P. Zhou, Kevin Ogle? Dissolution of Cu-Zn alloys in tap water: effect of metallurgical phase on the elemental release, scale formation and dissolution mechanism, NACE Corrosion, 2017.

/. Poster, . K. Participant-1, V. Ogle, P. Shkirskiy, P. Volovitch et al., A Novel Coupling Between Atomic Emission Spectroelectrochemistry and Electrochemical Impedance Spectroscopy: Application to Zn, Zn-Cu and Zn-Al- Mg Alloys, 2015.

M. J. Hutchison, P. Zhou, K. Ogle, and J. R. Scully, Effect of Sn on the Fate of Copper during Dissolution: A Comparison between Copper and Bronze Commercial Alloys, 2016.

T. Rosenqvist, Principles of Extractive Metallurgy, Tapir academic press, 2004.

W. O. Brien, Prehistoric copper mining in Europe: 5500-500 BC

J. M. Day, The Bristol brass industry: furnace structures and their associated remains, The Journal of the Historical Metallurgy Society, pp.22-41, 1988.

J. S. Kharakwal and L. K. Gurjar, Zinc and Brass in Archaeological Perspective, Ancient Asia, vol.1, pp.139-159, 2006.
DOI : 10.5334/aa.06112

URL : https://doi.org/10.5334/aa.06112

M. Radetzki, Seven thousand years in the service of humanity???the history of copper, the red metal, Resources Policy, vol.34, issue.4, pp.176-184, 2009.
DOI : 10.1016/j.resourpol.2009.03.003

R. C. Juvinall and K. M. Marshek, Fundamentals of machine component design, 2006.
DOI : 10.1115/1.3258522

D. A. Lytle and M. N. Nadagouda, A comprehensive investigation of copper pitting corrosion in a drinking water distribution system, Corrosion Science, vol.52, issue.6, pp.1927-1938, 2010.
DOI : 10.1016/j.corsci.2010.02.013

B. V. Salas and M. S. Wiener, Copper corrosion by atmospheric pollutants in the electronics industry, International Scholarly Research Notices, vol.2013, pp.1-7, 2013.

H. W. Pickering and P. J. Byrne, Partial Currents During Anodic Dissolution of Cu-Zn Alloys at Constant Potential, Journal of The Electrochemical Society, vol.116, issue.11, pp.1492-1496, 1969.
DOI : 10.1149/1.2411582

H. W. Pickering, Formation of New Phases during Anodic Dissolution of Zn-Rich Cu-Zn Alloys, Journal of The Electrochemical Society, vol.117, issue.1, pp.8-15, 1970.
DOI : 10.1149/1.2407450

A. V. Polunin, A. P. Pchelnikov, V. V. Losev, and I. K. Marshakov, Electrochemical studies of the kinetics and mechanism of brass dezincification, Electrochimica Acta, vol.27, issue.4, pp.467-475, 1982.
DOI : 10.1016/0013-4686(82)85025-1

A. P. Pchelnikov, A. D. Sitnikov, I. K. Marshakov, and V. V. , A study of the kinetics and mechanism of brass dezincification by radiotracer and electrochemical methods, Electrochimica Acta, vol.26, issue.5, pp.591-600, 1981.
DOI : 10.1016/0013-4686(81)80025-4

C. Chiavari, E. Bernardi, and A. Balbo, Atmospheric corrosion of fire-gilded bronze: corrosion and corrosion protection during accelerated ageing tests, Corrosion Science, vol.100, pp.435-447, 2015.
DOI : 10.1016/j.corsci.2015.08.013

S. Voynick, A metal for all ages, The World & I 13, 1998.

S. Forenbaher, The late copper age architecture at Vu?edol, Croatia, Journal of field archaeology, vol.21, pp.307-323, 1994.
DOI : 10.2307/530333

Q. H. Pan, Application of beryllium copper in automotive industry, Automobile Technolo -gy&material, vol.6, pp.9-14, 2003.

J. A. Bares and N. Argibay, High current density copper-on-copper sliding electrical contacts at low sliding velocities, Wear, vol.267, issue.1-4, pp.417-424, 2009.
DOI : 10.1016/j.wear.2008.12.062

H. Word and . Organization, Copper in drinking-water, Background document for develop -pment of WHO Guidelines for Drinking-water Quality, p.88

V. F. Lucey, Mechanism of Pitting Corrosion of Copper in Supply Waters, British Corrosion Journal, vol.125, issue.5, pp.175-185, 1967.
DOI : 10.1179/000705965798328137

M. A. Edwards and T. E. Meyer, Role of inorganic anions, NOM, and water treatment processes in copper corrosion, 1996.

T. H. Merkel and H. J. Groß, Copper corrosion by-product release in long-term stagnation experiments, Water Research, vol.36, issue.6, pp.1547-1555, 2002.
DOI : 10.1016/S0043-1354(01)00366-9

R. A. Isaac and L. Gil, Corrosion in Drinking Water Distribution Systems:?? A Major Contributor of Copper and Lead to Wastewaters and Effluents, Environmental Science & Technology, vol.31, issue.11, pp.31-3198, 1997.
DOI : 10.1021/es970185i

N. Boulay and M. Edwards, Role of temperature, chlorine, and organic matter in copper corrosion by-product release in soft water, Water Research, vol.35, issue.3, pp.683-690, 2001.
DOI : 10.1016/S0043-1354(00)00320-1

M. Fabbricino, Copper release in drinking water due to internal corrosion of distribution pipes, Global NEST Journal, vol.7, pp.163-171, 2005.

W. Xiao and S. Hong, Effects of blending on surface characteristics of copper corrosion products in drinking water distribution systems, Corrosion Science, vol.49, issue.2, pp.49-449, 2007.
DOI : 10.1016/j.corsci.2006.04.018

A. E. Broo, B. Berghult, and T. Hedberg, Copper corrosion in water distribution systems???the influence of natural organic matter (nom) on the solubility of copper corrosion products, Corrosion Science, vol.40, issue.9, pp.40-1479, 1998.
DOI : 10.1016/S0010-938X(98)00059-6

M. Edwards, J. F. Ferguson, and S. H. Reiber, The pitting corrosion of copper, Journal of the American Water Works Association, vol.86, pp.74-90, 1994.

M. Edwards, T. Meyer, and J. Rehring, Effect of selected anions on copper corrosion rates, Journal of the American Water Works Association, vol.86, pp.73-81, 1994.

A. E. Broo, B. Berghult, and T. Hedberg, Copper corrosion in drinking water distribution systems ??? the influence of water quality, Corrosion Science, vol.39, issue.6, pp.1119-1132, 1997.
DOI : 10.1016/S0010-938X(97)00026-7

H. P. Andrew and Y. Y. Macauley, Corrosion and leaching of copper tubing exposed to chlorinated drinking water, Water, Air, and Soil Pollution, vol.108, issue.3/4, pp.457-471, 1998.
DOI : 10.1023/A:1005060206953

J. H. Michel and I. Richardson, Development of copper alloys for seawater service fro m traditional application to state-of-the art engineering, NACE International, 2017.

L. O. Werme, P. Sellin, and N. Kjellbert, Copper canisters for nuclear high level waste disposal: corrosion aspects, Svensk kä rnbrä nslehantering, pp.1-30, 1992.

W. A. Lanford and P. J. Ding, Alloying of copper for use in microelectronic metallization, Materials Chemistry and Physics, vol.41, issue.3, pp.192-198, 1995.
DOI : 10.1016/0254-0584(95)01513-2

G. Hultquist, L. Grå-sjö, Q. Lu, and T. Åkermark, The analysis of gas consumption in the reaction of Fe and Cu in H2 16 O/H2 18 O/O2 gas mixtures, Corrosion Science, pp.36-1459, 1994.

T. M. Saber and A. A. Warraky, Electrochemical and spectroscopic studies on dezincification of ?? brass: Part 1: Effect of pretreatment on surface composition of 70???30 ?? brass, British Corrosion Journal, vol.26, issue.4, pp.279-285, 1991.
DOI : 10.1080/10408347508542687

D. Landolt, Corrosion et chimie de surfaces des mé taux. (Reimpression corrigé e) Lausanne: Presse Polytechniques et Universitaires Romandes, pp.28-29, 1997.

A. Palit and S. O. Pehkonen, Copper corrosion in distribution systems: evaluation of a homogeneous Cu2O film and a natural corrosion scale as corrosion inhibitors, Corrosion Science, vol.42, issue.10, pp.1801-1822, 2000.
DOI : 10.1016/S0010-938X(00)00024-X

Y. Lu, H. Xu, J. Wang, and X. Kong, Oxygen reduction mechanism on copper in a 0.5M H2SO4, Electrochimica Acta, vol.54, issue.15, pp.3972-3978, 2009.
DOI : 10.1016/j.electacta.2009.02.019

N. Birbilis, M. K. Cavanaugh, and R. G. Buchheit, Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651, Corrosion Science, vol.48, issue.12, pp.4202-4215, 2006.
DOI : 10.1016/j.corsci.2006.02.007

H. M. Obispo, L. E. Murr, R. M. Arrowood, and E. A. Trillo, Copper deposition during the c -orrosion of aluminum alloy 2024 in sodium chloride solutions, Journal of Materials Science, vol.35, issue.14, pp.3479-3495, 2000.
DOI : 10.1023/A:1004840908494

W. Qafsaoui, M. W. Kendig, H. Perrot, and H. Takenouti, Coupling of electrochemical techniques to study copper corrosion inhibition in 0.5molL???1 NaCl by 1-pyrrolidine dithiocarbamate, Electrochimica Acta, vol.87, pp.348-360, 2013.
DOI : 10.1016/j.electacta.2012.09.056

URL : https://hal.archives-ouvertes.fr/hal-00803261

O. Gharbi, N. Birbilis, and K. Ogle, In-Situ Monitoring of Alloy Dissolution and Residual Film Formation during the Pretreatment of Al-Alloy AA2024-T3, Journal of The Electrochemical Society, vol.163, issue.5, pp.240-251, 2016.
DOI : 10.1149/2.1121605jes

G. Hultquist, Hydrogen evolution in corrosion of copper in pure water, Corrosion Science, vol.26, issue.2, pp.173-177, 1986.
DOI : 10.1016/0010-938X(86)90044-2

G. Hultquist, Why copper may be able to corrode in pure water, Corrosion Science, vol.93, issue.2, pp.15-327
DOI : 10.1016/j.corsci.2015.01.002

C. Cleveland, S. Moghaddam, and M. E. Orazem, Nanometer-Scale Corrosion of Copper in De-Aerated Deionized Water, Journal of the Electrochemical Society, vol.161, issue.3, pp.107-118, 2014.
DOI : 10.1149/2.030403jes

G. Hultquist and P. Szaká, Water Corrodes Copper, Catalysis Letters, vol.522, issue.523, pp.311-316, 2009.
DOI : 10.1111/j.1095-9270.1995.tb00707.x

J. P. Simpson, R. E. Schenkb-)-t, and P. Eriksen, Hydrogen evolution from corrosion of pure copper Ndalamba and I. Grenthe, On the corrosion of copper in pure water, Comment on Hultquist et al. 'Water Corrodes Copper' [Catal. L ett, pp.1365-1370, 1987.

T. Aastrup, M. Wadsak, M. Schreiner, and C. Leygraf, Experimental in situ studies of copper exposed to humidified air, Corrosion Science, vol.42, issue.6, pp.957-967, 2000.
DOI : 10.1016/S0010-938X(99)00125-0

D. G. Ives and A. E. Rawson, Copper Corrosion, Copper Corrosion: III. Electrochemical theory of general corrosio n, ibid, pp.452-457, 1962.
DOI : 10.1149/1.2425446

U. Collisi and H. H. Strehblow, A photoelectrochemical study of passive copper in alkaline solutions, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.210, issue.2, pp.213-227, 1986.
DOI : 10.1016/0022-0728(86)80573-3

U. Collisi and H. H. Strehblow, The formation of Cu2O layers on Cu and their electroche mical and photoelectrochemical properties, Journal of Electroanalytical Chemistry, vol.335, pp.55-65, 1990.

Y. Feng and K. S. Siow, Corrosion Mechanisms and Products of Copper in Aqueous Solutions at Various pH Values, CORROSION, vol.53, issue.5, pp.389-398, 1997.
DOI : 10.5006/1.3280482

J. M. Bastidas and A. López-delgado, Copper Corrosion Mechanism in the Presence of Formic Acid Vapor for Short Exposure Times, Journal of The Electrochemical Society, vol.147, issue.3, pp.0-999
DOI : 10.1149/1.1393303

Y. Feng and W. K. Teo, The corrosion behaviour of copper in neutral tap water. Part I: Corrosion mechanisms, Corrosion Science, vol.38, issue.3, pp.369-385, 1996.
DOI : 10.1016/0010-938X(96)00110-2

T. Hurlen, Dissolution of Cuprous Chloride in Acid Chloride Solution., Acta Chemica Scandinavica, vol.16, pp.279-282, 1962.
DOI : 10.3891/acta.chem.scand.16-0279

T. Hurlen, Film Growth on Copper in Acidified Cupric Chloride Solutions., Acta Chemica Scandinavica, vol.15, pp.1246-4254, 1961.
DOI : 10.3891/acta.chem.scand.15-1246

H. Lal and H. R. Thirsk, The anodic behavior of copper in neutral and alkaline chloride so -lutions, Journal of the Chemical Society, vol.538, pp.2638-2644, 1953.

J. R. Davis, ASM specialty handbook-copper and copper alloys, 2001.

S. L. Chawla and R. K. Gupta, Materials selection for corrosion control, 1993.

P. Vanysek, Electrochemical series in W.M. Haynes " CRC Handbook of Chemistry and P hysics, 2010.

L. Burzynska, Comparison of the spontaneous and anodic processes during dissolution of brass, Corrosion Science, vol.43, issue.6, pp.1053-1069, 2001.
DOI : 10.1016/S0010-938X(00)00130-X

R. K. Dinnappa and S. M. Mayanna, The dezincification of brass and its inhibition in acidic chloride and sulphate solutions, Corrosion Science, vol.27, issue.4, pp.349-361, 1987.
DOI : 10.1016/0010-938X(87)90077-1

Q. Liu and H. Luo, The electrochemical behavior of brass in NaHSO3 solution without and with Cl ?, International Journal of Electrochemical Science, vol.7, pp.11123-11136, 2012.

L. Yohai, W. H. Schreiner, M. Vá-zquez, and M. B. Valcarce, Surface characterization of copper, zinc and brass in contact with tap water inhibited with phosphate ions, Applied Surface Science, vol.257, issue.23, pp.10089-10095, 2011.
DOI : 10.1016/j.apsusc.2011.07.002

E. E. Langenegger and F. P. Robinson, A Study of the Mechanism of Dezincification of Brasses, CORROSION, vol.25, issue.2, pp.59-66, 1969.
DOI : 10.5006/0010-9312-25.2.59

R. M. Horton, New Metallographic Evidence for Dezincification of Brass by Redisposition of Copper, CORROSION, vol.26, issue.6, pp.260-264, 1970.
DOI : 10.5006/0010-9312-26.6.260

R. Natarajan, P. C. Angelo, N. T. George, and R. V. Tamhankar, Dezincification of Cartridge Brass, CORROSION, vol.31, issue.8, pp.302-304, 1975.
DOI : 10.5006/0010-9312-31.8.302

A. J. Forty, Corrosion micromorphology of noble metal alloys and depletion gilding, Nature, vol.282, issue.5739, pp.597-598, 1979.
DOI : 10.1038/282597a0

A. J. Forty and G. Rowlands, A possible model for corrosion pitting and tunneling in noblemetal alloys, Philosophical Magazine A, pp.43-171, 1981.

I. Mccue, E. Benn, B. Gaskey, and J. Erlebacher, Dealloying and Dealloyed Materials, Annual Review of Materials Research, vol.46, issue.1, pp.263-286, 2016.
DOI : 10.1146/annurev-matsci-070115-031739

G. T. Burstein and G. Gao, The first stages of dezincification of freshly generated brass surfa ces in sulfuric acid solution, Journal of The Electrochemical Society, pp.141-912, 1994.

H. W. Pickering, Volume Diffusion During Anodic Dissolution of a Binary Alloy, Journal of The Electrochemical Society, vol.115, issue.2, pp.143-147, 1968.
DOI : 10.1149/1.2411048

L. Yao, W. Qiu, F. Gan, and H. Guo, On the volume diffusion mechanism during dezincification of brass, Corrosion Science and Protection technique, vol.4, pp.217-222, 1992.

J. Y. Zou, D. H. Wang, and W. C. Qiu, Solid-state diffusion during the selective dissolution of brass: chronoamperometry and positron annihilation study, Electrochimica Acta, vol.42, issue.11, pp.42-1733, 1997.
DOI : 10.1016/S0013-4686(96)00373-8

W. C. Fort, Mechanisms and inhibition of dealloying in an alpha brass, 1975.

J. Laurent and D. Landolt, Time Dependent Selective Dissolution of Gold-Copper Alloys at Subcritical Potentials, Materials Science Forum, vol.44, issue.45, pp.44-45, 1989.
DOI : 10.4028/www.scientific.net/MSF.44-45.213

J. Laurent and D. Landolt, Anodic dissolution of binary single phase alloys at subscritical potential, Electrochimica Acta, vol.36, issue.1, pp.49-58, 1991.
DOI : 10.1016/0013-4686(91)85178-A

K. Sieradzki, R. R. Corderman, K. Shukla, and R. C. Newman, Computer simulations of corrosion: Selective dissolution of binary alloys, Philosophical Magazine A, vol.62, issue.4, pp.713-746, 1989.
DOI : 10.1103/PhysRevLett.47.1400

C. Berne and E. Andrieu, Solutions, Journal of The Electrochemical Society, vol.163, issue.2, pp.7-15, 2016.
DOI : 10.1149/2.0071602jes

URL : https://hal.archives-ouvertes.fr/hal-00920252

R. W. Revie and H. H. Uhlig, An introduction to corrosion science and engineering, 4 th Ed, 2008.

R. W. Cahn, Percolation frustrated, Nature, vol.389, issue.6647, pp.121-122, 1997.
DOI : 10.1038/38113

J. Wang, X. Jiang, and S. Li, Synergistic mechanism of boron and arsenic in preventing dezin cification of brass, Chinese Science Bulletin, vol.42, pp.1135-1139, 1997.

K. R. Trethewey and I. , The dezincification of free-machining brasses in sea water, Surface and Coatings Technology, vol.30, issue.3, pp.289-307, 1987.
DOI : 10.1016/0257-8972(87)90087-9

R. H. Heidersbach and E. D. Verinkm, The Dezincification of Alpha and Beta Brasses, CORROSION, vol.28, issue.11, pp.397-418, 1972.
DOI : 10.5006/0010-9312-28.11.397

J. C. Rubim, Surface enhanced Raman scattering (SERS) from benzotriazole adsorbed on brass electrodes, Chemical Physics Letters, vol.167, issue.3, pp.209-214, 1990.
DOI : 10.1016/0009-2614(90)85007-Y

P. Qiu and C. Leygraf, Initial oxidation of brass induced by humidified air, Applied Surface Science, vol.258, issue.3, pp.1235-1241, 2011.
DOI : 10.1016/j.apsusc.2011.09.080

B. S. Kim, T. Piao, S. N. Hoier, and S. M. Park, In situ spectro-electrochemical studies on the oxidation mechanism of brass, situ spectro-electrochemical studies on the oxidation mechanism of brass, pp.557-570, 1995.
DOI : 10.1016/0010-938X(94)00147-X

M. B. Valcarce, S. R. De-sanchez, and M. Vazquez, A comparative analysis of copper and brass surface films in contact with tap water, Journal of Materials Science, vol.26, issue.3, pp.1999-200, 2006.
DOI : 10.5006/1.3581966

M. B. Valcarce, S. R. De-sanchez, and M. Vazquez, Brass dezincification in a tap water bacterial suspension, Electrochimica Acta, vol.51, issue.18, pp.3736-3742, 2006.
DOI : 10.1016/j.electacta.2005.10.034

S. M. Awadh, F. M. Kharafi, and B. G. Ateya, Selective Dissolution of Alpha Brass in Acid Noncomplexing Media, Journal of The Electrochemical Society, vol.57, issue.3, pp.114-121, 2009.
DOI : 10.1149/1.2428496

K. Satendra, T. S. Sankara-narayanan, M. S. Kumar, and A. Manimaran, Dezincificati on of brass in sulfide polluted sodium chloride medium: evaluation of the effectiveness of 2-mercaptobenzothiazole, International Journal of Electrochemical Science, vol.1, pp.456-469, 2006.

Y. Hoshi, T. Oda, I. Shitanda, and M. Itagaki, Communication???Real-Time Surface Observation of Copper during Anodic Polarization with Channel Flow Double Electrode, Journal of The Electrochemical Society, vol.82, issue.7, pp.450-452, 2017.
DOI : 10.1007/s10008-015-2840-9

Y. Hoshi, M. Itagaki, K. Tabeisao, and I. Shitanda, Anodic dissolution of brass and dezincing-resistant brass investigated using channel flow double electrode, Journal of Solid State Electrochemistry, vol.47, issue.1, pp.3551-3557, 2015.
DOI : 10.3323/jcorr.59.43

R. Cerrato and A. Casal, Dealloying evidence on corroded brass by laser-induced brea kdown spectroscopy mapping and depth profiling measurements, Spectrochimica Acta Par t B, Atomic Spectroscopy, vol.130, pp.1-6, 2017.
DOI : 10.1016/j.sab.2016.11.006

V. F. Lucey, The Mechanism of Dezincification and the Effect of Arsenic. I., British Corrosion Journal, vol.1, issue.1, pp.9-14, 1965.
DOI : 10.1179/bcj.1965.1.1.9

V. F. Lucey, The mechanism of dezincification and the effect of arsenic. II, British Corrosion Journal, vol.1, issue.1, pp.53-59, 1965.
DOI : 10.1179/bcj.1965.1.1.9

F. Can, J. Zou, and L. Yao, A study of the mechanism of dezincification of ?+? bi-phase bra ss(II), Journal of Chinese Society for Corrosion and Protection, pp.3-217, 1983.

H. H. Dollwet and J. R. Sorenson, Historic uses of copper compounds in medicine, T race elements in Medicine, pp.80-87, 1985.

G. Grass, C. Rensing, and M. Solioz, Metallic copper as an antimicrobial surface, Applie d and environmental microbiology, pp.77-1541, 2011.
DOI : 10.1128/aem.02766-10

URL : http://aem.asm.org/content/77/5/1541.full.pdf

P. J. Kuhn, Doorknobs: a source of nosocomial infection? Copper Development Associat ion, 1983.

V. B. Sudha, K. O. Singh, S. R. Prasad, and P. Venkatasubramanian, Killing of enteric b acteria in drinking water by a copper device for use in the home: laboratory evidence, Tran sactions of The royal society of tropical Medicine and Hygiene, pp.819-822, 2009.

K. Helbig, C. Bleuel, G. J. Krauss, and D. H. Nies, Glutathione and transition-metal hom eostasis in Escherichia coli, Journal of Bacteriology, pp.190-5431, 2008.
DOI : 10.1128/jb.00271-08

URL : http://jb.asm.org/content/190/15/5431.full.pdf

D. Schomburg and M. Salzmann, Dihydroxy-acid dehydratase In Enzyme Handbook 1, pp.617-621, 1990.
DOI : 10.1007/978-3-642-86605-0_137

O. Yogev, A. Naamati, and O. Pines, Fumarase: a paradigm of dual targeting and dual localized functions, FEBS Journal, vol.134, issue.22, pp.4230-4242, 2011.
DOI : 10.1007/s00438-003-0879-2

W. T. Blevins, T. W. Feary, and P. , Phibbs, 6-Phosphogluconate dehydratase deficiency in pleiotropic carbohydrate-negative mutant strains of Pseudomonas aeruginosa, Journal of b acteriology, vol.121, pp.942-949, 1975.

C. Manzl, J. Enrich, H. Ebner, R. Dallinger, and G. , Copper-induced formati on of reactive oxygen species causes cell death and disruption of calcium homeostasis in tr out hepatocytes, Toxicology, pp.196-57, 2004.

B. Halliwell and J. M. Gutteridge, Toxicité de l'oxygè ne, des radicaux d'oxygè ne, des mé taux de transition et les maladies, Biochemical Journal, pp.219-220, 1984.

B. Halliwell and J. M. Gutteridge, Le rôle des radicaux libres et des ions mé talliques cata lytiques dans les maladies humaines: une vue d'ensemble, Methods in Enzymology, vol.186, issue.1, pp.990-991

L. Yohai, M. Vá-zquez, and M. B. Valcarce, Brass corrosion in tap water distribution systems inhibited by phosphate ions, Corrosion Science, vol.53, issue.3, pp.1130-1136, 2011.
DOI : 10.1016/j.corsci.2010.12.005

L. Yohai, W. H. Schreiner, M. Vá-zquez, and M. B. Valcarce, Surface characterization of copper, zinc and brass in contact with tap water inhibited with phosphate ions, Applied Surface Science, vol.257, issue.23, pp.10089-0095, 2011.
DOI : 10.1016/j.apsusc.2011.07.002

G. M. Ingo and E. Angelini, Study of long?term corrosion layers grown on high?tin le aded bronzes by means of the combined use of GDOES and SEM+ EDS, Surface and inter face analysis, pp.34-337, 2002.

K. Ogle and S. Weber, Anodic Dissolution of 304 Stainless Steel Using Atomic Emission Spectroelectrochemistry, Journal of The Electrochemical Society, vol.147, issue.5, pp.1770-1780, 2000.
DOI : 10.1149/1.1393433

J. ?wiatowska, P. Volovitch, and K. Ogle, The anodic dissolution of Mg in NaCl and Na2SO 4 electrolytes by atomic emission spectroelectrochemistry, Corrosion Science, vol.52, issue.23, pp.72-2378, 2010.

A. Stá-hlavská, The use of spectrum analytical methods in drug analysis. 1. Determinatio n of alkaline metals using emission flame photometry, Pharmazie, pp.28-238, 1973.

K. Ogle, J. Baeyens, J. Swiatowska, and P. Volovitch, Atomic emission spectroelectrochemi stry applied to dealloying phenomena: I. The formation and dissolution of residual copper films on stainless steel, Electrochimica Acta, pp.54-5163, 2009.
DOI : 10.1016/j.electacta.2009.01.037

B. Laurent and N. Gruet, A Direct Measurement of the Activation Potential of Stainless Steels in Nitric Acid, Journal of The Electrochemical Society, vol.62, issue.9, pp.481-487, 2017.
DOI : 10.1016/S0010-938X(97)89244-X

K. Ogle, S. Morel, and N. Meddahi, An electrochemical study of the delamination of polym er coatings on galvanized steel, Corrosion science, pp.47-2034, 2005.

O. Gharbi, N. Birbilis, and K. Ogle, Li reactivity during the surface pretreatment of Al-Li alloy AA2050-T3, Electrochimica Acta, vol.243, pp.207-219, 2017.
DOI : 10.1016/j.electacta.2017.05.038

T. J. Manning and W. R. Grow, Inductively coupled plasma?atomic emission spectrometry, The Chemical Educator, pp.1-19, 1997.

V. Shkirskiy, P. Marciel, J. Deconinck, and K. Ogle, On the time resolution of the atomic e mission spectroelectrochemistry method, Journal of electrochemical society, vol.163, pp.1-8, 2016.

H. Cong, H. T. Michels, and J. R. Scully, Passivity and pit stability behavior of copper as a fu nction of selected water chemistry variables, Journal of the Electrochemical Society, vol.156, issue.2, pp.9-16

E. Mattsson, Counteraction of pitting in copper water pipes by bicarbonate dosing, Materials and Corrosion/Werkstoffe und Korrosion, vol.26, issue.11, pp.499-503, 1988.
DOI : 10.1179/000705968798326037

M. Drogowska, L. Brossard, and H. Mé-nard, Influence of anions on the passivity behavior of copper in alkaline solutions, Surface and Coatings Technology, vol.34, issue.4, pp.383-400, 1988.
DOI : 10.1016/0257-8972(88)90096-5

G. Schmitt, P. Plagemann, and E. Slavcheva, ECN-measurements at copper in artificial tap water ??? Investigation of anion-effects, Materials and Corrosion, vol.52, issue.6, pp.439-444, 2001.
DOI : 10.1002/1521-4176(200106)52:6<439::AID-MACO439>3.0.CO;2-4

Y. P. Feng, S. K. Sinha, C. A. Melendres, and D. D. Lee, X-ray off-specular reflectivity studies of electrochemical pitting of Cu surfaces in sodium bicarbonate solution, Physica B: Cond ensed Matter, pp.251-256, 1996.
DOI : 10.1016/0921-4526(95)00934-5

S. A. Imran, J. D. Dietz, G. Mutoti, J. S. Taylor, and A. A. Randall, Modified Larsons Ratio Incorporating Temperature, Water Age, and Electroneutrality Effects on Red Water Release, Journal of Environmental Engineering, vol.131, issue.11, pp.1514-1520, 2005.
DOI : 10.1061/(ASCE)0733-9372(2005)131:11(1514)

E. J. Singley, The search for a corrosion index, Journal of American Water Works Assoc iation, vol.73, pp.579-582, 1981.

J. R. Rossum and T. M. Douglas, An evaluation of the calcium carbonate saturation indexes, Journal of American Water Works Association, vol.75, pp.95-100, 1983.

E. Sarver and K. Dodson, Copper pitting in chlorinated, high-pH potable water, Journ al of American Water Works Association, vol.103, pp.86-98, 2011.

H. Cong and J. R. Scully, Effects of Aluminum Solids on the under Deposit Corrosion of Copper in Synthetic Potable Water: The Arguments for and against a Semi-Permeable Membrane, Journal of the Electrochemical Society, vol.160, issue.9, pp.403-413, 2013.
DOI : 10.1149/2.002309jes

M. Drogowska, L. Brossard, and H. Mé-nard, Copper Dissolution in NaHCO[sub 3] and NaHCO[sub 3]???+???NaCl Aqueous Solutions at pH 8, Journal of The Electrochemical Society, vol.139, issue.1, pp.39-47, 1992.
DOI : 10.1149/1.2069196

S. Nakayama, Mechanistic study by electrochemical impedance spectroscopy on reducti on of copper oxides in neutral solutions, SEI Technical Review, pp.62-68, 2009.

P. Szakalos, G. Hultquist, and G. Wikmark, Corrosion of Copper by Water, Electrochemical and Solid-State Letters, vol.522, issue.523, pp.63-67, 2007.
DOI : 10.1149/1.1497399

G. Hultquist and P. Szaká, Detection of hydrogen in corrosion of copper in pure w ater, International Corrosion Congress, 2008.

T. E. Eriksen, P. Ndalamba, and I. Grenthe, On the corrosion of copper in pure water, Corrosion Science, vol.29, issue.10, pp.1241-1250, 1989.
DOI : 10.1016/0010-938X(89)90071-1

S. Jacobs and M. Edwards, Sulfide scale catalysis of copper corrosion, Water Research, vol.34, issue.10, pp.2798-2808, 2000.
DOI : 10.1016/S0043-1354(00)00025-7

C. Ackfeld, O. Von-franqué, and W. Siedlarek, Electrochemical potential measurements of c ommercial copper tubes with different surfaces, Materials and Corrosion, issue.48, pp.624-630, 1997.

K. Ogle, Atomic emission spectroelectrochemistry: a new look at the corrosion, dissolut ion and passivation of complex materials, pp.60-67, 2011.

J. Lin and M. Z. Liu, Detergent for steel, aluminium and copper materials, Chinese), 1995.

F. Seuss, N. Gaag, and S. Virtanen, Corrosion mechanism of CuZn21Si3P in aggressive tap water, Materials and Corrosion, vol.1, issue.1, 2016.
DOI : 10.1179/bcj.1965.1.1.9

H. Sugawara and H. Ebiko, Dezincification of brass, Corrosion Science, vol.7, issue.8, pp.513-523, 1967.
DOI : 10.1016/S0010-938X(67)80090-8

H. Lu, K. W. Gao, and W. Y. Chu, Determination of tensile stress induced by dezincification layer during corrosion for brass, Corrosion Science, vol.40, issue.10, pp.1663-1670, 1998.
DOI : 10.1016/S0010-938X(98)00063-8

H. W. Pickering and P. J. Byrne, On preferential anodic dissolution of alloys in the low-curre nt region and the nature of the critical potential, Journal of the Electrochemical Society, vol.11, pp.8-209, 1971.

H. W. Pickering, Electrolytic Dissolution of Binary Alloys Containing a Noble Metal, Journal of The Electrochemical Society, vol.114, issue.7, pp.698-706, 1967.
DOI : 10.1149/1.2426709

B. Assouli, A. Srhiri, and H. Idrissi, Characterization and control of selective corrosion of ??,?????-brass by acoustic emission, NDT & E International, vol.36, issue.2, pp.117-126, 2003.
DOI : 10.1016/S0963-8695(02)00102-0

URL : https://hal.archives-ouvertes.fr/hal-00475103

R. C. Newman, T. Shahrabi, and K. Sieradzki, Direct electrochemical measurement of dezincification including the effect of alloyed arsenic, Corrosion Science, vol.28, issue.9, pp.873-886, 1988.
DOI : 10.1016/0010-938X(88)90036-4

T. L. Barr and J. J. Hackenberg, Determination of the onset of the dezincification of .alpha.-brass using x-ray photoelectron (ESCA) spectroscopy, Journal of the American Chemical Society, vol.104, issue.20, pp.5390-5394, 1982.
DOI : 10.1021/ja00384a024

Y. M. Kolotyrkin, Use of radioactive indicator and electrochemical methods for determining low corrosion rates, Electrochimica Acta, vol.18, issue.8, pp.593-606, 1973.
DOI : 10.1016/0013-4686(73)85025-X

P. Zhou, M. J. Hutchison, J. R. Scully, and K. Ogle, The anodic dissolution of copper alloys: Pure copper in synthetic tap water, Electrochimica Acta, vol.191, pp.548-557, 2016.
DOI : 10.1016/j.electacta.2016.01.093

C. Nobel, F. Klocke, D. Lung, and S. Wolf, Machinability Enhancement of Lead-free Brass Alloys, Procedia CIRP, vol.14, pp.95-100, 2014.
DOI : 10.1016/j.procir.2014.03.018

C. Nobel, U. Hofmann, F. Klocke, D. Veselovac, and H. Puls, Application of a new, severecondition friction test method to understand the machining characteristics of Cu-Zn alloys using coated cutting tools, Wear, vol.344, pp.58-68, 2015.

E. Brandl, R. Malke, T. Beck, A. Wanner, and T. Hack, Stress corrosion cracking and selecti ve corrosion of copper-zinc alloys for the drinking water installation, pp.60-251, 2009.

M. A. Taha, T. M. Mousa, R. M. Hamouda, and A. F. Yousef, Microstructure and castability of lead-free silicon brass alloys, Materialwissenschaft und Werkstofftechnik, vol.102, issue.8, pp.699-704, 2012.
DOI : 10.1002/mawe.201200932

C. Ackfeld, O. Von-franqué, and W. Siedlarek, Elektrochemische Untersuchungen von handels??blichen Kupferrohren mit verschiedenen Oberfl??chenzust??nden, Materials and Corrosion/Werkstoffe und Korrosion, vol.25, issue.9, pp.624-630, 1997.
DOI : 10.5006/0010-9312-25.6.267

K. Ogle, M. Mokaddem, and P. Volovitch, Atomic emission spectroelectrochemistry applied to dealloying phenomena II. Selective dissolution of iron and chromium during active-pas sive cycles of an austenitic stainless steel, Electrochimica Acta, pp.55-913, 2010.
DOI : 10.1016/j.electacta.2009.01.037

J. C. Hamilton, J. C. Farmer, and R. J. Anderson, In Situ Raman Spectroscopy of Anodic Films Formed on Copper and Silver in Sodium Hydroxide Solution, Journal of The Electrochemical Society, vol.133, issue.4, pp.739-745, 1986.
DOI : 10.1149/1.2108666

M. Biton, G. Salitra, D. Aurbach, P. Mishkov, and D. Ilzycer, On the Electrochemical Behavior and Passivation of Copper and Brass (Cu70???Zn30) Electrodes in Concentrated Aqueous KOH Solutions, Journal of The Electrochemical Society, vol.33, issue.12, pp.555-565, 2006.
DOI : 10.1143/JJAP.18.1043

F. Ospitali, C. Chiavari, C. Martini, E. Bernardi, F. Passarini et al., The characterization of Sn-based corrosion products in ancient bronzes: a Raman approach, Journal of Raman Spectroscopy, vol.32, issue.8, pp.1596-1603, 2012.
DOI : 10.1107/S0567739476001551

P. L. Kazansky, Y. E. Pronin, and I. A. , XPS study of adsorption of 2-mercaptobenzothiazole on a brass surface, Corrosion Science, vol.89, pp.21-29, 2014.
DOI : 10.1016/j.corsci.2014.07.055

M. H. Saber-;-a and . Warraky, Electrochemical and spectroscopic studies on dezincifica tion of a-brass Part II. Effect of polarization on the dezincification process, Desalination, vol.9, pp.3-473, 1993.

L. B. Railsback, Some Fundamentals of Mineralogy and Geochemistry, 2006.

N. T. Rochman, K. Yamada, R. Fujimoto, S. I. Suehiro, and H. Sueyoshi, Effects of microstructural factors and alloying elements on dezincification of brass., Journal of Advanced Science, vol.13, issue.3, pp.277-280, 2001.
DOI : 10.2978/jsas.13.277

G. Joseph and M. T. Arce, Contribution to the study of brass dezincification, Corrosion Science, vol.7, issue.9, pp.597-605, 1967.
DOI : 10.1016/0010-938X(67)80035-0

J. E. Holliday and H. W. Pickering, A Soft X-Ray Study of the Near Surface Composition of Cu30Zn Alloy during Simultaneous Dissolution of Its Components, Journal of The Electrochemical Society, vol.120, issue.4, pp.470-475, 1973.
DOI : 10.1149/1.2403479

B. G. Atey and H. W. Pickering, The effects of potential and kinetic parameters on the forma tion of passivating noble metal rich surface layers during the selective dissolution of binar y alloys, Corrosion Science, pp.38-1245, 1996.

M. L. Carvalho, Corrosion of copper alloys in natural seawater: effects of hydrodynamic s and pH, 2014.

R. Cerrato, A. Casal, and M. P. Mateo, Dealloying evidence on corroded brass by lase r-induced breakdown spectroscopy mapping and depth profiling measurements, Spectroch imica Acta Part B: Atomic Spectroscopy, vol.130, pp.1-6, 2017.

P. Zhou, M. J. Hutchison, J. W. Erning, J. R. Scully, and K. Ogle, An in situ kinetic study of brass dezincification in synthetic tap water, Electrochimica Acta, pp.229-141, 2017.

M. J. Hutchison, P. Zhou, K. Ogle, and J. R. Scully, Enhanced Electrochemical Cu Release from Commercial Cu-Sn Alloys: Fate of the Alloying Elements in Artificial Perspiration, Electrochimica Acta, vol.241, pp.73-88, 2017.
DOI : 10.1016/j.electacta.2017.04.092

A. Nawaz, K. M. Deen, A. Farooq, and R. Ahmed, Investigating the electrochemical behavio r of alpha brass in acidic and alkaline tap water, Materials Today: Proceedings, vol.2, issue.51, pp.70-5176, 2015.

R. M. El-sherif, K. M. Ismail, and W. A. Badawy, Effect of Zn and Pb as alloying elements on the electrochemical behavior of brass in NaCl solutions, Electrochimica Acta, vol.49, issue.28, pp.5139-5150, 2004.
DOI : 10.1016/j.electacta.2004.06.027

D. J. Ives and A. E. Rawson, Copper Corrosion, Journal of The Electrochemical Society, vol.109, issue.6, pp.447-451, 1962.
DOI : 10.1149/1.2425445

H. E. Troiani, J. L. Pelegrina, and M. Ahlers, The dezincification of ??-Cu-Zn, Physica Status Solidi (a), vol.56, issue.1, pp.156-93, 1996.
DOI : 10.1007/978-1-4613-0491-3

E. V. Koroleva, G. E. Thompson, P. Skeldon, and B. Noble, Crystallographic dissolution of high purity aluminum, Proceedings of the Royal Society. A, pp.463-1729, 2007.

A. Shahryari and S. Orrianovic, The influence of crystallographic orientation distribution on 316LVM stainless steel pitting behavior, Corrosion Science, vol.51, issue.3, p.51, 2009.
DOI : 10.1016/j.corsci.2008.12.019

K. Fushimi, K. Miyamoto, and H. Konno, Anisotropic corrosion of iron in pH 1 sulphuric acid, Electrochimica Acta, vol.55, issue.24, pp.7322-7327, 2010.
DOI : 10.1016/j.electacta.2010.07.044

A. Schreiber, C. Rosenkranz, and M. M. , Grain-dependent anodic dissolution of iron, Electrochimica Acta, vol.52, issue.27, pp.7738-7745, 2007.
DOI : 10.1016/j.electacta.2006.12.062

B. Holme, N. Ljones, A. Bakken, O. Lunder, J. E. Lein et al., Preferential Grain Etching of AlMgSi(Zn) Model Alloys, Preferential grain etching of AlMgSi(Zn) model alloys, pp.424-427, 2010.
DOI : 10.1135/cccc19870088

L. Bland, K. Gusieva, and J. R. Scully, Effect of Crystallographic Orientation on the Corrosion of Magnesium: Comparison of Film Forming and Bare Crystal Facets using Electrochemical Impedance and Raman Spectroscopy, Electrochimica Acta, vol.227, pp.136-151, 2017.
DOI : 10.1016/j.electacta.2016.12.107

M. Nolan and S. D. Elliott, The p-type conduction mechanism in Cu2O: a first principles study, Physical Chemistry Chemical Physics, vol.110, issue.45, pp.5350-5358, 2006.
DOI : 10.1039/b611969g

G. Grass, C. Rensing, and M. Solioz, ABSTRACT, Applied and Environmental Microbiology, vol.77, issue.5, pp.1541-1547, 2011.
DOI : 10.1128/AEM.02766-10

H. T. Michels, J. O. Noyce, and C. W. , Keevil, Effects of temperature and humidity on the effi cacy of methicillin-resistant Staphylococcus aureus challenged antimicrobial materials con taining silver and copper, Lett. Appl. Microbiol, pp.49-191, 2009.

J. O. Noyce, H. Michels, and C. W. , Potential use of copper surfaces to reduce surviva l of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment, J. Hosp. Infect, pp.63-289, 2006.

S. Mehtar, S. D. Wiid, and . Todorov, The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in-vitro study, Journal of Hospital Infection, vol.68, issue.1, pp.68-113, 2008.
DOI : 10.1016/j.jhin.2007.10.009

J. Elguindi, J. Wagner, and C. Rensing, on copper surfaces, Journal of Applied Microbiology, vol.111, issue.5, pp.1448-1462, 2009.
DOI : 10.1111/j.1365-2672.2009.04148.x

G. Faúndez, M. Troncoso, P. Navarrete, and G. Figueroa, Antimicrobial activity of copper s urfaces against suspensions of Salmonella enterica and Campylobacter jejuni, BMC Micro biol, vol.4, issue.19, 2004.

J. O. Noyce, H. Michels, and C. W. , Potential use of copper surfaces to reduce surviv al of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment, J. Hosp. Infect, pp.63-289, 2006.

J. O. Noyce, H. Michels, and C. W. Keevil, Use of Copper Cast Alloys To Control Escherichia coli O157 Cross-Contamination during Food Processing, Applied and Environmental Microbiology, vol.72, issue.6, pp.72-4239
DOI : 10.1128/AEM.02532-05

L. Weaver, H. T. Michels, and C. W. , Survival of Clostridium difficile on copper and steel: futuristic options for hospital hygiene, Journal of Hospital Infection, vol.68, issue.2, pp.68145-151, 2008.
DOI : 10.1016/j.jhin.2007.11.011

S. A. Wilks, H. T. Michels, and C. W. , Survival of Listeria monocytogenes Scott A on metal surfaces: Implications for cross-contamination, International Journal of Food Microbiology, vol.111, issue.2, p.9, 2006.
DOI : 10.1016/j.ijfoodmicro.2006.04.037

D. J. Horton, H. Ha, L. L. Foster, H. J. Bindig, and J. R. Scully, Tarnishing and Cu Ion release in Selected Copper-Base Alloys: Implications towards Antimicrobial Functionality, Electrochimica Acta, vol.169, pp.351-366, 2015.
DOI : 10.1016/j.electacta.2015.04.001

URL : http://ma.ecsdl.org/content/MA2011-02/24/1797.full.pdf

D. Quaranta, T. Krans, C. E. Santo, C. G. Elowsky, D. W. Domaille et al., Gras s, Mechanisms of Contact-Mediated Killing of Yeast Cells on Dry Metallic Copper Surfac es, Appl. Environ. Microbiol, pp.77416-426, 2011.

D. Quaranta, T. Krans, C. E. Santo, C. G. Elowsky, D. W. Domaille et al., Gr ass, Mechanisms of Contact-Mediated Killing of Yeast Cells on Dry Metallic Copper Surf aces, Appl. Environ. Microbiol, pp.77-416, 2011.

B. En, Reference test method for release of nickel from all post assemblies which are i nserted into pierced parts of the human body and articles intended to come into direct and prolonged contact with the skin, p.1811, 2008.

I. Milo?ev and T. Kosec, Metal ion release and surface composition of the Cu???18Ni???20Zn nickel???silver during 30 days immersion in artificial sweat, Applied Surface Science, vol.254, issue.2, p.644, 2007.
DOI : 10.1016/j.apsusc.2007.06.049

S. Caporali and U. Bardi, Corrosion Mechanism in Artificial Sweat Solution of In-Bearing White Bronze Alloy, CORROSION, vol.68, issue.2, pp.68-2012
DOI : 10.5006/1.3683223

N. Fredj, J. S. Kolar, D. M. Prichard, and T. D. Burleigh, Study of relative color stability and c orrosion resistance of commercial copper alloys exposed to hand contact and synthetic han d sweat, Corrosion Science, pp.76-415, 2013.

S. Goidanich, I. Wallinder, G. Herting, and C. Leygraf, Corrosion induced metal r elease from copper based alloys compared to their pure elements, Corros. Eng. Sci. Techn ol, pp.43-134, 2008.
DOI : 10.1179/174327808x286383

L. Jiang, P. Volovitch, U. Sundermeier, M. Wolpers, and K. Ogle, Dissolution and passive film formation of Sn and Sn coated steel using atomic emission spectroelectrochemistry, Electrochimica Acta, vol.58, pp.322-329, 2011.
DOI : 10.1016/j.electacta.2011.09.046

G. Herting, S. Goidanich, I. O. Wallinder, and C. Leygraf, Corrosion-induced release of Cu a nd Zn into rainwater from brass, bronze and their pure metals. A 2-year field study, Enviro n, Monit. Assess, pp.144-455, 2008.

X. Zhang, I. Wallinder, and C. Leygraf, Mechanistic studies of corrosion product flaking on copper and copper-based alloys in marine environments, Corrosion Science, vol.85, pp.15-25, 2014.
DOI : 10.1016/j.corsci.2014.03.028

C. Debiemme-chouvy, F. Ammeloot, and E. M. Sutter, X-ray photoemission investigation of the corrosion film formed on a polished Cu???13Sn alloy in aerated NaCl solution, Applied Surface Science, vol.174, issue.1, pp.55-61, 2001.
DOI : 10.1016/S0169-4332(01)00023-X

L. Robbiola, K. Rahmouni, C. Chiavari, C. Martini, D. Prandstraller et al., New insight into the nature and properties of pale green surfaces of out door bronze monuments, Appl. Phys. A, pp.92-161, 2008.

M. C. Squarcialupi, G. P. Bernardini, V. Faso, A. Atrei, and G. Rovida, Characterisation by XPS of the corrosion patina formed on bronze surfaces, Journal of Cultural Heritage, vol.3, issue.3, pp.199-204, 2002.
DOI : 10.1016/S1296-2074(02)01179-2

F. Ospitali, C. Chiavari, C. Martini, E. Bernardi, F. Passarini et al., The characterization of Sn-based corrosion products in ancient bronzes: a Raman approach, Journal of Raman Spectroscopy, vol.32, issue.8, pp.1596-1603, 2012.
DOI : 10.1107/S0567739476001551

I. Milo?ev and T. Kosec, Metal ion release and surface composition of the Cu???18Ni???20Zn nickel???silver during 30 days immersion in artificial sweat, Applied Surface Science, vol.254, issue.2, pp.644-652, 2007.
DOI : 10.1016/j.apsusc.2007.06.049

S. Colin, E. Beche, R. Berjoan, H. Jolibois, and A. , Chambaudet, An XPS and AES study of the free corrosion of Cu-, Ni-and Zn-based alloys in synthetic sweat, Corros. Sci, pp.41-1051, 1999.

M. C. Squarcialupi, G. P. Bernardini, V. Faso, A. Atrei, and G. Rovida, Characterisation by XPS of the corrosion patina formed on bronze surfaces, Journal of Cultural Heritage, vol.3, issue.3, pp.199-204, 2002.
DOI : 10.1016/S1296-2074(02)01179-2

G. Masi, C. Chiavari, J. Avila, J. Esvan, S. Raffo et al., Corrosion investigation of fire-gilded bronze involving high surface reso lution spectroscopic imaging, Appl. Surf. Sci, pp.366-317, 2016.

C. Debiemme-chouvy, F. Ammeloot, and E. M. Sutter, X-ray photoemission investigation of the corrosion film formed on a polished Cu???13Sn alloy in aerated NaCl solution, Applied Surface Science, vol.174, issue.1, pp.55-61, 2001.
DOI : 10.1016/S0169-4332(01)00023-X

R. Walker, Aqueous Corrosion of Tin-Bronze and Inhibition by Benzotriazole, Corrosio n, pp.1211-1219, 2000.

F. Ammeloot, C. Fiaud, and E. M. Sutter, Characterization of the oxide layers on a Cu 1 3Sn alloy in a NaCl aqueous solution without and with 0.1 M benzotriazole. Electrochemi cal and photoelectrochemical contributions, Electrochimica Acta, pp.44-2549, 1999.

S. Men and P. Licence, Probing the electronic environment of binary and ternary ionic li quid mixtures by X-ray photoelectron spectroscopy, Chemical Physics Letters, 2017.

B. Malki, S. Saedlou, I. Guillotte, and B. Baroux, Ab Initio Monte Carlo Simulations of the Acidic Dissolution of Stainless Steels: Influence of the Alloying Elements, Journal of The Electrochemical Society, vol.163, issue.14, pp.163-807, 2016.
DOI : 10.1149/2.0701410jes

URL : https://hal.archives-ouvertes.fr/hal-01517210

J. G. Speight, Lange's Handbook of Chemistry: Bond Dissociation Energies, 2005.

R. K. Thauer, Citric-acid cycle, 50 years on. Modifications and an alternative pathway in anaerobic bacteria, European Journal of Biochemistry, vol.149, issue.3, pp.497-508, 1988.
DOI : 10.1042/bj0510614

J. C. Lin, J. Y. Lin, and S. P. Jou, Selective dissolution of the cobalt binder from scraps of ce mented tungsten carbide in acids containing additives, Hydrometallurgy, pp.43-47, 1996.