R. Yusen, L. Edwards, and A. Kucheryavaya, The Registry of the International Society for Heart and Lung Transplantation: Thirty-first Adult Lung and Heart???Lung Transplant Report???2014; Focus Theme: Retransplantation, The Journal of Heart and Lung Transplantation, vol.33, issue.10, pp.1009-1033, 2014.
DOI : 10.1016/j.healun.2014.08.004

R. Halbert, J. Natoli, A. Gano, E. Badamgarav, A. Buist et al., Global burden of COPD: systematic review and meta-analysis, European Respiratory Journal, vol.28, issue.3, pp.523-555, 2006.
DOI : 10.1183/09031936.06.00124605

A. Buist, M. Mcburnie, and W. Vollmer, International variation in the prevalence of COPD (The BOLD Study): a population-based prevalence study, The Lancet, vol.370, issue.9589, pp.741-50, 2007.
DOI : 10.1016/S0140-6736(07)61377-4

J. Orens, M. Estenne, and S. Arcasoy, International Guidelines for the Selection of Lung Transplant Candidates: 2006 Update???A Consensus Report From the Pulmonary Scientific Council of the International Society for Heart and Lung Transplantation, The Journal of Heart and Lung Transplantation, vol.25, issue.7, pp.745-55, 2006.
DOI : 10.1016/j.healun.2006.03.011

M. Kreider and R. Kotloff, Selection of Candidates for Lung Transplantation, Proceedings of the American Thoracic Society, vol.6, issue.1, pp.20-27, 2009.
DOI : 10.1513/pats.200808-097GO

D. Weill, C. Benden, and P. Corris, A consensus document for the selection of lung transplant candidates: 2014???An update from the Pulmonary Transplantation Council of the International Society for Heart and Lung Transplantation, The Journal of Heart and Lung Transplantation, vol.34, issue.1, pp.1-15, 2015.
DOI : 10.1016/j.healun.2014.06.014

P. Zheng, R. Kornfield, C. Olmo, J. Guy, J. Inadomi et al., Reduced Effectiveness of Standard Recruitment for Deceased Organ Donor Registration: The Need for Population-Specific Recruitment Materials, Digestive Diseases and Sciences, vol.36, issue.5, pp.1535-1576, 2011.
DOI : 10.1016/S0738-3991(98)00134-7

S. Deedat, C. Kenten, and M. Morgan, What are effective approaches to increasing rates of organ donor registration among ethnic minority populations: a systematic review, BMJ Open, vol.3, issue.12, p.3453, 2013.
DOI : 10.1136/bmjopen-2013-003453

H. Date, M. Yamane, S. Toyooka, M. Okazaki, M. Aoe et al., Current status and potential of living-donor lobar lung transplantation, Frontiers in Bioscience, vol.13, issue.13, pp.1433-1442, 2008.
DOI : 10.2741/2772

A. Aoyama, F. Chen, and K. Minakata, Sparing Native Upper Lobes in Living-Donor Lobar Lung Transplantation: Five Cases From a Single Center, American Journal of Transplantation, vol.31, issue.12, 2015.
DOI : 10.1016/j.healun.2011.12.009

H. Date, M. Sato, and A. Aoyama, Living-donor lobar lung transplantation provides similar survival to cadaveric lung transplantation even for very ill patients???, European Journal of Cardio-Thoracic Surgery, vol.13, issue.6, pp.967-72, 2015.
DOI : 10.1111/ajt.12476

URL : https://academic.oup.com/ejcts/article-pdf/47/6/967/17777104/ezu350.pdf

C. Aigner, S. Mazhar, and P. Jaksch, Lobar transplantation, split lung transplantation and peripheral segmental resection ??? reliable procedures for downsizing donor lungs, European Journal of Cardio-Thoracic Surgery, vol.25, issue.2, pp.179-83, 2004.
DOI : 10.1016/j.ejcts.2003.11.009

URL : https://academic.oup.com/ejcts/article-pdf/25/2/179/17809253/25-2-179.pdf

J. Orens, A. Boehler, and M. De-perrot, A review of lung transplant donor acceptability criteria, The Journal of Heart and Lung Transplantation, vol.22, issue.11, pp.1183-200, 2003.
DOI : 10.1016/S1053-2498(03)00096-2

J. Lee, J. Christie, and S. Keshavjee, Primary Graft Dysfunction: Definition, Risk Factors, Short- and Long-Term Outcomes, Seminars in Respiratory and Critical Care Medicine, vol.31, issue.02, pp.161-71, 2010.
DOI : 10.1055/s-0030-1249111

URL : http://www.thieme-connect.de/products/ejournals/pdf/10.1055/s-0030-1249111.pdf

M. De-perrot, R. Bonser, and J. Dark, Report of the ISHLT Working Group on Primary Lung Graft Dysfunction Part III: Donor-Related Risk Factors and Markers, The Journal of Heart and Lung Transplantation, vol.24, issue.10, pp.1460-1467, 2005.
DOI : 10.1016/j.healun.2005.02.017

J. Christie, R. Kotloff, and V. Ahya, The Effect of Primary Graft Dysfunction on Survival after Lung Transplantation, American Journal of Respiratory and Critical Care Medicine, vol.171, issue.11, pp.1312-1318, 2005.
DOI : 10.1016/S1053-2498(00)00547-7

J. Diamond and J. Christie, The contribution of airway and lung tissue ischemia to primary graft dysfunction, Current Opinion in Organ Transplantation, vol.15, issue.5, pp.552-559, 2010.
DOI : 10.1097/MOT.0b013e32833e1415

S. Arcasoy, A. Fisher, R. Hachem, M. Scavuzzo, and L. Ware, Report of the ISHLT Working Group on Primary Lung Graft Dysfunction Part V: Predictors and Outcomes, The Journal of Heart and Lung Transplantation, vol.24, issue.10, pp.1483-1491, 2005.
DOI : 10.1016/j.healun.2004.11.314

R. Kotloff and G. Thabut, Lung Transplantation, American Journal of Respiratory and Critical Care Medicine, vol.17, issue.2, pp.159-71, 2011.
DOI : 10.2165/00003495-200868150-00004

J. Christie, M. Carby, R. Bag, P. Corris, M. Hertz et al., Report of the ISHLT Working Group on Primary Lung Graft Dysfunction Part II: Definition. A Consensus Statement of the International Society for Heart and Lung Transplantation, The Journal of Heart and Lung Transplantation, vol.24, issue.10, pp.1454-1463, 2005.
DOI : 10.1016/j.healun.2004.11.049

D. Kreisel, A. Krupnick, and V. Puri, Short- and long-term outcomes of 1000 adult lung transplant recipients at a single center, The Journal of Thoracic and Cardiovascular Surgery, vol.141, issue.1, pp.215-237, 2011.
DOI : 10.1016/j.jtcvs.2010.09.009

B. Whitson, M. Prekker, and C. Herrington, Primary Graft Dysfunction and Long-term Pulmonary Function After Lung Transplantation, The Journal of Heart and Lung Transplantation, vol.26, issue.10, pp.1004-1015, 2007.
DOI : 10.1016/j.healun.2007.07.018

M. Perrot, . De, M. Liu, T. Waddell, and S. Keshavjee, Ischemia???Reperfusion???induced Lung Injury, American Journal of Respiratory and Critical Care Medicine, vol.167, issue.4, pp.490-511, 2003.
DOI : 10.1016/S1053-2498(01)00646-5

D. Perrot, M. Sekine, Y. Fischer, and S. , Interleukin-8 Release during Early Reperfusion Predicts Graft Function in Human Lung Transplantation, American Journal of Respiratory and Critical Care Medicine, vol.162, issue.2, pp.211-216, 2002.
DOI : 10.1002/hep.510300615

M. Eppinger, G. Deeb, S. Bolling, and P. Ward, Mediators of ischemia-reperfusion injury of rat lung, Am J Pathol, vol.150, issue.5, pp.1773-84, 1997.

M. Eppinger, M. Jones, G. Deeb, S. Bolling, and P. Ward, Pattern of Injury and the Role of Neutrophils in Reperfusion Injury of Rat Lung, Journal of Surgical Research, vol.58, issue.6, pp.713-721, 1995.
DOI : 10.1006/jsre.1995.1112

S. Fiser, C. Tribble, and S. Long, Lung transplant reperfusion injury involves pulmonary macrophages and circulating leukocytes in a biphasic response, The Journal of Thoracic and Cardiovascular Surgery, vol.121, issue.6, pp.1069-75, 2001.
DOI : 10.1067/mtc.2001.113603

M. Covarrubias, L. Ware, and S. Kawut, Plasma Intercellular Adhesion Molecule-1 and von Willebrand Factor in Primary Graft Dysfunction After Lung Transplantation, American Journal of Transplantation, vol.159, issue.11, pp.2573-2581, 2007.
DOI : 10.1111/j.1600-6143.2006.01673.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1600-6143.2007.01981.x/pdf

J. Diamond and C. Wigfield, Role of innate immunity in primary graft dysfunction after lung transplantation, Current Opinion in Organ Transplantation, vol.18, issue.5
DOI : 10.1097/MOT.0b013e3283651994

R. Schmid, A. Zollinger, and T. Singer, Effect of soluble complement receptor type 1 on reperfusion edema and neutrophil migration after lung allotransplantation in swine, The Journal of Thoracic and Cardiovascular Surgery, vol.116, issue.1, pp.90-97, 1998.
DOI : 10.1016/S0022-5223(98)70246-6

S. Keshavjee, R. Davis, M. Zamora, M. De-perrot, and G. Patterson, A randomized, placebo-controlled trial of complement inhibition in ischemia-reperfusion injury after lung transplantation in human beings, The Journal of Thoracic and Cardiovascular Surgery, vol.129, issue.2, pp.423-431, 2005.
DOI : 10.1016/j.jtcvs.2004.06.048

R. Shah, A. Emtiazjoo, and J. Diamond, Plasma Complement Levels Are Associated with Primary Graft Dysfunction and Mortality after Lung Transplantation, American Journal of Respiratory and Critical Care Medicine, vol.189, issue.12, pp.1564-1571, 2014.
DOI : 10.4049/jimmunol.1202242

URL : http://europepmc.org/articles/pmc4226014?pdf=render

D. Pinsky, H. Liao, and C. Lawson, Coordinated induction of plasminogen activator inhibitor-1 (PAI-1) and inhibition of plasminogen activator gene expression by hypoxia promotes pulmonary vascular fibrin deposition., Journal of Clinical Investigation, vol.102, issue.5, pp.919-947, 1998.
DOI : 10.1172/JCI307

K. Okada, T. Fujita, K. Minamoto, H. Liao, Y. Naka et al., Potentiation of Endogenous Fibrinolysis and Rescue from Lung Ischemia/Reperfusion Injury in Interleukin (IL)-10-reconstituted IL-10 Null Mice, Journal of Biological Chemistry, vol.267, issue.28, pp.21468-76, 2000.
DOI : 10.1172/JCI118392

S. Idell, Coagulation, fibrinolysis, and fibrin deposition in acute lung injury, Critical Care Medicine, vol.31, issue.Supplement, 2003.
DOI : 10.1097/01.CCM.0000057846.21303.AB

X. Zhang, P. Shan, J. Alam, R. Davis, R. Flavell et al., Carbon Monoxide Modulates Fas/Fas Ligand, Caspases, and Bcl-2 Family Proteins via the p38?? Mitogen-activated Protein Kinase Pathway during Ischemia-Reperfusion Lung Injury, Journal of Biological Chemistry, vol.163, issue.24, pp.22061-70, 2003.
DOI : 10.1084/jem.192.10.1391

L. Ware, J. Golden, W. Finkbeiner, and M. Matthay, Alveolar Epithelial Fluid Transport Capacity in Reperfusion Lung Injury after Lung Transplantation, American Journal of Respiratory and Critical Care Medicine, vol.157, issue.3, pp.980-988, 1999.
DOI : 10.1164/ajrccm.155.3.9117007

J. Frank, R. Briot, J. Lee, A. Ishizaka, T. Uchida et al., Physiological and biochemical markers of alveolar epithelial barrier dysfunction in perfused human lungs, American Journal of Physiology-Lung Cellular and Molecular Physiology, vol.293, issue.1, pp.52-61, 2007.
DOI : 10.1016/S0140-6736(02)09774-X

M. Matthay, L. Robriquet, and X. Fang, Alveolar Epithelium: Role in Lung Fluid Balance and Acute Lung Injury, Proceedings of the American Thoracic Society, vol.2, issue.3
DOI : 10.1513/pats.200501-009AC

J. Kaplan, E. Trulock, J. Cooper, and D. Schuster, Pulmonary Vascular Permeability after Lung Transplantation: A Positron Emission Tomographic Study, American Review of Respiratory Disease, vol.98, issue.4_pt_1, pp.954-961, 1992.
DOI : 10.2214/ajr.112.3.546

D. Hunter, C. Morgan, M. Yacoub, and T. Evans, Pulmonary Endothelial Permeability Following Lung Transplantation, Chest, vol.102, issue.2, pp.417-438, 1992.
DOI : 10.1378/chest.102.2.417

I. Garutti, J. Sanz, and L. Olmedilla, Extravascular Lung Water and Pulmonary Vascular Permeability Index Measured at the End of Surgery Are Independent Predictors of Prolonged Mechanical Ventilation in Patients Undergoing Liver Transplantation, Anesthesia & Analgesia, vol.121, issue.3, 2015.
DOI : 10.1213/ANE.0000000000000875

M. Matthay, Resolution of Pulmonary Edema. Thirty Years of Progress, American Journal of Respiratory and Critical Care Medicine, vol.119, issue.11, pp.1301-1309, 2014.
DOI : 10.1097/01.anes.0000265153.17062.64

B. Whitson, D. Nath, and A. Johnson, Risk factors for primary graft dysfunction after lung transplantation, The Journal of Thoracic and Cardiovascular Surgery, vol.131, issue.1, pp.73-80, 2006.
DOI : 10.1016/j.jtcvs.2005.08.039

URL : https://doi.org/10.1016/j.jtcvs.2005.08.039

D. Pilcher, G. Snell, C. Scheinkestel, M. Bailey, and T. Williams, High Donor Age, Low Donor Oxygenation, and High Recipient Inotrope Requirements Predict Early Graft Dysfunction in Lung Transplant Recipients, The Journal of Heart and Lung Transplantation, vol.24, issue.11, pp.1814-1834, 2005.
DOI : 10.1016/j.healun.2005.04.003

M. Samano, L. Fernandes, and J. Baranauskas, Risk Factors and Survival Impact of Primary Graft Dysfunction After Lung Transplantation in a Single Institution, Transplantation Proceedings, vol.44, issue.8, pp.2462-2470, 2012.
DOI : 10.1016/j.transproceed.2012.07.134

J. Diamond, J. Lee, and S. Kawut, Clinical Risk Factors for Primary Graft Dysfunction after Lung Transplantation, American Journal of Respiratory and Critical Care Medicine, vol.187, issue.5, pp.527-561, 2013.
DOI : 10.1016/j.healun.2012.08.004

URL : http://europepmc.org/articles/pmc3733407?pdf=render

Y. Liu, Y. Liu, L. Su, and S. Jiang, Recipient-Related Clinical Risk Factors for Primary Graft Dysfunction after Lung Transplantation: A Systematic Review and Meta-Analysis, PLoS ONE, vol.24, issue.3, p.92773, 2014.
DOI : 10.1371/journal.pone.0092773.s001

URL : https://doi.org/10.1371/journal.pone.0092773

B. Gulack, S. Hirji, and M. Hartwig, Bridge to lung transplantation and rescue post-transplant: the expanding role of extracorporeal membrane oxygenation, J Thorac Dis, vol.6, issue.8, pp.1070-1079, 2014.

J. Currey, D. Pilcher, and A. Davies, Implementation of a management guideline aimed at minimizing the severity of primary graft dysfunction after lung transplant, The Journal of Thoracic and Cardiovascular Surgery, vol.139, issue.1, pp.154-61, 2010.
DOI : 10.1016/j.jtcvs.2009.08.031

S. Steen, T. Sjöberg, L. Pierre, Q. Liao, L. Eriksson et al., Transplantation of lungs from a non-heart-beating donor, The Lancet, vol.357, issue.9259, pp.825-834, 2001.
DOI : 10.1016/S0140-6736(00)04195-7

D. Van-raemdonck, A. Neyrinck, M. Cypel, and S. Keshavjee, Ex-vivo lung perfusion, Transplant International, vol.380, issue.S2, pp.643-56, 2015.
DOI : 10.1016/S0140-6736(12)61344-0

A. Wallinder, S. Ricksten, and M. Silverborn, Early results in transplantation of initially rejected donor lungs after ex vivo lung perfusion: a case-control study, European Journal of Cardio-Thoracic Surgery, vol.31, issue.10, pp.40-44, 2014.
DOI : 10.1016/j.healun.2012.08.016

T. Okamoto, F. Chen, and J. Zhang, Comparison of Extracellular-Type???Kyoto Solution and Perfadex as a Preservation Solution in a Pig Ex Vivo Lung Perfusion Model: Impact of Potassium Level, Transplantation Proceedings, vol.43, issue.5, pp.1525-1533, 2011.
DOI : 10.1016/j.transproceed.2011.03.012

P. Soares, K. A. Braga, . Do, and N. Nepomuceno, Comparison Between Perfadex and Locally Manufactured Low-Potassium Dextran Solution for Pulmonary Preservation in an Ex Vivo Isolated Lung Perfusion Model, Transplantation Proceedings, vol.43, issue.1, pp.84-92, 2011.
DOI : 10.1016/j.transproceed.2010.12.005

M. Roman, O. Gjorgjimajkoska, and D. Neil, Comparison between cellular and acellular perfusates for ex vivo lung perfusion in a porcine model, The Journal of Heart and Lung Transplantation, vol.34, issue.7, pp.978-87, 2015.
DOI : 10.1016/j.healun.2015.03.023

A. Halldorsson, M. Kronon, and B. Allen, Controlled reperfusion prevents pulmonary injury after 24 hours of lung preservation, The Annals of Thoracic Surgery, vol.66, issue.3, pp.877-84, 1998.
DOI : 10.1016/S0003-4975(98)00673-0

S. Guth, D. Prüfer, T. Kramm, and E. Mayer, Length of pressure-controlled reperfusion is critical for reducing ischaemia-reperfusion injury in an isolated rabbit lung model, Journal of Cardiothoracic Surgery, vol.52, issue.3, p.54, 2007.
DOI : 10.1055/s-2004-817977

M. De-perrot, Y. Imai, and G. Volgyesi, Effect of ventilator-induced lung injury on the development of reperfusion injury in a rat lung transplant model, The Journal of Thoracic and Cardiovascular Surgery, vol.124, issue.6, pp.1137-1181, 2002.
DOI : 10.1067/mtc.2002.125056

A. Soluri-martins, Y. Sutherasan, P. Silva, P. Pelosi, and P. Rocco, How to minimise ventilator-induced lung injury in transplanted lungs, European Journal of Anaesthesiology, 2015.
DOI : 10.1097/EJA.0000000000000291

J. Stone, H. Sevenoaks, T. Sjöberg, S. Steen, N. Yonan et al., Mechanical removal of dendritic cell???generating non-classical monocytes via ex vivo lung perfusion, The Journal of Heart and Lung Transplantation, vol.33, issue.8, pp.864-873, 2014.
DOI : 10.1016/j.healun.2014.03.005

S. Lindstedt, J. Hlebowicz, and B. Koul, Comparative outcome of double lung transplantation using conventional donor lungs and non-acceptable donor lungs reconditioned ex vivo, Interactive CardioVascular and Thoracic Surgery, vol.83, issue.6, pp.162-167, 2011.
DOI : 10.1016/j.athoracsur.2007.01.033

R. Ingemansson, A. Eyjolfsson, and L. Mared, Clinical Transplantation of Initially Rejected Donor Lungs After Reconditioning Ex Vivo, The Annals of Thoracic Surgery, vol.87, issue.1, pp.255-60, 2009.
DOI : 10.1016/j.athoracsur.2008.09.049

A. Wallinder, S. Ricksten, and C. Hansson, Transplantation of initially rejected donor lungs after ex vivo lung perfusion, The Journal of Thoracic and Cardiovascular Surgery, vol.144, issue.5, pp.1222-1230, 2012.
DOI : 10.1016/j.jtcvs.2012.08.011

M. Cypel, J. Yeung, and M. Liu, Normothermic Ex Vivo Lung Perfusion in Clinical Lung Transplantation, New England Journal of Medicine, vol.364, issue.15
DOI : 10.1056/NEJMoa1014597

M. Cypel, J. Yeung, and T. Machuca, Experience with the first 50 ex??vivo lung perfusions in clinical transplantation, The Journal of Thoracic and Cardiovascular Surgery, vol.144, issue.5, 2012.
DOI : 10.1016/j.jtcvs.2012.08.009

P. Pêgo-fernandes, I. De-medeiros, and A. Mariani, Ex Vivo Lung Perfusion: Early Report of Brazilian Experience, Transplantation Proceedings, vol.42, issue.2, pp.440-443, 2010.
DOI : 10.1016/j.transproceed.2010.01.015

B. Zych, A. Popov, and G. Stavri, Early outcomes of bilateral sequential single lung transplantation after ex-vivo lung evaluation and reconditioning, The Journal of Heart and Lung Transplantation, vol.31, issue.3, pp.274-81, 2012.
DOI : 10.1016/j.healun.2011.10.008

C. Aigner, A. Slama, and K. Hötzenecker, Clinical Ex Vivo Lung Perfusion-Pushing the Limits, American Journal of Transplantation, vol.30, issue.5 Pt 2, pp.1839-1886, 2012.
DOI : 10.1016/j.healun.2011.07.014

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1600-6143.2012.04027.x/pdf

E. Sage, S. Mussot, and G. Trebbia, Lung transplantation from initially rejected donors after ex vivo lung reconditioning: the French experience???, European Journal of Cardio-Thoracic Surgery, vol.93, issue.5, pp.794-803, 2014.
DOI : 10.1097/TP.0b013e31824d7079

URL : https://academic.oup.com/ejcts/article-pdf/46/5/794/13247421/ezu245.pdf

M. Boffini, D. Ricci, and R. Bonato, Incidence and severity of primary graft dysfunction after lung transplantation using rejected grafts reconditioned with ex vivo lung perfusion???, European Journal of Cardio-Thoracic Surgery, vol.87, issue.5, pp.789-93, 2014.
DOI : 10.1016/j.athoracsur.2008.09.049

M. Boffini, D. Ricci, and C. Barbero, Ex??Vivo Lung Perfusion Increases the Pool of Lung Grafts: Analysis of Its Potential and Real Impact on a Lung Transplant Program, Transplantation Proceedings, vol.45, issue.7, pp.2624-2630, 2013.
DOI : 10.1016/j.transproceed.2013.08.004

G. Warnecke, J. Moradiellos, and I. Tudorache, Normothermic perfusion of donor lungs for preservation and assessment with the Organ Care System Lung before bilateral transplantation: a pilot study of 12 patients, The Lancet, vol.380, issue.9856, pp.1851-1859, 2012.
DOI : 10.1016/S0140-6736(12)61344-0

F. Valenza, L. Rosso, and S. Gatti, Extracorporeal Lung Perfusion and Ventilation to Improve Donor Lung Function and Increase the Number of Organs Available for Transplantation, Transplantation Proceedings, vol.44, issue.7, pp.1826-1835, 2012.
DOI : 10.1016/j.transproceed.2012.06.023

J. Fildes, L. Archer, and J. Blaikley, Clinical Outcome of Patients Transplanted with Marginal Donor Lungs via Ex Vivo Lung Perfusion Compared to Standard Lung Transplantation, Transplantation, vol.99, issue.5, pp.1078-83, 2015.
DOI : 10.1097/TP.0000000000000462

T. Egan, J. Haithcock, and W. Nicotra, Ex Vivo Evaluation of Human Lungs for Transplant Suitability, The Annals of Thoracic Surgery, vol.81, issue.4
DOI : 10.1016/j.athoracsur.2005.09.034

J. Fildes, L. Archer, and J. Blaikley, Clinical Outcome of Patients Transplanted with Marginal Donor Lungs via Ex Vivo Lung Perfusion Compared to Standard Lung Transplantation, Transplantation, vol.99, issue.5, pp.1078-83, 2015.
DOI : 10.1097/TP.0000000000000462

I. Medeiros, P. Pêgo-fernandes, and A. Mariani, Histologic and functional evaluation of lungs reconditioned by ex vivo lung perfusion, The Journal of Heart and Lung Transplantation, vol.31, issue.3, pp.305-314, 2012.
DOI : 10.1016/j.healun.2011.10.005

J. Yeung, M. Cypel, and T. Machuca, Physiologic assessment of the ex vivo donor lung for transplantation, The Journal of Heart and Lung Transplantation, vol.31, issue.10, pp.1120-1126, 2012.
DOI : 10.1016/j.healun.2012.08.016

M. Cypel, J. Yeung, and S. Hirayama, Technique for Prolonged Normothermic Ex Vivo Lung Perfusion, The Journal of Heart and Lung Transplantation, vol.27, issue.12, pp.1319-1344, 2008.
DOI : 10.1016/j.healun.2008.09.003

F. Valenza, L. Rosso, and M. Pizzocri, The Consumption of Glucose During Ex Vivo Lung Perfusion Correlates With Lung Edema, Transplantation Proceedings, vol.43, issue.4, pp.993-999, 2011.
DOI : 10.1016/j.transproceed.2011.01.122

R. Effros, G. Mason, K. Sietsema, P. Silverman, and J. Hukkanen, Fluid reabsorption and glucose consumption in edematous rat lungs, Circulation Research, vol.60, issue.5, pp.708-727, 1987.
DOI : 10.1161/01.RES.60.5.708

F. Valenza, L. Rosso, and S. Coppola, ??-Adrenergic agonist infusion during extracorporeal lung perfusion: Effects on glucose concentration in the perfusion fluid and on lung function, The Journal of Heart and Lung Transplantation, vol.31, issue.5, pp.524-554, 2012.
DOI : 10.1016/j.healun.2012.02.001

T. Koike, J. Yeung, and M. Cypel, Kinetics of lactate metabolism during acellular normothermic ex vivo lung perfusion, The Journal of Heart and Lung Transplantation, vol.30, issue.12, pp.1312-1321, 2011.
DOI : 10.1016/j.healun.2011.07.014

A. Fisher and C. Dodia, Lactate and regulation of lung glycolytic rate, American Journal of Physiology-Endocrinology and Metabolism, vol.68, issue.5, pp.426-435, 1984.
DOI : 10.1001/archinte.1971.00310170066008

S. Hoffman, L. Wang, and C. Shah, Plasma Cytokines and Chemokines in Primary Graft Dysfunction Post-Lung Transplantation, American Journal of Transplantation, vol.81, issue.2, p.389, 2009.
DOI : 10.1164/ajrccm.165.2.2011151

I. Moreno, R. Vicente, F. Ramos, J. Vicente, and M. Barberá, Determination of Interleukin-6 in Lung Transplantation: Association With Primary Graft Dysfunction, Transplantation Proceedings, vol.39, issue.7, pp.2425-2431, 2007.
DOI : 10.1016/j.transproceed.2007.07.056

J. Allen, M. Lee, E. Weiss, G. Arnaoutakis, A. Shah et al., Preoperative Recipient Cytokine Levels Are Associated With Early Lung Allograft Dysfunction, The Annals of Thoracic Surgery, vol.93, issue.6, pp.1843-1852, 2012.
DOI : 10.1016/j.athoracsur.2012.02.041

A. Emaminia, D. Lapar, and Y. Zhao, Adenosine A2A Agonist Improves Lung Function During Ex Vivo Lung Perfusion, The Annals of Thoracic Surgery, vol.92, issue.5, pp.1840-1846, 2011.
DOI : 10.1016/j.athoracsur.2011.06.062

I. Inci, S. Hillinger, S. Arni, T. Kaplan, D. Inci et al., Reconditioning of an injured lung graft with intrabronchial surfactant instillation in an ex??vivo lung perfusion system followed by transplantation, Journal of Surgical Research, vol.184, issue.2, pp.1143-1152, 2013.
DOI : 10.1016/j.jss.2013.04.043

T. Khalifé-hocquemiller, E. Sage, and P. Dorfmuller, Exogenous Surfactant Attenuates Lung Injury From Gastric-Acid Aspiration During Ex Vivo Reconditioning in Pigs, Transplantation Journal, vol.97, issue.4, pp.413-421, 2014.
DOI : 10.1097/01.TP.0000441320.10787.c5

K. Noda, N. Shigemura, and Y. Tanaka, Hydrogen Preconditioning During Ex Vivo Lung Perfusion Improves the Quality of Lung Grafts in Rats, Transplantation, vol.98, issue.5, pp.499-506, 2014.
DOI : 10.1097/TP.0000000000000254

S. Gennai, R. Souilamas, M. Maignan, A. Brouta, C. Pison et al., Effect Of Cyclosporine A In Ex Vivo Reperfused Pig Lungs. Microcirculation, pp.84-92, 2014.

A. Stanzi, A. Neyrinck, and J. Somers, Do we need to cool the lung graft after ex??vivo lung perfusion? A preliminary study, Journal of Surgical Research, vol.192, issue.2, pp.647-55, 2014.
DOI : 10.1016/j.jss.2014.07.068

M. Sadaria, P. Smith, and D. Fullerton, Cytokine Expression Profile in Human Lungs Undergoing Normothermic Ex-Vivo Lung Perfusion, The Annals of Thoracic Surgery, vol.92, issue.2, pp.478-84, 2011.
DOI : 10.1016/j.athoracsur.2011.04.027

T. George, G. Arnaoutakis, and C. Beaty, A physiologic and biochemical profile of clinically rejected lungs on a normothermic ex??vivo lung perfusion platform, Journal of Surgical Research, vol.183, issue.1, pp.75-83, 2013.
DOI : 10.1016/j.jss.2012.11.012

T. Machuca, M. Cypel, and J. Yeung, Protein Expression Profiling Predicts Graft Performance in Clinical Ex Vivo Lung Perfusion, Annals of Surgery, vol.261, issue.3, pp.591-598, 2015.
DOI : 10.1097/SLA.0000000000000974

T. Machuca, M. Cypel, and Y. Zhao, The role of the endothelin-1 pathway as a biomarker for donor lung assessment in clinical ex vivo lung perfusion, The Journal of Heart and Lung Transplantation, vol.34, issue.6, 2015.
DOI : 10.1016/j.healun.2015.01.003

A. Roberts, D. Slaaf, and I. Joshua, Potentiation of Pulmonary Arteriolar Vasoconstriction to Endothelin-1 by Inhibition of Nitric Oxide Synthesis in the Intact Lung, Microcirculation, vol.332, issue.suppl 5, pp.289-98, 1998.
DOI : 10.7326/0003-4819-114-6-464

M. Berger, C. Rozendal, and C. Schieber, The Effect of Endothelin-1 on Alveolar Fluid Clearance and Pulmonary Edema Formation in the Rat, Anesthesia & Analgesia, vol.108, issue.1, pp.225-256, 2009.
DOI : 10.1213/ane.0b013e31818881a8

Y. Sato, J. Hogg, D. English, and S. Van-eeden, Endothelin-1 Changes Polymorphonuclear Leukocytes' Deformability and CD11b Expression and Promotes Their Retention in the Lung, American Journal of Respiratory Cell and Molecular Biology, vol.58, issue.3, pp.404-414, 2000.
DOI : 10.1172/JCI119189

R. Briot, J. Frank, T. Uchida, J. Lee, C. Calfee et al., Elevated Levels of the Receptor for Advanced Glycation End Products, a Marker of Alveolar Epithelial Type I Cell Injury, Predict Impaired Alveolar Fluid Clearance in Isolated Perfused Human Lungs, Chest, vol.135, issue.2, pp.269-75, 2009.
DOI : 10.1378/chest.08-0919

M. Shirasawa, N. Fujiwara, and S. Hirabayashi, Receptor for advanced glycation end-products is a marker of type I lung alveolar cells, Genes to Cells, vol.1211, issue.2, pp.165-74, 2004.
DOI : 10.1016/0005-2760(94)90137-6

S. Buckley and C. Ehrhardt, The Receptor for Advanced Glycation End Products (RAGE) and the Lung, Journal of Biomedicine and Biotechnology, vol.177, issue.1, a723
DOI : 10.1016/j.jtcvs.2008.05.032

C. Calfee, M. Budev, and M. Matthay, Plasma Receptor for Advanced Glycation End-products Predicts Duration of ICU Stay and Mechanical Ventilation in Patients After Lung Transplantation, The Journal of Heart and Lung Transplantation, vol.26, issue.7, pp.675-80, 2007.
DOI : 10.1016/j.healun.2007.04.002

J. Christie, C. Shah, and S. Kawut, Plasma Levels of Receptor for Advanced Glycation End Products, Blood Transfusion, and Risk of Primary Graft Dysfunction, American Journal of Respiratory and Critical Care Medicine, vol.180, issue.10, pp.1010-1015, 2009.
DOI : 10.1016/j.micinf.2004.08.004

A. Pelaez, S. Force, and A. Gal, Receptor for Advanced Glycation End Products in Donor Lungs Is Associated with Primary Graft Dysfunction After Lung Transplantation, American Journal of Transplantation, vol.163, issue.3 Pt 1, pp.900-907, 2010.
DOI : 10.1164/ajrccm.163.6.2004035

P. Sanchez, K. Rajagopal, S. Pham, and B. Griffith, Defining quality during ex??vivo lung perfusion: The University of Maryland experience, The Journal of Thoracic and Cardiovascular Surgery, vol.150, issue.5, 2015.
DOI : 10.1016/j.jtcvs.2015.06.018

C. Bernard, Leçons sur les effets des substances toxiques et médicamenteuses

A. Publié-par-le-dr, . Tripier, and ]. J. Internet, Baillière et fils (Paris), pp.6-773289, 12148.

T. Sjostrand, The Formation of Carbon Monoxide by the Decomposition of Haemoglobin in Vivo., Acta Physiologica Scandinavica, vol.26, issue.4, pp.338-382, 1952.
DOI : 10.1111/j.1748-1716.1952.tb00915.x

J. Haldane, Carbon Monoxide as a Tissue Poison, Biochemical Journal, vol.21, issue.5, pp.1068-75, 1927.
DOI : 10.1042/bj0211068

J. Roderique, C. Josef, M. Feldman, and B. Spiess, A modern literature review of carbon monoxide poisoning theories, therapies, and potential targets for therapy advancement., Toxicology, vol.334, pp.45-58, 2015.
DOI : 10.1016/j.tox.2015.05.004

P. Rodgers, H. Vreman, P. Dennery, and D. Stevenson, Sources of carbon monoxide (CO) in biological systems and applications of CO detection technologies, Semin Perinatol, vol.18, issue.1, pp.2-10, 1994.

H. Vreman, R. Wong, C. Sanesi, P. Dennery, and D. Stevenson, Simultaneous production of carbon monoxide and thiobarbituric acid reactive substances in rat tissue preparations by an iron-ascorbate system, Canadian Journal of Physiology and Pharmacology, vol.76, issue.12, pp.1057-65, 1998.
DOI : 10.1139/y98-126

M. Noguchi, T. Yoshida, and G. Kikuchi, reductase for the microsomal heme oxygenase reaction yielding biliverdin IX??, FEBS Letters, vol.168, issue.2, pp.281-285, 1979.
DOI : 10.1042/bj1680417

T. Yoshida and C. Migita, Mechanism of heme degradation by heme oxygenase, Journal of Inorganic Biochemistry, vol.82, issue.1-4, pp.33-41, 2000.
DOI : 10.1016/S0162-0134(00)00156-2

S. Ryter and A. Choi, Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation, Translational Research, vol.167, issue.1, pp.1931-524400216, 2015.
DOI : 10.1016/j.trsl.2015.06.011

M. Maines, G. Trakshel, and R. Kutty, Characterization of two constitutive forms of rat liver microsomal heme oxygenase. Only one molecular species of the enzyme is inducible, J Biol Chem, vol.261, issue.1, pp.411-420, 1986.

S. Ryter, J. Alam, and A. Choi, Heme Oxygenase-1/Carbon Monoxide: From Basic Science to Therapeutic Applications, Physiological Reviews, vol.86, issue.2, pp.583-650, 2006.
DOI : 10.1084/jem.20030732

D. Levitt and M. Levitt, Carbon monoxide: a critical quantitative analysis and review of the extent and limitations of its second messenger function, Clinical Pharmacology: Advances and Applications, vol.7, pp.37-56, 2015.
DOI : 10.2147/CPAA.S79626

M. Maines, THE HEME OXYGENASE SYSTEM:A Regulator of Second Messenger Gases, Annual Review of Pharmacology and Toxicology, vol.37, issue.1, pp.517-54, 1997.
DOI : 10.1146/annurev.pharmtox.37.1.517

I. Cruse and M. Maines, Evidence suggesting that the two forms of heme oxygenase are products of different genes, J Biol Chem, vol.263, issue.7, pp.3348-53, 1988.

M. Rotenberg and M. Maines, Characterization of a cDNA-encoding rabbit brain heme oxygenase-2 and identification of a conserved domain among mammalian heme oxygenase isozymes: Possible heme-binding site?, Archives of Biochemistry and Biophysics, vol.290, issue.2, pp.336-380, 1991.
DOI : 10.1016/0003-9861(91)90549-X

S. Shibahara, R. Müller, H. Taguchi, and T. Yoshida, Cloning and expression of cDNA for rat heme oxygenase., Proceedings of the National Academy of Sciences, vol.82, issue.23, pp.7865-7874, 1985.
DOI : 10.1073/pnas.82.23.7865

K. Ishikawa, M. Sato, and T. Yoshida, Expression of rat heme oxygenase in Escherichia coli as a catalytically active, full-length form that binds to bacterial membranes, European Journal of Biochemistry, vol.41, issue.1, pp.161-166, 1991.
DOI : 10.1146/annurev.bi.51.070182.002003

K. Ozaki, S. Kimura, and N. Murase, Use of carbon monoxide in minimizing ischemia/reperfusion injury in transplantation, Transplantation Reviews, vol.26, issue.2, pp.125-164, 2012.
DOI : 10.1016/j.trre.2011.01.004

J. Alam, Multiple elements within the 5' distal enhancer of the mouse heme oxygenase-1 gene mediate induction by heavy metals, J Biol Chem, vol.269, issue.40, pp.25049-56, 1994.

J. Alam, J. Cai, and A. Smith, Isolation and characterization of the mouse heme oxygenase-1 gene. Distal 5' sequences are required for induction by heme or heavy metals, J Biol Chem, vol.269, issue.2, pp.1001-1010, 1994.

S. Camhi, J. Alam, G. Wiegand, B. Chin, and A. Choi, Transcriptional Activation of the HO-1 Gene by Lipopolysaccharide Is Mediated by 5 ??? Distal Enhancers: Role of Reactive Oxygen Intermediates and AP-1, American Journal of Respiratory Cell and Molecular Biology, vol.304, issue.2, pp.226-260, 1998.
DOI : 10.1097/00003246-198809000-00006

P. Lee, S. Camhi, B. Chin, J. Alam, and A. Choi, AP-1 and STAT mediate hyperoxia-induced gene transcription of heme oxygenase-1, American Journal of Physiology-Lung Cellular and Molecular Physiology, vol.15, issue.1, pp.175-82, 2000.
DOI : 10.1126/science.273.5276.794

J. Alam, D. Stewart, C. Touchard, S. Boinapally, A. Choi et al., Nrf2, a Cap???n???Collar Transcription Factor, Regulates Induction of the Heme Oxygenase-1 Gene, Journal of Biological Chemistry, vol.13, issue.37, pp.26071-26079, 1999.
DOI : 10.1093/nar/26.2.512

J. Alam and J. Cook, Transcriptional Regulation of the Heme Oxygenase-1 Gene Via the Stress Response Element Pathway, Current Pharmaceutical Design, vol.9, issue.30, pp.2499-511, 2003.
DOI : 10.2174/1381612033453730

M. Exner, E. Minar, O. Wagner, and M. Schillinger, The role of heme oxygenase-1 promoter polymorphisms in human disease, Free Radical Biology and Medicine, vol.37, issue.8, pp.1097-104, 2004.
DOI : 10.1016/j.freeradbiomed.2004.07.008

J. Beckman, C. Chen, and J. Nguyen, Regulation of Heme Oxygenase-1 Protein Expression by miR-377 in Combination with miR-217, Journal of Biological Chemistry, vol.8, issue.5, pp.3194-202, 2011.
DOI : 10.1016/j.ajhg.2010.02.002

E. Aguado-fraile, E. Ramos, and D. Sáenz-morales, miR-127 Protects Proximal Tubule Cells against Ischemia/Reperfusion: Identification of Kinesin Family Member 3B as miR-127 Target, PLoS ONE, vol.7, issue.9, p.44305, 2012.
DOI : 10.1371/journal.pone.0044305.s003

J. Lorenzen, T. Kaucsar, and C. Schauerte, MicroRNA-24 Antagonism Prevents Renal Ischemia Reperfusion Injury, Journal of the American Society of Nephrology, vol.25, issue.12, pp.2717-2746, 2014.
DOI : 10.1681/ASN.2013121329

URL : http://jasn.asnjournals.org/content/25/12/2717.full.pdf

R. Coburn, W. Blakemore, and R. Forster, ENDOGENOUS CARBON MONOXIDE PRODUCTION IN MAN*, Journal of Clinical Investigation, vol.42, issue.7, pp.1172-1180, 1963.
DOI : 10.1172/JCI104802

R. Coburn, The measurement of endogenous carbon monoxide production, Journal of Applied Physiology, vol.120, issue.11, pp.1949-55, 2012.
DOI : 10.1046/j.1365-2222.2001.01013.x

K. Luomanmaki and R. Coburn, Effects of metabolism and distribution of carbon monoxide on blood and body stores, American Journal of Physiology-Legacy Content, vol.217, issue.2, pp.354-63, 1969.
DOI : 10.1152/ajplegacy.1969.217.2.354

S. Brown and C. Piantadosi, In vivo binding of carbon monoxide to cytochrome c oxidase in rat brain, Journal of Applied Physiology, vol.68, issue.2, pp.604-614, 1990.
DOI : 10.1152/jappl.1990.68.2.604

A. Agostoni, R. Stabilini, G. Viggiano, M. Luzzana, and M. Samaja, Influence of capillary and tissue PO2 on carbon monoxide binding to myoglobin: A theoretical evaluation, Microvascular Research, vol.20, issue.1, pp.81-88, 1980.
DOI : 10.1016/0026-2862(80)90021-7

R. Coburn, R. Forster, and P. Kane, Considerations of the physiological variables that determine the blood carboxyhemoglobin concentration in man., Journal of Clinical Investigation, vol.44, issue.11, pp.1899-910, 1965.
DOI : 10.1172/JCI105296

V. Burg and R. , Toxicology Update, Journal of Applied Toxicology, vol.23, issue.5, pp.379-86, 1999.
DOI : 10.1021/es00063a015

W. Stadie and K. Martin, THE ELIMINATION OF CARBON MONOXIDE FROM THE BLOOD, Journal of Clinical Investigation, vol.2, issue.1, pp.77-91, 1925.
DOI : 10.1172/JCI100035

W. Fenn, THE BURNING OF CO IN TISSUES, Annals of the New York Academy of Sciences, vol.117, issue.1 Biological Ef, pp.64-71, 1970.
DOI : 10.1126/science.167.3916.243

L. Young and W. Caughey, Mitochondrial oxygenation of carbon monoxide, Biochemical Journal, vol.239, issue.1, pp.225-232, 1986.
DOI : 10.1042/bj2390225

J. Wagner, S. Horvath, and T. Dahms, Carbon monoxide elimination, Respiration Physiology, vol.23, issue.1, pp.41-48, 1975.
DOI : 10.1016/0034-5687(75)90070-5

G. Zavorsky, J. Smoliga, and L. Longo, Increased Carbon Monoxide Clearance during Exercise in Humans, Medicine & Science in Sports & Exercise, vol.44, issue.11, pp.2118-2142, 2012.
DOI : 10.1249/MSS.0b013e3182602a00

S. Ishida, A. Takeuchi, and T. Azami, Cardiac output increases the rate of carbon monoxide elimination in hyperpneic but not normally ventilated dogs, Journal of Anesthesia, vol.58, issue.2, pp.181-187, 2007.
DOI : 10.1161/01.CIR.58.3.466

C. Rose, R. Jones, L. Jenkins, and J. Siegel, The acute hyperbaric toxicity of carbon monoxide, Toxicology and Applied Pharmacology, vol.17, issue.3, pp.752-60, 1970.
DOI : 10.1016/0041-008X(70)90050-5

S. Keyse and R. Tyrrell, Both near ultraviolet radiation and the oxidizing agent hydrogen peroxide induce a 32-kDa stress protein in normal human skin fibroblasts, J Biol Chem, vol.262, issue.30, pp.14821-14826, 1987.

S. Taketani, H. Kohno, T. Yoshinaga, and R. Tokunaga, The human 32-kDa stress protein induced by exposure to arsenite and cadmium ions is heme oxygenase, FEBS Letters, vol.82, issue.1-2, pp.173-179, 1989.
DOI : 10.1073/pnas.82.23.7865

B. Chin, M. Trush, A. Choi, and T. Risby, Transcriptional regulation of the HO-1 gene in cultured macrophages exposed to model airborne particulate matter, American Journal of Physiology-Lung Cellular and Molecular Physiology, vol.268, issue.3, pp.473-80, 2003.
DOI : 10.1021/ac00240a003

S. Camhi, J. Alam, L. Otterbein, S. Sylvester, and A. Choi, Induction of heme oxygenase-1 gene expression by lipopolysaccharide is mediated by AP-1 activation., American Journal of Respiratory Cell and Molecular Biology, vol.13, issue.4, pp.387-98, 1995.
DOI : 10.1165/ajrcmb.13.4.7546768

V. Calabrese, G. Scapagnini, and C. Catalano, Regulation of heat shock protein synthesis in human skin fibroblasts in response to oxidative stress: role of vitamin E, Int J Tissue React, vol.23, issue.4, pp.127-162, 2001.

L. Otterbein, J. Kolls, L. Mantell, J. Cook, J. Alam et al., Exogenous administration of heme oxygenase-1 by gene transfer provides protection against hyperoxia-induced lung injury, Journal of Clinical Investigation, vol.103, issue.7, pp.1047-54, 1999.
DOI : 10.1172/JCI5342

S. Ryter, D. Morse, and A. Choi, Carbon Monoxide and Bilirubin, American Journal of Respiratory Cell and Molecular Biology, vol.36, issue.2, pp.175-82, 2007.
DOI : 10.1164/rccm.200601-117OC

P. Zhang, M. Lun, and C. Schworer, Heat Shock Protein Expression Is Highly Sensitive to Ischemia- Reperfusion Injury in Rat Kidneys, Ann Clin Lab Sci, vol.38, issue.1, pp.57-64, 2008.

I. Aggeli, C. Gaitanaki, and I. Beis, Involvement of JNKs and p38-MAPK/MSK1 pathways in H2O2-induced upregulation of heme oxygenase-1 mRNA in H9c2 cells, Cellular Signalling, vol.18, issue.10, pp.1801-1813, 2006.
DOI : 10.1016/j.cellsig.2006.02.001

R. Ockaili, R. Natarajan, and F. Salloum, HIF-1 activation attenuates postischemic myocardial injury: role for heme oxygenase-1 in modulating microvascular chemokine generation, American Journal of Physiology-Heart and Circulatory Physiology, vol.289, issue.2, pp.542-550, 2005.
DOI : 10.1161/hh2201.099452

S. Wu, M. Li, F. Ko, G. Wu, K. Huang et al., Protective Effect of Hypercapnic Acidosis in Ischemia-Reperfusion Lung Injury Is Attributable to Upregulation of Heme Oxygenase-1, PLoS ONE, vol.36, issue.9, p.74742, 2013.
DOI : 10.1371/journal.pone.0074742.s002

W. Ning, R. Song, and C. Li, stimulates HO-1 via the p38 mitogen-activated protein kinase in A549 pulmonary epithelial cells, American Journal of Physiology-Lung Cellular and Molecular Physiology, vol.75, issue.5, pp.1094-102, 2002.
DOI : 10.1074/jbc.M000039200

C. Terry, J. Clikeman, J. Hoidal, and K. Callahan, TNF-alpha and IL-1alpha induce heme oxygenase-1 via protein kinase C, Ca2+, and phospholipase A2 in endothelial cells, Am J Physiol, vol.276, issue.5 2, pp.1493-501, 1999.

C. Terry, J. Clikeman, J. Hoidal, and K. Callahan, Effect of tumor necrosis factor-alpha and interleukin-1

A. Paine, B. Eiz-vesper, R. Blasczyk, and S. Immenschuh, Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential, Biochemical Pharmacology, vol.80, issue.12, pp.1895-903, 2010.
DOI : 10.1016/j.bcp.2010.07.014

URL : https://hal.archives-ouvertes.fr/hal-00637151

X. Zhang, E. Bedard, and R. Potter, Mitogen-activated protein kinases regulate HO-1 gene transcription after ischemia-reperfusion lung injury, American Journal of Physiology-Lung Cellular and Molecular Physiology, vol.268, issue.4, pp.815-844, 2002.
DOI : 10.1006/bbrc.1996.0857

A. Jones, D. W. Korthuis, and R. , Heme Oxygenase-1 Deficiency Leads to Alteration of Soluble Guanylate Cyclase Redox Regulation, Journal of Pharmacology and Experimental Therapeutics, vol.335, issue.1, pp.85-91, 2010.
DOI : 10.1124/jpet.110.169755

W. Wang, A. Jones, M. Wang, D. W. Korthuis, and R. , Preconditioning with soluble guanylate cyclase activation prevents postischemic inflammation and reduces nitrate tolerance in heme oxygenase-1 knockout mice, American Journal of Physiology-Heart and Circulatory Physiology, vol.274, issue.4, pp.521-553, 2013.
DOI : 10.1152/ajpheart.01229.2009

K. Ogawa, J. Sun, and S. Taketani, Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1, The EMBO Journal, vol.20, issue.11, pp.2835-2878, 2001.
DOI : 10.1093/emboj/20.11.2835

T. Oyake, K. Itoh, and H. Motohashi, Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site., Molecular and Cellular Biology, vol.16, issue.11, pp.6083-95, 1996.
DOI : 10.1128/MCB.16.11.6083

R. Zegdi, D. Perrin, M. Burdin, R. Boiteau, and A. Tenaillon, Increased endogenous carbon monoxide production in severe sepsis, Intensive Care Medicine, vol.28, issue.6, pp.793-799, 2002.
DOI : 10.1007/s00134-002-1269-7

P. Montuschi, S. Kharitonov, and P. Barnes, Exhaled Carbon Monoxide and Nitric Oxide in COPD, Chest, vol.120, issue.2, pp.496-501, 2001.
DOI : 10.1378/chest.120.2.496

S. Sato, K. Nishimura, and H. Koyama, Optimal Cutoff Level of Breath Carbon Monoxide for Assessing Smoking Status in Patients With Asthma and COPD *, Chest, vol.124, issue.5, pp.1749-54, 2003.
DOI : 10.1378/chest.124.5.1749

G. Chatkin, J. Chatkin, G. Aued, G. Petersen, E. Jeremias et al., Avalia????o da concentra????o de mon??xido de carbono no ar exalado em tabagistas com DPOC, Jornal Brasileiro de Pneumologia, vol.366, issue.9500, pp.332-340, 2010.
DOI : 10.1016/S0140-6736(05)67632-5

URL : http://www.scielo.br/pdf/jbpneu/v36n3/en_v36n3a11.pdf

J. Shorter, D. Nelson, J. Mcmanus, M. Zahniser, S. Sama et al., O) by infrared laser spectroscopy, Journal of Breath Research, vol.5, issue.3, p.37108, 2011.
DOI : 10.1088/1752-7155/5/3/037108

P. Paredi, P. Shah, and P. Montuschi, Increased carbon monoxide in exhaled air of patients with cystic fibrosis, Thorax, vol.54, issue.10, pp.917-937, 1999.
DOI : 10.1136/thx.54.10.917

K. Zayasu, K. Sekizawa, S. Okinaga, M. Yamaya, T. Ohrui et al., Increased Carbon Monoxide in Exhaled Air of Asthmatic Patients, American Journal of Respiratory and Critical Care Medicine, vol.95, issue.4, pp.1140-1143, 1997.
DOI : 10.1164/ajrccm.152.2.7633745

I. Horvath, S. Loukides, T. Wodehouse, S. Kharitonov, P. Cole et al., Increased levels of exhaled carbon monoxide in bronchiectasis: a new marker of oxidative stress, Thorax, vol.53, issue.10, pp.867-70, 1998.
DOI : 10.1136/thx.53.10.867

J. Zhang, X. Yao, and R. Yu, Exhaled carbon monoxide in asthmatics: a meta-analysis, Respiratory Research, vol.124, issue.5, p.50, 2010.
DOI : 10.1378/chest.124.5.1749

Y. Shaoqing, Z. Ruxin, C. Yingjian, C. Jianqiu, W. Yanshen et al., A Meta-analysis of the Association of Exhaled Carbon Monoxide on Asthma and Allergic Rhinitis, Clinical Reviews in Allergy & Immunology, vol.21, issue.4, pp.67-75, 2011.
DOI : 10.1080/02770900802168687

M. Hayashi, T. Takahashi, and H. Morimatsu, Increased Carbon Monoxide Concentration in Exhaled Air After Surgery and Anesthesia, Anesthesia & Analgesia, vol.99, issue.2, pp.444-452, 2004.
DOI : 10.1213/01.ANE.0000123821.51802.F3

T. Adachi, K. Hirota, T. Hara, Y. Sasaki, and Y. Hara, Exhaled Carbon Monoxide Levels Change in Relation to Inspired Oxygen Fraction During General Anesthesia, Anesthesia & Analgesia, vol.105, issue.3, pp.696-705, 2007.
DOI : 10.1213/01.ane.0000278118.60543.7a

M. Scharte, H. Bone, H. Van-aken, and J. Meyer, Increased Carbon Monoxide in Exhaled Air of Critically Ill Patients, Biochemical and Biophysical Research Communications, vol.267, issue.1, pp.423-429, 2000.
DOI : 10.1006/bbrc.1999.1936

M. Scharte, V. Ostrowski, T. Daudel, F. Freise, H. Van-aken et al., Endogenous carbon monoxide production correlates weakly with severity of acute illness, European Journal of Anaesthesiology, vol.23, issue.2, pp.117-139, 2006.
DOI : 10.1017/S0265021505002012

H. Morimatsu, T. Takahashi, and K. Maeshima, Increased heme catabolism in critically ill patients: correlation among exhaled carbon monoxide, arterial carboxyhemoglobin, and serum bilirubin IX?? concentrations, American Journal of Physiology-Lung Cellular and Molecular Physiology, vol.290, issue.1, pp.114-123, 2006.
DOI : 10.1007/s00134-002-1269-7

J. Hou, S. Cai, and Y. Kitajima, 5-Aminolevulinic acid combined with ferrous iron induces carbon monoxide generation in mouse kidneys and protects from renal ischemia-reperfusion injury, American Journal of Physiology-Renal Physiology, vol.75, issue.8, pp.1149-57, 2013.
DOI : 10.1074/jbc.M208419200

T. Matsusaki, H. Morimatsu, and T. Takahashi, Increased exhaled carbon monoxide concentration during living donor liver transplantation, International Journal of Molecular Medicine, vol.21, issue.1, pp.75-81, 2008.
DOI : 10.3892/ijmm.21.1.75

URL : http://ousar.lib.okayama-u.ac.jp/files/public/1/12942/20160527192510530376/K003544.pdf

J. Matsumi, H. Morimatsu, and T. Matsusaki, Heme breakdown and ischemia/reperfusion injury in grafted liver during living donor liver transplantation, Int J Mol Med, vol.29, issue.2, pp.135-175, 2012.

P. Schober, M. Kalmanowicz, L. Schwarte, and S. Loer, Cardiopulmonary Bypass Increases Endogenous Carbon Monoxide Production, Journal of Cardiothoracic and Vascular Anesthesia, vol.23, issue.6, pp.802-808, 2009.
DOI : 10.1053/j.jvca.2009.03.001

J. Stone and M. Marletta, Soluble Guanylate Cyclase from Bovine Lung: Activation with Nitric Oxide and Carbon Monoxide and Spectral Characterization of the Ferrous and Ferric States, Biochemistry, vol.33, issue.18, pp.5636-5676, 1994.
DOI : 10.1021/bi00184a036

G. Deinum, J. Stone, G. Babcock, and M. Marletta, Binding of nitric oxide and carbon monoxide to soluble guanylate cyclase as observed with Resonance raman spectroscopy, Biochemistry, vol.35, issue.5, pp.1540-1547, 1996.

H. Matsumoto, K. Ishikawa, H. Itabe, and Y. Maruyama, Carbon monoxide and bilirubin from heme oxygenase-1

K. Maruyama, E. Morishita, and T. Yuno, Carbon monoxide (CO)-releasing molecule-derived CO regulates tissue factor and plasminogen activator inhibitor type 1 in human endothelial cells, Thrombosis Research, vol.130, issue.3, pp.188-93, 2012.
DOI : 10.1016/j.thromres.2012.07.002

P. Failli, A. Vannacci, D. C. Mannelli, L. Motterlini, R. Masini et al., Relaxant Effect of a Water Soluble Carbon Monoxide-Releasing Molecule (CORM-3) on Spontaneously Hypertensive Rat Aortas, Cardiovascular Drugs and Therapy, vol.461, issue.4, pp.285-92, 2012.
DOI : 10.1007/s00424-011-0924-7

R. Foresti, H. J. Clark, and J. , Vasoactive properties of CORM-3, a novel water-soluble carbon monoxide-releasing molecule, British Journal of Pharmacology, vol.93, issue.3, pp.453-60, 2004.
DOI : 10.1161/01.CIR.102.24.3015

J. Sylvester and C. Mcgowan, The effects of agents that bind to cytochrome P-450 on hypoxic pulmonary vasoconstriction, Circulation Research, vol.43, issue.3, pp.429-466, 1978.
DOI : 10.1161/01.RES.43.3.429

R. Hasan and A. Schafer, Hemin Upregulates Egr-1 Expression in Vascular Smooth Muscle Cells via Reactive Oxygen Species ERK-1/2 Elk-1 and NF-??B, Circulation Research, vol.102, issue.1, pp.42-50, 2008.
DOI : 10.1161/CIRCRESAHA.107.155143

A. Hoetzel, T. Dolinay, and S. Vallbracht, Carbon Monoxide Protects against Ventilator-induced Lung Injury via PPAR-?? and Inhibition of Egr-1, American Journal of Respiratory and Critical Care Medicine, vol.177, issue.11, pp.1223-1255, 2008.
DOI : 10.1159/000078084

C. Bernardini, A. Zannoni, M. Bacci, and M. Forni, Protective effect of carbon monoxide pre-conditioning on LPS-induced endothelial cell stress, Cell Stress and Chaperones, vol.23, issue.6, pp.219-243, 2010.
DOI : 10.1016/0008-6363(96)00113-7

L. Otterbein, B. Zuckerbraun, and M. Haga, Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury, Nature Medicine, vol.9, issue.2, pp.183-90, 2003.
DOI : 10.1038/nm817

R. Song, R. Mahidhara, F. Liu, W. Ning, L. Otterbein et al., Carbon Monoxide Inhibits Human Airway Smooth Muscle Cell Proliferation via Mitogen-Activated Protein Kinase Pathway, American Journal of Respiratory Cell and Molecular Biology, vol.27, issue.5, pp.603-613, 2002.
DOI : 10.1164/ajrccm.156.4.96-08056

S. Brouard, P. Berberat, E. Tobiasch, M. Seldon, F. Bach et al., Heme Oxygenase-1-derived Carbon Monoxide Requires the Activation of Transcription Factor NF-??B to Protect Endothelial Cells from Tumor Necrosis Factor-??-mediated Apoptosis, Journal of Biological Chemistry, vol.278, issue.20, pp.17950-61, 2002.
DOI : 10.4049/jimmunol.166.6.4185

S. Zhao, Q. Lin, and H. Li, Carbon monoxide releasing molecule-2 attenuated ischemia/reperfusion-induced apoptosis in cardiomyocytes via a mitochondrial pathway, Molecular Medicine Reports, vol.9, issue.2, pp.754-62, 2014.
DOI : 10.3892/mmr.2013.1861

X. Wang, Y. Wang, S. Lee, H. Kim, A. Choi et al., Carbon monoxide inhibits Fas activating antibody-induced apoptosis in endothelial cells, Medical Gas Research, vol.1, issue.1, p.8, 2011.
DOI : 10.1053/gast.2002.34753

S. Brouard, L. Otterbein, and J. Anrather, Carbon Monoxide Generated by Heme Oxygenase 1 Suppresses Endothelial Cell Apoptosis, The Journal of Experimental Medicine, vol.278, issue.7, pp.1015-1041, 2000.
DOI : 10.1016/S1074-7613(00)80449-5

B. Dérijard, J. Raingeaud, and T. Barrett, Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms, Science, vol.268, issue.15, pp.682-687, 1995.
DOI : 10.1128/MCB.13.9.5738

P. Sawle, R. Foresti, B. Mann, T. Johnson, C. Green et al., Carbon monoxide-releasing molecules (CO-RMs) attenuate the inflammatory response elicited by lipopolysaccharide in RAW264.7 murine macrophages, British Journal of Pharmacology, vol.103, issue.6, pp.800-810, 2005.
DOI : 10.1161/01.CIR.102.24.3015

R. Song, W. Ning, and F. Liu, Regulation of IL-1??-induced GM-CSF production in human airway smooth muscle cells by carbon monoxide, American Journal of Physiology-Lung Cellular and Molecular Physiology, vol.268, issue.1, pp.50-56, 2003.
DOI : 10.1165/ajrcmb/9.6.645

K. Tsoyi, T. Lee, and Y. Lee, Heme-Oxygenase-1 Induction and Carbon Monoxide-Releasing Molecule

A. Alshehri, M. Bourguignon, and N. Clavreul, Mechanisms of the vasorelaxing effects of CORM-3, a water-soluble carbon monoxide-releasing molecule: interactions with eNOS, Naunyn-Schmiedeberg's Archives of Pharmacology, vol.39, issue.2, pp.185-96, 2013.
DOI : 10.1021/bi9929296

S. Ryter and A. Choi, Heme Oxygenase-1/Carbon Monoxide: Novel Therapeutic Strategies in Critical Care Medicine, Current Drug Targets, vol.11, issue.12, pp.1485-94, 2010.
DOI : 10.2174/1389450111009011485

R. Foresti, M. Bani-hani, and R. Motterlini, Use of carbon monoxide as a??therapeutic agent: promises and challenges, Intensive Care Medicine, vol.38, issue.4, pp.649-58, 2008.
DOI : 10.1152/ajpheart.00881.2002

R. Motterlini, B. Mann, and R. Foresti, Therapeutic applications of carbon monoxide-releasing molecules, Expert Opinion on Investigational Drugs, vol.51, issue.4
DOI : 10.1126/science.1078456

R. Motterlini, Carbon monoxide-releasing molecules (CO-RMs): vasodilatory, anti-ischaemic and anti-inflammatory activities: Figure 1, Biochemical Society Transactions, vol.35, issue.5, pp.1142-1148, 2007.
DOI : 10.1042/BST0351142

URL : http://www.biochemsoctrans.org/content/ppbiost/35/5/1142.full.pdf

C. Romão, W. Blättler, J. Seixas, and G. Bernardes, Developing drug molecules for therapy with carbon monoxide, Chemical Society Reviews, vol.203, issue.9, p.3571, 2012.
DOI : 10.1084/jem.20052267

P. Cabrales, A. Tsai, and M. Intaglietta, Hemorrhagic shock resuscitation with carbon monoxide saturated blood, Resuscitation, vol.72, issue.2, pp.306-324, 2007.
DOI : 10.1016/j.resuscitation.2006.06.021

S. Ogaki, K. Taguchi, H. Watanabe, Y. Ishima, M. Otagiri et al., Carbon Monoxide-Bound Red Blood Cell Resuscitation Ameliorates Hepatic Injury Induced by Massive Hemorrhage and Red Blood Cell Resuscitation via Hepatic Cytochrome P450 Protection in Hemorrhagic Shock Rats, Journal of Pharmaceutical Sciences, vol.103, issue.7, pp.2199-206, 2014.
DOI : 10.1002/jps.24029

F. Amersi, Ex vivo exposure to carbon monoxide prevents hepatic ischemia/reperfusion injury through p38 MAP kinase pathway, Hepatology, vol.278, issue.4, pp.815-838, 2002.
DOI : 10.1165/ajrcmb.13.5.7576696

J. Brugger, M. Schick, and R. Brock, Carbon monoxide has antioxidative properties in the liver involving p38 MAP kinase pathway in a murine model of systemic inflammation, Microcirculation, vol.17, issue.7, pp.504-517, 2010.
DOI : 10.1111/j.1549-8719.2010.00044.x

H. Kim, Y. Joe, and J. Yu, Carbon monoxide protects against hepatic ischemia/reperfusion injury by modulating the miR-34a/SIRT1 pathway, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1852, issue.7, pp.1550-1559, 2015.
DOI : 10.1016/j.bbadis.2015.04.017

Y. Wei, P. Chen, M. De-bruyn, W. Zhang, E. Bremer et al., Carbon monoxide-releasing molecule

D. Stec, C. Bishop, J. Rimoldi, S. Poreddy, T. Vera et al., Carbon Monoxide (CO) Protects Renal Tubular Epithelial Cells against Cold-Rewarm Apoptosis, Renal Failure, vol.33, issue.11, pp.543-551, 2007.
DOI : 10.1006/jmcc.2001.1456

G. Faleo, J. Neto, and J. Kohmoto, Carbon Monoxide Ameliorates Renal Cold Ischemia-Reperfusion Injury With an Upregulation of Vascular Endothelial Growth Factor by Activation of Hypoxia-Inducible Factor, Transplantation, vol.85, issue.12
DOI : 10.1097/TP.0b013e31817c6f63

Y. Ruan, L. Wang, and Y. Zhao, Carbon monoxide potently prevents ischemia-induced high-mobility group box 1 translocation and release and protects against lethal renal ischemia???reperfusion injury, Kidney International, vol.86, issue.3, pp.525-562, 2014.
DOI : 10.1038/ki.2014.80

A. Bagul, S. Hosgood, M. Kaushik, and M. Nicholson, Carbon Monoxide Protects Against Ischemia-Reperfusion Injury in an Experimental Model of Controlled Nonheartbeating Donor Kidney, Transplantation, vol.85, issue.4, pp.576-81, 2008.
DOI : 10.1097/TP.0b013e318160516a

S. Hosgood, A. Bagul, M. Kaushik, J. Rimoldi, R. Gadepalli et al., Application of nitric oxide and carbon monoxide in a model of renal preservation, British Journal of Surgery, vol.30, issue.8, pp.1060-1067, 2008.
DOI : 10.1152/ajpregu.00746.2004

D. Hanto, T. Maki, and M. Yoon, Intraoperative Administration of Inhaled Carbon Monoxide Reduces Delayed Graft Function in Kidney Allografts in Swine, American Journal of Transplantation, vol.121, issue.Suppl 1, pp.2421-2451, 2010.
DOI : 10.1016/S0002-9440(10)65598-8

P. Snijder, E. Van-den-berg, M. Whiteman, S. Bakker, H. Leuvenink et al., Emerging Role of Gasotransmitters in Renal Transplantation, American Journal of Transplantation, vol.35, issue.11 Pt C, pp.3067-75, 2013.
DOI : 10.1097/SHK.0b013e3181f0dc91

K. Katada, A. Bihari, and S. Mizuguchi, Carbon monoxide liberated from CO-releasing molecule

A. Nakao, K. Kimizuka, and D. Stolz, Protective effect of carbon monoxide inhalation for cold-preserved small intestinal grafts, Surgery, vol.134, issue.2, pp.285-92, 2003.
DOI : 10.1067/msy.2003.238

J. Varadi, I. Lekli, and B. Juhasz, Beneficial effects of carbon monoxide-releasing molecules on post-ischemic myocardial recovery, Life Sciences, vol.80, issue.17, pp.1619-1645, 2007.
DOI : 10.1016/j.lfs.2007.01.047

I. Bak, J. Varadi, N. Nagy, M. Vecsernyes, and A. Tosaki, The role of exogenous carbon monoxide in the recovery of post-ischemic cardiac function in buffer perfused isolated rat hearts, Cell Mol Biol, vol.51, issue.5, pp.453-462, 2005.

H. Soni, P. Patel, A. Rath, M. Jain, and A. Mehta, Cardioprotective effect with carbon monoxide releasing molecule-2 (CORM-2) in isolated perfused rat heart: Role of coronary endothelium and underlying mechanism, Vascular Pharmacology, vol.53, issue.1-2
DOI : 10.1016/j.vph.2010.04.002

H. Soni, M. Jain, and A. Mehta, Mechanism(s) Involved in Carbon Monoxide-releasing Molecule-2- mediated Cardioprotection During Ischaemia-reperfusion Injury in Isolated Rat Heart, Indian J Pharm Sci, vol.74, issue.4, pp.281-91, 2012.

U. Goebel, M. Siepe, and A. Mecklenburg, Reduced pulmonary inflammatory response during cardiopulmonary bypass: effects of combined pulmonary perfusion and carbon monoxide inhalation?????????, European Journal of Cardio-Thoracic Surgery, vol.34, issue.6, pp.1165-72, 2008.
DOI : 10.1016/j.ejcts.2008.07.031

N. Schallner, M. Fuchs, and C. Schwer, Postconditioning with Inhaled Carbon Monoxide Counteracts Apoptosis and Neuroinflammation in the Ischemic Rat Retina, PLoS ONE, vol.7, issue.9, p.46479, 2012.
DOI : 10.1371/journal.pone.0046479.s001

M. Szabo, E. Gallyas, and I. Bak, Heme Oxygenase-1???Related Carbon Monoxide and Flavonoids in Ischemic/Reperfused Rat Retina, Investigative Opthalmology & Visual Science, vol.45, issue.10, pp.3727-3759, 2004.
DOI : 10.1167/iovs.03-1324

J. Biermann, W. Lagrèze, C. Dimitriu, C. Stoykow, and U. Goebel, Preconditioning with Inhalative Carbon Monoxide Protects Rat Retinal Ganglion Cells from Ischemia/Reperfusion Injury, Investigative Opthalmology & Visual Science, vol.51, issue.7, pp.3784-91, 2010.
DOI : 10.1167/iovs.09-4894

K. Ozaki, J. Yoshida, and S. Ueki, Carbon monoxide inhibits apoptosis during cold storage and protects kidney grafts donated after cardiac death, Transplant International, vol.290, issue.1, pp.107-124, 2012.
DOI : 10.1152/ajprenal.00363.2005

A. Nakao, J. Neto, and S. Kanno, Protection Against Ischemia/Reperfusion Injury in Cardiac and Renal Transplantation with Carbon Monoxide, Biliverdin and Both, American Journal of Transplantation, vol.267, issue.2, pp.282-91, 2005.
DOI : 10.1053/jhep.2003.50300

A. Nakao, K. Kimizuka, and D. Stolz, Carbon Monoxide Inhalation Protects Rat Intestinal Grafts from Ischemia/Reperfusion Injury, The American Journal of Pathology, vol.163, issue.4, pp.1587-98, 2003.
DOI : 10.1016/S0002-9440(10)63515-8

A. Sandouka, B. Fuller, B. Mann, C. Green, R. Foresti et al., Treatment with CO-RMs during cold storage improves renal function at reperfusion, Kidney International, vol.69, issue.2, pp.239-286, 2006.
DOI : 10.1038/sj.ki.5000016

K. Tomiyama, A. Ikeda, and S. Ueki, Inhibition of Kupffer cell-mediated early proinflammatory response with carbon monoxide in transplant-induced hepatic ischemia/reperfusion injury in rats, Hepatology, vol.25, issue.5, pp.1608-1628, 2008.
DOI : 10.1016/S0168-8278(96)80253-4

J. Yoshida, K. Ozaki, and M. Nalesnik, Application of Carbon Monoxide in UW Solution Prevents Transplant-Induced Renal Ischemia/Reperfusion Injury in Pigs, American Journal of Transplantation, vol.21, issue.4, pp.763-72, 2010.
DOI : 10.1111/j.1600-6143.2010.03040.x

J. Neto, A. Nakao, and K. Kimizuka, Protection of transplant-induced renal ischemia-reperfusion injury with carbon monoxide, American Journal of Physiology-Renal Physiology, vol.287, issue.5, pp.979-89, 2004.
DOI : 10.1016/S0022-3468(97)90388-2

M. Musameh, C. Green, B. Mann, B. Fuller, and R. Motterlini, Improved Myocardial Function After Cold Storage With Preservation Solution Supplemented With a Carbon Monoxide???Releasing Molecule (CORM-3), The Journal of Heart and Lung Transplantation, vol.26, issue.11, pp.1192-1200, 2007.
DOI : 10.1016/j.healun.2007.08.005

A. Ikeda, S. Ueki, and A. Nakao, Liver graft exposure to carbon monoxide during cold storage protects sinusoidal endothelial cells and ameliorates reperfusion injury in rats, Liver Transplantation, vol.58, issue.pt 5, pp.1458-68, 2009.
DOI : 10.1111/j.1600-0676.1994.tb00007.x

L. Donnelly and P. Barnes, Expression of Heme Oxygenase in Human Airway Epithelial Cells, American Journal of Respiratory Cell and Molecular Biology, vol.279, issue.3, pp.295-303, 2001.
DOI : 10.1016/S0923-2494(99)80050-9

P. Lee, J. Alam, G. Wiegand, and A. Choi, Overexpression of heme oxygenase-1 in human pulmonary epithelial cells results in cell growth arrest and increased resistance to hyperoxia., Proceedings of the National Academy of Sciences, vol.93, issue.19, pp.10393-10401, 1996.
DOI : 10.1073/pnas.93.19.10393

S. Fogg, A. Agarwal, H. Nick, and G. Visner, Iron regulates hyperoxia-dependent human heme oxygenase 1
DOI : 10.1165/ajrcmb.20.4.3477

URL : http://intl-ajrcmb.atsjournals.org/content/20/4/797.full.pdf

V. Solari, A. Piotrowska, and P. Puri, Expression of heme oxygenase-1 and endothelial nitric oxide synthase in the lung of newborns with congenital diaphragmatic hernia and persistent pulmonary hypertension, Journal of Pediatric Surgery, vol.38, issue.5, pp.808-821, 2003.
DOI : 10.1016/jpsu.2003.50172

Y. Park, Ischemia/reperfusion Lung Injury Increases Serum Ferritin and Heme Oxygenase-1 in Rats, The Korean Journal of Physiology and Pharmacology, vol.13, issue.3
DOI : 10.4196/kjpp.2009.13.3.181

B. Polla, S. Kantengwa, G. Gleich, M. Kondo, C. Reimert et al., Spontaneous heat shock protein synthesis by alveolar macrophages in interstitial lung disease associated with phagocytosis of eosinophils, Eur Respir J, vol.6, issue.4, pp.483-491, 1993.

T. Fujita, K. Toda, and A. Karimova, Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis, Nature Medicine, vol.7, issue.5, pp.598-604, 2001.
DOI : 10.1038/87929

S. Mishra, T. Fujita, and V. Lama, Carbon monoxide rescues ischemic lungs by interrupting MAPK-driven expression of early growth response 1 gene and its downstream target genes, Proceedings of the National Academy of Sciences, vol.93, issue.5, pp.5191-5197, 2006.
DOI : 10.1172/JCI117230

X. Zhang, P. Shan, and L. Otterbein, Carbon Monoxide Inhibition of Apoptosis during Ischemia-Reperfusion Lung Injury Is Dependent on the p38 Mitogen-activated Protein Kinase Pathway and Involves Caspase 3, Journal of Biological Chemistry, vol.17, issue.2, pp.1248-58, 2003.
DOI : 10.1074/jbc.M108317200

X. Zhang, P. Shan, J. Alam, X. Fu, and P. Lee, Carbon Monoxide Differentially Modulates STAT1 and STAT3 and Inhibits Apoptosis via a Phosphatidylinositol 3-Kinase/Akt and p38 Kinase-dependent STAT3 Pathway during Anoxia-Reoxygenation Injury, Journal of Biological Chemistry, vol.280, issue.10, pp.8714-8735, 2005.
DOI : 10.1074/jbc.M408092200

B. Chin, G. Jiang, and B. Wegiel, Hypoxia-inducible factor 1?? stabilization by carbon monoxide results in cytoprotective preconditioning, Proceedings of the National Academy of Sciences, vol.279, issue.2, pp.5109-5123, 2007.
DOI : 10.1074/jbc.M306248200

R. Song, M. Kubo, and D. Morse, Carbon Monoxide Induces Cytoprotection in Rat Orthotopic Lung Transplantation via Anti-Inflammatory and Anti-Apoptotic Effects, The American Journal of Pathology, vol.163, issue.1, pp.231-273, 2003.
DOI : 10.1016/S0002-9440(10)63646-2

J. Sethi, L. Otterbein, and A. Choi, Differential Modulation by Exogenous Carbon Monoxide of TNF-?? Stimulated Mitogen-Activated Protein Kinases in Rat Pulmonary Artery Endothelial Cells, Antioxidants & Redox Signaling, vol.4, issue.2, pp.241-249, 2002.
DOI : 10.1089/152308602753666299

J. Kohmoto, A. Nakao, and D. Stolz, Carbon Monoxide Protects Rat Lung Transplants From Ischemia-Reperfusion Injury via a Mechanism Involving p38 MAPK Pathway, American Journal of Transplantation, vol.16, issue.4, pp.2279-90, 2007.
DOI : 10.1038/sj.bjp.0706063

H. Sahara, A. Shimizu, and K. Setoyama, Carbon monoxide reduces pulmonary ischemia???reperfusion injury in miniature swine, The Journal of Thoracic and Cardiovascular Surgery, vol.139, issue.6, pp.1594-601, 2010.
DOI : 10.1016/j.jtcvs.2009.09.016

B. Dong, P. Stewart, and T. Egan, Postmortem and ex??vivo carbon monoxide ventilation reduces injury in rat lungs transplanted from non???heart-beating donors, The Journal of Thoracic and Cardiovascular Surgery, vol.146, issue.2, pp.429-465, 2013.
DOI : 10.1016/j.jtcvs.2012.11.005

H. Zhou, H. Qian, and J. Liu, Protection against lung graft injury from brain-dead donors with carbon monoxide, biliverdin, or both, The Journal of Heart and Lung Transplantation, vol.30, issue.4, pp.460-466, 2011.
DOI : 10.1016/j.healun.2010.11.020

H. Sahara, A. Shimizu, and K. Setoyama, Beneficial Effects of Perioperative Low-Dose Inhaled Carbon Monoxide on Pulmonary Allograft Survival in MHC-Inbred CLAWN Miniature Swine, Transplantation, vol.90, issue.12, pp.1336-1379, 2010.
DOI : 10.1097/TP.0b013e3181ff8730

H. Zhou, W. Ding, X. Cui, P. Pan, B. Zhang et al., Carbon monoxide inhalation ameliorates conditions of lung grafts from rat brain death donors, Chin Med J, vol.121, issue.15, pp.1411-1420, 2008.

J. Kohmoto, A. Nakao, and R. Sugimoto, Carbon monoxide???saturated preservation solution protects lung grafts from ischemia???reperfusion injury, The Journal of Thoracic and Cardiovascular Surgery, vol.136, issue.4, pp.1067-75, 2008.
DOI : 10.1016/j.jtcvs.2008.06.026

URL : https://doi.org/10.1016/j.jtcvs.2008.06.026

J. Kohmoto, A. Nakao, and T. Kaizu, Low-dose carbon monoxide inhalation prevents ischemia/reperfusion injury of transplanted rat lung grafts, Surgery, vol.140, issue.2, pp.179-85, 2006.
DOI : 10.1016/j.surg.2006.03.004

S. Yamamoto, M. Okazaki, and M. Yamane, Peculiar mechanisms of graft recovery through anti-inflammatory responses after rat lung transplantation from donation after cardiac death, Transplant Immunology, vol.26, issue.2-3, pp.133-142, 2012.
DOI : 10.1016/j.trim.2011.11.002

A. Vanmuylem, C. Knoop, and M. Estenne, Early Detection of Chronic Pulmonary Allograft Dysfunction by Exhaled Biomarkers, American Journal of Respiratory and Critical Care Medicine, vol.175, issue.7, pp.731-737, 2007.
DOI : 10.1016/S1053-2498(02)00392-3

R. Vos, C. Cordemans, and B. Vanaudenaerde, Exhaled Carbon Monoxide as a Noninvasive Marker of Airway Neutrophilia After Lung Transplantation, Transplantation, vol.87, issue.10, pp.1579-83, 2009.
DOI : 10.1097/TP.0b013e3181a4e69c

P. Cameli, E. Bargagli, and A. Fossi, Exhaled nitric oxide and carbon monoxide in lung transplanted patients, Respiratory Medicine, vol.109, issue.9, pp.954-611130018, 2009.
DOI : 10.1016/j.rmed.2015.07.005

S. Ryter and A. Choi, Carbon monoxide in exhaled breath testing and therapeutics, Journal of Breath Research, vol.7, issue.1, p.17111, 2013.
DOI : 10.1088/1752-7155/7/1/017111

J. Obermeier, P. Trefz, K. Wex, B. Sabel, J. Schubert et al., Electrochemical sensor system for breath analysis of aldehydes, CO and NO, Journal of Breath Research, vol.9, issue.1, p.16008, 2015.
DOI : 10.1088/1752-7155/9/1/016008

G. Konvalina and H. Haick, Sensors for Breath Testing: From Nanomaterials to Comprehensive Disease Detection, Accounts of Chemical Research, vol.47, issue.1
DOI : 10.1021/ar400070m

A. Kosterev, A. Malinovsky, and F. Tittel, Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser, Applied Optics, vol.40, issue.30, pp.5522-5531, 2001.
DOI : 10.1364/AO.40.005522

M. Mürtz, D. Halmer, M. Horstjann, S. Thelen, and P. Hering, Ultra sensitive trace gas detection for biomedical applications, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.63, issue.5, pp.963-972, 2006.
DOI : 10.1016/j.saa.2005.11.015

K. Parameswaran, D. Rosen, M. Allen, A. Ganz, and T. Risby, Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements, Applied Optics, vol.48, issue.4, pp.73-82, 2009.
DOI : 10.1364/AO.48.000B73

M. Thorpe, D. Balslev-clausen, M. Kirchner, and J. Ye, Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis, Optics Express, vol.16, issue.4, pp.2387-97, 2008.
DOI : 10.1364/OE.16.002387

I. Ventrillard-courtillot, T. Gonthiez, C. Clerici, and D. Romanini, Multispecies breath analysis faster than a single respiratory cycle by optical-feedback cavity-enhanced absorption spectroscopy, Journal of Biomedical Optics, vol.14, issue.6, p.64026, 2009.
DOI : 10.1117/1.3269677

URL : https://hal.archives-ouvertes.fr/hal-00997478

S. Kassi, M. Chenevier, and L. Gianfrani, Looking into the volcano with a Mid-IR DFB diode laser and Cavity Enhanced Absorption Spectroscopy, Optics Express, vol.14, issue.23, pp.11442-52, 2006.
DOI : 10.1364/OE.14.011442

URL : https://hal.archives-ouvertes.fr/hal-00328196

E. Kerstel, R. Lannone, M. Chenevier, S. Kassi, H. Jost et al., A water isotope (2H, 17O, and 18O) spectrometer based on optical feedback cavity-enhanced absorption for in situ airborne applications, Applied Physics B, vol.113, issue.2-3, pp.397-406, 2006.
DOI : 10.1152/japplphysiol.01134.2001

URL : https://hal.archives-ouvertes.fr/hal-01103473

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking, Applied Physics B, vol.60, issue.8, pp.1027-1065, 2005.
DOI : 10.1007/s00340-005-1828-z

URL : https://hal.archives-ouvertes.fr/hal-01103503

P. Baconnier, A. Eberhard, and F. Grimbert, Theoretical analysis of occlusion techniques for measuring pulmonary capillary pressure, Journal of Applied Physiology, vol.73, issue.4, pp.1351-1360, 1992.
DOI : 10.1152/jappl.1992.73.4.1351

E. Stepanov, Methods of highly sensitive gas analysis of molecular biomarkers in study of exhaled air, Physics of Wave Phenomena, vol.15, issue.3, pp.149-81, 2007.
DOI : 10.3103/S1541308X0703003X

T. Fritsch, P. Hering, and M. Mürtz, Infrared laser spectroscopy for online recording of exhaled carbon monoxide???a progress report, Journal of Breath Research, vol.1, issue.1, p.14002, 2007.
DOI : 10.1088/1752-7155/1/1/014002

B. Moeskops, H. Naus, S. Cristescu, and F. Harren, Quantum cascade laser-based carbon monoxide detection on a second time scale from human breath, Applied Physics B, vol.78, issue.4, pp.649-54, 2006.
DOI : 10.1080/10473289.1998.10463718

A. Kappas, G. Drummond, and M. Sardana, Sn-protoporphyrin rapidly and markedly enhances the heme saturation of hepatic tryptophan pyrrolase. Evidence that this synthetic metalloporphyrin increases the functional content of heme in the liver., Journal of Clinical Investigation, vol.75, issue.1, pp.302-307, 1985.
DOI : 10.1172/JCI111689

S. Sassa, G. Drummond, S. Bernstein, and A. Kappas, Long-term administration of massive doses of Sn-protoporphyrin in anemic mutant mice (sphha/sphha), Journal of Experimental Medicine, vol.162, issue.3, pp.864-76, 1985.
DOI : 10.1084/jem.162.3.864

C. Simionatto, K. Anderson, G. Drummond, and A. Kappas, Studies on the mechanism of Sn-protoporphyrin suppression of hyperbilirubinemia. Inhibition of heme oxidation and bilirubin production., Journal of Clinical Investigation, vol.75, issue.2, pp.513-534, 1985.
DOI : 10.1172/JCI111727

M. Sardana and A. Kappas, Dual control mechanism for heme oxygenase: tin(IV)-protoporphyrin potently inhibits enzyme activity while markedly increasing content of enzyme protein in liver., Proceedings of the National Academy of Sciences, vol.84, issue.8, pp.2464-2472, 1987.
DOI : 10.1073/pnas.84.8.2464

K. Vanova, J. Suk, and T. Petr, Protective effects of inhaled carbon monoxide in endotoxin-induced cholestasis is dependent on its kinetics, Biochimie, vol.97, pp.173-80, 2014.
DOI : 10.1016/j.biochi.2013.10.009

T. Kaizu, T. Tamaki, and M. Tanaka, Preconditioning with tin-protoporphyrin IX attenuates ischemia/reperfusion injury in the rat kidney, Kidney International, vol.63, issue.4, pp.1393-403, 2003.
DOI : 10.1046/j.1523-1755.2003.00882.x

U. Goebel, M. Siepe, and A. Mecklenburg, Carbon Monoxide Inhalation Reduces Pulmonary Inflammatory Response during Cardiopulmonary Bypass in Pigs, Anesthesiology, vol.108, issue.6, pp.1025-1061, 2008.
DOI : 10.1097/ALN.0b013e3181733115

M. Bruce and E. Bruce, Analysis of factors that influence rates of carbon monoxide uptake, distribution, and washout from blood and extravascular tissues using a multicompartment model, Journal of Applied Physiology, vol.100, issue.4, pp.1171-80, 2006.
DOI : 10.1378/chest.119.2.663

K. Koistinen, D. Kotzias, and S. Kephalopoulos, The INDEX project: executive summary of a European Union project on indoor air pollutants, Allergy, vol.44, issue.7, pp.810-819, 2008.
DOI : 10.1136/bmj.314.7095.1658

T. Dolinay, M. Szilasi, M. Liu, and A. Choi, Inhaled Carbon Monoxide Confers Antiinflammatory Effects against Ventilator-induced Lung Injury, American Journal of Respiratory and Critical Care Medicine, vol.170, issue.6, pp.613-633, 2004.
DOI : 10.1038/nm817

URL : http://www.atsjournals.org/doi/pdf/10.1164/rccm.200401-023OC

L. Otterbein, L. Mantell, and A. Choi, Carbon monoxide provides protection against hyperoxic lung injury, American Journal of Physiology-Lung Cellular and Molecular Physiology, vol.268, issue.18
DOI : 10.1126/science.8100368

N. Hampson, L. Weaver, and C. Piantadosi, ???Low-Level??? Carbon Monoxide Administration May Carry Risk, American Journal of Respiratory and Critical Care Medicine, vol.172, issue.6, pp.784-784, 2005.
DOI : 10.1001/archneur.55.6.845

H. Parving, The Effect of Hypoxia and Carbon Monoxide Exposure on Plasma Volume and Capillary Permeability to Albumin, Scandinavian Journal of Clinical and Laboratory Investigation, vol.28, issue.103, pp.49-56, 1972.
DOI : 10.1042/cs0400235

S. Thom, D. Fisher, Y. Xu, S. Garner, and H. Ischiropoulos, Role of nitric oxide-derived oxidants in vascular injury from carbon monoxide in the rat, American Journal of Physiology-Heart and Circulatory Physiology, vol.18, issue.5, pp.984-92, 1999.
DOI : 10.1080/00039896.1975.10666660

D. Mulloy, M. Stone, and I. Crosby, Ex??vivo rehabilitation of non???heart-beating donor lungs in preclinical porcine model: Delayed perfusion results in superior lung function, The Journal of Thoracic and Cardiovascular Surgery, vol.144, issue.5, pp.1208-1223, 2012.
DOI : 10.1016/j.jtcvs.2012.07.056

S. Fiser, C. Tribble, and S. Long, Ischemia-reperfusion injury after lung transplantation increases risk of late bronchiolitis obliterans syndrome, The Annals of Thoracic Surgery, vol.73, issue.4, pp.1041-1048, 2002.
DOI : 10.1016/S0003-4975(01)03606-2

G. Thabut, H. Mal, and J. Cerrina, Graft Ischemic Time and Outcome of Lung Transplantation, American Journal of Respiratory and Critical Care Medicine, vol.171, issue.7, pp.786-91, 2005.
DOI : 10.1378/chest.121.6.1876

W. Hengst, J. Gielis, J. Lin, P. Schil, L. Windt et al., Lung ischemia-reperfusion injury: a molecular and clinical view on a complex pathophysiological process, American Journal of Physiology-Heart and Circulatory Physiology, vol.273, issue.5, pp.1283-99, 2010.
DOI : 10.1016/j.trsl.2008.10.008

W. Sommer, C. Kühn, and I. Tudorache, Extended criteria donor lungs and clinical outcome: Results of an alternative allocation algorithm, The Journal of Heart and Lung Transplantation, vol.32, issue.11, pp.1065-72, 2013.
DOI : 10.1016/j.healun.2013.06.021

B. Zych, G. Sáez, D. Sabashnikov, and A. , Lung transplantation from donors outside standard acceptability criteria - are they really marginal?, Transplant International, vol.32, issue.11, pp.1183-91, 2014.
DOI : 10.1016/j.healun.2013.06.021

Y. Kim, H. Pae, and J. Park, Heme Oxygenase in the Regulation of Vascular Biology: From Molecular Mechanisms to Therapeutic Opportunities, Antioxidants & Redox Signaling, vol.14, issue.1, pp.137-67, 2011.
DOI : 10.1089/ars.2010.3153

W. Wilkinson and P. Kemp, Carbon monoxide: an emerging regulator of ion channels, The Journal of Physiology, vol.285, issue.13, pp.3055-62, 2011.
DOI : 10.1074/jbc.M110.116483

M. Althaus, M. Fronius, and Y. Buchäckert, Carbon Monoxide Rapidly Impairs Alveolar Fluid Clearance by Inhibiting Epithelial Sodium Channels, American Journal of Respiratory Cell and Molecular Biology, vol.41, issue.6, pp.639-50, 2009.
DOI : 10.1074/jbc.M808210200

S. Wang, S. Publicover, and Y. Gu, An oxygen-sensitive mechanism in regulation of epithelial sodium channel, Proceedings of the National Academy of Sciences, vol.148, issue.8
DOI : 10.1074/jbc.M108951200

Y. Suzuki, E. Cantu, and J. Christie, Primary Graft Dysfunction, Seminars in Respiratory and Critical Care Medicine, vol.34, issue.03, pp.305-324, 2013.
DOI : 10.1055/s-0033-1348474

F. Cavaliere, C. Volpe, and R. Gargaruti, Effects of acute hypoventilation and hyperventilation on exhaled carbon monoxide measurement in healthy volunteers, BMC Pulmonary Medicine, vol.267, issue.1, p.51, 2009.
DOI : 10.1006/bbrc.1999.1936

U. Moscato, A. Poscia, R. Gargaruti, G. Capelli, and F. Cavaliere, Normal values of exhaled carbon monoxide in healthy subjects: comparison between two methods of assessment, BMC Pulmonary Medicine, vol.20, issue.2, p.204, 2014.
DOI : 10.1007/s10877-006-9011-6

T. Kakishita, T. Oto, and S. Hori, Suppression of Inflammatory Cytokines During Ex Vivo Lung Perfusion With an Adsorbent Membrane, The Annals of Thoracic Surgery, vol.89, issue.6, pp.1773-1782, 2010.
DOI : 10.1016/j.athoracsur.2010.02.077