P. .. De, Hydrogels fabriqués par congélation/décongélation de solutions aqueuses, p.39

H. Lamraoui, Conception d'un système d'oclusion urétrale actif implantable pour le traitement de l'incontinence urinaire sévère, 2010.

H. Lamraoui, A. Bonvilain, G. Robain, H. Combrisson, S. Basrour et al., Cinquin, «Development of a Novel Artificial Urinary Sphincter: A Versatile Automated Device, IEEE-ASME Transactions on Mechatronics, vol.15, issue.6, pp.916-924, 2010.

G. Forlenza, B. Buckingham, and D. Maahs, Progress in Diabetes Technology: Developments in Insulin Pumps, Continuous Glucose Monitors, and Progress towards the Artificial Pancreas, The Journal of Pediatrics, vol.169, pp.13-20, 2016.
DOI : 10.1016/j.jpeds.2015.10.015

Y. Joung, Development of Implantable Medical Devices: From an Engineering Perspective, International Neurourology Journal, vol.17, issue.3, pp.98-106, 2013.
DOI : 10.5213/inj.2013.17.3.98

A. Zebda, C. Gondran, A. L. Goff, M. Holzinger, and P. , Cinquin et S. Cosnier, «Mediatorless highpower glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes, Nature Communications, vol.2, issue.370, 2011.

D. Hayes and S. Furman, Cardiac Pacing:. How It Started, Where We Are, Where We Are Going, Pacing and Clinical Electrophysiology, vol.17, issue.5, pp.693-704, 2004.
DOI : 10.1016/S0735-1097(03)00426-1

R. Elmgvist, J. Landegren, S. Petterson, and A. Senning, Artificial pacemaker for treatment of Adams-Stokes syndrome and slow heart rate, American Heart Journal, vol.65, issue.6, pp.731-748, 1963.
DOI : 10.1016/0002-8703(63)90239-4

P. Mitcheson, E. Yeatman, G. Rao, A. Holmes, and T. Green, Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices, Proceedings of the IEEE, pp.1457-1486, 2008.
DOI : 10.1109/JPROC.2008.927494

URL : http://spiral.imperial.ac.uk/bitstream/10044/1/1219/1/proc_IEEE_08.pdf

V. Leonov, T. Torfs, P. Fiorini, and C. , Thermoelectric Converters of Human Warmth for Self-Powered Wireless Sensor Nodes, IEEE Sensors Journal, vol.7, issue.5, pp.650-656, 2007.
DOI : 10.1109/JSEN.2007.894917

C. Watkins, B. Shen, and R. Venkatasubramanian, Low-grade-heat energy harvesting using superlattice thermoelectrics for applications in implantable medical devices and sensors, ICT 2005. 24th International Conference on Thermoelectrics, 2005., 2005.
DOI : 10.1109/ICT.2005.1519934

R. Sarpeshkar, C. Salthouse, J. Sit, M. Baker, S. Zhak et al., An Ultra-Low-Power Programmable Analog Bionic Ear Processor, IEEE Transactions on Biomedical Engineering, vol.52, issue.4, pp.711-727, 2005.
DOI : 10.1109/TBME.2005.844043

URL : http://www.rle.mit.edu/avbs/documents/anultralow-powerprogrammableanalogbionicearprocessor.pdf

M. Baker and R. Sarpeshkar, Feedback Analysis and Design of RF Power Links for Low-Power Bionic Systems, IEEE Transactions on Biomedical Circuits and Systems, vol.1, issue.1, pp.28-38, 2007.
DOI : 10.1109/TBCAS.2007.893180

S. Barton, J. Gallaway, and P. Atanassov, Enzymatic Biofuel Cells for Implantable and Microscale Devices, Chemical Reviews, vol.104, issue.10, pp.4867-4886, 2004.
DOI : 10.1021/cr020719k

M. Moehlenbrock and S. Minteer, Extended lifetime biofuel cells, Extended lifetime biofuel cells, pp.1188-1196, 2008.
DOI : 10.1016/j.polymer.2004.11.092

J. Kim, J. Parkey, C. Rhodes, and A. Gonzalez-martin, Development of a biofuel cell using glucose-oxidase- and bilirubin-oxidase-based electrodes, Journal of Solid State Electrochemistry, vol.6, issue.7, pp.1043-1050, 2009.
DOI : 10.1007/s10008-008-0725-x

M. Scherer and R. Fischer, Molecular characterization of a blue-copper laccase, TILA, of Aspergillus nidulans, FEMS Microbiology Letters, vol.17, issue.2, pp.207-213, 2001.
DOI : 10.1128/MCB.17.9.4904

D. Williams and E. S. Biomaterials, Definitions in biomaterials, European Society for Biomaterials, vol.4, 1986.

H. Johnson, S. Northup, P. Seagraves, M. Atallah, P. Garvin et al., Biocompatibility test procedures for materials evaluationin vitro. II. Objective methods of toxicity assessment, Journal of Biomedical Materials Research, vol.146, issue.5, pp.489-508, 1985.
DOI : 10.1016/0005-2787(69)90490-0

M. Spector and C. , Cease et T. XIA, «The local tissue-response to Biomaterials, Critical Reviews in Biocompatibility, vol.5, issue.3, pp.269-295, 1989.

D. Coleman, R. King, and J. Andrade, The foreign body reaction: A chronic inflammatory response, Journal of Biomedical Materials Research, vol.180, issue.5, pp.199-211, 1974.
DOI : 10.1101/SQB.1962.027.001.031

S. Kizilel, M. Garfinkel, and E. Opara, The Bioartificial Pancreas: Progress and Challenges, Diabetes Technology & Therapeutics, vol.7, issue.6, pp.968-85, 2005.
DOI : 10.1089/dia.2005.7.968

T. Young, N. Yao, R. Chang, and L. Chen, Evaluation of asymmetric poly(vinyl alcohol) membranes for use in artificial islets, Biomaterials, vol.17, issue.22, pp.2139-2145, 1996.
DOI : 10.1016/0142-9612(96)00043-9

Y. Teramura, Y. Kaneda, and H. Iwata, Islet-encapsulation in ultra-thin layer-by-layer membranes of poly(vinyl alcohol) anchored to poly(ethylene glycol)???lipids in the cell membrane, Biomaterials, vol.28, issue.32, pp.4818-4825, 2007.
DOI : 10.1016/j.biomaterials.2007.07.050

H. Miyashita, S. Shimmura, H. Kobayashi, T. Taguchi, N. Asano-kato et al., Collagen-immobilized poly (vinyl alcohol) as an artificial cornea scaffold that supports a stratified corneal epithelium, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.19, issue.1, pp.56-63, 2006.
DOI : 10.1016/0002-9394(75)90884-3

Y. Uchino, S. Shimmura, H. Miyashita, T. Taguchi, H. Kobayashi et al., Amniotic membrane immobilized poly(vinyl alcohol) hybrid polymer as an artificial cornea scaffold that supports a stratified and differentiated corneal epithelium, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.109, issue.1, pp.201-206, 2007.
DOI : 10.1001/archopht.116.4.431

F. Xu, Y. Li, Y. Deng, and J. Xiong, Porous nano-hydroxyapatite/poly(vinyl alcohol) composite hydrogel as artificial cornea fringe: characterization and evaluation in vitro, Journal of Biomaterials Science, Polymer Edition, vol.23, issue.4, pp.431-439, 2008.
DOI : 10.1016/S0079-6700(97)00036-1

F. Xu, Y. Li, X. Wang, J. Wei, and A. Yang, «Preparation and characterization of nanohydroxyapatite/poly(vinyl alcohol) hydrogel biocomposite, Journal of Materials Science, vol.39, pp.5669-5672, 2004.

M. Schuettler, C. Henle, J. Ordonez, G. Suaning, N. Lovell et al., Patterning of Silicone Rubber for Micro-Electrode Array Fabrication, 2007 3rd International IEEE/EMBS Conference on Neural Engineering, 2007.
DOI : 10.1109/CNE.2007.369610

T. Stieglitz, W. Huang, S. Chen, J. Morley, N. Lovell et al., A transparent electrode array for simultaneous cortical potential recording and intrinsic signal optical imaging, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010.
DOI : 10.1109/IEMBS.2010.5626394

S. Rebscher, M. Heilmann, W. Bruszewski, N. Talbot, R. Snyder et al., Strategies to improve electrode positioning and safety in cochlear implants, IEEE Transactions on Biomedical Engineering, vol.46, issue.3, pp.340-352, 1999.
DOI : 10.1109/10.748987

J. Anderson, N. Ziats, A. Azeez, M. Brunstedt, S. Stack et al., Protein adsorption and macrophage activation on polydimethylsiloxane and silicone rubber, Journal of Biomaterials Science, Polymer Edition, vol.5, issue.2, pp.159-169, 1995.
DOI : 10.1016/S0174-173X(85)80033-9

D. Kim, J. Wiler, D. Anderson, D. Kipke, and D. Martin, Conducting polymers on hydrogel-coated neural electrode provide sensitive neural recordings in auditory cortex, Acta Biomaterialia, vol.6, issue.1, pp.57-62, 2010.
DOI : 10.1016/j.actbio.2009.07.034

R. Zdrahala and I. Zdrahala, Biomedical Applications of Polyurethanes: A Review of Past Promises, Present Realities, and a Vibrant Future, Journal of Biomaterials Applications, vol.11, issue.4, pp.67-90, 1999.
DOI : 10.1002/jbm.820290406

N. Peppas, J. Hilt, A. Khademhosseini, and R. Langer, Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology, Advanced Materials, vol.63, issue.1, pp.1345-1360, 2006.
DOI : 10.1557/mrs2002.49

M. Jeschke, V. Hermanutz, S. Wolf, and G. Koveker, Polyurethane vascular prostheses decreases neointimal formation compared with expanded polytetrafluoroethylene, Journal of Vascular Surgery, vol.29, issue.1, pp.168-176, 1999.
DOI : 10.1016/S0741-5214(99)70358-7

URL : https://doi.org/10.1016/s0741-5214(99)70358-7

S. Guelcher, Biodegradable Polyurethanes: Synthesis and Applications in Regenerative Medicine, Tissue Engineering Part B: Reviews, vol.14, issue.1, 2008.
DOI : 10.1089/teb.2007.0133

L. Rao, H. Zhou, T. Li, C. Li, and Y. Duan, Polyethylene glycol-containing polyurethane hydrogel coatings for improving the biocompatibility of neural electrodes, Acta Biomaterialia, vol.8, issue.6, pp.2233-2242, 2012.
DOI : 10.1016/j.actbio.2012.03.001

C. Lin, K. Anseth, and «. Peg, PEG Hydrogels for the Controlled Release of Biomolecules in Regenerative Medicine, Pharmaceutical Research, vol.29, issue.3, pp.631-643, 2009.
DOI : 10.1016/j.biomaterials.2007.10.017

D. Park, W. Wu, and Y. Wang, A functionalizable reverse thermal gel based on a polyurethane/PEG block copolymer, Biomaterials, vol.32, issue.3, pp.777-786, 2011.
DOI : 10.1016/j.biomaterials.2010.09.044

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2991555/pdf

Y. Lu, D. Wang, T. Li, X. Zhao, Y. Cao et al., Poly(vinyl alcohol)/poly(acrylic acid) hydrogel coatings for improving electrode???neural tissue interface, Biomaterials, vol.30, issue.25, pp.4143-4151, 2009.
DOI : 10.1016/j.biomaterials.2009.04.030

K. Lee and D. Mooney, Hydrogels for Tissue Engineering, Chemical Reviews, vol.101, issue.7, pp.1869-1879, 2001.
DOI : 10.1021/cr000108x

D. Mawad, P. Martens, R. Odell, and L. Poole-warren, The effect of redox polymerisation on degradation and cell responses to poly (vinyl alcohol) hydrogels, Biomaterials, vol.28, issue.6, pp.947-955, 2007.
DOI : 10.1016/j.biomaterials.2006.10.007

J. Choi, H. Bodugoz-senturk, H. Kung, A. Malhi, and O. Muratoglu, Effects of solvent dehydration on creep resistance of poly(vinyl alcohol) hydrogel, Biomaterials, vol.28, issue.5, pp.772-780, 2007.
DOI : 10.1016/j.biomaterials.2006.09.049

Y. Yue, K. Xu, X. Liu, Q. Chen, X. Sheng et al., Preparation and characterization of interpenetration polymer network films based on poly(vinyl alcohol) and poly(acrylic acid) for drug delivery, Journal of Applied Polymer Science, vol.39, issue.6, pp.3836-3842, 2008.
DOI : 10.1002/app.28023

E. De-giglio, S. Cometa, N. Cioffi, L. Torsi, and L. Sabbatini, Analytical investigations of poly(acrylic acid) coatings electrodeposited on titanium-based implants: a versatile approach to biocompatibility enhancement, Analytical and Bioanalytical Chemistry, vol.21, issue.7, pp.2055-2063, 2007.
DOI : 10.2320/matertrans1989.41.1247

J. Dai, Z. Bao, L. Sun, S. Hong, and G. Baker, High-Capacity Binding of Proteins by Poly(Acrylic Acid) Brushes and Their Derivatives, Langmuir, vol.22, issue.9, pp.4274-4281, 2006.
DOI : 10.1021/la0600550

M. Changez, V. Koul, B. Krishna, A. Dinda, and V. Choudhary, Studies on biodegradation and release of gentamicin sulphate from interpenetrating network hydrogels based on poly(acrylic acid) and gelatin: in vitro and in vivo, Biomaterials, vol.25, issue.1, pp.139-146, 2004.
DOI : 10.1016/S0142-9612(03)00466-6

W. Mullen, F. Keedy, S. Churchouse, and P. Vadgama, Glucose enzyme electrode with extended linearity, Analytica Chimica Acta, vol.183, pp.59-66, 1986.
DOI : 10.1016/0003-2670(86)80074-5

L. Tang, Z. Koochaki, and P. Vadgama, Composite liquid membrane for enzyme electrode construction, Analytica Chimica Acta, vol.232, issue.2, pp.357-365, 1990.
DOI : 10.1016/S0003-2670(00)81254-4

S. Higson and P. Vadgama, Diamond-like carbon coated microporous polycarbonate as a composite barrier for a glucose enzyme electrode, Analytica Chimica Acta, vol.271, issue.1, pp.125-133, 1993.
DOI : 10.1016/0003-2670(93)80559-4

I. Christie, P. Treloar, and P. Vadgama, Plasticized poly(vinyl chloride) as a permselective barrier membrane for high-selectivity amperometric sensors and biosensors, Analytica Chimica Acta, vol.269, issue.1, pp.65-73, 1992.
DOI : 10.1016/0003-2670(92)85134-R

A. Sharkawy, B. Klitzman, G. Truskey, and W. Reichert, Engineering the tissue which encapsulates subcutaneous implants. I. Diffusion properties, Journal of Biomedical Materials Research, vol.37, issue.3, pp.401-412, 1997.
DOI : 10.1002/(SICI)1097-4636(19971205)37:3<401::AID-JBM11>3.0.CO;2-E

N. Wisniewski and M. Reichert, Methods for reducing biosensor membrane biofouling, Colloids and Surfaces B: Biointerfaces, vol.18, issue.3-4, pp.197-219, 2000.
DOI : 10.1016/S0927-7765(99)00148-4

M. Gerritsen, J. Jansen, and J. Lutterman, Performance of subcutaneously implanted glucose sensors for continuous monitoring, The Netherlands Journal of Medicine, vol.54, issue.4, pp.167-179, 1999.
DOI : 10.1016/S0300-2977(99)00006-6

S. A. Syed and K. H. Gulrez, Hydrogels: Methods of Preparation, Characterisation and Applications, Progress in Molecular and Environmental Bioengineering -From Analysis and Modeling to Technology Applications, 2011.

C. Hassan and N. Peppas, Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods -Advances in Polymer Science, pp.37-65, 2000.

L. Mandelke, «Effect of molecular weight on crystallization and melting of long-chain molecules, Journal of Polymer Science Part C -Polymer Symposium, n° 18PC, p.51, 1967.

N. Peppas, «Turbidimetric studies of aqueous Poly(vinyl alcohol) solutions,» Macromolecular Chemistry and Physics, pp.3433-3440, 1975.

F. Yokoyama, I. Masada, K. Shimamura, T. Ikawa, and K. Monobe, Morphology and structure of highly elastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting, Colloid & Polymer Science, vol.20, issue.7, pp.595-601, 1986.
DOI : 10.1007/BF01412597

S. Hyon, Ikada, «Porous and transparent Poly(vinyl alcohol) gel and Method of manufacturing the same», Brevet, vol.4663, p.358, 1987.

S. Hyon and W. , Preparation of transparent poly(vinyl alcohol) hydrogel, Polymer Bulletin, vol.3, issue.2, pp.119-122, 1989.
DOI : 10.1007/BF00255200

H. Trieu and S. Qutubuddin, Poly(vinyl alcohol) hydrogels: 2. Effects of processing parameters on structure and properties, Polymer, vol.36, issue.13, pp.2531-2539, 1995.
DOI : 10.1016/0032-3861(95)91198-G

S. Stauffer and N. , Poly(vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing, Polymer, vol.33, issue.18, pp.3932-3936, 1992.
DOI : 10.1016/0032-3861(92)90385-A

N. Peppas and J. Scott, Controlled release from poly ( vinyl alcohol ) gels prepared by freezing-thawing processes, Journal of Controlled Release, vol.18, issue.2, pp.95-100, 1992.
DOI : 10.1016/0168-3659(92)90178-T

J. Stasko, M. Kalnins, and A. , Dzene et V. Tupureina, «Poly(vinyl alcohol) hydrogels, Proceedings of the Estonian Academy of Sciences, pp.63-66, 2009.

A. Hickey and N. , Mesh size and diffusive characteristics of semicrystalline poly(vinyl alcohol) membranes prepared by freezing/thawing techniques, Journal of Membrane Science, vol.107, issue.3, pp.229-237, 1995.
DOI : 10.1016/0376-7388(95)00119-0

N. Peppas and N. Mongia, Ultrapure poly(vinyl alcohol) hydrogels with mucoadhesive drug delivery characteristics, European Journal of Pharmaceutics and Biopharmaceutics, vol.43, issue.1, pp.51-58, 1997.
DOI : 10.1016/S0939-6411(96)00010-0

G. Paradossi, F. Cavalieri, E. Chiessi, C. Spagnoli, M. Cowman et al., vinyl alcohol) as versatile biomaterial for potential biomedical applications, Journal of Materials Science: Materials in Medicine, vol.14, issue.8, pp.687-691, 2003.
DOI : 10.1023/A:1024907615244

S. Woerly, G. Plant, and A. Harvey, Neural tissue engineering: from polymer to biohybrid organs, Biomaterials, vol.17, issue.3, pp.301-310, 1996.
DOI : 10.1016/0142-9612(96)85568-2

C. Nuttelman, D. Mortisen, and S. Henry, Attachment of fibronectin to poly(vinyl alcohol) hydrogels promotes NIH3T3 cell adhesion, proliferation, and migration, Journal of Biomedical Materials Research, vol.21, issue.2, pp.217-223, 2001.
DOI : 10.1016/S0142-9612(99)00277-X

K. Chu and B. Rutt, Polyvinyl alcohol cryogel: An ideal phantom material for MR studies of arterial flow and elasticity, Magnetic Resonance in Medicine, vol.183, issue.2, pp.314-319, 1997.
DOI : 10.1148/radiology.183.3.1584931

H. Jiang, G. Campbell, D. Boughner, W. Wan, and M. Quantz, Design and manufacture of a polyvinyl alcohol (PVA) cryogel tri-leaflet heart valve prosthesis, Medical Engineering & Physics, vol.26, issue.4, pp.269-277, 2004.
DOI : 10.1016/j.medengphy.2003.10.007

S. Vijayasekaran, J. Fitton, C. Hicks, T. Chirila, and G. , Cell viability and inflammatory response in hydrogel sponges implanted in the rabbit cornea, Biomaterials, vol.19, issue.24, pp.2255-2267, 1998.
DOI : 10.1016/S0142-9612(98)00128-8

J. Stammen, S. Williams, D. Ku, and R. Guldberg, Mechanical properties of a novel PVA hydrogel in shear and unconfined compression, Biomaterials, vol.22, issue.8, pp.799-806, 2001.
DOI : 10.1016/S0142-9612(00)00242-8

J. Bray and E. Merrill, Poly(vinyl alcohol) hydrogels for synthetic articular cartilage material, Journal of Biomedical Materials Research, vol.27, issue.5, pp.431-443, 1973.
DOI : 10.1016/B978-1-4831-6701-5.50027-9

Y. Teramura, Y. Kaneda, and H. Iwata, Islet-encapsulation in ultra-thin layer-by-layer membranes of poly(vinyl alcohol) anchored to poly(ethylene glycol)???lipids in the cell membrane, Biomaterials, vol.28, issue.32, pp.4818-4825, 2007.
DOI : 10.1016/j.biomaterials.2007.07.050

T. Chanthasopeephan, J. Desai, and A. Lau, Modeling Soft-Tissue Deformation Prior to Cutting for Surgical Simulation: Finite Element Analysis and Study of Cutting Parameters, IEEE Transactions on Biomedical Engineering, vol.54, issue.3, pp.349-359, 2007.
DOI : 10.1109/TBME.2006.886937

I. Mano, H. Goshima, and M. Nambu, New polyvinyl alcohol gel material for MRI phantoms, Magnetic Resonance in Medicine, vol.13, issue.6, pp.921-926, 1986.
DOI : 10.1002/mrm.1910020208

D. Gobbi and T. Peters, Generalized 3D nonlinear transformations for medical imaging: an object-oriented implementation in VTK, Computerized Medical Imaging and Graphics, vol.27, issue.4, pp.255-265, 2003.
DOI : 10.1016/S0895-6111(02)00091-5

O. Ebralima and D. Paul, Hydraulic permeation of liquids through swollen polymeric networks. I. Poly(vinyl alcohol)???water, Journal of Applied Polymer Science, vol.19, issue.5, pp.1381-1386, 1975.
DOI : 10.1002/app.1975.070190518

A. Stoica-guzun, M. Stroescu, I. Jipa, L. Dobre, and T. Zaharescu, Effect of ?? irradiation on poly(vinyl alcohol) and bacterial cellulose composites used as packaging materials, Radiation Physics and Chemistry, vol.84, pp.200-204, 2013.
DOI : 10.1016/j.radphyschem.2012.06.017

S. Gupta, T. Webster, and A. Sinha, Evolution of PVA gels prepared without crosslinking agents as a cell adhesive surface, Journal of Materials Science: Materials in Medicine, vol.26, issue.30, pp.1763-1772, 2011.
DOI : 10.1016/j.biomaterials.2005.03.018

J. Wasikiewicz, N. Roohpour, D. Paul, M. Grahn, D. Ateh et al., Polymeric barrier membranes for device packaging, diffusive control and biocompatibility, Applied Surface Science, vol.255, issue.2, pp.340-343, 2008.
DOI : 10.1016/j.apsusc.2008.06.159

S. Praveen, R. Hanumantha, J. Belovich, and B. Davis, Novel Hyaluronic Acid Coating for Potential Use in Glucose Sensor Design, Diabetes Technology & Therapeutics, vol.5, issue.3, pp.393-402, 2003.
DOI : 10.1089/152091503765691893

O. Ariga, T. Kubo, and Y. Sano, Effective diffusivity of glucose in PVA hydrogel, Journal of Fermentation and Bioengineering, vol.78, issue.2, pp.200-201, 1994.
DOI : 10.1016/0922-338X(94)90267-4

D. Axelrod, D. Koppel, J. Schlessinger, E. Elson, and W. Webb, Mobility measurement by analysis of fluorescence photobleaching recovery kinetics, Biophysical Journal, vol.16, issue.9, pp.1055-1069, 1976.
DOI : 10.1016/S0006-3495(76)85755-4

D. Soumpasis, Theoretical analysis of fluorescence photobleaching recovery experiments, Biophysical Journal, vol.41, issue.1, pp.95-97, 1983.
DOI : 10.1016/S0006-3495(83)84410-5

M. Yitzhak, The Properties of Solvents, p.239, 1999.

P. Ramires and E. Milella, «Biocompatibility of poly(vinyl alcohol)-hyaluronic acid and poly(vinyl alcohol)-gellan membranes crosslinked by glutaraldehyde vapors, Journal of Materials Science: Materials in Medicine, vol.13, issue.1, pp.119-123, 2002.
DOI : 10.1023/A:1013667426066

I. Marei, A. Chester, I. Carubelli, T. Prodromakis, T. Trantidou et al., Assessment of Parylene C Thin Films for Heart Valve Tissue Engineering, Tissue Engineering Part A, vol.21, issue.19-20, pp.2504-2514, 2015.
DOI : 10.1089/ten.tea.2014.0607

P. Zhuang, Y. Li, L. Fan, J. Lin, and Q. Hu, Modification of chitosan membrane with poly(vinyl alcohol) and biocompatibility evaluation, International Journal of Biological Macromolecules, vol.50, issue.3, pp.658-663, 2012.
DOI : 10.1016/j.ijbiomac.2012.01.026

B. Duan and M. Wang, Customized Ca-P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor, Journal of The Royal Society Interface, vol.19, issue.7, pp.615-629, 2010.
DOI : 10.1007/s10856-007-3089-3

S. Vanstroebiezen, F. Everaerts, L. Janssen, and R. Tacken, «Diffusion coefficients of oxygen, hydrogen peroxide and glucose in a hydrogel, Analytica Chimica Acta, vol.273, pp.1-2, 1993.

M. Kikuchi, Y. Koyama, T. Yamada, Y. Imamura, T. Okada et al., Development of guided bone regeneration membrane composed of ??-tricalcium phosphate and poly (l-lactide-co-glycolide-co-??-caprolactone) composites, Biomaterials, vol.25, issue.28, pp.5979-5986, 2004.
DOI : 10.1016/j.biomaterials.2004.02.001

S. Subramanian, A. Mitchell, W. Yu, S. Snyder, K. Uhrich et al., Salicylic Acid-Based Polymers for Guided Bone Regeneration Using Bone Morphogenetic Protein-2, Tissue Engineering Part A, vol.21, issue.13-14, pp.13-14, 2015.
DOI : 10.1089/ten.tea.2014.0455

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507132/pdf

Y. Zhang, Z. Yang, X. Guo, and P. Xu, A new method for inducing bone tissue regeneration: Negative pressure membrane technology, Medical Hypotheses, vol.73, issue.6, pp.906-909, 2009.
DOI : 10.1016/j.mehy.2009.06.052

V. Guarino, F. Causa, P. Taddei, M. Di-foggia, G. Ciapetti et al., Polylactic acid fibre-reinforced polycaprolactone scaffolds for bone tissue engineering, Biomaterials, vol.29, issue.27, pp.3662-3670, 2008.
DOI : 10.1016/j.biomaterials.2008.05.024

K. Ochi, G. Chen, and T. , Use of isolated mature osteoblasts in abundance acts as desired-shaped bone regeneration in combination with a modified poly-DL-lactic-co-glycolic acid (PLGA)-collagen sponge, Journal of Cellular Physiology, vol.43, issue.1, pp.45-53, 2003.
DOI : 10.1111/j.1348-0421.1999.tb01233.x

N. Vrana, Y. Liu, G. Mcguinness, and P. Cahill, Characterization of Poly(vinyl alcohol)/Chitosan Hydrogels as Vascular Tissue Engineering Scaffolds, Macromolecular Symposia, pp.106-110, 2008.
DOI : 10.1002/jbm.b.30543