H. Sixta, . Handbook, W. Pulp, D. Sixta, G. Fengel et al., Wood: chemistry, ultrastructure, reactions Principles of Wood Science and Technology Amsterdam: Gordon and Breach Science Publishers Wood and Cellulosic Chemistry, Second Edition, Revised, and Expanded, Cellulose; Structure, Accessibility and Reactivity Comprehensive Cellulose Chemistry Conformations, structures, and morphologies of celluloses. », in Polysaccharides, Dekker. 41?68. [8] P. A. Navi, F. Heger, et P. Morlier, Comportement thermo-hydromécanique du bois: applications technologiques et dans les structures. Lausanne, Suisse: Presses polytechniques et universitaires romandes, 2005. [9] R. Alén, Biorefining of Forest Resources, pp.1-2, 1968.

E. Kontturi, T. Tammelin, E. M. Osterberg, and . Cellulose, Cellulose???model films and the fundamental approach, Chem. Soc. Rev., vol.11, issue.130, pp.1287-1304, 2006.
DOI : 10.1023/B:CELL.0000014768.28924.0c

E. Sjöström, Wood Chemistry: Fundamentals and Applications, 1993.

B. Lindman, G. Karlström, and E. L. Stigsson, On the mechanism of dissolution of cellulose, Journal of Molecular Liquids, vol.156, issue.1, pp.76-81, 2010.
DOI : 10.1016/j.molliq.2010.04.016

A. Ehrhardt, S. Groner, and E. T. Bechtold, « Swelling behaviour of cellulosic fibres part I: Changes in physical properties. », Fibres Text All Rights Reserved, East. Eur, vol.15, pp.46-48, 2007.

T. Okano and A. Sarko, Mercerization of cellulose. I. X-ray diffraction evidence for intermediate structures, Journal of Applied Polymer Science, vol.29, issue.12, pp.4175-4182, 1984.
DOI : 10.1002/app.1984.070291247

C. Cuissinat and P. Navard, Swelling and Dissolution of Cellulose Part II: Free Floating Cotton and Wood Fibres in NaOH???Water???Additives Systems, Macromolecular Symposia, vol.13, issue.1
DOI : 10.2115/fiber.52.6_310

URL : https://hal.archives-ouvertes.fr/hal-00530634

G. A. Richter and K. E. Glidden, CELLULOSE SHEET SWELLING Effect of Temperature and Concentration of Sodium Hydroxide Solutions, Industrial & Engineering Chemistry, vol.32, issue.4, pp.480-486, 1940.
DOI : 10.1021/ie50364a008

T. Heinze and A. Koschella, « Solvents applied in the field of cellulose chemistry a mini review », Polímeros Ciênc, E Tecnol, vol.15, issue.2, pp.84-90, 2005.

H. Sobue, H. Kiessig, and E. K. Hess, « The cellulose-sodium hydroxidewater system as a function of the temperature, Z Phys. Chem B, vol.43, pp.309-328, 1939.

J. Cai and L. Zhang, Rapid Dissolution of Cellulose in LiOH/Urea and NaOH/Urea Aqueous Solutions, Macromolecular Bioscience, vol.31, issue.6, pp.539-548, 2005.
DOI : 10.1080/07366578308079443

G. Laus, G. Bentivoglio, H. Schottenberger, V. Kahlenberg, H. Kopacka et al., All Rights Reserved, Ionic liquids: current developments, potential and drawbacks for industrial applications. », Lenzing. Berichte, pp.71-85, 2005.

C. Woodings, Regenerated Cellulose Fibres, 2001.
DOI : 10.1533/9781855737587

L. S. Jasna and S. Stevanic, « The primary cell wall studied by dynamic 2D FT-IR: Interaction among components in Norway spruce (Picea abies), Cellul. Chem. Technol, vol.40, pp.761-767, 2006.

E. Adler, Lignin chemistry?past, present and future, Lignin chemistry?past, present and future, pp.169-218, 1977.
DOI : 10.1139/o63-009

M. P. Pandey and C. S. Kim, Lignin Depolymerization and Conversion: A Review of Thermochemical Methods, Chemical Engineering & Technology, vol.10, issue.4, pp.29-41, 2011.
DOI : 10.1002/ceat.201000270

L. Salmen and A. Olsson, « Interaction between hemicelluloses, lignin and cellulose : Structure-property relationships, J. Pulp Pap. Sci, vol.24, issue.3, pp.99-103, 1998.

M. Åkerholm and L. Salmén, Interactions between wood polymers studied by dynamic FT-IR spectroscopy, Polymer, vol.42, issue.3, pp.963-969, 2001.
DOI : 10.1016/S0032-3861(00)00434-1

H. Meier and K. C. Wilkie, Distribution of polysaccharides in the cell wall of tracheids of pine (Pinus silvestris). », Holzforschung All Rights Reserved, pp.177-82, 1959.

A. Bjorkman, « Lignin and lignin-carbohydrate complexes. Extraction from wood meal with neutral solvents, Ind. Eng. Chem, vol.49, p.2015
DOI : 10.1021/ie50573a040

«. Pöyry, Dissolving pulp: The Great ComeBack », présenté à TAPPI PEERS Dissolving Pulp Forum, 2011.

K. Patrick, « Dissolving pulp gold rush in high gear », Paper 360°, pp.8-12

. Risi, « World dissolving pulp monitor », 2013 Outlook for the global dissolving pulp market, 2014.

E. Sjoestrom, Wood Chemistry: Fundamentals and Applications, 1993.

A. Pinkert, K. N. Marsh, and E. S. Pang, Reflections on the Solubility of Cellulose, Industrial & Engineering Chemistry Research, vol.49, issue.22, pp.11121-11130, 2010.
DOI : 10.1021/ie1006596

H. Steinmeier, 3. Acetate manufacturing, process and technology??? 3.1 Chemistry of cellulose acetylation, Macromolecular Symposia, vol.208, issue.1, pp.49-60, 2004.
DOI : 10.1002/masy.200450405

E. Sjöström and R. Alen, Analytical Methods in Wood Chemistry, Pulping, and Papermaking, 1998.

J. T. Oberlerchner and T. Rosenau, Overview of Methods for the Direct Molar Mass Determination of Cellulose, Molecules, vol.6, issue.6, pp.10313-10341, 2015.
DOI : 10.1016/S0032-3861(02)00213-6

E. Dinand, M. Vignon, and H. Chanzy, Heux, « Mercerization of primary wall cellulose and its implication for the conversion of cellulose I?cellulose II, pp.7-18, 2002.

S. Park, J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson, Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance, Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance, p.10, 2010.
DOI : 10.1186/1754-6834-3-10

URL : https://biotechnologyforbiofuels.biomedcentral.com/track/pdf/10.1186/1754-6834-3-10?site=biotechnologyforbiofuels.biomedcentral.com

P. Strunk, Characterization of cellulose pulps and the influence of their properties on the process and production of viscose and cellulose ethers, 2012.

K. E. Christoffersson, M. Sjöström, U. Edlund, E. M. Lindgren, and . Dolk, Reactivity of dissolving pulp: characterisation using chemical properties, NMR spectroscopy and multivariate data analysis, pp.159-170, 2002.

Q. Miao, L. Chen, L. Huang, C. Tian, L. Zheng et al., A process for enhancing the accessibility and reactivity of hardwood kraft-based dissolving pulp for viscose rayon production by cellulase treatment, Bioresource Technology, vol.154, pp.109-113
DOI : 10.1016/j.biortech.2013.12.040

C. F. Goldthwait, Alcoholic dyeing: a test for variations in the fine structure of cotton fibers All Rights Reserved, », Text. Chem. Color, vol.10, pp.232-239, 1978.

M. Lewin, H. Guttman, and E. N. Saar, « New aspects of the accessibility of cellulose All Rights Reserved, Appl. Polym. Symp, vol.28, pp.791-808, 1976.

J. L. Morrison, Deuterium???Hydrogen Exchange between Water and Macromolecules: Accessibility of Cellulose, Nature, vol.27, issue.4707, pp.4707-160, 1960.
DOI : 10.1016/0006-3002(55)90200-6

J. Mann and H. J. Marrinan, The reaction between cellulose and heavy water. Part 1. A qualitative study by infra-red spectroscopy, Transactions of the Faraday Society, vol.52, issue.0, pp.481-487
DOI : 10.1039/tf9565200481

L. X. Phuong, M. Takayama, S. Shida, and Y. Matsumoto, Aoyagi, « Determination of the accessible hydroxyl groups in heat-treated Styrax tonkinensis (Pierre) Craib ex Hartwich wood by hydrogen-deuterium exchange and 2H NMR spectroscopy, Holzforschung, vol.61, issue.5, pp.488-491, 2007.

H. Tarkow and A. J. Stamm, The Reaction of Formic Acid with Carbohydrates. II. Polysaccharides: A New Method for Determining Accessibility., The Journal of Physical Chemistry, vol.56, issue.2, pp.266-71, 1952.
DOI : 10.1021/j150494a027

P. Strunk, « Characterization of cellulose for acetate and viscose production

H. Schleicher and B. Borrmeister, All Rights Reserved, Investigations on the state of solution of viscose. », Lenzing. Berichte, pp.7-11, 1998.

L. Testova, M. Borrega, L. K. Tolonen, P. A. Penttila, R. Serimaa et al., Dissolving-grade birch pulps produced under various prehydrolysis intensities: quality, structure and applications, Cellulose, vol.7, issue.4, 2014.
DOI : 10.1007/s00226-010-0370-2

F. Siclari, Polynosic fibers from different types of dissolving pulps, Pure Appl. Chem, vol.14, pp.423-456, 1967.

A. A. Serkov, N. A. Kuzicheva, V. K. Fedotova, and N. I. Kruglova, Effect of hemicellulose on the productivity of mercerizing units and viscose filterability, Effect of hemicellulose on the productivity of mercerizing units and viscose filterability, pp.364-366, 1986.
DOI : 10.1007/BF00544346

J. D. Wilson and R. S. Tabke, Influences of hemicelluloses on acetate processing in high catalyst systems All Rights Reserved, », Tappi, vol.57, pp.77-80, 1974.

B. Saake, R. Lehnen, S. Lummitsch, and H. H. Nimz, « Production of dissolving and paper grade pulps by the Formacell process. », in Int, Symp. Wood. Pulping Chem, vol.8, issue.2, pp.237-242, 1995.

H. Sixta, H. Harms, S. Dapia, J. C. Parajo, J. Puls et al., Evaluation of new organosolv dissolving pulps. Part I: Preparation, analytical characterization and viscose processability, Cellulose, pp.73-83, 2004.
DOI : 10.1023/B:CELL.0000014767.47330.90

C. Vila, V. Santos, and J. C. Parajó, Dissolving pulp from TCF bleached Acetosolv beech pulp, Journal of Chemical Technology & Biotechnology, vol.79, issue.10, pp.1098-1104, 2004.
DOI : 10.1002/jctb.1090

M. Iakovlev, X. You, A. Van-heiningen, and E. H. Sixta, (SEW) fractionation of spruce: kinetics and conditions for paper and viscose-grade dissolving pulps, p.2, 2013.

J. Boucher, C. Chirat, and E. D. Lachenal, Extraction of hemicelluloses from wood in a pulp biorefinery, and subsequent fermentation into ethanol. », Energy Convers All Rights Reserved, Manag, vol.88, pp.1120-1126, 2014.

G. Garrote, H. Domínguez, and J. C. Parajó, Mild autohydrolysis: an environmentally friendly technology for xylooligosaccharide production from wood, Journal of Chemical Technology & Biotechnology, vol.49, issue.11, pp.1101-1109, 1999.
DOI : 10.1515/hfsg.1995.49.3.193

J. Boucher, Etude des possibilités de production d'éthanol hémicellulosique dans le cadre d'une bioraffinerie papetière

H. Sixta and G. Schild, « A new generation kraft process, Lenzing. Berichte, vol.87, issue.1, pp.26-37, 2009.

L. Boiron, Etude de l'impact de l'extraction des hémicelluloses du bois sur les procédés d'obtention de cellulose et d'éthanol dans le cadre d'une bioraffinerie lignocellulosique, 2012.

J. Li and G. Gellerstedt, Improved lignin properties and reactivity by modifications in the autohydrolysis process of aspen wood, Industrial Crops and Products, vol.27, issue.2, pp.175-181, 2008.
DOI : 10.1016/j.indcrop.2007.07.022

M. G. Chua and M. Wayman, ) lignins. Part 1. Composition and molecular weight distribution of extracted autohydrolysis lignin, Canadian Journal of Chemistry, vol.57, issue.10, pp.1141-1149, 1979.
DOI : 10.1139/v79-187

T. Rauhala, A. W. King, G. Zuckerstatter, S. Suuronen, and E. H. Sixta, Effect of autohydrolysis on the lignin structure and the kinetics of delignification of birch wood, Effect of autohydrolysis on the lignin structure and the kinetics of delignification of birch wood. », pp.386-391, 2011.
DOI : 10.3183/NPPRJ-2011-26-04-p386-391

D. L. and C. Chirat, « Bleaching ability of pre-hydrolyzed pulps in the context of a biorefinery mill », Tappi J, vol.12, issue.11, pp.49-53, 2013.

R. Scott, Hemicellulose Distribution in Pulp Fibers Anti Alkaline Extraction Rates, Journal of Wood Chemistry and Technology, vol.7, issue.11, 1984.
DOI : 10.1515/hfsg.1970.24.3.77

G. Saito, « The behavior of cellulose in solutions of alkalies. VII. Comparison of the action of LiOH, NaOH and KOH solutions on cellulose. », Kolloid-Beih, vol.49, pp.451-455, 1939.

K. Hempel, ». , and P. Pap, Solubility of cellulose in alkalies and its technical significance, pp.62-973, 1949.

B. Lindberg, Recent advances in methods of isolating and purifying hemicelluloses, Pure and Applied Chemistry, vol.152, issue.1-2, pp.67-76, 1962.
DOI : 10.1351/pac196205010067

M. Balaban and G. Ucar, « The effect of the duration of alkali treatment on the solubility of polyoses. », Turk, J. Agric. For, vol.23, issue.6, pp.667-671, 1999.

R. W. Scott, Influence of cations and borate on the alkaline extraction of xylan and glucomannan from pine pulps, Journal of Applied Polymer Science, vol.38, issue.5, pp.907-921, 1989.
DOI : 10.1002/app.1989.070380512

J. K. Hamilton and G. R. Quimby, « The extractive power of lithium, sodium, and potassium hydroxide solutions for the hemicelluloses associated with wood cellulose and holocellulose from western hemlock, pp.781-787, 1957.

J. Puls, R. Janzon, and E. B. Saake, « Comparative removal of hemicelluloses from paper pulps using nitren, pp.63-70, 2006.

R. Janzon, B. Saake, and E. J. Puls, Upgrading of paper-grade pulps to dissolving pulps by nitren extraction: properties of nitren extracted xylans in comparison to NaOH and KOH extracted xylans, Cellulose, vol.60, issue.1, pp.161-175, 2007.
DOI : 10.1080/02648725.1999.10647982

J. Puls, N. Schroeder, A. Stein, R. Janzon, and E. B. Saake, Xylans from Oat Spelts and Birch Kraft Pulp, Xylans from oat spelts and birch kraft pulp. », pp.85-92, 2006.
DOI : 10.1002/masy.200551410

K. D. Sears, J. F. Hinck, and C. G. Sewell, Highly reactive wood pulps for cellulose acetate production, Journal of Applied Polymer Science, vol.27, issue.12, pp.12-4599, 1982.
DOI : 10.1002/app.1982.070271207

H. Sixta, Comparative evaluation of TCF bleached hardwood dissolving pulps. », Lenzing, Berichte, vol.79, pp.119-128, 2000.

D. Lachenal and M. Muguet, Degradation of residual lignin in kraft pulp with ozone.??Application to bleaching, Nordic Pulp and Paper Research Journal, vol.07, issue.01, pp.25-34, 1992.
DOI : 10.3183/NPPRJ-1992-07-01-p025-029

R. Rautonen, T. Rantanen, L. Toikkanen, and E. R. Malinen, « TCF bleaching to high brightness --bleaching sequences and pulp properties. All Rights Reserved, J. Pulp Pap. Sci, vol.22, pp.306-314, 1996.

A. Metais, J. Hostachy, and E. B. Van-wyk, All Rights Reserved, Ozone bleaching for dissolving pulp. », Paper360°, pp.38-40, 2013.

V. Koepcke, D. Ibarra, and P. T. Larsson, Ek, « Optimization of treatment sequences for the production of dissolving pulp from birch kraft pulp

G. Schild, H. Sixta, and L. Testova, « Multifunctional alkaline pulping, delignification and hemicellulose extraction, Cellul. Chem. Technol, vol.44, issue.1?3, pp.35-45, 2010.

V. Gehmayr and H. Sixta, « Dissolving pulps from enzyme treated kraft pulps for viscose application, », Lenzing. Berichte, vol.89, pp.152-160, 2011.

G. Schild and H. Sixta, Sulfur-free dissolving pulps and their application for viscose and lyocell, Cellulose, vol.87, issue.11, pp.1113-1128, 2011.
DOI : 10.1002/9783527619887.ch4a

R. Janzon, J. Puls, A. Bohn, and A. Potthast, Saake, « Upgrading of paper grade pulps to dissolving pulps by nitren extraction: yields, molecular and supramolecular structures of nitren extracted pulps, », Cellul. Dordr. Neth, vol.15, issue.5, pp.739-750, 2008.

K. Nieminen, M. Paananen, and E. H. Sixta, Kinetic Model for Carbohydrate Degradation and Dissolution during Kraft Pulping, Industrial & Engineering Chemistry Research, vol.53, issue.28, pp.28-11292
DOI : 10.1021/ie501359p

H. Li, A. Saeed, M. S. Jahan, Y. Ni, and E. A. Van-heiningen, Hemicellulose Removal from Hardwood Chips in the Pre-Hydrolysis Step of the Kraft-Based Dissolving Pulp Production Process, Journal of Wood Chemistry and Technology, vol.75, issue.1, pp.48-60, 2010.
DOI : 10.1080/02773819608545821

S. Yoon and K. Macewan, Van Adriaan., « Hot-water pre-extraction from loblolly pine (Pinus taeda) in an integrated forest products biorefinery. », Tappi J, vol.7, issue.6, pp.27-32, 2008.

H. Heikkil, M. Lindroos, J. Sundquist, and S. Kauliomki, Rasimus, « Preparation of chemical pulp and xylose, utilizing a direct acid hydrolysis on the pulp, p.2004

M. Borrega and H. Sixta, Purification of cellulosic pulp by hot water extraction, Cellulose, pp.2803-2812
DOI : 10.1002/bit.20043

J. Buchert, E. Bergnor, G. Lindblad, and L. Viikari, Ek, « Significance of xylan and glucomannan in the brightness reversion of kraft pulps, TAPPI Journal, pp.6-165, 1997.

H. G. Higgins, V. Goldsmith, and A. W. Mckenzie, The reactivity of cellulose. IV. The activation energy for heterogeneous acid hydrolysis, Journal of Polymer Science, vol.32, issue.124, pp.124-247, 1958.
DOI : 10.1002/pol.1958.1203212421

M. L. Nelson, Apparent activation energy of hydrolysis of some cellulosic materials, Journal of Polymer Science, vol.43, issue.142, pp.351-371, 1960.
DOI : 10.1002/pol.1960.1204314207

M. T. Maloney, T. W. Chapman, and A. J. Baker, Dilute acid hydrolysis of paper birch: Kinetics studies of xylan and acetyl-group hydrolysis, Biotechnology and Bioengineering, vol.70, issue.3, pp.355-361, 1985.
DOI : 10.1002/bit.260270321

M. H. Johansson and O. Samuelson, Reducing end groups in brich xylan and their alkaline degradation, Wood Science and Technology, vol.22, issue.4, pp.251-263, 1977.
DOI : 10.1007/BF00356924

N. K. Bhardwaj, P. Bajpai, and P. K. Bajpai, Use of enzymes in modification of fibres for improved beatability, Journal of Biotechnology, vol.51, issue.1, pp.21-26, 1996.
DOI : 10.1016/0168-1656(96)01556-8

J. Buchert, M. Tenkanen, A. Kantelinen, and E. L. Viikari, Application of xylanases in the pulp and paper industry, Bioresource Technology, vol.50, issue.1, pp.65-72, 1994.
DOI : 10.1016/0960-8524(94)90222-4

A. Suurnakki, T. A. Clark, R. W. Allison, L. Viikari, and E. J. Buchert, « Xylanaseand mannanase-aided elemental (ECF) and totally (TCF) chlorine-free bleaching. » All Rights Reserved, Tappi J, vol.79, pp.111-117, 1996.

D. Ibarra, V. Köpcke, P. T. Larsson, and A. Jääskeläinen, Combination of alkaline and enzymatic treatments as a process for upgrading sisal paper-grade pulp to dissolving-grade pulp, Bioresource Technology, vol.101, issue.19, pp.7416-7423, 2010.
DOI : 10.1016/j.biortech.2010.04.050

V. Gehmayr, G. Schild, and E. H. Sixta, A precise study on the feasibility of enzyme treatments of a kraft pulp for viscose application, Cellulose, vol.76, issue.2, pp.479-491, 2010.
DOI : 10.1515/HF.2009.113

T. K. Hakala, T. Liitiä, and E. A. Suurnäkki, Enzyme-aided alkaline extraction of oligosaccharides and polymeric xylan from hardwood kraft pulp, Carbohydrate Polymers, vol.93, issue.1, pp.102-108, 2013.
DOI : 10.1016/j.carbpol.2012.05.013

V. Köpcke, « Conversion of Wood and Non-wood Paper-grade Pulps to Dissolving-grade Pulps, 2010.

H. Wang, B. Pang, K. Wu, F. Kong, and B. Li, Mu, « Two stages of treatments for upgrading bleached softwood paper grade pulp to dissolving pulp for viscose production, Biochem. Eng. J, 2013.

L. P. Christov and B. A. , Repeated treatments with Aureobasidium pullulans hemicellulases and alkali enhance biobleaching of sulphite pulps, Enzyme and Microbial Technology, vol.18, issue.4, pp.244-250, 1996.
DOI : 10.1016/0141-0229(95)00058-5

L. P. Christov and B. A. , Xylan removal from dissolving pulp using enzymes of Aureobasidium pullulans, Biotechnology Letters, vol.1, issue.12, pp.1269-1274, 1993.
DOI : 10.1016/B978-0-409-90192-4.50017-0

J. F. Kennedy and P. S. Panesar, Handbook of Size Exclusion Chromatography and related Techniques All Rights Reserved, Carbohydr. Polym, vol.63, p.569, 2004.

D. I. Viviana-köpcke, Optimization of treatment sequences for the production of dissolving pulp from birch kraft pulp, Nord. Pulp Pap. Res. J, vol.25, issue.1, pp.31-38, 2010.

D. I. Viviana-köpcke, Optimization of treatments for the conversion of eucalyptus kraft pulp to dissolving pulp, Polym. Renew. Resour, vol.1, issue.1, pp.17-34, 2010.

S. Das, D. Lachenal, and E. N. Marlin, Production of pure cellulose from Kraft pulp by a totally chlorine-free process using catalyzed hydrogen peroxide, Industrial Crops and Products, vol.49, pp.844-850, 2013.
DOI : 10.1016/j.indcrop.2013.06.043

J. Milanovic, S. Schiehser, P. Milanovic, and A. Potthast, Molecular weight distribution and functional group profiles of TEMPO-oxidized lyocell fibers, Carbohydrate Polymers, vol.98, issue.1, pp.444-450
DOI : 10.1016/j.carbpol.2013.06.033

J. Li, Y. Liu, C. Duan, H. Zhang, and E. Y. Ni, Mechanical pretreatment improving hemicelluloses removal from cellulosic fibers during cold caustic extraction, Bioresource Technology, vol.192, pp.501-506, 2015.
DOI : 10.1016/j.biortech.2015.06.011

D. Y. Dererie, S. Trobro, M. H. Momeni, H. Hansson, J. Blomqvist et al., Improved bio-energy yields via sequential ethanol fermentation and biogas digestion of steam exploded oat straw, Bioresource Technology, vol.102, issue.6, pp.4449-4455, 2011.
DOI : 10.1016/j.biortech.2010.12.096

P. Adapa, L. Tabil, and G. Schoenau, Opoku, « Pelleting characteristics of selected biomass with and without steam explosion pretreatment, Int. J. Agric

. Kokta, in Environmentally friendly technologies for the pulp and paper industry, 1998.

T. Yamashiki, T. Matsui, M. Saitoh, K. Okajima, K. Kamide et al., « Characterization of cellulose treated by the steam explosion method. Part 1. Influence of cellulose resources on changes in morphology, degree of polymerization, solubility and solid structure. », Br All Rights Reserved, Polym. J, vol.22, pp.73-83, 1990.

T. Yamashiki, T. Matsui, M. Saitoh, K. Okajima, K. Kamide et al., Characterisation of cellulose treated by the steam explosion method. Part 2: Effect of treatment conditions on changes in morphology, degree of polymerisation, solubility in aqueous sodium hydroxide and supermolecular structure of soft wood pulp during steam explosion, British Polymer Journal, vol.1, issue.2, pp.121-128, 1990.
DOI : 10.1002/cber.19370700722

M. Kihlman, O. Wallberg, L. Stigsson, and E. U. Germgaard, Dissolution of dissolving pulp in alkaline solvents after steam explosion pretreatments, Holzforschung, vol.17, issue.4
DOI : 10.1295/polymj.32.866

C. Blecker, M. Paquot, and C. Vanderghem, Jacquet, « La steam explosion : application en tant que prétraitement de la matière lignocellulosique, 2010.

A. Isogai, T. Saito, E. H. Fukuzumi, and «. Tempo, TEMPO-oxidized cellulose nanofibers, Nanoscale, vol.23, issue.10, pp.71-85, 2011.
DOI : 10.1021/la063118n

K. Fischer, I. Schmidt, and E. S. Fischer, Reactivity of Dissolving Pulp for Processing Viscose, Reactivity of Dissolving Pulp for Processing Viscose, pp.54-59, 2009.
DOI : 10.1002/masy.200950607

C. Chaudemanche and P. Navard, Swelling and dissolution mechanisms of regenerated Lyocell cellulose fibers, Cellulose, pp.1-15, 2011.
DOI : 10.1104/pp.55.2.172

URL : https://hal.archives-ouvertes.fr/hal-00570382

V. Gehmayr, A. Potthast, and E. H. Sixta, Reactivity of dissolving pulps modified by TEMPO-mediated oxidation, Cellulose, vol.52, issue.4, pp.1125-1134, 2012.
DOI : 10.1007/s10570-010-9485-8

E. Ott and H. M. Spurlin, Cellulose And Cellulose Derivatives Part II, 1954.

N. and L. Moigne, Swelling and dissolution mechanisms of cellulose fibres, 2008.
URL : https://hal.archives-ouvertes.fr/tel-00353429

C. Cuissinat and P. Navard, Heinze, « Swelling and dissolution of cellulose. Part IV: Free floating cotton and wood fibres in ionic liquids

. Polym, All Rights Reserved, pp.590-596, 2008.

R. A. Young, Comparison of the properties of chemical cellulose pulps, Cellulose, pp.107-130, 1994.
DOI : 10.1093/chromsci/22.11.478

S. Park, R. A. Venditti, D. G. Abrecht, H. Jameel, J. J. Pawlak et al., Surface and pore structure modification of cellulose fibers through cellulase treatment, Journal of Applied Polymer Science, vol.341, issue.6, pp.3833-3839, 2007.
DOI : 10.1177/004051750107100507

M. A. Javed and U. Germgard, « The reactivity of prehydrolysed softwood kraft pulps after prolonged cooking followed by chlorite delignification, BioResources, vol.6, issue.3, pp.2581-2591, 2011.

«. Karlsson, The significance of glucomannan for the condensation of cellulose and lignin under kraft pulping conditions, Nordic Pulp and Paper Research Journal, vol.12, issue.03, pp.203-206, 1997.
DOI : 10.3183/NPPRJ-1997-12-03-p203-206

R. Passas, course: morphi for paper pulp characterization ». [En ligne] Disponible sur: http://cerig.pagora.grenoble-inp, pp.27-2015, 2003.

C. Tian, « Improvement in the Fock test for determining the reactivity of dissolving pulp », Tappi J, vol.12, issue.11, pp.21-26, 2013.

D. B. Lanieri, G. V. Olmos, I. C. Alberini, and M. G. Maximino, « Rapid estimation of gamma number of viscose by UV spectrophotometry All Rights Reserved, pp.60-65, 2014.

B. Arnoul-jarriault and C. Chirat, Lachenal, « Removal of hemicelluloses from kraft paper pulp by chemical ways: search for optimal conditions », présenté à EWLP, pp.179-181

R. Hiraoki, Y. Ono, and T. Saito, Molecular Mass and Molecular-Mass Distribution of TEMPO-Oxidized Celluloses and TEMPO-Oxidized Cellulose Nanofibrils, Biomacromolecules, vol.16, issue.2, pp.675-681
DOI : 10.1021/bm501857c

M. Strlic, J. Kolar, and M. Zigon, Evaluation of size-exclusion chromatography and viscometry for the determination of molecular masses of oxidised cellulose, Journal of Chromatography A, vol.805, issue.1-2, pp.93-99, 1998.
DOI : 10.1016/S0021-9673(98)00008-9

J. Perrin, F. Pouyet, C. Chirat, and E. D. Lachenal, « Formation of carbonyl and carboxyl groups on cellulosic pulps: effect on alkali resistance All Rights Reserved, BioResources, vol.9, issue.12, pp.7299-7310, 2014.

M. Ott, Cellulose And Cellulose Derivatives Part I, 1954.

C. Cuissinat and P. Navard, Swelling and Dissolution of Cellulose Part 1: Free Floating Cotton and Wood Fibres in N-Methylmorpholine-N-oxide???Water Mixtures, Macromolecular Symposia, vol.37, issue.1, pp.1-18, 2006.
DOI : 10.1142/2337

URL : https://hal.archives-ouvertes.fr/hal-00530620

R. Eckhart, U. Hirn, and E. W. Bauer, « A method capable to determine damage of the outer fibre wall layers, Fine structure of papermaking fibres, pp.115-124, 2011.

F. Pouyet, C. Chirat, and A. Potthast, Formation of carbonyl groups on cellulose during ozone treatment of pulp: Consequences for pulp bleaching, Carbohydrate Polymers, vol.109, pp.85-91, 2014.
DOI : 10.1016/j.carbpol.2014.02.082

M. Kihlman, F. Aldaeus, F. Chedid, and E. U. Germgård, Effect of various pulp properties on the solubility of cellulose in sodium hydroxide solutions Purification of cellulosic pulp by hot water extraction, Cellulose, vol.20, pp.2803-2812, 2013.

L. Clavijo, M. N. Cabrera, S. Kuitunen, S. Liukko, T. Rauhala et al., Changes in a eucalyptus kraft pulp during a mild acid treatment at high temperature, Papel, vol.73, pp.59-64, 2012.

E. Dinand, M. Vignon, H. Chanzy, and L. Heux, Mercerization of primary wall cellulose and its implication for the conversion of cellulose I ? cellulose II, Cellulose, vol.9, issue.1, pp.7-18, 2002.
DOI : 10.1023/A:1015877021688

URL : https://hal.archives-ouvertes.fr/hal-00307327

E. Christoffersson, Dissolving pulp: Multivariate Characterisation and Analysis of Reactivity and Spectroscopic Properties, 2004.

V. Gehmayr, G. Schild, and H. Sixta, A precise study on the feasibility of enzyme treatments of a kraft pulp for viscose application, Cellulose, vol.76, issue.2, pp.479-491, 2010.
DOI : 10.1515/HF.2009.113

F. M. Hämmerle, The cellulose gap (the future of cellulose fibres), Lenzinger Berichte, vol.89, pp.12-21, 2011.

H. Heikkil, M. Lindroos, J. Sundquist, S. Kauliomki, and R. Rasimus, Preparation of chemical pulp and xylose, utilizing a direct acid hydrolysis on the pulp, p.902, 2004.

D. Ibarra, V. Köpcke, P. T. Larsson, A. Jääskeläinen, and M. Ek, Combination of alkaline and enzymatic treatments as a process for upgrading sisal paper-grade pulp to dissolving-grade pulp, Bioresource Technology, vol.101, issue.19, pp.7416-7423, 2010.
DOI : 10.1016/j.biortech.2010.04.050

R. Janzon, J. Puls, A. Bohn, A. Potthast, and B. Saake, Upgrading of paper grade pulps to dissolving pulps by nitren extraction: yields, molecular and supramolecular structures of nitren extracted pulps, Cellulose, vol.312, issue.12, pp.739-750, 2008.
DOI : 10.1002/9783527619887.ch11

V. Koepcke, D. Ibarra, P. T. Larsson, and M. Ek, Optimization of treatment sequences for the production of dissolving pulp from birch kraft pulp, Nord. Pulp Paper Res. J, vol.25, pp.31-38, 2010.

H. Li, A. Saeed, M. S. Jahan, Y. Ni, and A. Van-heiningen, Hemicellulose Removal from Hardwood Chips in the Pre-Hydrolysis Step of the Kraft-Based Dissolving Pulp Production Process, Journal of Wood Chemistry and Technology, vol.75, issue.1, pp.48-60, 2010.
DOI : 10.1080/02773819608545821

A. Marechal, Acid Extraction of the Alkaline Wood Pulps (Kraft or SODA/AQ) Before or During Bleaching Reason and Opportunity, Journal of Wood Chemistry and Technology, vol.10, issue.3, pp.261-281, 1993.
DOI : 10.1080/02773819008050242

E. Mateos-espejel, T. Radiotis, and N. Jemaa, Implications of converting a kraft pulp mill to a dissolving pulp operation with a hemicellulose extraction stage, 2013.

K. Patrick, Dissolving pulp gold rush in high gear, pp.8-12, 2011.

J. Puls, R. Janzon, and B. Saake, Comparative removal of hemicelluloses from paper pulps using nitren, cuen, NaOH, and KOH, Lenzing Berichte, vol.86, pp.63-70, 2006.

G. Schild and H. Sixta, Sulfur-free dissolving pulps and their application for viscose and lyocell, Cellulose, vol.87, issue.11, pp.1113-1128, 2011.
DOI : 10.1002/9783527619887.ch4a

G. Schild, H. Sixta, and L. Testova, Multifunctional alkaline pulping, delignification and hemicellulose extraction, Cell. Chem. Technol, vol.44, pp.35-45, 2010.

H. Sixta, H. S. Wiley-vch, H. Sixta, M. Iakovlev, L. Testova et al., Novel concepts of dissolving pulp production, Cellulose, vol.6, issue.4, pp.1547-1561, 2006.
DOI : 10.1002/pola.1989.080270607

H. Sobue, H. Kiessig, and K. Hess, The cellulose?sodium hydroxidewater system as a function of the temperature, Z. Phys. Chem. B, vol.43, pp.309-328, 1939.

S. Yoon, H. T. Cullinan, and G. A. Krishnagopalan, Reductive Modification of Alkaline Pulping of Southern Pine, Integrated with Hydrothermal Pre-extraction of Hemicelluloses, Industrial & Engineering Chemistry Research, vol.49, issue.13, pp.5969-5976, 2010.
DOI : 10.1021/ie100005v

S. Yoon, K. Macewan, and H. Van-adriaan, Hot-water pre-extraction from loblolly pine (Pinus taeda) in an integrated forest products biorefinery, Tappi J, vol.7, pp.27-32, 2008.

B. Arnoul-jarriault, D. Lachenal, C. Chirat, and L. Heux, Upgrading softwood bleached kraft pulp to dissolving pulp by cold caustic treatment and acid-hot caustic treatment, Industrial Crops and Products, vol.65, pp.565-571, 2015.
DOI : 10.1016/j.indcrop.2014.09.051

C. Chaudemanche and P. Navard, Swelling and dissolution mechanisms of regenerated Lyocell cellulose fibers, Cellulose, vol.55, issue.5, pp.1-15, 2011.
DOI : 10.1104/pp.55.2.172

URL : https://hal.archives-ouvertes.fr/hal-00570382

K. E. Christoffersson, M. Sjöström, U. Edlund, A. A. Lindgren, and M. Dolk, Reactivity of dissolving pulp: characterisation using chemical properties, NMR spectroscopy and multivariate data analysis, Cellulose, vol.9, issue.2, pp.159-170, 2002.
DOI : 10.1023/A:1020108125490

C. Cuissinat and P. Navard, Swelling and Dissolution of Cellulose Part 1: Free Floating Cotton and Wood Fibres in N-Methylmorpholine-N-oxide???Water Mixtures, Macromolecular Symposia, vol.37, issue.1, pp.1-18, 2006.
DOI : 10.1142/2337

URL : https://hal.archives-ouvertes.fr/hal-00530620

R. Eckhart, U. Hirn, and W. Bauer, A method capable to determine damage of the outer fibre wall layers in the fine structure of papermaking fibres, Cost Office, vol.1, pp.115-124, 2011.

K. Fischer, I. Schmidt, and S. Fischer, Reactivity of Dissolving Pulp for Processing Viscose, Macromolecular Symposia, vol.262, issue.1, pp.54-59, 2009.
DOI : 10.1002/masy.200950607

V. Gehmayr, A. Potthast, and H. Sixta, Reactivity of dissolving pulps modified by TEMPO-mediated oxidation, Cellulose, vol.52, issue.4, pp.1125-1134, 2012.
DOI : 10.1007/s10570-010-9485-8

R. Hiraoki, Y. Ono, T. Saito, and A. Isogai, Molecular Mass and Molecular-Mass Distribution of TEMPO-Oxidized Celluloses and TEMPO-Oxidized Cellulose Nanofibrils, Biomacromolecules, vol.16, issue.2, pp.675-681, 2015.
DOI : 10.1021/bm501857c

D. Ibarra, V. Köpcke, P. T. Larsson, A. Jääskeläinen, and M. Ek, Combination of alkaline and enzymatic treatments as a process for upgrading sisal paper-grade pulp to dissolving-grade pulp, Bioresource Technology, vol.101, issue.19, pp.7416-7423, 2010.
DOI : 10.1016/j.biortech.2010.04.050

M. A. Javed and U. Germgard, The reactivity of prehydrolyzed softwood kraft pulps after prolonged cooking followed by chlorite delignification, BioResources, vol.6, pp.2581-2591, 2011.

M. Kihlman, F. Aldaeus, F. Chedid, and U. Germgård, Effect of various pulp properties on the solubility of cellulose in sodium hydroxide solutions, Holzforschung, vol.66, issue.5, pp.613-617, 2011.
DOI : 10.1515/hf-2011-0220

V. Koepcke, D. Ibarra, P. T. Larsson, and M. Ek, Optimization of treatment sequences for the production of dissolving pulp from birch kraft pulp, Nord. Pulp Pap. Res. J, vol.25, pp.31-38, 2010.

D. B. Lanieri, G. V. Olmos, I. C. Alberini, and M. G. Maximino, Rapid estimation of gamma number of viscose by UV spectrophotometry, Papel, vol.75, pp.60-65, 2014.

L. Moigne, N. Navard, and P. , Dissolution mechanisms of wood cellulose fibres in NaOH???water, Cellulose, vol.22, issue.1, pp.31-45, 2009.
DOI : 10.1007/BF00705923

URL : https://hal.archives-ouvertes.fr/hal-00509589

D. Li, O. Sevastyanova, and M. Ek, Pretreatment of softwood dissolving pulp with ionic liquids, Holzforschung, vol.66, issue.8, pp.935-943, 2012.
DOI : 10.1515/hf-2011-0180

P. Navard and C. Cuisinat, Cellulose swelling and dissolution as a tool to study the fiber structure, Presented at the 7 th International Symposium " Alternative Cellulose " : Manufacturing, Forming, Properties, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00579326

M. Ott, Cellulose and Cellulose Derivatives Part I, 1954.

R. Passas, C. Voillot, G. Tarrajat, G. Caucal, B. Khelifi et al., Morfi as a novel technology for morphological analysis of fibers, pp.259-264, 2001.

J. Perrin, F. Pouyet, C. Chirat, and D. Lachenal, Formation of Carbonyl and Carboxyl Groups on Cellulosic Pulps: Effect on Alkali Resistance, BioResources, vol.9, issue.4, pp.7299-7310, 2014.
DOI : 10.15376/biores.9.4.7299-7310

F. Pouyet, C. Chirat, A. Potthast, and D. Lachenal, Formation of carbonyl groups on cellulose during ozone treatment of, 2014.

H. Schleicher and B. Borrmeister, Investigations on the state of solution of viscose, Lenzing. Berichte, vol.78, pp.7-11, 1998.

M. Strlic, J. Kolar, M. Zigon, and B. Pihlar, Evaluation of size-exclusion chromatography and viscometry for the determination of molecular masses of oxidised cellulose, Journal of Chromatography A, vol.805, issue.1-2, pp.93-99, 1998.
DOI : 10.1016/S0021-9673(98)00008-9

P. Strunk, B. Eliasson, C. Hägglund, and R. Agnemo, The influence of properties in cellulose pulps on the reactivity in viscose manufacturing, Nordic Pulp and Paper Research Journal, vol.26, issue.01, pp.81-89, 2011.
DOI : 10.3183/NPPRJ-2011-26-01-p081-089

C. Tian, Improvement in the Fock test for determining the reactivity of dissolving pulp, Tappi J, vol.12, pp.21-26, 2013.