M. Bashkansky and J. Reintjes, Statistics and reduction of speckle in optical coherence tomography, Optics Letters, vol.25, issue.8, pp.545-547, 2000.
DOI : 10.1364/OL.25.000545

M. Kato, Y. Nakayama, and T. Suzuki, Speckle Reduction in Holography with a Spatially Incoherent Source, Applied Optics, vol.14, issue.5, pp.1093-1099, 1975.
DOI : 10.1364/AO.14.001093

L. Wang, T. Tschudi, T. Halldorsson, and P. R. Petursson, Speckle reduction in laser projection systems by diffractive optical elements, Applied Optics, vol.37, issue.10, pp.1770-1775, 1998.
DOI : 10.1364/AO.37.001770

L. Novak and M. Burl, Optimal speckle reduction in polarimetric SAR imagery, IEEE Transactions on Aerospace and Electronic Systems, vol.26, issue.2, pp.293-305, 1990.
DOI : 10.1109/7.53442

B. Pan, K. Qian, H. Xie, and A. Asundi, Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review, Measurement Science and Technology, vol.20, issue.6, p.62001, 2009.
DOI : 10.1088/0957-0233/20/6/062001

M. Grédiac, The use of full-field measurement methods in composite material characterization: interest and limitations, Composites Part A: Applied Science and Manufacturing, vol.35, issue.7-8, pp.751-761, 2004.
DOI : 10.1016/j.compositesa.2004.01.019

C. A. Thompson, K. J. Webb, and A. M. Weiner, Diffusive media characterization with laser speckle, Applied Optics, vol.36, issue.16, pp.3726-3734, 1997.
DOI : 10.1364/AO.36.003726

D. A. Boas and A. K. Dunn, Laser speckle contrast imaging in biomedical optics, Journal of Biomedical Optics, vol.15, issue.1, pp.11109-11121, 2010.
DOI : 10.1117/1.3285504

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2816990/pdf

Z. Zalevsky, Y. Beiderman, I. Margalit, S. Gingold, M. Teicher et al., Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern, Optics Express, vol.17, issue.24, pp.1721566-80, 2009.
DOI : 10.1364/OE.17.021566.m004

J. Barnes and M. D. Mayes, Epidemiology of systemic sclerosis, Current Opinion in Rheumatology, vol.24, issue.2, pp.165-170, 2012.
DOI : 10.1097/BOR.0b013e32834ff2e8

R. Garner, R. Kumari, P. Lanyon, M. Doherty, and W. Zhang, Prevalence, risk factors and associations of primary Raynaud's phenomenon: systematic review and meta-analysis of observational studies, BMJ Open, vol.304, issue.(Suppl 1), p.6389, 2015.
DOI : 10.1056/NEJM198103263041306

P. G. Vaz, A. Humeau-heurtier, E. Figueiras, C. Correia, and J. Cardoso, Laser Speckle Imaging to Monitor Microvascular Blood Flow: A Review, IEEE Reviews in Biomedical Engineering, vol.9, issue.99, pp.1-1, 2016.
DOI : 10.1109/RBME.2016.2532598

URL : https://hal.archives-ouvertes.fr/hal-01388810

P. Vaz, T. Pereira, E. Figueiras, C. Correia, A. Humeau-heurtier et al., Which wavelength is the best for arterial pulse waveform extraction using laser speckle imaging?, Biomedical Signal Processing and Control, vol.25, pp.188-195, 2016.
DOI : 10.1016/j.bspc.2015.11.013

URL : https://hal.archives-ouvertes.fr/hal-01388765

P. Vaz, V. Almeida, L. R. Ferreira, C. Correia, and J. Cardoso, Signal (Stream) synchronization with White noise sources, in biomedical applications, Biomedical Signal Processing and Control, vol.18, pp.394-400, 2015.
DOI : 10.1016/j.bspc.2015.02.015

P. Vaz, P. Santos, E. Figueiras, C. Correia, A. Humeau-heurtier et al., Laser speckle contrast analysis for pulse waveform extraction., Novel Biophotonics Techniques and Applications III, pp.954006-954007
DOI : 10.1364/ECBO.2015.954007

P. Vaz, T. Pereira, D. Capela, L. Requicha, C. Correia et al., Use of laser speckle and entropy computation to segment images of diffuse objects with longitudinal motion, II Int. Conf. Appl. Opt. Photonics, 2014.

P. Vaz, R. Couceiro, P. Carvalho, and J. Henriques, An automatic method for motion artifacts detection in photoplethysmographic signals referenced with electrocardiography data, 2014 7th International Conference on Biomedical Engineering and Informatics, pp.704-708, 2014.
DOI : 10.1109/BMEI.2014.7002864

B. Lieber, Arterial macrocirculatory hemodynamics, Biomed. Eng. Handb, vol.1, issue.56, p.1, 2006.
DOI : 10.1201/9781420040029.ch13

J. K. Li, Physical Concepts and Basic Fluid Mechanics, Dyn. Vasc. Syst., chapter 3, pp.41-75, 2004.
DOI : 10.1142/9789812562661_0003

E. Merrill, Rheology of blood, Physiol. Rev, vol.44, issue.4, pp.863-884, 1969.

K. E. Barrett, S. M. Barman, S. Boitano, and H. Brooks, Blood as a circulatory fluid & the dynamics of blood & lymph flow, In Ganong's Rev. Med. Physiol., chapter, vol.32, pp.521-553, 2009.

T. Kenner, The measurement of blood density and its meaning, Basic Research in Cardiology, vol.92, issue.2, pp.111-124, 1989.
DOI : 10.1007/978-3-642-54127-8_70

G. D. Lowe, .. J. Lee, J. F. Rumley, F. G. Price, and . Fowkes, Blood viscosity and risk of cardiovascular events: the Edinburgh Artery Study, British Journal of Haematology, vol.96, issue.1, pp.168-173, 1997.
DOI : 10.1046/j.1365-2141.1997.8532481.x

G. Pocock and C. D. Richards, The Properties of Blood, Hum. Physiol. basis Med, 2006.

J. B. Reece, L. A. Urry, M. L. Cain, S. A. Wasserman, P. V. Minorsky et al., Circulation and gas exchange, In Campbell Biol, vol.42, pp.915-928, 2013.

M. Thiriet, D. E. Goldstein, R. R. Little, R. A. Lorenz, J. I. Malone et al., Tests of glycemia in diabetes, Blood. In Biol. Mech. Blood Flows. Part I Biol., chapter Diabetes Care, issue.7, pp.265-294, 2004.

G. Késmárky, P. Kenyeres, M. Rábai, and K. Tóth, Plasma viscosity: a forgotten variable, Clin. Hemorheol. Microcirc, vol.39, issue.1, pp.243-246, 2008.

S. H. Orkin and L. I. Zon, Hematopoiesis: An Evolving Paradigm for, Stem Cell Biology. Cell, vol.132, issue.4, pp.631-644, 2008.
DOI : 10.1016/j.cell.2008.01.025

URL : https://doi.org/10.1016/j.cell.2008.01.025

V. Kalchenko, Y. Kuznetsov, I. Meglinski, and A. Harmelin, Label free in vivo laser speckle imaging of blood and lymph vessels, Journal of Biomedical Optics, vol.17, issue.5, pp.505021-505023, 2012.
DOI : 10.1117/1.JBO.17.5.050502

J. K. Li, Vascular Biology, Structure and Function, Dyn. Vasc. Syst., chapter 2, pp.14-39, 2004.
DOI : 10.1142/9789812562661_0002

G. Pocock and C. D. Richards, Human physiology: the basis of medicine Oxford core texts, chapter 15, In Hum. Physiol. basis Med, pp.263-277, 2006.

H. Fukuta and W. C. Little, The Cardiac Cycle and the Physiologic Basis of Left Ventricular Contraction, Ejection, Relaxation, and Filling, Heart Failure Clinics, vol.4, issue.1, pp.1-11, 2008.
DOI : 10.1016/j.hfc.2007.10.004

K. E. Barrett, S. M. Barman, S. Boitano, and H. Brooks, The Heart as a Pump Lange medical book, In Ganong's Rev. Med. Physiol, pp.31-507

A. C. Guyton and J. E. Hall, Heart Muscle; The Heart as a Pump and Function of the Heart Valves, In Textb. Med. Physiol, vol.9, pp.103-116, 2006.

M. Biais, K. Nouette-gaulain, V. Cottenceau, A. Vallet, J. F. Cochard et al., Cardiac output measurement in patients undergoing liver transplantation: pulmonary artery catheter versus uncalibrated arterial pressure waveform analysis, Anesth. Analg, vol.106, issue.5, pp.1480-1486, 2008.

T. , C. Sin, R. Usubamatov, M. A. Fairuz, M. F. Amin-hamzas et al., Engineering Mathematical Analysis Method for Productivity Rate in Linear Arrangement Serial Structure Automated Flow Assembly Line, Math. Probl. Eng, 2015.

N. Fazeli and J. O. Hahn, Estimation of cardiac output and peripheral resistance using square-wave-approximated aortic flow signal, Frontiers in Physiology, vol.3, 2012.
DOI : 10.3389/fphys.2012.00298

R. Mukkamala, A. T. Reisner, H. M. Hojman, R. G. Mark, and R. J. Cohen, Continuous Cardiac Output Monitoring by Peripheral Blood Pressure Waveform Analysis, IEEE Transactions on Biomedical Engineering, vol.53, issue.3, pp.459-467, 2006.
DOI : 10.1109/TBME.2005.869780

URL : http://lcp.mit.edu/pdf/MukkamalaTBE05.pdf

T. Parlikar, T. Heldt, G. V. Ranade, and G. C. Verghese, Model-based estimation of cardiac output and total peripheral resistance, 2007 Computers in Cardiology, pp.379-382, 2007.
DOI : 10.1109/CIC.2007.4745501

F. Feihl, L. Liaudet, and B. Waeber, The macrocirculation and microcirculation of hypertension, Current Hypertension Reports, vol.118, issue.3, pp.182-189, 2009.
DOI : 10.1161/01.HYP.35.1.48

M. Thiriet, Vessel Wall, In Biol. Mech. Blood Flows. Part I Biol, vol.8, 2008.

W. R. Milnor, Normal state of the circulation, In Cardiovasc. Physiol, issue.2, pp.29-61, 1990.

M. Thiriet, Anatomy of the Cardiovascular System, In Biol. Mech. Blood Flows. Part II Mech. Med. Asp, vol.1, pp.9-34, 2008.
DOI : 10.1007/978-0-387-74849-8_1

. Kelvinsong, Diagram of an artery. https://commons.wikimedia.org/wiki/File: Artery.svg, 2013.

B. H. Brown, R. H. Smallwood, D. C. Barber, P. V. Lawford, and D. R. Hose, Biofluid mechanics, In Med. Phys. Biomed. Eng., Series in Medical Physics and Biomedical Engineering, issue.2, 1998.
DOI : 10.1887/0750303689/b319c2

R. Asmar, A. Benetos, J. Topouchian, P. Laurent, B. Pannier et al., Assessment of Arterial Distensibility by Automatic Pulse Wave Velocity Measurement : Validation and Clinical Application Studies, Hypertension, vol.26, issue.3, pp.26485-490, 1995.
DOI : 10.1161/01.HYP.26.3.485

G. F. Mitchell, H. Parise, E. J. Benjamin, M. G. Larson, M. J. Keyes et al., Changes in Arterial Stiffness and Wave Reflection With Advancing Age in Healthy Men and Women: The Framingham Heart Study, Hypertension, vol.43, issue.6, pp.431239-1245, 2004.
DOI : 10.1161/01.HYP.0000128420.01881.aa

K. Sutton-tyrrell, S. S. Najjar, R. M. Boudreau, L. Venkitachalam, V. Kupelian et al., Elevated Aortic Pulse Wave Velocity, a Marker of Arterial Stiffness, Predicts Cardiovascular Events in Well-Functioning Older Adults, Circulation, vol.111, issue.25, pp.1113384-3390, 2005.
DOI : 10.1161/CIRCULATIONAHA.104.483628

T. W. Hansen, J. A. Staessen, C. Torp-pedersen, S. Rasmussen, L. Thijs et al., Independent prognostic value of the ambulatory arterial stiffness index and aortic pulse wave velocity in a general population, Journal of Human Hypertension, vol.38, issue.3, pp.664-670, 2006.
DOI : 10.1038/sj.jhh.1002295

A. Yamashina, H. Tomiyama, K. Takeda, H. Tsuda, T. Arai et al., Validity, Reproducibility, and Clinical Significance of Noninvasive Brachial-Ankle Pulse Wave Velocity Measurement., Hypertension Research, vol.25, issue.3, pp.359-364, 2002.
DOI : 10.1291/hypres.25.359

T. Weber, M. Ammer, M. Rammer, A. Adji, M. F. O-'rourke et al., Noninvasive determination of carotid???femoral pulse wave velocity depends critically on assessment of travel distance: a comparison with invasive measurement, Journal of Hypertension, vol.27, issue.8, pp.271624-1630, 2009.
DOI : 10.1097/HJH.0b013e32832cb04e

P. Salvi, G. Lio, C. Labat, E. Ricci, B. Pannier et al., Validation of a new non-invasive portable tonometer for determining arterial pressure wave and pulse wave velocity, Journal of Hypertension, vol.22, issue.12, pp.2285-93, 2004.
DOI : 10.1097/00004872-200412000-00010

H. Tomiyama, A. Yamashina, T. Arai, K. Hirose, Y. Koji et al., Influences of age and gender on results of noninvasive brachial?ankle pulse wave velocity measurement?a survey of 12 517 subjects Measurement of Local Pulse Wave Velocity: Effects of Signal Processing on Precision, Atherosclerosis Ultrasound Med. Biol, vol.166, issue.335, pp.303-309774, 2003.

H. C. Pereira, T. Pereira, V. Almeida, E. Borges, E. Figueiras et al., Characterization of a double probe for local pulse wave velocity assessment, Physiological Measurement, vol.31, issue.11, pp.311449-65, 2010.
DOI : 10.1088/0967-3334/31/11/004

T. Pereira, P. Vaz, T. Oliveira, I. Santos, H. Pereira et al., Empirical mode decomposition for self-mixing Doppler signals of hemodynamic optical probes, Physiological Measurement, vol.34, issue.3, pp.377-390, 2013.
DOI : 10.1088/0967-3334/34/3/377

T. Pereira, I. Santos, T. Oliveira, P. Vaz, T. Correia et al., Characterization of Optical System for Hemodynamic Multi-Parameter Assessment, Cardiovascular Engineering and Technology, vol.525, issue.Pt 1, pp.87-97, 2013.
DOI : 10.1111/j.1469-7793.2000.t01-1-00263.x

T. Pereira, C. Correia, and J. Cardoso, Novel Methods for Pulse Wave Velocity Measurement, Journal of Medical and Biological Engineering, vol.25, issue.887???890, pp.1-11, 2014.
DOI : 10.1088/0957-0233/25/6/065701

URL : https://link.springer.com/content/pdf/10.1007%2Fs40846-015-0086-8.pdf

W. R. Milnor, Arterial impedance as ventricular afterload, Circulation Research, vol.36, issue.5, pp.565-570, 1975.
DOI : 10.1161/01.RES.36.5.565

W. W. Nichols, C. R. Conti, W. E. Walker, and W. R. Milnor, Input impedance of the systemic circulation in man, Circulation Research, vol.40, issue.5, pp.451-458, 1977.
DOI : 10.1161/01.RES.40.5.451

M. F. O-'rourke, A. Pauca, and X. Jiang, Pulse wave analysis, British Journal of Clinical Pharmacology, vol.3, issue.Suppl 1, pp.507-522, 2001.
DOI : 10.3109/08037059409101519

J. K. Li, Hemodynamics of Large Arteries, In Dyn. Vasc. Syst., chapter Re. Ltd, pp.76-136, 2004.
DOI : 10.1142/9789812562661_0004

G. M. London and A. P. Guerin, Influence of arterial pulse and reflected waves on blood pressure and cardiac function, American Heart Journal, vol.138, issue.3, pp.220-224, 1999.
DOI : 10.1016/S0002-8703(99)70313-3

B. Williams, P. S. Lacy, S. M. Thom, K. Cruickshank, A. Stanton et al., Differential impact of blood pressurelowering drugs on central aortic pressure and clinical outcomes: Principal results of the Conduit Artery Function Evaluation (CAFE) study, Circulation, vol.113, issue.9, pp.1213-1225, 2006.

A. C. Guyton and J. E. Hall, Overview of the circulation; Medical physics of pressure, flow, and resistance, In Textb. Med. Physiol., Guyton Physiology Series, pp.161-170, 2006.

S. P. Sutera and R. Skalak, The History of Poiseuille's Law, Annual Review of Fluid Mechanics, vol.25, issue.1, pp.1-20, 1993.
DOI : 10.1146/annurev.fl.25.010193.000245

A. Popel and R. Pittman, Mechanics, molecular transport, and regulation in the microcirculation, Biomed. Eng. Handb., chapter, vol.59, pp.1-10, 2006.

M. Thiriet, Cardiovascular physiology, In Biol. Mech. Blood Flows Part II Mech. Med. Asp., CRM Series in Mathematical Physics, issue.2, pp.35-80, 2007.

Y. Fung, Blood Flow in Heart, Lung, Arteries, and Veins, In Biomech. motion, flow, Stress. growth, pp.155-194, 1990.
DOI : 10.1007/978-1-4419-6856-2_5

A. C. Guyton and J. E. Hall, Vascular distensibility and functions of arterial and venous systems, In Textb. Med. Physiol, vol.15, pp.171-179, 2006.

H. Miyashita, Clinical Assessment of Central Blood Pressure, Current Hypertension Reviews, vol.8, issue.2, pp.80-90, 2012.
DOI : 10.2174/157340212800840708

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409361/pdf

F. Ding, W. Fan, R. Zhang, Q. Zhang, Y. Li et al., Validation of the non-invasive assessment of central blood pressure by the SphygmoCor and Omron devices against the invasive catheter measurement, International Journal of Cardiology, vol.152, issue.12, pp.7-8, 2011.
DOI : 10.1016/j.ijcard.2011.08.485

I. G. Horváth, ´. A. Németh, Z. Lenkey, N. Alessandri, F. Tufano et al., Invasive validation of a new oscillometric device (Arteriograph) for measuring augmentation index, central blood pressure and aortic pulse wave velocity, Journal of Hypertension, vol.28, issue.10, pp.282068-2075, 2010.
DOI : 10.1097/HJH.0b013e32833c8a1a

B. Sztrymf, F. Jacobs, D. Chemla, C. Richard, and S. C. Millasseau, Validation of the new Complior sensor to record pressure signals non-invasively, Journal of Clinical Monitoring and Computing, vol.22, issue.6, pp.613-619, 2013.
DOI : 10.1097/HJH.0b013e328342f05f

K. Takazawa, H. Kobayashi, N. Shindo, N. Tanaka, and A. Yamashina, Relationship between Radial and Central Arterial Pulse Wave and Evaluation of Central Aortic Pressure Using the Radial Arterial Pulse Wave, Hypertension Research, vol.30, issue.3, pp.219-228, 2007.
DOI : 10.1291/hypres.30.219

T. Pereira, I. Santos, T. Oliveira, P. Vaz, T. Pereira et al., Pulse pressure waveform estimation using distension profiling with contactless optical probe, Medical Engineering & Physics, vol.36, issue.11, pp.361515-1520, 2014.
DOI : 10.1016/j.medengphy.2014.07.014

M. Collette, A. Lalande, S. Willoteaux, G. Leftheriotis, and A. Humeau, Measurement of the local aortic stiffness by a non-invasive bioelectrical impedance technique, Medical & Biological Engineering & Computing, vol.47, issue.5, pp.431-439, 2011.
DOI : 10.1053/euhj.1999.1756

URL : https://hal.archives-ouvertes.fr/hal-00762054

A. C. Guyton and J. E. Hall, The microcirculation and the lymphatic system: capillary fluid exchange, interstitial fluid, and lymph flow, Textb. Med. Physiol., chapter 16, pp.181-193, 2006.

A. C. Guyton and J. E. Hall, Cardiac output, Venous return, and their regulation, In Textb. Med. Physiol, vol.20, pp.232-244, 2006.

A. C. Guyton and J. E. Hall, Cardiac Failure, In Textb. Med. Physiol., chapter, vol.22, pp.258-265, 2006.

L. W. Henderson, The problem of peritoneal membrane area and permeability, Kidney International, vol.3, issue.6, pp.409-410, 1973.
DOI : 10.1038/ki.1973.63

I. M. Braverman, The Cutaneous Microcirculation, Journal of Investigative Dermatology Symposium Proceedings, vol.5, issue.1, pp.3-9, 2000.
DOI : 10.1046/j.1087-0024.2000.00010.x

URL : https://doi.org/10.1046/j.1087-0024.2000.00010.x

K. E. Barrett, S. M. Barman, S. Boitano, and H. Brooks, Circulation through special regions, In Ganong's Rev. Med. Physiol. LANGE Basic Science Series, pp.489-506, 2009.

E. Figueiras, Métodos e instrumentação para fluxometria laser : aplicaçõesaplicaçõesà microcirculação sanguínea, 2012.

I. M. Braverman, The Cutaneous Microcirculation: Ultrastructure and Microanatomical Organization, Microcirculation, vol.4, issue.3, pp.329-340, 1997.
DOI : 10.3109/10739689709146797

A. C. Guyton and J. E. Hall, Body temperature, temperature regulation, and fever, Textb. Med. Physiol., chapter 73, pp.889-900, 2006.

M. Madhero88 and . Komorniczak, Layers of the skin. https://commons.wikimedia. org/wiki/File:Skin{_}layers.svg, 2012.

R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, B. Jung et al., Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms, Journal of Biomedical Optics, vol.10, issue.2, p.24030, 2005.
DOI : 10.1117/1.1891147

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000???nm, Journal of Physics D: Applied Physics, vol.38, issue.15, pp.382543-2555, 2005.
DOI : 10.1088/0022-3727/38/15/004

H. Kolárová, D. Ditrichová, and J. Wagner, Penetration of the laser light into the skin in vitro, Lasers in Surgery and Medicine, vol.1, issue.3, pp.231-235, 1999.
DOI : 10.1111/j.1751-1097.1995.tb02385.x

G. J. Tortora and B. H. Derrickson, The integumentary system, Princ. Anat. Physiol., chapter 5, pp.142-162, 2014.

I. V. Meglinski and S. J. Matcher, Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions, Physiological Measurement, vol.23, issue.4, pp.741-753, 2002.
DOI : 10.1088/0967-3334/23/4/312

S. Eriksson, J. Nilsson, and C. Sturesson, Non-invasive imaging of microcirculation: a technology review, Med. Devices (Auckl), vol.7, pp.445-52, 2014.

P. M. Mcnamara, J. O. Doherty, M. L. O-'connell, B. W. Fitzgerald, C. D. Anderson et al., Tissue viability (TiVi) imaging: temporal effects of local occlusion studies in the volar forearm, Journal of Biophotonics, vol.233, issue.2, pp.66-74, 2010.
DOI : 10.3109/00365518809085781

J. O. Doherty, P. Mcnamara, N. Clancy, J. Enfield, and M. Leahy, Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration, Journal of Biomedical Optics, vol.14, issue.3, pp.34025-034025, 2009.
DOI : 10.1117/1.3149863

E. Figueiras, R. Campos, S. Semedo, R. Oliveira, L. F. Ferreira et al., A new laser Doppler flowmeter prototype for depth dependent monitoring of skin microcirculation, Review of Scientific Instruments, vol.83, issue.3, p.34302, 2012.
DOI : 10.1016/j.mvr.2009.05.003

URL : https://hal.archives-ouvertes.fr/hal-00846198

A. Humeau-heurtier, E. Guerreschi, P. Abraham, and G. Mahé, Relevance of Laser Doppler and Laser Speckle Techniques for Assessing Vascular Function: State of the Art and Future Trends, IEEE Transactions on Biomedical Engineering, vol.60, issue.3, pp.659-666, 2013.
DOI : 10.1109/TBME.2013.2243449

URL : https://hal.archives-ouvertes.fr/hal-00845954

M. Roustit and J. Cracowski, Assessment of endothelial and neurovascular function in human skin microcirculation, Trends in Pharmacological Sciences, vol.34, issue.7, pp.373-384, 2013.
DOI : 10.1016/j.tips.2013.05.007

URL : https://hal.archives-ouvertes.fr/inserm-00851114

E. Figueiras, R. Oliveira, C. Lourenço, R. Campos, A. Humeau-heurtier et al., Self-mixing microprobe for monitoring microvascular perfusion in rat brain, Medical & Biological Engineering & Computing, vol.63, issue.1-2, pp.103-112, 2013.
DOI : 10.1016/S0924-4247(97)01549-5

URL : https://hal.archives-ouvertes.fr/hal-00845937

M. Leutenegger, E. Martin-williams, P. Harbi, T. Thacher, W. Raffoul et al., Real-time full field laser Doppler imaging, Biomedical Optics Express, vol.2, issue.6, pp.1470-1477, 2011.
DOI : 10.1364/BOE.2.001470.m001

URL : http://europepmc.org/articles/pmc3114216?pdf=render

A. Perimed, Periflux system 5000. https://www.perimed-instruments.com/ products/periflux-system-5000-tcpo2

S. Laurent, P. Boutouyrie, R. Asmar, I. Gautier, B. Laloux et al., Aortic Stiffness Is an Independent Predictor of All-Cause and Cardiovascular Mortality in Hypertensive Patients, Hypertension, vol.37, issue.5, pp.1236-1277, 2001.
DOI : 10.1161/01.HYP.37.5.1236

J. Blacher, R. Asmar, S. Djane, G. M. London, and M. E. Safar, Aortic Pulse Wave Velocity as a Marker of Cardiovascular Risk in Hypertensive Patients, Hypertension, vol.33, issue.5, pp.1111-1117, 1999.
DOI : 10.1161/01.HYP.33.5.1111

R. Asmar, A. Rudnichi, J. Blacher, G. M. London, and M. E. Safar, Pulse pressure and aortic pulse wave are markers of cardiovascular risk in hypertensive populations, American Journal of Hypertension, vol.14, issue.2, pp.91-97, 2001.
DOI : 10.1016/S0895-7061(00)01232-2

F. M. Wigley, Raynaud's Phenomenon, New England Journal of Medicine, vol.347, issue.13, pp.1001-1009, 2002.
DOI : 10.1056/NEJMcp013013

T. Asakura and N. Takai, Dynamic laser speckles and their application to velocity measurements of the diffuse object, Applied Physics, vol.12, issue.Suppl., pp.179-194, 1981.
DOI : 10.7567/JJAPS.14S1.307

H. Hirabayashi, T. Matsuo, H. Ishizawa, H. Kanai, and T. Nishimatsu, Surface Roughness Evaluation by Laser Speckle, 2006 SICE-ICASE International Joint Conference, pp.5809-5812, 2006.
DOI : 10.1109/SICE.2006.315226

A. M. Hamed, H. El-ghandoor, F. El-diasty, and M. Saudy, Analysis of speckle images to assess surface roughness, Optics & Laser Technology, vol.36, issue.3, pp.249-253, 2004.
DOI : 10.1016/j.optlastec.2003.09.005

T. Yoshimura, K. Kato, and K. Nakagawa, Surface-roughness dependence of the intensity correlation function under speckle-pattern illumination, Proc. SPIE - Int, pp.2254-2259, 1990.
DOI : 10.1364/JOSAA.7.002254

P. Martin and S. Rothberg, Introducing speckle noise maps for Laser Vibrometry, Optics and Lasers in Engineering, vol.47, issue.3-4, pp.431-442, 2009.
DOI : 10.1016/j.optlaseng.2008.06.010

URL : https://dspace.lboro.ac.uk/dspace-jspui/bitstream/2134/8878/1/Introducing_speckle_noise_maps_for_Laser_Vibrometry%5b1%5d.pdf

A. A. Veber, A. Lyashedko, E. Sholokhov, A. Trikshev, A. Kurkov et al., Laser vibrometry based on analysis of the speckle pattern from a remote object, Applied Physics B, vol.30, issue.3, pp.613-617, 2011.
DOI : 10.1364/OL.30.003027

A. Humeau-heurtier, P. Abraham, and G. Mahe, Linguistic Analysis of Laser Speckle Contrast Images Recorded at Rest and During Biological Zero: Comparison With Laser Doppler Flowmetry Data, IEEE Transactions on Medical Imaging, vol.32, issue.12, pp.322311-2321, 2013.
DOI : 10.1109/TMI.2013.2281620

URL : https://hal.archives-ouvertes.fr/hal-00926809

D. Briers, D. Duncan, S. Kirkpatrick, M. Larsson, T. Stromberg et al., Laser speckle contrast imaging: theoretical and practical limitations, Journal of Biomedical Optics, vol.18, issue.6, pp.1-9, 2013.
DOI : 10.1117/1.JBO.18.6.066018

URL : https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/volume-18/issue-6/066018/Laser-speckle-contrast-imaging-theoretical-and-practical-limitations/10.1117/1.JBO.18.6.066018.pdf

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, Speckle-visibility spectroscopy: A tool to study time-varying dynamics, Review of Scientific Instruments, vol.9, issue.9, p.93110, 2005.
DOI : 10.1103/PhysRevLett.93.115701

URL : https://repository.upenn.edu/cgi/viewcontent.cgi?article=1596&context=physics_papers

J. Goodman, Statistical properties of laser speckle patterns, In Laser Speckle Relat . Phenom. Topics in Applied Physics, vol.9, pp.9-75, 1975.

J. Briers and S. Webster, Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow, Journal of Biomedical Optics, vol.1, issue.2, pp.174-179, 1996.
DOI : 10.1117/12.231359

D. D. Duncan and S. J. Kirkpatrick, Can laser speckle flowmetry be made a quantitative tool?, Journal of the Optical Society of America A, vol.25, issue.8, pp.2088-2094, 2008.
DOI : 10.1364/JOSAA.25.002088

URL : http://europepmc.org/articles/pmc2572153?pdf=render

J. D. Briers and A. F. Fercher, Retinal blood-flow visualization by means of laser speckle photography, Invest. Ophthalmol. Vis. Sci, vol.22, issue.2, pp.255-259, 1982.

M. Draijer, E. Hondebrink, T. Van-leeuwen, and W. Steenbergen, Review of laser speckle contrast techniques for visualizing tissue perfusion, Lasers in Medical Science, vol.13, issue.4, pp.639-651, 2009.
DOI : 10.1364/JOSAA.13.000345

S. M. Kazmi, S. Balial, and A. K. Dunn, Optimization of camera exposure durations for multi-exposure speckle imaging of the microcirculation, Biomedical Optics Express, vol.5, issue.7, pp.2157-2171, 2014.
DOI : 10.1364/BOE.5.002157

D. Boas and A. G. Yodh, Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation, Journal of the Optical Society of America A, vol.14, issue.1, pp.192-215, 1997.
DOI : 10.1364/JOSAA.14.000192

G. Yu, T. Durduran, C. Zhou, R. Cheng, and A. G. Yodh, Near-Infrared Diffuse Correlation Spectroscopy for Assessment of Tissue Blood Flow, In Handb. Biomed. Opt, vol.10, pp.195-216, 2011.
DOI : 10.1201/b10951-13

A. Nadort, R. G. Woolthuis, T. G. Van-leeuwen, and D. J. Faber, Quantitative laser speckle flowmetry of the in vivo microcirculation using sidestream dark field microscopy, Biomedical Optics Express, vol.4, issue.11, pp.2347-61, 2013.
DOI : 10.1364/BOE.4.002347.m003

P. Zakharov, A. C. Völker, M. T. Wyss, F. Haiss, N. Calcinaghi et al., Dynamic laser speckle imaging of cerebral blood flow, Optics Express, vol.17, issue.16, pp.1713904-13917, 2009.
DOI : 10.1364/OE.17.013904

A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, Robust flow measurement with multi-exposure speckle imaging, Optics Express, vol.16, issue.3, pp.1975-89, 2008.
DOI : 10.1364/OE.16.001975

O. Thompson, M. Andrews, and E. Hirst, Correction for spatial averaging in laser speckle contrast analysis, Biomedical Optics Express, vol.2, issue.4, pp.1021-1029, 2011.
DOI : 10.1364/BOE.2.001021

A. Fercher and J. Briers, Flow visualization by means of single-exposure speckle photography, Optics Communications, vol.37, issue.5, pp.326-330, 1981.
DOI : 10.1016/0030-4018(81)90428-4

N. C. Santos and M. A. Castanho, Teaching light scattering spectroscopy: the dimension and shape of tobacco mosaic virus, Biophysical Journal, vol.71, issue.3, pp.1641-1650, 1996.
DOI : 10.1016/S0006-3495(96)79369-4

T. Dragojevi´cdragojevi´c, D. Bronzi, H. Varma, C. Valdes, C. Castellvi et al., High-speed multi-exposure laser speckle contrast imaging with a single-photon counting camera, Biomed. Opt. Express, issue.8, pp.62865-2876, 2015.

S. M. Kazmi, L. M. Richards, C. J. Schrandt, M. A. Davis, and A. K. Dunn, Expanding Applications, Accuracy, and Interpretation of Laser Speckle Contrast Imaging of Cerebral Blood Flow, Journal of Cerebral Blood Flow & Metabolism, vol.7163, issue.7, pp.1076-1084, 2015.
DOI : 10.1109/TBME.2009.2037434

J. Senarathna, S. Member, A. Rege, N. Li, and N. V. Thakor, Laser Speckle Contrast Imaging: Theory, Instrumentation and Applications, IEEE Reviews in Biomedical Engineering, vol.6, issue.1, pp.99-110, 2013.
DOI : 10.1109/RBME.2013.2243140

D. D. Duncan, S. J. Kirkpatrick, and J. C. Gladish, What is the proper statistical model for laser speckle flowmetry?, Complex Dynamics and Fluctuations in Biomedical Photonics V, pp.685502-685509, 2008.
DOI : 10.1117/12.760515

K. Basak, G. Dey, M. Mahadevappa, M. Mandal, and P. Dutta, in vivo laser speckle imaging by adaptive contrast computation for microvasculature assessment, Optics and Lasers in Engineering, vol.62, pp.87-94, 2014.
DOI : 10.1016/j.optlaseng.2014.05.009

S. Kazmi, E. Faraji, M. Davis, Y. Huang, X. Zhang et al., Flux or speed? Examining speckle contrast imaging of vascular flows, Biomedical Optics Express, vol.6, issue.7, pp.2588-2608, 2015.
DOI : 10.1364/BOE.6.002588

URL : http://europepmc.org/articles/pmc4505712?pdf=render

J. C. Ramirez-san-juan, R. Ramos-garcía, I. Guizar-iturbide, G. Martínez-niconoff, and B. Choi, Impact of velocity distribution assumption on simplified laser speckle imaging equation, Optics Express, vol.16, issue.5, pp.3197-3203, 2008.
DOI : 10.1364/OE.16.003197

A. K. Dunn, Laser Speckle Contrast Imaging of Cerebral Blood Flow, Annals of Biomedical Engineering, vol.44, issue.10, pp.367-377, 2012.
DOI : 10.1364/AO.44.001823

]. R. Bi, J. Dong, C. L. Poh, and K. Lee, Optical methods for blood perfusion measurement???theoretical comparison among four different modalities, Journal of the Optical Society of America A, vol.32, issue.5, pp.860-866, 2015.
DOI : 10.1364/JOSAA.32.000860

A. Khalil, A. Humeau-heurtier, G. Mahé, and P. Abraham, Laser speckle contrast imaging: age-related changes in microvascular blood flow and correlation with pulse-wave velocity in healthy subjects, Journal of Biomedical Optics, vol.20, issue.5, p.51010, 2015.
DOI : 10.1117/1.JBO.20.5.051010

URL : https://hal.archives-ouvertes.fr/hal-01147030

S. M. Kazmi, R. K. Wu, and A. K. Dunn, Evaluating multi-exposure speckle imaging estimates of absolute autocorrelation times, Optics Letters, vol.40, issue.15, pp.3643-3646, 2015.
DOI : 10.1364/OL.40.003643

A. Parthasarathy, S. Kazmi, and A. Dunn, Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging, Biomedical Optics Express, vol.1, issue.1, pp.246-259, 2010.
DOI : 10.1364/BOE.1.000246

Y. Atchia, H. Levy, S. Dufour, and O. Levi, Rapid multiexposure in vivo brain imaging system using vertical cavity surface emitting lasers as a light source, Applied Optics, vol.52, issue.7, pp.64-71, 2013.
DOI : 10.1364/AO.52.000C64

H. Cheng and T. Q. Duong, Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging, Optics Letters, vol.32, issue.15, pp.2188-2190, 2007.
DOI : 10.1364/OL.32.002188

URL : http://europepmc.org/articles/pmc2894034?pdf=render

T. Smausz, D. Zölei, and B. Hopp, Real correlation time measurement in laser speckle contrast analysis using wide exposure time range images, Applied Optics, vol.48, issue.8, pp.1425-1429, 2009.
DOI : 10.1364/AO.48.001425

O. B. Thompson and M. K. Andrews, Spectral density and tissue perfusion from speckle contrast measurements, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XII, pp.68472-68472, 2008.
DOI : 10.1117/12.761453

D. Zölei, T. Smausz, B. Hopp, and F. Bari, Self-tuning laser speckle contrast analysis based on multiple exposure times with enhanced temporal resolution, Journal of the European Optical Society: Rapid Publications, vol.8, 2013.
DOI : 10.2971/jeos.2013.13053

P. Lemieux and D. J. Durian, Investigating non-Gaussian scattering processes by using nth -order intensity correlation functions, Journal of the Optical Society of America A, vol.16, issue.7, pp.1651-1664, 1999.
DOI : 10.1364/JOSAA.16.001651

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle, Journal of Cerebral Blood Flow & Metabolism, vol.234, issue.3, pp.195-201, 2001.
DOI : 10.1016/S0002-9394(00)00382-2

P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, Quantitative modeling of laser speckle imaging, Optics Letters, vol.31, issue.23, pp.313465-3467, 2006.
DOI : 10.1364/OL.31.003465

URL : http://arxiv.org/pdf/cond-mat/0606030

H. Li, Q. Liu, H. Lu, Y. Li, H. F. Zhang et al., Directly measuring absolute flow speed by frequency-domain laser speckle imaging, Optics Express, vol.22, issue.17, pp.2221079-21087, 2014.
DOI : 10.1364/OE.22.021079

A. Mazhar, D. Cuccia, T. Rice, S. Carp, A. Durkin et al., Laser speckle imaging in the spatial frequency domain, Biomedical Optics Express, vol.2, issue.6, pp.1553-1563, 2011.
DOI : 10.1364/BOE.2.001553

A. E. Ennos, Speckle interferometry, Laser Speckle Relat, pp.203-253, 1975.

K. Basak, M. Manjunatha, and P. Dutta, Review of laser speckle-based analysis in medical imaging, Medical & Biological Engineering & Computing, vol.46, issue.4, pp.547-58, 2012.
DOI : 10.1364/AO.46.001911

J. D. Briers, Laser Doppler and time-varying speckle: a reconciliation, Journal of the Optical Society of America A, vol.13, issue.2, pp.345-350, 1996.
DOI : 10.1364/JOSAA.13.000345

D. Magatti, A. Gatti, and F. Ferri, Three-dimensional coherence of light speckles: Experiment, Physical Review A, vol.1, issue.5, pp.1-11, 2009.
DOI : 10.1063/1.2945642

O. B. Thompson and M. K. Andrews, Tissue perfusion measurements: multiple-exposure laser speckle analysis generates laser Doppler???like spectra, Journal of Biomedical Optics, vol.15, issue.2, pp.27015-027015, 2010.
DOI : 10.1117/1.3400721

URL : https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/volume-15/issue-2/027015/Tissue-perfusion-measurements--multiple-exposure-laser-speckle-analysis-generates/10.1117/1.3400721.pdf

K. Khaksari and S. J. Kirkpatrick, Combined effects of scattering and absorption on laser speckle contrast imaging, Journal of Biomedical Optics, vol.21, issue.7, p.76002, 2016.
DOI : 10.1117/1.JBO.21.7.076002

J. C. Ramirez-san-juan, E. Mendez-aguilar, N. Salazar-hermenegildo, A. Fuentes-garcia, R. Ramos-garcia et al., Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics, Biomedical Optics Express, vol.4, issue.10, pp.41883-1889, 2013.
DOI : 10.1364/BOE.4.001883

S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-gray, Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging, Optics Letters, vol.33, issue.24, pp.2886-2888, 2008.
DOI : 10.1364/OL.33.002886

C. P. Valdes, H. M. Varma, A. K. Kristoffersen, T. Dragojevic, J. P. Culver et al., Speckle contrast optical spectroscopy, a non-invasive, diffuse optical method for measuring microvascular blood flow in tissue, Biomedical Optics Express, vol.5, issue.8, pp.52769-2784, 2014.
DOI : 10.1364/BOE.5.002769

J. Qiu, Y. Li, Q. Huang, Y. Wang, and P. Li, Correcting speckle contrast at small speckle size to enhance signal to noise ratio for laser speckle contrast imaging, Optics Express, vol.21, issue.23, pp.255-265, 2013.
DOI : 10.1364/OE.21.028902

R. A. Braga and R. J. González-peña, Accuracy in dynamic laser speckle: optimum size of speckles for temporal and frequency analyses, Optical Engineering, vol.55, issue.12, pp.121702-121703, 2016.
DOI : 10.1117/1.OE.55.12.121702

J. Bennett, Polarization, Handb. Opt., chapter, vol.1230, pp.12-15, 2001.

D. Brewster, On the Laws Which Regulate the Polarisation of Light by Reflexion from Transparent Bodies, Philosophical Transactions of the Royal Society of London, vol.105, issue.0, pp.125-159, 1815.
DOI : 10.1098/rstl.1815.0010

S. Sun, B. R. Hayes-gill, D. He, Y. Zhu, and S. P. Morgan, Multi-exposure laser speckle contrast imaging using a high frame rate CMOS sensor with a field programmable gate array, Optics Letters, vol.40, issue.20, pp.4587-4590, 2005.
DOI : 10.1364/OL.40.004587

H. M. Varma, C. P. Valdes, A. K. Kristoffersen, J. P. Culver, and T. Durduran, Speckle contrast optical tomography: A new method for deep tissue three-dimensional tomography of blood flow, Biomedical Optics Express, vol.5, issue.4, pp.1275-1289, 2014.
DOI : 10.1364/BOE.5.001275

P. Zakharov, F. Scheffold, and B. Weber, Laser Speckle Analysis Synchronised with Cardiac Cycle, Novel Biophotonics Techniques and Applications III, pp.954008-954008, 2015.
DOI : 10.1364/ECBO.2015.954008

URL : http://doc.rero.ch/record/257362/files/sch_lsa.pdf

O. Yang, D. Cuccia, and B. Choi, Real-time blood flow visualization using the graphics processing unit, Journal of Biomedical Optics, vol.16, issue.1, pp.16009-016009, 2011.
DOI : 10.1117/1.3528610.3

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055590/pdf

M. Nemati, L. G. Paroni, N. Bhattacharya, and H. P. Urbach, Fluid pulsation detection in presence of induced motion artifacts using speckle techniques, AIP Conf. Proc, vol.1600, pp.215-222, 2014.
DOI : 10.1063/1.4879585

L. M. Richards, S. M. Kazmi, J. L. Davis, K. E. Olin, and A. K. Dunn, Low-cost laser speckle contrast imaging of blood flow using a webcam, Biomedical Optics Express, vol.4, issue.10, pp.2269-2283, 2013.
DOI : 10.1364/BOE.4.002269

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, Comparison of laser speckle and laser Doppler perfusion imaging: Measurement in human skin and rabbit articular tissue, Medical & Biological Engineering & Computing, vol.25, issue.6, pp.687-97, 2002.
DOI : 10.1097/00004647-200103000-00002

C. Scully, Detection of Spatial and Temporal Interactions in Renal Autoregulation Dynamics, 2013.

H. Fujii, T. Asakura, K. Nohira, Y. Shintomi, and T. Ohura, Blood flow observed by time-varying laser speckle, Optics Letters, vol.10, issue.3, pp.104-106, 1985.
DOI : 10.1364/OL.10.000104

H. Fujii, K. Nohira, Y. Yamamoto, H. Ikawa, and T. Ohura, Evaluation of blood flow by laser speckle image sensing Part 1, Applied Optics, vol.26, issue.24, pp.5321-5325, 1987.
DOI : 10.1364/AO.26.005321

Y. Tamaki, M. Araie, E. Kawamoto, S. Eguchi, and H. Fujii, Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon, Invest. Ophthalmol. Vis. Sci, vol.35, issue.11, pp.3825-3859, 1994.

G. Mahé, A. Humeau-heurtier, S. Durand, G. Leftheriotis, and P. Abraham, Assessment of Skin Microvascular Function and Dysfunction With Laser Speckle Contrast Imaging, Circulation: Cardiovascular Imaging, vol.5, issue.1, pp.155-63, 2012.
DOI : 10.1161/CIRCIMAGING.111.970418

O. Thompson, J. Bakker, C. Kloeze, E. Hondebrink, and W. Steenbergen, Experimental comparison of perfusion imaging systems using multi-exposure laser speckle, single-exposure laser speckle, and full-field laser Doppler, Dynamics and Fluctuations in Biomedical Photonics IX, pp.822204-822204, 2012.
DOI : 10.1117/12.907618

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen et al., Modified laser speckle imaging method with improved spatial resolution, Journal of Biomedical Optics, vol.8, issue.3, pp.559-564, 2003.
DOI : 10.1117/1.1578089

D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, Statistics of local speckle contrast, Journal of the Optical Society of America A, vol.25, issue.1, pp.9-15, 2008.
DOI : 10.1364/JOSAA.25.000009

H. Cheng, Y. Yan, and T. Q. Duong, Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging, Optics Express, vol.16, issue.14, pp.1610214-1610223, 2008.
DOI : 10.1364/OE.16.010214

J. Ramirez-san-juan, C. Regan, B. , and B. Choi, Spatial versus temporal laser speckle contrast analyses in the presence of static optical scatterers, Journal of Biomedical Optics, vol.19, issue.10, pp.106009-106009, 2014.
DOI : 10.1117/1.JBO.19.10.106009

P. Li, Y. Li, H. He, Y. Tang, and M. Chen, Methods on Improving Sampling Depth of Laser Speckle Contrast Imaging of Blood Flow, Asia Communications and Photonics Conference 2013, pp.1-4
DOI : 10.1364/ACP.2013.AF1J.4

A. Rege, J. Senarathna, N. Li, and N. V. Thakor, Anisotropic Processing of Laser Speckle Images Improves Spatiotemporal Resolution, IEEE Transactions on Biomedical Engineering, vol.59, issue.5, pp.1272-1280, 2012.
DOI : 10.1109/TBME.2012.2183675

D. Duncan and S. Kirkpatrick, Spatio-temporal algorithms for processing laser speckle imaging data, International Society for Optics and Photonics, pp.685802-685802, 2008.
DOI : 10.1117/12.760514

J. Qiu, Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast, Journal of Biomedical Optics, vol.15, issue.1, pp.16003-016003, 2010.
DOI : 10.1117/1.3290804

N. Li, X. Jia, K. Murari, R. Parlapalli, A. Rege et al., High spatiotemporal resolution imaging of the neurovascular response to electrical stimulation of rat peripheral trigeminal nerve as revealed by in vivo temporal laser speckle contrast, Journal of Neuroscience Methods, vol.176, issue.2, pp.230-236, 2009.
DOI : 10.1016/j.jneumeth.2008.07.013

J. Allen and K. Howell, Microvascular imaging: techniques and opportunities for clinical physiological measurements, Physiological Measurement, vol.35, issue.7, pp.91-141, 2014.
DOI : 10.1088/0967-3334/35/7/R91

URL : http://iopscience.iop.org/article/10.1088/0967-3334/35/7/R91/pdf

G. Armitage, K. Todd, A. Shuaib, and I. Winship, Laser Speckle Contrast Imaging of Collateral Blood Flow during Acute Ischemic Stroke, Journal of Cerebral Blood Flow & Metabolism, vol.49, issue.8, pp.1432-1436, 2010.
DOI : 10.1097/00004647-200104000-00010

Z. Wang, W. Luo, P. Li, J. Qiu, and Q. Luo, Acute hyperglycemia compromises cerebral blood flow following cortical spreading depression in rats monitored by laser speckle imaging, Journal of Biomedical Optics, vol.13, issue.6, pp.64023-64026, 2008.
DOI : 10.1117/1.3041710

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study, Journal of Biomedical Optics, vol.15, issue.6, pp.66030-66038, 2010.
DOI : 10.1117/1.3526368

F. Domoki, D. Zölei, O. Oláh, V. Tóth-sz?-uki, B. Hopp et al., Evaluation of laser-speckle contrast image analysis techniques in the cortical microcirculation of piglets, Microvascular Research, vol.83, issue.3, pp.311-317, 2012.
DOI : 10.1016/j.mvr.2012.01.003

A. I. Srienc, Z. L. Kurth-nelson, and E. A. Newman, Imaging retinal blood flow with laser speckle flowmetry, Frontiers in Neuroenergetics, vol.2, issue.2, pp.1-10, 2010.
DOI : 10.3389/fnene.2010.00128

URL : https://doi.org/10.3389/fnene.2010.00128

Y. Shiga, M. Shimura, T. Asano, S. Tsuda, Y. Yokoyama et al., The Influence of Posture Change on Ocular Blood Flow in Normal Subjects, Measured by Laser Speckle Flowgraphy, Current Eye Research, vol.249, issue.6, pp.691-69890501, 2013.
DOI : 10.1007/s00417-010-1565-9

A. Rege, N. Thakor, K. Rhie, and A. Pathak, In vivo laser speckle imaging reveals microvascular remodeling and hemodynamic changes during wound healing angiogenesis, Angiogenesis, vol.12, issue.Suppl, pp.87-98, 2012.
DOI : 10.1016/j.acra.2005.05.027

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380186/pdf

B. Ruaro, A. Sulli, E. Alessandri, C. Pizzorni, G. Ferrari et al., Laser speckle contrast analysis: a new method to evaluate peripheral blood perfusion in systemic sclerosis patients, Annals of the Rheumatic Diseases, vol.40, issue.6, p.2013, 2013.
DOI : 10.3899/jrheum.121042

J. D. Pauling, J. A. Shipley, D. J. Hart, A. Mcgrogan, and N. J. Mchugh, Use of Laser Speckle Contrast Imaging to Assess Digital Microvascular Function in Primary Raynaud Phenomenon and Systemic Sclerosis: A Comparison Using the Raynaud Condition Score Diary, The Journal of Rheumatology, vol.42, issue.7, pp.421163-1168, 2015.
DOI : 10.3899/jrheum.141437

Y. Beiderman, I. Horovitz, N. Burshtein, M. Teicher, J. Garcia et al., Remote estimation of blood pulse pressure via temporal tracking of reflected secondary speckles pattern, Journal of Biomedical Optics, vol.15, issue.6, pp.61707-61707, 2010.
DOI : 10.1117/1.3505008

M. Nemati, C. Presura, H. Urbach, and N. Bhattacharya, Dynamic light scattering from pulsatile flow in the presence of induced motion artifacts, Biomedical Optics Express, vol.5, issue.7, pp.2145-2156, 2014.
DOI : 10.1364/BOE.5.002145

N. Holstein-rathlou, O. V. Sosnovtseva, A. N. Pavlov, W. A. Cupples, C. M. Sorensen et al., Nephron blood flow dynamics measured by laser speckle contrast imaging, American Journal of Physiology-Renal Physiology, vol.264, issue.2, pp.319-329, 2011.
DOI : 10.1109/TBME.2002.803601

URL : http://ajprenal.physiology.org/content/ajprenal/300/2/F319.full.pdf

Y. Beiderman, R. Blumenberg, N. Rabani, M. Teicher, J. Garcia et al., Demonstration of remote optical measurement configuration that correlates to glucose concentration in blood, Biomedical Optics Express, vol.2, issue.4, pp.858-870, 2011.
DOI : 10.1364/BOE.2.000858

N. Ozana, Y. Beiderman, A. Anand, B. Javidi, S. Polani et al., Noncontact speckle-based optical sensor for detection of glucose concentration using magneto-optic effect, Journal of Biomedical Optics, vol.21, issue.6, p.65001, 2016.
DOI : 10.1117/1.JBO.21.6.065001

L. Campagnolo, Flow profile measurement in microchannel using the optical feedback interferometry sensing technique, Microfluidics and Nanofluidics, vol.7, issue.6, 2013.
DOI : 10.1088/1464-4258/7/6/029

URL : https://hal.archives-ouvertes.fr/hal-00757538

M. Davis, S. M. Kazmi, and A. K. Dunn, Imaging depth and multiple scattering in laser speckle contrast imaging, Journal of Biomedical Optics, vol.19, issue.8, pp.86001-086001, 2014.
DOI : 10.1117/1.JBO.19.8.086001

URL : https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/volume-19/issue-8/086001/Imaging-depth-and-multiple-scattering-in-laser-speckle-contrast-imaging/10.1117/1.JBO.19.8.086001.pdf

Y. Shiga, T. Asano, H. Kunikata, F. Nitta, H. Sato et al., Relative Flow Volume, a Novel Blood Flow Index in the Human Retina Derived From Laser Speckle Flowgraphy, Investigative Opthalmology & Visual Science, vol.55, issue.6, pp.553899-3904, 2014.
DOI : 10.1167/iovs.14-14116

K. R. Forrester, J. Tulip, C. Leonard, C. Stewart, and R. C. Bray, A Laser Speckle Imaging Technique for Measuring Tissue Perfusion, IEEE Transactions on Biomedical Engineering, vol.51, issue.11, pp.2074-2084, 2004.
DOI : 10.1109/TBME.2004.834259

S. M. Kazmi, A. B. Parthasarthy, N. E. Song, T. Jones, and A. K. Dunn, Chronic Imaging of Cortical Blood Flow using Multi-Exposure Speckle Imaging, Journal of Cerebral Blood Flow & Metabolism, vol.32, issue.6, pp.798-808, 2013.
DOI : 10.1364/OE.16.010214

Z. Luo, Z. Wang, Z. Yuan, C. Du, and Y. Pan, Optical coherence Doppler tomography quantifies laser speckle contrast imaging for blood flow imaging in the rat cerebral cortex, Optics Letters, vol.33, issue.10, pp.1156-1158, 2008.
DOI : 10.1364/OL.33.001156

I. Fredriksson, M. Larsson, and T. Strömberg, Measurement depth and volume in laser Doppler flowmetry, Microvascular Research, vol.78, issue.1, pp.4-13, 2009.
DOI : 10.1016/j.mvr.2009.02.008

URL : http://liu.diva-portal.org/smash/get/diva2:227221/FULLTEXT01

R. Bi, J. Dong, and K. Lee, Deep tissue flowmetry based on diffuse speckle contrast analysis, Optics Letters, vol.38, issue.9, pp.1401-1404, 2013.
DOI : 10.1364/OL.38.001401

H. He, Y. Tang, F. Zhou, J. Wang, Q. Luo et al., Lateral laser speckle contrast analysis combined with line beam scanning illumination to improve the sampling depth of blood flow imaging, Optics Letters, vol.37, issue.18, pp.3774-3780, 2012.
DOI : 10.1364/OL.37.003774

I. Sigal, R. Gad, A. M. Caravaca-aguirre, Y. Atchia, D. B. Conkey et al., Laser speckle contrast imaging with extended depth of field for in-vivo tissue imaging, Biomedical Optics Express, vol.5, issue.1, pp.123-135, 2014.
DOI : 10.1364/BOE.5.000123

R. Bi, J. Dong, and K. Lee, Multi-channel deep tissue flowmetry based on temporal diffuse speckle contrast analysis, Optics Express, vol.21, issue.19, pp.22854-22861, 2013.
DOI : 10.1364/OE.21.022854

M. M. Gonik, A. B. Mishin, and D. Zimnyakov, Visualization of Blood Microcirculation Parameters in Human Tissues by Time-Integrated Dynamic Speckles Analysis, Annals of the New York Academy of Sciences, vol.4001, issue.1, pp.325-330, 2002.
DOI : 10.1117/12.7973897

T. Durduran and A. G. Yodh, Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement, NeuroImage, vol.85, pp.51-63, 2014.
DOI : 10.1016/j.neuroimage.2013.06.017

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991554/pdf

R. Matthes, Revision of guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 microm. International Commission on Non-Ionizing Radiation Protection, Health Phys, vol.79, issue.4, pp.431-440, 2000.

T. Pereira, T. Oliveira, M. Cabeleira, V. Almeida, E. Borges et al., Visible and infrared optical probes for hemodynamic parameters assessment, 2011 IEEE SENSORS Proceedings, pp.1796-1799, 2011.
DOI : 10.1109/ICSENS.2011.6127106

. Pixelink and . Pl-b741u, http://pixelink.com/product/pl-b741u-on-semi-ibis- 5b

Y. N. Kul-'chin, O. B. Vitrik, A. D. Lantsov, and N. P. Kraeva, Correlation method for processing speckle patterns of dynamic light scattering by small particles based on spatial averaging of data, Optoelectron. Instrum. Data Process, vol.46, issue.3, pp.282-286, 2010.

P. Santos, V. Almeida, J. Cardoso, and C. Correia, Photoplethysmographic logger with contact force and hydrostatic pressure monitoring, 2013 IEEE 3rd Portuguese Meeting in Bioengineering (ENBENG), pp.1-6, 2013.
DOI : 10.1109/ENBENG.2013.6518437

URL : http://estudogeral.sib.uc.pt/jspui/bitstream/10316/21762/1/PedroSantos2012.pdf

A. Lohmann and G. Weigelt, The measurement of depth motion by speckle photography, Optics Communications, vol.17, issue.1, pp.47-51, 1976.
DOI : 10.1016/0030-4018(76)90176-0

C. Narayanamurthy and C. Joenathan, Speckle pattern fringes produced by longitudinal motion of the diffuse object ??? Sensitivity dependence and multiple exposures, Optics Communications, vol.65, issue.3, pp.179-184, 1988.
DOI : 10.1016/0030-4018(88)90345-8

M. D. Waterworth, B. J. Tarte, A. J. Joblin, T. Van-doorn, and H. E. Niesler, Optical transmission properties of homogenised milk used as a phantom material in visible wavelength imaging, Australas. Phys. Eng. Sci. Med. by Australas. Coll. Phys. Sci. Med. Australas. Assoc. Phys. Sci. Med, vol.18, issue.1, pp.39-44, 1995.

R. Cubeddu, A. Pifferi, P. Taroni, and A. Torricelli, A solid tissue phantom for photon migration studies, Physics in Medicine and Biology, vol.42, issue.10, pp.1971-1979, 1997.
DOI : 10.1088/0031-9155/42/10/011

S. Wojtkiewicz, A. Liebert, H. Rix, N. Zoo, and R. Maniewski, Laser-Doppler spectrum decomposition applied for the estimation of speed distribution of particles moving in a multiple scattering medium, Physics in Medicine and Biology, vol.54, issue.3, p.679, 2009.
DOI : 10.1088/0031-9155/54/3/014

E. Figueiras, L. R. Ferreira, and A. Humeau, Phantom validation for depth assessment in laser Doppler flowmetry technique, In EOS Top. Meet. Diffractive Opt, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00857950

F. M. White, Fluid Mechanics. McGraw-Hill international editions, 2009.

P. Walstra, Dairy Technology: Principles of Milk Properties and Processes. Food Science and Technology, 1999.

P. Vennemann, R. Lindken, and J. Westerweel, In vivo whole-field blood velocity measurement techniques, Experiments in Fluids, vol.31, issue.1, pp.495-511, 2007.
DOI : 10.1097/00004669-200202710-00037

URL : https://link.springer.com/content/pdf/10.1007%2Fs00348-007-0276-4.pdf

O. Ménard, S. Ahmad, F. Rousseau, V. Briard-bion, F. Gaucheron et al., Buffalo vs. cow milk fat globules: Size distribution, zeta-potential, compositions in total fatty acids and in polar lipids from the milk fat globule membrane, Food Chemistry, vol.120, issue.2, pp.544-551, 2010.
DOI : 10.1016/j.foodchem.2009.10.053

D. M. De-bruin, R. H. Bremmer, V. M. Kodach, R. De-kinkelder, J. Van-marle et al., Optical phantoms of varying geometry based on thin building blocks with controlled optical properties, Journal of Biomedical Optics, vol.15, issue.2, p.25001, 2010.
DOI : 10.1117/1.3369003

D. Y. Diao, L. Tchvialeva, G. Dhadwal, H. Lui, D. I. Mclean et al., Durable rough skin phantoms for optical modeling, Physics in Medicine and Biology, vol.59, issue.2, pp.485-92, 2014.
DOI : 10.1088/0031-9155/59/2/485

C. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J. Monchalin, Deformable and durable phantoms with controlled density of scatterers, Physics in Medicine and Biology, vol.53, issue.13, pp.237-247, 2008.
DOI : 10.1088/0031-9155/53/13/N01

L. Tchvialeva, G. Dhadwal, D. Diao, H. Lui, D. I. Mclean et al., Laser speckle contrast vs. depolarization: a solid skin phantom study, pp.809018-809018, 2011.

A. Nadort, K. Kalkman, T. G. Van-leeuwen, and D. J. Faber, Quantitative blood flow velocity imaging using laser speckle flowmetry, Scientific Reports, vol.33, issue.1, 2016.
DOI : 10.1117/1.3369003

URL : http://www.nature.com/articles/srep25258.pdf

W. J. Tom, A. Ponticorvo, and A. K. Dunn, Efficient Processing of Laser Speckle Contrast Images, IEEE Transactions on Medical Imaging, vol.27, issue.12, pp.1728-1738, 2008.
DOI : 10.1109/TMI.2008.925081

A. Steimers, W. Farnung, and M. Kohl-bareis, Improvement of Speckle Contrast Image Processing by an Efficient Algorithm BT -Oxygen Transport to Tissue XXXVII, pp.419-425, 2016.

S. Kirkpatrick, D. Duncan, R. Wang, and M. Hinds, Quantitative temporal speckle contrast imaging for tissue mechanics, Journal of the Optical Society of America A, vol.24, issue.12, pp.3728-3734, 2007.
DOI : 10.1364/JOSAA.24.003728

K. R. Byrnes, R. W. Waynant, I. K. Ilev, X. Wu, L. Barna et al., Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury, Lasers in Surgery and Medicine, vol.50, issue.3, pp.171-185, 2005.
DOI : 10.2519/jospt.1988.9.10.333

M. Niemz, Laser-tissue interactions. Fundamentals and Applications, 1996.

N. Yokoi and Y. Aizu, Depth measurement of a blood flow region based on speckle decorrelation, Optical Review, vol.25, issue.2, pp.365-373, 2015.
DOI : 10.1016/j.vaccine.2007.05.046

P. Baldi, S. Brunak, Y. Chauvin, C. Andersen, and H. Nielsen, Assessing the accuracy of prediction algorithms for classification: an overview, Bioinformatics, vol.16, issue.5, pp.412-424, 2000.
DOI : 10.1093/bioinformatics/16.5.412

S. Liu, P. Li, and Q. Luo, Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit, Optics Express, vol.16, issue.19, pp.162188-2190, 2008.
DOI : 10.1364/OE.16.014321

G. M. Gardner, M. Conerty, J. Castracane, and S. M. Parnes, Electronic Speckle Pattern Interferometry of the Vibrating Larynx, Annals of Otology, Rhinology & Laryngology, vol.67, issue.1, pp.5-12, 1995.
DOI : 10.1016/0378-5955(91)90010-7

V. Almeida, H. Pereira, T. Pereira, E. Figueiras, E. Borges et al., Piezoelectric probe for pressure waveform estimation in flexible tubes and its application to the cardiovascular system, Sensors and Actuators A: Physical, vol.169, issue.1, pp.217-226, 2011.
DOI : 10.1016/j.sna.2011.04.048

M. A. Kirby, K. Khaksari, and S. J. Kirkpatrick, Assessment of incident intensity on laser speckle contrast imaging using a nematic liquid crystal spatial light modulator, Journal of Biomedical Optics, vol.21, issue.3, p.36001, 2016.
DOI : 10.1117/1.JBO.21.3.036001