, CAD Computer Aided Design, vol.38, issue.11, pp.1179-1191, 2006.
DOI : 10.1016/j.cad.2006.07.002

D. Soo-kim, Y. Cho, K. Sugihara, J. Ryu, and D. Kim, Three-dimensional beta-shapes and beta-complexes via quasi-triangulation, Computer-Aided Design, vol.42, issue.10, pp.911-929, 2010.
DOI : 10.1016/j.cad.2010.06.004

J. Kwan-kim, Y. Cho, R. A. Laskowski, K. Seong-eon-ryu, S. Sugihara-et-deok et al., BetaVoid : Molecular voids via beta-complexes and Voronoi diagrams, Proteins : Structure, Function and Bioinformatics, vol.82, issue.9, pp.1829-1849

J. Kinoshita, H. Furui, and . Nakamura, Identification of protein functions from a molecular surface database, eF-site, Journal of Structural and Functional Genomics, vol.2, issue.1, pp.9-22, 2002.
DOI : 10.1023/A:1011318527094

J. Kirchmair, P. Markt, S. Distinto, G. Wolber, and T. Langer, Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection???What can we learn from earlier mistakes?, Journal of Computer-Aided Molecular Design, vol.47, issue.3-4, pp.3-4, 2008.
DOI : 10.1016/0005-2795(75)90109-9

C. Virginia, A. J. Klema, and . Laub, The Singular Value Decomposition : Its Computation and Some Applications, IEEE Transactions on Automatic Control, vol.25, issue.2, pp.164-176, 1980.

E. Daniel and . Koshland, The Key?Lock Theory and the Induced Fit Theory, Angewandte Chemie International Edition in English, vol.33, issue.2324, pp.2375-2378, 1995.

A. Koutsoukas, B. Simms, J. Kirchmair, P. J. Bond, A. V. Whitmore et al., From in silico target prediction to multi-target drug design: Current databases, methods and applications, Journal of Proteomics, vol.74, issue.12, pp.2554-2574, 2011.
DOI : 10.1016/j.jprot.2011.05.011

W. Harold and . Kuhn, The Hungarian method for the assignment problem In 50 Years of Integer Programming 1958-2008 : From the Early Years to the State-of-the-Art, Logistics Quarterly, vol.2, pp.29-47, 2010.

A. Roman and . Laskowski, SURFNET : A program for visualizing molecular surfaces, cavities , and intermolecular interactions, Journal of Molecular Graphics, vol.13, issue.5, pp.323-330, 1995.

]. Laskowski, N. Luscombe, M. Swindells, and J. Thornton, Protein clefts in molecular recognition and function. Protein science : a publication of the, pp.2438-52, 1996.

L. , ]. A. Laurie, and R. M. Jackson, Q-SiteFinder : An energy-based method for the prediction of protein-ligand binding sites, Bioinformatics, vol.21, issue.9, pp.1908-1916, 2005.

L. Guilloux, P. Schmidtke, and P. Tuffery, Fpocket: An open source platform for ligand pocket detection, BMC Bioinformatics, vol.10, issue.1, pp.32-33, 2009.
DOI : 10.1186/1471-2105-10-168

G. David, L. J. Levitt, and . Banaszak, POCKET : A computer graphies method for identifying and displaying protein cavities and their surrounding amino acids, Journal of Molecular Graphics, vol.10, issue.4, pp.229-234, 1992.

H. Liang, C. Edelsbrunner, and . Woodward, Anatomy of protein pockets and cavities : measurement of binding site geometry and implications for ligand design Protein science : a publication of the, pp.1884-1897, 1998.

C. Lipinski, B. Lombardo, P. Dominy, and . Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3???25.1, Advanced Drug Delivery Reviews, vol.46, issue.1-3, pp.3-3, 2001.
DOI : 10.1016/S0169-409X(00)00129-0

]. R. Loisy, Sur la forme des courbes [voir pdf], Journal de Physique et le Radium, vol.2, issue.7, pp.735-739, 1951.
DOI : 10.1051/jphysrad:01951001207073500

URL : https://hal.archives-ouvertes.fr/jpa-00234466

E. Lounkine, J. Michael, S. Keiser, D. Whitebread, J. Mikhailov et al., Large-scale prediction and testing of drug activity on side-effect targets, Nature, vol.57, issue.7403, pp.361-368, 2012.
DOI : 10.2165/00002018-199920020-00002

A. G. Mamistvalov, n-dimensional moment invariants and conceptual mathematical theory of recognition n-dimensional solids, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.20, issue.8, pp.819-831, 1998.
DOI : 10.1109/34.709598

S. Mariusz-milik, . Szalma, A. Krzysztof, and . Olszewski, Common Structural Cliques: a tool for protein structure and function analysis, Protein Engineering Design and Selection, vol.16, issue.8, pp.543-52, 2003.
DOI : 10.1093/protein/gzg080

. Minot, C. Sn-ndiaye, and . Solnon, Recherche d'un plus grand sous-graphe commun par décomposition du graphe de compatibilité, 2015.

C. J. Attwood, N. Sigrist, C. Redaschi, I. Rivoire, D. Xenarios et al., The InterPro protein families database : The classification resource after 15 years, Cité en page 75.) [Moreira 2007] Irina S Moreira, pp.213-221, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01222896

R. J. Morris, R. J. Najmanovich, A. Kahraman, and J. M. Thornton, Real spherical harmonic expansion coefficients as 3D shape descriptors for protein binding pocket and ligand comparisons, Bioinformatics, vol.1, issue.3, pp.2347-2355, 2005.
DOI : 10.2174/1570164043488234

URL : https://academic.oup.com/bioinformatics/article-pdf/21/10/2347/540859/bti337.pdf

]. Murakami, K. Kinoshita, R. Akira, H. Kinjo, and . Nakamura, Exhaustive comparison and classification of ligand-binding surfaces in proteins, Protein Science, vol.4, issue.10, pp.1379-1391, 2013.
DOI : 10.1109/99.641604

M. Michael, M. Mysinger, J. J. Carchia, B. K. Irwin, and . Shoichet, Directory of useful decoys, enhanced (DUD-E) : Better ligands and decoys for better benchmarking, Journal of Medicinal Chemistry, vol.55, issue.14, pp.6582-6594, 2012.

R. Najmanovich, N. Kurbatova, and J. Thornton, Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites, Bioinformatics, vol.20, issue.10, pp.105-111, 2008.
DOI : 10.1093/bioinformatics/bth113

]. Nisius, F. Sha, and H. Gohlke, Structure-based computational analysis of protein binding sites for function and druggability prediction, Journal of Biotechnology, vol.159, issue.3, pp.123-134, 2012.
DOI : 10.1016/j.jbiotec.2011.12.005

]. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, Shape distributions, ACM Transactions on Graphics, vol.21, issue.4, pp.807-832, 2002.
DOI : 10.1145/571647.571648

P. John, B. Overington, . Al-lazikani, L. Andrew, and . Hopkins, How many drug targets are there ? Nature reviews, Drug discovery, vol.5, issue.12, pp.993-999, 2006.

V. Gaia, . Paolini, H. Richard, W. P. Shapland, . Van-hoorn et al., Global mapping of pharmacological space, Nature biotechnology, vol.24, issue.7, pp.805-815, 2006.

M. Steven, . Paul, S. Daniel, . Mytelka, T. Christopher et al., How to improve R&D productivity : the pharmaceutical industry's grand challenge, Nature reviews. Drug discovery, vol.9, issue.3, pp.203-217, 2010.

]. Peters and J. Fauck, The Automatic Search for Ligand Binding Sites in Proteins of Known Three-dimensional Structure Using only Geometric Criteria, Journal of Molecular Biology, vol.256, issue.1, pp.201-213, 1996.
DOI : 10.1006/jmbi.1996.0077

M. Petrek, M. Otyepka, P. Banás, P. Kosinová, J. Koca et al., CAVER : a new tool to explore routes from protein clefts, pockets and cavities, BMC Bioinformatics, vol.7, issue.1, pp.316-348, 2006.
DOI : 10.1186/1471-2105-7-316

W. John, P. Raymond, and . Willett, Maximum common subgraph isomorphism algorithms for the matching of chemical structures, Journal of Computer-Aided Molecular Design, vol.16, issue.7, pp.521-533, 2002.

]. Rowland and R. Taylor, Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from van der Waals Radii, The Journal of Physical Chemistry, vol.100, issue.18, pp.7384-7391, 1996.
DOI : 10.1021/jp953141+

F. Michel, A. J. Sanner, J. Olson, and . Spehner, Reduced Surface : An Efficient Way to Compute Molecular Surfaces, Biopolymers, vol.38, issue.3, pp.305-320, 1996.

C. Schalon, J. S. Surgand, E. Kellenberger, and D. Rognan, A simple and fuzzy method to align and compare druggable ligand-binding sites, Proteins: Structure, Function, and Bioinformatics, vol.8, issue.Suppl 4, pp.1755-1778, 2008.
DOI : 10.1021/ci034181a

URL : https://hal.archives-ouvertes.fr/hal-00620777

S. Schmitt, D. Kuhn, and G. Klebe, A New Method to Detect Related Function Among Proteins Independent of Sequence and Fold Homology, Journal of Molecular Biology, vol.323, issue.2, pp.387-406, 2002.
DOI : 10.1016/S0022-2836(02)00811-2

L. Stuart and . Schreiber, Small molecules : the missing link in the central dogma, Nature chemical biology, vol.1, issue.2, pp.64-66, 2005.

M. Scrima, G. Lauro, M. Grimaldi, S. D. Marino, A. Tosco et al., Structural evidence of N-6 isopentenyladenosine as a new ligand of farnesyl pyrophosphate synthase Structural evidence of N-6 isopentenyladenosine as a new ligand of farnesyl pyrophosphate synthase Recognition of functional sites in protein structures, Cité en pages 14 et 86.) [Shulman-Peleg, pp.607-633, 2004.

I. Sommer, O. Muller, F. S. Domingues, O. Sander, J. Weickert et al., Moment invariants as shape recognition technique for comparing protein binding sites, Bioinformatics, vol.102, issue.4, pp.3139-3146, 2007.
DOI : 10.1073/pnas.0407152101

URL : https://academic.oup.com/bioinformatics/article-pdf/23/23/3139/820359/btm503.pdf

S. Sousa, J. Ribeiro, R. Coimbra, . Neves, N. Martins et al., Protein-Ligand Docking in the New Millennium ??? A Retrospective of 10 Years in the Field, Current Medicinal Chemistry, vol.20, issue.18, pp.2296-314, 2013.
DOI : 10.2174/0929867311320180002

]. Spitzer, A. E. Cleves, and A. N. Jain, Surface-based protein binding pocket similarity, Proteins: Structure, Function, and Bioinformatics, vol.15, issue.Database issue, pp.2746-2763, 2011.
DOI : 10.1016/j.str.2007.11.006

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155014/pdf

]. Steffen, K. Thomas, U. Huniar, A. Hellweg, O. Rubner et al., TmoleX-A graphical user interface for TURBOMOLE, Journal of Computational Chemistry, vol.4, issue.16, pp.2967-2970, 2010.
DOI : 10.1002/jcc.21576

URL : http://onlinelibrary.wiley.com/doi/10.1002/jcc.21576/pdf

]. Taylor, D. Kim, C. Kim, C. Won, J. Kim et al., BetaDock : Shape-Priority Docking Method Based on BetaDock : Shape-Priority Docking Method Based on, Journal of Biomolecular Structure and Dynamics, vol.29, pp.37-41, 2011.

O. Trott and A. J. Olson, Software news and update AutoDock Vina : Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, Journal of Computational Chemistry, vol.31, issue.2, pp.455-461, 2010.

A. Volkamer, D. Kuhn, F. Rippmann, and M. Rarey, DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment, Bioinformatics, vol.52, issue.2, pp.2074-2075, 2012.
DOI : 10.1021/ci200454v

URL : https://academic.oup.com/bioinformatics/article-pdf/28/15/2074/648358/bts310.pdf

A. Vulpetti, T. Kalliokoski, and F. Milletti, Chemogenomics in drug discovery: computational methods based on the comparison of binding sites, Future Medicinal Chemistry, vol.62, issue.15, pp.1971-1980, 2012.
DOI : 10.1016/j.bmc.2008.02.046

]. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, Development and testing of a general amber force field, Journal of Computational Chemistry, vol.17, issue.9, pp.1157-1174, 2004.
DOI : 10.1002/jcc.20035

]. Wang, X. Zhou, W. He, Y. Fan, Y. Chen et al., The interprotein scoring noises in glide docking scores, Proteins: Structure, Function, and Bioinformatics, vol.99, issue.Database issue, pp.169-183, 2012.
DOI : 10.1016/j.jphysparis.2005.12.084

C. Wang, J. Liu, F. Luo, Z. Deng-et-qian-nan, and . Hu, Predicting target-ligand interactions using protein ligand-binding site and ligand substructures, BMC Systems Biology, vol.9, issue.Suppl 1, pp.2-2015, 2015.
DOI : 10.1016/0022-2836(81)90087-5

URL : http://doi.org/10.1186/1752-0509-9-s1-s2

D. James, R. A. Watson, J. M. Laskowski, and . Thornton, Predicting protein function from sequence and structural data, Current Opinion in Structural Biology SPEC. ISS, vol.15, issue.3, pp.275-284, 2005.

]. Weisel, E. Proschak, and G. Schneider, PocketPicker: analysis of ligand binding-sites with shape descriptors, Chemistry Central Journal, vol.1, issue.1, 2007.
DOI : 10.1186/1752-153X-1-7

M. Kriegl and G. Schneider, Form follows function : Shape analysis of protein cavities for receptor-based drug design, Proteomics, vol.9, issue.2, pp.451-459, 2009.

D. S. Wishart, C. Knox, A. C. Guo, D. Cheng, S. Shrivastava et al., DrugBank: a knowledgebase for drugs, drug actions and drug targets, Nucleic Acids Research, vol.2, issue.suppl_1, pp.901-906, 2008.
DOI : 10.1021/pr0340227

URL : https://academic.oup.com/nar/article-pdf/36/suppl_1/D901/18782085/gkm958.pdf

K. Esbensen and P. Geladi, Principal component analysis, Chemometrics and Intelligent Laboratory Systems, vol.2, issue.1-3, pp.37-52, 1987.

E. A. Shuangye-yin, A. A. Proctor, . Lugovskoy, V. Nikolay, and . Dokholyan, Fast screening of protein surfaces using geometric invariant fingerprints, Proceedings of the National Academy of Sciences, pp.16622-16626, 2009.

J. Yuan, L. Pei, and . Lai, Binding Site Detection and Druggability Prediction of Protein Targets for Structure- Based Drug Design, Current Pharmaceutical Design, vol.19, issue.12, pp.2326-2359, 2013.
DOI : 10.2174/1381612811319120019

]. Zhong and A. D. Mackerell, Binding Response:?? A Descriptor for Selecting Ligand Binding Site on Protein Surfaces, Journal of Chemical Information and Modeling, vol.47, issue.6, pp.2303-2315, 2007.
DOI : 10.1021/ci700149k

]. Zhu, Y. Xiong, and D. Kihara, Large-scale binding ligand prediction by improved patch-based method Patch-Surfer2.0, Bioinformatics, vol.33, issue.5, pp.707-713, 2015.
DOI : 10.1093/nar/gki524

URL : https://academic.oup.com/bioinformatics/article-pdf/31/5/707/17124525/btu724.pdf