
HAL Id: tel-01690893
https://theses.hal.science/tel-01690893

Submitted on 23 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast recursive biomedical event extraction
Xiao Liu

To cite this version:
Xiao Liu. Fast recursive biomedical event extraction. Artificial Intelligence [cs.AI]. Université de
Technologie de Compiègne, 2014. English. �NNT : 2014COMP1963�. �tel-01690893�

https://theses.hal.science/tel-01690893
https://hal.archives-ouvertes.fr

Par Xiao LIU

Thèse présentée
pour l’obtention du grade
de Docteur de l’UTC

 (a) Multinomial Logistic Regression (b) Logistic Regression in One-vs-Rest

Fast recursive biomedical event extraction

Soutenue le 25 septembre 2014
Spécialité : Technologies de l’Information et des Systèmes :
Unité de recherche Heudyasic (UMR-7253)

 D1963

Université de Technologie de Compiègne

Doctoral Thesis

Fast Recursive Biomedical Event

Extraction

Author:
Xiao Liu

Supervisors:
Antoine Bordes

Yves Grandvalet

Spécialité : Technologies de l’Information et des Systèmes

Unité de recherche Heudyasic (UMR-7253)

 Thèse présentée pour l’obtention du grade de docteur de l’UTC

 25/09/2014

http://www.utc.fr/
https://www.hds.utc.fr/~bordesan
https://www.hds.utc.fr/~grandvalet

“The question of whether Machines Can Think... is about as relevant as the question of
whether Submarines Can Swim."

Edsger W. Dijkstra

Résumé

L’internet et les nouvelles formes de média de communication, d’information, et de diver-
tissement ont entraîné une croissance massive de la quantité des données numérique. Le
traitement et l’interprétation automatique de ces données permettent de créer des bases
de connaissances, de rendre les recherches plus efficaces et d’effectuer des recherches sur
les médias sociaux. Les travaux de recherche sur le traitement automatique du langage
naturel concernent la conception et le développement d’algorithmes, qui permettent aux
ordinateurs de traiter automatiquement le langage naturel dans les textes, les contenus
audio, les images ou les vidéos, pour des tâches spécifiques. De par la complexité du lan-
gage humain, le traitement du langage naturel sous forme textuelle peut être divisé en 4
niveaux : la morphologie, la syntaxe, la sémantique et la pragmatique. Les technologies
actuelles du traitement du langage naturel ont eu de grands succès sur les tâches liées aux
deux premiers niveaux, ce qui a permis la commercialisation de beaucoup d’applications
comme les moteurs de recherche. Cependant, les moteurs de recherches avancés (struc-
turels) nécessitent une interprétation du langage plus avancée. L’extraction d’information
consiste à extraire des informations structurelles à partir des ressources non annotées ou
semi-annotées, afin de permettre des recherches avancées et la création automatique des
bases de connaissances.

Cette thèse étudie le problème d’extraction d’information dans le domaine spécifique
de l’extraction des événements biomédicaux. Nous proposons une solution efficace, qui
fait un compromis entre deux types principaux de méthodes proposées dans la littéra-
ture. Cette solution arrive à un bon équilibre entre la performance et la rapidité, ce
qui la rend utilisable pour traiter des données à grande échelle. Elle a des performances
compétitives face aux meilleurs modèles existant avec une complexité en temps de calcul
beaucoup plus faible. Lors la conception de ce modèle, nous étudions également les effets
des différents classifieurs qui sont souvent proposés pour la résolution des problèmes de
classification multi-classe. Nous testons également deux méthodes permettant d’intégrer
des représentations vectorielles des mots appris par apprentissage profond (deep learn-
ing). Même si les classifieurs différents et l’intégration des vecteurs de mots n’améliorent
pas grandement la performance, nous pensons que ces directions de recherche ont du
potentiel et sont prometteuses pour améliorer l’extraction d’information.

Abstract

Internet as well as all the modern media of communication, information and entertain-
ment entail a massive increase of digital data quantities. Automatically processing and
understanding these massive data enables creating large knowledge bases, more efficient
search, social medial research, etc. Natural language processing research concerns the
design and development of algorithms that allow computers to process natural language
in texts, audios, images or videos automatically for specific tasks. Due to the complexity
of human language, natural language processing of text can be divided into four levels:
morphology, syntax, semantics and pragmatics. Current natural language processing
technologies have achieved great successes in the tasks of the first two levels, leading
to successes in many commercial applications such as search. However, advanced struc-
tured search engine would require computers to understand language deeper than at the
morphology and syntactic levels. Information extraction is designed to extract mean-
ingful structural information from unannotated or semi-annotated resources to enable
advanced search and automatically create knowledge bases for further use.

This thesis studies the problem of information extraction in the specific domain of
biomedical event extraction. We propose an efficient solution, which is a trade-off be-
tween the two main trends of methods proposed in previous work. This solution reaches
a good balance point between performance and speed, which is suitable to process large-
scale data. It achieves competitive performance to the best models with a much lower
computational complexity. While designing this model, we also studied the effects of dif-
ferent classifiers that are usually proposed to solve the multi-class classification problem.
We also tested two simple methods to integrate word vector representations learned by
deep learning method into our model. Even if different classifiers and the integration
of word vectors do not greatly improve the performance, we believe that these research
directions carry some promising potential for improving information extraction.

Contents

Résumé ii

Abstract iii

Contents iv

List of Figures viii

List of Tables x

Abbreviations xii

Symbols xiii

1 Introduction 1
1.1 Biomedical Information Extraction from Text 1

1.1.1 Natural Language Processing . 1
1.1.1.1 Tasks of NLP . 2

Real-World Tasks . 2
Inter-media Tasks . 2

1.1.1.2 Methods of NLP . 3
1.1.2 Information Extraction from Text 4
1.1.3 BioNLP Genia Task . 5

1.2 Thesis Contribution . 8
1.2.1 Recursive Pairwise Relation Extraction 8
1.2.2 Classifier and Feature Design . 9
1.2.3 Implementation . 9

1.3 Outline of the Thesis . 9

2 State-of-the-Art in Biomedical Event Extraction 11
2.1 Introduction . 11
2.2 Text Preprocessing . 11

2.2.1 Tokenization and Sentence Splitting 12
2.2.1.1 Difficulties in Biomedical Documents 12

Tokenization . 12
Sentence Splitting . 13

2.2.1.2 Implementations . 13

iv

Contents v

2.2.2 Syntactic Grammars . 15
2.2.2.1 Phrase Structure Grammar 15
2.2.2.2 Dependency Grammar . 16

2.2.3 Frequently Used Parsers . 16
2.2.3.1 Stanford Series . 17
2.2.3.2 Other Parsers . 17

2.3 Dedicated Feature Engineering . 17
2.3.1 Unitary Features . 18

2.3.1.1 Features of Target Entities 19
2.3.1.2 Features of Context . 19

Word Window . 20
Dependency Adjacent Nodes 20

2.3.2 Pairwise Features . 20
2.3.2.1 Dependency Path . 20
2.3.2.2 Encoding Methods . 21

E/V-walk . 21
N-Grams . 22

2.3.3 Other Features . 22
2.4 Previous Work . 22

2.4.1 Pipeline Models . 23
2.4.1.1 General Architecture . 23
2.4.1.2 Diverse Implementations 23

Trigger Detection . 23
Edge Detection . 24
Post-Processing . 25

2.4.2 Joint Models . 25
2.4.2.1 Markov Random Fields 25
2.4.2.2 Pattern Matching . 26

2.4.3 Pairwise Models . 26
2.5 Summary . 27

3 A Pairwise Model 28
3.1 Introduction . 29
3.2 Problem Modelization . 30

3.2.1 Formulation of Pair Extraction . 30
3.2.2 Problem Decomposition . 31

3.2.2.1 Non-REG Event Extraction 31
Non-REG (trigger, theme) Pair Extraction 31
BIND theme Fusion . 32

3.2.2.2 REG Event Extraction 32
REG-theme Pair Extraction 32
REG-cause Assignment 33

3.3 Implementation . 33
3.3.1 Classifier . 33

3.3.1.1 SVM for Cost-Sensitive Multi-Class Classification 34
Standard SVM . 34
SVM with Asymmetric Costs 35

Contents vi

One-vs-Rest Framework . 35
3.3.1.2 Training Procedure . 35

Notation . 35
Setting C+/C− Hyper-Parameters 36
SVM Scores Combination 36
Logistic Regression . 36
Decision Thresholds . 37
Classifier Chain . 38

3.3.2 Feature Study . 39
3.3.2.1 Multiple Tokenizations & Sentence Splitting 39

Support Tokenization . 40
Stanford Tokenization . 40
Longest Sentence . 40
Coarse Tokenization Features 40

3.3.2.2 Dependency Path Trimming 41
Encoding Paths . 41
Statistics of Path Lengths 41

3.3.2.3 Knowledge Base . 42
3.3.2.4 Feature Summary . 43

3.4 Experiments . 43
3.4.1 Feature Adjustment . 44

3.4.1.1 Dependency Path Trimming 44
3.4.1.2 Knowledge Base, Coarse Tokenization and Window Size . 48

Window Size . 48
Knowledge Base . 51
Coarse Tokenization . 51

3.4.2 Test Results . 51
3.4.2.1 BioNLP 2011 . 51
3.4.2.2 BioNLP 2013 . 52

3.5 Conclusion . 54

4 Recursive Pairwise Model 55
4.1 Introduction . 56
4.2 Improved Recursive Classification Framework 57

4.2.1 Recursive . 58
4.2.2 Merging the Trigger-Theme Steps 59
4.2.3 Complexity . 60

4.3 Implementation . 60
4.3.1 Simplified Classifier . 61
4.3.2 Edge-Walk vs Vertex-Walk . 61

4.4 Experiments . 62
4.4.1 Classifiers . 62
4.4.2 Features . 65
4.4.3 Model Comparison . 67

4.4.3.1 BioNLP 2011 . 67
4.4.3.2 BioNLP 2013 . 68
4.4.3.3 Training Duration . 70

Contents vii

4.5 Conclusion . 71

5 Variations 72
5.1 Introduction . 72
5.2 Classifier . 73

5.2.1 Output Normalization . 73
5.2.1.1 Soft-Max . 73
5.2.1.2 Multinomial Logistic Regression 74

5.2.2 Threshold Selection . 74
5.2.3 Without Normalization . 75
5.2.4 Experiments . 76

5.3 Stacked Model . 77
5.3.1 Simulate the Previous Predictions in Training 79
5.3.2 Evaluating Examples with Different Orders in Test 80
5.3.3 Experiments . 80

5.4 Vector Embedding . 81
5.4.1 Language Model . 81

Training Objective and Method 82
Neural Network Architecture 82

5.4.2 Integration into NLP Tasks . 83
5.4.3 Experiments . 84
5.4.4 Perplexity of Language Model with Respect to Annotation 85

5.5 Conclusion . 88

6 Conclusion 90
6.1 Perspectives for Biomedical Event Extraction 90

6.1.1 Contributions and Limitations . 90
6.1.2 Further Extensions . 90

6.2 NLP Directions . 91
6.2.1 Representation . 92
6.2.2 Background Knowledge . 93

A Linguistic Knowledge 94
A.1 Part-of-speech . 94
A.2 CoNLL Dependency Grammar . 95
A.3 Stanford Dependency Grammar . 97

B BioNLP Genia Task 99
B.1 Task Definition . 99
B.2 Data statistics . 101
B.3 Ambiguous examples . 103

Bibliography 105

List of Figures

1.1 Example of Gene_expression event. 6
1.2 Example of Binding event. 6
1.3 Example of REG events. 6

2.1 Trigger and argument in one token. 14
2.2 Example of phrase structure tree in Penn Treebank format. 15
2.3 Stanford dependency parse graphs. 16
2.4 Shortest dependency path . 21
2.5 E-walks and V-walks features derived from a dependency path. 21

3.1 Pairwise extraction system . 29
3.2 SVM separating hyper-plane . 34
3.3 Classifier Chain . 38
3.4 Frequency of examples according to the length of the dependency path

between theme and argument . 42
3.5 Frequency of examples according to the length of the dependency path

between two argument tokens in multiple argument events 43

4.1 RecUrsive Pairwise Event Extraction (RUPEE) 56
4.2 Precision-recall curve for (trigger, theme) classification, with or with-

out joint features, on the BioNLP 2013 development set 66
4.3 Precision-recall curves for (trigger, theme) classification by RUPEE

and its pipeline counterpart, on the BioNLP 2013 development set 70

5.1 SVM separating hyper-planes . 75
5.2 UCLEED inference process. Each iteration makes a full prediction on

all the nodes and edges. The arcs represent how the previous predicted
labels are incorporated in the next prediction. The green line refers to the
prediction of multi-argument Binding events. 78

5.3 SEARN search process. Each node represents a pair of tokens and edges
between nodes represent the potential dependencies between pairs. 78

5.4 Language model from [68] (figure extracted from the original paper). . . . 82
5.5 Histogram of trigger words with respect to Spearman correlation 86
5.6 Distribution based on nearest words, size of marker refers to the proportion

in the class . 87
5.7 Distribution based on nearest words, size of marker refers to the proportion

in the class, regulation events are merged into one event 88

B.1 Trigger is stop word “by”. 103
B.2 Trivial word “dependent” in different event classes 103

viii

List of Figures ix

B.3 Ambiguous word “overexpression” in different event classes 104
B.4 Ambiguous word “targeted” . 104

List of Tables

1.1 BioNLP Genia event extraction task definitions 5
1.2 Data sets in BioNLP Genia tasks. 7

2.1 Features used by our system . 18

3.1 Investigating trimming of dependency path forNon-REG (trigger,theme)
extraction step . 45

3.2 Investigating trimming of dependency path for Binding theme fusion step 45
3.3 Investigating trimming of dependency path for Binding theme fusion step

for multiple argument events . 46
3.4 Investigating trimming of dependency path for REG (trigger,theme)

step . 47
3.5 Investigating trimming of dependency path for (trigger,cause) inREG

cause assignment step . 48
3.6 Investigating trimming of dependency path for (theme,cause) in REG

cause assignment step . 48
3.7 Investigating window sizes forNon-REG (trigger,theme) pair extraction 49
3.8 Influence of the features derived from the IntAct knowledge base and from

coarse tokenization . 50
3.9 Results on the BioNLP 2011 test set . 52
3.10 Results on the BioNLP 2013 test set . 53
3.11 Binding (trigger,theme) pair scores and full event scores on the BioNLP

2013 test set . 54

4.1 Data-set configurations used to test different classifiers. 62
4.2 Total F1-scores for classifiers using different classifiers with different data-

set configurations. 62
4.3 F1-scores on the test set of the BioNLP 2013 GE task using different

classifiers . 64
4.4 Confusion matrix for RUPEE on the BioNLP 2013 GE task, computed by

cross-validation on the training and development sets 65
4.5 F1-scores on the test set of the BioNLP 2011 GE task 67
4.6 F1-scores on the test set of the BioNLP 2013 GE task 68
4.7 Binding (trigger,theme) pair scores and event scores on BioNLP 2013

test set . 69

5.1 Data-set configurations used to test different algorithms. 76

x

List of Tables xi

5.2 Total F1-scores for classifiers using different normalizations and thresholds
in RUPEE. MNLogit means multinomial logistic regression, LR means lo-
gistic regression in One-vs-Rest framework. Thresholds mean the thresh-
old tuning method introduced in 3, thresholds 2 means the method intro-
duced in this chapter. 76

5.3 Total F1-scores for classifiers using different optimization methods in RU-
PEE. 77

5.4 Total F1-scores for different classifiers with Pipeline model 77
5.5 F1-scores of stacked models with different features and evaluation orders

on the BioNLP13 test set . 80
5.6 Total F1-scores on BioNLP13 test set with embedding features. 84

A.1 Part-of-speech tags used in Penn Treebank. 94
A.2 Attributes used in CoNLL Format. 96
A.3 Stanford Dependency Type. 98

B.1 BioNLP Genia event extraction task definitions 100
B.2 BioNLP Genia event extraction task definitions.“?” means the number of

this argument is 0 or 1, “+” means the number of this argument is at least
1, “*” means the number of this argument is not fixed. 101

B.3 Data sets in BioNLP 2009 Genia tasks. 101
B.4 Data sets in BioNLP 2011 Genia tasks. 102
B.5 Data sets in BioNLP 2013 Genia tasks. 102

Abbreviations

NLP Nature Language Processing

NER Named Entity Recognition

IE Information Extraction

POS Part Of Speech

PTB Penn TreeBank

BOW Bag Of Word

SVM Support Vector Machine

LR Logistic Regresion

MNLogit Multi-Nomial Logistic regression

SVT Single eVenT

BIND BINDing event

REG REGulation event

Non-REG Non-REGulation event

xii

Symbols

Task Definitions

trigger character chain acting as an anchor of event

theme main participant of event, formulated as argument of trigger

theme_2 optional second participant of event

cause cause of event

Modelizations

S Sentence index

TS set of candidate entities for trigger in sentence S

t ∈ TS candidate entity for trigger

AS set of candidate arguments in sentence S

a ∈ AS candidate argument

PS set of candidate (t, a) pairs in sentence S

p ∈ PS candidate (t, a) pair

ES set of events in sentence S

e ∈ ES event

Y set of categories of events

xiii

Chapter 1

Introduction

This thesis introduces an efficient way of extracting biomedical information from text,
which was applied to the BioNLP Genia task. In this chapter, we illustrate the back-
ground of this thesis, the details of a focused task and give a concise summary of our
achievements. Section 1.1 proposes a prospect of information extraction and shows the
difficulty to work in a specific domain. After that, Section 1.2 summarizes the contri-
butions that we have been developing for the BioNLP Genia task. The final section
(Section 1.3) briefly describes the following chapters.

1.1 Biomedical Information Extraction from Text

In this section, we introduce the domain of the task we address. The BioNLP Genia task
consists of extracting biomedical events, following predefined formulas, from raw text.
Besides the BioNLP Genia task [1–3], there are many other biomedical event extraction
tasks [4–13] that defined different events to extract such as the BioNLP gene regulation
ontology task [4], the BioNLP cancer genetic task [5], the BioNLP pathway curation task
[6], etc. All of these tasks intend to extract structured information from raw text, and
hence fall into the range of information extraction from text. Information extraction
from text usually relies on natural language processing (NLP), and is always discussed
as a high-level NLP task. Before introducing the biomedical information extraction task,
we define NLP in Section 1.1.1 and the general problem of Information Extraction in
Section 1.1.2

1.1.1 Natural Language Processing

Natural language processing concerns the interaction between computers and human
language. Two main categories of challenges are involved in natural language process-
ing: one is natural language understanding; the other is natural language generation.
These two tasks consider opposite directions since natural language understanding aims
to transform the input sentence into machine representation whereas natural language
generation determines how, for a machine, to express concepts in human language. Nat-
ural language understanding is now widely used in search engines, text summarization,

1

Chapter 1. Biomedical IE 2

voice control, document categorization, large-scale content analysis, etc. From a commer-
cial perspective, natural language understanding is more mature than natural language
generation that is usually used as a part of summarization or machine translation appli-
cations. For the long-term goal, which targets to generate human-like sentences, current
natural language generation systems are far from being effectively used. We introduce
below some NLP tasks devoted to natural language understanding.

1.1.1.1 Tasks of NLP

Natural language processing is a big domain that addresses many tasks, where some of
them have direct real-world applications, whereas others are sub-tasks that are used to
aid in solving the larger tasks. All the tasks have well-defined problem settings, standard
metrics to evaluate the solutions and standard corpora on which these solutions can be
evaluated.

Real-World Tasks We start by introducing the tasks directly related to real-world
applications. Natural language can be carried out in different resources such as texts,
voices, images, etc. The vast majority of NLP tasks focuses on the processing of texts
while others are often grouped into multimedia NLP tasks. Typical multimedia NLP
tasks include speech recognition (voice to text), optical character recognition (image to
text) and speech generation (text to voice), which are transformations between texts
and other media formats. Advanced processing of natural language carried out in the
multimedia resources are usually implemented by combining advanced textual processing
and transformation between multimedia resources and texts.

Many tasks are proposed for texts like automatic summarization, machine translation,
question answering, sentiment analysis, information retrieval, etc. General search en-
gines return documents relying on information retrieval technology and snippets of these
documents generated by automatic summarization. Question answering aims at building
systems that “understand” the questions asked by users in human language and return the
result by searching a structured knowledge base. Machine translation aims to translate
the text or speech from one language to another. Human translation process basically
contains two steps: 1) decoding the meaning from source text; 2) re-encoding the mean-
ing in target language. Current machine translation method works in a similar way,
which involves both natural language understanding and natural language generation.
Sentiment analysis extracts subject information from document sets and is used to track
the public opinion from social media for marketing or political use.

Inter-media Tasks Natural language is a highly abstract representation of meanings
and is hard to be processed directly by a computer. Similar to image processing, all the
real-world NLP tasks require plenty of refined heuristic representations of original texts to
get a good performance. Following the linguistics, which studies the structure and rules
of human languages, many sub-tasks were proposed to construct different representations
of sentences from the simplest morphology of words to complex specific structures. We
group these sub-tasks into three categories: 1) segmentation, 2) tagging, 3) structured
extraction.

The segmentation tasks aim to split continuous speech or text into predefined linguistic
units. The sub-task for speech recognition task is speech segmentation, which identifies

Chapter 1. Biomedical IE 3

the boundaries of words, syllables or phonemes in a soundtrack. Other segmentation
tasks segment specific units from texts, where sentence breaking identifies the bound-
aries of sentences in documents, word segmentation breaks the sentences into words,
morphological segmentation identifies the individual morphemes in words. Note that
morphological segmentation is rarely used in high-level tasks while sentence breaking
and word segmentation are almost systematic in all the NLP tasks.

We conclude by tagging tasks that sequentially identify the elements in sentences like
part-of-speech tagging, word sense disambiguation and named entity recognition. The
part-of-speech tagging task requires determining the part of speech (POS) for each word
given a sentence. This task needs to choose the right POS while one word can serve
as multiple parts of speech. It is similar to word sense disambiguation, which selects
the meaning which makes the most sense in context when words have more than one
meaning. In practice, the POS task is much easier than word sense disambiguation.
Unlike marking the classes of words, named entity recognition aims to recognize the
classes of character chains, which are not necessary a word.

The structured extraction tasks are usually designed to extract specific relations between
predefined entities, which can be words or named entities. Coreference resolution, pars-
ing, relationship extraction fall into this category. Coreference resolution are proposed
to recognize the words that refer to the same objects. One of these tasks is anaphora
resolution, which concerns the match of pronouns to the nouns or names that they refer
to. Parsing tasks provide a grammatical analysis represented by a parse tree or graph.
Relationship extraction is very similar to parsing except that the specified relations de-
pend more on semantics than on syntactic and their targets are often restricted named
entities instead of all the words. Parsing is often used in other structured tasks as an es-
sential feature while coreference resolution and relationship extraction are used to enrich
the performance of real-world applications.

The output space in structured extraction is much larger than for other tasks. Besides,
except syntactic parsing, the state-of-the-art performance of structured extraction is
far below human performance. Despite the complexity brought by structured output,
structured extraction tasks are more difficult because these tasks heavily rely on larger
contexts and deeper semantic comprehension of sentences. Moreover, structured extrac-
tion tasks need the support from many other inter-media tasks, which leads to error
cascading problems.

1.1.1.2 Methods of NLP

There are two main streams of methods for NLP: the first are rule-based systems, the
second are statistical models. The rule based systems were originally developed by people
willing to create machines that can pass the Turing test. Programmers manually created
ontologies, which are structured databases that represent the real-world information
and can be understood by computers, along with the rulers to generate sentences and
translate between two languages. The rule based systems want to simulate the logic of
humans, but they are hard to extend since the rules have to be written by experts and
strict logics are short to handle the ambiguity of human language and faults. Integrating
machine learning methods into rule-based systems enables the system to discover new
rules or knowledge by itself given new corpus. But their performances are usually worse
than statistical models in practical applications.

Chapter 1. Biomedical IE 4

In the past three decades, researchers focused on statistical models, which achieved great
successes in many commercial applications. Statistical models make soft probabilistic
decisions given by real-valued functions, which predict the outcome by weighting the
features of the input data. The weights are learned from training corpus via machine
learning methods. Such models are more robust when given new examples, especially
when inputs contain errors, which is very common in real-world data.

For the tasks introduced in previous section, the simple segmentation tasks of some
languages like English are solved by rule-based methods since their variations are reg-
ular and easy to treat. But for tagging tasks and structured extraction tasks, statistic
models generally work better than rule-based models. Therefore, statistical models are
increasingly popular in commercial applications and research.

1.1.2 Information Extraction from Text

Information extraction aims to extract structured information from unstructured or semi-
structured resources. This technology permits to automatically construct database that
can be used in precise structured information retrieval, knowledge base construction, etc.
The target resources can be human language text, audio or even video; but most of efforts
were made on processing text through natural language processing (NLP). The problem
tackled in this thesis falls into the first kind. Information extraction tasks usually require
to output graphs or trees, which are very similar to the ones of syntactic parsing tasks.
However, syntactic parsing tasks emphasize on syntactic relations whereas information
extraction tasks emphasize on semantic relations. Besides, syntactic parsing tasks do
not consider the entities, but only the words in sentences. Hence, information extraction
tasks are much more difficult than parsing.

With the widespread use of Internet, massive information is provided by users in unorga-
nized texts. This huge amount of data contains vast of valuable information that people
would like to retrieve for many usages. For example, current search engines mainly re-
ply on keywords searches, which retrieve documents with respect to the importance of
keywords and meta data in web pages. However, the high-quality meta data is not al-
ways available and is not detailed enough for some search problems that require refined
and deep comprehension of documents. Information extraction allows to create logical
form indices from raw text, which are necessary for precise search with logical restrictions.
Furthermore, reliable information extraction can automatically generate knowledge base,
which is essential for many tasks like expert systems.

Typical sub-tasks of information extraction include: named entity recognition, relation-
ship resolution and coreference resolution. In the information extraction process, named
entity recognition is used to find the target entities, relationship resolution is the main
part that creates the desired structures, which are often graphs or trees. Coreference res-
olution is used to reinforce the performance of information extraction since the anaphoric
links are very useful to extract potential relations. In these sub-tasks, almost all the other
inter-media tasks are involved to provide features in actual approaches.

Chapter 1. Biomedical IE 5

Table 1.1: BioNLP Genia event extraction task definitions. “?” means that this
argument is optional, “+” means the this argument can occur more than once.

Event Type Type of Theme participant, Additional Arguments
other participants (type)

Gene_expression Protein
Transcription Protein
Protein_catabolism Protein
Phosphorylation Protein Site (Entity)?
Localization Protein AtLoc (Entity)?, ToLoc (Entity)?
Binding Protein+ Site(Entity)+
Regulation Protein/Event, Site (Entity)?, CSite (Entity)?

Cause (Protein/Event)?
Positive_regulation Protein/Event, Site (Entity)?, CSite (Entity)?

Cause (Protein/Event)?
Negative_regulation Protein/Event, Site (Entity)?, CSite (Entity)?

Cause (Protein/Event)?

1.1.3 BioNLP Genia Task

BioNLP Genia task is a major task of the BioNLP Shared Task started in 2009. It
concerns the recognition of bio-molecular events that appear in biomedical literature.
The definition of bio-event is broadly described as a change on the state of a bio-molecular
or bio-molecules. In BioNLP Shared Task 2011 and 2013, more tasks were added (see
Nédellec et al. [7]) and the definition of the Genia task changed in 2013: new event types
have been added into the framework and integrated coreference resolution becomes a
part of this task. This task focuses on extraction of bio-events particularly on proteins
or genes, where proteins and genes are not distinguished and given. It was divided into
three sub-tasks:

1. Core event extraction task requires to identify the event triggers, their types
and the participants of events.

2. Event enrichment task requires to extract additional arguments to enrich the
core events, such as the location of events. One has to recognize entities of the
additional arguments and detect the relations between these entities and the core
events.

3. Negation and speculation recognition task requires to find negations and
speculations regarding events extracted by task 1.

Table 1.1 lists the event definitions used in BioNLP 2009 and 2011 Genia tasks. To be
consistent with the nomenclature of this thesis, we used participants instead of Primary
Arguments in [1, 2] and used Additional Arguments instead of Secondary Arguments. The
core event extraction task requires to extract the events with their participants while
the event enrichment task requires to extract the additional arguments. The negation
and speculation recognition requires to indicate the negation and/or speculation
based on the extracted and enriched events. We denote that though the original definition
of Binding events can involve more than two arguments, the number of Binding events
with more than two arguments is small. Most proposed solutions choose to ignore the

Chapter 1. Biomedical IE 6

Binding events with more than two arguments for simplicity. For arguments, the names
before parentheses are types of arguments while the names in parentheses are the types
of the target entities allowed be arguments for this event.

According to the core event extraction task, the first five events are referred to as
single argument events (SVT) and the last three events are referred to as regulation
events (REG).

Thrombin)induced.p65.homodimer.binding.to.dowstream.NF)kappa.B.site.of.the.promoter.mediates..

.

endothelia.ICAM)1.expression.and.neutrophil.adhesion...

Gene_expression.

Figure 1.1: Example of Gene_expression event.

Figure 1.1 illustrates an example of Gene_expression event: given three protein names
“Thrombin”, “p65”, “ICAM-1” marked in the sentence, the algorithm has to recognize
the word “expression” is an event trigger of type Gene_expression along with the
corresponding argument, which is the protein “ICAM-1”. This is representative of all the
SVT events.

Thrombin)induced.p65.homodimer.binding.to.dowstream.NF)kappa.B.site.of.the.promoter.mediates..

.

endothelia.ICAM)1.expression.and.neutrophil.adhesion...

Binding.

(a) Example of Binding event with single argument

…"physical"interac/on"between"CREB71"and"Foxp3"…"
Binding"

Theme� Theme2�

(b) Example of Binding event with two arguments

Figure 1.2: Example of Binding event.

Figure 1.2 illustrates two examples of Binding events: the one in Figure 1.2a is similar to
the SVT events, whereas the one in Figure 1.2b has two arguments. The second Binding
event requires to recognize a ternary structure between the trigger and two proteins.

Thrombin)induced.p65.homodimer.binding.to.dowstream.NF)kappa.B.site.of.the.promoter.mediates..

.

endothelia.ICAM)1.expression.and.neutrophil.adhesion...

Binding.
PosiEve_regulaEon. Theme�Cause�

Gene_expression.

PosiEve_regulaEon.
Cause�

Theme�

Figure 1.3: Example of REG events.

Chapter 1. Biomedical IE 7

Figure 1.3 illustrates two REG events along with one Gene_expression event and one
Binding event. In this example, the extracted Gene_expression and Binding events act
as arguments of REG events. Moreover, REG event with trigger “induced” is the
argument of another REG event with trigger “mediates”. It is obvious that extracting
the dependent events before is crucial for extracting the REG events presented in the
sentence. We call this kind of events recursive events. Note that all the recursive
events are REG events, but REG events are not necessarily recursive. The extraction
of the recursive events are much more difficult than other events due to the error
propagation of event extraction. Hence, SVT and Binding events are usually measured
together since they do not require extracting dependent events in advance. In this thesis,
we call the SVT and Binding events Non-REG events. Besides the common difficulties
of structured extraction, the BioNLP Genia task merged hierarchical events and parallel
events. For example, Transcription and Gene_expression are two classes in the task
definition while Transcription is theoretically a special kind of Gene_expression. The
same remark applies to the three REG events.

In 2009, the BioNLP task provided the training data by extracting a part of events
from the Genia event ontology1. Since the event definition/format used in Genia event
ontology and the definitions of BioNLP task are not completely consistent, the task
organizers introduced partial static relation annotation [14, 15] to extract the events for
training and test. The data for the training and development sets was derived from
the publicly available event corpus [16] and the data for the test set was derived from
an unpublished portion of the corpus. All the data in 2009 were extracted from the
abstracts of biomedical articles. In 2011, the task organizers added new documents into
the corpus that were extracted from every part of full articles. In 2013, the task organizers
provided a new corpus that contains documents from every part of full articles. As the
task definitions were modified in 2013, they did not put the data sets of 2011 and 2013
together. But using the previous data sets is encouraged since the new corpus is much
smaller and is not sufficient for proper training. Table 1.2 lists the number of articles
and documents used in previous tasks, where a document refers to the file that is given
by the task organizers, which usually corresponds to a paragraph of an article.

Table 1.2: Data sets in BioNLP Genia tasks.

Training Development Test
Abs Full Abs Full Abs Full

2009 Articles 800 0 150 0 150 0
Documents 800 0 150 0 260 0

2011 Articles 800 5 150 5 260 4
Documents 800 108 150 109 150 87

2013 Articles 0 10 0 10 0 14
Documents 0 222 0 249 0 305

See Appendix B.2 for more details about the number of words, sentences, events, etc.

Though the formulas of task definitions in the three BioNLP Genia tasks are consistent,
the corresponding examples in these data sets are not fully coherent. First, some of the
annotations provided in the BioNLP 2009 task use the same trigger entity for different

1http://www.nactem.ac.uk/genia/genia-corpus/event-corpus

http://www.nactem.ac.uk/genia/genia-corpus/event-corpus

Chapter 1. Biomedical IE 8

kinds of events, so that trigger detection becomes a multi-label problem. Considering
the method that is used to generate the annotation, events may be associated to several
categories; hence multi-label classification is required to infer these categories. But in the
BioNLP 2011 and the BioNLP 2013, all the newly added trigger entities were labeled as
signal event type, where several annotators may however chose different ground truths.
To the best of our knowledge, all the participants treated the task as a multi-class
problem. Contrary to abstracts, descriptions in full articles contain many coreference
problems. As BioNLP 2011 and BioNLP 2013 added full articles, the coreference problem
is introduced into the event extraction task. The coreference annotations are given in the
training data of BioNLP 2011 and 2013 tasks, but the coreference task is only explicitly
integrated in the task definition of BioNLP 2013. Little effort has been down on the
coreference problem in this task. Besides, BioNLP2013 corpus contains errors stemming
from the processing of the article library, such as missing spaces between words. The
task organizers expect the developers to construct a system that can directly work on
the original data, hence leave the editing errors as noisy data.

1.2 Thesis Contribution

We now describe our contributions to the BioNLP Genia event extraction task. They can
be split into two parts: 1) the problem modelization that contains how we decompose
the structured prediction problem and reconstruct the final outputs, 2) investigations
about the classifiers and generation of features.

1.2.1 Recursive Pairwise Relation Extraction

We present a new model that is between the pipeline models and joint models that
were widely studied in previous works. Our final model is described in Chapter 4 as an
extension of a simpler model presented in Chapter 3. These two models constitute the
main contributions of this thesis.

Unlike previous models that evaluate the candidate trigger entities and the pair-wise
relations separately, our first model predicts (trigger, argument) pairs jointly. Start-
ing from pairs enables our model to avoid losing potential triggers, which is the main
default of pipeline model, without much additional computational complexity. In ad-
dition to the pair-wise predictions, our best model creates the essential part of events
through a recursive process. This incremental method constructs the recursive events
step-by-step on the most confident predictions, hence does not need any complex infer-
ence. Predicting pairs may also lose some potential triggers that could be captured by
joint models, which evaluate all the relations altogether via a global score. However, our
model slightly outperforms the best joint model on the test set of BioNLP 2011 Genia
task. Since the difference between our model and the best joint model can be caused by
some implementation details, we say that our model and the best joint model have com-
parable performance. Note that the training time of our model is much shorter than the
training time of the best joint model (30 minutes versus 8 hours and 30 minutes). Our
model reaches a good balance between the performance and computational complexity.

Chapter 1. Biomedical IE 9

1.2.2 Classifier and Feature Design

We tested many classifiers for the multi-class classification problem, F1-score maximiza-
tion with unbalanced data. We used asymmetric cost-sensitive SVMs instead of standard
SVM to handle these issues, yielding remarkable improvement.

Based on the cost-sensitive binary SVMs, we optimized the macro-average F1-score by
tuning the thresholds along with the output scores computed through cross-validation.
Many optimization methods have been tested to maximize the macro-average F1-score
without derivatives. In order to ease the search of thresholds by some methods that
are sensitive to the interval of variables, we mapped the output scores of SVMs into
[0, 1] by logistic transformation. We tested multinomial logistic regression, binary logis-
tic regression in one-vs-rest framework and soft-max method as logistic transformation.
Unfortunately, these optimization solutions do not produce significant differences with
our model. The precision-recall curves show that ameliorating classifier selection would
not bring significant improvement for our model on this task.

Based on the representation methods used in previous works, we ignored some of the
relational features when they cannot be well represented by current encoding methods.
Current methods for representing the relations between two entities in a sentence are
ineffective when the two entities are far from each other. Abandoning the relational
features with respect to the distance between entities improves the classification per-
formance. We also investigated the impact of current encoding methods of relational
feature. The results shown that the poor representation of the relational feature may be
the bottleneck since the experiment using high-dimensional features shown worse perfor-
mance. Besides, we applied a language model reported in previous work to learn dense
representation of words and integrated the dense features into our model. Our experi-
mental results shown that this dense representations are not good alternatives to words
when used in our classification protocol.

1.2.3 Implementation

We implemented our models mainly in Python2.7 along with the natural language pro-
cessing library (NLTK2, machine learning library (scikit-learn3), scientific mathematics
libraries (SciPy4, NumPy5) and statistical library (Statsmodels6). Besides, we developed
our preprocessing pipeline based on the API provided by Stanford NLP packages 7 in
Java. Our code is open accessible on GitHub (https://github.com/XiaoLiuAI/RUPEE).

1.3 Outline of the Thesis

• Chapter 2 presents the state-of-the-arts approaches that participated in the BioNLP
Genia shared tasks. Except the main models used in these approaches, we summarized
the preprocessing and feature engineering methods used in these systems.

2http://www.nltk.org/
3http://scikit-learn.org/
4http://www.scipy.org/
5http://www.numpy.org/
6http://statsmodels.sourceforge.net/
7http://www-nlp.stanford.edu/software/index.shtml

https://github.com/XiaoLiuAI/RUPEE
http://www.nltk.org/
http://scikit-learn.org/
http://www.scipy.org/
http://www.numpy.org/
http://statsmodels.sourceforge.net/
http://www-nlp.stanford.edu/software/index.shtml

Chapter 1. Biomedical IE 10

• Chapter 3 explains our first pair-wise model that participated in the BioNLP 2013
Genia task. This model merged the entity recognition step and binary relation assign-
ment step and outperformed the winner of the BioNLP 2013 Genia challenge. In addition,
we introduce our tricks regarding feature engineering and preprocessing.

• InChapter 4, we introduce our recursive pair-wise model, that builds on our pair-wise
model mentioned in previous chapter and solves the recursive event extraction problem
efficiently. This model achieved the best result so far on the BioNLP 2011 and 2013
test sets for a single model with much smaller computational complexity than the joint
model.

• In Chapter 5, we collect the variants of classifiers, features and models tested during
the thesis. One part of these variants were tested to get the optimal solution we presented
above, others were developed for further research. However, due to the time limit, we
only tried some simple solutions that did not work well.

• Chapter 6 presents our concluding remarks and explores some further research direc-
tions.

The supplements proposed at the end of this thesis are:

• Appendix A lists the details of linguistic concepts used in this thesis.

• Appendix B describes the details of the BioNLP Genia task that we participated in,
including the task definitions and difficulties.

Chapter 2

State-of-the-Art in Biomedical
Event Extraction

2.1 Introduction

In this thesis, we address some tasks of event extraction from biomedical text proposed in
BioNLP shared tasks [1–3]. The BioNLP event extraction tasks aim to extract molecular
interactions mentioned in biomedical text and organize them into structured format so
that dedicated biomedical databases can be automatically constructed. This chapter
introduces the state-of-the-art biomedical event extraction approaches mostly as reported
in previous BioNLP workshops. Most current NLP approaches that try to understand
language decompose human language into basic morphemes and then reconstruct high-
level information step by step. Hence, most NLP systems designed to solve complex
tasks first rely on simpler systems that perform simple, yet crucial preprocessing of text.
Event extraction is such a high-level NLP task that requires the support from many
low level NLP tasks such as tokenization, sentence splitting, Part-of-Speech tagging,
syntactic parsing, etc. In this chapter, we summarize the frequently used methods and
features for every step of existing systems starting from scratch. Besides, we also explain
how previous models formulate the complex event extraction problem along with the
extracting algorithms they used.

Section 2.2 describes the preprocessing approaches used to analyze the text at differ-
ent levels. Section 2.3 introduces the popular features extracted from the outcomes of
preprocessing steps. Section 2.4 summarizes the proposed approaches aimed to solve
BioNLP Genia event extraction tasks.

2.2 Text Preprocessing

Preprocessing text for event extraction is a big pipeline process that involves many other
NLP applications, where the outcomes of preceding steps are used as input for succeeding
steps. Consequently, any change in the preprocessing sequence can make the final output
different. Besides, every application in this pipeline is trained on a special data-set which
can be different from the target set of the final task. This can be problematic especially
for some high-level tasks. For example, the labeled training set used to train syntactic

11

Chapter 2. State-of-the-Art 12

parsers is set up using the result of special tokenization and sentence splitting approaches.
Hence, to build the most effective event extraction methods, one must take care of using
the best performing combination of preprocessing approaches. We present in the rest
of this section our conclusions with a focus on tokenization and parsing. Since our
major goal is to develop biomedical event extraction models, we did not develop original
preprocessing strategies. We list here all the methods used in reported approaches along
with their performances.

2.2.1 Tokenization and Sentence Splitting

Tokenization is the process of breaking a stream of text up into words, phrases, symbols,
or other meaningful elements called tokens. Those tokens are used as input for further
processing such as tagging, chunking, parsing, etc. In English, words are separated by
white-spaces and punctuations, so that a simple heuristic can handle most situations by
defining tokens as continuous alphabetic characters or numbers. Apart from the general
case, contractions like “can’t” or hyphenated words like “New York-based” cannot be well
processed by such simple heuristics. It is similar for sentence splitting. Sentences are
usually split by some special symbols like periods, interrogations and exclamatory marks.
Some exceptions can be the periods between names like “A. Bordes”, between special
terms such as “Dr.”, “U.S.”, and in numbers “.02%”. In general, tokenization and sentence
splitting is not very complex, thus most tokenization and sentence splitting applications
are rule based approaches. However, when processing texts from specific domains, efforts
from experts are usually required to improve these rule based approaches to handle such
exceptions.

2.2.1.1 Difficulties in Biomedical Documents

As described above, even for languages that use inter-word spaces (such as most that use
Latin alphabet), there are many exceptions that cannot be well solved by heuristics like
regular pattern expressions. This problem becomes even more serious in biomedical texts
because of the biomedical or chemical formulas and jargons. Strings like “CD19+CD27-”,
“30-38 kDa”, “[6,7]”, “p<=0”, “PKD1/3-/-” are very confusing not only for tokenizers but
for other NLP applications like tagging or syntactic parsing. Dealing with compound
words is crucial for good performance since they are used very frequently in biomedical
documents.

Tokenization Hyphenated words and parallel items separated by slashes are the
most problematic cases for tokenization. Hyphenated words can be divided into three
categories: first, compound words that contain only normal words like “immunobead-
isolated”, “dose-dependent”; second, complex biomedical terms like “BMP-RII-Fc”, “BMP-
RIB”; third, mix of biomedical terms and normal words/prefix/suffix like “anti-IgM”,
“IRF-4-expression”. We define “normal words” as the non-hyphenated words that are not
biomedical acronyms or identities of chemical materials. Except pure biomedical terms,
the first and third categories of words need special attention. In training examples,
some event triggers are just parts of hyphenated words such as “expression” in “IRF-4-
expression”. Recognizing these triggers is very difficult if one does not split them during
the tokenization. Besides, compound words increase the sparsity of feature vectors be-
cause current encoding methods cannot represent the relations between compound words

Chapter 2. State-of-the-Art 13

and their sub-words. However, not all the hyphenated words are suitable for breaking in-
cluding some commonly used words and some biomedical terminologies. Simply splitting
all the hyphenated words can make ambiguous tokens and change the sentence structure.
Separating parallel items by slashes creates difficulties both for low-level processing and
high-level understanding. During processing, it is not easy to distinguish whether slashes
are used to separate parallel items or special symbols like fraction signs or other symbols
in biomedical articles. For syntactic processing, the necessity of splitting parallel items
is also arguable when people omit some common parts of items. For example, one can
write “IL-1/2/3” or “IL-1/-2/-3” instead of “IL-1/IL-2/IL-3” for short. Moreover, slashes
are ambiguously used as “and”/“or” in different context.

Sentence Splitting Sentence splitting of biomedical text is easier than tokeniza-
tion thanks to good typesettings, which strictly use new line or periods followed by
white-space at the end of sentences. The only mis-broken sentences are those containing
authors’ names in references. Look at the example sentence below.
Previously we have shown that PKDs have an essential role in regulating class II his-
tone deacetylases in DT40 B-cells [Matthews, S.A., Liu, P., Spitaler, M., Olson, E.N.,
McKinsey, T.A., Cantrell, D.A. and Scharenberg, A.M. (2006) Essential role for protein
kinase D family kinases in the regulation of class II histone deacetylases in B lympho-
cytes. Mol. Cell Biol. 26, 1569-1577].
Many periods exist in the names of authors and volume information and the entire titles
of cited articles, which are also sentences, are included in references. This is an extreme
example that, no matter whether this sentence is correctly split or not, will confuse a
syntactic parser. Generally, references in our target corpus insert the author’s name,
abbreviation of department, addresses, etc. at the end of sentences. Besides, some ab-
breviations of domain specific terms also contain periods like the author’s name, such as
E. Coli, which refers to the bacteria escherichia coli. Breaking sentence at those kinds
of periods should not hurt BioNLP event extraction models since there is no example of
event in references appearing in the training set.

2.2.1.2 Implementations

This section summarizes the tokenizations commonly used in BioNLP event extraction
tasks: support tokenization, which is provided by the task organizers; Stanford tokeniza-
tion, which is generated by the Stanford tokenizers specially developed for this task;
GDep tokenization, which is integrated in the Genia Dependency parser (GDep) parser.

• Support tokenization is the resource provided by the task organizers, which aims to
prevent the participants from putting too much efforts on the low-level tasks. It is
generated by the script GTB-tokenize.pl1 that attempts to mimic the tokenization used
by the Genia Treebank. Genia Treebank2 is a biomedical corpus used for syntactic
parsing tasks that contains 200 documents and 300 abstracts. This tokenization preserves
the hyphenated words, making the sentences more compact and easier to read by humans,
because humans can easily decode the inner structure of compound words or parallel
items concatenated by slashes, and a shorter sentence is always clearer and easier to

1https://github.com/ninjin/bionlp_st_2011_supporting/blob/master/tools/GTB-tokenize.
pl

2http://www.nactem.ac.uk/tsujii/GENIA/topics/Corpus/GTB.html

https://github.com/ninjin/bionlp_st_2011_supporting/blob/master/tools/GTB-tokenize.pl
https://github.com/ninjin/bionlp_st_2011_supporting/blob/master/tools/GTB-tokenize.pl
http://www.nactem.ac.uk/tsujii/GENIA/topics/Corpus/GTB.html

Chapter 2. State-of-the-Art 14

understand. That is also easier to parse by syntactic parsers when hyphens and slashes
are not broken as syntactic parsers not aware of the semantic meanings of words. Thus,
support tokenization does not apply any task-specific word breaking strategy, so that
hyphens and slashes are never separated.

• Stanford tokenizer is developed by Mcclosky as an integrated part in his BioNLP parser
[17]. This tokenizer is specially designed to handle the BioNLP event extraction tasks.
Thus, it breaks specified hyphenated words by handcrafted heuristics that use specified
suffixes and prefixes such as “-dependent”, “-defective”, “-negative”, “anti-”, etc. Besides,
all the words connected by slashes are separated except some predefined exceptions like
“-/-”. To the best of our knowledge, this tokenizer was used by UCLEED, TEES and
TEES 2.1 [18–25] systems. The success of this tokenization is mainly because splitting
into fine-grained tokens increases the chances of recognizing potential triggers and rela-
tions between parallel items concatenated by slashes. However, this tokenization cannot
handle new compound words, which are not in the predefined lexicon. It also has some
drawbacks. Consider the tokenized sentence below:

Each bar represents mean+ / - SEM of at least three independent experiments.

In this sentence, “mean+/-SEM” is split into four tokens “mean+”, “/”, “-”, “SEM” by
this tokenizer.

• GDep is a dependency parser for biomedical text developed by Kenji, which is freely
available from people.ict.usc.edu/∼sagae/parser/gdep/. This parser contains a simple
tokenizer that splits tokens when encountering a set of specified symbols and words. As
the Genia Treebank tokenizer, it does not contain any specific solution for hyphenated
words, slashes or biomedical jargons. Unlike support data and Stanford parser, which
contain both tokenization and sentence splitting solutions, GDep parser requires to split
sentences beforehand.

Tokenization is used to extract the minimum semantic units for many NLP tasks. How-
ever, different tasks have their specific requirements for the minimum semantic units.

Thrombin)induced.p65.homodimer.binding.to.dowstream.NF)kappa.B.site.of.the.promoter.mediates..

.

endothelia.ICAM)1.expression.and.neutrophil.adhesion...

Binding.
PosiEve_regulaEon. Theme�Cause�

Gene_expression.

PosiEve_regulaEon.
Cause�

Theme�

Figure 2.1: Trigger and argument in one token.

The event trigger “induced” and its argument “Thrombin” displayed in Figure 2.1 are
different parts of a noun phrase “Thrombin-induced” , which means that the minimal
semantic unit considered for BioNLP Genia event extraction should be smaller. Support
tokenization and GDep do not apply any task specific tokenization strategy, thus are less
powerful in this task. Stanford tokenization, which applies some task specific tokenization
rules, was used by the best models UCLEED, TEES, etc. Hence, we believe that Stanford
tokenization is the best among other solutions. Moreover, considering the drawbacks of
the Stanford tokenizer, a better tokenizer should integrate domain knowledge to be more
precise.

http://people.ict.usc.edu/~sagae/parser/gdep/

Chapter 2. State-of-the-Art 15

S1

S

S

NP

NP

ADJP

NN

Activation

JJ

dependent

JJ

transcriptional

NN

regulation

PP

IN

of

NP

DT

the

JJ

human

NN

Fas

NN

promoter

VP

VBZ

requires

NP

NN

NF-kappaB

NN

p50-p65

NN

recruitment

.

.

Figure 2.2: Example of phrase structure tree in Penn Treebank format.

2.2.2 Syntactic Grammars

Human languages organize sentences following some common paradigms, which are re-
ferred to by linguists as grammars. In computational linguistics, these grammars help
computers to organize the sequence of tokens in a sentence into more informative struc-
tures. Two kinds of widely used grammars are phrase structure grammars and depen-
dency grammars: phrase structure grammars view the sentence in terms of the con-
stituency relations, whereas dependency grammars represent sentence in terms of pred-
icates and their arguments (the dependency relations). These grammars are imperfect
and there are always exceptions that cannot be well handled by them in practical NLP
tasks. However, they provide features which are essential to all state-of-the-art systems
for biomedical event extraction.

2.2.2.1 Phrase Structure Grammar

In linguistics, phrase structure grammars are based on the constituency relations. Hence,
phrase structure grammars are also known as constituency grammars. The constituency
relation derives from the subject-predicate division of grammars, of which basic clause
structure is subject (noun phrase NP) and predicate (verb phrase VP). A widely used
format of phrase structure grammar is the Penn Treebank (PTB) format, which defined
series of part-of-speech for both tokens and sub-phrases. Note that part-of-speech (POS)
is a linguistic category of words, which is generally defined by the syntactic or morpho-
logical behaviors of the lexical item in sentence, such as noun, verb, adjective. Table A.1
in appendix lists all the POS tags used in PTB project. Figure 2.2 presents an example
of phrase structure tree generated by Mcclosky’s biomedical syntactic parser for sentence
Activation dependent transcriptional regulation of the human Fas promoter requires NF-
kappaB p50-p65 recruitment. In phrase structure grammar, each token is connected to
one or more nodes in the grammar tree. This kind of grammars is usually not directly
used in BioNLP event extraction tasks, because it does not directly describe the rela-
tions between tokens. However, Stanford NLP package provides methods to convert the
phrase structure grammar into dependency grammar and some of dependency grammars
were generated based on the phrase structure grammar.

Chapter 2. State-of-the-Art 16

(a) Basic dependencies

(b) Collapsed and propagated dependencies

Figure 2.3: Stanford dependency parse graphs.

2.2.2.2 Dependency Grammar

Unlike phrase structure grammars, that concentrate on subject-predicate relations, de-
pendency grammars focus on predicate-argument relations. There is a one-to-one corre-
spondence: each token in a sentence corresponds to just one node in the syntactic struc-
ture. Many methods are proposed to represent dependencies, which can be trees, directed
acyclic graphs or other formats. Figure 2.3a illustrates a visualization of dependency
graphs in the Stanford dependency format that correspond to the example sentence of
phrase structure of previous section. The dependency grammars are usually used in event
extraction because they directly describe the relations between tokens. However, since
it can be redundant to describe all relations with prepositions like “of”, Stanford parser
proposed a way to collapse and propagate the dependencies as shown in Figure 2.3b to
make the dependency graph more compact. Unfortunately, dependency grammars cannot
handle relation between “activation” and “dependent” appropirately. In this sentence,
“regulation” is modified by two independent modifiers: “activation dependent” and
“transcriptional”. But the dependency path between “activation” and “dependent”
is the same than the path between “activation” and “transcriptional”, which means
one cannot realize whether “activation” and “dependent” form an adjective phrase.

As described above, there are many representation methods of dependencies. We intro-
duce two widely used formats: CoNLL format proposed by the Conference of Natural
Language Learning 2006, and Stanford format proposed by Stanford NLP Group. For
every token, CoNLL format specifies 10 attributes listed in Appendix Table A.2, which
index each token and specify its POS and index of its dependency head. It is the most
widely used dependency format and represents a dependency tree, where each token can
only have one head. Unlike CoNLL format, Stanford format lists pairwise relations be-
tween indexed tokens in every line. This format can be used to represent any graph, so
that one token can have multiple heads. Unlike CoNLL format, Stanford format does
not give the POS of tokens. This format is used in projects supported by Stanford
NLP group, and is the most frequently used format in applications that participated in
BioNLP 2011 event extraction tasks [26].

2.2.3 Frequently Used Parsers

In this section, we describe the parsers used in previous works that participated in
BioNLP Genia tasks.

Chapter 2. State-of-the-Art 17

2.2.3.1 Stanford Series

Stanford parsers provide both phrase structure tree and dependency graph. Two ver-
sions were used in previous BioNLP challenges: standard Stanford parser and biomedical
specified parser provided by McClosky. The Standard Stanford parser is trained on gen-
eral text and provides both phrase structure in PTB format and dependency graph in
Stanford dependency format. McClosky-Charniak parser is trained on Genia Treebank
corpus and provides only phrase structure in PTB format. McClosky-Charniak parser
is widely used in many approaches (10 out of 16 participants in BioNLP 2011 Genia
task) including the best pipeline model TEES and the best joint model UCLEED. How-
ever, they always used this parser with a task specified tokenization, which is different
from the tokenization contained in the Genia Treebank. McClosky claimed 3 that this
combination of tokenization and parser gave better performance in BioNLP event ex-
traction tasks. However, we cannot assess the quality of parsing itself on BioNLP data,
since no labeled data for parsing is provided for evaluation. The better performance in
event extraction cannot be directly connected to the parser quality. We conjecture that
the better performance can be caused by a fine-grained tokenization bringing essential
information for extracting triggers in hyphenated words.

2.2.3.2 Other Parsers

Apart from Stanford related parsers, many other syntactic parsers were used in previous
work. We list below the support resources provided in BioNLP tasks. Most of them were
trained on the Genia Treebank corpus.

• Enju parser [27] provides both phrase structures and dependency parsing results. This
parser defines its own specified PTB-like format and predicate-argument structure. It
also gives CoNLL format outputs.

• GDep parser [28] does not provide phrase structures but dependency parse trees in
CoNLL format.

• CCG parser provides phrase structures in PTB format and dependency parse graphs
in Stanford format.

Note that Enju parser returns very good parsing results, [29, 30] used it along with the
McClosky-Charniak parser while Kim et al. [31] used only Enju parser. Berkeley parser,
which was trained on general text and only provides phrase structures in PTB format,
was not used in any participant’s system to the best of our knowledge.

2.3 Dedicated Feature Engineering

Based on our choice of preprocessing, we developed many features. Unlike acoustic or
visual data, texts and parsing results are symbolic but not numeric. A common way of

3This was appearing on the web link http://nlp.stanford.edu/software/eventparser.shtml. Dis-
appeared in or before June 2014

http://nlp.stanford.edu/software/eventparser.shtml

Chapter 2. State-of-the-Art 18

Table 2.1: Features used by our system

Base form (stem) of the head token.
Base form of the head token without ’-’ or ’/’ before of after.
Sub-string after ’-’ in the head token.
POS of the head token.
First token of the entity is after ’-’ or ’/’.
Last token of the entity is before ’-’ or ’/’.
Head token has a special prefix: "over", "up", "down", "co"

Candidate Concat. of base form and POS of parents
entity of the head token in dependency parse.
features Concat. of base form and POS of children of the head token in dependency parse.

Base forms of k neighboring tokens around the entity.
POS of k neighboring tokens around the entity.
Neighborhood of the entity has ’-’ or ’/’.
Sentence has "mRNA".
Entity is connected with another string using support tokenization.
POS of the head token.
Features extracted from IntAct when the argument is a protein.

Argument Base forms of k neighboring tokens
features around the argument.

POS of k neighboring tokens around the argument.
Concat. of base form and POS of children of the head token in dependency parse.
Token sequence between candidate and argument has proteins.
V-walk features between candidate and argument with base forms.

Joint E-walk features between candidate and
features argument with base forms.

V-walk features between candidate and argument with POS.
E-walk features between candidate and argument with POS.
Candidate and the argument share a token using support tokenization.
Feature extracted from IntAct when two arguments are both proteins.

representing symbols is by encoding them by dictionaries, where each symbol is repre-
sented by its index in a dictionary. Since indices are independent of the significations
of the symbols, current models do not use any semantics underlying the symbolic sys-
tem. Consequently, most of NLP applications require handcrafted heuristics to acquire
useful features. In this section, we introduce the most commonly used features in event
extraction. To be consistent with our models presented in the following chapters, we
arrange these features into three groups: unitary features, pairwise features and global
features. As illustration of features one can use for biomedical event extraction, we list
in Table 2.1 the actual features we used in our system.

2.3.1 Unitary Features

The target entry of an event is not necessarily a single token, especially under different
tokenizations. Hence, we define an entity as a continuous character chain, which can be
a part of a token, a token, multiple tokens, such as “anti-” in “anti-IgM”, “comparable
level”. Unitary features are created to describe the properties of target entities. There
are two categories of unitary features: features of target entities and features of context.

Chapter 2. State-of-the-Art 19

Many of these features are based on outcomes of preprocessing steps, which correspond
to a certain tokenization. When an entity covers more than one token, most approaches
implement features based on the most representative token of the entity. These tokens
are found by handcrafted heuristics and are called head tokens. For short entities that are
usually a part of token, someone used fine-grained tokenizations to avoid the existence
of small entities inside words. Besides, some morphological features were developed to
describe these small entities when they are not isolated even by fine-grained tokenizations.

2.3.1.1 Features of Target Entities

Target entities are described using morphology and POS features. Due to the morpho-
logical changes in English, one word can have many variations such as “regulated” and
“regulates”, which are not interconnected by models that use dictionaries directly. In
addition, compound words like “upregulated” cannot be associated with neither “up” nor
“regulate”. Thus, most methods use stemmed words, lemma of words, prefixes, suffixes
of words as features, hoping that models can discover the associations between related
words this way.

The stem of a word is the part of the word that is common to all its inflected variants.
For example, “standard” is the stem of “standardize”, “stabil-” is the stem of “destabilize”.
However, current word stemmers only deal with the suffixes but not the prefixes of words.
They apply a set of morphological rules to recognize and cut specified suffixes of words.

The lemma of a word is the common dictionary form of a set of words. The difference
between a lemma and a stem is that a lemma is a word itself while stem is the root form,
which is not necessarily a word. Given two words “regulations” and “regulated”, they
share the same stem “regul”, but have different lemmas “regulation” and “regulate”. It is
clear that stem and lemma map different forms of words into a general term to increase
the generalizability. However, neither of them deal with the prefix and sometimes the
discarded suffixes can also provide useful information.

To overcome the weakness of stems and/or lemmas, the first and last n characters are
also usually used to describe the prefix and suffix, where n is specified by the system.
Another way of describing suffixes or prefixes is to detect some specified forms such
as “up”, “down”, “over”, “co”, etc. In biomedical text, hyphens are very important as a
specific prefix or suffix in the cases like “positive- or negative- A”, “B -regulation”.

Compared to morphologic features, POS features are much simple, since the POS of the
head tokens for target entities is simply used.

2.3.1.2 Features of Context

A word or an entity may have different significations under different contexts. It is im-
possible for models to make correct predictions without context information. A straight-
forward method is to take the neighboring tokens of target entities into account. Two
methods were proposed by using different definitions of neighboring tokens.

Chapter 2. State-of-the-Art 20

Word Window Given a sentence, which is a sequence of tokens, neighboring tokens
can be naturally defined as the tokens before or after the target entities (or the head
tokens of entities). Involving neighboring tokens is actually observing the local context
centered around the target entity with a window. The number of neighboring tokens is
called window size. Though all the unitary features based on tokens can be used for the
neighboring tokens, stemmed word and POS are the most commonly used. Due to the
flexibility of natural language, the informative neighboring tokens are not always in the
window range or at the same relative position.

Dependency Adjacent Nodes Given a target entity, which is represented by a head
token, one can find its adjacent nodes in the dependency tree/graph. A target entity
can be a candidate trigger entity or protein entity in the BioNLP event extraction tasks.
Since dependency grammars encode the direct interactions between tokens, heads and
modifiers of head token provide crucial information for disambiguation of neutral words.
These dependency relations are encoded in a bag of pairs. For the token “regulation” in
Figure 2.3b, {(nn, Activation), (amod, dependent), (amod, transcriptional), (prep_of,
promoter), (requires, nsubj)} are used as features. Tokens in those pairs are usually
replaced by the stem of words or POS. Looking the adjacent nodes as parents and
children nodes, one can also add ancestors and descendants with a specified depth as
features.

2.3.2 Pairwise Features

In structured information extraction, a pairwise relation is the basic relation because
more complex structures can be represented by sets of pairs. Usual approaches either
construct complex structures either by greedily aggregating pairs step by step or by
searching the structure that maximizes a global score defined as sum of unitary elements
and pairwise relations. Pairwise features are the crucial features in all the structured
information extraction tasks.

2.3.2.1 Dependency Path

Most pairwise features are based on the shortest dependency path. For two tokens,
the shortest dependency path is the shortest path between corresponding nodes in a
dependency parse tree/graph. In the rest of this thesis, we call it dependency path for
short. Figure 2.4 illustrates the dependency path between the trigger word “regulation”
and the protein “Fas”. It is clear that collapsed and propagated dependency graphs
provide shorter dependency paths that are easier to understand. Thus, collapsed and
propagated dependency graphs are used in almost all the approaches that used Stanford
related parsers. Besides, trimming is a very useful technique used in previous works
including both symbolic approaches by Buyko et al. [32] and statistical ones by Riedel
and McCallum [20]. It is usually a task specific solution that removes some pointless
edges using handcrafted rules to generate shorter essential dependency paths. These two
solutions play a similar role in NLP applications, that is to produce shorter dependency
paths for high-level processing, and are frequently used together. We noticed that, the
dependency graph of a sentence is not necessarily a connected graph, because, sometimes,
the dependency path between two tokens does not exist.

Chapter 2. State-of-the-Art 21

(a) Shortest dependency path in basic dependencies

(b) Shortest dependency path in collapsed and propagated dependencies

Figure 2.4: Shortest dependency path

regula'on� promoter� Fas�promoter�

prep_of� nn�

regula'on�

prep_of�START�

promoter�

prep_of� nn�

Fas�

nn� END�

V9walks�

E9walks�

Figure 2.5: E-walks and V-walks features derived from a dependency path.

2.3.2.2 Encoding Methods

A dependency path is a variable length sequence, which cannot be directly used as
features in usual NLP models. Following the N-grams encoding methods, which is widely
used in NLP applications, previous methods represent the dependency paths by bags of
N-grams in the sequence. We summarize the encoding methods into two categories: the
first methods represent the dependency paths by trigrams including both dependency
tags and tokens; the second methods represent the dependency path by n-grams involving
either only tokens or dependency tags.

E/V-walk In the first kind of methods, the dependency path is treated as a sequence
constituted by staggered edge nodes and vertex nodes. This sequence can be represented
by trigrams of nodes. These trigrams can be defined in two ways: trigrams containing two
vertex nodes are called V-walk , whereas trigrams containing two edge nodes are called
E-walk . Figure 2.5 shows the E-walk and V-walk for the dependency path mentioned
earlier. The START and END special edge nodes are used when there is only one
edge in the dependency path. Those triplets are further encoded into tuples (dep-tag,
token, dep-tag) for E-walk; and (token, dep-tag, token) for V-walk. After replacing the

Chapter 2. State-of-the-Art 22

tokens by stemmed words or POS, those triplets are transformed into joint symbols “dep-
tag-stem-dep-tag”, “dep-tag-POS -dep-tag” for E-walk; and “stem-dep-tag-stem”, “POS -
dep-tag-POS ” for V-walk. In BioNLP tasks, the tokens are usually replaced by an
indicator PROT when it is annotated as part of a protein like “promot->-NN->-PROT”,
where the arrows indicate the direction of dependency edges. In order to increase the
generalizability of features, the UCLEED model [20] creates new features by masking
one of the three elements in trigrams by a specified symbol. For example, “{regul -
-promot, regul ->-PREP_of->-, **->-PREP_of->-promot}” can be created from
“regul ->-PREP_of->-promot”.

N-Grams The second kind of methods only considers one type of nodes in dependency
path and formats them into bag of n-grams, where n is a hyper-parameter of the system.
In order to avoid duplication with E/V-walk , n is usually larger than 2. For example,
“START ->-PREP_OF ->-NN ” is a trigram of dependency edge nodes. Similar to the
E/V-walk , tokens are replaced by the POS or stem of words and proteins are replaced
by a specified indicator in the n-grams of vertex nodes.

2.3.3 Other Features

All the features listed above are domain independent, and can be used in any type
of structured information extraction tasks. Even if participants may slightly modify
the implementation details for special tasks, these features basically follow standard
principles. Apart from these features, some highly task dependent features also are
implemented. For example, one can add an indicator of the presence of key word “mRNA”
in the sentence to help distinguishing the Transcription from the Gene_expression. This
feature actually improves the performance, but is not logically reasonable because the key
word “mRNA” does not necessarily modify the candidate trigger. We used the indicator
of “mRNA” in our systems.

2.4 Previous Work

In this section, we introduce the approaches developed to solve the BioNLP Genia tasks in
BioNLP challenges 2009, 2011 and 2013. We divide them into three categories: pipeline
models, joint models and pairwise models. Since the events can be naturally represented
by graphs, previous works extract the events as predicting nodes and edges. The main
difference between them is the order of extraction. Pipeline models follow a process of
nodes detection, edges detection and graph construction. Joint models solve all together
and pairwise models consist in edges detection and graph construction. All the models
only solve events where triggers and arguments are in the same sentence since cross-
sentence events are too hard to extract and appear rarely. Björne et al. [23] report that
only 4.8% of events in the gold annotation of BioNLP 2009 Genia task cross sentence
boundaries.

Chapter 2. State-of-the-Art 23

2.4.1 Pipeline Models

Pipeline models build complex events step by step, where each step solves a sub-problem
based on the outcome of preceding ones. During the creation of complex events, the
outcome of preceding steps can be either used or discarded by succeeding steps. Besides,
succeeding steps always observe more global information than preceding ones. Thus, a
pipeline can be seen as a process, where each step builds more complex structures and
narrows the sample range with richer information under more constraints. It is the largest
category of approaches for BioNLP and has many variations in past studies. We introduce
this category of approaches in two times: general architecture and implementation.

2.4.1.1 General Architecture

Pipeline models generally follow a general architecture that contains three steps:

1. Trigger Detection. This step extracts the triggers with special event types regard-
less of their potential arguments or other constraints. In some implementations
[33–37], this step can be refined into two sub-steps: candidate entity generation
and trigger type assignment, where the first sub-step filters the irrelevant tokens
to decrease the sample size.

2. Edge Detection. Given extracted triggers, one can construct the edges between
these triggers and their arguments (proteins). Extracted triggers with no arguments
predicted in this step are removed but other constraints are ignored such as the
fact that triggers can only be arguments when they correspond to a valid event.

3. Post-processing. Based on the extracted pairs, post-processing constructs multi-
argument events using either a rule based method or classifiers such as SVM. Edges
are removed when they violate any constraint defined by the tasks.

TEES systems [23–25, 38] are typical examples of pipeline models that follow this archi-
tecture. However, there are some pipeline models that slightly differ from this architec-
ture. A notable exception is Li et al. [39] that added a second trigger detection and edge
detection after the first edge detection step.

2.4.1.2 Diverse Implementations

Many approaches have been proposed as pipeline models, using different methods includ-
ing rule-based method and statistical learning at each step. We describe some typical
methods used in previous approaches below.

Trigger Detection The trigger detection step aims at extracting triggers with their
corresponding types. In task definition, triggers are entities that can contain multiple
tokens, and named entity recognition is a natural choice for solving this problem such
as in [40–42]. Some other works [23, 24, 34, 43, 44] only considered single-token triggers
because more than 90% of triggers contain only one token. But this kind of work usually
wisely chooses the head token instead of all the tokens in entity during training to reduce

Chapter 2. State-of-the-Art 24

the noise and fuse the consecutive tokens into entities using some handcrafted rules. As
one of the official evaluation method of BioNLP, approximate span, counts as correct
predictions that match only a part of a trigger, correctly matching a token is enough to
tackle the problem in this case.

The trigger detection step may contain two sub-steps depending on the implementation.
This kind of models adds a candidate trigger generation step before assigning trigger
types to tokens in order to decrease the size of the set of candidate examples. In this
case, the candidate trigger generation step usually contains some simple filtering methods
whereas trigger type assignment contains a features based multi-class classifier (SVM,
etc.). Vlachos and Craven [35] and R. McGrath et al. [36] filter the tokens with regard
to the POS, where only nouns, verbs, adjectives, adverbs and prepositions are taken
into account. Emadzadeh et al. [37] select the tokens matched by a dictionary generated
given the gold annotations of training data. Lee et al. [33] and Kilicoglu and Bergler
[34] applied both dictionary and POS in their models along with some handcrafted rules.
Note that dictionary based methods always contain some morphological solutions like
stemming, part string match to improve generalization.

Unlike two-step methods, which differ on filtering strategies, one step methods differ on
classification strategies. We classify the methods into dictionary-based methods, rules-
based methods, named entity recognition methods, multi-class classification methods and
methods that are mixture of them. Triggers are detected with dictionaries created on
training data in [32, 44–47], where trigger types are disambiguated by the frequencies.
Buyko et al. [32] measure the importance of a trigger ti for event type T by Imp =
f(tTi)∑
i′ f(t

T
i′)
, where f(tTi) refers to the frequency of trigger ti appears in type T . Bui et al.

[47] measure the importance of a trigger in similar way but replacing the total frequency of
all the triggers in type T by the total frequency of trigger ti in training set. In addition,
they also filter tokens with respect to the POS, which only involve nouns, verbs and
adjectives. Le Minh et al. [43] combine rule-based and dictionary-based approaches by
handcrafted patterns, for instance, NN/NNS + of + PROTEIN, VBN + PROTEIN,
where NN/NNS and VBN are POS tags. All the POS tags can be found in Table A.1.
All the approaches described above for one step methods only consider single-token
triggers; multi-token triggers are solved by named entity recognition approaches such
as conditional random field (CRF), maximum entropy Markov model in [40–42]. Other
works [23, 24, 30] use multi-class classifiers (SVM, maximum entropy model) to classify
the tokens into a valid trigger class or a None class. Moreover, MacKinlay et al. [41]
merge the results of dictionary-based method and a CRF model.

Edge Detection Even if edge detection uses the outcome of trigger detection as
input, there are not as much variations as for trigger detection. Edges are detected
by handcrafted rules [40, 41, 45, 48] or by models learned from training set such as
[19, 23]. In BioNLP tasks, all approaches using handcrafted rules perform poorly on
the official test. Learning models can be divided into three categories: feature-based
classifiers, rule learning system and mixture. The BioSEM [47] system, which achieves
the best performance on Binding event prediction in BioNLP 2013 Genia task, is the
most successful rule-based system that we known of in BioNLP Genia task. It learns
the rules in predefined patterns by observing some features from a training data-set: the
distances and prepositions between entities, POS of trigger, pattern related frequency fea-
tures. One advantage of this model is that it detects both pairwise edges and triplets for
multi-argument events on extracted triggers. Jointly extracting multi-argument events is

Chapter 2. State-of-the-Art 25

probably the main reason of its good performance on Binding events. We recall that the
Binding events mostly involve two argument proteins. In addition, this model does not
need any post-processing step. Apart from the rule-based models, most previous works
apply a multi-class classifier to solve the edge detection problem. Two types of classifiers
are often used: SVMs and maximum entropy models. We note that Buyko et al. [32]
tried both maximum entropy with common features and SVMs with graph kernel.

Besides the classification models, previous studies are also different on the way they treat
different classes.

Edges are extracted recursively in [34, 35, 42] to solve the recursive events: they enforce
the constraint that triggers acting as arguments must have an argument. Other methods
predict all the possible pairs regardless of this constraint.

Post-Processing The post-processing completes the event construction based on the
pairs extracted by preceding steps. Since the edges of single-argument events directly
solve the extraction problem, post-processing step actually deals with the recursive events
and multi-argument events. Given extracted pairs, constructing recursive events only
requires a simple rule-based approach. The real difficulty is creating multi-argument
events. Buyko et al. [32] simply create all the possible combinations that do not violate
a set of predefined constraints. For example, given a Regulation trigger with two theme
arguments and two cause arguments, they will create four events corresponding to all
combinations between theme and cause. MacKinlay et al. [41] apply similar strategies
along with selected thresholds to eliminate events, when distances between two arguments
are too long. Another way is to use a classifier trained by machine learning methods,
usually an SVM [23, 24, 49], to determine the validity of merging two arguments into an
event. Miwa et al. [50] considered both edges inside and outside of the events under the
machine learning framework.

2.4.2 Joint Models

Joint models solve the structured information extraction in one step. As the sentences
and events can be both represented by graphs, joint models solve the problem by graph
matching or inference algorithms that search for event graphs that globally correspond
best to input sentences.

2.4.2.1 Markov Random Fields

Three models [18–20] are proposed to solve the BioNLP Genia task by inferring the best
event graphs from sentences. Considering a sentence as a graph where the tokens are
nodes, extracting events requires searching the best states for each node and for the most
probable connections between them using a global score defined by a Markov Random
Field. As the number of possible graphs for a long sentence is very large, inference
algorithms try to find the target graph by propagating the states of nodes and edges
under constraints.

The UCLEED model [20], which won the BioNLP 2011 challenge, is the best joint model
reported so far. In order to decrease the computational cost, this model uses a dictionary

Chapter 2. State-of-the-Art 26

to generate a set of potential candidate tokens that will be observed in a sentence. A
dictionary is generated from gold annotations, in which one stored sequences of tokens
encoding entities together with their sub-tokens. They also stem the last token in entities
and manually eliminate some stop words. UCLEED model represents a sentence by a
graph G = {ei,ai,j} where ei describes the state of token i and ai,j describes the state of
edge between tokens i and j. The appropriateness of the graph can be measured by a score
s(e,a) =

∑
ei,t=1 ST (i, t) +

∑
ei,j,r=1 SR(i, j, r) +

∑
bp,q=1 SB(p, q) where ST (i, t) is a per-

trigger scoring function that measures how well the event label t fits to token i, SR(i, j, r)
measures the compatibility of role r as label for the edge i → j, SB(p, q) measures
the compatibility of the protein pairs involved in multi-argument Binding events. For
recursive events, where events act as arguments of other events, the scoring function is
modified with constraints that form an Integer Linear Program, which is solved by dual
decomposition.

2.4.2.2 Pattern Matching

Another category of joint models is based on pattern matching that try to recognize a
whole event as a symbolic pattern. Hakenberg et al. [51] format the preprocessed texts
into database queries and retrieve the single-argument events by subsequently querying
the database. MacKinlay et al. [52] and Liu et al. [53] extract events by matching sub-
graphs on the dependency parse graph. Compared to the Markov Random Field model,
pattern matching models do not achieve a remarkable performance.

2.4.3 Pairwise Models

As a trade-off between pipeline and joint models, [54–56] extract the (trigger,argument)
pairs directly. They can be seen as special pipeline models that choose a different starting
point, that is, edge detection instead of trigger detection. TEES and UCLEED models
listed in previous two sections are the best pipeline and joint models. UCLEED model
has better performance but a larger computational cost than TEES, which shown that
considering globally is more complex but more accurate. The performance and time
consumption of a pairwise strategy should be between joint and pipeline models. Unfor-
tunately, the performances of all pairwise models listed above are significantly below the
best performing method in the BioNLP2009 challenge.

Van Landeghem et al. [54] emphasize the precision while tuning the parameters of classi-
fiers with respect to the F1-score. They determine the class of a trigger in two steps: first,
they used dictionaries to create the candidate triggers along with the possible classes in
parallel; second, they assign the event class with highest SVM score to the trigger at the
end of event extraction. Single-argument events and multi-argument events are treated
as different classes and the event extraction process is run two times to extract the re-
cursive events. Móra et al. [55] use a handcrafted dictionary to generate the candidate
triggers before pairwise detection. Using a dictionary to filter irrelevant words is an effec-
tive way to decrease the computational cost, but their handcrafted dictionary only cover
69.8% of the triggers, which may be a reason of their poor performance. They merged a
C4.5 model and a handcrafted system to extract the pairs, and they defined very metic-
ulous classes for the pairs, which contain true triggers but false arguments. Moreover,
they only deal with (trigger,protein) pairs. Ozgur and Radev [56] extracted pairs for

Chapter 2. State-of-the-Art 27

SVT, BIND, REG events separately by feature-based classifiers. However, they did
not mention the details of the construction of multi-argument events and recursive events
in their short paper. Apart from implementation issues, such as inefficient dictionaries
and classifiers, the main problem of previous pairwise models is that none provides an
effective way to solve the recursive events and multi-argument events.

2.5 Summary

In this chapter, we introduced the previous approaches used to solve the BioNLP Genia
task. We described each step of the preprocessing pipeline because of the dependency
between low-level and high-level NLP tasks, which are both required to solving the final
problem. Previous works proved the importance of preprocessing methods and proposed
successful solutions that achieve good performance. The best preprocessing solutions,
which were used by most of participants, are highly task specified.

After preprocessing methods, we presented the main models for BioNLP that can be
divided into three categories: joint models, pipeline models and pairwise models. Joint
models consider all possible relations together and thus have a very high computing com-
plexity but are very strong to capture global information. One of such models UCLEED
achieves the best performance to the best of our knowledge. Pipeline models construct
complex events using several steps, where each step successively build complex struc-
tures from simpler ones. Therefore, pipeline models have much lower complexity but
will remove many potential candidates at the steps without global information. Pairwise
models are trade-offs between joint and pipeline models; they create pairs instead of
complex structure or fine-grained triggers. We suppose that this kind of model should
perform better than pipeline models but worse than joint models. However, previous
pairwise models are not well developed and actually obtain very bad performance. We
present a well designed pairwise model in this thesis.

Apart from the problem modelization, previous works used different kinds of algorithms.
Generally speaking, learning algorithms are better than the handcrafted rule-based sys-
tems. Comparing statistical learning methods and systems that learn rules from training
sets, statistical learning methods outperform the rule-based systems except BioSEM that
performed best on Binding event extraction. One reason of this situation is that symbolic
rules are not powerful enough to capture the flexible and ambiguous natural language.
Abacha and Zweigenbaum [57] show that combination of rule-based symbolic system and
machine-learning system can improve the performance.

Chapter 3

A Pairwise Model

Pipeline models and joint models are two extremes. While pipeline models decompose
the final extraction problem into basic atomic problems and solve them under strong
independence assumptions, joint models try to solve the overall problem and consider
all the possible dependencies between them. Pipeline models contain multiple steps,
where each step makes predictions based on local information and predictions of previous
stages, the main drawback is error cascading such as eliminating potential candidates
too early in the process. A straightforward solution to overcome this issue is taking
off the prediction and the extreme case follows this principle is joint model. Hence,
we propose an intermediate model that blends the two steps of trigger detection and
edge detection by relying on a pairwise structure. Indeed, we believe that pair structure
captures essential interactions, enabling to detect triggers at the edge detection step.
In this chapter, we propose a pairwise model that achieves very good performances,
especially for extracting single argument events.

28

Chapter 3. Pairwise Model 29

Sentence Splitting

Tokenization

POS Tagging

2) Binding (ARGUMENT) Pair Fusion

4) REG (TRIGGER,THEME,CAUSE) Event Extraction

Raw Data

Parsing

Preprocessing

1) Non-REG (TRIGGER,THEME) Pair Extraction

3) REG (TRIGGER,THEME) Pair Extraction

Figure 3.1: Pairwise extraction system

3.1 Introduction

In this chapter, we introduce the first model that we developed and used to participate
the BioNLP 2013 Genia shared task. This is a pipeline system for which we tried to
merge trigger classification and edge detection into a single step. The whole process
is illustrated in Figure 3.1. This system splits (trigger,theme) detection into two
steps for Non-REG events and REG events, due to the potential complexity of events,
especially for recursive events. Multi-argument events such as Binding or REG are
constructed after the necessary (trigger,theme) pair extraction step by either merging
Binding theme or assigning cause argument to REG events. This model facilitates
inference compared to global models while relying on richer information compared to
usual pipeline approach. The major drawback of this system is its inability to retrieve
recursive REG events.

Apart from the model, we also studied the methods of combining output scores of bi-
nary classifiers for multi-class classification problems [58–60]. To address the multi-class
problem, first, we used a series of binary SVMs in one-vs-rest framework, where hyper-
parameters are tuned by cross-validation for each SVM individually. In addition to the
SVMs, we added logistic regression transform to map SVM scores to the (0, 1) inter-
val. In the end, a set of thresholds was optimized to maximize the total micro-average
F1-score on the whole training set.

Following previous work, we created effective features focusing on three aspects: depen-
dency parsing, tokenization and knowledge-base data. The crucial role of dependency
features in BioNLP event extraction tasks is emphasized by [29, 42]. Therefore, we
conducted a careful optimization of the dependency path features. We noticed that
trimming was a very useful technique used in previous works including both symbolic
and statistical approaches. Thus, we trim specific dependency paths with respect to
their length, and get significant improvement over it. Besides, we studied the specific
tokenization used by Stanford biomedical event parser, TEES and UCLEED systems,

Chapter 3. Pairwise Model 30

which has proven to outperform the support tokenization when accompanied with their
biomedical specified parser. We followed their work and additionally designed specific
features based on support tokenization. In the end, protein names were abandoned in
previous works because they are pointless to an event without background knowledge.
Finally, following the EVEX system [38, 61] that integrated features from the knowledge
base into the event classifier, we also conducted some work to extract potential events
features from the IntAct knowledge base using protein names as query.

Because of an implementation error, our system only ranked sixth on official test, but
after fixing the bug, it slightly outperforms the winner of BioNLP 2013 shared task.
Besides, our system is less efficient for extracting Binding events, which we think is mainly
due to the effectiveness of Binding theme fusion step. However, it is independent to
our major pair extraction step and can be reinforced additionally. The major drawback
of this system is that it cannot extract recursive REG events.

3.2 Problem Modelization

Compared to the large body of work on pipeline models, pairwise models have been
little studied. A few studies [54–56] report the basic pairwise idea. However, they
do not give many details of how to construct events from pairs, and usually make a
meticulous class system for different pairs. For example, Van Landeghem et al. [54]
treat Binding events with different number of arguments as different classes and uses
different dictionaries and classifiers to extract them. Different classes were created for
the same event type regarding the number of argument and the type of argument (protein
or other event). They solved the multi-class classification problem by using completely
independent classifiers where each classifier uses different features. Moreover, they did
not introduce how they deal with the conflicts arising when combining results of these
various classifiers. All those pairwise approaches do not simplify the problem, but make it
more complex compared to pipeline models or joint models. In this section, we describe
our formulation of pair structure extraction and our decomposition of BioNLP Genia
task into series of pairwise relation extraction problems.

3.2.1 Formulation of Pair Extraction

We denote TS = {ti}i the set of candidate entities, AS = {aj}j the set of candidate
arguments in a given sentence S, and the set of event type labels is denoted Y. The
first step of a pipeline model assigns labels to candidate entities t ∈ TS . Instead, our
pairwise model addresses the problem of classifying candidate trigger-argument pairs
(ti, aj) ∈ TS ×AS . Denoting fk the binary classifier predicting the label k ∈ Y, pairwise
extraction is performed by

∀(ti, aj) ∈ TS ×AS , ŷij = arg max
k∈Y

fk(ti, aj),

where ŷij predicts the event type of the pair made of the candidate trigger entity ti and
the argument aj , an event being actually extracted when ŷij 6= None.

This formulation predicts the event trigger and its argument jointly, so that the features
of a candidate trigger entity ti can help recovering the class of (ti, aj) and the features

Chapter 3. Pairwise Model 31

of the path between ti and aj can help recovering the trigger status of ti. It is similar to
the UCLEED model, which judges the validity of an event through the sum of scores of
trigger and edge detectors under constraints. However, in UCLEED, the score of edge
detection only helps to determine the presence of event: when an event is detected, its
type is only determined by the features of the candidate trigger. This seems to be a
reasonable process, since arguments should not change event types. However, due to the
complexity of human language, uncertainty of preprocessing and imperfect representation
methods, a conceptually reasonable process may not necessarily lead to a better practical
performance. Our method gives the classifier the opportunity to use trigger features along
with edge features to determine the type of trigger, which is simpler but also quite robust.

3.2.2 Problem Decomposition

As for typical pipeline approaches, we present here a system where each step generates
examples based on the output of previous steps. The major difference between our
approach and pipeline systems is that we fuse the detections of triggers and edges. We
recall that in pipeline models, edge detection aims to classify candidate edges as theme
edges, cause edges or None. As described in Section 1.1.3, only REG events could
have cause argument and such events are possibly recursive since their arguments can
be any other events. If we had merged the detection of edge types and trigger types into
a single classification problem, all the connections between candidate entities could have
been considered and many nonviable choices could have been created. As a result, we
only tackle the (trigger, theme) pair extraction and refine this problem into Non-
REG event extraction and REG event extraction. In our framework, we do not perform
(trigger, cause) pair extraction, but rather treat cause as an additional argument to
an existing (trigger, theme) pair. In our pairwise model, the structured information
extraction problem is decomposed into four sub-problems, which can be solved by a
sequence of traditional classifiers.

(1) Non-REG (trigger, theme) pair extraction
}

Non-REG Event Extraction(2) BIND theme fusion
(3) REG (trigger, theme) pair extraction

}
REG Event Extraction(4) REG cause assignment

It is thus similar to a pipeline system, except that the first and third steps perform
pairwise extractions.

3.2.2.1 Non-REG Event Extraction

As defined in Section 1.1.3, Non-REG events include single argument events (SVT)
and Binding events, which can involve a second theme argument. Extracting (trigger,
protein) pairs directly solves the SVT event extraction problem and constructs prelim-
inary pairs for Binding events. As many pipeline systems do, we added a post-processing
step to combine the multiple arguments of Binding events after pairwise extraction.

Non-REG (trigger, theme) Pair Extraction In the first step of our model,
candidate trigger entities are constructed using a dictionary-based string match. The
dictionary is generated from the gold annotations, in which we store sequences of tokens

Chapter 3. Pairwise Model 32

encoding entities together with their sub-tokens. We also stemmed the last token in en-
tities and manually eliminated stop words such as “to”, “are”, “of”. Using this dictionary,
we recursively build the candidate trigger entity set TS by adding the longest token se-
quence that matches the dictionary. Following the formulation of Section 3.2.1, we obtain
the (ti, aj) pair set with AS containing all the proteins in sentence and label set Y =
{Gene_expression, Transcription, Localization, Phosphorylation, Protein_catabolism,
Binding , None }.

BIND theme Fusion When more than two pairs (ti, aj) with the same candidate
trigger entity ti are extracted and labeled as Binding by the previous step, we create
all combinations {(ti, aj , ak)|j 6= k} as potential Binding events and evaluate them with
a dedicated classifier. Once a combination (ti, aj , ak) is predicted as being true, êij =
(ti, aj ,Binding) and êik = (ti, ak,Binding) are replaced by êijk = (ti, aj , ak,Binding).
Note that in this step, we actually take the features between two proteins aj , ak into
account because other pairwise relations are observed in last step. Compared to joint
models, a major shortcoming of our approach is that it does not consider pairs jointly
from the start. As a result, the detection of a partial Binding event does not encourage
the detection of additional arguments. For example, consider a Binding event compose of
two pairs, where (ti, aj) is easy to detect whereas (ti, ak) is hard. Our approach will fail
to extract {(ti, ak) even if (aj , ak) are very likely belong to the same event. This could
be fixed by using only the detected Binding trigger instead of detected pairs from the
previous step, that is by creating the set of triplets {(ti, aj , ak)|j 6= k, aj , ak ∈ AS} where
ti comes from any extracted Binding pairs, and AS contains all the proteins in sentence.
However, since distances between two arguments are generally long in the dependency
parse, we doubt about the effectiveness of this scheme. Although this step deals with
triplet (ti, aj , ak), we only consider the relation between (aj , ak) since other features are
already observed in the previous step. Thus, the detection of multi-argument Binding
events is actually the detection of valid protein pairs. During training, the example set
contains all the possible protein pairs when a Binding trigger presents in the sentence.
Note that, proteins, which do not connect to any Binding triggers, are observed in
training set. It is a very coarse solution that might be the reason of our relatively lower
BIND performance.

3.2.2.2 REG Event Extraction

When all Non-REG events have been extracted, there are two possible strategies to
build REG events. The first one consists in testing every possible triplet combination
(tα,theme : aβ,cause : aγ) by adding all the proteins and extracted triggers into the
candidate argument set AS . Compared to a pairwise scheme, triplet structure leads to
considerably larger candidate example sets. Another strategy is to decompose the triplet
prediction into two steps: (1) predict (ti,theme : aj) pairs and (2) assign the cause
argument. This method lowers the number of candidate examples, but it postpones the
prediction of cause arguments after the prediction of REG triggers, which makes using
REG triggers as cause argument possible. We selected the second strategy driven by
the preference of capturing recursive events and of its lower computing complexity.

REG-theme Pair Extraction In order to extract REG-theme pairs based on
previous extractions, we followed the pairwise approach, while redefining the candidate

Chapter 3. Pairwise Model 33

trigger entity set and candidate argument set. Denote T Non-REG
S the candidate trigger

entity set in Non-REG event extraction step, ENon-REG
S = {êi} the extracted events

in previous steps where candidate entity ti had been indicated as trigger in an event
êi. The new set of candidate trigger entities collects the remaining candidate trigger
entities T REG

S = T Non-REG
S − {ti|∃êi ∈ ENon-REG

S } and the set of arguments col-
lects all the proteins, together with the extracted events AREG

S = ANon-REG
S

⋃{ti|∃êi ∈
ENon-REG
S }. The label set naturally becomes Y ={Regulation, Positive_regulation, Neg-

ative_regulation, None }. The pairwise formulation remains

∀(ti, aj) ∈ TS ×AS , ŷij = arg max
k∈Y

fk(ti, aj).

Note that our approach cannot retrieve the recursive events that involve REG events in
their theme argument.

REG-cause Assignment The REG-cause assignment step seeks arguments for
extracted REG events EREG

S . Considering event eij as an entity, assigning cause ar-
gument can be seen as a nested pairwise extraction step. By establishing candidate
argument set Acause

S = AREG
S

⋃{ti|∃ei ∈ EREG
S }, we can build the candidate pair set

{(eij , ak)} = EREG
S × Acause

S . We call it a nested pairwise step because the candidate
pair (eij , ak) is actually a triplet (ti,theme : aj ,cause : ak) in this case.

3.3 Implementation

In this section, we introduce the implementation details of our model. As described in the
previous section, the complex event extraction problem is decomposed into four steps,
where each step involves a binary or multi-class classification problem. Section 3.3.1 de-
scribes the classifier designed for multi-class classification, Section 3.3.2 lists our features
together with our exact preprocessing and corresponding hyper-parameters.

3.3.1 Classifier

Two types of classification tasks appear in the four steps of our system displayed in
Figure 3.1. The two pairwise extraction steps (steps 1 and 3) amount to solving multi-
class classification problems. The two other steps (steps 2 and 4) amount to binary
classification problems. Multi-class classification is the problem of classifying instances
into more than two classes.

In our work, we paid particular attention to multi-class classifier solutions, and we de-
veloped a classification protocol dedicated to our problem. It is based on binary SVM
classifiers followed by a combination of scores aiming at optimizing the overall micro-
average F1-score. We ran many experiments testing many variants to choose the best
classification protocol, but we only describe here the solution that was eventually selected
in our system. Some of the other devised variants are described in Chapter 5.

Chapter 3. Pairwise Model 34

(a) Candidate hyper-planes (b) SVM separating hyper-plane

Figure 3.2: SVM separating hyper-plane

3.3.1.1 SVM for Cost-Sensitive Multi-Class Classification

In this section, we introduce our main classifier, which are cost-sensitive SVMs in the
one-vs-rest framework, which form the first layer of our overall classifier.

Standard SVM Binary Support Vector Machines (SVM) are supervised learning
models that are often used for classification. Given a training set of examples labeled
into two categories, a SVM training algorithm builds a model that assigns new example
into one or the other category. A major characteristic of SVM is that the model tries
to separate the classes by a margin that is as wide as possible. Though SVM can be
extended to nonlinear discrimination thanks to kernels, we only used linear SVMs due
to the huge size of the feature space.

Given a data-set D = {xn, yn}, where xn is the feature vector and yn ∈ {−1, 1} is the
label for example n, linear SVM aims to find hyper-plane that perfectly separates the
classes. If the data-set is linearly separable, several hyper-planes allow for this separation,
as shown in Figure 3.2a. The hyper-plane sought by SVM is the one that maximizes
the minimum distance to the examples of the data-set. The SVM score for point n is
w · xn − b. Using the convention that points at the margin have a score in {−1, 1},
their distance to the separating hyper-plane is 2

‖w‖ (see Figure 3.2b). For computational
convenience, this distance is maximized by minimizing 1

2‖w‖2. Stating that all the points
are out of the margin reads:

∀n ∈ {1, . . . , N} , yn(w · xn − b) ≥ 1 .

Chapter 3. Pairwise Model 35

So the optimization problem becomes:

arg min
w,b

1
2‖w‖2

∀n ∈ {1, . . . , N} , yn(w · xn − b) ≥ 1 .

To accommodate for non-separable classes, soft margins modify the objective function
by introducing non-negative slack variables {ξn}Nn=1, that measures how the examples
{xn}Nn=1 violate the margin constraint. The optimization problem becomes:

arg min
w,b,{ξn}Nn=1

1
2‖w‖2 + C

∑N
n=1 ξn (3.1)

∀n ∈ {1, . . . , N} , yn(w · xn − b) ≥ 1− ξn . (3.2)

The objective function allows to compromise between the margin size associated to ‖w‖
and the data misfit

∑N
n=1 ξn, tolerating mislabeled examples. This trade-off is controlled

by the hyper-parameter C, where smaller C values lead to less accurate fitting of training
examples.

Once the model has been trained, the SVM predicts the class ŷ of example x by thresh-
olding the SVM score:

ŷ = sign(w · x + b) .

SVM with Asymmetric Costs In our application classes are highly unbalanced,
as shown in Table B.5 and B.4, which list the number of events of different classes.
Furthermore, we are targeting the maximization of F1-scores, which usually differs from
the usual minimization of the misclassification error. We thus used different losses for
positive and negative examples. Following [62, 63], this results in two hyper-parameters
(C+/C−) that are tuned by cross-validation. As mentioned in Equation 3.1, C controls
the trade off between margin and training errors. The two hyper-parameters C+/C− act
as C for positive and negative examples respectively. The objective function becomes:

1

2
‖w‖2 + C+

∑

{n|yn=+1}
ξn + C−

∑

{n|yn=−1}
ξn .

One-vs-Rest Framework A binary SVM does not directly address our multi-class
problem, but it can be a compound of a multi-class classifier in the one-vs-rest frame-
work. In this framework, assuming K > 2 exclusive classes, K binary classifiers are
trained. They all use the same training data, but with different objectives. Classifier
k ∈ {1, ...,K} is trained using positive labels for the examples of class k, and negative
labels for all the other examples. The resulting scores {fk}Kk=1 thus indicate the likeliness
of each class alone. Finally, a single class is predicted by selecting the class with maximal
score:

ŷ = arg max
k∈{1,...,K}

fk(x) . (3.3)

3.3.1.2 Training Procedure

Notation We denote by X the N ×M matrix of training examples, where N is the
number of examples, and M is to the size of feature vector. The training labels form a

Chapter 3. Pairwise Model 36

N ×K matrix Y, where K is the number of classes, and Y(n, k) = 1 if xn belongs to
class k, and Y(n, k) = −1 otherwise. The binary class label for class k is the kth column
of Y, denoted by Yk.

Setting C+/C− Hyper-Parameters For each event detection problem, we selected
the C+/C− values of the corresponding binary SVM, so as to maximize the F1-score of
the corresponding event type taken in isolation. Since we calibrate the SVM scores in
the following combination step, this selection is based on the thresholded SVM scores as
follows.

The SVM scores fk(x) = wk · x + bk are used to produce the class assignments

ŷk(f, θ) = sign(fk(x) + θ) ,

where θ is a candidate offset. On the overall training set, the offset is optimized by max-
imizing the F1-score computed from the true labels Yk and the predictions Ŷk(Fk, θ)),
where Fk is the N -dimensional vector of SVM scores. This optimization is applied in
the cross-validation process detailed in Algorithm 1, on the holdout SVM scores, so as
to select the C+/C− values.

Algorithm 1 Estimation of the Optimal C+/C− for the Binary SVMs

input training examples X, training labels Y, candidate hyper-parameters Λ = {λ},
number of cross-validation folds Q

1: for k = 1→ K do
2: for each λ ∈ Λ do
3: compute the holdout SVM scores Fk(λ) by Q-fold cross-validation for class k
4: if maxθF1(Y

k, Ŷk(Fk, θ)) is optimal then
5: store λ̂k ← λ
6: end if
7: end for
8: end for
9: return optimal hyper-parameters {λ̂k}Kk=1

SVM Scores Combination Empirically, it has been observed that the one-vs-rest
framework provides good solutions to the multi-class problem, but theory shows that
this scheme is not consistent, so that it should be used with care. In particular, there
is no reason to believe that the scores fk in (3.3) are commensurate, and thus that the
majority vote makes sense. This problem can be somewhat circumvented by transforming
the SVM scores into pseudo-probabilities [58–60], but this strategy may not be suited for
optimizing the F1-score. Here, we deviate from this strategy by tuning decision thresholds
on the normalized SVM scores: we do not look at reliable pseudo-probabilities, but we
use the logistic function to normalize the SVM scores and to ease the search of the
decision thresholds.

Logistic Regression Unlike SVM, logistic regression is a probabilistic model that
estimates posterior probabilities of classes. It usually refers to binary logistic regression,

Chapter 3. Pairwise Model 37

whereas multinomial logistic regression directly solves multi-class problems. A key ele-
ment of logistic regression is the logistic function, which takes its values in (0, 1). Here,
we used the logistic transform to map each SVM score to the (0, 1) interval, so as to set
a well-grounded common scaling for these scores.

Given an example x described by itsK-dimensional vector of SVM scores f , we transform
these scores as

gk(x) =
1

1 + exp−(βk · f + αk)
,

whose parameters are adjusted by minimizing

C‖βk‖2 +
N∑

n=1

log(1 + exp(−yn · gk(xn))) ,

where C is a regularization hyper-parameter, which was set to a small common value to
avoid numerical instability.

Decision Thresholds The BioNLP shared tasks assess the performances of event
detections by the micro-average F1-score for each sub-group of categories and for the
overall task. We thus optimized the decision thresholds so as to maximize these micro-
average F1-scores. We recall that for each class k, one can calculate the precision preck =

tpk
tpk+fpk

and recall reck = tpk
tpk+fnk

, where tpk = |{n|ykn = 1, ŷkn = 1}| is the number of
true positive predictions, fpk = |{n|ykn = 0, ŷkn = 1}| is the number of false positive
predictions and fnk = |{n|ykn = 1, ŷkn = 0}| is the number of false negative predictions.
For all the classes, the micro-average precision and recall are

prec =

K∑
k=1

tpk

K∑
k=1

tpk +
K∑
k=1

fpk

rec =

K∑
k=1

tpk

K∑
k=1

tpk +
K∑
k=1

fnk

.

The micro-average F1-score is the harmonic mean of micro-average of precision and recall:

F1 = 2 · prec · rec
prec+ rec

=

2 ·
K∑
k=1

tpk

2 ·
K∑
k=1

tpk +
K∑
k=1

fnk +
K∑
k=1

fpk

.

Compared to the macro-average F1-score, which is the mean of F1-scores of each class,
the micro-average F1-score underrates the impact of small classes.

The last step of our training process consists in setting decision thresholds Θ = (θ1, . . . , θK)
on the output gk of the logistic transform, to compute the final decision ŷ = arg maxk(gk+
θk). The maximization with respect to Θ of the micro-average F1-score on the entire
training set is hard, since the objective function is discontinuous. There are however

Chapter 3. Pairwise Model 38

Return Classi�ers When Loop Ends

Initialize Input Matrix

Select Hyper-parameter

Split Input Matrix and Label Matrix into f Subsets

Train Classi�er
without 1st Subset

Train Classi�er
without fth Subset

Output Matrix as Input Matrix for Next Classi�er

Evaluate Classi�er
on 1st Subset

Evaluate Classi�er
on fst Subset

Train Classi�er on
Entire Dataset

Figure 3.3: Classifier Chain

numerical methods that converge towards a local optimum. Here, we optimize itera-
tively each θk by Brent’s method [64], which is a root-finding algorithm. As shown in
Algorithm 2, each iteration optimizes F1(Y, Ŷ(G,Θ)) with respect to a single threshold
θk, while other ones are fixed. We did not set a stopping criterion and simply limited
the number of optimization steps.

Algorithm 2 Optimization of the Classification Thresholds
input Classifier scores G, training labels Y, number of iteration R.
1: initialize thresholds Θ = (θ1, . . . , θK)
2: for r = 1→ R do
3: for k = 1→ K do
4: update θk = arg maxθk F1(Y, Ŷ(G,Θ))
5: end for
6: end for
7: return optimized thresholds Θ

Classifier Chain Figure 3.3 shown how we train the classifier chain. The whole
process is a classifier chain composed by a list of classifiers and their candidate hyper-
parameters {(clsi,Λi)}, where clsi denote the ith classifier and Λi the candidate hyper-
parameters. Output scores of preceding classifier are provided to succeeding classifier. In
order to simulate the test environment, output matrix is created through cross-validation
during training. Algorithm 3 illustrates the exact training procedure. The first input
matrix is initialized by the matrix of training examples X . For each classifier clsi, we
first select the optimal hyper-parameter given the entire input matrix. Then we split the

Chapter 3. Pairwise Model 39

Algorithm 3 Classifier chain
input training examples X, training labels Y, number of cross-validation fold Q, a list

of classifiers along with their candidate hyper-parameters cL = {(clsi,Λi)}
1: initialize input mat T = X
2: for each (clsi,Λi) ∈ cL do
3: initialize output matrix O = ∅
4: select the optimal hyper-parameter λ̂i from Λi for clsi
5: split input matrix and labels into Q sub-sets (T,Y) =

⋃
q(Tq,Yq), q = 1 . . . Q

6: for q = 1→ Q do
7: train clsi on (T,Y)− (Tq,Yq)
8: evaluate clsi on (Tq,Yq) to get output score Sq
9: update output matrix O = O

⋃
Sq

10: end for
11: fit classifier clsi on (T,Y)
12: update input matrix T = O
13: end for
14: return trained classifiers {clsi}

input matrix and corresponding label into f subsets. In order to avoid over-fitting, the
output matrix O is generated through a cross-validation process, where output score of
each subset is generated by the classifier trained on other subsets. Classifier clsi is then
trained on entire input matrix. As described before, the output matrix is assigned as
input matrix for next classifier at the end of each loop. Finally, a list of trained classifiers
is returned by the algorithm.

3.3.2 Feature Study

Pipeline systems from [29, 42] only differ in their features. We believe the improvement
in F1-score from 30 to more than 50 is mostly due to good feature engineering. In fact,
most of current natural language processing approaches are simple combinations of linear
models based on powerful features.

Our implementation somewhat follows many heuristics developed in the UCLEED sys-
tem. As in UCLEED, we use the head token, which is selected heuristically, to represent
an entity. Therefore, an entity is described by the features of its head token such as
stemmed word, POS, prefix, etc. The dependency path between head tokens is used as
an alternative to the dependency path between entities. Besides, we used different strate-
gies for low-level preprocessing and introduced a simple method to improve the quality
of the dependency path. Finally, we took semantic information from a knowledge base
into account as well.

3.3.2.1 Multiple Tokenizations & Sentence Splitting

Most NLP practical approaches follow from the theories studied in linguistics and solve
the high-level problems in a bottom-up way. We pursue a high-level information ex-
traction task by relying on many low-level NLP tasks: word segmentation, sentence
breaking, part-of-speech (POS) tagging, parsing. Some event extraction methods also

Chapter 3. Pairwise Model 40

involve named entity recognition. Those tasks form a big pipeline and different low-level
solutions typically impact the results of the high-level tasks. Since we are not primarily
interested in feature engineering, we mostly re-used features and heuristics from previ-
ous works. Support tokenization and Stanford tokenization were selected as tokenizers:
the first is provided by BioNLP task organizers, the second was used by the winner of
BioNLP 2011 shared task.

Support Tokenization It is the open access tokenization from the BioNLP task,
which was generated by the GTB-tokenize.pl script that attempts to mimic the tokeniza-
tion used by the Genia Treebank. As mentioned in Section 2.2.1, the major characteristic
of support tokenization is that it conserves compound words, slashes, etc. From a lin-
guistic viewpoint, this is a good tokenization for human to read because one can easily
decodes the inner structure of compounds word and splits parallel items concatenated
by slashes: it makes the sentence easier to understand. We also believe that sentences
using this tokenization should be easier to parse. For example, extracting relations in
“A and B/C/D” is much simpler than extracting relations in “A and B / C / D”, where
in the first case “B/C/D” is treated as one token. However, this nice tokenization is not
perfectly suitable for BioNLP Genia task because some events need the decomposition
of the compound words to extract relations between the finer-grained objects.

Stanford Tokenization It appears in McClosky’s BioNLP event parser [17], and
was used by UCLEED, TEES and TEES 2.1 [18–25]. Unlike support tokenization, this
algorithm breaks specific compound words and slashes with handcrafted heuristics. As
discussed in Section 2.2.1, this algorithm improved performance in previous works. A
possible reason is that breaking compound words improves the sparsity of feature space
and enables higher level parsing to provide useful task specific features. Note that the
head token of a candidate trigger entity or argument is selected based on this fine-grained
tokenization. Most of our features are based on this fine-grained tokenization, but we
did not investigate the reasons of the advantages of this tokenization.

Longest Sentence We needed to define a heuristic when the two tokenizations were
not consistent. Documents have to be cut into sentences before further parsing. The two
parsers break sentences in different ways, so that we had to resolve conflicts in order to
use them in the same framework. Assuming that longer sentences increase the chances
of detecting events, we simply connected separated sentences when breaking points were
incompatible.

Coarse Tokenization Features An entity is described by the features of its head
token, which is defined by the fine-grained Stanford tokenization. But we also used some
features from the coarse support tokenization, which can bring additional information,
in particular to detect compound words. Given a head token of candidate trigger entity
based on fine grained tokenization, we think it is useful for the classifier to know whether
this head token is near a protein or belongs to a compound word. Therefore, two features
were developed based on support tokenization: one indicates whether the head token of
candidate trigger entity belongs to a word that contains a protein; another indicates
whether the head token of a candidate trigger entity and its candidate argument are in
the same word.

https://github.com/ninjin/bionlp_st_2011_supporting/blob/master/tools/GTB-tokenize.pl

Chapter 3. Pairwise Model 41

3.3.2.2 Dependency Path Trimming

The dependency path features are the crucial features in relation extraction because
they encode how tokens interact with each other. Since dependency parse represents a
sentence by a tree or directed acyclic graph, people usually use the shortest path between
two tokens in the dependency parse tree/graph to represent their relations. However,
such dependency relations are usually presented in a tree or graph format, which cannot
be understood effectively by current algorithms. For syntactic methods, Buyko et al. [32]
report that trimming dependency trees provides more direct representative dependency
relations between tokens. Reports of statistical methods always pass over this issue with
the purpose of emphasizing successes of their statistical models. But when we studied
the UCLEED system, we discovered that they heuristically removed some uninformative
edges from the dependency path. We implemented similar strategies.

Encoding Paths As introduced in Section 2.3.2.1, current encoding methods trans-
form the dependency path into bag of triplets, used as feature vector. We recall that
E-walk and V-walk are two widely used methods for representing the dependency path
by a bag of triplets. E-walk represents the dependency paths into bags of (dep-tag, token,
dep-tag), whereas V-walk represents the dependency paths into bags of (token, dep-tag,
token).

Given a dictionary that indexes all the triplets in the training set, a bag of triplets repre-
sents a set of triplets by a vector of counts, where each component of the vector indicates
the number of occurrences of the indexed triplet in the set. Obviously, sequential in-
formation cannot be reconstructed from those encoding methods. Even if some short
sequences can be reconstructed with the help of grammatical and/or semantic knowl-
edge, there is usually no way to recover the original sentence for longer dependency
paths, even for humans. In this case, different dependency paths could share the same
bag of triplets representation, and those dependency paths could belong to examples in
different classes. Therefore, examples with longer dependency paths have higher pos-
siblities of sharing features with each other, regardless of their category. The features
then become less discriminant. Moreover, bags of triplets produce large amount of fea-
tures, for which slightly reworded phrases are hard to recognize. We thus assumed that
only short dependency paths make reliable features for classification and that long paths
should be discarded.

Statistics of Path Lengths Figure 3.4 represents the distribution of path lengths
between trigger and argument for each event type and for the None classes in train-
ing phase of two (trigger, theme) pair extraction steps. Distances between most of
(trigger, theme) pairs are smaller than five, whereas for None, the distribution is
very flat. Examples do not have dependency path features when the path length is 0.
To ignore the longer paths, the dependency path features of the examples that contain
long paths are set to zero, resulting in the same features as the examples with null path
lengths. Such group contains half of None examples and less than 10% Non-REG
event examples, which reveals a strong feature to distinguish None examples from Non-
REG examples: examples with null dependency path features are probably not events.
Binding event has the worst proportion out of Non-REG events. We suppose that
it causes Binding event more difficult to extract than other Non-REG events, despite
multi-argument problem. REG events show better distribution than Non-REG events,

Chapter 3. Pairwise Model 42

−1 0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

Dependency path length

Pe
rc

en
ta

ge

Gene_expression
Transcription
Protein_catabolism
Phosphorylation
Localization
Binding
Regulation
Positive_regulation
Negative_regulation
None in NonREG step
None in REG step

Figure 3.4: Frequency of examples according to the length of the dependency path
between theme and argument

which is unexpected. Figure 3.5 shows the length distribution of dependency path be-
tween arguments for multi-argument events and the None examples during training phase
of Binding theme fusion andREG-cause assignment. We see clearly that distances be-
tween two arguments are much longer, which explains the difficulty of multi-argument
events, especially for Binding event.

Similarly to the longest dependency paths, the shortest paths were shown to be harmful.
It is easy to see that the features provided by the shortest paths are probably a part of
features provided by the longer paths. If most of examples with the shortest paths are
negative examples, it is difficult for a linear classifier to distinguish them. Accounting for
these atypical paths may introduce too much variability. Thus, we discarded the paths
with only one edge for REG events.

3.3.2.3 Knowledge Base

When experts read biomedical research articles, they sometimes have to build their in-
terpretation upon their extensive background knowledge. Likewise, collecting the known
interactions between proteins should provide a better chance to treat the ambiguities
of natural language. We used the information available in publicly available knowledge
bases to this end.

First, given the protein annotation, we retrieved all the protein names mentioned in the
texts. Note that we did not process incomplete protein names such as “3 ” in “IL-1/3 ”
for simplicity. Then, we obtained the map between protein names and protein IDs from
the UniProt knowledge base 1. Since the protein name strings were usually an imperfect
match, we collected the top 5 IDs for each protein name string. Protein name strings
with exactly the same top 5 IDs were treated as different representations of the same

1Available from uniprot.org.

uniprot.org

Chapter 3. Pairwise Model 43

−1 0 1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

Dependency path length

Pe
rc

en
ta

ge

Binding
REG
None in Binding Theme Fusion
None in REG Cause Assignment

Figure 3.5: Frequency of examples according to the length of the dependency path
between two argument tokens in multiple argument events

protein, so that interaction knowledge of those IDs was shared by these protein names.
Finally, we took the protein interaction information from the IntAct knowledge base 2.
For each recorded protein, we collected the events it participated to, and the recorded
proteins it interacted with. This knowledge was used in both (trigger, argument)
and (argument, argument) extraction. In (trigger, argument) pair extraction,
the possible event types of the protein arguments retrieved from the knowledge were used
as features. In multi-argument events, the information was used to indicate the known
interactions between two protein arguments.

3.3.2.4 Feature Summary

We list all the features we used in Table 2.1 in Section 2.3. All (trigger, theme) pair
extraction steps use all features except the one that is only used between two arguments.
The Binding theme fusion step does not use features for candidate trigger entity and
REG cause assignment step only uses the stemmed token as argument feature.

3.4 Experiments

To participate to the BioNLP 2013 shared task, we made lots of experiments on BioNLP
2011 and BioNLP 2013 training and development data-sets in order to find the optimal
feature settings. In this section, we introduce the detailed results of different feature
configurations as well as our performances on the test set of both BioNLP 2011 and 2013
shared tasks.

2Available from www.ebi.ac.uk/intact.

www.ebi.ac.uk/intact

Chapter 3. Pairwise Model 44

3.4.1 Feature Adjustment

As mentioned in Section 3.3.2, we developed new features and some of them contain
hyper-parameters to adjust. Since each step of our system solves a different problem, it
is necessary to find the optimal feature setting at each step. However, searching the best
feature settings is complex because performances of succeeding steps rely on preceding
ones and this impact is hard to evaluate. We mostly focused our feature adjustment
on the trimming of the dependency path and have run experiments to define the best
possible configuration. For the other features, we tried limited number of settings or
followed previous works. All results reported in this section have been obtained using
evaluations on the development set of BioNLP 2013 shared task.

3.4.1.1 Dependency Path Trimming

Since each step of our system requires features based on the dependency path, this makes
selecting thresholds for trimming dependency paths a difficult problem. A reliable way
is to select the best thresholds with respect to the performance on the development set.
However, the dependency between REG and Non-REG events induces that the final
score is not a sum of scores at each step. Hence, finding a perfect solution would require
to run all the possible combinations of four steps. Inspired by Figure 3.4 and Figure 3.5,
we narrowed the candidate thresholds of each step to four reasonable options. But,
44 = 256 possible combinations are still intractable. Thus, we heuristically selected a
few thresholds at each step for the succeeding steps.

As described above, 90% of Non-REG (trigger,theme) pairs have dependency path
lengths smaller than five, so we tested thresholds from 2 to 5. Dependency path features
are discarded when the dependency paths are longer than this threshold. Table 3.1
clearly shows the effect of discarding long dependency paths. All the experiments with
thresholding get a better F1-score. The best F1-score was obtained when thresholds
are 5. We remarked that increasing the dependency path length generally improves the
precision but decreases the recall. However, experiments involving no threshold got the
highest recall and lowest precision.

Table 3.2 illustrates the results using different thresholds in the Binding theme fusion
step. Unlike for the previous step, both recall and precision reach their highest value when
threshold equals 5. Comparison between different rows is more complex because of the
dependency between steps. Let us separate the Binding events into two categories: single
argument Binding events that contain one theme and multi-argument Binding events
that contain two themes. The difference between experiments of Binding theme fusion
step are caused by two reasons: first is the difference of single argument Binding event
listed above; second is the possibility of true/false recognition of multi-argument Binding
event provided by (trigger,theme) pairs extracted in preceding step. In Table 3.3, we
subtract the recall and precision of Binding event from preceding step in order to exclude
single argument Binding event. We can see that the benefit of higher recall in preceding
step is minor, which is smaller than 0.3% when difference of single argument is more than
four. Contrary to recall, precision varies more significantly between experiments based
on different preceding steps. Until now, we removed the configuration, which threshold
equals three in Non-REG (trigger,theme) pair extraction, because its performances
on Binding and SVT events are all uncompetitive.

Chapter 3. Pairwise Model 45

Table 3.1: Investigating trimming of dependency path for Non-REG
(trigger,theme) extraction step

`````````````̀Event Class
Threshold 2 3 4 5 No

Gene_expression
F1-score 76.1 75.8 77.1 76.6 74.8
recall 76.3 75.6 75.6 72.8 77.5
prec. 75.9 76.0 78.7 80.8 72.2

Transcription
F1-score 43.2 46.3 46.7 50.3 44.2
recall 35.7 37.8 35.7 38.8 34.7
prec. 54.7 59.7 67.3 71.7 60.2

Protein_catabolism
F1-score 86.7 78.7 82.8 81.4 82.0
recall 86.7 80.0 80.0 80.0 83.3
prec. 86.7 77.4 85.7 82.8 80.7

Phosphorylation
F1-score 73.1 73.3 73.3 74.3 73.0
recall 64.8 65.3 64.8 64.3 64.3
prec. 83.9 83.4 84.5 87.9 84.4

Localization
F1-score 71.6 71.8 70.7 71.1 71.6
recall 61.4 61.4 59.4 59.9 61.9
prec. 85.8 86.4 87.3 87.4 71.6

SVT
F1-score 72.6 72.6 73.4 73.4 72.0
recall 68.4 68.1 67.5 66.2 68.8
prec. 77.5 77.7 80.4 82.5 75.4

Binding
F1-score 27.1 25.4 23.9 24.8 26.6
recall 31.4 28.4 27.1 26.5 30.3
prec. 23.8 22.9 23.9 23.2 23.7

Table 3.2: Investigating trimming of dependency path for Binding theme fusion step.
Prev. refers to the thresholds used in previous step.

XXXXXXXXXXXPrev.
Binding threshold = 4 threshold = 5 threshold = 6

threshold = 2
F1-score 38.5 41.0 39.6
recall 44.8 47.7 46.1
prec. 33.7 36.0 34.8

threshold = 3
F1-score N/A N/A 39.0
recall N/A N/A 44.0
prec. N/A N/A 35.0

threshold = 4
F1-score 37.5 40.9 40.2
recall 40.0 43.2 42.4
prec. 35.4 38.8 38.2

threshold = 5
F1-score 37.0 40.3 39.6
recall 39.7 42.9 42.1
prec. 34.6 37.9 37.3



Chapter 3. Pairwise Model 46

Table 3.3: Investigating trimming of dependency path for Binding theme fusion step
for multiple argument events

XXXXXXXXXXXPrev
Binding threshold = 4 threshold = 5 threshold = 6

threshold = 2
recall 13.4 16.4 14.7
prec. 9.9 12.1 10.9

threshold = 3
recall N/A N/A 15.6
prec. N/A N/A 12.0

threshold = 4
recall 12.9 16.1 15.3
prec. 11.5 14.9 14.2

threshold = 5
recall 13.1 16.4 15.6
prec. 11.3 14.7 14.1

For each threshold ∈ {2, 4, 5} for the Non-REG (trigger,theme) step and for the
best threshold in Binding theme fusion step (5), we launched three experiments using
threshold ∈ {2, 3, 4} to define the optimal threshold for REG (trigger,theme) step.
All the results are listed in Table 3.4. Similar to Binding event, the best threshold
value (3) achieves both highest precision and recall. Comparing between corresponding
content from three tables, we find that they have almost the same recall. It means
that the difference of recall in Non-REG (trigger,theme) step in our experiment
hardly change the recall in REG (trigger,theme) step. In contrary, the precisions
of preceding steps and current step have positive correlation. But, overall, there is no
significant difference between those three groups of experiments regarding the threshold
selected in the preceding step.

The last step of our approach which aims to assign optional cause argument to extracted
REG events contains two groups of pairwise features that represent the relation within
(trigger, cause) and (theme,cause) pairs. We fixed the threshold of (theme,cause)
to 2 ≤ threshold ≤ 5, which means dependency path less than two or longer than five
will be discarded, and try threshold ∈ {3, 4} for (trigger,cause). The F1-score of
experiments are given in Table 3.5, where the first row indicates the thresholds used in
Non-REG (trigger,argument) step, the second row indicates the thresholds used
for (trigger,cause) pairs in current step. We can see that, at this step, different
threshold settings do not affect much the F1-score. Moreover, since we can get the final
total score of the whole system at this final step, we use it directly. Finally, we selected
4 as threshold for (trigger, argument) pair in this step. Then we can try different
thresholds for (theme,cause) pairs by fixing threshold of (trigger,cause) to four.
Results listed in Table 3.6 are consistent with the distribution of dependency path in
Figure 3.5.

Finally, we get the best threshold configurations for each step, which is threshold =
4 in step 1, threshold = 5 in step 2, threshold = 3 in step 3, threshold = 4 for
(trigger,cause) and 2 ≤ threshold ≤ 5 for (theme,cause) in step 4.

From another perspective, discarding long dependency paths using threshold can be
thought as a specific nonlinear projection of feature vectors. This method wisely selectes
some inefficient examples, which is definitely a remedy of imperfect encoding of depen-
dency path. A set of hyper-parameters was selected using experiments on development



Chapter 3. Pairwise Model 47

Table 3.4: Investigating trimming of dependency path for REG (trigger,theme)
step

(a) threshold = 2 in step 1, threshold = 5 in step 2

2 3 4

Regulation
F1-score 5.9 7.0 7.0
recall 4.2 5.3 5.3
prec. 9.6 10.5 10.3

Positive_regulation
F1-score 13.9 14.4 14.1
recall 10.9 11.5 10.9
prec. 19.0 19.2 19.9

Negative_regulation
F1-score 13.9 14.4 12.9
recall 10.2 10.8 9.4
prec. 22.0 21.9 20.3

REG
F1-score 12.6 13.2 12.5
recall 9.6 10.2 9.5
prec. 18.5 18.6 18.4

(b) threshold = 4 in step 1, threshold = 5 in step 2

2 3 4

Regulation
F1-score 6.0 7.1 7.1
recall 4.2 5.3 5.3
prec. 10.1 11.0 10.8

Positive_regulation
F1-score 14.0 14.5 14.2
recall 10.9 11.5 10.9
prec. 19.6 19.8 20.5

Negative_regulation
F1-score 14.0 14.5 13.0
recall 10.2 10.8 9.4
prec. 22.4 22.4 20.8

REG
F1-score 12.7 13.3 12.7
recall 9.6 10.2 9.5
prec. 19.1 19.2 19.0

(c) threshold = 5 in step 1, threshold = 5 in step 2

2 3 4

Regulation
F1-score 6.0 7.2 7.1
recall 4.2 5.3 5.3
prec. 11.2 11.1 10.9

Positive_regulation
F1-score 14.2 14.7 14.4
recall 11.0 11.6 11.0
prec. 19.8 20.0 20.7

Negative_regulation
F1-score 14.1 14.6 13.0
recall 10.2 10.8 9.4
prec. 22.8 22.8 21.1

REG
F1-score 12.8 13.5 12.8
recall 9.6 10.3 9.6
prec. 19.3 19.5 19.3



Chapter 3. Pairwise Model 48

Table 3.5: Investigating trimming of dependency path for (trigger,cause) in REG
cause assignment step. Threshold of dependency path between (theme,cause) be-

longs to [2, 5].

Threshold in first step threshold = 2 threshold = 4 threshold = 5
(trigger,cause) threshold 3 4 3 4 3 4
Regulation 29.0 29.0 29.8 29.8 29.4 29.4
Positive_regulation 37.8 37.8 38.0 38.0 38.4 38.4
Negative_regulation 34.7 34.9 34.5 34.5 34.2 34.2
REG 35.5 35.6 35.7 35.7 35.7 35.7
TOTAL 49.8 49.9 49.7 50.3 49.5 49.5

Table 3.6: Investigating trimming of dependency path for (theme,cause) in REG
cause assignment step. Threshold of dependency path between (trigger,cause) is

4.

Threshold in first step threshold = 2 threshold = 4 threshold = 5
(theme,cause) threshold [1, 5] [2, 5] [3, 5] [1, 5] [2, 5] [3, 5] [1, 5] [2, 5] [3, 5]

Regulation 28.6 29.0 26.3 29.8 29.8 27.1 29.4 29.4 26.7
Positive_regulation 37.4 37.8 37.1 37.5 38.0 37.1 37.9 38.4 37.5
Negative_regulation 35.0 34.9 32.8 34.5 34.5 32.6 34.2 34.2 32.4
REG 35.3 35.6 34.1 35.4 35.7 34.2 35.5 35.7 34.3
TOTAL 49.7 49.9 49.2 49.6 50.3 49.0 49.4 49.5 48.8

set. Those hyper-parameters are not guaranteed to be the optimal ones, but they define
the configuration that was used in final test.

3.4.1.2 Knowledge Base, Coarse Tokenization and Window Size

Apart from the dependency path, there are still three features that require hyper-
parameter selection. Fortunately, they are much simpler than dependency path, and
we introduce them together in this section.

Window Size This hyper-parameter determines the range of the window of neigh-
boring tokens used as feature for the current token. In our pairwise extraction steps, we
have two sizes to define the windows around the head tokens of candidate trigger entities
and around candidate arguments. We started from the configuration used in UCLEED
system, that is, two tokens before and after head tokens of candidate trigger entities and
one token before and after head tokens of candidate arguments. We searched around this
configuration, called (2,1) for short, and tried (1,1), (2,2) and (3,3). Table 3.7 shows the
results of experiments using different window size inNon-REG (trigger,theme) step,
all the settings in other three steps remaining identical. Larger window sizes basically
lead to higher precision for SVT events and Binding event, but lower performance on
REG events. Our experiments confirmed that (2,1) is the best configuration for window
size and we applied it to REG (trigger,theme) pair extraction as well.



Chapter 3. Pairwise Model 49

Table 3.7: Investigating window sizes for Non-REG (trigger,theme) pair extrac-
tion. In (a, b), a denotes the window size for the candidate trigger entity, and b the

window size for the candidate argument.
hhhhhhhhhhhhhhhhhEvent Class

Window Size (1,1) (2,1) (2,2) (3,3)

Gene_expression
F1-score 74.9 76.1 74.7 75.7
recall 75.3 76.3 73.6 71.6
prec. 74.4 75.9 75.8 80.3

Transcription
F1-score 41.0 43.2 43.0 46.3
recall 32.7 35.7 34.7 34.7
prec. 55.2 55.0 56.7 69.4

Protein_catabolism
F1-score 83.3 86.7 84.2 83.6
recall 83.3 86.7 80.0 76.7
prec. 83.3 86.7 88.9 92.0

Localization
F1-score 72.2 71.6 72.2 68.3
recall 62.0 61.4 61.4 55.3
prec. 86.5 85.8 87.7 89.3

Phosphorylation
F1-score 72.7 73.1 73.8 70.6
recall 64.3 64.8 64.8 59.6
prec. 83.8 83.9 85.6 86.5

SVT
F1-score 71.2 72.6 72.0 71.7
recall 67.5 68.4 66.6 63.6
prec. 76.8 77.5 78.0 82.2

Binding
F1-score 39.4 41.0 40.3 40.4
recall 45.0 47.7 45.6 41.8
prec. 35.0 36.0 36.1 39.0

Regulation
F1-score 30.0 29.0 29.2 28.5
recall 22.9 22.9 21.5 22.2
prec. 43.3 39.6 45.5 39.9

Positive_regulation
F1-score 37.2 37.8 36.9 36.3
recall 31.7 32.7 31.7 30.6
prec. 44.9 44.9 44.7 44.5

Negative_regulation
F1-score 33.3 34.9 32.0 30.7
recall 26.2 27.0 24.0 23.0
prec. 45.7 49.3 48.0 46.0

REG
F1-score 34.9 35.6 34.2 33.4
recall 28.5 29.3 27.4 26.8
prec. 44.9 45.3 45.7 44.2

EVENT ALL
F1-score 49.0 49.9 49.0 48.1
recall 44.1 45.0 43.2 41.4
prec. 55.3 55.7 56.5 57.6



Chapter 3. Pairwise Model 50

Table 3.8: Influence of the features derived from the IntAct knowledge base and from
coarse tokenization

`````````````̀Event Class
Feature Original Knowledge base Coarse tokenization

Gene_expression
F1-score 76.8 77.4 75.6
recall 75.0 74.1 75.6
prec. 78.8 81.0 75.5

Transcription
F1-score 46.1 45.8 47.1
recall 35.7 35.7 37.8
prec. 64.8 63.6 62.7

Protein_catabolism
F1-score 82.8 84.2 81.4
recall 80.0 80.0 80.0
prec. 85.7 88.9 82.8

Localization
F1-score 67.5 67.7 69.1
recall 55.3 54.3 57.9
prec. 86.5 89.9 85.7

Phosphorylation
F1-score 73.8 73.8 73.9
recall 64.8 64.8 65.3
prec. 85.6 85.6 85.1

SVT
F1-score 72.4 72.7 72.7
recall 65.9 65.3 67.0
prec. 80.4 82.1 77.8

Binding
F1-score 40.7 40.7 41.8
recall 44.2 44.0 47.2
prec. 37.8 37.9 37.5

Regulation
F1-score 29.4 29.2 29.1
recall 23.6 22.9 23.6
prec. 39.0 40.4 37.9

Positive_regulation
F1-score 37.4 37.7 37.8
recall 31.6 31.0 31.8
prec. 45.8 48.2 46.7

Negative_regulation
F1-score 33.8 33.2 36.2
recall 25.7 25.3 28.1
prec. 49.5 48.4 50.9

REG
F1-score 35.0 35.0 35.9
recall 28.4 27.9 29.3
prec. 45.6 47.0 46.4

EVENT ALL
F1-score 49.4 49.6 50.0
recall 43.4 42.9 44.6
prec. 57.4 58.7 56.8

Chapter 3. Pairwise Model 51

Knowledge Base The first two groups of results illustrated in Table 3.8 refer to
experiments with or without features from IntAct knowledge base at every step. From
this table, we can see that knowledge-base features slightly decrease recall and slightly
increase precision of almost every event type. Overall, knowledge-base features do not
have a significant influence on the final F1-score.

Coarse Tokenization The third group of results in Table 3.8 belongs to experiment
using features based on coarse tokenization. Compared to the original group, these
features improved the recall of most event types but decreased the precision of SVT
event. Overall, they bring a slightly higher improvement than knowledge-base features.

3.4.2 Test Results

In this section, we introduce our final results on BioNLP 2011/2013 test sets. These
results are obtained from training on the training and development sets, in order to use
a maximum number of examples in the training phase. We also merged the training sets
of BioNLP 2011 and BioNLP 2013 for the results of the 2013 shared task.

Optimal features discovered in the previous section were used for both data-sets. We
remind that (trigger,theme) pair extraction steps make use of features for candidate
trigger entities, candidate arguments and pairs except features designed for two proteins
arguments. Binding theme fusion and REG cause assignment steps do not use candi-
date trigger entity groups but use features for two proteins arguments. Candidate trigger
entities and candidate arguments involve different range of neighbor tokens, that is, 2
before and after candidate trigger entities and 1 before and after candidate arguments.
Dependency paths were discarded when their length l was (strictly) greater than 4 for
Non-REG (trigger,theme) pair extraction, greater than 5 for Binding theme fu-
sion, greater than 3 for REG (trigger,theme) pair extraction, greater than 4, and
greater than 5 or smaller than 2 for REG cause assignment. Coarse tokenization based
features and knowledge-base features were all included in feature set.

Note that we carefully designed a multi-class classifier, where hyper-parameters were
selected by means of 10-fold cross-validation.

3.4.2.1 BioNLP 2011

Table 3.9 lists the results of our pairwise model along with the three most representative
models from previous works. UCLEED [20] is the joint model that achieved the highest
score in BioNLP 2011 shared task, SEARN [65] is a stacked model that extracts recursive
events using old predictions and TEES [24] was the best pipeline model in BioNLP 2011.
We can see that our pairwise model achieves the highest F1-score on SVT and Binding
events. This result strengthens our assumption about the drawbacks of typical pipeline
models. Surprisingly, the joint model, which considers the relations altogether, is also
slightly worse than our model. This could be explained by our well-designed features,
and also because the joint model considers all the relations together, but most of them
are not exist. Trying to learn all relationships requires more flexible models and accurate
feature representations. However, UCLEED and SEARN systems got higher F1-scores

Chapter 3. Pairwise Model 52

Table 3.9: Results on the BioNLP 2011 test set

Event Class UCLEED SEARN TEES pairwise
SVT 73.5 71.8 72.1 74.3
BIND 48.8 45.8 43.3 49.1
REG 43.8 43.0 42.7 41.4
ALL 55.2 53.5 53.3 54.2

on REG events, which could be expected since our system cannot handle the recursive
REG events appropriately.

3.4.2.2 BioNLP 2013

We participated the BioNLP 2013 Genia shared task. Therefore, more attention was
paid to the BioNLP 2013 test set, but a bug caused a poor overall performance at
the official challenge evaluation. After bug fix, our pairwise system actually achieves
the best result among all officially evaluated results. Table 3.10 lists test results of our
pairwise system, a counterpart pipeline system, and EVEX that is the winner of BioNLP
2013 Genia shared task. The counterpart pipeline system was derived from the pairwise
system by replacing (trigger,theme) pair extraction by trigger detection and edge
detection. The features used in our pairwise system and its pipeline counterpart system
are identical. They seem to be more appropriate than the ones of EVEX, since our
pipeline counterpart wins by 3.3% on SVT events. The additional improvements of the
pairwise classifier on the SVT events show the advantage of pairwise extraction.

Our systems are weak at detecting Binding events and REG events. While the lower
REG performance might be due to the lack of potential to detect recursive events, we
conjecture that the failure in Binding events is due to the Binding theme fusion step.
Table 3.11 displays the results of Binding (trigger,theme) pair detection and of the
overall Binding events detection on BioNLP 2013 test set; BioSEM achieves the best
Binding event score on this task. Comparing the Binding (trigger,theme) scores,
our pairwise model gets the highest recall and the second F1-score. Generally speaking,
the lose of Binding events can be caused by two reasons: first, the Binding (trigger,
theme) pairs are not well predicted; second, the extracted pairs are not correctly merged.
The first condition can also be divided into two refined cases for multi-argument Bind-
ing events: all the pairs are not well predicted; one of the necessary pairs is not well
predicted. As our approach gets higher pairwise extraction performance but lower multi-
argument Binding event extraction performance, two possible explanations are: our
approach always fails to extract one of the necessary pairs; our approach is weak on
merging arguments. We believe that the second explanation is probably true because
conditions in the first explanation are unlikely to happen frequently. A better evidence
is that the BioSEM model achieves the highest Binding event recall with a lower Binding
(trigger,theme) recall. Notice that BioSEM is a rule-based system that extracts pat-
terns in predefined forms. It is a joint model that recursively extracts events by adding
first the smallest and most frequent matching pattern. However, UCLEED, which also
extracts Binding events jointly, got worse performance on BioNLP 2011 test set. It is
hard to determine the crucial reason of BioSEM’s success on Binding event.

Chapter 3. Pairwise Model 53

Table 3.10: Results on the BioNLP 2013 test set

`````````````̀Event Class
Model Pairwise Pipeline Counterpart EVEX

Gene_expression
F1-score 85.3 83.0 82.7
recall 80.9 76.4 81.4
prec. 90.1 90.8 84.0

Transcription
F1-score 61.7 60.4 55.0
recall 65.4 57.4 54.5
prec. 58.4 63.7 55.6

Protein_catabolism
F1-score 62.5 59.1 56.3
recall 71.4 92.9 64.3
prec. 55.6 43.3 50.0

Localization
F1-score 60.2 60.6 60.7
recall 50.5 44.4 47.5
prec. 75.8 78.7 83.9

Phosphorylation
F1-score 79.9 82.5 71.5
recall 70.7 82.5 73.8
prec. 75.8 82.5 69.4

SVT
F1-score 79.2 77.8 74.5
recall 74.4 72.5 71.6
prec. 80.5 83.9 77.7

Binding
F1-score 38.3 39.9 42.9
recall 43.2 43.5 41.1
prec. 34.4 36.9 44.8

Regulation
F1-score 28.1 22.7 23.4
recall 21.9 18.8 18.1
prec. 39.1 28.9 33.3

Positive_regulation
F1-score 40.2 36.5 39.2
recall 33.6 33.7 32.5
prec. 50.1 39.9 49.3

Negative_regulation
F1-score 37.9 36.1 43.9
recall 31.9 34.0 40.1
prec. 46.5 38.4 48.4

REG
F1-score 37.9 34.6 34.2
recall 31.4 31.6 27.4
prec. 47.7 38.2 45.7

EVENT ALL
F1-score 51.2 48.0 51.0
recall 46.0 44.8 45.4
prec. 57.7 51.7 58.0



Chapter 3. Pairwise Model 54

Table 3.11: Binding (trigger,theme) pair scores and full event scores on the
BioNLP 2013 test set

Pairwise Pipeline Counterpart EVEX BioSEM
(trigger,theme) F1-score 61.7 61.4 59.0 63.3
detection recall 62.0 59.8 56.5 57.7

prec. 61.5 63.1 61.2 70.1
full event F1-score 38.3 39.9 42.9 49.8
detection recall 43.2 43.5 41.1 47.5

prec. 34.4 36.9 44.8 52.3

3.5 Conclusion

In this chapter, we introduced our pairwise model, which jointly extracts (trigger,theme)
pairs. This model enables classifiers to use pairwise features to detect the trigger,
which achieves superior performances on single argument events and outperforms the to-
tal F1-score of EVEX, the best system in BioNLP 2013 Genia shared task. Although pair-
wise predictors were already tested in previous works in BioNLP 2009, they lead to very
bad performances, due to an ill-posed classification structure. Parts of these failures may
also be due to the processing of multi-argument events and recursive events, which was
not clearly explained. Our approach extracts Non-REG and REG (trigger,theme)
pairs separately in order to partly detect the REG events using Non-REG events as
arguments. Two additional steps are used to build multi-arguments Binding events and
REG events after the extraction of (trigger, theme) pairs. The major drawback of our
approach is that we cannot extract recursive REG events, that use other REG events
as theme arguments. To correct this drawback, one must extract REG events using a
dynamic process. A straightforward solution with our current model would be run the
last two steps in a cyclic manner. Considering the complexity of REG events, this plan
would be very inefficient. In the next chapter, we present a model that completely solves
the recursive problem in a very compact and efficient way. Deeper discussions about
multi-class classifier and dependency features are developed in next chapter as well.



Chapter 4

Recursive Pairwise Model

In the previous chapter, we proposed a pairwise system that is in-between typical pipeline
models and joint models. Our model reaches a good compromise between effectiveness
and efficiency, with better performance than typical pipeline models as measured on
Genia task, along with a much smaller computational complexity than joint models.
However, the solution used to deal with recursive events is very rough, limited to possi-
ble relations between candidate entities and extracted SVT events. Compared to other
works that participated the BioNLP Genia task, this shortcoming greatly reduces the
advantage gained from pairwise extractions. In this chapter, we propose a RecUrsive
Pairwise Event Extraction (RUPEE) system that contains a central (trigger,theme)
pair extraction step, which is a dynamical process that incrementally assesses new can-
didate pairs. Our method yields the best results reported so far on the Genia event
extraction task of the BioNLP 2011 and 2013 challenges.

55



Chapter 4. Recursive Pairwise Model 56

!1)!(TRIGGER,THEME)!Pair!Extraction 

Evaluate!Most!Con<ident!Pair 

Initial!Candidate!Pair!Queue 

Update!Candidate!Pair!Queue 

2)#Binding!(ARGUMENT)!Pair!Fusion 

3)#REG!(TRIGGER,THEME,CAUSE)!Event!Extraction 

Preprocessing 

Figure 4.1: RecUrsive Pairwise Event Extraction (RUPEE)

4.1 Introduction

As described in Section 3.5, simply repeating the REG event extraction step would
largely increase the complexity of the algorithm. To solve recursive events in the pair-wise
framework without largely increasing the complexity, we developed RUPEE (RecUrisive
Pairwise Event Extraction). RUPEE avoids the repetition of REG event extraction by
extracting recursively the essential (trigger,theme) pairs in REG events. Applying
the same idea to Binding event, the extraction of complex event is then separated into
two parts: the extraction of essential pairs that determines the graph constituted by the
main (trigger,theme) pairs in a sentence, and the complement of additional arguments
that completes the full event extraction. Under this framework, Non-REG and REG
(trigger,theme) pair extractions are merged in a single step, which is simple and
efficient. We assume that recursive events constitute a directed acyclic graph, where the
ancestor of a candidate entity cannot be used as its argument. Both (trigger,theme)
pair extraction and REG cause assignment steps are implemented in a constrained
dynamic process that prevents the creation of cycles. Binding events do not have the
same additional argument as REG events, one needs to merge two essential Binding
pairs into a single event, but this process does not prevent discovering REG events nor
does it generate unnecessary candidate pairs. We keep the Binding argument fusion
step of the pairwise system.

We simplified the classifier because the benefit brought by the post-processing of the
SVM scores was not obvious in RUPEE. The new classifier only retains the SVMs in
one-vs-rest framework. These hyper-parameters are set individually, for each SVM, so
as to maximize the F1-score of the corresponding event type taken in isolation. In the
experimental results, the confusions between event classes are marginal: once an event
trigger is detected, it is assigned the correct class in the vast majority of cases. Therefore,
we believe that the shortcomings of the one-vs-rest framework are not responsible for the
ones of our system.



Chapter 4. Recursive Pairwise Model 57

We also investigated the detailed effect of the dependency path features (E-walk/V-
walk).Intuitively, V-walks, which encode the dependency path into a more human read-
able triplet, contain more useful information. And it is easier for one to reconstruct the
original dependency path from both V-walk and E-walk than just using one. Therefore,
we tested two assumptions: first, V-walk features are more relevant to the relation ex-
traction task, second, using all dependency path features is better than using only one
of them. Experimental results illustrate unexpected phenomenon and provide believable
evidence to overturn our assumptions made before. It also inspires us that combina-
tion of non-linear model and dense representation can be a promising future direction of
encoding dependency paths.

4.2 Improved Recursive Classification Framework

The Chapter 3 showed the benefits of extracting pairs compared to pipeline models that
separate trigger classification and edge detection in two steps. Our experiment confirms
our assumption that putting off the prediction of event trigger brings essential informa-
tion to extract potential triggers. Since our performance on SVT events is comparable
to joint models, we believe that pair extraction is a good balance between joint global
model and fine-grained decomposition. However, our pairwise model cannot capture
potential event triggers for recursive events.

We first recall how previous approaches solve this problem. Pipeline systems like TEES,
TEES 2.1, EVEX predict triggers before introducing any edges and assess all the possible
pairs between candidate entities. A post-processing step is applied in the end to ensure
that a non-protein argument must be an event. Similarly, Sætre et al. [42] extract
the entire event patterns based on the extracted triggers. They created 148 patterns
for REG events, where each pattern is handled by an independent classifier. Patterns
are specified with respect to the type and number of edges and arguments, for example,
single-argument REG events using Binding events as theme and single-argument REG
events using Gene_expression events as theme will be treated differently. Kilicoglu and
Bergler [34] proposed another solution by extracting REG event in a recursive top-
down fashion. Given a extracted REG trigger, when a potential sub-event argument
is detected, they will try to determine the validity of the sub-event. This is a dynamic
process, in which the most confident pairs are selected in each step. In the other hand,
UCLEED solves recursive REG events by jointly extracting them all. In addition to
observing all the possible pairs, this model requires heavy inference between candidate
edges and candidate entities to solve the extraction task.

If we integrate the solution proposed by TEES, TEES 2.1, EVEX in our pair extraction,
we have to observe all the possible directed pairs between candidate entities. This so-
lution brings obviously much computational complexity, which is equivalent to the joint
model without inference. Another solution extracts recursive events in a top-down man-
ner. However, it will make pointless predictions, when the algorithm finds any sub-event
that is not valid in the end. Finally, joint models like UCLEED consider a super-set
of candidates compared to our pairwise model. Since we are looking for a method that
enables recursive events extraction in pairwise models without high complexity, joint
models cannot provide any help.

In this section, we will introduce an approach that recursively extracts essential parts
of events by dynamically adding candidate pairs according to confidence of predictions.



Chapter 4. Recursive Pairwise Model 58

Compared to pairwise system, this new method merges the (trigger,theme) pair ex-
traction steps of Non-REG andREG events together, making the system more compact
and elegant. This method not only conserves the beneficial pairwise relation extraction,
but addresses the recursive problem efficiently with little additional complexity.

4.2.1 Recursive

As discussed above, there are two major categories of methods to solve the recursive
events problem: static methods and dynamic methods. Pipeline models that predict all
the possible edges between extracted triggers are statics method. The static approach of
extracting recursive events cannot narrow the search range, so that a full exploration is
inevitable. Dynamic methods contain two sub-types: models that take global relations
into account like UCLEED; models that solves decomposed sub-problems recursively like
Kilicoglu and Bergler [34]. Global dynamic models require a recursive inference on the
states of all the possible observations, which makes it the most complex model reported
so far. Therefore, we construct a dynamic model that locally handles recursive events.

We recall that the task is to assign a theme to each event. Assigning a cause to ex-
tracted REG events would not question the validity of previous extractions. Similar to
cause assignment, argument fusion for Binding events cannot question the validity of
extracted Binding (trigger,theme) pairs. All the changes brought by these two steps
can be dealt with post-processing. As both steps maintain extracted (trigger,theme)
pairs, (trigger,theme) pair extraction allows to determine the existence of events.
There is no need to match various event patterns in a dynamic process. Hence, dy-
namically extracting (trigger,theme) pairs is the most efficient way to solve recursive
events extraction problem in our task.

Top-down and bottom-up are two strategies of information processing and knowledge
representation. A top-down approach essentially breaks down a complex system to
gain insight into its sub-systems. Oppositely, a bottom-up approach puts together sub-
systems to model more complex systems. Compared to top-down approach, bottom-up
processing is the way humans build concepts from incoming sentences. We selected the
bottom-up approach to extract the recursive events in our model.

Algorithm 4 presents the dynamic recursive process that resolved recursive events with
small additional complexity. Starting from extract list of a candidate pair initialized by
all the pairs between candidate entities and proteins, we select each step the prediction
with the highest score. Each time a pair pαβ is predicted as an event, the algorithm adds
new candidate pairs {(ti, aα)}, where pαβ refers to a pair of trigger tα and argument aβ .
Notice that multiple events could share the same candidate trigger tα, which leads the
algorithm to add dynamically some already detected pairs into candidate set. Thus, we
logged all the detected pairs to ensure the termination of algorithm. In spite of detected
pairs, we also remove the pairs that might form circles with respect to detected events
because we assume that recursive events constitute a directed acyclic graph, where the
ancestor of a candidate entity cannot be used as its argument. The loop ends when there
is no undetected candidate pair left in a sentence.



Chapter 4. Recursive Pairwise Model 59

Algorithm 4 Extracting events with RUPEE
input sentence S, candidate entities TS = {tα}α and candidate argument AS = {aβ}β
1: initialize candidate pairs PS = {(tα, aβ), tα ∈ TS , aj ∈ AS}
2: initialize detected pairs DS = ∅
3: initialize extracted events ES = ∅
4: score and label the pairs in PS
5: while PS 6= ∅ do
6: select the pair pαβ ∈ PS with highest score
7: update PS ← PS − {pαβ}
8: update DS ← DS ∪ {pαβ}
9: if ŷαβ 6= None then

10: create event êαβ = (tα, aβ, ŷαβ)
11: update ES ← ES ∪ {êαβ}
12: update PS ← PS ∪ {(ti, tα)|ti ∈ TS}
13: prune PS ← PS −DS
14: censor pairs PS to avoid cycles with respect to ES
15: score and label the new {(ti, tα)} pairs
16: end if
17: end while
18: return extracted events ES

4.2.2 Merging the Trigger-Theme Steps

The previous pairwise model separates (trigger,theme) predictions of Non-REG and
REG events into two steps for the purpose of using Non-REG events as candidate ar-
guments in REG events extraction. Since the recursive algorithm introduced above
dynamically adds candidate pairs p between candidate entities t, we no longer need to
split the prediction of Non-REG and REG (trigger,theme) pairs in RUPEE model.
An arguable aspect is using different dependency features for Non-REG and REG
events. Indeed, it enables us to choose different features for those two categories of
events. For example, we used the dependency path features with different thresholds in
Non-REG and REG (trigger,theme) pairwise extraction steps. From Figure 3.4, we
can see that there is no remarkable difference between the distributions of Non-REG and
REG events. In fact, the difference between Positive_regulation and Gene_expression
is not larger than the difference between Binding and Gene_expression. Though the
evaluation results on BioNLP 2013 development set in Table 3.4 shown that REG pair
extraction prefers 3 whereas Non-REG prefers 4, recursive pairwise extraction could
have different performance because it faces different examples. Moreover, the optimal
threshold of middle step in pairwise system does not necessary lead to the best final
result of the complex event extraction system. Compared to the possible profit of using
different thresholds, we prefer to arrange all the pair extractions in a uniformed frame-
work. Note that it is possible to build a complex system, where each classifier (SVM)
uses different features for the same example pair. However, Van Landeghem et al. [54]
that used different feature sets for each fine-grained class, did not achieve competitive
final results. Finally, we created classifiers to solve all the (trigger,theme) pairs in an
unified framework using the same features.

The unified framework uses one multi-class classifier to predict candidate pairs among the
nine event types. Creating the training sets for the unified classifier is more complicated:
since they can take events as arguments, new pairs are added to PS by considering all the



Chapter 4. Recursive Pairwise Model 60

events already detected, as sketched in Algorithm 4. Hence, the set of training examples
is not known before training, since it depends on predictions of classifier. Training with
these pairs requires to use either online algorithms or complex search-based structured
prediction procedures, such as in Vlachos and Craven [65]. In this thesis, we used instead
a super-set PsupS that includes all the possible pairs. Notice that even with a perfect
classifier that always makes correct predictions, our algorithm could generate different
examples according to the evaluation order. Thinking about a sentence that contains
three events e1 = (T1, P1), e2 = (T2, P2) and e3 = (T2, e1) where {T1, T2} are triggers
and {P1, P2} are proteins. Suppose there are only two candidate entities t1 = T1 and
t2 = T2, evaluating candidate pair (t2, t1) before (t2, P2) will mask (t1, t2). Therefore,
we used the super-set that contains all the possible pairs the classifier will encounter no
matter what evaluation order is selected. The enriched training set is

PS = {pij = (ti, aj)|ti ∈ TS , aj ∈ AS} ∪ {piα = (ti, eαβ)|ti ∈ TS , ∃β : ŷαβ 6= None}

In addition to the uncertainty problem brought by evaluation order, we still have to
specify the label ŷαβ used in the above formula. We simply use the true label yαβ as
alternative. This allows to define all training examples beforehand and hence to use
standard batch SVM algorithms. The drawback is that, since extracted events in test
are not necessarily correct, using true labels during trainign creates a divergence between
training and testing scenarios, which can lead to degraded performance. However, as our
experiments show, this effect is marginal compared to the advantages of using fast reliable
batch training algorithms for SVMs.

4.2.3 Complexity

Though being rather minimalist, the pairwise structure captures a great deal of interac-
tions, and the simplicity of the structure leads to a straightforward inference procedure.
Compared to pipeline models, it only has a slight increase in computational complexity.
We denote m = card(TS), the number of candidate entities, n = card(AS), the num-
ber of annotated proteins and m′ the number of detected triggers. The complexity of a
pipeline model is O

(
m′(n+m′)

)
, whereas that of RUPEE is O

(
m(n+m′)

)
. This implies

more calls to the classifying mechanism, but this is not too penalizing, since SVM-based
classification scales well with the number of examples. Besides, this is still cheaper than
joint models such as the one introduced in Riedel and McCallum [19], whose complexity
is O

(
Rm(n2 + m)

)
, with R the number of iterations of the inference solver (it seems

that max(R) ≈ 10). As shown in Section 4.6, our system, with moderate complexity,
outperforms pipeline models and is competitive with joint ones.

4.3 Implementation

In the previous model, we used classifier with post-processing on SVM scores, which show
better performance than simple SVMs on BioNLP 2013 development set. Nevertheless,
the post-processing on SVM scores shown instable performance when evaluating under
the new recursive framework. Therefore, SVMs in one-vs-rest framework, was finally
selected for the recursive model. More experiments of different classifier variants are in
Chapter 5.



Chapter 4. Recursive Pairwise Model 61

In Section 3.3.2.2, we discussed the effectiveness of E-walk/V-walk encoding in relation
extraction. Follow the discussion; we selected the valuable dependency path by trimming
at each step. The results proved the success of this strategy. In this section, we pursue
the discussion about the methods encoding the dependency path. Though E-walk and V-
walk encoding methods are very similar, they give different view of the dependency path.
We looked into the implementation detail of E-walk and V-walk and ran experiments
with only one of them.

4.3.1 Simplified Classifier

In Section 3.3.1, we used SVMs in one-vs-rest settings to solve the multi-class classifica-
tion problem. Compared to the standard one-vs-rest framework, the major difference we
made is selecting different hyper-parameters for each SVM via cross-validation. Denote
that we selected hyper-parameters that achieve the highest potential F1-score computed
via a list of thresholds. This solution was initially designed hope to get better result
via threshold tuning in later steps. Even for the simplified classifier, this method brings
slightly better result than selecting hyper-parameter with respect to optimal F1-score
without thresholds on BioNLP 2013 test set. Hence, we kept this in our classifier.

Under the one-vs-rest framework, the classifier corresponding to a class was trained
using examples belonging to all the other classes as negative examples. Consequently,
the positive and negative classes are unbalanced. It is much worse in our task, because
we now increase amount of examples in None type. In the trigger detection step in
typical pipeline models, the largest proportion of positive examples to negative example
will be less than 1 : 10. This number becomes less than 1 : 100 in (trigger,theme) pair
extraction step for RUPEE. Due to the highly unbalanced data sets, we used C+/C−

that specify different costs for positive and negative examples. The final decision rule
simply consists in predicting the class corresponding to the highest SVM score.

4.3.2 Edge-Walk vs Vertex-Walk

As mentioned before, we argued the effectiveness of representing dependency path by
triplet encoding (E-walk/V-walk). Figure 2.5 illustrates the triplet formatting: from
the dependency parse given on top, three V-walk triplets and two E-walk triplets are
defined. Those triplets are further encoded into tuples (dep-tag, token, dep-tag) for E-
walk; and (token, dep-tag, token) for V-walk. In these tuples, tokens are described by
stemmed token and POS tags, and dep-tags are dependency labels. Note that we use an
indicator PROT instead of stemmed token when token belongs to a protein. In order to
increase the generalizability of feature, we created new features, which are tuples that
only contain pairs of the triplets.

The dependency path is a sequence constituted by staggered edge nodes and vertex nodes.
Before being inserted into feature vector as a bag-of-triplets, E/V-walk can be treated
as two triplet sequences that cover the dependency path by a sequence of overlapping
triplets, where the first element of the jth triplet is the last element of the j − 1th
triplet. The only difference between them is their starting node that V-walks start at
token, E-walks start at dependency tag. Ignoring the difference between dependency tags
and words, both walks contain the equivalent information to reconstruct the original
dependency path. Nevertheless, the bag-of-triplets process breaks the sequence and



Chapter 4. Recursive Pairwise Model 62

linear classifier does not aware of correlations between features. The quality of E/V-walk
features could be discussed via single triplet. Triplets in V-walk sometimes directly solve
the event extraction problem, such as regulation,PREP_of,promoter has very similar
form to the task definition. As triplets of V-walk contain two tokens, whereas triplets
of E-walk contain only one token, V-walk brings obviously more information than E-
walk according to the information entropy theory. Therefore, we made assumption that
V-walk features are more important than E-walk feature. Thus, we run experiments to
measure their importance by the loss incurred by their withdrawal from the model. See
Section 4.4.2 to get the detailed results.

4.4 Experiments

To demonstrate the performance and efficiency of RUPEE, we ran experiments on the
BioNLP 2011 and 2013 data-sets. We also ran UCLEED on the BioNLP 2011 data-sets
to compare training times. Besides, we ran experiments to study the relevance of some
choices related to classifiers or features.

4.4.1 Classifiers

Compared to the previous pairwise model, we simplified the classifier in RUPEE. In this
classifier, we tune the hyper-parameter (C+/C−) for each SVM individually to optimize
the potential F1-score of corresponding class. In order to prove the effectiveness of this
classifier, we also ran experiments with SVMs using identical hyper-parameter and SVMs
optimize F1-score with thresholds equal 0. We tested the four classifiers under RUPEE
with three data-set configurations listed in Table 4.1.

Table 4.1: Data-set configurations used to test different classifiers.

Training set Test set
1) BioNLP11 train&BioNLP11 development BioNLP11 test
2) BioNLP11 train BioNLP11 development
3) BioNLP11 train&BioNLP11 development BioNLP13 test

BioNLP13 train&BioNLP13 development

All the features and cross-validation settings are identical to the ones presented in the
previous chapter.

Table 4.2: Total F1-scores for classifiers using different classifiers with different data-
set configurations.

BioNLP11 test BioNLP11 devel BioNLP13 test
Same SVMs 55.1 52.5 53.9
Diff SVMs -/- -/- 54.3
Potential Diff 55.7 52.8 54.4
Combination 56.0 53.3 54.2

Table 4.2 lists the total F1-scores of four classifiers. All the four classifiers do not have
significant differences on different data-sets. The SVMs with combination of scores, which



Chapter 4. Recursive Pairwise Model 63

was selected in our pairwise model, returned the best performances on the BioNLP 2011
test set and development set. However, with limited number of trials on the BioNLP
2013 test set using the test server, we found that the advantage of the SVMs with
combination of scores is not systematic. Consider the proportion of abstracts and full
articles in these data-sets listed in Table 1.2, the data distributions of BioNLP 2011
development set and test set are closer to the training set than the BioNLP 2013 test
set, which only contains full articles. Hence, we think that the better performances of
SVMs with combination of scores on BioNLP 2011 development and test sets are caused
by better fitting the training set. But it leads to worse performance on the BioNLP
2013 test set. Based on these limited trials on the test set, we selected the classifier
that achieves the best total F1-score on the BioNLP 2013 test set. Table 4.3 lists the
detailed results of the four classifiers returned by the test server of the BioNLP 2013.
Generally speaking, most of the F1-scores are very similar between every classifier, where
the classifier achieves highest recall on one class usually achieves the lowest precision on
the same class. The F1-scores only have big differences on Transcription events and
Protein_catabolism events. Protein_catabolism class is a minor class that contains less
than 50 examples, of which result can be highly variable. However, it is surprising that
the performances on Transcription events are so different. The efforts made on classifiers
are devoted to improve the final performance, but their improvements are not significant.

Comparing the simplest SVMs with identical hyper-parameter and the most complex
SVMs with post-processing, we find that these two classifiers achieve the best recall and
best precision respectively. Other two classifiers are compromised solutions between the
two extreme situations. Except for SVMs using identical hyper-parameter, all other three
classifiers have similar performances. The first and third rows of Table 4.2 show that the
improvements from SVMs with same hyper-parameters to SVMs with different hyper-
parameters are systematic. Consider the computing cost and final F1-score, we selected
SVMs using different hyper-parameter to optimize potential F1-score in our system.

It is surprising to see the post-processing with SVM scores failing to achieve a better
result. Post-processing of SVM scores was proposed to smooth and ameliorate the de-
cisions made by the binary SVMs that are trained individually. Basically, it is designed
to solve the conflicts between decisions in the multi-class classification problem. We
suspected that the failure of SVMs with post-processing is caused by the specific dis-
tribution of examples in each event type. Confusion matrix, also known as contingency
table, allows the visualization of the performance of the classifier. Given a classifier and
a set of examples to evaluate, confusion matrix CM summarizes the number of examples
with respect to their true class and predicted class.

CM[i, j] = |{n|ŷn = i, yn = j}|

We computed the confusion matrix on training and development sets used in BioNLP
2011 and 2013 via cross-validation. During the cross-validation, one confusion matrix is
computed using a subset as test set and classifier trained on the other subsets. Finally,
the global confusion matrix is created by adding all the confusion matrices computed
above. Note that we did not compute the confusion matrix on test set because it is not
accessible. Table 4.4 shows that the vast majority of errors are due to the detection of
an event when there is none or to the absence of detection of an existing event: when an
event is detected, its correct type is predominantly predicted.



Chapter 4. Recursive Pairwise Model 64

Table 4.3: F1-scores on the test set of the BioNLP 2013 GE task using different
classifiers. Same SVMs refers to SVMs use the same hyper-parameter, Diff SVMs
refers to SVMs use different hyper-parameters, Potential Diff SVMs refers to SVMs

use different hyper-parameters that optimize potential F1-score.

`````````````̀Event Class
Classifiers Same SVMs Diff SVMs Potential Diff SVMs Combination

Gene_expression
F1-score 84.2 85.0 85.1 84.6
recall 78.5 81.1 80.5 81.4
prec. 90.8 89.5 90.4 88.1

Transcription
F1-score 68.2 65.2 62.8 61.5
recall 58.4 59.4 64.4 59.4
prec. 81.9 72.3 61.3 63.8

Protein_catabolism
F1-score 64.5 64.5 68.8 72.7
recall 71.4 71.4 78.6 85.7
prec. 58.8 58.8 61.1 63.2

Localization
F1-score 56.8 56.0 57.7 57.5
recall 42.4 42.4 43.4 44.4
prec. 85.7 82.4 86.0 81.5

Phosphorylation
F1-score 81.4 81.4 81.8 81.5
recall 79.4 80.6 81.3 82.2
prec. 83.6 82.2 82.3 81.8

SVT
F1-score 78.3 78.5 78.3 78.0
recall 70.7 72.6 73.0 73.2
prec. 87.8 85.5 84.6 83.5

Binding
F1-score 42.2 42.9 42.4 42.4
recall 39.9 43.2 41.4 43.8
prec. 44.6 42.5 43.4 41.0

Regulation
F1-score 30.2 31.2 31.8 31.7
recall 25.4 28.1 30.6 28.8
prec. 37.2 35.2 33.1 35.2

Positive_regulation
F1-score 44.7 46.1 46.3 46.3
recall 37.4 40.5 39.7 41.3
prec. 55.5 53.4 55.5 52.7

Negative_regulation
F1-score 43.8 43.6 43.6 43.5
recall 36.9 39.0 38.0 39.2
prec. 53.8 49.5 51.0 48.8

REG
F1-score 42.3 43.2 43.2 43.3
recall 35.4 38.3 37.9 38.9
prec. 52.3 49.5 50.2 48.9

EVENT ALL
F1-score 53.9 54.3 54.4 54.2
recall 46.8 49.4 49.1 50.1
prec. 63.4 60.2 60.8 59.0

Chapter 4. Recursive Pairwise Model 65

Table 4.4: Confusion matrix for RUPEE on the BioNLP 2013 GE task, computed by
cross-validation on the training and development sets

Prediction

Truth N
on

e

G
en
e_

ex
p

T
ra
ns

P
ro
_
ca
t

P
ho

sp

Lo
ca
l

B
in
d

R
eg
ul

P
os
_
re
g

N
eg
_
re
g

None 223460 404 163 27 42 60 296 390 799 397 226038
Gene_exp 440 2741 13 0 0 17 2 1 43 5 3262
Trans 186 16 565 0 0 0 0 4 15 0 786
Pro_cat 30 0 0 150 0 0 0 0 1 0 181
Phosph 76 0 0 0 413 0 0 0 0 0 489
Local 114 20 0 0 0 398 4 0 1 2 539
Bind 507 0 0 0 0 1 1470 2 0 1 1981
Regul 453 0 0 0 0 0 1 813 33 4 1304
Pos_reg 1245 42 10 0 0 0 2 67 2456 7 3829
Neg_reg 555 7 2 1 1 0 0 46 11 1176 1799

227066 3230 753 178 456 476 1775 1323 3359 1592

We recall that we used a single hyper-parameter C to train the logistic regression clas-
sifiers. Because the logistic regression classifiers use output scores from SVMs as input
data, their feature space is very small compared to the total number of training examples.
Hence, we ignored the hyper-parameter problem, which is used to control the regular-
ization. It is possible to get a better result if we optimize logistic regression classifiers in
the same way as SVMs, that is, using asymmetric costs instead of C and setting different
hyper-parameters for each class.

4.4.2 Features

We discussed about the quality of different encodings for the features of the dependency
path in Section 4.3.2. A hypotheses was made that V-walk features are more impor-
tant than E-walk features. As the final score represents the performance of final events
that involves the Binding argument fusion and REG cause assignment, measuring the
benefits of joint feature via final score will be difficult due to the complexity of system.
Hence we focused on the scores for decomposed (trigger,theme) pairs, which directly
reflect the performance of recursive pairwise step. Besides, we also want to eliminate the
influence of calibration of classifier between precision and recall. Therefore, we drawn the
precision-recall curve by manually setting the threshold used by the SVM corresponding
to the None class. Notice that, changing this threshold cannot make the algorithm reach
the limit of precision or recall, because there are still minor false predictions between
different event types and over prediction made by our algorithm when eliminating correct
pairs to prevent loop. All the scores were obtained by training classifier on training set
from BioNLP 2011 and 2013 and evaluating on the development set from BioNLP 2013.

Figure 4.2 displays four precision-recall curves obtained with all the features, without
V-walk features, without E-walk features and without all the dependency path features.
Without all the joint features, we observed a huge drop in performance, combined with

Chapter 4. Recursive Pairwise Model 66

Figure 4.2: Precision-recall curve for (trigger, theme) classification, with or with-
out joint features, on the BioNLP 2013 development set. Level curves of F1-score are

shown in the background.

a very bad calibration of the classifier that achieves 27.7 F1-score. That means joint
features are crucial to the relationship resolution. Without E-walk , we observed a sig-
nificant drop in performance, which is 58.6 with calibration and will not exceed 60 when
being better calibrated. Without V-walk , the performance is nearly the same as using
all the features. We believe that E-walk plays a major beneficial role among the joint
features, whereas V-walk has a marginal effect. This is opposite to what we supposed
before.

A possible explanation is that V-walk is too sparse to be observed by a classifier in our
task. Let us look at the feature dimensions of E/V-walk in training set we used here:
V-walk contains 87139 features whereas E-walk contains 54030 features. These numbers
involve the features using POS and stemmed tokens in place of tokens in triplets. Since
the number of POS is fixed while number of tokens increases with the size of corpus, it is
better to compare the dimensions of E/V-walk with only stemmed token, which is 81874
for V-walk and 42059 for E-walk . Similar to projecting vectors from low dimension space
to high dimension space, V-walk is theoretically more expressive caused by the larger
feature dimension. Though, we made the assumption that V-walk is less effective because
its sparsity, it is necessary to study the variation of the data matrix with respect to the
class labels. Due to the time limit of my PhD, we did not finish this job.

Chapter 4. Recursive Pairwise Model 67

Table 4.5: F1-scores on the test set of the BioNLP 2011 GE task

Event UCLEED SEARN TEES Pipeline RUPEE pairwise
Class counterpart
SVT 73.5 71.8 72.1 71.8 74.0 74.3
BIND 48.8 45.8 43.3 40.0 50.5 49.1
REG 43.8 43.0 42.7 35.7 45.1 41.4
ALL 55.2 53.5 53.3 50.0 55.6 54.2

4.4.3 Model Comparison

In this section, we evaluate empirically our system in the framework (data, annotations
and evaluation) of biomedical event extraction defined in the GE tasks of the BioNLP
challenges. More precisely, we present results on the test sets of the fresh 2013 GE task,
and of the 2011 edition to compare to joint methods. As in Chapter 3, we trained our
model on the merged sets that contain documents from training and development sets.
And we also merged BioNLP 2011 and 2013 training and development sets to train the
classifiers that participate in the 2013 shared task.

In order to assess the efficiency of our modeling choices, we also implemented a pipeline
counterpart system, following the structure of the TEES approach [23–25] but using
the same feature set, preprocessing and a similar post-processing as our system. This
pipeline system comprises four steps:

1. trigger classification, which assigns event types from Y to candidate entities
ti ∈ CS using the same multi-class SVMs classifier as RUPEE.

2. edge detection, which identifies the edges between extracted triggers and proteins
and between REG triggers and all the triggers; labels from Yedge = {theme,cause, None}
are assigned to those pairs using multi-class SVMs classifier as step 1.

3. Binding theme fusion, identical to as in Section 3.2.2.1.

4. theme-cause fusion, given two predicted pairs (ti, theme : aβ), (ti, cause : aγ),
this step decides whether they should be merged into a single event (ti, theme :
aβ, cause : aγ).

We used features similar to the ones used in the pairwise model for RUPEE and its
pipeline counterpart. Remind that the pairwise model uses different thresholds in first
and third steps. Since RUPEE fuses these two steps together, we used threshold l ≤ 4 in
recursive (trigger,theme) pair extraction step. Similarly, we used the same threshold
in edge detection step in the pipeline counterpart. All the other features are exactly the
same as what we used in Chapter 3.

4.4.3.1 BioNLP 2011

Table 4.5 lists the results of RUPEE, its pipeline counterpart, our pairwise model in-
troduced in the previous chapter, and those of UCLEED [19] and TEES [24], which are
respectively the best performing joint model and best pipeline on this task. We also

Chapter 4. Recursive Pairwise Model 68

Table 4.6: F1-scores on the test set of the BioNLP 2013 GE task

Event Type or Class TEES 2.1 EVEX Pipeline RUPEE pairwise
counterpart

Gene_expression 82.7 82.7 83.9 85.1 85.3
Transcription 55.0 55.0 61.7 62.8 61.7
Protein_catabolism 56.3 56.3 66.7 68.8 62.5
Phosphorylation 72.6 71.5 81.8 81.8 79.9
Localization 63.3 60.7 56.9 57.7 60.2
SVT 74.9 74.5 79.0 79.6 79.2
BIND 43.3 42.9 41.6 42.4 38.3
Regulation 23.0 23.4 23.1 31.8 28.1
Positive_regulation 38.7 39.2 36.5 46.3 40.2
Negative_regulation 43.7 43.9 38.1 43.6 37.9
REG 38.1 38.4 35.1 43.2 37.9
ALL TOTAL 50.7 51.0 50.8 54.4 51.2

added SEARN [65], which is a hybrid between them. The results for UCLEED, TEES
and SEARN models are reproduced from [19, 24, 65] respectively.

In the previous chapter, we did not give a counterpart model for 2011 data, so that
the benefit of pairwise extraction on 2011 data is not clear. Thought the counterpart
model in this chapter is not designed based on pairwise model, we can still compare them
to judge the benefits of feature and model structure. Both pairwise and RUPEE model
got much higher scores than the pipeline counterpart on Non-REG events, which shows
the advantage of pairwise extraction. Moreover, the pairwise model outperforms pipeline
counterpart on REG events, which can extract recursive events. It might be because
the poor (trigger,argument) pair performance of counterpart model largely hurt the
final performance. Comparing the pairwise model and RUPEE, the recursive process got
large improvement on REG events over the static model.

Compared to other models, the benefits of the pairwise structure and the recursive pro-
cess are very obvious, thereby outperforming the overall F1-score of all the selected
models in this section. To the best of our knowledge, our model thus reaches the best
overall performance reported so far on this data set for a single model. We do not
compare with the results of FAUST [21], which achieved the best F1-score on this task
(56.0) because this is an ensemble of various models of UCLEED and of the Stanford
system [17], which makes it an unfair comparison. By combining the use of the simple
pair structure between triggers and arguments with a recursive prediction process, our
approach is able to outperform pipeline models and to be at least at par with models
relying on much more sophisticated structures. For this task, it is thus highly beneficial
to consider pairwise interactions from beginning to end, but more complex dependencies
seem not to be essential, especially since they come at a higher computational cost.

4.4.3.2 BioNLP 2013

Table 4.6 lists the detailed test F1-scores, as returned by the official challenge test server
(using the default approximate span and recursive matching evaluation setting). We

Chapter 4. Recursive Pairwise Model 69

Table 4.7: Binding (trigger,theme) pair scores and event scores on BioNLP 2013
test set

TEES 2.1 EVEX Counterpart RUPEE pairwise BioSEM
Binding-theme recall 57.9 56.9 54.6 56.7 62.0 57.7
pair extraction prec. 60.5 61.2 69.5 68.5 61.5 70.1

F1-score 59.2 59.0 61.1 62.0 61.7 63.3
Binding recall 42.3 41.1 39.6 41.4 41.7 47.5
full event prec. 44.3 44.8 43.7 43.4 33.7 52.3

F1-score 43.3 42.9 41.6 42.4 37.3 49.8

compare our model to the winner of the challenge, EVEX [61], and of the best runner-
up, TEES 2.1 [25], which are both pipeline approaches.

Our approach is slightly below TEES 2.1 on BIND events, but overall, it outperforms
all competitors significantly (by more than 3%), with a wide margin on REG events.
Different from the results on BioNLP 2011 test set, our pipeline counterpart has an
overall performance similar to EVEX and TEES 2.1, while being better for SVT and
worse for BIN and REG events. These disparities are due to the differences in features
and in processing details. Consider that we selected the thresholds of dependency path
features on the development set of BioNLP 2013, our features are more powerful on 2013
test set than 2011 test set. The benefits of the pairwise structure and the recursive process
are demonstrated by the considerable improvement upon the pipeline counterpart (using
the same features, pre- and post- processing). In particular, the recursive prediction
process run on REG events brings about very substantial improvement (more than 5%
over the pairwise model, more than 8% over the pipeline counterpart). We list the results
of decomposed Binding (trigger,trigger) pairs and Binding full events of RUPEE,
its pipeline counterpart, the pairwise model, the winner in 2013, the best runner up
and the system that achieved best result on Binding events in Table 4.7. Comparing
three models proposed by us, the recalls and precisions of decomposed pairs and full
events of Binding events are positively correlated. It is because they used the same
classifier and features in Binding theme fusion step. RUPEE got the best among these
three models because of a better calibration between precision and recall in Binding
pair extraction. TEES 2.1 and EVEX have the same behavior, but EVEX has worse
precision in pair extraction but better precision in full event extraction than RUPEE. It
suggests that our weak Binding result is cause by Binding theme fusion step. BioSEM,
which got the best result on Binding event, is a rule based system that extract events
through learned patterns in predefined forms. These patterns extract multi-argument
events jointly under the restriction of predefined forms. Different to the remarkable high
recall in full event extraction, recall on pair extraction of BioSEM is just at average level
among the listed approaches. As a rule based system, it achieved the best precision in
both pair extraction and full event extraction. We believe that the success of BioSEM
is because Binding events require to be jointly extracted and their predefined symbolic
forms lead to a good balance between precision and recall.

Figure 4.3 displays the precision-recall curves for total (trigger, theme) pair extrac-
tion of all the classes, that is, before the post-processing that is common to the two
approaches. We believe that the difference between pipeline counterpart and RUPEE on
development set is statistically significant, which is consistent with their performances on
test set. The positions and the F1-scores of the actual classifiers are marked in bold, and

Chapter 4. Recursive Pairwise Model 70

Figure 4.3: Precision-recall curves for (trigger, theme) classification by RUPEE
and its pipeline counterpart, on the BioNLP 2013 development set. Level curves of

F1-score are shown in the background.

the level curves of F1-scores are displayed in the background. Note that these F1-scores
are not necessarily maximal since the classifiers are not calibrated on the test set. The
maximal values of recall are moderate, illustrating that present systems fail to retrieve
events. Clearly, except for the small values of recall or precision that lead to very low
F1-scores, RUPEE dominates the pipeline model.

4.4.3.3 Training Duration

In this last section, we propose to illustrate the lower complexity of our approach com-
pared to UCLEED by providing durations for training both systems on BioNLP 2011
GE. These timings do not involve preprocessing but only running cross-validation on the
training set and evaluation on the development and test sets. For UCLEED, we used the
code (in java & scala) provided by the authors on github.com/riedelcastro/ucleed
and we chose BioNLP 2011 GE because this code was primarily designed to run on it. Our
code, in python, is publicly available from github.com/XiaoLiuAI/RUPEE. Experiments
were conducted on the same computer, with a quad-core Intel Xeon CPU and 16GB
of RAM. Both codes are multi-threaded and used all 4 threads simultaneously. Under
these conditions, UCLEED requires around 8h30min to run its 10 epochs, while our code
completes training in about 30min. UCLEED might be faster by using feature caching,
but we had to disable it because it was exhausting RAM. Some of these differences may
be due to implementation choices, but we believe that the 15-fold speed increase (for
around 800 training documents) is at least partially due to the lower complexity of our
approach.

 github.com/riedelcastro/ucleed
github.com/XiaoLiuAI/RUPEE

Chapter 4. Recursive Pairwise Model 71

4.5 Conclusion

In this chapter, we introduced the RecUrsive Pairwise Event Extraction (RUPEE) model
that solves the recursive events extraction problem by dynamically extracting essential
pairwise structures from text. This model keeps the principle of pairwise extraction
described in the previous chapter, without resorting to the complex inference process of
joint models. Thanks to the great improvement on REG events brought by recursive
extraction, our model reaches the best overall F1-score reported so far on the BioNLP
2013 and the BioNLP 2011 test sets for a single model. In addition, we merged the
pairwise extraction of all the events together, which makes the model simpler than our
previous model.

In this model, we simplified the classifier by removing the post-processing of normalized
SVM output scores. The experiments shown that this classifier works as well as the SVMs
with post-processing. Although it could be possible to improve the performance by using
more refined post-processing methods or multi-class classifiers that directly optimizing
the global F1-score, the confusion matrix shows there is little space to improve by this
type of tuning.

After solving the recursive events extraction problem, the major drawback of this ap-
proach becomes the Binding event extraction. Compared to TEES 2.1, EVEX, which
solve the multi-argument Binding events in similar way as our model, the performance
our Binding theme fusion step is relatively poor. Since we used standard binary SVM
to solve this problem, using a fine-tuned classifier (SVM with C+/C−) is a quick solution
to get significant improvements. However, BioSEM, which got the best Binding perfor-
mance, extracts events using patterns in predefined forms that enable to extract Binding
events jointly. We suppose that better Binding event extraction requires a better way
to handle the multi-argument (triplet) structure.

Besides development of new model, we also ran experiments to confirm the effectiveness
of dependency features. V-walk , which is more expressive than E-walk , shown surprising
effect in pairwise extraction. One possible reason is that V-walk features are too sparse
because it involves two tokens in triplets. Diverse tokens hurt the generalizability of
V-walk features, thus V-walk features are ineffective in classification. We did not further
study the variation of the data matrix of E/V-walk features due to the limit of time. The
assumption about the sparsity of V-walk needs to be confirmed. We suggest to involve
continuous vectorial representation of semantic units to solves this problem. In this
approach, tokens, dependency tags and even the whole triplet of E/V-walk are learned
from a large corpus or knowledge base, where similar semantic units have similar vector
representations. Besides, it is possible to represent the whole dependency path using
semantic composition methods, so that sequence information can be completely kept.

Chapter 5

Variations

5.1 Introduction

In previous chapters, we introduced our best model as well as what are, for us, the
optimal features and classifiers for the biomedical Genia event extraction task. After
getting this best model and optimal classifiers, we also tested many other solutions,
some of which are presented in this chapter. We evaluated most of these solutions
directly on the test set. Even if those variants were not necessarily improving the
extraction performance, we believe that they carry some scientific interest and could
perhaps be eventually successful with more work in slightly different settings. That is
the reason why we chose to detail three of them in this chapter.

As described in Section 4.3.1, we did not use the SVMs with post-processing in our best
recursive pair-wise model since it does not help to improve the final performance. In Sec-
tion 5.2, we list the post-processing approaches we tested along with the standard SVMs
in one-vs-rest framework. We tested different normalization methods that map the out-
put score into the interval (0, 1), different thresholds and different optimization methods
that enable to optimize the F1-score without normalization. Previous models [20, 65]
show that incorporating previous predictions as features for succeeding predictions im-
proves the performance over baseline in sequence labeling. Section 5.3 introduces how
we applied this idea by merging the previous predictions into feature vectors following
similar principles as previous works.

The sparse data problem is known to be quite pervasive in NLP, because of the atomic
symbol representations. The results of our experiments using different dependency path
encoding methods indicate that the sparsity problem is also important in the biomed-
ical event extraction task we target. In order to solve it, many methods have been
proposed to represent words by continuous vector features, which are learned based on
observed co-occurrence patterns. Typical learning approaches try to learn a low dimen-
sion representation using techniques such as Clustering, Latent Dirichlet Allocation [66],
or Singular Value Decomposition. However, these models are linear, while the semantic
relations can be non-linear. Recently, some studies [67, 68] focus on using deep learning
techniques, which are non-linear neural networks, to learn these semantic representations.
We applied one of the deep learning models to get continuous vector representations from
a large unlabeled biomedical corpus and integrated them into the linear classifier of our

72

Chapter 5. Variations 73

recursive pair-wise model. Section 5.4 introduces the details of the deep learning model
we used and how we integrated the learned vectors into linear classifiers.

5.2 Classifier

The one-vs-rest framework of SVMs is not consistent, since there is no reason to believe
that the scores fk in (3.3) are calibrated, and thus that the majority vote makes sense.
Besides, in this framework, each classifier is trained to optimize a loss function that is
different from the F1-score. As described in Chapter 3, we solved the multi-class classi-
fication problem by tuning decision thresholds on the normalized SVM output scores to
optimize the micro F1-score of all the classes. SVMs used in one-vs-rest framework are
called main classifier in this approach. However, we found that this method does not
necessarily bring significant improvement to our recursive pair-wise model. We tested dif-
ferent normalizing methods, thresholds selection strategies and different main classifiers
to evaluate their effects, compared to our basic model on the BioNLP event extraction
task. We present these experiments in this section.

5.2.1 Output Normalization

In this section, we introduce two approaches that we used to normalize the output scores
of the main classifier. Similar to the method used before, both of these two approaches
map the output score to the (0, 1) interval through logistic function. The first method
was proposed by Duan et al. [58], and is a soft-max method that optimizes the probability
of a correct prediction by scaling the output scores of corresponding classes. The other
method is a multinomial logistic regression classification, which is similar to a one-vs-rest
framework but optimizes a global likelihood instead of a loss function of each class.

5.2.1.1 Soft-Max

Given an example xn described by its K-dimensional vector of SVM scores fn, we can
obtain the posterior probabilities through a soft-max function

Pnk =
exp(wkfn(k) + w′k)

zn
,

where fn(k) is the output score of the kth SVM and zn =
∑K

k=1 exp(wkfn(k) + w′k)
is a normalization term that ensures that

∑K
k=1 P

n
k = 1. The parameters of the soft-

max function (w1, w
′
1), . . . , (wK , w

′
K) can be designed by minimizing a penalized negative

log-likelihood function,

arg min
w

E = 1
2‖w‖2 − C

∑N
n=1 logPnyn (5.1)

∀k ∈ {1, . . . ,K} , wk, w
′
k > 0 , (5.2)

where ‖w‖2 =
∑K

k=1(w
2
k + w

′2
k), yn is the true label of example xn and C is a positive

regularization parameter. We assume that the score fn(k) and the probability of example
xn is in class k are positive correlated. Therefore, we set positivity constraints on wk.

Chapter 5. Variations 74

By introducing the substitute variables, sk = log(wk) and s′k = log(w′k), the constrained
optimization problem can be transformed into an unconstrained one and can be solved
using gradient based methods. The first-order derivatives of the objective function with
respect to the substitute variables can be computed using the following formulas

∂E

∂sk
=

∂E

∂wk

∂wk
∂sk

=
(
wk + C

∑
yn=k

(Pnk − 1)fn(k) + C
∑

yn 6=k P
n
k fn(k)

)
wk (5.3)

∂E

∂s′k
=

∂E

∂w′k

∂w′k
∂s′k

=
(
w′k + C

∑
yn=k

(Pnk − 1) + C
∑

yn 6=k P
n
k

)
w′k . (5.4)

We used the algorithm L-BFGS-B [69], provided by SciPy1 to optimize the objective
function.

5.2.1.2 Multinomial Logistic Regression

Multinomial logistic regression is a classification method that generalizes logistic regres-
sion to multi-class problems. Note that wk is the parameter vector for the class k in
multinomial logistic regression classifier. Multinomial logistic regression classification
method is similar to the soft-max method mentioned above, where posterior probabili-
ties are estimated through a soft-max function except that all the output scores are used
for computing each probability

Pnk =
exp(wkfn)

zn
,

where wkfn is the dot product of weighting vector wk and the vector of scores fn, zn =∑K
k=1 exp(wkfn) is a normalization term. We used the implementation provided by

Statsmodels2 in our test. This implementation uses a Newton method to optimize the
likelihood of the model. The main difference between multinomial logistic regression
and logistic regression in a one-vs-rest framework is that multinomial logistic regression
imposes the constraint that all the predicted probabilities sum to 1, whereas parameters
are estimated in separate models under a one-vs-rest framework. Figure 5.1 shows the
difference between multinomial logistic regression and logistic regression in one-vs-rest
framework.

5.2.2 Threshold Selection

With normalized output scores, our last step is tuning the threshold to maximize the
objective function. Denote gk the normalized output of class k, we tested two thresholds
tuning functions. In paragraph 3.3.1.2, we calibrated the normalized output by adding a
threshold to each class, where the final decision is made by ŷ = arg maxk(gk + θk). This
method calibrates each class with a specified threshold. However, Table 4.4 shows that
the vast majority of errors are between None class and event classes. Hence, we have a

1Available from www.scipy.org.
2Available from http://statsmodels.sourceforge.net/

www.scipy.org
http://statsmodels.sourceforge.net/

Chapter 5. Variations 75

(a) Multinomial Logistic Regression (b) Logistic Regression in One-vs-Rest

Figure 5.1: SVM separating hyper-planes

new solution, which only calibrates the difference between None class and event classes.

gŷ′ = max
k 6=None

gk (5.5)

ŷ′ = arg max
k 6=None

gk (5.6)

ŷ =

{
None if θ × gŷ′ < 1− θ
ŷ′ if θ × gŷ′ ≥ 1− θ (5.7)

In this method, we do not change the event class when an event is detected. Moreover, we
also tested another method that tunes the transformed output score by a linear function:

ŷ = arg max
k

(θ
′
kgk + θk) (5.8)

To optimize the objective function and learn the Θ parameters, we used algorithms that
do not need derivatives or second derivatives such as the Brent’s method [64] provided by
SciPy library. Unfortunately, the tuning function 5.8 always leads to numerical problem
during the optimization no matter which optimization method was used.

5.2.3 Without Normalization

In previous sections, we normalized the output scores of SVMs by different logistic trans-
forms to ease the search of decision thresholds. We also tested methods without this nor-
malization, that is, using optimization algorithms that are not sensitive to the interval
of output scores of SVMs to optimize the objective function, which is the micro-average
F1-score. All the methods we used are implemented in SciPy.

fmin minimizes the objective function using the downhill simplex algorithm, which was
implemented following [70, 71]. Unlike other numeric methods, this method searches the
function space by creating simplexes, which is a special polytope of N + 1 vertices in N
dimension, via heuristics.

Chapter 5. Variations 76

fmin_powell minimizes the objective function using a modified Powell’s method, which
was implemented following [72, 73]. It minimizes the objective function by a bi-directional
search along each search vector, which are usually initialized as the normals aligned
to each axis. The search result is a linear combination of the search vectors and the
displacement of each step is added to the search vectors list. Meanwhile the search
vector that is closest to the new search direction is deleted from the search vector list.

fmin_cg minimizes the objective function using a nonlinear conjugate gradient algo-
rithm, which was implemented following the book [74].

fmin_bfgs minimizes the objective function using a BFGS algorithm, which was im-
plemented following the book [74].

5.2.4 Experiments

To observe the variation of the performances of different classifiers, we tested the algo-
rithms with three data-set configurations listed in Table .

Table 5.1: Data-set configurations used to test different algorithms.

Training set Test set
1) BioNLP11 train&BioNLP11 development BioNLP11 test
2) BioNLP11 train BioNLP11 development
3) BioNLP11 train&BioNLP11 development BioNLP13 test

BioNLP13 train&BioNLP13 development

Table 5.2: Total F1-scores for classifiers using different normalizations and thresh-
olds in RUPEE. MNLogit means multinomial logistic regression, LR means logistic
regression in One-vs-Rest framework. Thresholds mean the threshold tuning method

introduced in 3, thresholds 2 means the method introduced in this chapter.

BioNLP11 test BioNLP11 devel BioNLP13 test
SVMs+LR+thresholds 56.0 53.3 54.2
SVMs+SoftMax+thresholds -/- 53.5 53.3
SVMs+MNLogit+thresholds 55.7 52.7 53.8
SVMs+MNLogit 55.4 52.3 53.7
SVMs+MNLogit+thresholds 2 55.6 53.1 53.7
SVMs alone 55.6 52.8 54.4

Table 5.2 lists the experiments using SVMs with different normalization methods and
thresholds. The differences between classifiers using different normalizations on BioNLP11
test set are less than 0.5%, which is not significant. Similarly, the differences on BioNLP11
development set and BioNLP13 test set are also not significant since they are less than
1%. Comparing to the counterpart (SVMs+MNLogit) without tuning decision thresh-
olds, tuning thresholds always improves the performance based on the normalized scores.
However, the improvements are always less than 0.5% and the final results do not out-
perform the pure SVMs without any post-processing since the normalization hurts the
performance. Table 5.3 lists the results of classifiers that optimize the thresholds without
normalization. All of the four optimizing methods returned F1-scores, which are very

Chapter 5. Variations 77

similar to the SVMs without post-processing. We conclude that different classifiers do
not produce significant difference on the final F1-score for our recursive pair-wise model.

Table 5.3: Total F1-scores for classifiers using different optimization methods in RU-
PEE.

fmin fmin_powell fmin_cg fmin_bfgs SVMs alone
54.4 53.8 54.4 54.4 54.4

Since the classifiers with post-processing are reported helpful in previous studies, we ran
experiments again with the traditional pipeline model. We substitute the classifier only
for the trigger detection step in the pipeline models in these experiments. Unlike the ex-
periments listed above, classifiers with post-processing achieve remarkable improvements
of the pipeline model.

Table 5.4: Total F1-scores for different classifiers with Pipeline model

BioNLP11 test BioNLP11 devel BioNLP13 test
SVMs+LR+thresholds -/- 50.8 52.2
SVMs+MNLogit+thresholds 2 53.5 51.5 52.6
SVMs 50.0 48.7 50.8

Table 5.4 lists the results of pipeline models using different classifiers on different data-
sets, where thresholds is the method we used in Chapter 3 and thresholds 2 is the method
introduced in this chapter. We did not run all the optional classifiers on all the data-sets,
but these results seem to be enough to prove the effectiveness of post-processing for a
pipeline model.

In the end, we compared the results of standard SVMs and SVMs with asymmetric costs.
The final F1-score of recursive pair-wise model using standard SVMs on BioNLP11 test
set is 49.7 whereas the final F1-score of the same model using SVMs with asymmetric
costs is 54.4. The improvement of using asymmetric costs is very large for our model on
this task.

5.3 Stacked Model

Inter-dependencies between recursive events and relations among arguments in multi-
argument events may provide useful information for information extraction; it might be
hence helpful for a system to know the states (or labels) of adjacent nodes/edges to
avoid violating some constraints and improve predictions. As mentioned in 2.4.2.1, the
joint system UCLEED represents events as graphs using tokens as nodes and actually
uses a global view of the sentence graph to label each of its words. In order to find a
global optimum, an iterative dual decomposition method is used to infer the labels of
nodes and edges using labels predicted at a previous iteration. Figure 5.2 presents an
example, where each circle represents a candidate entity or protein in the sentence and
{T ′A, T ′B, T ′C , T ′D, T ′′A, T ′′B, T ′′C , T ′′D} are labels predicted at each iteration. Suppose node B
is a Binding trigger and nodes {C,D} are proteins. The predicted labels from the first
iteration for triggers {T ′B, T ′C , T ′D} and relation between two proteins T ′C and T ′D can help

Chapter 5. Variations 78

A B

C D

A:TA’� B:TB’�

C:TC’� D:TD’�

A:TA’’� B:TB’’�

C:TC’’� D:TD’’�

Figure 5.2: UCLEED inference process. Each iteration makes a full prediction on
all the nodes and edges. The arcs represent how the previous predicted labels are
incorporated in the next prediction. The green line refers to the prediction of multi-

argument Binding events.

A"B:Tab� A"C�

B"C�A"D�

B"D:Tbd� C"D�

A"B:Tab� A"C�

B"C�A"D�

B"D� C"D�

A"C�

B"C�A"D�

C"D:Tcd�

A"C�

B"C:Tbc�A"D�

A"B:Tab� A"B:Tab�

C"D:Tcd�B"D:Tbd� B"D:Tbd�

Figure 5.3: SEARN search process. Each node represents a pair of tokens and edges
between nodes represent the potential dependencies between pairs.

the detection of the relation between {B,C} in the second iteration. Despite powerful,
this approach is computationally expensive.

Another way, called stacked or greedy learning, can actually be used to try to improve
predictions by using information coming from labels from adjacent nodes and edges.
Search-based structured prediction (SEARN) algorithm proposed by [65, 75], is one of
this kind of meta-algorithm designed to deal with any structured prediction problem.
SEARN first decomposes the structured prediction problem into a set of traditional
classification problems, then predicts each problem in turn where the tth decision may
be dependent on any of the preceding t − 1 decisions. Figure 5.3 shows an example of
predicting process of SEARN, where a graph prediction problem is decomposed into a set
of pairwise relation prediction problems presented in each node. Connections between
nodes represent the potential ways how pairwise examples can use the predicted labels
for other pairs. In the last graph of Figure 5.3, the pair B-C uses the predicted labels of
pairs B-D and C-D. As described above, the inference models also use labels of previous
predictions. The major difference between the global inference methods and the stacked
learning methods is that the global inference methods use labels predicted in previous
iteration, where a complete graph is predicted; stacked learning methods incorporate the
predicted labels of decomposed problems, hence do not require the prediction of whole
graph. Since our recursive pairwise model applied a dynamic process to extract the
(trigger,theme) pairs, the greedy approach of stacked learning seems like a natural
choice that fits nicely in our framework. At test time, to extract events from a fresh

Chapter 5. Variations 79

sentence, this strategy is simply applied by running several iterations of our system over
the sentence, while using predictions from previous iterations as features for subsequent
ones. Such features coming from predictions are simply added to the feature vectors that
are fed to the SVMs. We added two kinds of features of previously predicted events:

1. Neighbor: an indicator of whether a word appearing in the neighboring tokens of a
candidate trigger has been labeled as event trigger at a previous step.

2. Argument: an indicator of whether the candidate argument of an event has been
marked as event in a previous prediction step.

5.3.1 Simulate the Previous Predictions in Training

With the assumptions of stacked learning, i.e. each decision may be dependent on any
preceding prediction; the classifier should be trained with any label of preceding decisions
that it might encounter. This introduces a chicken-and-egg problem: how to best train
a classifier depends on the classifier itself. In this case, simulating the predictions during
training step is required since the training data only give examples, where the stacked
features are true gold labels, which is different from situations occurring during test.
Since our system used SVMs in one-vs-rest framework as classifier, a straight solution is
applying learning methods that do not require knowing all the examples at the beginning
to train the classifier. On-line learning methods and batch learning methods are often
used in this case. The principle of on-line learning is to update a sequence of functions
f1, f2, . . . , in a way such that the function ft+1 depends only on the previous function
ft and next data point (xt+1, yt+1). Suppose that we decompose a structured prediction
example (x, y) into a set of traditional classification problems {(x, yi)}i, on-line learning
methods enable us to train the classifier ft+1 based on the example ([x, (ŷ1, . . . , ŷt)], yt+1),
where ŷt is previous predicted label returned by ft. Unlike on-line learning methods, the
batch learning methods update the functions when given a whole new batch of training
examples.

However, we did not implement such kind of learning methods due to the limitation
of time. Alternatively, we simulate the predictions by assigning the true labels to the
tokens/entities with respect to the order of generating training data. Therefore, the later
generated examples incorporate the true labels of early-generated examples into feature
vectors, whereas the early-generated examples do not have any information about true
labels. Recall that our training set is created following the formula below:

PS = {pij = (ti, aj)|ti ∈ TS , aj ∈ AS} ∪ {piα = (ti, eαβ)|ti ∈ TS , ∃β : ŷαβ 6= None},

where TS is the candidate entity set and AS is the protein set in a sentence. The
true labels of all candidate entities are initialized as empty at the beginning. During
the generation of feature vectors of candidate pairs, true labels of candidate entities
are assigned and are known by all the candidate pairs generated later. With features
that describe the neighbors or arguments of candidate entities, the later generated pairs
incorporate true labels of earlier generated pairs into feature vectors. Therefore, we get
a training set, in which some examples integrate true labels of adjacent nodes, whereas
some examples do not. Since that all the structured prediction problems of a single
sentence are represented by (x, y), the training set we get are ([x, (y1, . . . , yi−1)], yi)i and
the order of example sequence is random. This is different to the real test process since
we use the true label instead of predictions and the prediction order matters in test.

Chapter 5. Variations 80

5.3.2 Evaluating Examples with Different Orders in Test

In our recursive model, for a given sentence, candidate pairs are dynamically added to
a candidate set during event prediction; the system samples pairs at random from it to
evaluate them and eventually labels them as event. If we start to use features based on
previous predictions of the system, then the order with which pairs are chosen from the
candidate matters, because different orders might induce different features and eventually
different performances.

Therefore, we studied two ways of ordering the choice of examples during test. The first
option, the simplest, still consists in choosing the pairs randomly. The second option,
more sophisticated, uses the confidence of the classifier to order its predictions. There
are two kinds of pairs: pairs between candidate entities and proteins (t, protein), pairs
between candidate entities (ti, tj). In this second method, we evaluate the (t, protein)
pairs randomly since their features are not impacted by previous predictions in our
setting, but evaluate the (ti, tj) pairs ordered by the score returned by the classifier:
we compute the score that would be returned by the SVMs for each of such pairs and
only keep the prediction for the one with the top one. This second option is more
computationally costly but might intuitively achieve better performance since the system
might be able to label “easy” pairs first and then to use these labels to perform predictions
on more complex cases. Note that, for both options, we always eliminate candidate pairs
to avoid circles in the event graph.

5.3.3 Experiments

We tested two types of stacked features and two evaluation methods on the BioNLP13
test set.

Table 5.5: F1-scores of stacked models with different features and evaluation orders
on the BioNLP13 test set

Argument Argument+Neighbor Original Model
Random evaluation 53.9 53.9 54.4Ordered with confidence 54.1 54.0

Table 5.5 presents the results of models using stacked features, where Argument refers
to the feature that indicates the event type when a candidate argument was previously
predicted as a trigger and Neighbor refers to the feature that indicates the event type
when a neighboring token belongs to a previously predicted trigger. Unfortunately, none
of them improves the performance compared to the original experiment that we reported
in previous chapters. This identical performance can be explained using two hypotheses:
1) our simulation method to emulate these features in training is unsuccessful; 2) the
stacked features we used are inappropriate for this task. In our recursive pair-wise
model, the information of previous prediction is actually implicitly incorporated into the
process when the predicted triggers are used as arguments. The label of neighboring
tokens seems to be mostly useless since events are rare and scattered in sentences and
neighboring labels of a trigger are almost always None.

Chapter 5. Variations 81

These results confirm why our pairwise system is able to perform identically as the joint
model UCLEED: the use of a global optimization approach is not necessarily mandatory
to achieve good performance on this task.

5.4 Vector Embedding

Traditional encoding methods represent symbols by sparse vectors, where each value of
the feature vectors indicates the frequency, occurrence, etc. of a certain symbol indexed
in a dictionary. For example, representing a single word requires a feature vector that
contains only one non-zero value but has the dimension of the whole dictionary (usually
on the the order of 105). Indices of atomic symbols in a dictionary do not represent their
semantics and relations between them since the product of vectors of two different words
is always zero; even if additional features such as POS tags or stem can used to improve
this, this is still far away from a semantic encoding. Complex symbol systems that have
similar structures are represented as completely independent items, which lead to the
sparse data problem.

Learning low-dimensional vector representations (or embeddings) has been proposed as a
solution to this issue [66–68, 76–78]. Bordes et al. [76] learn the vector embeddings based
on a knowledge base, in which words and symbolic relations and concepts are represented
as a big graph. Their method learns words embeddings along with predefined symbolic
relations through a neural network. One difficulty of applying this approach into text
processing applications is word disambiguation, since one word can refer to multiple
semantic nodes in a knowledge base. Another category of methods [66–68, 77, 78] learn
the vector embedding from unannotated corpus, mostly based on the occurrence of words.
Unlike traditional encoding methods (sparse and large), these embedded vectors are dense
and low-dimensional, with a dimension hence independent of the dictionary size. Another
important difference between traditional encoding methods and words embeddings is that
embeddings are not independent: words with similar semantics have similar embedding
vectors. Both reasons make word embeddings an appealing choice to deal with the
sparsity problem. With such representations, it is possible for algorithms to learn more
complex relations between words without handcrafted heuristics created by experts.

5.4.1 Language Model

One category of methods that learn word vectors is language models. This kind of meth-
ods try to learn embeddings from unannotated corpus basically follow the hypothesis
that words frequently occurring in similar contexts are semantically similar. Differences
(computed by the Euclidean distance for instance) between learned embeddings of seman-
tically similar words is supposed to be smaller than those between vectors of irrelevant
pairs of words. Two advantages of language models are: (1) they are unsupervised, (2)
embedding vectors naturally solve the sparsity problem without any handcrafted heuris-
tic such as prefix, suffix, stem, POS, etc.

Plenty of language models have been proposed in recent years, we selected the model
proposed by Huang et al. [68] to learn our words embeddings on biomedical texts. This
model considers both local and global contexts to learn the representations of words from

Chapter 5. Variations 82

Global ContextLocal Context

scorel scoreg
Document

he walks to the bank... ...

sum

score

river

water

shore

global semantic vector
⋮

play

weighted average

Figure 1: An overview of our neural language model. The model makes use of both local and global context to compute
a score that should be large for the actual next word (bank in the example), compared to the score for other words.
When word meaning is still ambiguous given local context, information in global context can help disambiguation.

of words presented in isolation, ignoring meaning
variations in context. Since word interpretation in
context is important especially for homonymous and
polysemous words, we introduce a new dataset with
human judgments on similarity between pairs of
words in sentential context. To capture interesting
word pairs, we sample different senses of words us-
ing WordNet (Miller, 1995). The dataset includes
verbs and adjectives, in addition to nouns. We show
that our multi-prototype model improves upon the
single-prototype version and outperforms other neu-
ral language models and baselines on this dataset.

2 Global Context-Aware Neural Language
Model

In this section, we describe the training objective of
our model, followed by a description of the neural
network architecture, ending with a brief description
of our model’s training method.

2.1 Training Objective

Our model jointly learns word representations while
learning to discriminate the next word given a short
word sequence (local context) and the document
(global context) in which the word sequence occurs.
Because our goal is to learn useful word representa-
tions and not the probability of the next word given
previous words (which prohibits looking ahead), our
model can utilize the entire document to provide

global context.
Given a word sequence s and document d in

which the sequence occurs, our goal is to discrim-
inate the correct last word in s from other random
words. We compute scores g(s, d) and g(sw, d)
where sw is s with the last word replaced by word w,
and g(·, ·) is the scoring function that represents the
neural networks used. We want g(s, d) to be larger
than g(sw, d) by a margin of 1, for any other word
w in the vocabulary, which corresponds to the train-
ing objective of minimizing the ranking loss for each
(s, d) found in the corpus:

Cs,d =
X

w2V

max(0, 1� g(s, d) + g(sw, d)) (1)

Collobert and Weston (2008) showed that this rank-
ing approach can produce good word embeddings
that are useful in several NLP tasks, and allows
much faster training of the model compared to op-
timizing log-likelihood of the next word.

2.2 Neural Network Architecture
We define two scoring components that contribute
to the final score of a (word sequence, document)
pair. The scoring components are computed by two
neural networks, one capturing local context and the
other global context, as shown in Figure 1. We now
describe how each scoring component is computed.

The score of local context uses the local word se-
quence s. We first represent the word sequence s as

Figure 5.4: Language model from [68] (figure extracted from the original paper).

a corpus. Though it can learn multiple embeddings per word to solve the homonymy
and polysemy problems, we only used a single prototype per word.

Training Objective and Method In a corpus, sequences of words s with their
corresponding documents d are observed, where the size of all sequences is fixed and
predefined as the window size. We learn a scoring g(., .) which is trained to give a
value of the adequacy of sequence s and document d. g(., .) is trained in the following
manner. For an observation (s, d), scores g(s, d) and g(sw, d) are computed, where sw

is the sequence s with the last word replaced by a word w sampled at random in the
vocabulary. Following Collobert and Weston [67], g(s, d) is expected to be larger than
g(sw, d) by a margin of 1, because sw is constructed so that it is a negative example, i.e.
an invalid English sentence. This corresponds to the training objective of minimizing
the ranking loss for each (s, d) found in the corpus:

Cs,d =
∑

w∈V
max(0, 1− g(s, d) + g(sw, d)) .

Training of this objective function is carried out by sequentially randomly choosing pairs
(s, d) from the corpus and words from the dictionary to create corrupted examples.
Following Huang et al. [68], we used mini-batch L-BFGS [79] with 1000 pairs of valid
and corrupted examples per batch for training.

Neural Network Architecture g(., .) is parameterized by a neural network. Word
embedding vectors are stored in an embedding matrix L ∈ Rn×|V |, where n denotes the
dimension of the vector representations and |V | the size of the vocabulary. With ind(w)
returning the index of word w, the ith column of this embedding matrix L is the vector
of word w where ind(w) = i. This embedding matrix is learned and updated during
training of g(., .).

Figure 5.4 shows the neural network of the language model of [68] which we used. A
word sequence s = (w1, . . . , wm) of length m is represented as the concatenation of the
m word embeddings x(s) = (Lind(w1), . . . ,Lind(wm)) where Lj denotes the jth column of
the matrix L. The score of local context gl is computed by a two-layer neural network:

al(s) = f(W l
1x(s) + bl1) (5.9)

gl(s) = wl
2
>
al(s) + bl2 . (5.10)

Chapter 5. Variations 83

where al ∈ Rh is the activation of the hidden layer with h hidden nodes, f is an activation
function such as (tanh in our experiments), W l

1 ∈ Rh×(mn), wl
2 ∈ Rh are weights of the

first and second layers of the neural network and bl1, bl2 are the biases of each layer.

For the global score gg, the document d = {w1, . . . , wk} is represented as a weighted
average of its word embeddings:

c(d) =

∑k
i=1 h(wi)Li∑k
i=1 h(wi)

,

where Li is the embedding vector of the word wi, h(wi) is the weight of the word wi. In
our case, idf-weighting is used as the weighting function. Then, the global context score
gg is computed by a two-layer neural network:

ag(s, d) = f(W g
1 [c(d);x(s)m] + bg1) (5.11)

gg(s, d) = wg
2
>
ag(s, d) + bg2 . (5.12)

where [c(d);x(s)m] is the concatenation of the weighted average document vector c(d)
and the vector of the last word of s. All the other parameters in Equation (5.11) and
(5.12) are similar to the Equation (5.9) and (5.10).

The final score is the sum of the two scores:

g(s, d) = gl(s) + gg(s, d) .

The local score preserves word order and syntactic information, while the global score
uses a weighted average, which is similar to bag-of-words features, capturing semantics
and topics of the document.

5.4.2 Integration into NLP Tasks

There are two ways of integrating word vector embeddings into a NLP system, either by
replacing traditional binary word representations by word embeddings, or by creating
supplementary high level features based on the embeddings. The first method inserts
the word embedding vectors directly into the features, which are typically useful for low-
level NLP tasks like tagging and NER. Models designed for these tasks usually focus
on the local context and the morphological features of words, which could be replaced
by the word embeddings. Similarities between word embeddings (semantically similar
words have similar embeddings) could improve generalization capabilities of such models
and perhaps allow the application of nonlinear models. However, this simple method
is limited for high-level NLP tasks like syntactic parsing, information extraction, which
require to take structured outputs into account and to consider global contexts. For
example, for event extraction, the most important dependency path features can not
be well represented by word embeddings directly. Since the dependency path features
are crucial in event extraction tasks, simply combining the traditional representation
of dependency path features and word embeddings might not be beneficial. Previous
work [80–83] proposed to compose the semantic representation of a whole sentence by
combining word embeddings. This kind of methods shows the possibility of building
high-level features using word embeddings along with structured information.

Chapter 5. Variations 84

Due to the limited duration of this thesis preparation, we unfortunately did not study the
methods that could represent the dependency path using a combination of embeddings.
Alternatively, we used the linear classifier trained with our heuristic features along with
word embeddings, where the stemmed token features for head tokens and neighbor token
features of candidate trigger entities and argument entities were replaced by embeddings.
All other features were kept identical as for experiments of previous chapters.

Using directly the low-dimensional vector embeddings in the features might not be di-
rectly beneficial since the similarity information they contain might be hard to exploit
by a linear classifier, especially when this low-dimensional dense features are combined
with the other features (dependency path, etc.), which are high dimensional and sparse.
Hence, we also tried to quantify these features using a K-means clustering of the word
embeddings. In this approach, we aggregated the word embeddings into K cluster and
represented each word by a sparse vector, where kth element of the vector indicates
whether this word belongs to cluster k or not.

5.4.3 Experiments

In order to train the language model, we downloaded open access articles from PubMed
matching the keyword NFkB, which is the same keyword used to create the BioNLP Genia
Task data. We downloaded 2016 documents, which we tokenized using the Stanford
tokenizer. We kept a vocabulary of the top 20k words with respect to their number of
occurrence. The rare words were replaced by _TOO_RARE_. To learn the word
embeddings, we used the same hyper-parameters as in [68], where the window size is
10, numbers of hidden units in the neural networks for gl and gg are both 100 and the
dimension n of the word embeddings is 50. As mentioned in Section 5.4.2, we integrate
the dense representation into the feature vectors in two ways: the first one replaces the
token features by the embedding vectors directly with a scaling factor, while the other
replaces the words by sparse vectors generated through K-means clustering on embedding
vectors. Since the embedding vectors contain continuous numbers, which differ from the
binary sparse representation of the other features, we tried different value of a parameter
λ used to scale the features of the embedding vectors: v = [vsparse;λvembeddings].

Table 5.6: Total F1-scores on BioNLP13 test set with embedding features.

Vector Embedding KMeans original
scale 0.01 scale 1 scale 100 200 clusters 300 clusters

54.0 53.5 50.5 53.1 53.9 54.4

Table 5.6 displays the results of experiments with different ways of using embedding
features. All the models with new features obtain worse performance than the one
using old features. For the three experiments using directly the embedding vectors
with different scales, the model with the smallest scale gets the closest performance to
the original one, which seems to indicate that the embedding vectors are just hurting
the performance. For the two experiments using sparse representation derived from
clustering, experiment with more clusters performs slightly better.

Chapter 5. Variations 85

5.4.4 Perplexity of Language Model with Respect to Annotation

Since the experimental results shown that embedding vectors hurt the performance, we
measured the perplexity of the language model with respect to the gold annotation of
training set and development set from BioNLP11 and BioNLP13.

As mentioned above, the main hypothesis behind a language model is that words oc-
curring in similar contexts have similar meanings, which is a standard hypothesis in
distributional semantics. However, it is clear that this hypothesis can be far from the
true except the homonymous and polysemous words. For example, antonyms are very
likely to occur in identical environments such as “I like it” versus “I hate it”. A purely
unsupervised language model cannot capture the difference between “like” and “hate”,
which should be far from each other in the embedding space. Unfortunately, for our
task of event extraction, the polarity of words is crucial for the distinction between Pos-
itive_regulation and Negative_regulation events. Another problem is the recognition of
the same base form: for example, “activate” and “activation” can have very different vec-
tor representations than expected because their syntactic contexts (verb versus noun) are
usually quite different. But for biomedical event extraction, one would hope these words
have similar representations. Besides, relations between two words are more complex
than just similarities. Relations like hypernymy, meronymy are difficult to represent by
language models, but these relations can be important to recognize new patterns. Fi-
nally, vector representations learned through a unsupervised model are not necessarily
correlated to a specific classification task.

Since we use the word embeddings as alternatives for token features, it might interesting
to analyze the perplexity of the language model with respect to the event classes. Unlike
dependency path features, token features (for trigger words and their local contexts)
are very important for classifiers to recognize the trigger event type. In addition, we
use linear classifiers, which require learned vector representation to be correlated with
the event classes. We evaluated the quality of a learned representation by comparing
the similarity of word vectors with their occurrences in biomedical events as given by
gold annotations of the BioNLP Genia Task data sets. To simplify the problem, we just
observed the word set at the intersection of the trigger words of the gold annotation
Vgold and the 20k words learned in language model Vlm. The intersection is denoted
V = Vgold ∩ Vlm and contains |V| = 1033 words.

For each word wi ∈ V, we compute a correlation coefficient between two ranked lists llmi
and lgoldi that contains the most similar words with respect to the language model and
events from gold annotation respectively. The ranked list for the language model llmi is
generated by sorting all the words wj 6=i ∈ V based on their Euclidean distance with the
word of interest wi, given by ||Lind(wi) − Lind(wj)||2. We only keep p most similar words
in the list. The ranked list for gold annotation lgoldi is generated by re-sorting the p words
retrieved in llmi based on the class-dependent similarity, which is the sum of products
between the frequencies of two words appearing in each class simij =

∑
k(

nik∑
k nik

njk∑
k njk

)

where nik is the number of appearance of word i in class k. With those two ranked lists,
we can judge the correlation between the language model and event annotation for words
from V using existing ranking correlation metric.

We selected Spearman’s rank correlation coefficient to measure the correlation of the two
ranked lists. The Spearman correlation coefficient is defined as the Pearson correlation
coefficient between the ranked variables. If there are no repeated data values, a perfect

Chapter 5. Variations 86

Figure 5.5: Histogram of trigger words with respect to Spearman correlation

Spearman correlation of +1 or −1 occurs when each of the variables is a perfect monotone
function of the other. For a sample of size n, and A and B are two ranking lists of n
objects, this coefficient is computed by:

ρ = 1− 6
∑

i d
2
i

n(n2 − 1)
,

where di = Ai−Bi is the difference between two lists at position i. Figure 5.5 presents the
histogram of Spearman’s rank correlation coefficient for the 1033 observed words. The
correlation coefficients of most of the words are negative, which means similar words
learned by the language model rarely belong to the same event class defined by the
gold annotation. This might explain why using the language model does not bring any
improvement to our event extraction system.

Sometimes, the rank correlation coefficient can not correctly measure the perplexity. In-
deed, if class-dependent similarities between one word and all its p nearest words given
by language model are very high, the relative order of these nearest words should be
ignored. Hence, we conducted another analysis by treating the class-dependent similar-
ities of nearest neighboring words as sets of numbers instead of ordered lists. Given a
word wi and p nearest words (wi1, . . . , wip), we have a vector of class-dependent sim-
ilarities between them simi = (simi1, . . . , simip). Based on these p similarities, each
word wi can be represented by two scaled values mi = simi, the mean of this vector,
and σi =

√
1
p−1

∑p
j=1(simij − simi)2, its standard deviation. High values of mi indicate

that most of the nearest words participate in nearly the same event as the observed word.

Chapter 5. Variations 87

Figure 5.6: Distribution based on nearest words, size of marker refers to the propor-
tion in the class

The standard deviation measures the stabilization of the class-dependent similarities of
the nearest words.

Figure 5.6 represents the distribution of words in a space where the X-axis depicts the
standard deviation σ and Y-axis the mean m. Points in upper-left corner have the best
behavior since they have high average similarity and low variance. On the contrary,
the bottom-right points corresponds to badly represented words because their nearest
words mainly occur in different classes. In order to well present the distribution of
words for each class, we indicate the dominant class of each word by plotting them in
different colors and styles. Class k is the dominant class of a word when this word is
most frequently assigned to this class. Besides, the importance of word wi to class k is
scaled by its proportion in this class nik∑

j njk
where njk is the number of word wj occurs

in class k. The more important a word is to its dominant class, the bigger is its symbol
drawn. The sizes of markers shown that the distribution of trigger words of REG events
are really scattered, whereas other event types have some key words that play a very
important role. However, those important words are badly represented in the language
model since the big markers of Gene_expression, Phosphorylation, etc. are all in the
bottom of figure, which means that their nearest words frequently have other dominant
event types.

As introduced before, the language model cannot capture the polarity of words, so it can
be more appropriate to judge the quality of word representation while treating the three
REG events together. Figure 5.7 shows the new distribution of words, for which we
merged the threeREG events into one event. This time, the regulation trigger words are

Chapter 5. Variations 88

Figure 5.7: Distribution based on nearest words, size of marker refers to the propor-
tion in the class, regulation events are merged into one event

much better represented, which proves that the regulation trigger words mainly appear
in similar context.

Overall, this analysis suggests that integrating word embeddings directly into a linear
classifier cannot improve the performance. The experimental results with word embed-
dings are worse than those without them, which is, unfortunately, consistent with our
analysis.

5.5 Conclusion

This chapter introduced optional solutions we tested besides our best solution. The post-
processing of classifier tries to optimize the F1-score instead of the original classification
objective function. Since the pipeline model benefits a lot from this post-processing,
we can say that, in this case, the training objective (single-class classification) is much
different from the task desired F1-score and that a global post-processing is needed
there. In contrary, the post-processing does not improve the performance of our recursive
pairwise model, which indicates that the classification problem of our model is very close
from the final problem. Solving the multi-class classification problem defined by our
model seems to somewhat directly optimize the F1-score.

We also tried to use the previous predictions as features for successive predictions. But
the experimental results show that our solution does not work properly. It may be
caused by two reasons: we replaced the on-line learning by an ineffective simulation
and we encode labels of previous predictions into feature vectors for linear classifier. As

Chapter 5. Variations 89

UCLEED and SEARN systems both reported that involving the information of previous
predictions can improve the performance, it is a direction that worth further study, but
maybe within a global input-output learning framework.

In order to solve the feature sparsity problem, we used a language model to learn contin-
uous vector representations of words from an unlabeled corpus of biomedical text. How-
ever, the learned vector embeddings are not well correlated with the final task. If one
wants the learned vector embeddings to play the same role as the traditional representa-
tions, the underlying similarity hypothesis of language model is ineffective for biomedical
event extraction since the task requires very precise distinction between words. For ex-
ample, the distinction between different kinds of triggers relies on the deep semantics of
words more than on their syntactic roles. Besides, words that share the same base form
usually have different local contexts in documents, which causes the vector embeddings
learned by language models not to be similar enough. We suggest to integrate the ex-
isting knowledge base into the representation learning, because the words and relations
in knowledge base are richer. Unlike for general text, domain specific terminologies are
usually unambiguous in context. Representing words by base form as well as POS is
enough as the verb and noun of the same base word always indicate the same thing.

Apart from the quality of word representations, the method of employing them into event
extraction task is also important. Continuous vector representations are learned non-
linearly and feeding them to a linear classifier may be sub-optimal. Besides, the major
drawback of the encoding methods for event extraction task is more the representations
of dependency paths than those of trigger words. Many methods [80–83] have been
proposed to compose vector representations of sentences or paths in syntactic trees.
Learning a dense representation of the dependency path or other structured information
based on the word embeddings could be more helpful than using the word embedding
directly for event extraction tasks.

Chapter 6

Conclusion

6.1 Perspectives for Biomedical Event Extraction

6.1.1 Contributions and Limitations

Throughout this thesis, we have exhibited a robust model to handle the BioNLP Genia
event extraction tasks. As a trade-off between pipeline and joint models, our model
reaches a good balance between extraction performance and computational complexity.
Our model achieves the best performance on the BioNLP2013 test set and slightly out-
performs the best joint model UCLEED on the BioNLP2011 test set. Besides, our model
is much faster to train than UCLEED (30 minutes versus 8 hours 30 minutes).

Our model extracts pairwise relations, which is a relevant structure for most events,
but not for the multi-argument events, such as Binding . As most traditional NLP ap-
proaches, we use linear classifiers on heuristically derived features that are based on
the morphology and syntax of language. A major drawback of these features, based on
symbolic representations, is that they generate sparse vectors that lead to difficulties
for learning tasks related to structured information extraction. Besides, we did not ad-
dress the coreference problem, which should be helpful for recognizing the relationships
between entities that explicitly occur far away from each other.

6.1.2 Further Extensions

Our model can be improved in two directions: 1) generalizing the model to multi-
argument events and coreferences, 2) creating new features. Our model treats the multi-
argument events, which are triplets, as three pairwise relations. Similar to the n-grams
representation of sequence, representing triplets by pairs loses some of the joint infor-
mation. BioSEM, a rule-based system that learns patterns that encode triplets directly,
achieves the best Binding event extraction performance so far. Representing the triplet
directly in dependency parse tree/graph is a promising way to catch the ternary rela-
tions. Besides, Yoshikawa et al. [84] use the transitivity of coreference relationship to
improve the performance of biomedical event extraction. They substitute the arguments
by the nearest coreferences in the extraction of pair-wise relations between triggers and

90

Chapter 6. Conclusion 91

arguments. Their results shown that using coreference can significantly improve the
performance of biomedical event extraction.

The other direction is using embedding vectors learned by language models to represent
the dependency path. With the word embedding vectors, there are many potential
ways of representing the semantics of a sentence through dependency path. Under the
assumption that a sentence can be represented in the continuous vector space of word
embeddings, many methods were proposed to construct a representation of sentences
based on the representation of words. Dinu et al. [85] reviewed the methods proposed
before, where the composition of words by addition, multiplication, etc., may be used to
represent a part of a dependency parse tree. Another kind of methods would take both
the words and dependency relations into account, which can be seen as somewhat similar
to the representation of pairwise relations in knowledge base proposed by Bordes et al.
[76].

6.2 NLP Directions

In the past decades, natural language processing has been greatly developed and widely
used in many commercial applications. However, for tasks that require the deep under-
standing of a complex context, the performances of current NLP systems are far from
humans.

The main stream of current NLP approaches combines machine learning with hand-
crafted shallow features. Segmentation and tagging tasks are essentially solved since
current models have reached near-human performance (more than 90%). The same
principle is followed to address information extraction tasks by considering information
related to larger contexts through heuristic shallow features, which encode the syntactic
information from parsing results. Unfortunately, these methods do not reach near-human
performances. It is because statistical and rule-based methods only focus on the language
morphology and language syntax but not on language meaning and language context.

For the well-solved tasks, a large proportion of examples can be processed by simple
language morphology and language syntax, whereas most of problems in information
extraction tasks require to understand language meaning and language context. For ex-
ample, most cases in the named entity recognition tasks can be recognized by the words
morphology and limited keywords, whereas a small part of exceptions need the compre-
hension of language meaning. These exceptions may be processed by case enumeration
(dictionary) since their are few. This approach does not scale to information extraction
problems. In fact, through the discussion with other NLP researchers, many researchers
believe that good dictionaries created manually or automatically from high-quality re-
sources are required for NLP applications. I agree with this conclusion because the
meaning of words is unpredictable in general, which means looking new words up in the
dictionary is necessary to correctly interpret the natural language. Even though some
rules can be derived from the morphological feature to infer the grammatical properties
for rigorous languages, such as Germany or French, the evolution of natural language and
cross-culture communication continuously introduce exceptions. For languages that do
not split the words by white spaces like Chinese, a good dictionary is crucial for models
to make correct segmentations for even common words, where the impact of out-of-
vocabulary words is five times [86] higher than the ambiguous words for the performance

Chapter 6. Conclusion 92

of segmentation. Case study is also very important for machine translation during word
alignments. For information extraction tasks, case enumeration is inefficient due to the
cheer number of possibilities. Traditional methods use the syntactic structure of sen-
tence to extract the desired structured information without directly understanding the
semantic. But the syntactic structures are usually used with words together, which are
even more complex than word sequences. Grasping representative features from syntac-
tic structures cannot be effectively solved by handcrafted shallow features. Moreover,
language semantic and language context are essential for predictions because the ground
truth context and background knowledge. Therefore, I believe that the future of infor-
mation extraction or even the whole NLP domain is in modeling the language semantic
and language context.

Unlike the natural signals such as images, sounds or other senses, human languages
are symbolic systems created by humans to describe the world. For example, given
an image of apple, everyone who ever seen an apple will understand the object; but
people do not understand the word when they do not understand the corresponding
language. Since natural language is not “natural” but “man-made”, it is rational to
mimic humans. Considering that humans do not explicitly think about the grammars
while reading and speaking, modeling the sentence without any syntactic parsing can
be a natural way to simulate how humans process the language. Kalchbrenner and
Blunsom [87] implemented machine translation by recurrent neural networks without
any syntactic parse tree, showing that it is possible to throw syntactic parsing away in
NLP applications. However, incorporating the syntactic parse tree with the semantic
information should improve prediction for tasks with small training sets.

6.2.1 Representation

Suppose things are stored as concepts in the brain, humans decode the symbol of language
and associate it to the concept stored in their brain when they read a word. Besides,
people can represent what they read by completely different sentences besides using
synonyms or changing the order of words. That means a complex context (phrase) is
compressed into a central idea and decompressed into different concrete representations.
It is helpful if machine catches the language meaning by robust representations, which
can reflect the concept of the symbol naturally and enable the compression of larger
contexts into comparable representations (words can be summarized by explanations).

Continuous vector space representation, where each word is represented by a fixed-size
dense vector, and similar words have similar vector representations. Many deep learning
methods [67, 68, 77] have been proposed to learn the representation of words from un-
labeled corpus through neural networks. These approaches basically follow the principle
that words appearing in similar contexts have similar significations. Some works [67, 68]
observe the context by word window, while Mikolov et al. [77] uses all the previous words
to estimate the next word by recurrent neural network. Note that the word represen-
tation learning methods listed above only observe the words, which is not appropriate
to deal with phrases such as “hot dog” or “take off”. We used the method proposed by
Huang et al. [68] to learn the word representations and integrated them into our linear
feature vectors. Though our experimental results of using word representations are not
good, we still think deep learning is a very potential direction because the dense vector
representations of words bring us the chance to construct new representation of the re-
lational features. Following the idea that a sentence can be compressed into a central

Chapter 6. Conclusion 93

concept, works presented in [78, 81–83] illustrate how to use recursive neural networks
to compress a sentence into the continuous vector space of words. Though this model
may be simplistic for very complex sentences, it allows to represent words and their
explanations in a single dictionary. It is possible to use similar methods to represent a
sub-sentence or syntactic parse tree and apply this dense representation in the structured
information extraction.

6.2.2 Background Knowledge

Domain specific knowledge is important for people to understand professional articles.
Logical inference with knowledge base can help the NLP systems to eliminate false in-
terpretations. However, the symbolic representations of knowledge base are difficult to
transfer to NLP applications. Deep learning gives us the chance to model the knowl-
edge base in a numerical form that can be used directly by statistical models. However,
the word representation learning methods mentioned above are based on very simple
assumptions, which forbid to model complex relations between words such as polari-
ties. Our study on the learned word representation demonstrates that representations
learned from unlabeled corpus are not precise enough for the biomedical event extraction
tasks. I believe that learning representation from the knowledge base could return better
representation than from unannotated corpus.

Bordes et al. [76] learn the representations of knowledge base, where concepts and re-
lations in the knowledge base are represented by dense vectors. There is still a gap
between NLP applications and learned vector representations of knowledge base: asso-
ciating words to concepts in the knowledge base requires disambiguation since one word
often points to multiple concepts.

Appendix A

Linguistic Knowledge

A.1 Part-of-speech

In grammar, a part of speech is a linguistics category of words, which is generally defined

by the syntactic or morphological behavior of the lexicon item.

Table A.1: Part-of-speech tags used in Penn Treebank.

Tag Description PRP$ Possessive pronoun

CC Coordinating conjunction Tag Description

CD Cardinal number RB Adverb

DT Determiner RBR Adverb, comparative

EX Existential there RBS Adverb, superlative

FW Foreign word RP Particle

IN Preposition or subordinating conjunction SYM Symbol

JJ Adjective TO to

JJR Adjective, comparative UH Interjection

JJS Adjective, superlative VB Verb, base form

LS List item marker VBD Verb, past tense

MD Modal VBG Verb, gerund or present participle

NN Noun, singular or mass VBN Verb, past participate

NNS Noun, plural VBP Verb, non-3rd person singular present

NNP Proper noun, singular VBZ Verb, 3rd person singular present

NNPS Proper noun, plural WDT Wh-determiner

PDT Predeterminer WP Wh-pronoun

POS Possessive ending WP$ Possessive wh-pronoun

PRP Personal pronoun WRB Wh-adverb

94

Appendix A. Linguistic Knowledge 95

Almost all languages have the lexical categories noun and verb, but beyond these there

are significant variations in different languages. For example, Japanese has as many as

three classes of adjectives where English has one; Chinese, Korean and Japanese have

nominal classifiers whereas European languages do not; many languages do not have a

distinction between adjectives and adverbs, adjectives and verbs or adjectives and nouns,

etc. This variation in the number of categories and their identifying properties entails

that analysis be done for each individual language. Nevertheless the labels for each

category are assigned on the basis of universal criteria. Table A.1 lists the common POS

tags used in English language. Practical applications may use a subset of these tags.

A.2 CoNLL Dependency Grammar

CoNLL format, which is proposed by the Conference of Natural Language Learning 2006,

is widely used in many syntactic parsers. Given a sentence:

Bell, a company which is based in LA, makes and distributes computer products.

An example of incomplete CoNLL representation of the parse tree of this sentence is:

ID FORM LEMMA CPOSTAG POSTAG FEATS HEAD DEPREL PHEAD PDEPREL

1 Bell - NNP NNP - 11 nsubj - -

2 , - , , - 1 punct - -

3 a - DT DT - 4 det - -

4 company - NN NN - 7 nsubjpass- -

5 which - WDT WDT - 0 erased - -

6 is - VBZ VBZ - 7 auxpass - -

7 based - VBN VBN - 4 rcmod - -

8 in - IN IN - 0 erased - -

9 LA - NNP NNP - 7 prep_in - -

10 , - , , - 1 punct - -

11 makes - VBZ VBZ - 0 root - -

12 and - CC CC - 0 erased - -

13 distributes- VBZ VBZ - 11 conj_and- -

14 computer - NN NN - 15 nn - -

15 products - NNS NNS - 11 dobj - -

16 . - . . - 11 punct - -

Appendix A. Linguistic Knowledge 96

Table A.2: Attributes used in CoNLL Format.

Field

number

Field name Description

1 ID Token counter, starting at 1 for each new sentence

2 FORM Word form or punctuation symbol

3 LEMMA Lemma or stem (dependency on particular data set) of word form, or

an underscore if not available

4 CPOSTAG Coarse-grained part-of-speech tag, where tag-set depends on the lan-

guage.

5 POSTAG Fine-grained part-of-speech tag, where the tag-set depends on the lan-

guage, or identical to the coarse-grained part-of-speech tag if not avail-

able.

6 FEATS Unordered set of syntactic and/or morphological features (depending

on the particular language), separated by a vertical bar (|), or an un-

derscore if not available.

7 HEAD Head of the current token, which is either a value of ID or zero (’0’).

Note that depending on the original treebank annotation, there may

be multiple tokens with an ID of zero.

8 DEPREL Dependency relation to the HEAD. The set of dependency relations

depends on the particular language. Note that depending on the orig-

inal treebank annotation, the dependency relation may be meaningful

or simply ’ROOT’.

9 PHEAD Projective head of current token, which is either a value of ID or zero

(’0’), or an underscore if not available. Note that depending on the

original treebank annotation, there may be multiple tokens an with ID

of zero. The dependency structure resulting from the PHEAD column

is guaranteed to be projective (but is not available for all languages),

whereas the structures resulting from the HEAD column will be non-

projective for some sentences of some languages (but is always avail-

able).

10 PDEPREL Dependency relation to the PHEAD, or an underscore if not available.

The set of dependency relations depends on the particular language.

Note that depending on the original treebank annotation, the depen-

dency relation may be meaningful or simply ’ROOT’.

In this example, some attributes are always empty because the parser does not support

relative parsing functions. Table A.2 lists all the attributes defined in CoNLL format. But

most of syntactic parsers only support a subset of these attributes. One can construct

Appendix A. Linguistic Knowledge 97

a dependency parse tree through the DEPREL and PHEAD tags, which describe the

dependency relation type and the head token of current token.

A.3 Stanford Dependency Grammar

Stanford dependency format represent the dependency graph by binary relations between

tokens. Here is an example sentence:

Bell, based in Los Angeles, makes and distributes electronic, computer and building prod-

ucts.

For this sentence, the collapsed Stanford Dependencies (SD) representation is:

nsubj(makes-8, Bell-1)

nsubj(distributes-8, Bell-1)

vmod(Bell-1, based-3)

nn(Angeles-6, Los-5)

prep_in(based-3, Angeles-6)

root(ROOT-0, makes-8)

conj_and(makes-8, distributes-10)

amod(products-6, electronic-11)

conj_and(electronic-11, computer-13)

amod(products-16, building-15)

dobj(makes-8, products-16)

dobj(distributes-10, products-16)

Bell

based

 partmod

distributes

nsubj

products

dobj

makes

nsubj

 conj_and

 dobj

Angeles

 prep_in

Los

 nn

electronic

 amod

building

amod

computer

amod

 conj_andconj_and

Figure 1: Graphical representation of the Stanford Dependencies for the sentence: Bell, based

in Los Angeles, makes and distributes electronic, computer and building products.

Document overview: This manual provides documentation about the set of dependencies

defined for English. (There is also a Stanford Dependency representation available for Chinese,

but it is not further discussed here.) Section 2 of the manual defines the relations and the

taxonomic hierarchy over them appears in section 3. This is then followed by a description of

the several variant dependency representations available, aimed at di↵erent use cases (section 4),

some details of the software available for generating Stanford Dependencies (section 5), and

references to further discussion and use of the SD representation (section 6).

2 Definitions of the Stanford typed dependencies

The current representation contains approximately 50 grammatical relations (depending slightly

on the options discussed in section 4). The dependencies are all binary relations: a grammatical

relation holds between a governor (also known as a regent or a head) and a dependent. The

grammatical relations are defined below, in alphabetical order according to the dependency’s

abbreviated name (which appears in the parser output). The definitions make use of the Penn

Treebank part-of-speech tags and phrasal labels.

acomp: adjectival complement

An adjectival complement of a verb is an adjectival phrase which functions as the complement

(like an object of the verb).

“She looks very beautiful” acomp(looks, beautiful)

advcl : adverbial clause modifier

An adverbial clause modifier of a VP or S is a clause modifying the verb (temporal clause,

consequence, conditional clause, purpose clause, etc.).

2

where “prep_and” merges the dependency type “prep” and the word “and” to make the

parsing result more compact. These dependencies map the sentence straightforwardly

onto a directed graph representation, in which words in the sentence are nodes in the

graph and grammatical relations are edge labels. Figure in the right gives the graph

representation for the example sentence above. The dependency types are listed in

Table A.3.

Appendix A. Linguistic Knowledge 98

Table A.3: Stanford Dependency Type.

acomp adjectival complement advcl adverbial clause modifier
advmod adverbial modifier agent agent
amod adjectival modifier appos appositional modifier
aux auxiliary auxpass passive auxiliary
cc coordination ccomp clausal complement
conj conjunct cop copula
csubj clausal subject csubjpass clausal passive subject
dep dependent det determiner
dobj direct object discourse discourse element
expl expletive goeswith goes with
iobj indirect object mark marker
mwe multi-word expression neg negation modifier
nn noun compound modifier npadvmod noun phrase as adverbial modifier
nsubj nominal subject nsubjpass passive nominal subject
parataxis parataxis pcomp prepositional complement
pobj object of a preposition poss possession modifier
preconj preconjunct possessive possessive modifier
predet predeterminer prep prepositional modifier
prt phrase verb particle prepc prepositional clausal modifier
punct punctuation quantmod quantifier phrase modifier
ref referent root root
vmod reduced non-finite verbal modifier tmod temporal modifier
xcomp open clausal complement xsubj controlling subject

Appendix B

BioNLP Genia Task

B.1 Task Definition

The BioNLP Genia task requires to extract bio-molecular events mentioned in text, given

the protein/gene names, where proteins and genes are not distinguished. It was divided

into three sub-tasks:

1. Core event extraction task requires to identify the event triggers, their types

and the participants of events.

2. Event enrichment task requires to extract additional arguments to enrich the

core events, such as the location of events. One has to recognize entities of the

additional arguments and detect the relations between these entities and the core

events.

3. Negation and speculation recognition task requires to find negations and

speculations regarding events extracted by task 1.

Table B.1 lists the event definitions used in BioNLP 2009 and 2011 Genia tasks. To

be consistent with the nomenclature of this thesis, we changed the names of argument

groups. We used participants instead of Primary Arguments in [1, 2] and used Additional

Arguments instead of Secondary Argument. The core event extraction task requires

to extract the events with their participants while the event enrichment task requires

to extract the additional arguments. The negation and speculation recognition

99

Appendix B. Task Examples 100

Table B.1: BioNLP Genia event extraction task definitions. “?” means that this
argument is optional, “+” means the this argument can occur more than once.

Event Type Type of Theme participant, Additional Arguments
other participants (type)

Gene_expression Protein
Transcription Protein
Protein_catabolism Protein
Phosphorylation Protein Site (Entity)?
Localization Protein AtLoc (Entity)?, ToLoc (Entity)?
Binding Protein+ Site(Entity)+
Regulation Protein/Event, Site (Entity)?, CSite (Entity)?

Cause (Protein/Event)?
Positive_regulation Protein/Event, Site (Entity)?, CSite (Entity)?

Cause (Protein/Event)?
Negative_regulation Protein/Event, Site (Entity)?, CSite (Entity)?

Cause (Protein/Event)?

requires to indicate the negation and/or speculation based on the extracted and enriched

events. We denote that though the original definition of Binding events can involve more

than two arguments, the number of the Binding events with more than two arguments

are minor. Most of applications choose to ignore the Binding events with more than

two arguments for simplicity. For arguments, the names before parentheses are types of

arguments while the names in parentheses are the types of the target entities allowed be

arguments for this event.

Table B.2 lists the new definition of events in 2013, they are basically the same as the

definitions in 2009 except the new event types. Moreover, Phosphorylation events can

involve cause arguments like theREG events. However, in training set and development

set, the numbers of examples of new events are less than 10, which are not sufficient

for proper training. It is the same for the Phosphorylation events that contain cause

arguments (18 out of 512 Phosphorylation events have cause arguments).

Appendix B. Task Examples 101

Table B.2: BioNLP Genia event extraction task definitions.“?” means the number of this argument
is 0 or 1, “+” means the number of this argument is at least 1, “*” means the number of this argument

is not fixed.

Event Type Participants Additional Arguments

Gene_expression Theme(Protein)

Transcription Theme(Protein)

Protein_catabolism Theme(Protein)

Localization Theme(Protein) Loc(Entity)?

Binding Theme(Protein)+ Site(Entity)*

Protein_modification Theme(Protein), Cause(Protein/Event)? Site(Entity)?

Phosphorylation Theme(Protein), Cause(Protein/Event)? Site(Entity)?

Ubiquitination Theme(Protein), Cause(Protein/Event)? Site(Entity)?

Acetylation Theme(Protein), Cause(Protein/Event)? Site(Entity)?

Deacetylation Theme(Protein), Cause(Protein/Event)? Site(Entity)?

Regulation Theme(Protein/Event), Cause(Protein/Event)? Site(Entity)?, CSite(Entity)?

Positive_regulation Theme(Protein/Event), Cause(Protein/Event)? Site(Entity)?, CSite(Entity)?

Negative_regulation Theme(Protein/Event), Cause(Protein/Event)? Site(Entity)?, CSite(Entity)?

B.2 Data statistics

This section lists the statistics of dataset in BioNLP 2009, 2011 and 2013 Genia task

reported in [1–3]. Comparing the event numbers listed in Table B.3 and Table B.4,

we can see the inconsistency of annotations between BioNLP 2009 and 2011 datasets.

Table B.5 shows the number of events in new dataset, where the numbers of examples

corresponding to new classes are too small.

Table B.3: Data sets in BioNLP 2009 Genia tasks.

Train Devel Test

Abstract 800 150 260

Sentence 74490 1450 2447

Word 176146 33937 57367

Event 8597 1809 3182

Appendix B. Task Examples 102

Table B.4: Data sets in BioNLP 2011 Genia tasks.

Training Development Test
Abs Full Abs Full Abs Full

Articles 800 5 150 5 260 4
Documents 800 108 150 109 150 87

Words 176146 29583 33827 30305 57256 21791
Proteins 9300 2325 2080 2610 3589 1712
Events 8615 1695 1795 1455 3193 1294

Gene_expression 1735 527 356 393 722 280
Transcription 576 91 82 76 137 37

Protein_catabolism 110 0 21 2 14 1
Phosphorylation 169 23 47 64 139 50
Localization 265 16 53 14 174 17
Binding 887 101 249 126 349 153

Regulation 961 152 173 123 292 96
Positive_regulation 2847 538 618 382 987 466
Negative_regulation 1062 247 196 275 379 379

Table B.5: Data sets in BioNLP 2013 Genia tasks.

Training Development Test
Articles 10 10 14
Words 54938 57907 75144
Proteins 3571 4138 4359
Entities 121 314 327
Events 8615 3193 1294

Gene_expression 729 591 619
Transcription 122 98 101
Localization 44 197 99

Protein_catabolism 23 30 14
Binding 195 376 342

Protein_modification 8 1 1
Phosphorylation 117 197 161
Ubiquitination 4 2 30
Acetylation 0 3 0
Deacetylation 0 5 0
Regulation 299 284 299

Positive_regulation 780 883 1144
Negative_regulation 496 532 538

Appendix B. Task Examples 103

B.3 Ambiguous examples

We listed some ambiguous examples in this section. Figure B.1 shows the example

that use stop word “by” as trigger word. Compared to other events, using stop words

as trigger word is very hard to recognize especially for the pair-wise relation resolution.

Determining the role of “by” in this example requires joint information from both theme

and cause arguments.

Figure B.1: Trigger is stop word “by”.

Figure B.2 illustrate the examples that contain the trivial word “dependent”, which does

not have any polarity but is used in both Regulation and Positive_regulation events.

Event the human biomedical expert cannot deduct the polarity of the example given

only the sentence without context.

(a) Trivial word as Positive_regulation

(b) Trivial word as Regulation

Figure B.2: Trivial word “dependent” in different event classes

Besides the ambiguity between Regulation and Positive_regulation, the ambiguous words

marked both in two irrelative classes are also confusing. Examples presented in Figure B.3

show the ambiguity of word “overexpression”, which is marked as two event classes in

BioNLP2009 dataset but as only one of the two classes in BioNLP2011 dataset.

Appendix B. Task Examples 104

(a) Ambiguous word as Positive_regulation

(b) Ambiguous word as Gene_expression

Figure B.3: Ambiguous word “overexpression” in different event classes

In Figure B.4, we present the examples in the largest misclassification category, which is

the misclassification between events and None.

(a) Ambiguous example as Positive_regulation

(b) Ambiguous example as false positive prediction

Figure B.4: Ambiguous word “targeted”

Bibliography

[1] Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshinobu Kano, and Jun’ichi Tsujii.

Overview of bionlp’09 shared task on event extraction. In Proceedings of the BioNLP

2009 Workshop Companion Volume for Shared Task, pages 1–9, Boulder, Colorado,

June 2009. Association for Computational Linguistics. URL http://www.aclweb.

org/anthology/W09-1401.

[2] Jin-Dong Kim, Yue Wang, Toshihisa Takagi, and Akinori Yonezawa. Overview of

genia event task in bionlp shared task 2011. In Proceedings of BioNLP Shared Task

2011 Workshop, pages 7–15, Portland, Oregon, USA, June 2011. Association for

Computational Linguistics. URL http://www.aclweb.org/anthology/W11-1802.

[3] Jin-Dong Kim, Yue Wang, and Yamamoto Yasunori. The genia event extraction

shared task, 2013 edition - overview. In Proceedings of the BioNLP Shared Task 2013

Workshop, pages 8–15, Sofia, Bulgaria, August 2013. Association for Computational

Linguistics. URL http://www.aclweb.org/anthology/W13-2002.

[4] Jung-Jae Kim, Xu Han, Vivian Lee, and Dietrich Rebholz-Schuhmann. Gro task:

Populating the gene regulation ontology with events and relations. In Proceedings

of the BioNLP Shared Task 2013 Workshop, pages 50–57, Sofia, Bulgaria, August

2013. Association for Computational Linguistics. URL http://www.aclweb.org/

anthology/W13-2007.

[5] Sampo Pyysalo, Tomoko Ohta, and Sophia Ananiadou. Overview of the cancer

genetics (cg) task of bionlp shared task 2013. In Proceedings of the BioNLP Shared

Task 2013 Workshop, pages 58–66, Sofia, Bulgaria, August 2013. Association for

Computational Linguistics. URL http://www.aclweb.org/anthology/W13-2008.

[6] Tomoko Ohta, Sampo Pyysalo, Rafal Rak, Andrew Rowley, Hong-Woo Chun, Sung-

Jae Jung, Sung-Pil Choi, Sophia Ananiadou, and Jun’ichi Tsujii. Overview of the

105

http://www.aclweb.org/anthology/W09-1401
http://www.aclweb.org/anthology/W09-1401
http://www.aclweb.org/anthology/W11-1802
http://www.aclweb.org/anthology/W13-2002
http://www.aclweb.org/anthology/W13-2007
http://www.aclweb.org/anthology/W13-2007
http://www.aclweb.org/anthology/W13-2008

Bibliography 106

pathway curation (pc) task of bionlp shared task 2013. In Proceedings of the BioNLP

Shared Task 2013 Workshop, pages 67–75, Sofia, Bulgaria, August 2013. Associ-

ation for Computational Linguistics. URL http://www.aclweb.org/anthology/

W13-2009.

[7] Claire Nédellec, Robert Bossy, Jin-Dong Kim, Jung-Jae Kim, Tomoko Ohta, Sampo

Pyysalo, and Pierre Zweigenbaum. Overview of bionlp shared task 2013. In Proceed-

ings of the BioNLP Shared Task 2013 Workshop, pages 1–7, Sofia, Bulgaria, August

2013. Association for Computational Linguistics. URL http://www.aclweb.org/

anthology/W13-2001.

[8] Sampo Pyysalo, Tomoko Ohta, and Jun’ichi Tsujii. Overview of the entity rela-

tions (rel) supporting task of bionlp shared task 2011. In Proceedings of BioNLP

Shared Task 2011 Workshop, pages 83–88, Portland, Oregon, USA, June 2011. Asso-

ciation for Computational Linguistics. URL http://www.aclweb.org/anthology/

W11-1812.

[9] Ngan Nguyen, Jin-Dong Kim, and Jun’ichi Tsujii. Overview of bionlp 2011 protein

coreference shared task. In Proceedings of BioNLP Shared Task 2011 Workshop,

pages 74–82, Portland, Oregon, USA, June 2011. Association for Computational

Linguistics. URL http://www.aclweb.org/anthology/W11-1811.

[10] Robert Bossy, Julien Jourde, Philippe Bessières, Maarten van de Guchte, and Claire

Nédellec. Bionlp shared task 2011 - bacteria biotope. In Proceedings of BioNLP

Shared Task 2011 Workshop, pages 56–64, Portland, Oregon, USA, June 2011. Asso-

ciation for Computational Linguistics. URL http://www.aclweb.org/anthology/

W11-1809.

[11] Sampo Pyysalo, Tomoko Ohta, Rafal Rak, Dan Sullivan, Chunhong Mao, Chunxia

Wang, Bruno Sobral, Jun’ichi Tsujii, and Sophia Ananiadou. Overview of the in-

fectious diseases (id) task of bionlp shared task 2011. In Proceedings of BioNLP

Shared Task 2011 Workshop, pages 26–35, Portland, Oregon, USA, June 2011. Asso-

ciation for Computational Linguistics. URL http://www.aclweb.org/anthology/

W11-1804.

[12] Tomoko Ohta, Sampo Pyysalo, and Jun’ichi Tsujii. Overview of the epigenetics and

post-translational modifications (epi) task of bionlp shared task 2011. In Proceedings

http://www.aclweb.org/anthology/W13-2009
http://www.aclweb.org/anthology/W13-2009
http://www.aclweb.org/anthology/W13-2001
http://www.aclweb.org/anthology/W13-2001
http://www.aclweb.org/anthology/W11-1812
http://www.aclweb.org/anthology/W11-1812
http://www.aclweb.org/anthology/W11-1811
http://www.aclweb.org/anthology/W11-1809
http://www.aclweb.org/anthology/W11-1809
http://www.aclweb.org/anthology/W11-1804
http://www.aclweb.org/anthology/W11-1804

Bibliography 107

of BioNLP Shared Task 2011 Workshop, pages 16–25, Portland, Oregon, USA, June

2011. Association for Computational Linguistics. URL http://www.aclweb.org/

anthology/W11-1803.

[13] Jin-Dong Kim, Sampo Pyysalo, Tomoko Ohta, Robert Bossy, Ngan Nguyen, and

Jun’ichi Tsujii. Overview of bionlp shared task 2011. In Proceedings of BioNLP

Shared Task 2011 Workshop, pages 1–6, Portland, Oregon, USA, June 2011. Asso-

ciation for Computational Linguistics. URL http://www.aclweb.org/anthology/

W11-1801.

[14] Sampo Pyysalo, Tomoko Ohta, Jin-Dong Kim, and Jun’ichi Tsujii. Static rela-

tions: a piece in the biomedical information extraction puzzle. In Proceedings of

the Workshop on Current Trends in Biomedical Natural Language Processing, pages

1–9. Association for Computational Linguistics, 2009.

[15] Sampo Pyysalo, Filip Ginter, Juho Heimonen, Jari Björne, Jorma Boberg, Jouni

Järvinen, and Tapio Salakoski. Bioinfer: a corpus for information extraction in the

biomedical domain. BMC bioinformatics, 8(1):50, 2007.

[16] Jin-Dong Kim, Tomoko Ohta, and Jun’ichi Tsujii. Corpus annotation for mining

biomedical events from literature. BMC bioinformatics, 9(1):10, 2008.

[17] David McClosky, Mihai Surdeanu, and Christopher Manning. Event extraction

as dependency parsing for bionlp 2011. In Proceedings of BioNLP Shared Task

2011 Workshop, pages 41–45, Portland, Oregon, USA, June 2011. Association for

Computational Linguistics. URL http://www.aclweb.org/anthology/W11-1806.

[18] Sebastian Riedel, Hong-Woo Chun, Toshihisa Takagi, and Jun’ichi Tsujii. A markov

logic approach to bio-molecular event extraction. In Proceedings of the BioNLP 2009

Workshop Companion Volume for Shared Task, pages 41–49, Boulder, Colorado,

June 2009. Association for Computational Linguistics. URL http://www.aclweb.

org/anthology/W09-1406.

[19] Sebastian Riedel and Andrew McCallum. Fast and robust joint models for biomed-

ical event extraction. In Proceedings of the 2011 Conference on Empirical Meth-

ods in Natural Language Processing, pages 1–12, Edinburgh, Scotland, UK., July

2011. Association for Computational Linguistics. URL http://www.aclweb.org/

anthology/D11-1001.

http://www.aclweb.org/anthology/W11-1803
http://www.aclweb.org/anthology/W11-1803
http://www.aclweb.org/anthology/W11-1801
http://www.aclweb.org/anthology/W11-1801
http://www.aclweb.org/anthology/W11-1806
http://www.aclweb.org/anthology/W09-1406
http://www.aclweb.org/anthology/W09-1406
http://www.aclweb.org/anthology/D11-1001
http://www.aclweb.org/anthology/D11-1001

Bibliography 108

[20] Sebastian Riedel and Andrew McCallum. Robust biomedical event extraction with

dual decomposition and minimal domain adaptation. In Proceedings of BioNLP

Shared Task 2011 Workshop, pages 46–50, Portland, Oregon, USA, June 2011. Asso-

ciation for Computational Linguistics. URL http://www.aclweb.org/anthology/

W11-1807.

[21] Sebastian Riedel, David McClosky, Mihai Surdeanu, Andrew McCallum, and

Christopher D. Manning. Model combination for event extraction in bionlp 2011.

In Proceedings of BioNLP Shared Task 2011 Workshop, pages 51–55, Portland,

Oregon, USA, June 2011. Association for Computational Linguistics. URL http:

//www.aclweb.org/anthology/W11-1808.

[22] David McClosky, Sebastian Riedel, Mihai Surdeanu, Andrew McCallum, and

Christopher D. Manning. Combining joint models for biomedical event extraction.

BMC Bioinformatics, 13(S-11):S9, 2012.

[23] Jari Björne, Juho Heimonen, Filip Ginter, Antti Airola, Tapio Pahikkala, and Tapio

Salakoski. Extracting complex biological events with rich graph-based feature sets.

In Proceedings of the BioNLP 2009 Workshop Companion Volume for Shared Task,

pages 10–18, Boulder, Colorado, June 2009. Association for Computational Linguis-

tics. URL http://www.aclweb.org/anthology/W09-1402.

[24] Jari Björne and Tapio Salakoski. Generalizing biomedical event extraction. In Pro-

ceedings of BioNLP Shared Task 2011 Workshop, pages 183–191, Portland, Ore-

gon, USA, June 2011. Association for Computational Linguistics. URL http:

//www.aclweb.org/anthology/W11-1828.

[25] Jari Björne and Tapio Salakoski. TEES 2.1: Automated annotation scheme learning

in the BioNLP 2013 shared task. In Proceedings of BioNLP Shared Task 2013

Workshop, Sofia, Bulgaria, August 2013. Association for Computational Linguistics.

[26] Jin-Dong Kim, Ngan Nguyen, Yue Wang, Jun’ichi Tsujii, Toshihisa Takagi, and

Akinori Yonezawa. The genia event and protein coreference tasks of the bionlp

shared task 2011. BMC Bioinformatics, 13(Suppl 11):S1, 2012. ISSN 1471-2105. doi:

10.1186/1471-2105-13-S11-S1. URL http://www.biomedcentral.com/1471-2105/

13/S11/S1.

http://www.aclweb.org/anthology/W11-1807
http://www.aclweb.org/anthology/W11-1807
http://www.aclweb.org/anthology/W11-1808
http://www.aclweb.org/anthology/W11-1808
http://www.aclweb.org/anthology/W09-1402
http://www.aclweb.org/anthology/W11-1828
http://www.aclweb.org/anthology/W11-1828
http://www.biomedcentral.com/1471-2105/13/S11/S1
http://www.biomedcentral.com/1471-2105/13/S11/S1

Bibliography 109

[27] Yusuke Miyao and Jun’ichi Tsujii. Feature forest models for probabilistic hpsg

parsing. Computational Linguistics, 34(1):35–80, 2008.

[28] Kenji Sagae and Jun’ichi Tsujii. Dependency parsing and domain adaptation with

lr models and parser ensembles. In EMNLP-CoNLL, volume 2007, pages 1044–1050,

2007.

[29] Makoto Miwa, Sampo Pyysalo, Tadayoshi Hara, and Jun’ichi Tsujii. A comparative

study of syntactic parsers for event extraction. In Proceedings of the 2010 Workshop

on Biomedical Natural Language Processing, pages 37–45, Uppsala, Sweden, July

2010. Association for Computational Linguistics. URL http://www.aclweb.org/

anthology/W10-1905.

[30] Chris Quirk, Pallavi Choudhury, Michael Gamon, and Lucy Vanderwende. Msr-

nlp entry in bionlp shared task 2011. In Proceedings of BioNLP Shared Task 2011

Workshop, pages 155–163, Portland, Oregon, USA, June 2011. Association for Com-

putational Linguistics. URL http://www.aclweb.org/anthology/W11-1825.

[31] Youngjun Kim, Ellen Riloff, and Nathan Gilbert. The taming of reconcile as a

biomedical coreference resolver. In Proceedings of BioNLP Shared Task 2011 Work-

shop, pages 89–93, Portland, Oregon, USA, June 2011. Association for Computa-

tional Linguistics. URL http://www.aclweb.org/anthology/W11-1813.

[32] Ekaterina Buyko, Erik Faessler, Joachim Wermter, and Udo Hahn. Event extrac-

tion from trimmed dependency graphs. In Proceedings of the BioNLP 2009 Work-

shop Companion Volume for Shared Task, pages 19–27, Boulder, Colorado, June

2009. Association for Computational Linguistics. URL http://www.aclweb.org/

anthology/W09-1403.

[33] Hyoung-Gyu Lee, Han-Cheol Cho, Min-Jeong Kim, Joo-Young Lee, Gumwon Hong,

and Hae-Chang Rim. A multi-phase approach to biomedical event extraction. In

Proceedings of the BioNLP 2009 Workshop Companion Volume for Shared Task,

pages 107–110, Boulder, Colorado, June 2009. Association for Computational Lin-

guistics. URL http://www.aclweb.org/anthology/W09-1415.

http://www.aclweb.org/anthology/W10-1905
http://www.aclweb.org/anthology/W10-1905
http://www.aclweb.org/anthology/W11-1825
http://www.aclweb.org/anthology/W11-1813
http://www.aclweb.org/anthology/W09-1403
http://www.aclweb.org/anthology/W09-1403
http://www.aclweb.org/anthology/W09-1415

Bibliography 110

[34] Halil Kilicoglu and Sabine Bergler. Syntactic dependency based heuristics for biolog-

ical event extraction. In Proceedings of the BioNLP 2009 Workshop Companion Vol-

ume for Shared Task, pages 119–127, Boulder, Colorado, June 2009. Association for

Computational Linguistics. URL http://www.aclweb.org/anthology/W09-1418.

[35] Andreas Vlachos and Mark Craven. Biomedical event extraction from abstracts

and full papers using search-based structured prediction. In Proceedings of BioNLP

Shared Task 2011 Workshop, pages 36–40, Portland, Oregon, USA, June 2011. Asso-

ciation for Computational Linguistics. URL http://www.aclweb.org/anthology/

W11-1805.

[36] Liam R. McGrath, Kelly Domico, Courtney D. Corley, and Bobbie-Jo Webb-

Robertson. Complex biological event extraction from full text using signatures of

linguistic and semantic features. In Proceedings of BioNLP Shared Task 2011 Work-

shop, pages 130–137, Portland, Oregon, USA, June 2011. Association for Computa-

tional Linguistics. URL http://www.aclweb.org/anthology/W11-1818.

[37] Ehsan Emadzadeh, Azadeh Nikfarjam, and Graciela Gonzalez. Double layered learn-

ing for biological event extraction from text. In Proceedings of BioNLP Shared Task

2011 Workshop, pages 153–154, Portland, Oregon, USA, June 2011. Association for

Computational Linguistics. URL http://www.aclweb.org/anthology/W11-1824.

[38] Sofie Van Landeghem, Jari Björne, Thomas Abeel, Bernard De Baets, Tapio

Salakoski, and Yves Van de Peer. Semantically linking molecular entities in lit-

erature through entity relationships. BMC Bioinformatics, 13(S-11):S6, 2012.

[39] Lishuang Li, Yiwen Wang, and Degen Huang. Improving feature-based biomedical

event extraction system by integrating argument information. In Proceedings of

the BioNLP Shared Task 2013 Workshop, pages 109–115, Sofia, Bulgaria, August

2013. Association for Computational Linguistics. URL http://www.aclweb.org/

anthology/W13-2015.

[40] Roser Morante, Vincent Van Asch, and Walter Daelemans. A memory-based

learning approach to event extraction in biomedical texts. In Proceedings of

the BioNLP 2009 Workshop Companion Volume for Shared Task, pages 59–67,

Boulder, Colorado, June 2009. Association for Computational Linguistics. URL

http://www.aclweb.org/anthology/W09-1408.

http://www.aclweb.org/anthology/W09-1418
http://www.aclweb.org/anthology/W11-1805
http://www.aclweb.org/anthology/W11-1805
http://www.aclweb.org/anthology/W11-1818
http://www.aclweb.org/anthology/W11-1824
http://www.aclweb.org/anthology/W13-2015
http://www.aclweb.org/anthology/W13-2015
http://www.aclweb.org/anthology/W09-1408

Bibliography 111

[41] Andrew MacKinlay, David Martinez, and Timothy Baldwin. Biomedical event an-

notation with crfs and precision grammars. In Proceedings of the BioNLP 2009

Workshop Companion Volume for Shared Task, pages 77–85, Boulder, Colorado,

June 2009. Association for Computational Linguistics. URL http://www.aclweb.

org/anthology/W09-1410.

[42] Rune Sætre, Makoto Miwa, Kazuhiro Yoshida, and Jun’ichi Tsujii. From protein-

protein interaction to molecular event extraction. In Proceedings of the BioNLP 2009

Workshop Companion Volume for Shared Task, pages 103–106, Boulder, Colorado,

June 2009. Association for Computational Linguistics. URL http://www.aclweb.

org/anthology/W09-1414.

[43] Quang Le Minh, Son Nguyen Truong, and Quoc Ho Bao. A pattern approach for

biomedical event annotation. In Proceedings of BioNLP Shared Task 2011 Workshop,

pages 149–150, Portland, Oregon, USA, June 2011. Association for Computational

Linguistics. URL http://www.aclweb.org/anthology/W11-1822.

[44] Kaarel Kaljurand, Gerold Schneider, and Fabio Rinaldi. Uzurich in the bionlp 2009

shared task. In Proceedings of the BioNLP 2009 Workshop Companion Volume for

Shared Task, pages 28–36, Boulder, Colorado, June 2009. Association for Computa-

tional Linguistics. URL http://www.aclweb.org/anthology/W09-1404.

[45] Andreas Vlachos, Paula Buttery, Diarmuid Ó Séaghdha, and Ted Briscoe. Biomed-

ical event extraction without training data. In Proceedings of the BioNLP 2009

Workshop Companion Volume for Shared Task, pages 37–40, Boulder, Colorado,

June 2009. Association for Computational Linguistics. URL http://www.aclweb.

org/anthology/W09-1405.

[46] Quoc-Chinh Bui and Peter. M.A. Sloot. Extracting biological events from text using

simple syntactic patterns. In Proceedings of BioNLP Shared Task 2011 Workshop,

pages 143–146, Portland, Oregon, USA, June 2011. Association for Computational

Linguistics. URL http://www.aclweb.org/anthology/W11-1820.

[47] Quoc-Chinh Bui, David Campos, Erik van Mulligen, and Jan Kors. A fast rule-based

approach for biomedical event extraction. In Proceedings of the BioNLP Shared

Task 2013 Workshop, pages 104–108, Sofia, Bulgaria, August 2013. Association for

Computational Linguistics. URL http://www.aclweb.org/anthology/W13-2014.

http://www.aclweb.org/anthology/W09-1410
http://www.aclweb.org/anthology/W09-1410
http://www.aclweb.org/anthology/W09-1414
http://www.aclweb.org/anthology/W09-1414
http://www.aclweb.org/anthology/W11-1822
http://www.aclweb.org/anthology/W09-1404
http://www.aclweb.org/anthology/W09-1405
http://www.aclweb.org/anthology/W09-1405
http://www.aclweb.org/anthology/W11-1820
http://www.aclweb.org/anthology/W13-2014

Bibliography 112

[48] Syed Toufeeq Ahmed, Radhika Nair, Chintan Patel, and Hasan Davulcu. Bioeve:

Bio-molecular event extraction from text using semantic classification and depen-

dency parsing. In Proceedings of the BioNLP 2009 Workshop Companion Volume

for Shared Task, pages 99–102, Boulder, Colorado, June 2009. Association for Com-

putational Linguistics. URL http://www.aclweb.org/anthology/W09-1413.

[49] Jari Björne and Tapio Salakoski. Tees 2.1: Automated annotation scheme learning

in the bionlp 2013 shared task. In Proceedings of the BioNLP Shared Task 2013

Workshop, pages 16–25, Sofia, Bulgaria, August 2013. Association for Computa-

tional Linguistics. URL http://www.aclweb.org/anthology/W13-2003.

[50] Makoto Miwa, Rune Sætre, Jin-Dong Kim, and Jun’ichi Tsujii. Event extraction

with complex event classification using rich features. Journal of bioinformatics and

computational biology, 8(01):131–146, 2010.

[51] Jörg Hakenberg, Illes Solt, Domonkos Tikk, Luis Tari, Astrid Rheinländer, Nguyen

Quang Long, Graciela Gonzalez, and Ulf Leser. Molecular event extraction from

link grammar parse trees. In Proceedings of the BioNLP 2009 Workshop Companion

Volume for Shared Task, pages 86–94, Boulder, Colorado, June 2009. Association for

Computational Linguistics. URL http://www.aclweb.org/anthology/W09-1411.

[52] Andrew MacKinlay, David Martinez, Antonio Jimeno Yepes, Haibin Liu, W John

Wilbur, and Karin Verspoor. Extracting biomedical events and modifications using

subgraph matching with noisy training data. In Proceedings of the BioNLP Shared

Task 2013 Workshop, pages 35–44, Sofia, Bulgaria, August 2013. Association for

Computational Linguistics. URL http://www.aclweb.org/anthology/W13-2005.

[53] Haibin Liu, Ravikumar Komandur, and Karin Verspoor. From graphs to events:

A subgraph matching approach for information extraction from biomedical text.

In Proceedings of BioNLP Shared Task 2011 Workshop, pages 164–172, Portland,

Oregon, USA, June 2011. Association for Computational Linguistics. URL http:

//www.aclweb.org/anthology/W11-1826.

[54] Sofie Van Landeghem, Yvan Saeys, Bernard De Baets, and Yves Van de Peer. An-

alyzing text in search of bio-molecular events: a high-precision machine learning

framework. In Proceedings of the BioNLP 2009 Workshop Companion Volume for

http://www.aclweb.org/anthology/W09-1413
http://www.aclweb.org/anthology/W13-2003
http://www.aclweb.org/anthology/W09-1411
http://www.aclweb.org/anthology/W13-2005
http://www.aclweb.org/anthology/W11-1826
http://www.aclweb.org/anthology/W11-1826

Bibliography 113

Shared Task, pages 128–136, Boulder, Colorado, June 2009. Association for Compu-

tational Linguistics. URL http://www.aclweb.org/anthology/W09-1419.

[55] György Móra, Richárd Farkas, György Szarvas, and Zsolt Molnár. Exploring ways

beyond the simple supervised learning approach for biological event extraction. In

Proceedings of the BioNLP 2009 Workshop Companion Volume for Shared Task,

pages 137–140, Boulder, Colorado, June 2009. Association for Computational Lin-

guistics. URL http://www.aclweb.org/anthology/W09-1420.

[56] Arzucan Ozgur and Dragomir Radev. Supervised classification for extracting

biomedical events. In Proceedings of the BioNLP 2009 Workshop Companion Vol-

ume for Shared Task, pages 111–114, Boulder, Colorado, June 2009. Association for

Computational Linguistics. URL http://www.aclweb.org/anthology/W09-1416.

[57] Asma Ben Abacha and Pierre Zweigenbaum. Medical entity recognition: A compar-

ison of semantic and statistical methods. In Proceedings of BioNLP 2011 Workshop,

pages 56–64. Association for Computational Linguistics, 2011.

[58] Kaibo Duan, S. Sathiya Keerthi, Wei Chu, Shirish Krishnaj Shevade, and Aun Neow

Poo. Multi-category classification by soft-max combination of binary classifiers. In

In 4th International Workshop on Multiple Classifier Systems, 2003.

[59] John C. Platt. Probabilistic outputs for support vector machines and comparisons

to regularized likelihood methods. In Advances in Large Margin Classifiers, pages

61–74. MIT Press, 1999.

[60] D. M. J. Tax and R. P. W. Duin. Using two-class classifiers for multiclass classifi-

cation. In Proceedings of the 16th International Conference on Pattern Recognition,

volume 2, pages 124–127 vol.2, 2002.

[61] Kai Hakala, Sofie Van Landeghem, Tapio Salakoski, Yves Van de Peer, and Filip

Ginter. EVEX in ST’13: Application of a large-scale text mining resource to event

extraction and network construction. In Proceedings of BioNLP Shared Task 2013

Workshop, Sofia, Bulgaria, August 2013. Association for Computational Linguistics.

[62] K. Morik, P. Brockhausen, and T. Joachims. Combining statistical learning with a

knowledge-based approach - a case study in intensive care monitoring. In Proceedings

of the Sixteenth International Conference on Machine Learning (ICML 1999), 1999.

http://www.aclweb.org/anthology/W09-1419
http://www.aclweb.org/anthology/W09-1420
http://www.aclweb.org/anthology/W09-1416

Bibliography 114

[63] K. Veropoulos, C. Campbell, and N. Cristianini. Controlling the sensitivity of sup-

port vector machines. In T. Dean, editor, Proceedings of the International Joint

Conference on Artificial Intelligence, pages 55–60, 1999.

[64] R. Brent. Algorithms for minimization without derivatives. Prentice-Hall, 1973.

[65] Andreas Vlachos and Mark Craven. Biomedical event extraction from abstracts and

full papers using search-based structured prediction. BMC bioinformatics, 13(Suppl

11):S5, 2012.

[66] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. the

Journal of machine Learning research, 3:993–1022, 2003.

[67] R. Collobert and J. Weston. A unified architecture for natural language process-

ing: Deep neural networks with multitask learning. In International Conference on

Machine Learning, ICML, 2008.

[68] Eric H Huang, Richard Socher, Christopher D Manning, and Andrew Y Ng. Im-

proving word representations via global context and multiple word prototypes. In

Proceedings of the 50th Annual Meeting of the Association for Computational Lin-

guistics: Long Papers-Volume 1, pages 873–882. Association for Computational Lin-

guistics, 2012.

[69] Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-

bfgs-b: Fortran subroutines for large-scale bound-constrained optimization. ACM

Transactions on Mathematical Software (TOMS), 23(4):550–560, 1997.

[70] John A Nelder and Roger Mead. A simplex method for function minimization.

Computer journal, 7(4):308–313, 1965.

[71] Margaret H Wright. Direct search methods: Once scorned, now respectable. Pitman

Research Notes in Mathematics Series, pages 191–208, 1996.

[72] Michael JD Powell. An efficient method for finding the minimum of a function

of several variables without calculating derivatives. The computer journal, 7(2):

155–162, 1964.

[73] William H Press. Numerical recipes 3rd edition: The art of scientific computing.

Cambridge university press, 2007.

Bibliography 115

[74] SJ Wright and J Nocedal. Numerical optimization, volume 2. Springer New York,

1999.

[75] Hal Daumé Iii, John Langford, and Daniel Marcu. Search-based structured predic-

tion. Machine learning, 75(3):297–325, 2009.

[76] Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. Joint learning of

words and meaning representations for open-text semantic parsing. In International

Conference on Artificial Intelligence and Statistics, pages 127–135, 2012.

[77] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in contin-

uous space word representations. In Proceedings of NAACL-HLT, pages 746–751,

2013.

[78] Marco Baroni and Roberto Zamparelli. Nouns are vectors, adjectives are matrices:

Representing adjective-noun constructions in semantic space. In Proceedings of the

2010 Conference on Empirical Methods in Natural Language Processing, pages 1183–

1193. Association for Computational Linguistics, 2010.

[79] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale

optimization. Mathematical programming, 45(1-3):503–528, 1989.

[80] William Blacoe and Mirella Lapata. A comparison of vector-based representations

for semantic composition. In Proceedings of the 2012 Joint Conference on Empiri-

cal Methods in Natural Language Processing and Computational Natural Language

Learning, pages 546–556. Association for Computational Linguistics, 2012.

[81] Richard Socher, Brody Huval, Christopher D Manning, and Andrew Y Ng. Se-

mantic compositionality through recursive matrix-vector spaces. In Proceedings of

the 2012 Joint Conference on Empirical Methods in Natural Language Processing

and Computational Natural Language Learning, pages 1201–1211. Association for

Computational Linguistics, 2012.

[82] Richard Socher, Jeffrey Pennington, Eric H Huang, Andrew Y Ng, and Christo-

pher D Manning. Semi-supervised recursive autoencoders for predicting sentiment

distributions. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing, pages 151–161. Association for Computational Linguistics,

2011.

Bibliography 116

[83] Richard Socher, John Bauer, Christopher D Manning, and Andrew Y Ng. Parsing

with compositional vector grammars. In In Proceedings of the ACL conference.

Citeseer, 2013.

[84] Katsumasa Yoshikawa, Sebastian Riedel, Tsutomu Hirao, Masayuki Asahara, and

Yuji Matsumoto. Coreference based event-argument relation extraction on biomed-

ical text. J. Biomedical Semantics, 2(S-5):S6, 2011.

[85] Georgiana Dinu, Nghia The Pham, and Marco Baroni. General estimation and

evaluation of compositional distributional semantic models. In Proceedings of the

Workshop on Continuous Vector Space Models and their Compositionality, pages 50–

58, Sofia, Bulgaria, August 2013. Association for Computational Linguistics. URL

http://www.aclweb.org/anthology/W13-3206.

[86] Chang-Ning Huang and Hai Zhao. Chinese word segmentation: A decade review.

Journal of Chinese Information Processing, 21(3):8–20, 2007.

[87] Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation models. In

EMNLP, pages 1700–1709, 2013.

http://www.aclweb.org/anthology/W13-3206

	PDT LIU Xiao
	Soutenue le 25 septembre 2014

	main 1
	main
	Résumé
	Abstract
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Biomedical Information Extraction from Text
	1.1.1 Natural Language Processing
	1.1.1.1 Tasks of NLP
	Real-World Tasks
	Inter-media Tasks

	1.1.1.2 Methods of NLP

	1.1.2 Information Extraction from Text
	1.1.3 BioNLP Genia Task

	1.2 Thesis Contribution
	1.2.1 Recursive Pairwise Relation Extraction
	1.2.2 Classifier and Feature Design
	1.2.3 Implementation

	1.3 Outline of the Thesis

	2 State-of-the-Art in Biomedical Event Extraction
	2.1 Introduction
	2.2 Text Preprocessing
	2.2.1 Tokenization and Sentence Splitting
	2.2.1.1 Difficulties in Biomedical Documents
	Tokenization
	Sentence Splitting

	2.2.1.2 Implementations

	2.2.2 Syntactic Grammars
	2.2.2.1 Phrase Structure Grammar
	2.2.2.2 Dependency Grammar

	2.2.3 Frequently Used Parsers
	2.2.3.1 Stanford Series
	2.2.3.2 Other Parsers

	2.3 Dedicated Feature Engineering
	2.3.1 Unitary Features
	2.3.1.1 Features of Target Entities
	2.3.1.2 Features of Context
	Word Window
	Dependency Adjacent Nodes

	2.3.2 Pairwise Features
	2.3.2.1 Dependency Path
	2.3.2.2 Encoding Methods
	E/V-walk
	N-Grams

	2.3.3 Other Features

	2.4 Previous Work
	2.4.1 Pipeline Models
	2.4.1.1 General Architecture
	2.4.1.2 Diverse Implementations
	Trigger Detection
	Edge Detection
	Post-Processing

	2.4.2 Joint Models
	2.4.2.1 Markov Random Fields
	2.4.2.2 Pattern Matching

	2.4.3 Pairwise Models

	2.5 Summary

	3 A Pairwise Model
	3.1 Introduction
	3.2 Problem Modelization
	3.2.1 Formulation of Pair Extraction
	3.2.2 Problem Decomposition
	3.2.2.1 Non-REG Event Extraction
	Non-REG (trigger, theme) Pair Extraction
	BIND theme Fusion

	3.2.2.2 REG Event Extraction
	REG-theme Pair Extraction
	REG-cause Assignment

	3.3 Implementation
	3.3.1 Classifier
	3.3.1.1 SVM for Cost-Sensitive Multi-Class Classification
	Standard SVM
	SVM with Asymmetric Costs
	One-vs-Rest Framework

	3.3.1.2 Training Procedure
	Notation
	Setting C+/C- Hyper-Parameters
	SVM Scores Combination
	Logistic Regression
	Decision Thresholds
	Classifier Chain

	3.3.2 Feature Study
	3.3.2.1 Multiple Tokenizations & Sentence Splitting
	Support Tokenization
	Stanford Tokenization
	Longest Sentence
	Coarse Tokenization Features

	3.3.2.2 Dependency Path Trimming
	Encoding Paths
	Statistics of Path Lengths

	3.3.2.3 Knowledge Base
	3.3.2.4 Feature Summary

	3.4 Experiments
	3.4.1 Feature Adjustment
	3.4.1.1 Dependency Path Trimming
	3.4.1.2 Knowledge Base, Coarse Tokenization and Window Size
	Window Size
	Knowledge Base
	Coarse Tokenization

	3.4.2 Test Results
	3.4.2.1 BioNLP 2011
	3.4.2.2 BioNLP 2013

	3.5 Conclusion

	4 Recursive Pairwise Model
	4.1 Introduction
	4.2 Improved Recursive Classification Framework
	4.2.1 Recursive
	4.2.2 Merging the Trigger-Theme Steps
	4.2.3 Complexity

	4.3 Implementation
	4.3.1 Simplified Classifier
	4.3.2 Edge-Walk vs Vertex-Walk

	4.4 Experiments
	4.4.1 Classifiers
	4.4.2 Features
	4.4.3 Model Comparison
	4.4.3.1 BioNLP 2011
	4.4.3.2 BioNLP 2013
	4.4.3.3 Training Duration

	4.5 Conclusion

	5 Variations
	5.1 Introduction
	5.2 Classifier
	5.2.1 Output Normalization
	5.2.1.1 Soft-Max
	5.2.1.2 Multinomial Logistic Regression

	5.2.2 Threshold Selection
	5.2.3 Without Normalization
	5.2.4 Experiments

	5.3 Stacked Model
	5.3.1 Simulate the Previous Predictions in Training
	5.3.2 Evaluating Examples with Different Orders in Test
	5.3.3 Experiments

	5.4 Vector Embedding
	5.4.1 Language Model
	Training Objective and Method
	Neural Network Architecture

	5.4.2 Integration into NLP Tasks
	5.4.3 Experiments
	5.4.4 Perplexity of Language Model with Respect to Annotation

	5.5 Conclusion

	6 Conclusion
	6.1 Perspectives for Biomedical Event Extraction
	6.1.1 Contributions and Limitations
	6.1.2 Further Extensions

	6.2 NLP Directions
	6.2.1 Representation
	6.2.2 Background Knowledge

	A Linguistic Knowledge
	A.1 Part-of-speech
	A.2 CoNLL Dependency Grammar
	A.3 Stanford Dependency Grammar

	B BioNLP Genia Task
	B.1 Task Definition
	B.2 Data statistics
	B.3 Ambiguous examples

	Bibliography

