A. B. Stambouli and E. Traversa, Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy, Renewable and Sustainable Energy Reviews, vol.6, issue.5, pp.433-455, 2002.
DOI : 10.1016/S1364-0321(02)00014-X

J. Dignon, NOx and SOx emissions from fossil fuels: A global distribution, Atmospheric Environment. Part A. General Topics, vol.26, issue.6, pp.1157-1163, 1992.
DOI : 10.1016/0960-1686(92)90047-O

A. Osman and R. Ries, Life cycle assessment of electrical and thermal energy systems for commercial buildings, The International Journal of Life Cycle Assessment, vol.8, issue.5, pp.308-316, 2007.
DOI : 10.1065/lca2007.02.310

. News, Toshiba, Hitachi DMFCs feature in prototype audio players, cell phones, Fuel Cells Bulletin, vol.11, p.8, 2005.

R. K. Dixon, Mitigation and Adaptation Strategies for Global Change, pp.325-341, 2007.

W. Mcdowall and M. Eames, Forecasts, scenarios, visions, backcasts and roadmaps to the hydrogen economy: A review of the hydrogen futures literature, Energy Policy, vol.34, issue.11, pp.1236-1250, 2006.
DOI : 10.1016/j.enpol.2005.12.006

S. Takahashi, S. Nishimoto, M. Matsuda, and M. Miyake, Electrode Properties of the Ruddlesden-Popper Series, Lan+1NinO3n+1 (n=1, 2, and 3), as Intermediate-Temperature Solid Oxide Fuel Cells, Journal of the American Ceramic Society, vol.176, issue.[6], pp.2329-2333, 2010.
DOI : 10.1111/j.1551-2916.2010.03743.x

G. Amow and S. J. Skinner, Recent developments in Ruddlesden???Popper nickelate systems for solid oxide fuel cell cathodes, Journal of Solid State Electrochemistry, vol.121, issue.56, pp.538-546, 2006.
DOI : 10.1007/s10008-006-0127-x

G. Amow, I. J. Davidson, and S. J. Skinner, A comparative study of the Ruddlesden-Popper series, Lan+1NinO3n+1 (n=1, 2 and 3), for solid-oxide fuel-cell cathode applications, Solid State Ionics, vol.177, issue.13-14, pp.1205-1210, 2006.
DOI : 10.1016/j.ssi.2006.05.005

A. Weber, Transport and reaction mechanism in a SOFC Available from

D. J. Brett, A. Atkinson, N. P. Brandon, and S. J. Skinner, Intermediate temperature solid oxide fuel cells, Chemical Society Reviews, vol.156, issue.8, pp.1568-1578, 2008.
DOI : 10.1039/b612060c

N. P. Brandon, S. J. Skinner, and B. C. Steele, Recent Advances in Materials for Fuel Cells, Annual Review of Materials Research, vol.33, issue.1, pp.183-213, 2003.
DOI : 10.1146/annurev.matsci.33.022802.094122

S. C. Singhal, Solid State Ionics, pp.152-153, 2002.

S. P. Badwal, Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity, Solid State Ionics, vol.52, issue.1-3, pp.23-32, 1992.
DOI : 10.1016/0167-2738(92)90088-7

J. W. Fergus, Electrolytes for solid oxide fuel cells, Journal of Power Sources, vol.162, issue.1, pp.30-40, 2006.
DOI : 10.1016/j.jpowsour.2006.06.062

J. A. Kilner, A study of oxygen ion conductivity in doped non-stoichiometric oxides, Solid State Ionics, vol.6, issue.3, pp.237-252, 1982.
DOI : 10.1016/0167-2738(82)90045-5

S. P. Badwal, Stability of solid oxide fuel cell components, Solid State Ionics, vol.143, issue.1, pp.39-46, 2001.
DOI : 10.1016/S0167-2738(01)00831-1

G. C. Kostogloudis, G. Tsiniarakis, and C. Ftikos, Chemical reactivity of perovskite oxide SOFC cathodes and yttria stabilized zirconia, Solid State Ionics, vol.135, issue.1-4, pp.529-535, 2000.
DOI : 10.1016/S0167-2738(00)00433-1

J. M. Van-roosmalen and E. H. Cordfunke, Chemical reactivity and interdiffusion of (La, Sr)MnO3 and (Zr, Y)O2, solid oxide fuel cell cathode and electrolyte materials, Solid State Ionics, vol.52, issue.4, pp.303-312, 1992.
DOI : 10.1016/0167-2738(92)90177-Q

A. M. Hernandez, L. Mogni, and A. Caneiro, La2NiO4+?? as cathode for SOFC: Reactivity study with YSZ and CGO electrolytes, International Journal of Hydrogen Energy, vol.35, issue.11, pp.6031-6036, 2010.
DOI : 10.1016/j.ijhydene.2009.12.077

C. Brugnoni, U. Ducati, and M. Scagliotti, SOFC cathode/electrolyte interface. Part I: Reactivity between La0.85Sr0.15MnO3 and ZrO2-Y2O3, Solid State Ionics, vol.76, issue.3-4, pp.177-182, 1995.
DOI : 10.1016/0167-2738(94)00299-8

G. Chiodelli and M. Scagliotti, Electrical characterization of lanthanum zirconate reaction layers by impedance spectroscopy, Solid State Ionics, vol.73, issue.3-4, pp.265-271, 1994.
DOI : 10.1016/0167-2738(94)90043-4

H. Y. Lee and S. M. Oh, Origin of cathodic degradation and new phase formation at the La0.9Sr0.1MnO3/YSZ interface, Solid State Ionics, vol.90, issue.1-4, pp.133-140, 1996.
DOI : 10.1016/S0167-2738(96)00408-0

A. Mitterdorfer and L. J. Gauckler, La2Zr2O7 formation and oxygen reduction kinetics of the La0.85Sr0.15MnyO3, O2(g)|YSZ system, Solid State Ionics, vol.111, issue.3-4, pp.185-218, 1998.
DOI : 10.1016/S0167-2738(98)00195-7

B. C. Steele, Appraisal of Ce1???yGdyO2???y/2 electrolytes for IT-SOFC operation at 500??C, Solid State Ionics, vol.129, issue.1-4, pp.95-110, 2000.
DOI : 10.1016/S0167-2738(99)00319-7

B. C. Steele, Appraisal of Ce1???yGdyO2???y/2 electrolytes for IT-SOFC operation at 500??C, Solid State Ionics, vol.129, issue.1-4, pp.95-110, 2000.
DOI : 10.1016/S0167-2738(99)00319-7

M. Mogensen, N. M. Sammes, and G. A. Tompsett, Physical, chemical and electrochemical properties of pure and doped ceria, Solid State Ionics, vol.129, issue.1-4, pp.63-94, 2000.
DOI : 10.1016/S0167-2738(99)00318-5

M. Han, X. Tang, H. Yin, and S. Peng, Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs, Journal of Power Sources, vol.165, issue.2, pp.757-763, 2007.
DOI : 10.1016/j.jpowsour.2006.11.054

V. Dusastre and J. A. Kilner, Optimisation of composite cathodes for intermediate temperature SOFC applications, Solid State Ionics, vol.126, issue.1-2, pp.163-174, 1999.
DOI : 10.1016/S0167-2738(99)00108-3

L. Qiu, T. Ichikawa, A. Hirano, N. Imanishi, and Y. Takeda, Ln1???xSrxCo1???yFeyO3????? (Ln=Pr, Nd, Gd; x=0.2, 0.3) for the electrodes of solid oxide fuel cells, Solid State Ionics, vol.158, issue.1-2, pp.55-65, 2003.
DOI : 10.1016/S0167-2738(02)00757-9

J. M. Ralph, C. Rossignol, and R. Kumar, Cathode Materials for Reduced-Temperature SOFCs, Journal of The Electrochemical Society, vol.141, issue.11, pp.1518-1522, 2003.
DOI : 10.1149/1.1617300

URL : https://hal.archives-ouvertes.fr/hal-00418034

E. Ivers-tiffe, A. Weber, and D. Herbstritt, Materials and technologies for SOFC-components, Journal of the European Ceramic Society, vol.21, issue.10-11, pp.1805-1811, 2001.
DOI : 10.1016/S0955-2219(01)00120-0

S. P. Badwal, F. T. Ciacchi, and J. Drennan, Investigation of the stability of ceria-gadolinia electrolytes in solid oxide fuel cell environments, Solid State Ionics, vol.121, issue.1-4, pp.253-262, 1999.
DOI : 10.1016/S0167-2738(99)00044-2

H. Inaba and H. Tagawa, Ceria-based solid electrolytes, Solid State Ionics, vol.83, issue.1-2, pp.1-16, 1996.
DOI : 10.1016/0167-2738(95)00229-4

J. B. Goodenough, Review Lecture: Fast Ionic Conduction in Solids, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.393, issue.1805, pp.215-234, 1984.
DOI : 10.1098/rspa.1984.0055

S. P. Jiang and S. H. Chan, A review of anode materials development in solid oxide fuel cells, Journal of Materials Science, vol.39, issue.14, pp.4405-4439, 2004.
DOI : 10.1023/B:JMSC.0000034135.52164.6b

J. B. Goodenough and Y. Huang, Alternative anode materials for solid oxide fuel cells, Journal of Power Sources, vol.173, issue.1, pp.1-10, 2007.
DOI : 10.1016/j.jpowsour.2007.08.011

H. Kim, C. Lu, W. L. Worrell, J. M. Vohs, and R. J. Gorte, Cu-Ni Cermet Anodes for Direct Oxidation of Methane in Solid-Oxide Fuel Cells, Journal of The Electrochemical Society, vol.144, issue.3, pp.247-250, 2002.
DOI : 10.1149/1.1837360

T. Kawada, Perovskite Oxide for Cathode of SOFCs, in Perovskite Oxide for Solid Oxide Fuel Cells, pp.147-166, 2009.

C. Sun, R. Hui, and J. Roller, Cathode materials for solid oxide fuel cells: a review, Journal of Solid State Electrochemistry, vol.33, issue.115, pp.1125-1144, 2009.
DOI : 10.1016/S0955-2219(01)00112-1

J. Fleig, H. L. Tuller, and J. Maier, Electrodes and electrolytes in micro-SOFCs: a discussion of geometrical constraints, Solid State Ionics, vol.174, issue.1-4, pp.261-270, 2004.
DOI : 10.1016/j.ssi.2004.07.035

A. Weber and E. Ivers-tiffe, Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications, Journal of Power Sources, vol.127, issue.1-2, pp.273-283, 2004.
DOI : 10.1016/j.jpowsour.2003.09.024

S. J. Skinner, Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes, International Journal of Inorganic Materials, vol.3, issue.2, pp.113-121, 2001.
DOI : 10.1016/S1466-6049(01)00004-6

S. J. Skinner and J. A. Kilner, Oxygen ion conductors, Materials Today, vol.6, issue.3, pp.30-37, 2003.
DOI : 10.1016/S1369-7021(03)00332-8

S. Y. Istomin and E. V. Antipov, Cathode materials based on perovskite-like transition metal oxides for intermediate temperature solid oxide fuel cells, Russian Chemical Reviews, vol.82, issue.7, p.686, 2013.
DOI : 10.1070/RC2013v082n07ABEH004390

S. R. Sehlin, H. U. Anderson, and D. M. Sparlin, Electrical characterization of the (La,Ca) (Cr,Co)O3 system, Solid State Ionics, vol.78, issue.3-4, pp.235-243, 1995.
DOI : 10.1016/0167-2738(95)00096-O

A. N. Petrov, O. F. Kononchuk, A. V. Andreev, V. A. Cherepanov, and P. Kofstad, Crystal structure, electrical and magnetic properties of La1 ??? xSrxCoO3 ??? y, Solid State Ionics, vol.80, issue.3-4, pp.189-199, 1995.
DOI : 10.1016/0167-2738(95)00114-L

A. Petric, P. Huang, and F. Tietz, Evaluation of La???Sr???Co???Fe???O perovskites for solid oxide fuel cells and gas separation membranes, Solid State Ionics, vol.135, issue.1-4, pp.719-725, 2000.
DOI : 10.1016/S0167-2738(00)00394-5

V. Vibhu, A. Rougier, C. Nicollet, A. Flura, J. Grenier et al., La 2???x Pr x NiO 4+?? as suitable cathodes for metal supported SOFCs, Solid State Ionics, vol.278, pp.32-37, 2015.
DOI : 10.1016/j.ssi.2015.05.005

A. Tarancón, M. Burriel, J. Santiso, S. J. Skinner, and J. A. Kilner, Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells, Journal of Materials Chemistry, vol.20, issue.3, pp.3799-3813, 2010.
DOI : 10.1103/PhysRevB.58.6291

S. Takahashi, S. Nishimoto, M. Matsuda, and M. Miyake, Electrode Properties of the Ruddlesden-Popper Series, Lan+1NinO3n+1 (n=1, 2, and 3), as Intermediate-Temperature Solid Oxide Fuel Cells, Journal of the American Ceramic Society, vol.176, issue.[6], pp.2329-2333, 2010.
DOI : 10.1111/j.1551-2916.2010.03743.x

G. Amow and S. J. Skinner, Recent developments in Ruddlesden???Popper nickelate systems for solid oxide fuel cell cathodes, Journal of Solid State Electrochemistry, vol.121, issue.56, pp.538-546, 2006.
DOI : 10.1007/s10008-006-0127-x

G. Amow, I. J. Davidson, and S. J. Skinner, A comparative study of the Ruddlesden-Popper series, Lan+1NinO3n+1 (n=1, 2 and 3), for solid-oxide fuel-cell cathode applications, Solid State Ionics, vol.177, issue.13-14, pp.1205-1210, 2006.
DOI : 10.1016/j.ssi.2006.05.005

G. Kim, S. Wang, A. J. Jacobson, and C. L. Chen, Measurement of oxygen transport kinetics in epitaxial La2NiO4+?? thin films by electrical conductivity relaxation, Solid State Ionics, vol.177, issue.17-18, pp.1461-1467, 2006.
DOI : 10.1016/j.ssi.2006.07.013

M. Greenblatt, Ruddlesden-Popper Lnn+1NinO3n+1 nickelates: structure and properties, Current Opinion in Solid State and Materials Science, vol.2, issue.2, pp.174-83, 1997.
DOI : 10.1016/S1359-0286(97)80062-9

Z. Zhang and M. Greenblatt, Synthesis, Structure, and Properties of Ln4Ni3O10-?? (Ln = La, Pr, and Nd), Journal of Solid State Chemistry, vol.117, issue.2, pp.236-246, 1995.
DOI : 10.1006/jssc.1995.1269

M. Greenblatt, Z. Zhang, and M. H. Whangbo, Electronic properties of La3Ni2O7 and Ln4Ni3O10, Ln=La, Pr and Nd, Synthetic Metals, vol.85, issue.1-3, pp.1451-1452, 1997.
DOI : 10.1016/S0379-6779(97)80312-8

Z. Zhang, M. Greenblatt, and J. B. Goodenough, Synthesis, Structure, and Properties of the Layered Perovskite La3Ni2O7-??, Journal of Solid State Chemistry, vol.108, issue.2, pp.402-409, 1994.
DOI : 10.1006/jssc.1994.1059

D. Pérez-coll, A. Aguadero, M. J. Escudero, and L. Daza, Effect of DC current polarization on the electrochemical behaviour of La2NiO4+?? and La3Ni2O7+??-based systems, Journal of Power Sources, vol.192, issue.1, pp.2-13, 2009.
DOI : 10.1016/j.jpowsour.2008.10.073

S. A. Nedilko, V. A. Kulichenko, A. G. Dziazko, and E. G. Zenkovich, Oxygen nonstoichiometry and properties of lanthanum nickelates La3???xCaxNi2O7????? (0 ??? x ??? 2.0), Journal of Alloys and Compounds, vol.367, issue.1-2, pp.251-254, 2004.
DOI : 10.1016/j.jallcom.2003.08.047

Z. Zhang and M. Greenblatt, Synthesis, Structure, and Physical Properties of La3-xMxNi2O7-?? (M = Ca2+, Sr2+, Ba2+; 0 < x ??? 0.075), Journal of Solid State Chemistry, vol.111, issue.1, pp.141-146, 1994.
DOI : 10.1006/jssc.1994.1209

V. V. Kharton, A. P. Viskup, E. N. Naumovkh, and F. M. Marques, Oxygen ion transport in La2NiO4???based ceramics, Journal of Materials Chemistry, vol.9, issue.10, pp.2623-2629, 1999.
DOI : 10.1039/a903276b

S. J. Skinner and J. A. Kilner, Oxygen diffusion and surface exchange in La2???xSrxNiO4+??, Solid State Ionics, vol.135, issue.1-4, pp.709-712, 2000.
DOI : 10.1016/S0167-2738(00)00388-X

M. L. Fontaine, C. Laberty-robert, A. Barnabé, F. Ansart, and P. Tailhades, Synthesis of La2???xNiO4+?? oxides by polymeric route: non-stoichoimetry control, Ceramics International, vol.30, issue.8, pp.2087-98, 2004.
DOI : 10.1016/j.ceramint.2003.11.013

M. L. Fontaine, C. Laberty-robert, F. Ansart, and P. Tailhades, Elaboration and characterization of La2NiO4+?? powders and thin films via a modified sol???gel process, Journal of Solid State Chemistry, vol.177, issue.4-5, pp.1471-1479, 2004.
DOI : 10.1016/j.jssc.2003.11.032

A. Podpirka, V. Balakrishnan, and S. Ramanathan, Heteroepitaxy and crystallographic orientation transition in La1.875Sr0.125NiO4 thin films on single crystal SrTiO3, Journal of Materials Research, vol.36, issue.11, pp.1420-1431, 2013.
DOI : 10.1016/j.theochem.2009.12.003

D. Telesca, B. O. Wells, and B. Sinkovic, Structural reorientation of PLD grown La2NiO4 thin films, Surface Science, vol.606, issue.9-10, pp.865-871, 2012.
DOI : 10.1016/j.susc.2012.02.001

G. T. Kim, S. Wang, A. J. Jacobson, Z. Yuan, and C. Chen, Impedance studies of dense polycrystalline thin films of La2NiO4+?, Journal of Materials Chemistry, vol.80, issue.155, pp.1316-1336, 2007.
DOI : 10.1039/b616101d

G. Garcia, M. Burriel, N. Bonanos, and J. Santiso, Electrical Conductivity and Oxygen Exchange Kinetics of La[sub 2]NiO[sub 4+??] Thin Films Grown by Chemical Vapor Deposition, Journal of The Electrochemical Society, vol.36, issue.155, pp.28-32, 2008.
DOI : 10.1016/0167-2738(94)00244-M

V. Faucheux, S. Pignard, and M. Audier, Growth of La2NiO4 thin films by chemical vapor deposition, Journal of Crystal Growth, vol.275, issue.1-2, pp.947-951, 2005.
DOI : 10.1016/j.jcrysgro.2004.11.099

S. J. Skinner, Characterisation of La2NiO4+?? using in-situ high temperature neutron powder diffraction, Solid State Sciences, vol.5, issue.3, pp.419-426, 2003.
DOI : 10.1016/S1293-2558(03)00050-5

K. Ishikawa, K. Metoki, and H. Miyamoto, Orthorhombic???orthorhombic phase transitions in Nd2NiO4+?? (0.067????????0.224), Journal of Solid State Chemistry, vol.182, issue.8, pp.2096-2103, 2009.
DOI : 10.1016/j.jssc.2009.05.025

P. Odier, J. M. Bassat, J. C. Rifflet, and J. P. Loup, On thermo-physical properties of La2???xNiO4+??, ?????0 or <0, Solid State Communications, vol.85, issue.7, pp.561-564, 1993.
DOI : 10.1016/0038-1098(93)90307-9

C. Li, T. Hu, H. Zhang, Y. Chen, J. Jin et al., Preparation and characterization of supported dense oxygen permeating membrane of mixed conductor La2NiO4+??, Journal of Membrane Science, vol.226, issue.1-2, pp.1-7, 2003.
DOI : 10.1016/S0376-7388(03)00190-X

E. Iguchi, H. Satoh, H. Nakatsugawa, and F. Munakata, Correlation between hopping conduction and transferred exchange interaction in La2NiO4+?? below 300 K, Physica B: Condensed Matter, vol.270, issue.3-4, pp.332-340, 1999.
DOI : 10.1016/S0921-4526(99)00184-2

N. Poirot, P. Odier, P. Simon, and F. Gervais, Role of magnetic fluctuations on the temperature dependence of the resistivity of a La2NiO4.11 single crystal, Solid State Sciences, vol.5, issue.5, pp.735-739, 2003.
DOI : 10.1016/S1293-2558(03)00038-4

L. Minervini, R. W. Grimes, J. A. Kilner, and K. E. Sickafus, Oxygen migration in La2NiO4 + ??, Journal of Materials Chemistry, vol.10, issue.10, pp.2349-2354, 2000.
DOI : 10.1039/b004212i

E. Boehm, J. M. Bassat, M. C. Steil, P. Dordor, F. Mauvy et al., Oxygen transport properties of La2Ni1???xCuxO4+?? mixed conducting oxides, Solid State Sciences, vol.5, issue.7, pp.973-981, 2003.
DOI : 10.1016/S1293-2558(03)00091-8

URL : https://hal.archives-ouvertes.fr/hal-00169095

S. J. Skinner and J. Kilner, Oxygen diffusion and surface exchange in La2???xSrxNiO4+??, Solid State Ionics, vol.135, issue.1-4, pp.709-712, 2000.
DOI : 10.1016/S0167-2738(00)00388-X

M. Sayer and P. Odier, Electrical properties and stoichiometry in La2NiO4, Journal of Solid State Chemistry, vol.67, issue.1, pp.26-36, 1987.
DOI : 10.1016/0022-4596(87)90334-3

J. M. Bassat, F. Gervais, P. Odier, and J. P. Loup, Anisotropic transport properties of La2NiO4 single crystals, Materials Science and Engineering: B, vol.3, issue.4, pp.507-514, 1989.
DOI : 10.1016/0921-5107(89)90164-5

K. Dembinski, J. M. Bassat, J. P. Coutures, and P. Odier, Crystal growth of La2NiO4 by the floating zone method with a CW CO2 laser: Preliminary characterizations, Journal of Materials Science Letters, vol.1, issue.2, pp.1365-1367, 1987.
DOI : 10.1103/PhysRevLett.58.408

A. Aguadero, J. A. Alonso, M. J. Escudero, and L. Daza, Evaluation of the La2Ni1???xCuxO4+?? system as SOFC cathode material with 8YSZ and LSGM as electrolytes, Solid State Ionics, vol.179, issue.11-12, pp.393-400, 2008.
DOI : 10.1016/j.ssi.2008.01.099

C. Nicollet, A. Flura, V. Vibhu, A. Rougier, J. M. Bassat et al., La 2 NiO 4+?? infiltrated into gadolinium doped ceria as novel solid oxide fuel cell cathodes: Electrochemical performance and impedance modelling, Journal of Power Sources, vol.294, pp.473-482, 2015.
DOI : 10.1016/j.jpowsour.2015.06.077

URL : https://hal.archives-ouvertes.fr/hal-01236174

S. Zha, Y. Zhang, and M. Liu, Functionally graded cathodes fabricated by sol-gel/slurry coating for honeycomb SOFCs, Solid State Ionics, vol.176, issue.1-2, pp.25-31, 2005.
DOI : 10.1016/j.ssi.2004.07.010

D. O. Bannikov and V. A. Cherepanov, Thermodynamic properties of complex oxides in the La???Ni???O system, Journal of Solid State Chemistry, vol.179, issue.8, pp.2721-2727, 2006.
DOI : 10.1016/j.jssc.2006.05.026

M. Zinkevich and F. Aldinger, Thermodynamic analysis of the ternary La???Ni???O system, Journal of Alloys and Compounds, vol.375, issue.1-2, pp.147-161, 2004.
DOI : 10.1016/j.jallcom.2003.11.138

R. M. Ram, L. Ganapathi, P. Ganguly, and C. N. Rao, Evolution of three-dimensional character across the Lan+1NinO3n+1 homologous series with increase in n, Journal of Solid State Chemistry, vol.63, issue.2, pp.139-147, 1986.
DOI : 10.1016/0022-4596(86)90163-5

J. Drennan, C. P. Tavares, and B. C. Steele, An electron microscope investigation of phases in the system La???Ni???O, Materials Research Bulletin, vol.17, issue.5, pp.621-626, 1982.
DOI : 10.1016/0025-5408(82)90044-7

M. Burriel, G. Garcia, M. D. Rossell, A. Figueras, G. Van-tendeloo et al., = 1, 2, 3, ???), Chemistry of Materials, vol.19, issue.16, pp.4056-4062, 2007.
DOI : 10.1021/cm070804e

M. D. Carvalho, A. Wattiaux, J. M. Bassat, J. C. Grenier, M. Pouchard et al., Electrochemical oxidation and reduction of La4Ni3O10 in alkaline media, Journal of Solid State Electrochemistry, vol.7, issue.10, pp.700-705, 2003.
DOI : 10.1007/s10008-003-0381-0

URL : https://hal.archives-ouvertes.fr/hal-00172022

K. Sreedhar, M. Mcelfresh, D. Perry, D. Kim, P. Metcalf et al., Low-Temperature Electronic Properties of the Lan+1NinO3n+1 (n = 2, 3, and ???) System: Evidence for a Crossover from Fluctuating-Valence to Fermi-Liquid-like Behavior, Journal of Solid State Chemistry, vol.110, issue.2, pp.208-215, 1994.
DOI : 10.1006/jssc.1994.1161

R. J. Woolley and S. J. Skinner, Novel La 2 NiO 4+?? and La 4 Ni 3 O 10????? composites for solid oxide fuel cell cathodes, Journal of Power Sources, vol.243, pp.790-795, 2013.
DOI : 10.1016/j.jpowsour.2013.06.106

A. Aguadero, L. Fawcett, S. Taub, R. Woolley, K. Wu et al., Materials development for intermediate-temperature solid oxide electrochemical devices, Journal of Materials Science, vol.20, issue.8, pp.3925-3948, 2012.
DOI : 10.1002/adma.200801199

URL : http://hdl.handle.net/10044/1/12707

J. A. Kilner and M. Burriel, Materials for Intermediate-Temperature Solid-Oxide Fuel Cells, Annual Review of Materials Research, vol.44, issue.1, pp.365-393, 2014.
DOI : 10.1146/annurev-matsci-070813-113426

S. J. Skinner and J. A. Kilner, Oxygen diffusion and surface exchange in La2???xSrxNiO4+??, Solid State Ionics, vol.135, issue.1-4, pp.709-712, 2000.
DOI : 10.1016/S0167-2738(00)00388-X

E. Boehm, J. M. Bassat, M. C. Steil, P. Dordor, F. Mauvy et al., Oxygen transport properties of La2Ni1???xCuxO4+?? mixed conducting oxides, Solid State Sciences, vol.5, issue.7, pp.973-981, 2003.
DOI : 10.1016/S1293-2558(03)00091-8

URL : https://hal.archives-ouvertes.fr/hal-00169095

F. Mauvy, C. Lalanne, J. M. Bassat, J. C. Grenier, H. Zhao et al., Electrode properties of Ln2NiO4 + ? ( Ln = La , Nd , Pr ) AC Impedance and DC Polarization Studies, J. Electrochem. Soc, pp.153-1547, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00080507

A. Tarancón, M. Burriel, J. Santiso, S. J. Skinner, and J. A. Kilner, Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells, Journal of Materials Chemistry, vol.20, issue.3, pp.3799-3813, 2010.
DOI : 10.1103/PhysRevB.58.6291

H. Inaba and H. Tagawa, Ceria-based solid electrolytes, Solid State Ionics, vol.83, issue.1-2, pp.1-16, 1996.
DOI : 10.1016/0167-2738(95)00229-4

L. M. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin, and S. R. Sehlin, Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 2. The system La1-xSrxCo0.2Fe0.8O3, Solid State Ionics, pp.76-273, 1995.
DOI : 10.1016/0167-2738(94)00244-m

L. M. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin, and S. R. Sehlin, Structure and electrical properties of La1-xSrxCo1-yFeyO3.Part 1. The system La0, Solid State Ionics, vol.8, issue.76, pp.2-3, 1995.
DOI : 10.1016/0167-2738(94)00244-m

B. C. Steele, Appraisal of Ce1???yGdyO2???y/2 electrolytes for IT-SOFC operation at 500??C, Solid State Ionics, vol.129, issue.1-4, pp.95-110, 2000.
DOI : 10.1016/S0167-2738(99)00319-7

G. Amow, I. J. Davidson, and S. J. Skinner, A comparative study of the Ruddlesden-Popper series, Lan+1NinO3n+1 (n=1, 2 and 3), for solid-oxide fuel-cell cathode applications, Solid State Ionics, vol.177, issue.13-14, pp.1205-1210, 2006.
DOI : 10.1016/j.ssi.2006.05.005

D. Huang, Q. Xu, F. Zhang, W. Chen, H. Liu et al., Synthesis and electrical conductivity of La2NiO4+? derived from apolyaminocarboxylate complex precursor, Materials Letters, pp.60-1892, 2006.

R. Sayers, M. Rieu, P. Lenormand, F. Ansart, J. A. Kilner et al., Development of lanthanum nickelate as a cathode for use in intermediate temperature solid oxide fuel cells, Solid State Ionics, vol.192, issue.1, pp.531-534, 2011.
DOI : 10.1016/j.ssi.2010.02.014

N. Hildenbrand, P. Nammensma, D. H. Blank, H. J. Bouwmeester, and B. A. Boukamp, Influence of configuration and microstructure on performance of La2NiO4+?? intermediate-temperature solid oxide fuel cells cathodes, Journal of Power Sources, vol.238, pp.442-453, 2013.
DOI : 10.1016/j.jpowsour.2013.03.192

B. Philippeau, F. Mauvy, C. Mazataud, S. Fourcade, and J. C. Grenier, Comparative study of electrochemical properties of mixed conducting Ln2NiO4+? (Ln=La, Pr and Nd) and La0, Solid State Ionics, vol.249, pp.17-25, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00859967

V. Vibhu, A. Rougier, J. C. Grenier, and J. M. Bassat, Mixed Nickelates Pr2-XLaxNiO4+?? Used as Cathodes in Metal Supported SOFCs, ECS Transactions, vol.57, issue.1, pp.2093-2100, 2013.
DOI : 10.1149/05701.2093ecst

K. Hayashi, O. Yamamoto, Y. Nishigaki, and H. Minoura, Sputtered La0.5Sr0.5MnO3???yttria stabilized zirconia composite film electrodes for SOFC, Solid State Ionics, vol.98, issue.1-2, pp.49-55, 1997.
DOI : 10.1016/S0167-2738(97)00098-2

H. B. Wang, J. F. Gao, D. K. Peng, and G. Y. Meng, Plasma deposition of La0.8Sr0.2MnO3 thin films on yttria-stabilized zirconia from aerosol precursor, Materials Chemistry and Physics, vol.72, issue.3, pp.72-297, 2001.
DOI : 10.1016/S0254-0584(01)00331-5

M. Burriel, G. Garcia, M. Rossell, A. Figueras, G. Van-tendeloo et al., Enhanced High-Temperature Electronic Transport Properties in Nanostructured Epitaxial Thin Films of the Lan+1NinO3n+1 Ruddlesden-Popper Series (n ) 1, Chem. Mater, vol.2, issue.19, pp.4056-4062, 2007.

G. Garcia, M. Burriel, J. Santiso, and N. Bonanos, Electrical Conductivity and Oxygen Exchange Kinetics of La[sub 2]NiO[sub 4+??] Thin Films Grown by Chemical Vapor Deposition, Journal of The Electrochemical Society, vol.36, issue.155, pp.28-32, 2008.
DOI : 10.1016/0167-2738(94)00244-M

G. L. Bertrand, G. Caboche, and L. C. Dufour, Low-pressure-MOCVD LaMnO3???????? very thin films on YSZ (100) optimized for studies of the triple phase boundary, Solid State Ionics, vol.129, issue.1-4, pp.219-235, 2000.
DOI : 10.1016/S0167-2738(99)00328-8

T. Nguyen and E. Djurado, Deposition and characterization of nanocrystalline tetragonal zirconia films using electrostatic spray deposition, Solid State Ionics, vol.138, issue.3-4, pp.191-197, 2001.
DOI : 10.1016/S0167-2738(00)00795-5

I. Taniguchi, R. C. Van-landschoot, and J. Schoonman, Fabrication of La1???xSrxCo1???yFeyO3 thin films by electrostatic spray deposition, Solid State Ionics, vol.156, issue.1-2, pp.1-13, 2003.
DOI : 10.1016/S0167-2738(02)00615-X

C. H. Chen, M. H. Emond, E. M. Kelder, B. Meester, and J. Schoonman, ELECTROSTATIC SOL???SPRAY DEPOSITION OF NANOSTRUCTURED CERAMIC THIN FILMS, Journal of Aerosol Science, vol.30, issue.7, pp.30-959, 1999.
DOI : 10.1016/S0021-8502(98)00075-5

D. Marinha, C. Rossignol, and E. Djurado, Influence of electrospraying parameters on the microstructure of La0.6Sr0.4Co0.2F0.8O3????? films for SOFCs, Journal of Solid State Chemistry, vol.182, issue.7, pp.1742-1748, 2009.
DOI : 10.1016/j.jssc.2009.04.018

URL : https://hal.archives-ouvertes.fr/hal-00417170

D. Marinha, L. Dessemond, and E. Djurado, Comprehensive Review of Current Developments in IT-SOFCs, Current Inorganic Chemistry, vol.3, issue.1, pp.2-22, 2013.
DOI : 10.2174/1877944111303010003

J. Rodriguez, Recent advances in magnetic structure determination by neutron powder diffraction, Physica B: Condensed Matter, vol.192, issue.1-2, pp.55-69, 1993.
DOI : 10.1016/0921-4526(93)90108-I

R. Neagu, D. Perednis, A. Princivalle, and E. Djurado, Initial Stages in Zirconia Coatings Using ESD, Initial Stages in Zirconia Coatings Using ESD, pp.902-910, 2005.
DOI : 10.1021/cm048341p

URL : https://hal.archives-ouvertes.fr/hal-00383675

A. Lintanf, A. Mantoux, E. Blanquet, and E. Djurado, Thin Films Using Electrostatic Spray Deposition for Microelectronic Applications, The Journal of Physical Chemistry C, vol.111, issue.15, pp.5708-5714, 2007.
DOI : 10.1021/jp0676585

URL : https://hal.archives-ouvertes.fr/hal-00196396

C. H. Chen, E. M. Kelder, P. J. Van-der-put, and J. Schoonman, Morphology control of thin LiCoO2 films fabricated using the electrostatic spray deposition (ESD) technique, Journal of Materials Chemistry, vol.6, issue.5, pp.765-771, 1996.
DOI : 10.1039/jm9960600765

A. Princivalle and E. Djurado, Nanostructured LSM/YSZ composite cathodes for IT-SOFC: A comprehensive microstructural study by electrostatic spray deposition, Solid State Ionics, vol.179, issue.33-34, pp.1921-1928, 2008.
DOI : 10.1016/j.ssi.2008.05.006

URL : https://hal.archives-ouvertes.fr/hal-00386322

A. M. Gañan-calvo, J. Davila, and A. Barrero, Current and droplet size in the electrospraying of liquids. Scaling laws, Journal of Aerosol Science, vol.28, issue.2, pp.249-275, 1997.
DOI : 10.1016/S0021-8502(96)00433-8

S. Mahiuddin, B. Minofar, J. M. Borah, M. R. Das, and P. Jungwirth, Propensities of oxalic, citric, succinic, and maleic acids for the aqueous solution/vapour interface: Surface tension measurements and molecular dynamics simulations, Chemical Physics Letters, vol.462, issue.4-6, pp.217-221, 2008.
DOI : 10.1016/j.cplett.2008.07.085

R. P. Hartman, J. Borra, J. C. Marijnissen, and B. Scarlett, Development of electrohydrodynamic sprays related to space charge effects, Journal of Aerosol Science, vol.27, pp.27-177, 1996.
DOI : 10.1016/0021-8502(96)00161-9

J. A. Lange, Handbook of Chemistry, 1992.

C. Fu, K. Sun, N. Zhang, X. Chen, and D. Zhou, Electrochemical characteristics of LSCF???SDC composite cathode for intermediate temperature SOFC, Electrochimica Acta, vol.52, issue.13, pp.4589-4594, 2007.
DOI : 10.1016/j.electacta.2007.01.001

C. Nicollet, A. Flura, V. Vibhu, A. Rougier, J. M. Bassat et al., La 2 NiO 4+?? infiltrated into gadolinium doped ceria as novel solid oxide fuel cell cathodes: Electrochemical performance and impedance modelling, Journal of Power Sources, vol.294, pp.473-482, 2015.
DOI : 10.1016/j.jpowsour.2015.06.077

URL : https://hal.archives-ouvertes.fr/hal-01236174

A. Montenegro-hernandez, J. Vega-castillo, L. Mogni, and A. Caneiro, Thermal stability of Ln2NiO4+?? (Ln: La, Pr, Nd) and their chemical compatibility with YSZ and CGO solid electrolytes, International Journal of Hydrogen Energy, vol.36, issue.24, pp.15704-15714, 2011.
DOI : 10.1016/j.ijhydene.2011.08.105

A. Montenegro-hernandez, A. Soldati, L. Mogni, H. Troiani, A. Schreiber et al., Reactivity at the Ln2NiO4+??/electrolyte interface (Ln??=??La, Nd) studied by Electrochemical Impedance Spectroscopy and Transmission Electron Microscopy, Journal of Power Sources, vol.265, pp.6-13, 2014.
DOI : 10.1016/j.jpowsour.2014.04.082

G. Amow, P. S. Whitfield, I. J. Davidson, R. P. Hammond, C. N. Munnings et al., Structural and sintering characteristics of the La2Ni1???xCoxO4+?? series, Ceramics International, vol.30, issue.7, pp.30-1635, 2004.
DOI : 10.1016/j.ceramint.2003.12.164

R. Sayers, J. Liu, B. Rustumji, and S. J. Skinner, -Type Materials for Solid Oxide Fuel Cells: Compatibility with Electrolytes in the Intermediate Temperature Range, Fuel Cells, vol.30, issue.5, pp.338-343, 2008.
DOI : 10.1002/fuce.200800023

M. Figueiredo, J. A. Labrincha, J. R. Frade, and F. M. Marques, Reactions between a zirconia-based electrolyte and LaCoO3-based electrode materials, Solid State Ionics, vol.101, pp.343-349, 1997.
DOI : 10.1016/s0167-2738(97)00127-6

C. Encinas-in, ) for XRD analyses. We would also like to thanks Rachel Martin for SEM and EDX analyses

D. Marinha, L. Dessemond, J. S. Cronin, J. R. Wilson, S. A. Barnett et al., Microstructural 3D Reconstruction and Performance Evaluation of LSCF Cathodes Obtained by Electrostatic Spray Deposition, Chemistry of Materials, vol.23, issue.24, p.5340, 2011.
DOI : 10.1021/cm2016998

C. Fu, K. Sun, N. Zhang, X. Chen, and D. Zhou, Electrochemical characteristics of LSCF???SDC composite cathode for intermediate temperature SOFC, Electrochimica Acta, vol.52, issue.13, p.4589, 2007.
DOI : 10.1016/j.electacta.2007.01.001

S. B. Adler, Limitations of charge-transfer models for mixed-conducting oxygen electrodes, Solid State Ionics, vol.135, issue.1-4, p.603, 2000.
DOI : 10.1016/S0167-2738(00)00423-9

J. A. Kilner and M. Burriel, Materials for Intermediate-Temperature Solid-Oxide Fuel Cells, Annual Review of Materials Research, vol.44, issue.1, p.365, 2014.
DOI : 10.1146/annurev-matsci-070813-113426

R. Sayers, R. A. De-souza, J. A. Kilner, and S. J. Skinner, Low temperature diffusion and oxygen stoichiometry in lanthanum nickelate, Solid State Ionics, vol.181, issue.8-10, p.386, 2010.
DOI : 10.1016/j.ssi.2010.01.016

Z. Zhang and M. Greenblatt, Synthesis, Structure, and Properties of Ln4Ni3O10-?? (Ln = La, Pr, and Nd), Journal of Solid State Chemistry, vol.117, issue.2, p.236, 1995.
DOI : 10.1006/jssc.1995.1269

C. H. Chen, M. H. Emond, E. M. Kelder, B. Meester, and J. Schoonman, ELECTROSTATIC SOL???SPRAY DEPOSITION OF NANOSTRUCTURED CERAMIC THIN FILMS, Journal of Aerosol Science, vol.30, issue.7, p.959, 1999.
DOI : 10.1016/S0021-8502(98)00075-5

R. C. Weast, Handbook of Chemistry and Physics, p.56, 1975.

S. B. Adler, Limitations of charge-transfer models for mixed-conducting oxygen electrodes, Solid State Ionics, vol.135, issue.1-4, p.603, 2000.
DOI : 10.1016/S0167-2738(00)00423-9

X. Xu, Z. Jiang, X. Fan, and C. Xia, LSM???SDC electrodes fabricated with an ion-impregnating process for SOFCs with doped ceria electrolytes, Solid State Ionics, vol.177, issue.19-25, p.2113, 2006.
DOI : 10.1016/j.ssi.2006.01.043

D. Marinha, L. Dessemond, J. S. Cronin, J. R. Wilson, S. A. Barnett et al., Microstructural 3D Reconstruction and Performance Evaluation of LSCF Cathodes Obtained by Electrostatic Spray Deposition, Chemistry of Materials, vol.23, issue.24, p.5340, 2011.
DOI : 10.1021/cm2016998

S. B. Adler, Limitations of charge-transfer models for mixed-conducting oxygen electrodes, Solid State Ionics, vol.135, issue.1-4, p.603, 2000.
DOI : 10.1016/S0167-2738(00)00423-9

A. Aguadero, L. Fawcett, S. Taub, R. Woolley, K. Wu et al., Materials development for intermediate-temperature solid oxide electrochemical devices, Journal of Materials Science, vol.20, issue.8, pp.3925-3948, 2012.
DOI : 10.1002/adma.200801199

URL : http://hdl.handle.net/10044/1/12707

J. A. Kilner and M. Burriel, Materials for Intermediate-Temperature Solid-Oxide Fuel Cells, Annual Review of Materials Research, vol.44, issue.1, pp.365-393, 2014.
DOI : 10.1146/annurev-matsci-070813-113426

A. Tarancón, M. Burriel, J. Santiso, S. J. Skinner, and J. A. Kilner, Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells, Journal of Materials Chemistry, vol.20, issue.3, pp.3799-3813, 2010.
DOI : 10.1103/PhysRevB.58.6291

S. Chaianansutcharit, K. Hosoi, J. Hyodo, Y. Ju, and T. Ishihara, (Ln = La, Pr, Nd, Sm, Eu, and Gd) as active cathodes for low temperature solid oxide fuel cells, Journal of Materials Chemistry A, vol.52, issue.56, pp.12357-12366, 2015.
DOI : 10.1103/PhysRevB.52.13808

G. Amow, I. J. Davidson, and S. J. Skinner, A comparative study of the Ruddlesden-Popper series, Lan+1NinO3n+1 (n=1, 2 and 3), for solid-oxide fuel-cell cathode applications, Solid State Ionics, vol.177, issue.13-14, pp.1205-1210, 2006.
DOI : 10.1016/j.ssi.2006.05.005

S. Takahashi, S. Nishimoto, M. Matsuda, and . Miyake, Electrode Properties of the Ruddlesden-Popper Series, Lan+1NinO3n+1 (n=1, 2, and 3), as Intermediate-Temperature Solid Oxide Fuel Cells, Journal of the American Ceramic Society, vol.176, issue.[6], pp.93-2329, 2010.
DOI : 10.1111/j.1551-2916.2010.03743.x

M. Burriel, G. Garcia, M. Rossell, A. Figueras, G. Van-tendeloo et al., Enhanced high-temperature electronic transport properties in nanostructured epitaxial thin films of the Lan+1NinO3n+1 Ruddlesden?Popper series, Chem. Mater, vol.1, issue.19, pp.4056-4062, 2007.

S. J. Skinner and J. A. Kilner, Oxygen diffusion and surface exchange in La2???xSrxNiO4+??, Solid State Ionics, vol.135, issue.1-4, pp.709-712, 2000.
DOI : 10.1016/S0167-2738(00)00388-X

J. Wan, J. B. Goodenough, and J. H. Zhu, Nd2???xLaxNiO4+??, a mixed ionic/electronic conductor with interstitial oxygen, as a cathode material, Solid State Ionics, vol.178, issue.3-4, pp.281-286, 2007.
DOI : 10.1016/j.ssi.2007.01.013

S. Choi, S. Yoo, J. Shin, and G. Kim, High Performance SOFC Cathode Prepared by Infiltration of Lan???+???1NinO3n???+???1 (n???=???1, 2, and 3) in Porous YSZ, Journal of The Electrochemical Society, vol.158, issue.8, pp.995-999, 2011.
DOI : 10.1149/1.1837252

P. J. Lacorrer and =. La, Passage from T-type to T???-type arrangement by reducing R4Ni3O10 to R4Ni3O8 (R = La, Pr, Nd), Journal of Solid State Chemistry, vol.97, issue.2, pp.495-500, 1992.
DOI : 10.1016/0022-4596(92)90061-Y

J. C. Park, D. K. Kim, S. H. Byeon, and D. Kim, (n = 1, 2, and ???), XANES study on Ruddlesden-Popper phase, Lan+1NinO3n+1 (n = 1, pp.704-706, 2001.
DOI : 10.1107/S0909049500015983

URL : https://hal.archives-ouvertes.fr/in2p3-01352725

M. D. Carvalho, F. M. Costa, I. D. Pereira, A. Wattiaux, J. M. Bassat et al., New preparation method of Lan+1NinO3n+1????? (n=2, 3), Journal of Materials Chemistry, vol.7, issue.10, 1997.
DOI : 10.1039/a702424j

G. Amow and S. J. Skinner, Recent developments in Ruddlesden???Popper nickelate systems for solid oxide fuel cell cathodes, Journal of Solid State Electrochemistry, vol.121, issue.56, pp.538-546, 2006.
DOI : 10.1007/s10008-006-0127-x

M. J. Jørgensen, S. Primdahl, C. Bagger, and M. Mogensen, Effect of sintering temperature on microstructure and performance of LSM???YSZ composite cathodes, Solid State Ionics, vol.139, issue.1-2, pp.1-11, 2001.
DOI : 10.1016/S0167-2738(00)00818-3

. Kim, Characterization of LSM??????YSZ composite electrode by ac impedance spectroscopy, Solid State Ionics, vol.143, issue.3-4, pp.379-389, 2001.
DOI : 10.1016/S0167-2738(01)00877-3

C. Zhu, X. Liu, D. Xu, D. Wang, D. Yan et al., Electrochemical performance of Pr0.7Sr0.3Co0.9Cu0.1O3????????Ce0.8Sm0.2O1.9 composite cathodes in intermediate-temperature solid oxide fuel cells, Electrochemical performance of Pr0.7Sr0.3Co0.9Cu0.1O3???Ce0.8Sm0.2O1.9 composite cathodes in intermediatetemperature solid oxide fuel cells, pp.212-216, 2008.
DOI : 10.1016/j.jpowsour.2008.06.027

Y. Lin and S. A. Barnett, La0.9Sr0.1Ga0.8Mg0.2O3?????-La0.6Sr0.4Co0.2Fe0.8O3????? composite cathodes for intermediate-temperature solid oxide fuel cells, Solid State Ionics, vol.179, issue.11-12, pp.420-427, 2008.
DOI : 10.1016/j.ssi.2008.02.063

URL : https://hal.archives-ouvertes.fr/hal-00430898

B. Liu, Y. Zhang, and L. Zhang, Characteristics of Ba0.5Sr0.5Co0.8Fe0.2O3????????La0.9Sr0.1Ga0.8Mg0.2O3????? composite cathode for solid oxide fuel cell, Journal of Power Sources, vol.175, issue.1, pp.189-195, 2008.
DOI : 10.1016/j.jpowsour.2007.09.088

J. Harris, C. Metcalfe, M. Marr, J. Kuhn, and O. Kesler, Fabrication and characterization of solid oxide fuel cell cathodes made from nano-structured LSCF???SDC composite feedstock, Journal of Power Sources, vol.239, pp.234-243, 2013.
DOI : 10.1016/j.jpowsour.2013.03.040

S. Lee, H. S. Song, S. H. Hyun, J. Kim, and J. Moon, LSCF???SDC core???shell high-performance durable composite cathode, Journal of Power Sources, vol.195, issue.1, pp.118-123, 2010.
DOI : 10.1016/j.jpowsour.2009.06.079

J. H. Kim and H. Kim, Ce0.9Gd0.1O1.95 supported La0.6Sr0.4Co0.2Fe0.8O3????? cathodes for solid oxide fuel cells, Ce0.9Gd0.1O1.95 supported La0.6Sr0.4Co0.2Fe0.8O3-? cathodes for solid oxide fuel cells, pp.4669-4675, 2012.
DOI : 10.1016/j.ceramint.2012.02.049

Y. Leng, S. H. Chan, and Q. Liu, Development of LSCF???GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte, International Journal of Hydrogen Energy, vol.33, issue.14, pp.3808-3817, 2008.
DOI : 10.1016/j.ijhydene.2008.04.034

V. Vibhu, A. Rougier, C. Nicollet, A. Flura, J. Grenier et al., La 2???x Pr x NiO 4+?? as suitable cathodes for metal supported SOFCs, Solid State Ionics, vol.278, pp.32-37, 2015.
DOI : 10.1016/j.ssi.2015.05.005

Z. Lou, J. Peng, N. Dai, J. Qiao, Y. Yan et al., High performance La3Ni2O7 cathode prepared by a facile sol???gel method for intermediate temperature solid oxide fuel cells, Electrochemistry Communications, vol.22, pp.22-97, 2012.
DOI : 10.1016/j.elecom.2012.06.004

Z. Lou, N. Dai, Z. Wang, Y. Dai, Y. Yan et al., Preparation and electrochemical characterization of Ruddlesden???Popper oxide La4Ni3O10 cathode for IT-SOFCs by sol???gel method, Journal of Solid State Electrochemistry, vol.18, issue.10, pp.2703-2709, 2013.
DOI : 10.1007/s11581-011-0609-4

R. J. Woolley and S. J. Skinner, Novel La 2 NiO 4+?? and La 4 Ni 3 O 10????? composites for solid oxide fuel cell cathodes, Journal of Power Sources, vol.243, pp.790-795, 2013.
DOI : 10.1016/j.jpowsour.2013.06.106

G. Amow, J. Au, and I. Davidson, Synthesis and characterization of La4Ni3???xCoxO10???? (0.0???x???3.0, ??x=0.2) for solid oxide fuel cell cathodes, Solid State Ionics, vol.177, issue.19-25, pp.1837-1841, 2006.
DOI : 10.1016/j.ssi.2006.01.017

L. Escudero and . Daza, In situ high temperature neutron powder diffraction study of oxygenrich La2NiO4+? in air: correlation with the electrical behavior, J. Mater. Chem, vol.16, pp.3402-3408, 2006.

Z. Zhang, M. Greenblatt, and J. B. Goodenough, Synthesis, Structure, and Properties of the Layered Perovskite La3Ni2O7-??, Journal of Solid State Chemistry, vol.108, issue.2, pp.402-409, 1994.
DOI : 10.1006/jssc.1994.1059

X. L. Weng, P. Boldrin, I. Abrahams, S. J. Skinner, and J. A. Darr, from Nanosized Coprecipitates, Direct Syntheses of Mixed Ion and Electronic Conductors La4Ni3O10 and La3Ni2O7 from Nanosized coprecipitates, pp.4382-4384, 2007.
DOI : 10.1021/cm070134c

C. D. Ling, D. N. Argyriou, G. Wu, and J. J. Neumeier, Neutron Diffraction Study of La3Ni2O7: Structural Relationships Among n=1, 2, and 3 Phases Lan+1NinO3n+1, Journal of Solid State Chemistry, vol.152, issue.2, pp.517-525, 2000.
DOI : 10.1006/jssc.2000.8721

Z. Zhang and M. Greenblatt, Synthesis, Structure, and Properties of Ln4Ni3O10-?? (Ln = La, Pr, and Nd), Journal of Solid State Chemistry, vol.117, issue.2, pp.236-246, 1995.
DOI : 10.1006/jssc.1995.1269

L. J. Cote, A. S. Teja, A. P. Wilkinson, and Z. J. Zhang, Continuous hydrothermal synthesis of CoFe2O4 nanoparticles, Fluid Phase Equilibr, pp.210-307, 2003.
DOI : 10.1016/s0378-3812(03)00168-7

J. Lee and A. S. Teja, Characteristics of lithium iron phosphate (LiFePO4) particles synthesized in subcritical and supercritical water, The Journal of Supercritical Fluids, vol.35, issue.1, pp.83-90, 2005.
DOI : 10.1016/j.supflu.2004.12.005

K. Wu, H. Tellez, J. Druce, M. Burriel, T. Ishihara et al., Surface Composition of Layered Ruddlesden-Popper Lan+1NinO3n+1 (n = 1, 2 and 3) Epitaxial Films, ECS Transactions, vol.66, issue.2, pp.66-89, 2015.
DOI : 10.1149/06602.0089ecst

N. Millot, B. Xin, C. Pighini, and D. Aymes, Hydrothermal synthesis of nanostructured inorganic powders by a continuous process under supercritical conditions, Journal of the European Ceramic Society, vol.25, issue.12, pp.25-2013, 2005.
DOI : 10.1016/j.jeurceramsoc.2005.03.202

L. A. Bendersky, M. Greenblatt, and R. Chen, Transmission electron microscopy study of Ruddlesden???Popper Can+1MnnO3n+1 n=2 and 3 compounds, Journal of Solid State Chemistry, vol.174, issue.2, pp.418-423, 2003.
DOI : 10.1016/S0022-4596(03)00283-4

J. Rodriguez, Recent advances in magnetic structure determination by neutron powder diffraction, Physica B: Condensed Matter, vol.192, issue.1-2, pp.55-69, 1993.
DOI : 10.1016/0921-4526(93)90108-I

P. D. Yang, D. Y. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks, Nature, vol.9, issue.6707, pp.152-155, 1998.
DOI : 10.1021/cm970322a

J. Ding and J. Chen, Synthesis of Cu???Zn???Zr???Al???O catalysts via a citrate complex route modified by different solvents and their dehydrogenation/hydrogenation performance, RSC Advances, vol.34, issue.194, pp.82822-82833, 2015.
DOI : 10.1021/ie00046a020

L. Rayleigh, On the equilibrium of liquid conducting masses charged with electricit, Philosophical Magazine Series, vol.5, pp.14-184, 1882.

V. V. Poltavets, K. A. Lokshin, T. Egami, and M. Greenblatt, The oxygen deficient Ruddlesden???Popper La3Ni2O7????? (??=0.65) phase: Structure and properties, Materials Research Bulletin, vol.41, issue.5, pp.955-960, 2006.
DOI : 10.1016/j.materresbull.2006.01.028

C. Fu, K. Sun, N. Zhang, X. Chen, and D. Zhou, Electrochemical characteristics of LSCF???SDC composite cathode for intermediate temperature SOFC, Electrochimica Acta, vol.52, issue.13, pp.4589-4594, 2007.
DOI : 10.1016/j.electacta.2007.01.001

M. J. Escudero, A. Aguadero, J. A. Alonso, and L. Daza, A kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy, Journal of Electroanalytical Chemistry, vol.611, issue.1-2, pp.611-107, 2007.
DOI : 10.1016/j.jelechem.2007.08.006

L. Mogni, N. Grunbaum, F. Prado, and A. Caneiro, Oxygen Reduction Reaction on Ruddlesden???Popper Phases Studied by Impedance Spectroscopy, Journal of The Electrochemical Society, vol.154, issue.155, pp.202-207, 2011.
DOI : 10.1016/S0167-2738(98)00179-9

S. Pang, X. Jiang, X. Li, Q. Wang, and Z. Su, Characterization of Ba-deficient PrBa1???xCo2O5+?? as cathode material for intermediate temperature solid oxide fuel cells, Journal of Power Sources, vol.204, pp.53-59, 2012.
DOI : 10.1016/j.jpowsour.2012.01.034

. Boukamp, Influence of configuration and microstructure on performance of La2NiO4+? intermediate-temperature solid oxide fuel cells cathodes, J. Power Sources, vol.238, pp.442-453, 2013.

S. Kim, S. Choi, A. Jun, J. Shin, and G. Kim, Scale-Down and Sr-Doping Effects on La4Ni3O10-??-YSZ Nanocomposite Cathodes for IT-SOFCs, Journal of the Electrochemical Society, vol.161, issue.14, pp.1468-1473, 2014.
DOI : 10.1149/2.0791414jes

URL : http://jes.ecsdl.org/content/161/14/F1468.full.pdf

Z. Lou, J. Qiao, Y. Yan, J. Peng, Z. Wang et al., Synthesis and characterization of aluminum-doped perovskites as cathode materials for intermediate temperature solid oxide fuel cells, International Journal of Hydrogen Energy, vol.37, issue.15, pp.11345-11350, 2012.
DOI : 10.1016/j.ijhydene.2012.04.113

H. Gu, H. Chen, L. Gao, and L. Guo, Electrochemical properties of LaBaCo2O5+?????Sm0.2Ce0.8O1.9 composite cathodes for intermediate-temperature solid oxide fuel cells, Electrochimica Acta, vol.54, issue.27, pp.54-7094, 2009.
DOI : 10.1016/j.electacta.2009.07.040

A. Montenegro-hernández, A. Soldati, L. Mogni, H. Troiani, A. Schreiber et al., Reactivity at the Ln2NiO4+??/electrolyte interface (Ln??=??La, Nd) studied by Electrochemical Impedance Spectroscopy and Transmission Electron Microscopy, Journal of Power Sources, vol.265, pp.6-13, 2014.
DOI : 10.1016/j.jpowsour.2014.04.082

G. Amow, P. S. Whitfield, I. J. Davidson, R. P. Hammond, C. N. Munnings et al., Structural and sintering characteristics of the La2Ni1???xCoxO4+?? series, Ceramics International, vol.30, issue.7, pp.30-1635, 2004.
DOI : 10.1016/j.ceramint.2003.12.164

R. Sayers, J. Liu, B. Rustumji, and S. J. Skinner, -Type Materials for Solid Oxide Fuel Cells: Compatibility with Electrolytes in the Intermediate Temperature Range, Fuel Cells, vol.30, issue.5, pp.338-381, 2008.
DOI : 10.1002/fuce.200800023

*. Fig, S1 XRD patterns of the screen-printed L3N2-CGO and L4N3-CGO composite films deposited on a CGO substrate after calcination in airat 1000 °C

R. K. Sharma, M. Burriel, and E. Djurado, as an efficient solid oxide fuel cell cathode: electrochemical properties versus microstructure, Journal of Materials Chemistry A, vol.51, issue.47, pp.23833-23843, 2015.
DOI : 10.4191/kcers.2014.51.4.265

I. Taniguchi, R. C. Van-landschoot, and J. Schoonman, Fabrication of La1???xSrxCo1???yFeyO3 thin films by electrostatic spray deposition, Solid State Ionics, vol.156, issue.1-2, pp.1-13, 2003.
DOI : 10.1016/S0167-2738(02)00615-X

D. Marinha, C. Rossignol, and E. Djurado, Influence of electrospraying parameters on the microstructure of La0.6Sr0.4Co0.2F0.8O3????? films for SOFCs, Journal of Solid State Chemistry, vol.182, issue.7, pp.1742-1748, 2009.
DOI : 10.1016/j.jssc.2009.04.018

URL : https://hal.archives-ouvertes.fr/hal-00417170

G. Constantin, C. Rossignol, J. Barnes, and E. Djurado, Interface stability of thin, dense CGO film coating on YSZ for solid oxide fuel cells, Solid State Ionics, vol.235, pp.36-41, 2013.
DOI : 10.1016/j.ssi.2013.01.015

. Vannier, Solid State Ionics, pp.102-110, 2016.

A. Princivalle and E. Djurado, Nanostructured LSM/YSZ composite cathodes for IT-SOFC: A comprehensive microstructural study by electrostatic spray deposition, Solid State Ionics, vol.179, issue.33-34, pp.1921-1928, 2008.
DOI : 10.1016/j.ssi.2008.05.006

URL : https://hal.archives-ouvertes.fr/hal-00386322

R. Neagu, D. Perednis, A. Princivalle, and E. Djurado, Influence of the process parameters on the ESD synthesis of thin film YSZ electrolytes, Solid State Ionics, vol.177, issue.19-25, pp.1981-1984, 2006.
DOI : 10.1016/j.ssi.2006.05.052

URL : https://hal.archives-ouvertes.fr/hal-00333650

A. Jaworek and A. T. Sobczyk, Electrospraying route to nanotechnology: An overview, Journal of Electrostatics, vol.66, issue.3-4, pp.197-219, 2008.
DOI : 10.1016/j.elstat.2007.10.001

A. M. Gañan-calvo, J. Davila, and A. Barrero, Current and droplet size in the electrospraying of liquids. Scaling laws, Journal of Aerosol Science, vol.28, issue.2, pp.249-275, 1997.
DOI : 10.1016/S0021-8502(96)00433-8

A. Princivalle and E. Djurado, Nanostructured LSM/YSZ composite cathodes for IT-SOFC: A comprehensive microstructural study by electrostatic spray deposition, Solid State Ionics, vol.179, issue.33-34, pp.1921-1928, 2008.
DOI : 10.1016/j.ssi.2008.05.006

URL : https://hal.archives-ouvertes.fr/hal-00386322

A. Princivalle, D. Perednis, R. Neagu, and E. Djurado, Porosity Control of LSM/YSZ Cathode Coating Deposited by Electrospraying, Chemistry of Materials, vol.17, issue.5, pp.1220-1227, 2005.
DOI : 10.1021/cm048503h

URL : https://hal.archives-ouvertes.fr/hal-00383676

R. K. Sharma, S. Cheah, M. Burriel, L. Dessemond, J. Bassat et al., SOFC cathodes: a compromise between electrochemical performance and thermodynamic stability, Journal of Materials Chemistry A, vol.247, issue.155
DOI : 10.1016/j.jpowsour.2013.08.072

URL : https://hal.archives-ouvertes.fr/hal-01611329

R. K. Sharma, M. Burriel, L. Dessemond, J. Bassat, and E. Djurado, (Ln = La, Pr) cathodes for SOFC applications, Journal of Materials Chemistry A, vol.249, issue.250, pp.12451-12462, 2016.
DOI : 10.1016/j.ssi.2013.06.009

URL : https://hal.archives-ouvertes.fr/hal-01426062

R. K. Sharma, M. Burriel, L. Dessemond, J. Bassat, and E. Djurado, Lan+1NinO3n+1 (n??=??2 and 3) phases and composites for solid oxide fuel cell cathodes: Facile synthesis and electrochemical properties, Journal of Power Sources, vol.325, pp.337-345, 2016.
DOI : 10.1016/j.jpowsour.2016.06.047

URL : https://hal.archives-ouvertes.fr/hal-01426056

R. K. Sharma, M. Burriel, L. Dessemond, V. Martin, J. Bassat et al., An innovative architectural design to enhance the electrochemical performance of La2NiO4+?? cathodes for solid oxide fuel cell applications, Journal of Power Sources, vol.316, pp.17-28, 2016.
DOI : 10.1016/j.jpowsour.2016.03.067

URL : https://hal.archives-ouvertes.fr/hal-01296342

R. K. Sharma, M. Burriel, and E. Djurado, as an efficient solid oxide fuel cell cathode: electrochemical properties versus microstructure, Journal of Materials Chemistry A, vol.51, issue.47, pp.23833-23843, 2015.
DOI : 10.4191/kcers.2014.51.4.265

R. K. Sharma, O. Celikbilek, M. Burriel, L. Dessemond, J. M. Bassat et al., Electrochemical performance and chemical stability of architecturally designed La2-x PrxNiO4+? IT-SOFC cathodes, ECS Transactions Conferences, vol.72, pp.1-8, 2016.

R. K. Sharma, M. Burriel, L. Dessemond, J. M. Bassat, and E. Djurado, Design and electrochemical properties of nickelate-based cathodes for solid oxide fuel cells: role of the interfaces " ECOSS -2016, 2016.

R. K. Sharma, M. Burriel, L. Dessemond, J. M. Bassat, and E. Djurado, Architecturally designed La2-xPrxNiO4+? (x=0, 0.5, 1 and 2) IT-SOFC cathodes: a good compromise between electrochemical performance and chemical stability, 2015.
DOI : 10.1149/07233.0001ecst

R. K. Sharma, M. Burriel, L. Dessemond, J. M. Bassat, and E. Djurado, Lan+1NinO3n+1 (n=1, 2 and 3) as IT-SOFC cathode materials: Screen Printing vs. Electrostatic Spray Deposition, 2015.

R. K. Sharma, M. Burriel, L. Dessemond, J. M. Bassat, and E. Djurado, Microstructurally graded novel La2NiO4+? cathode for IT-SOFC " SCF -2015, 2015.

R. K. Sharma, V. Vibhu, M. Burriel, L. Dessemond, J. M. Bassat et al., Electrochemical properties and stability of La2-x PrxNiO4+? (x=0, 0.5, 1 and 2) films for IT-SOFC cathodes " FDFC -2015, 2015.

R. K. Sharma, O. Celikbilek, M. Burriel, L. Dessemond, J. M. Bassat et al., Electrochemical performance and chemical stability of architecturally designed La2-x PrxNiO4+? IT-SOFC cathodes, p.29, 2016.

R. K. Sharma, M. Burriel, L. Dessemond, J. M. Bassat, and E. Djurado, Novel Double- Layer La2NiO4+? Cathodes: Screen Printing vs. Electrostatic Spray Deposition, pp.2015-2029, 2015.

R. K. Sharma, M. Burriel, L. Dessemond, J. M. Bassat, and E. Djurado, Architectural design of IT-SOFC Cathodes, 2015.