N. Dumaz and R. Marais, Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. Based on The Anniversary Prize of the Gesellschaft fur Biochemie und Molekularbiologie Lecture delivered on 5 July 2003 at the Special FEBS Meeting in Brussels, FEBS Journal, vol.21, issue.324, pp.3491-3504, 2003.
DOI : 10.1073/pnas.262787199

J. A. Ubersax and J. Ferrell-jr, Mechanisms of specificity in protein phosphorylation, Nature Reviews Molecular Cell Biology, vol.298, issue.7, pp.530-541, 2007.
DOI : 10.1128/MCB.16.11.6486

M. D. Houslay and W. Kolch, Cell-Type Specific Integration of Cross-Talk between Extracellular Signal-Regulated Kinase and cAMP Signaling, Molecular Pharmacology, vol.58, issue.4, pp.659-668, 2000.
DOI : 10.1124/mol.58.4.659

P. J. Roberts and C. J. Der, Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer, Oncogene, vol.24, issue.22, pp.3291-3310, 2007.
DOI : 10.1038/72799

Y. Fujita, N. Komatsu, M. Matsuda, and K. Aoki, Fluorescence resonance energy transfer based quantitative analysis of feedforward and feedback loops in epidermal growth factor receptor signaling and the sensitivity to molecular targeting drugs, FEBS Journal, vol.52, issue.14, pp.3177-92, 2014.
DOI : 10.1016/j.molcel.2013.09.015

F. Witzel, L. Maddison, and N. Blüthgen, How scaffolds shape MAPK signaling: what we know and opportunities for systems approaches, Frontiers in Physiology, vol.3, 2012.
DOI : 10.3389/fphys.2012.00475

URL : http://journal.frontiersin.org/article/10.3389/fphys.2012.00475/pdf

M. Ebisuya, K. Kondoh, and E. Nishida, The duration, magnitude and compartmentalization of ERK MAP kinase activity: mechanisms for providing signaling specificity, Journal of Cell Science, vol.118, issue.14, pp.2997-3002, 2005.
DOI : 10.1242/jcs.02505

S. S. Taylor, Dynamics of signaling by PKA, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1754, issue.1-2, pp.25-37, 2005.
DOI : 10.1016/j.bbapap.2005.08.024

P. J. Stork and J. M. Schmitt, Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation, Trends in Cell Biology, vol.12, issue.6, pp.258-266, 2002.
DOI : 10.1016/S0962-8924(02)02294-8

N. Gerits, S. Kostenko, A. Shiryaev, M. Johannessen, and U. Moens, Relations between the mitogen-activated protein kinase and the cAMP-dependent protein kinase pathways: Comradeship and hostility, Cellular Signalling, vol.20, issue.9, pp.1592-1607, 2008.
DOI : 10.1016/j.cellsig.2008.02.022

C. Wellbrock, M. Karasarides, and R. Marais, The RAF proteins take centre stage, Nature Reviews Molecular Cell Biology, vol.9, issue.11, pp.875-885, 2004.
DOI : 10.1128/MCB.8.6.2651

N. Gerits, S. Kostenko, and U. Moens, In vivo functions of mitogen-activated protein kinases: conclusions from knock-in and knock-out mice, Transgenic Research, vol.270, issue.21, pp.281-314, 2007.
DOI : 10.1172/JCI16290

F. D. Smith, L. K. Langeberg, and J. Scott, The where's and when's of kinase anchoring, Trends in Biochemical Sciences, vol.31, issue.6, pp.316-323, 2006.
DOI : 10.1016/j.tibs.2006.04.009

F. D. Smith, AKAP-Lbc enhances cyclic AMP control of the ERK1/2 cascade, Nature Cell Biology, vol.12, issue.12, pp.1242-1249, 2010.
DOI : 10.1016/j.cub.2004.07.051

M. Conti and J. Beavo, Biochemistry and Physiology of Cyclic Nucleotide Phosphodiesterases: Essential Components in Cyclic Nucleotide Signaling, Annual Review of Biochemistry, vol.76, issue.1, 2007.
DOI : 10.1146/annurev.biochem.76.060305.150444

G. S. Baillie, S. J. Mackenzie, I. Mcphee, and M. D. Houslay, Sub-family selective actions in the ability of Erk2 MAP kinase to phosphorylate and regulate the activity of PDE4 cyclic AMP-specific phosphodiesterases, British Journal of Pharmacology, vol.262, issue.Suppl. 2, pp.811-820, 2000.
DOI : 10.1164/ajrccm.157.2.9708012

K. M. Brown, Phosphodiesterase-8A binds to and regulates Raf-1 kinase, Proceedings of the National Academy of Sciences, vol.210, issue.1, pp.1533-1575, 2013.
DOI : 10.1006/abio.1993.1170

B. Hochreiter, A. P. Garcia, and J. A. Schmid, Fluorescent Proteins as Genetically Encoded FRET Biosensors in Life Sciences, Sensors, vol.21, issue.10, pp.26281-314, 2015.
DOI : 10.1042/bj0710217

H. J. Carlson and R. E. Campbell, Genetically encoded FRET-based biosensors for multiparameter fluorescence imaging, Current Opinion in Biotechnology, vol.20, issue.1, pp.19-27, 2009.
DOI : 10.1016/j.copbio.2009.01.003

A. Piljic and C. Schultz, Simultaneous Recording of Multiple Cellular Events by FRET, ACS Chemical Biology, vol.3, issue.3, pp.156-160, 2008.
DOI : 10.1021/cb700247q

H. Ai, K. L. Hazelwood, M. W. Davidson, and R. E. Campbell, Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors, Nature Methods, vol.69, issue.5, pp.401-403, 2008.
DOI : 10.1038/sj.cdd.4401626

Y. Ding, H. W. Ai, H. Hoi, and R. E. Campbell, Dynamics and Caspase-3 Activity in Single Cells, Analytical Chemistry, vol.83, issue.24, pp.9687-9693, 2011.
DOI : 10.1021/ac202595g

T. Su, S. Pan, Q. Luo, and Z. Zhang, Monitoring of dual bio-molecular events using FRET biosensors based on mTagBFP/sfGFP and mVenus/mKO?? fluorescent protein pairs, Biosensors and Bioelectronics, vol.46, pp.97-101, 2013.
DOI : 10.1016/j.bios.2013.02.024

D. M. Shcherbakova, M. A. Hink, L. Joosen, T. W. Gadella, and V. V. Verkhusha, An Orange Fluorescent Protein with a Large Stokes Shift for Single-Excitation Multicolor FCCS and FRET Imaging, Journal of the American Chemical Society, vol.134, issue.18, pp.7913-7923, 2012.
DOI : 10.1021/ja3018972

H. Murakoshi, A. C. Shibata, Y. Nakahata, and J. Nabekura, A dark green fluorescent protein as an acceptor for measurement of F??rster resonance energy transfer, Scientific Reports, vol.120, issue.1, p.15334, 2015.
DOI : 10.1242/jcs.005801

D. Shcherbo, Far-red fluorescent tags for protein imaging in living tissues, Biochemical Journal, vol.418, issue.3, pp.567-574, 2009.
DOI : 10.1042/BJ20081949

R. D. Fritz, A Versatile Toolkit to Produce Sensitive FRET Biosensors to Visualize Signaling in Time and Space, Science Signaling, vol.158, issue.1, p.12, 2013.
DOI : 10.1016/j.jneumeth.2006.05.017

C. Depry, M. D. Allen, and J. Zhang, Visualization of PKA activity in plasma membrane microdomains, Mol. BioSyst., vol.16, issue.1, pp.52-58, 2011.
DOI : 10.1016/j.chembiol.2008.11.007

A. Leray, S. Padilla-parra, and J. Roul, H??liot, L. & Tramier, M. 827Spatio-Temporal Quantification of FRET in Living Cells by Fast Time-Domain FLIM: A Comparative Study of Non-Fitting Methods, PLoS One, vol.8, 2013.

S. Padilla-parra, Quantitative Comparison of Different Fluorescent Protein Couples for Fast FRET-FLIM Acquisition, Biophysical Journal, vol.97, issue.8, pp.2368-2376, 2009.
DOI : 10.1016/j.bpj.2009.07.044

URL : https://hal.archives-ouvertes.fr/hal-00441625

H. Ai, J. N. Henderson, S. J. Remington, and R. E. Campbell, cyan fluorescent protein: structural characterization and applications in fluorescence imaging, Biochemical Journal, vol.400, issue.3, pp.531-571, 2006.
DOI : 10.1042/BJ20060874

S. Ganesan, S. M. Ameer-beg, T. T. Ng, B. Vojnovic, and F. S. Wouters, A dark yellow fluorescent protein (YFP)-based Resonance Energy-Accepting Chromoprotein (REACh) for Förster resonance energy transfer with GFP, Proceedings of the National Academy of Sciences of the United States of America 103, pp.4089-4094, 2006.

N. Sengupta, P. K. Vinod, and K. V. Venkatesh, Crosstalk between cAMP-PKA and MAP kinase pathways is a key regulatory design necessary to regulate FLO11 expression, Biophysical Chemistry, vol.125, issue.1, pp.59-71, 2007.
DOI : 10.1016/j.bpc.2006.06.012

K. J. Herbst, M. D. Allen, and J. Zhang, Spatiotemporally Regulated Protein Kinase A Activity Is a Critical Regulator of Growth Factor-Stimulated Extracellular Signal-Regulated Kinase Signaling in PC12 Cells, Molecular and Cellular Biology, vol.31, issue.19, pp.4063-4075, 2011.
DOI : 10.1128/MCB.05459-11

P. Vandame, Optimization of ERK Activity Biosensors for both Ratiometric and, p.106

N. Komatsu, Development of an optimized backbone of FRET biosensors for kinases and GTPases, Molecular Biology of the Cell, vol.22, issue.23, pp.4647-4656, 2011.
DOI : 10.1091/mbc.E11-01-0072

R. D. Fritz, A Versatile Toolkit to Produce Sensitive FRET Biosensors to Visualize Signaling in Time and Space, Science Signaling, vol.158, issue.1, p.12, 2013.
DOI : 10.1016/j.jneumeth.2006.05.017

M. D. Allen and J. Zhang, Subcellular dynamics of protein kinase A activity visualized by FRET-based reporters, Biochemical and Biophysical Research Communications, vol.348, issue.2, pp.716-721, 2006.
DOI : 10.1016/j.bbrc.2006.07.136

J. Zhang, Y. Ma, S. S. Taylor, and R. Y. Tsien, Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering, Proceedings of the National Academy of Sciences, vol.20, issue.8, pp.14997-15002, 2001.
DOI : 10.1093/emboj/20.8.1921

C. D. Harvey, A genetically encoded fluorescent sensor of ERK activity, Proceedings of the National Academy of Sciences, vol.2, issue.2, pp.19264-19269, 2008.
DOI : 10.1186/1475-925X-2-13

N. Komatsu, Development of an optimized backbone of FRET biosensors for kinases and GTPases, Molecular Biology of the Cell, vol.22, issue.23, pp.4647-56, 2011.
DOI : 10.1091/mbc.E11-01-0072

P. Vandame, Optimization of ERK Activity Biosensors for both Ratiometric and Lifetime FRET Measurements, Sensors, vol.6, issue.1, pp.1140-1154, 2013.
DOI : 10.1126/scisignal.2004135

G. B. Caldwell, Direct modulation of the protein kinase a catalytic subunit ?? by growth factor receptor tyrosine kinases, Journal of Cellular Biochemistry, vol.295, issue.1, pp.39-48, 2011.
DOI : 10.1126/science.1069982

D. Fishman, L. Galitzki, E. Priel, and S. Segal, Epidermal growth factor regulates protein kinase A activity in murine fibrosarcoma cells: Differences between metastatic and nonmetastatic tumor cell variants, Cancer Res, vol.57, pp.5410-5415, 1997.

A. J. Murray, Pharmacological PKA Inhibition: All May Not Be What It Seems, Science Signaling, vol.1, issue.22, p.4, 2008.
DOI : 10.1126/scisignal.122re4

URL : http://stke.sciencemag.org/content/sigtrans/1/22/re4.full.pdf

M. Machacek, Coordination of Rho GTPase activities during cell protrusion, Nature, vol.406, issue.7260, pp.99-103, 2009.
DOI : 10.1091/mbc.12.9.2711

A. Woehler, Simultaneous Quantitative Live Cell Imaging of Multiple FRET-Based Biosensors, PLoS ONE, vol.33, issue.4, 2013.
DOI : 10.1371/journal.pone.0061096.g005

A. Peyker, O. Rocks, and P. I. Bastiaens, Imaging Activation of Two Ras Isoforms Simultaneously in a Single Cell, ChemBioChem, vol.197, issue.1, pp.78-85, 2005.
DOI : 10.1046/j.1365-2818.2000.00651.x

D. M. Grant, Multiplexed FRET to Image Multiple Signaling Events in Live Cells, Biophysical Journal, vol.95, issue.10, pp.69-71, 2008.
DOI : 10.1529/biophysj.108.139204

Y. Niino, K. Hotta, and K. Oka, Simultaneous Live Cell Imaging Using Dual FRET Sensors with a Single Excitation Light, PLoS ONE, vol.4, issue.6, 2009.
DOI : 10.1371/journal.pone.0006036.s005

K. E. Bornfeldt and E. G. Krebs, Crosstalk Between Protein Kinase A and Growth Factor Receptor Signaling Pathways in Arterial Smooth Muscle, Cellular Signalling, vol.11, issue.7, pp.465-477, 1999.
DOI : 10.1016/S0898-6568(99)00020-0

F. Ciardiello and G. Tortora, Interactions between the epidermal growth factor receptor and type I protein kinase A: biological significance and therapeutic implications, Clin. Cancer Res, vol.4, pp.821-829, 1998.

O. Neill, E. Kolch, and W. , Conferring specificity on the ubiquitous Raf/MEK signalling pathway, British Journal of Cancer, vol.81, issue.2, pp.283-291, 2004.
DOI : 10.1016/S0888-7543(02)00008-3

Z. Wang, Rap1-Mediated Activation of Extracellular Signal-Regulated Kinases by Cyclic AMP Is Dependent on the Mode of Rap1 Activation, Molecular and Cellular Biology, vol.26, issue.6, pp.2130-2175, 2006.
DOI : 10.1128/MCB.26.6.2130-2145.2006

F. Mcphillips, Raf-1 is the predominant Raf isoform that mediates growth factor-stimulated growth in ovarian cancer cells, Carcinogenesis, vol.27, issue.4, pp.729-768, 2006.
DOI : 10.1093/carcin/bgi289

X. Wu, S. J. Noh, G. Zhou, J. E. Dixon, and K. L. Guan, Selective Activation of MEK1 but Not MEK2 by A-Raf from Epidermal Growth Factor-stimulated Hela Cells, Journal of Biological Chemistry, vol.72, issue.6, pp.3265-71, 1996.
DOI : 10.1016/0092-8674(93)90117-9

F. Sipieter, Novel Reporter for Faithful Monitoring of ERK2 Dynamics in Living Cells and Model Organisms, PLOS ONE, vol.10, issue.10, p.140924, 2015.
DOI : 10.1371/journal.pone.0140924.s007

S. Padilla-parra and M. Tramier, FRET microscopy in the living cell: Different approaches, strengths and weaknesses, BioEssays, vol.3, issue.5, pp.369-376, 2012.
DOI : 10.1007/s12551-011-0047-6

URL : https://hal.archives-ouvertes.fr/inserm-00683306

K. D. Piatkevich, Monomeric red fluorescent proteins with a large Stokes shift, Proceedings of the National Academy of Sciences, vol.91, issue.11, pp.5369-74, 2010.
DOI : 10.1529/biophysj.106.085845

D. M. Shcherbakova and V. V. Verkhusha, Near-infrared fluorescent proteins for multicolor in vivo imaging, Nature Methods, vol.132, issue.8, pp.751-755, 2013.
DOI : 10.1016/j.cell.2008.01.016

S. Padilla-parra, N. Audugé, M. Coppey-moisan, and M. Tramier, Quantitative FRET Analysis by Fast Acquisition Time Domain FLIM at High Spatial Resolution in Living Cells, Biophysical Journal, vol.95, issue.6, pp.2976-2988, 2008.
DOI : 10.1529/biophysj.108.131276

URL : https://hal.archives-ouvertes.fr/hal-00289731

A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, High frame rate fluorescence lifetime imaging, Journal of Physics D: Applied Physics, vol.36, issue.14, pp.1655-1662, 2003.
DOI : 10.1088/0022-3727/36/14/301

H. Ai, cyan fluorescent protein: structural characterization and applications in fluorescence imaging, Biochemical Journal, vol.400, issue.3, pp.531-571, 2006.
DOI : 10.1042/BJ20060874

H. Ai, Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors, Nature Methods, vol.69, issue.5, pp.401-403, 2008.
DOI : 10.1038/sj.cdd.4401626

A. P. Alivisatos, Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science, vol.271, issue.5251, pp.933-937, 1996.
DOI : 10.1126/science.271.5251.933

M. D. Allen and J. Zhang, Subcellular dynamics of protein kinase A activity visualized by FRET-based reporters, Biochemical and Biophysical Research Communications, vol.348, issue.2, pp.716-721, 2006.
DOI : 10.1016/j.bbrc.2006.07.136

N. L. Andrews, Small, Mobile Fc??RI Receptor Aggregates Are Signaling Competent, Immunity, vol.31, issue.3, pp.469-479, 2009.
DOI : 10.1016/j.immuni.2009.06.026

URL : https://doi.org/10.1016/j.immuni.2009.06.026

K. Austen, Extracellular rigidity sensing by talin isoform-specific mechanical linkages, Nature Cell Biology, vol.46, issue.12, pp.1597-606, 2015.
DOI : 10.1038/nbt896

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4662888/pdf

D. Axelrod, Mobility measurement by analysis of fluorescence photobleaching recovery kinetics, Biophysical Journal, vol.16, issue.9, pp.1055-1069, 1976.
DOI : 10.1016/S0006-3495(76)85755-4

K. Bacia, S. A. Kim, and P. Schwille, Fluorescence cross-correlation spectroscopy in living cells, Nature Methods, vol.72, issue.2, pp.83-92, 2006.
DOI : 10.1038/nmeth822

K. Bacia and P. Schwille, Practical guidelines for dual-color fluorescence cross-correlation spectroscopy, Nature Protocols, vol.4, issue.11, pp.2842-2856, 2007.
DOI : 10.1021/jp000059s

A. N. Bader, Homo-FRET Imaging as a Tool to Quantify Protein and Lipid Clustering, ChemPhysChem, vol.107, issue.3, pp.475-483, 2011.
DOI : 10.1073/pnas.1002642107

G. S. Baillie, Sub-family selective actions in the ability of Erk2 MAP kinase to phosphorylate and regulate the activity of PDE4 cyclic AMP-specific phosphodiesterases, British Journal of Pharmacology, vol.262, issue.Suppl. 2, pp.811-820, 2000.
DOI : 10.1164/ajrccm.157.2.9708012

P. I. Bastiaens and . Squire, Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell, Trends in Cell Biology, vol.9, issue.2, pp.48-52, 1999.
DOI : 10.1016/S0962-8924(98)01410-X

R. Bayliss, Structural Basis of Aurora-A Activation by TPX2 at the Mitotic Spindle, Molecular Cell, vol.12, issue.4, pp.851-862, 2003.
DOI : 10.1016/S1097-2765(03)00392-7

J. Beaudouin, Dissecting the Contribution of Diffusion and Interactions to the Mobility of Nuclear Proteins, Biophysical Journal, vol.90, issue.6, pp.1878-94, 2006.
DOI : 10.1529/biophysj.105.071241

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, p.163, 2005.
DOI : 10.1007/3-540-28882-1

A. S. Belmont, Visualizing chromosome dynamics with GFP, Trends in Cell Biology, vol.11, issue.6, pp.250-257, 2001.
DOI : 10.1016/S0962-8924(01)02000-1

M. Böhmer and J. Enderlein, Fluorescence Spectroscopy of Single Molecules under Ambient Conditions: Methodology and Technology, ChemPhysChem, vol.7, issue.8, pp.792-808, 2003.
DOI : 10.1002/3527600809.ch4

A. Bonnot, Single-fluorophore biosensors based on conformation-sensitive GFP variants. FASEB jourral : offiial puliation of the Federation of, pp.1375-85, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01541363

N. Borghi, E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch, Proceedings of the National Academy of Sciences, vol.5, issue.3, pp.12568-73, 2012.
DOI : 10.4161/cam.5.2.15081

L. Borgne, R. Bella?-?he, Y. Heisguth, and F. , Drosophila E-Cadherin Regulates the Orientation of Asymmetric Cell Division in the Sensory Organ Lineage, Current Biology, vol.12, issue.2, pp.95-104
DOI : 10.1016/S0960-9822(01)00648-0

K. E. Bornfeldt and E. G. Krebs, Crosstalk Between Protein Kinase A and Growth Factor Receptor Signaling Pathways in Arterial Smooth Muscle, Cellular Signalling, vol.11, issue.7, pp.465-477, 1999.
DOI : 10.1016/S0898-6568(99)00020-0

S. J. Briddon, Quantitative analysis of the formation and diffusion of A1-adenosine receptor-antagonist complexes in single living cells, Proceedings of the National Academy of Sciences, vol.11, issue.6, pp.4673-4678, 2004.
DOI : 10.1023/A:1012205302559

S. Broomfield, B. L. Chow, and W. Xiao, MMS2, encoding a ubiquitin-conjugatingenzyme-like protein, is a member of the yeast error-free postreplication repair pathway, Proceedings of the National Academy of Sciences, pp.955678-5683, 1998.

C. M. Brown and N. O. Petersen, An image correlation analysis of the distribution of clathrin associated adaptor protein (AP-2) at the plasma membrane, Journal of cell science, vol.111, pp.271-81, 1998.

K. M. Brown, Phosphodiesterase-8A binds to and regulates Raf-1 kinase, Proceedings of the National Academy of Sciences of the United States of America, pp.1533-1575, 2013.
DOI : 10.1006/abio.1993.1170

W. Bruinsma, Spatial Separation of Plk1 Phosphorylation and Activity, Frontiers in Oncology, vol.55, issue.22, p.132, 2015.
DOI : 10.1016/j.molcel.2014.06.016

I. Bugiel, K. König, and H. Wabnitz, Investigation of cells by fluorescence laser scanning microscopy with subnanosecond time resolution, Lasers Life Sci, vol.3, issue.1, pp.47-53, 1989.

G. B. Caldwell, Direct modulation of the protein kinase a catalytic subunit ?? by growth factor receptor tyrosine kinases, Journal of Cellular Biochemistry, vol.295, issue.1, pp.39-48, 2011.
DOI : 10.1126/science.1069982

G. B. Caldwell, Direct modulation of the protein kinase a catalytic subunit ?? by growth factor receptor tyrosine kinases, Journal of Cellular Biochemistry, vol.295, issue.1, pp.39-48, 2012.
DOI : 10.1126/science.1069982

C. M. Carlile, Synthesis of Free and Proliferating Cell Nuclear Antigen-bound Polyubiquitin Chains by the RING E3 Ubiquitin Ligase Rad5, Journal of Biological Chemistry, vol.5, issue.43, pp.29326-29334, 2009.
DOI : 10.1093/nar/23.14.2715

H. J. Carlson and R. E. Campbell, Genetically encoded FRET-based biosensors for multiparameter fluorescence imaging, Current Opinion in Biotechnology, vol.20, issue.1, pp.19-27, 2009.
DOI : 10.1016/j.copbio.2009.01.003

L. R. Castro, Decoding spatial and temporal features of neuronal cAMP/PKA signaling with FRET biosensors, Biotechnology Journal, vol.302, issue.2, pp.192-202, 2014.
DOI : 10.1126/science.1089681

URL : https://hal.archives-ouvertes.fr/hal-01545400

C. Chiu, Intracellular kinetics of the androgen receptor shown by multimodal Image Correlation Spectroscopy (mICS) Scientific reports, p.22435, 2016.

F. Ciardiello and G. Tortora, Interactions between the epidermal growth factor receptor and type I protein kinase A: biological significance and therapeutic implications, Cliial aer researh : a offiial journal of the American Association for Cancer Research, pp.821-829, 1998.

M. J. Clague, C. Heride, and S. Urbé, The demographics of the ubiquitin system, Trends in Cell Biology, vol.25, issue.7, pp.417-426, 2015.
DOI : 10.1016/j.tcb.2015.03.002

M. Conti and J. Beavo, Biochemistry and Physiology of Cyclic Nucleotide Phosphodiesterases: Essential Components in Cyclic Nucleotide Signaling, Annual Review of Biochemistry, vol.76, issue.1, 2007.
DOI : 10.1146/annurev.biochem.76.060305.150444

R. Cubeddu, Time-resolved fluorescence imaging in biology and medicine, Journal of Physics D: Applied Physics, vol.35, issue.9, pp.61-76, 2002.
DOI : 10.1088/0022-3727/35/9/201

P. J. Cullen and P. J. Lockyer, Integration of calcium and ras signalling, Nature Reviews Molecular Cell Biology, vol.3, issue.5, pp.339-348, 2002.
DOI : 10.1038/nrm808

R. N. Day and F. Schaufele, Imaging Molecular Interactions in Living Cells, Molecular Endocrinology, vol.19, issue.7, pp.1675-86, 2005.
DOI : 10.1210/me.2005-0028

C. Depry, M. D. Allen, and J. Zhang, Visualization of PKA activity in plasma membrane microdomains, Mol. BioSyst., vol.16, issue.1, pp.52-58, 2011.
DOI : 10.1016/j.chembiol.2008.11.007

M. A. Digman, Detecting Protein Complexes in Living Cells from Laser Scanning Confocal Image Sequences by the Cross Correlation Raster Image Spectroscopy Method, Biophysical Journal, vol.96, issue.2, pp.707-716, 2009.
DOI : 10.1016/j.bpj.2008.09.051

Y. Ding, Dynamics and Caspase-3 Activity in Single Cells, Analytical Chemistry, vol.83, issue.24, pp.9687-9693, 2011.
DOI : 10.1021/ac202595g

N. Dumaz and R. Marais, Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. Based on The Anniversary Prize of the Gesellschaft fur Biochemie und Molekularbiologie Lecture at the Special FEBS Meeting in Brussels, FEBS Journal, issue.14, pp.2723491-3504, 2003.

S. Dutertre, Phosphorylation of CDC25B by Aurora-A at the centrosome contributes to the G2-M transition, Journal of Cell Science, vol.117, issue.12, pp.2523-2554, 2004.
DOI : 10.1242/jcs.01108

URL : https://hal.archives-ouvertes.fr/hal-00317440

M. Ebisuya, K. Kondoh, and E. Nishida, The duration, magnitude and compartmentalization of ERK MAP kinase activity: mechanisms for providing signaling specificity, Journal of Cell Science, vol.118, issue.14, pp.2997-3002, 2005.
DOI : 10.1242/jcs.02505

D. A. Eisinger and H. Ammer, ??-Opioid receptors activate ERK/MAP kinase via integrin-stimulated receptor tyrosine kinases, Cellular Signalling, vol.20, issue.12, pp.2324-2331, 2008.
DOI : 10.1016/j.cellsig.2008.09.002

E. L. Elson and D. Magde, Fluorescence correlation spectroscopy. I. Conceptual basis and theory, Biopolymers, vol.13, issue.1, pp.1-27, 1974.
DOI : 10.1007/978-3-662-11761-3

J. D. English and J. D. Sweatt, A Requirement for the Mitogen-activated Protein Kinase Cascade in Hippocampal Long Term Potentiation, Journal of Biological Chemistry, vol.360, issue.31, pp.27219103-19106, 1997.
DOI : 10.1126/science.273.5277.959

M. Erard, Minimum set of mutations needed to optimize cyan fluorescent proteins for live cell imaging, Mol. BioSyst., vol.28, issue.2, pp.258-267, 2013.
DOI : 10.1021/bi00434a038

URL : https://hal.archives-ouvertes.fr/hal-01545402

P. Ferrand, J. Wenger, and H. Rigneault, Fluorescence Correlation Spectroscopy, Methods in molecular biology, pp.783181-195, 2011.
DOI : 10.1007/978-1-61779-282-3_10

URL : https://hal.archives-ouvertes.fr/hal-00624663

D. Fishman, Epidermal growth factor regulates protein kinase A activity in murine fibrosarcoma cells: Differences between metastatic and nonmetastatic tumor cell variants, Cancer Research, vol.57, issue.23, pp.5410-5415, 1997.

Y. H. Foo, Factors Affecting the Quantification of Biomolecular Interactions by??Fluorescence Cross-Correlation Spectroscopy, Biophysical Journal, vol.102, issue.5, pp.1174-1183, 2012.
DOI : 10.1016/j.bpj.2012.01.040

T. Förster, Intermolecular energy transference and fluorescence, pp.55-75, 1948.

R. D. Fritz, M. Letzelter, A. Reimann, K. Martin, and L. Fusco, A Versatile Toolkit to Produce Sensitive FRET Biosensors to Visualize Signaling in Time and Space, Science Signaling, vol.158, issue.1, p.12, 2013.
DOI : 10.1016/j.jneumeth.2006.05.017

R. D. Fritz, M. Letzelter, A. Reimann, K. Martin, and L. Fusco, A Versatile Toolkit to Produce Sensitive FRET Biosensors to Visualize Signaling in Time and Space, Science Signaling, vol.158, issue.1, p.12, 2013.
DOI : 10.1016/j.jneumeth.2006.05.017

E. Fron, Mechanism Behind the Apparent Large Stokes Shift in LSSmOrange Investigated by Time-Resolved Spectroscopy, The Journal of Physical Chemistry B, vol.119, issue.47, pp.14880-14891, 2015.
DOI : 10.1021/acs.jpcb.5b09189

Y. Fujioka, Introduction Fluorescent Protein-based Biosensors to Visualize Signal Transduction beneath the Plasma Membrane, ANALYTICAL SCIENCES APRIL, 2015.

Y. Fujita, Fluorescence resonance energy transfer based quantitative analysis of feedforward and feedback loops in epidermal growth factor receptor signaling and the sensitivity to molecular targeting drugs, FEBS Journal, vol.52, issue.14, pp.2813177-92, 2014.
DOI : 10.1016/j.molcel.2013.09.015

S. Ganesan, A dark yellow fluorescent protein (YFP)-based Resonance Energy-Accepting Chromoprotein (REACh) for Forster resonance energy transfer with GFP, Proceedings of the National Academy of Sciences, vol.511, issue.1-3, pp.4089-4094, 2006.
DOI : 10.1016/S0014-5793(01)03263-X

L. Gao, L. Chao, and J. Chao, A novel signaling pathway of tissue kallikrein in promoting keratinocyte migration: Activation of proteinase-activated receptor 1 and epidermal growth factor receptor, Experimental Cell Research, vol.316, issue.3, pp.376-389, 2010.
DOI : 10.1016/j.yexcr.2009.10.022

M. F. Garcia-parajo, Nanoclustering as a dominant feature of plasma membrane organization, Journal of Cell Science, vol.127, issue.23, pp.4995-5005, 2014.
DOI : 10.1242/jcs.146340

I. Gautier, Homo-FRET Microscopy in Living Cells to Measure Monomer-Dimer Transition of GFP-Tagged Proteins, Biophysical Journal, vol.80, issue.6, pp.3000-3008, 2001.
DOI : 10.1016/S0006-3495(01)76265-0

N. Gerits, Relations between the mitogen-activated protein kinase and the cAMP-dependent protein kinase pathways: Comradeship and hostility, Cellular Signalling, vol.20, issue.9, pp.1592-1607, 2008.
DOI : 10.1016/j.cellsig.2008.02.022

N. Gerits, S. Kostenko, and U. Moens, In vivo functions of mitogen-activated protein kinases: conclusions from knock-in and knock-out mice, Transgenic Research, vol.270, issue.21, pp.281-314, 2007.
DOI : 10.1172/JCI16290

N. Gervasi, Dynamics of Protein Kinase A Signaling at the Membrane, in the Cytosol, and in the Nucleus of Neurons in Mouse Brain Slices, Journal of Neuroscience, vol.27, issue.11, pp.272744-2750, 2007.
DOI : 10.1523/JNEUROSCI.5352-06.2007

URL : https://hal.archives-ouvertes.fr/hal-00185072

B. N. Giepmans, The Fluorescent Toolbox for Assessing Protein Location and Function, Science, vol.312, issue.5771, pp.312217-312241, 2006.
DOI : 10.1126/science.1124618

G. Gillard, Control of E-cadherin apical localisation and morphogenesis by a SOAP-1/AP-1/clathrin pathway in C. elegans epidermal cells, Development, vol.142, issue.9, pp.1684-94, 2015.
DOI : 10.1242/dev.118216

URL : https://hal.archives-ouvertes.fr/hal-01141743

D. M. Grant, Multiplexed FRET to Image Multiple Signaling Events in Live Cells, Biophysical Journal, vol.95, issue.10, pp.69-71, 2008.
DOI : 10.1529/biophysj.108.139204

C. Grashoff, Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics, Nature, vol.83, issue.7303, pp.263-266, 2010.
DOI : 10.1038/nature09198

I. Gregor and J. Enderlein, Time-resolved methods in biophysics. 3. Fluorescence lifetime correlation spectroscopy. Photoheeial & photoiologial ssieeees : Offiial journal of the, pp.13-21, 2007.

J. T. Groves, R. Parthasarathy, and M. B. Forstner, Fluorescence imaging of membrane dynamics. Annual review of biomedical engineering, pp.311-338, 2008.

P. M. Handley, Molecular cloning, sequence, and tissue distribution of the human ubiquitin-activating enzyme E1., Proceedings of the National Academy of Sciences of the United States of America, pp.258-62, 1991.
DOI : 10.1073/pnas.88.1.258

C. D. Harvey, A genetically encoded fluorescent sensor of ERK activity, Proceedings of the National Academy of Sciences, vol.2, issue.2, pp.19264-19269, 2008.
DOI : 10.1186/1475-925X-2-13

C. D. Harvey, A genetically encoded fluorescent sensor of ERK activity, Proceedings of the National Academy of Sciences of the United States of America, pp.19264-19269, 2008.
DOI : 10.1186/1475-925X-2-13

G. Hatte, Epithelial cell division in the Xenopus laevis embryo during gastrulation, The International Journal of Developmental Biology, vol.58, issue.10-11-12, pp.10-11, 2014.
DOI : 10.1387/ijdb.140277jt

URL : https://hal.archives-ouvertes.fr/hal-01313755

E. Haustein and P. Schwille, Fluorescence Correlation Spectroscopy, pp.151-69, 2007.
DOI : 10.1007/978-1-4020-4465-6_11

B. Hebert, S. Costantino, and P. W. Wiseman, Spatiotemporal Image Correlation Spectroscopy (STICS) Theory, Verification, and Application to Protein Velocity Mapping in Living CHO Cells, Biophysical Journal, vol.88, issue.5, pp.3601-3615, 2005.
DOI : 10.1529/biophysj.104.054874

R. Heim, A. B. Cubitt, and R. Y. Tsien, Improved green fluorescence, Nature, vol.373, issue.6516, pp.663-667, 1995.
DOI : 10.1038/373663b0

K. J. Herbst, M. D. Allen, and J. Zhang, Spatiotemporally Regulated Protein Kinase A Activity Is a Critical Regulator of Growth Factor-Stimulated Extracellular Signal-Regulated Kinase Signaling in PC12 Cells, Molecular and Cellular Biology, vol.31, issue.19, pp.314063-4075, 2011.
DOI : 10.1128/MCB.05459-11

A. Hershko, Components of Ubiquitin-Protein Ligase System, The Journal of Biological Chemistry, vol.258, issue.13, pp.8206-8214, 1983.

G. Hewawasam, Psh1 Is an E3 Ubiquitin Ligase that Targets the??Centromeric Histone Variant Cse4, Molecular Cell, vol.40, issue.3, pp.444-454, 2010.
DOI : 10.1016/j.molcel.2010.10.014

E. Hinde, Millisecond spatiotemporal dynamics of FRET biosensors by the pair correlation function and the phasor approach to FLIM, Proceedings of the National Academy of Sciences, vol.107, issue.38, pp.135-175, 2013.
DOI : 10.1073/pnas.1006731107

T. Hirota, Aurora-A and an Interacting Activator, the LIM Protein Ajuba, Are Required for Mitotic Commitment in Human Cells, Cell, vol.114, issue.5, pp.585-98, 2003.
DOI : 10.1016/S0092-8674(03)00642-1

B. Hochreiter, A. P. Garcia, and J. A. Schmid, Fluorescent Proteins as Genetically Encoded FRET Biosensors in Life Sciences, Sensors, vol.21, issue.10, pp.1526281-314, 2015.
DOI : 10.1042/bj0710217

M. D. Houslay and W. Kolch, Cell-Type Specific Integration of Cross-Talk between Extracellular Signal-Regulated Kinase and cAMP Signaling, Molecular Pharmacology, vol.58, issue.4, pp.659-668, 2000.
DOI : 10.1124/mol.58.4.659

J. M. Huibregtse, A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase, Proceedings of the National Academy of Sciences of the United States of America, pp.2563-2567, 1995.

T. Hunter, Signaling???2000 and Beyond, Cell, vol.100, issue.1, pp.113-127, 2000.
DOI : 10.1016/S0092-8674(00)81688-8

URL : https://doi.org/10.1016/s0092-8674(00)81688-8

R. E. Itoh, Activation of Rac and Cdc42 Video Imaged by Fluorescent Resonance Energy Transfer-Based Single-Molecule Probes in the Membrane of Living Cells, Molecular and Cellular Biology, vol.22, issue.18, pp.6582-6591, 2002.
DOI : 10.1128/MCB.22.18.6582-6591.2002

P. K. Jackson, The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases, Trends in Cell Biology, vol.10, issue.10, pp.429-439, 2000.
DOI : 10.1016/S0962-8924(00)01834-1

J. Jin, Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging, Nature, vol.101, issue.7148, pp.1135-1138, 2007.
DOI : 10.1038/nature05902

D. M. Jones, Imaging real-time HIV-1 virion fusion with FRET-based biosensors, Scientific Reports, vol.279, issue.1, p.13449, 2015.
DOI : 10.1371/journal.ppat.1002694

N. Kahya and P. Schwille, Fluorescence correlation studies of lipid domains in model membranes (Review), Molecular Membrane Biology, vol.96, issue.1, pp.29-39, 2006.
DOI : 10.1073/pnas.96.4.1375

P. Kapusta, Fluorescence Lifetime Correlation Spectroscopy, Journal of Fluorescence, vol.79, issue.2, pp.43-51, 2007.
DOI : 10.1002/cphc.200200565

R. W. King, A 20s complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B, Cell, vol.81, issue.2, pp.279-288, 1995.
DOI : 10.1016/0092-8674(95)90338-0

E. Klotzsch and G. J. Schütz, A critical survey of methods to detect plasma membrane rafts, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.30, issue.52, pp.368-20120033, 2013.
DOI : 10.1016/S0091-679X(08)60982-6

T. Kohl, A protease assay for two-photon crosscorrelation and FRET analysis based solely on fluorescent proteins, Proceedings of the National Academy of Sciences of the United States of America, pp.9912161-9912167, 2002.
DOI : 10.1073/pnas.97.22.11984

N. Komatsu, Development of an optimized backbone of FRET biosensors for kinases and GTPases, Molecular Biology of the Cell, vol.22, issue.23, pp.4647-4656, 2011.
DOI : 10.1091/mbc.E11-01-0072

N. Komatsu, Development of an optimized backbone of FRET biosensors for kinases and GTPases, Molecular Biology of the Cell, vol.22, issue.23, pp.4647-56, 2011.
DOI : 10.1091/mbc.E11-01-0072

A. Kusumi, Hierarchical mesoscale domain organization of the plasma membrane, Trends in Biochemical Sciences, vol.36, issue.11, pp.604-615, 2011.
DOI : 10.1016/j.tibs.2011.08.001

B. Lacroix, In Situ Imaging in C.??elegans Reveals Developmental Regulation of Microtubule Dynamics, Developmental Cell, vol.29, issue.2, pp.203-216, 2014.
DOI : 10.1016/j.devcel.2014.03.007

M. Lakadamyali, Visualizing infection of individual influenza viruses, Proceedings of the National Academy of Sciences, vol.121, issue.6, pp.9280-9285, 2003.
DOI : 10.1083/jcb.121.6.1257

A. J. Lam, Improving FRET dynamic range with bright green and red fluorescent proteins, Nature Methods, vol.92, issue.10, pp.1005-1017, 2012.
DOI : 10.1021/bi200287x

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3461113/pdf

A. Leray, 2013. 827Spatio-Temporal Quantification of FRET in Living Cells by Fast Time- Domain FLIM: A Comparative Study of Non-Fitting Methods, PLoS ONE, vol.8, issue.7

E. Louvet, Time-lapse Microscopy and Fluorescence Resonance Energy Transfer to Analyze the Dynamics and Interactions of Nucleolar Proteins in Living Cells, Methods in molecular biology, pp.463123-135, 2008.
DOI : 10.1007/978-1-59745-406-3_9

URL : https://hal.archives-ouvertes.fr/hal-00339204

S. T. Low-nam, ErbB1 dimerization is promoted by domain co-confinement and stabilized by ligand binding, Nature Structural & Molecular Biology, vol.8, issue.11, pp.1244-1249, 2011.
DOI : 10.1016/j.cell.2005.04.009

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210321/pdf

M. Machacek, Coordination of Rho GTPase activities during cell protrusion, Nature, vol.406, issue.7260, pp.46199-103, 2009.
DOI : 10.1091/mbc.12.9.2711

C. J. Macnevin, Ratiometric Imaging Using a Single Dye Enables Simultaneous Visualization of Rac1 and Cdc42 Activation, Journal of the American Chemical Society, vol.138, issue.8, 2016.
DOI : 10.1021/jacs.5b09764

G. Markson, Analysis of the human E2 ubiquitin conjugating enzyme protein interaction network, Genome Research, vol.19, issue.10, pp.1905-1911, 2009.
DOI : 10.1101/gr.093963.109

T. Marumoto, Aurora-A Kinase Maintains the Fidelity of Early and Late Mitotic Events in HeLa Cells, Journal of Biological Chemistry, vol.135, issue.51, pp.51786-51795, 2003.
DOI : 10.1083/jcb.149.2.317

M. V. Matz, Erratum: Fluorescent proteins from nonbioluminescent Anthozoa species, Nature Biotechnology, vol.200, issue.10, pp.969-973, 1999.
DOI : 10.1016/0003-2697(92)90279-G

F. R. Maxfield, Plasma membrane microdomains, Current Opinion in Cell Biology, vol.14, issue.4, pp.483-487, 2002.
DOI : 10.1016/S0955-0674(02)00351-4

F. Mcphillips, Raf-1 is the predominant Raf isoform that mediates growth factor-stimulated growth in ovarian cancer cells, Carcinogenesis, vol.27, issue.4, pp.729-768, 2006.
DOI : 10.1093/carcin/bgi289

E. M. Merzlyak, Bright monomeric red fluorescent protein with an extended fluorescence lifetime, Nature Methods, vol.24, issue.7, pp.555-557, 2007.
DOI : 10.1038/nmeth1062

X. Michalet, Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics, Science, vol.307, issue.5709, pp.307538-307582, 2005.
DOI : 10.1126/science.1104274

. Miyawaki, Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin, Nature, vol.373, issue.6645, pp.882-887, 1997.
DOI : 10.1038/373663b0

M. C. Morris, Fluorescent biosensors ??? Probing protein kinase function in cancer and drug discovery, BBA) -Proteins and Proteomics, pp.18341387-1395, 2013.
DOI : 10.1016/j.bbapap.2013.01.025

H. Murakoshi, A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer Scientific reports, pp.15334-170, 2015.

A. J. Murray, Pharmacological PKA Inhibition: All May Not Be What It Seems, Science Signaling, vol.1, issue.22, p.4, 2008.
DOI : 10.1126/scisignal.122re4

URL : http://stke.sciencemag.org/content/sigtrans/1/22/re4.full.pdf

G. L. Nicolson, The Fluid???Mosaic Model of Membrane Structure: Still relevant to understanding the structure, function and dynamics of biological membranes after more than 40years, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1838, issue.6, pp.18381451-66, 2013.
DOI : 10.1016/j.bbamem.2013.10.019

Y. Niino, K. Hotta, and K. Oka, Simultaneous Live Cell Imaging Using Dual FRET Sensors with a Single Excitation Light, PLoS ONE, vol.4, issue.6, 2009.
DOI : 10.1371/journal.pone.0006036.s005

URL : https://doi.org/10.1371/journal.pone.0006036

E. Ooneill and W. Kolh, Conferring specificity on the ubiquitous Raf/MEK signalling pathway, British Journal of Cancer, vol.81, issue.2, pp.283-291
DOI : 10.1016/S0888-7543(02)00008-3

A. Orenbuch, Synapsin Selectively Controls the Mobility of Resting Pool Vesicles at Hippocampal Terminals, Journal of Neuroscience, vol.32, issue.12, pp.3969-80, 2012.
DOI : 10.1523/JNEUROSCI.5058-11.2012

M. Ormö, Crystal Structure of the Aequorea victoria Green Fluorescent Protein, Science, vol.273, issue.5280, pp.2731392-2731397, 1996.
DOI : 10.1126/science.273.5280.1392

S. Padilla-parra, Dual-color fluorescence lifetime correlation spectroscopy to quantify protein-protein interactions in live cell, Microscopy Research and Technique, vol.9, issue.8, pp.74788-793, 2011.
DOI : 10.1016/S0960-9822(99)80484-9

URL : https://hal.archives-ouvertes.fr/inserm-00604664

S. Padilla-parra, Quantitative Comparison of Different Fluorescent Protein Couples for Fast FRET-FLIM Acquisition, Biophysical Journal, vol.97, issue.8, pp.2368-2376, 2009.
DOI : 10.1016/j.bpj.2009.07.044

URL : https://hal.archives-ouvertes.fr/hal-00441625

S. Padilla-parra, Quantitative FRET Analysis by Fast Acquisition Time Domain FLIM at High Spatial Resolution in Living Cells, Biophysical Journal, vol.95, issue.6, pp.2976-2988, 2008.
DOI : 10.1529/biophysj.108.131276

URL : https://hal.archives-ouvertes.fr/hal-00289731

S. Padilla-parra and M. Tramier, FRET microscopy in the living cell: Different approaches, strengths and weaknesses, BioEssays, vol.3, issue.5, pp.369-376, 2012.
DOI : 10.1007/s12551-011-0047-6

URL : https://hal.archives-ouvertes.fr/inserm-00683306

O. Pertz, Spatiotemporal dynamics of RhoA activity in migrating cells, Nature, vol.406, issue.7087, pp.4401069-72, 2006.
DOI : 10.1016/S0076-6879(06)06012-5

M. Peter, Multiphoton-FLIM Quantification of the EGFP-mRFP1 FRET Pair for Localization of Membrane Receptor-Kinase Interactions, Biophysical Journal, vol.88, issue.2, pp.1224-1237, 2005.
DOI : 10.1529/biophysj.104.050153

A. Peyker, O. Rocks, and P. I. Bastiaens, Imaging Activation of Two Ras Isoforms Simultaneously in a Single Cell, ChemBioChem, vol.197, issue.1, pp.78-85, 2005.
DOI : 10.1046/j.1365-2818.2000.00651.x

K. D. Piatkevich, Monomeric red fluorescent proteins with a large Stokes shift, Proceedings of the National Academy of Sciences of the United States of America, pp.5369-74, 2010.
DOI : 10.1529/biophysj.106.085845

A. Piljic and C. Schultz, Simultaneous Recording of Multiple Cellular Events by FRET, ACS Chemical Biology, vol.3, issue.3, pp.156-160, 2008.
DOI : 10.1021/cb700247q

G. Rabut, V. Doye, and J. Ellenberg, Mapping the dynamic organization of the nuclear pore complex inside single living cells, Nature Cell Biology, vol.216, issue.11, pp.1114-1135, 2004.
DOI : 10.1111/j.0022-2720.2004.01404.x

M. Raspe, siFLIM: single-image frequency-domain FLIM provides fast and photon-efficient lifetime data, Nature Methods, vol.13, issue.6, pp.1-6, 2015.
DOI : 10.1016/0301-4622(93)85012-7

K. Ray, J. Zhang, and J. R. Lakowicz, Fluorescence Lifetime Correlation Spectroscopic Study of Fluorophore-Labeled Silver Nanoparticles, Analytical Chemistry, vol.80, issue.19, pp.7313-7318, 2008.
DOI : 10.1021/ac8009356

J. Rino, Frontiers in fluorescence microscopy, The International Journal of Developmental Biology, vol.53, issue.8-9-10, pp.1569-1579, 2009.
DOI : 10.1387/ijdb.072351jr

P. J. Roberts and C. J. Der, Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer, Oncogene, vol.24, issue.22, pp.263291-3310, 2007.
DOI : 10.1038/72799

A. Sasaki, Raster image cross-correlation analysis for spatiotemporal visualization of intracellular degradation activities against exogenous DNAs Scientific reports, p.14428, 2015.

P. C. Schneider and R. M. Clegg, Rapid acquisition, analysis, and display of fluorescence lifetime-resolved images for real-time applications, Review of Scientific Instruments, vol.68, issue.11, pp.684107-4119, 1997.
DOI : 10.1063/1.1140677

P. Schwille, F. J. Meyer-almes, and R. Rigler, Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution, Biophysical Journal, vol.72, issue.4, pp.1878-86, 1997.
DOI : 10.1016/S0006-3495(97)78833-7

N. Sengupta, P. K. Vinod, and K. V. Venkatesh, Crosstalk between cAMP-PKA and MAP kinase pathways is a key regulatory design necessary to regulate FLO11 expression, Biophysical Chemistry, vol.125, issue.1, pp.59-71, 2007.
DOI : 10.1016/j.bpc.2006.06.012

N. C. Shaner, Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein, Nature Biotechnology, vol.177, issue.12, pp.1567-72, 2004.
DOI : 10.1016/S0165-0270(00)00354-X

N. C. Shaner, Improving the photostability of bright monomeric orange and red fluorescent proteins, Nature Methods, vol.96, issue.6, pp.545-551, 2008.
DOI : 10.1038/nmeth.1209

N. C. Shaner, G. H. Patterson, and M. W. Davidson, Advances in fluorescent protein technology, Journal of Cell Science, vol.120, issue.24, pp.4247-60, 2007.
DOI : 10.1242/jcs.005801

N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, A guide to choosing fluorescent proteins, Nature Methods, vol.102, issue.12, pp.905-909, 2005.
DOI : 10.1099/00221287-147-5-1383

K. K. Sharman, Error Analysis of the Rapid Lifetime Determination Method for Double-Exponential Decays and New Windowing Schemes, Analytical Chemistry, vol.71, issue.5, pp.947-952, 1999.
DOI : 10.1021/ac981050d

D. M. Shcherbakova, An Orange Fluorescent Protein with a Large Stokes Shift for Single-Excitation Multicolor FCCS and FRET Imaging, Journal of the American Chemical Society, vol.134, issue.18, pp.7913-7923, 2012.
DOI : 10.1021/ja3018972

D. M. Shcherbakova and V. Verkhusha, Near-infrared fluorescent proteins for multicolor in vivo imaging, Nature Methods, vol.132, issue.8, pp.751-755, 2013.
DOI : 10.1016/j.cell.2008.01.016

D. Shcherbo, Far-red fluorescent tags for protein imaging in living tissues, Biochemical Journal, vol.418, issue.3, pp.567-574, 2009.
DOI : 10.1042/BJ20081949

S. J. Singer and G. L. Nicolson, The Fluid Mosaic Model of the Structure of Cell Membranes, Science, vol.175, issue.4023, pp.720-731, 1972.
DOI : 10.1126/science.175.4023.720

F. Sipieter, Novel Reporter for Faithful Monitoring of ERK2 Dynamics in Living Cells and Model Organisms, PLOS ONE, vol.10, issue.10, p.140924, 2015.
DOI : 10.1371/journal.pone.0140924.s007

F. D. Smith, AKAP-Lbc enhances cyclic AMP control of the ERK1/2 cascade, Nature Cell Biology, vol.12, issue.12, pp.1242-1249, 2010.
DOI : 10.1016/j.cub.2004.07.051

F. D. Ith, L. K. Lageeeg, and J. D. Ott, The heees aad he's of kiase aahoig, Trends in Biochemical Sciences, issue.6, pp.31316-323

P. J. Stork and J. M. Schmitt, Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation, Trends in Cell Biology, vol.12, issue.6, pp.258-266, 2002.
DOI : 10.1016/S0962-8924(02)02294-8

T. Su, Monitoring of dual bio-molecular events using FRET biosensors based on mTagBFP/sfGFP and mVenus/mKO?? fluorescent protein pairs, Biosensors and Bioelectronics, vol.46, pp.97-101, 2013.
DOI : 10.1016/j.bios.2013.02.024

E. Tavares, Live-cell FRET imaging reveals clustering of the prion protein at the cell surface induced by infectious prions, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1842, issue.7, pp.1842981-91, 2014.
DOI : 10.1016/j.bbadis.2014.02.002

S. S. Taylor, Dynamics of signaling by PKA, Proteins and Proteomics, pp.25-37, 2005.
DOI : 10.1016/j.bbapap.2005.08.024

Y. Terada, Y. Uetake, and R. Kuriyama, and mammalian cells, The Journal of Cell Biology, vol.58, issue.5, pp.757-763, 2003.
DOI : 10.1038/2496

C. Thaler, Structural rearrangement of CaMKII?? catalytic domains encodes activation, Proceedings of the National Academy of Sciences, vol.85, issue.4, pp.6369-74, 2009.
DOI : 10.1016/S0006-3495(03)74679-7

F. Tokumasu and J. Dvorak, Development and application of quantum dots for immunocytochemistry of human erythrocytes, Journal of Microscopy, vol.21, issue.3, pp.256-261, 2003.
DOI : 10.1177/31.11.6194203

M. Tramier, Picosecond-Hetero-FRET Microscopy to Probe Protein-Protein Interactions in Live Cells, Biophysical Journal, vol.83, issue.6, pp.3570-3577, 2002.
DOI : 10.1016/S0006-3495(02)75357-5

J. Trewhella, Protein kinase A targeting and activation as seen by small-angle solution scattering, European Journal of Cell Biology, vol.85, issue.7, pp.655-662, 2006.
DOI : 10.1016/j.ejcb.2006.01.003

R. Y. Tsien, THE GREEN FLUORESCENT PROTEIN, Annual Review of Biochemistry, vol.67, issue.1, pp.509-553, 1998.
DOI : 10.1146/annurev.biochem.67.1.509

J. A. Ubersax and J. E. Ferrell-jr, Mechanisms of specificity in protein phosphorylation, Nature Reviews Molecular Cell Biology, vol.298, issue.7, pp.530-541, 2007.
DOI : 10.1128/MCB.16.11.6486

T. N. Van, Fluorescent protein biosensor for probing CDK/cyclin activity in vitro and in living cells. Cheeeiohee : a Europeaa joural of heeial iology, pp.2298-305, 2014.

P. Vandame, Optimization of ERK Activity Biosensors for both Ratiometric and Lifetime FRET Measurements, Sensors, vol.6, issue.1, pp.1140-1154, 2014.
DOI : 10.1126/scisignal.2004135

P. Vandame, Optimization of ERK Activity Biosensors for both Ratiometric and Lifetime FRET Measurements, Sensors, vol.6, issue.1, pp.1140-1154, 2013.
DOI : 10.1126/scisignal.2004135

Z. Wang, Rap1-Mediated Activation of Extracellular Signal-Regulated Kinases by Cyclic AMP Is Dependent on the Mode of Rap1 Activation, Molecular and Cellular Biology, vol.26, issue.6, pp.2130-2175, 2006.
DOI : 10.1128/MCB.26.6.2130-2145.2006

S. E. Webb, A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning, Review of Scientific Instruments, vol.193, issue.4, p.1898, 2002.
DOI : 10.1046/j.1365-2818.1999.00427.x

G. Weber, Dependence of the polarization of the fluorescence on the concentration, Transactions of the Faraday Society, vol.50, issue.0, p.552, 1954.
DOI : 10.1039/tf9545000552

C. Wellbrock, M. Karasarides, and R. Marais, The RAF proteins take centre stage, Nature Reviews Molecular Cell Biology, vol.9, issue.11, pp.875-885, 2004.
DOI : 10.1128/MCB.8.6.2651

P. W. Wiseman, Spatial mapping of integrin interactions and dynamics during cell migration by Image Correlation Microscopy, Journal of Cell Science, vol.117, issue.23, pp.5521-5555, 2004.
DOI : 10.1242/jcs.01416

P. W. Wiseman, Two-photon image correlation spectroscopy and image cross-correlation spectroscopy, Journal of Microscopy, vol.200, issue.1, pp.14-25, 2000.
DOI : 10.1046/j.1365-2818.2000.00736.x

F. Witzel, L. Maddison, and N. Blüthgen, How scaffolds shape MAPK signaling: what we know and opportunities for systems approaches, Frontiers in Physiology, vol.3, 2012.
DOI : 10.3389/fphys.2012.00475

A. Woehler, Simultaneous Quantitative Live Cell Imaging of Multiple FRET-Based Biosensors, PLoS ONE, vol.33, issue.4, 2013.
DOI : 10.1371/journal.pone.0061096.g005

X. Wu, Selective Activation of MEK1 but Not MEK2 by A-Raf from Epidermal Growth Factor-stimulated Hela Cells, Journal of Biological Chemistry, vol.72, issue.6, pp.3265-71, 1996.
DOI : 10.1016/0092-8674(93)90117-9

D. Zhang, Aurora A overexpression induces cellular senescence in mammary gland hyperplastic tumors developed in p53-deficient mice, Oncogene, vol.62, issue.31, pp.4305-4319, 2008.
DOI : 10.1101/gad.12.19.2997

J. Zhang, Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering, Proceedings of the National Academy of Sciences of the United States of America, pp.9814997-15002, 2001.
DOI : 10.1093/emboj/20.8.1921

J. Zhang, Insulin disrupts ??-adrenergic signalling to protein kinase A in adipocytes, Nature, vol.22, issue.7058, pp.569-573, 2005.
DOI : 10.1128/MCB.22.17.6272-6285.2002