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1General Introduction /

Overview of the Thesis

« The only thing that is constant is change. / Change is the only constant. »
- Anonymous (wrongly attributed to Heraclitus)

There are two major challenges facing electric power systems today. The first is
human-induced climate modifications, arguably the root cause for record increases
in worldwide temperatures. It has set the wheels of political establishments all over
the world in motion to create policies that will help contain these record increases.
International accords such as the Kyoto protocol [Nat], the Doha amendment to the
protocol, and the recent the negotiations at the United Nations Conference on Climate
Change [Fra] in Paris have strived to maintain worldwide temperatures to a certain
limit above pre-industrial levels. They aim to achieve this mainly through the reduction
of CO and other greenhouse gases.

The production of electricity through large fossil-fuel based generation is one of the
largest contributors to greenhouse gas emissions, with some studies pointing out that
electricity production (including cogeneration) contributes to % of all greenhouse gas
emissions [ORY+]. This makes it a prime target for the aforementioned efforts, and is
giving rise to a fundamental change in the way electricity is produced. In Europe, policies
like the  directive on promotion of electricity generation from renewable energy
sources [Eur], and more recently // directive [Eur] have been implemented.
The rising shares of Distributed Renewable Energy Sources (DRES) in power systems as
a result of these policies attest to a change, away from bulk and polluting generation
technologies towards dispersed, renewable, and clean generation technologies.

The second challenge comes from new actors and services in deregulated electric
power systems. Traditionally speaking, power systems present a very good case for
natural monopolies. The collective infrastructure, built for public good, was financed by
governments. They invested in large generation facilities, and ensured the transmission
and distribution of this via a power system. However, electricity production is becoming
more and more decentralised, with the rising shares of DRES. The deregulation of the
electricity industry will necessitate a change in the way these systems are built, operated,
and maintained.

In Europe, the European Commission directive of  for deregulation of the
internal electricity market [Eur], among the first of many other directives issued to the
effect of deregulation, energy efficiency, and electricity access, initiated the dismantling
of these monopolies. The new actors created have fostered higher competition and an
increased complexity of the entire power system.


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. problem statement

These changes affect the electric power system across the board – in production,
transmission, and distribution. In terms of production, the rising share of intermittent
DRES will continue to change the power generation mix, and force investors to rethink
investment strategies. In terms of the power transmission and distribution, a new system
equilibrium will have to be found, and system operators will have no choice but to
tackle these changes through a systematic evolution of their planning, operation, and
maintenance practices. Distribution networks and its operators (DSOs) in particular, are
at the front-line of these changes.

Traditionally, electric power flowed from bulk generation, via transmission networks,
to distribution networks and then to end-customers. This allowed DSOs to size their
networks based on a set of rules that considered only the most critical scenarios. This
resulted in networks that required little or no short-term (days to hours before real-
time) decisions, since they were designed to accommodate loads at large. This fit-and-
forget approach will however cease to be effective in a situation where more DRES are
introduced by the day. The critical scenario formulation either provides an oversized
network, resulting in higher DSO expenditures, or networks with technical constraints,
incapable of accommodating DRES. The intermittence of DRES, the main reason behind
this, can also provoke power flows towards the transmission network in certain cases.

Active Distribution Networks (ADN), and Active Network Management (ANM), both
revolving around the concept of flexibility in distribution networks, have been touted
as a solution towards intelligent management of distribution networks [Eura]. By
adopting this solution, DSOs potentially stand to benefit, as they streamline investment
and operational decisions, creating a cost-effective framework of operations. However,
such a change necessitates a large and concerted effort. DSOs will have to evolve and
take up new roles. A specific emphasis should be laid on their capability to contract
and use flexibility, and to manage their networks in the short-term using intelligent
optimisation algorithms (operational planning). This will also necessitate a change in
regulation, without which DSOs will find themselves unable to take up these roles.

Considering a scenario where national regulation does allow DSOs to take up these
new roles, the different types of flexibilities that they will be able to contract and use
will have to be characterised. An unbiased trade-off between flexibilities owned by the
DSO and those offered by external parties will have to be struck. Finally, optimisation
algorithms for operational planning (OP) will have to be developed in order for these
flexibilities to be used effectively. These algorithms have to take into account: () the
differences in modelling with respect to nature (discrete or continuous) of the different
flexibilities, () the temporal aspect of the constraints specific to some these flexibilities,
() the physical features of distribution networks like their low reactance-to-resistance
(X/R) ratio, and () the uncertainty in some of the input parameters to the optimisation.

A lot of research has recently been done in operational planning thanks to advance-
ments in techniques for modelling and operation of power systems. However, most
of this research has drawbacks, including but not limited to the unsuitability of the
research in a practical context and the quality of the mathematical modelling of these
methods which translate to the quality of the solutions obtained among others.

See Chapter , Section .. for more information.
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. contributions of this thesis

The contributions of this thesis towards operational planning of distribution net-
works are presented here. Part of this thesis is a result of the work done in the evolvDSO
European project [evo] and in two working groups on losses and flexibilities respec-
tively. The context and the necessity for these contributions are outlined later in the
thesis, in Chapter .

.. Flexibility – Modelling and Economic Analysis

In the modelling and economic analysis of flexibility in distribution networks, the
contributions of this thesis are as follows:

C The development of technical models of endogenous and exogenous network flex-
ibilities. These exact models accurately / practically capture the behaviour of the
flexibility, conforming to literature or to practically applied DSO methodologies.

C The economic analysis of these flexibilities in the short-term context, with an
emphasis on achieving an unbiased trade-off between indogenous and exogenous
flexibilities in terms of utilisation costs. The derivation of these utilisation costs
for flexibilities for a particular test case, to be utilised in a techno-economic
optimisation.

.. Operational Planning – Framework and Convex Optimisation

In the context of operational planning of distribution networks, this thesis advances
the formulation of operational planning models. The contributions in this field are:

C The reformulation of flexibility models developed via contributions C – C to
achieve exact linearisations. These exact linearisations can then be used in a
convex optimisation problem.

C The development of a novel operational planning (OP) formulation for active
distribution networks using the Second-Order Cone Programming (SOCP) relax-
ation of the Optimal Power Flow (OPF) problem. This formulation integrates the
linear flexibility models from contribution C, and solves the OP problem with
global optimality.

C Tests of the novel OP formulation with networks, for varying levels of DRES
integration, and for different levels of flexibility utilisation.

C The development of a dichotomic search heuristic that recovers a globally optimal
solution to the OP problem in the event of the failure of the SOCP relaxation.
This convergence to the globally optimal solution is proved experimentally.

C A discussion of the use of flexibility in operational planning, and the effects on
the solution characteristics of the problem.

.. Analysis of Uncertainty in Operational Planning

Since most practical optimisation problems contain parameters that are uncertain,
they have to be explicitly accounted for. In the case of the novel OP formulation, forecasts
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for intermittent DRES are the main source of uncertainty. In this context, this thesis
contributes as follows:

C An analysis of different approaches to operational planning under uncertainty for
distribution networks to identify the approaches that offer the best compromise
between five different factors.

C The development of an exact two-stage optimal deterministic operational plan-
ning formulation to counter uncertainties. This formulation optimises the distri-
bution network in the day-ahead, and hour-ahead stages, treating the additional
information on uncertainty in the second stage.

C The development of an exact two-stage optimal stochastic operational planning
formulation to counter uncertainties. This formulation optimises the distribution
network under uncertainty based on the scenario characterisation of uncertainty.

C The development of an exact optimal interval operational planning formulation
to counter uncertainty. This formulation treats uncertainty in the form of bounds
and optimises a deterministic forecast, while ensuring feasibility across the
bounds.

C Tests on the different formulations developed for operational planning under
uncertainty. A comparison and analysis for the performance of the different
formulations for different realisations of uncertainty.

The optimisation algorithm for operational planning is therefore extended to include
different approaches to managing uncertainty in power forecasts in the short-term.
A specific emphasis is provided to decision-making under lack of information with
respect to the uncertainty. Parallels are drawn between uncertainty handling in the
unit commitment problem for transmission networks and the operational planning for
distribution networks. Three different approaches to handling uncertainties are explored
and an analysis of the best way to handle uncertainties in the context of distribution
networks – taking into account the characteristics of flexibility – is performed.

. organisation of this thesis

This thesis is organised in five parts, composed of  chapters (including this general
introduction; plus annexes) in total. Part I of this thesis, consisting of Chapters  and
 deals with the detailed aspects of the evolution of distribution networks and DSOs.
To this effect, Chapter  presents the analysis of the current technical and regulatory
contexts with respect to distribution network operation and the challenges facing them.
The concept of Active Distribution Networks (ADN) is then introduced. The new
potential roles that DSOs will have to take up are elaborated, and a brief introduction
to the various tools that they will need is done. In Chapter  flexibility in distribution
networks is described and characterised. An economic analysis that determines the cost
of use of a broad range of endogenous (DSO-owned) and exogenous flexibilities is then
presented. As mentioned earlier, this analysis strives to achieve an unbiased trade-off
between the different types of flexibilities.

One of the tools defined in Chapter  lays the basis for Part II of this thesis, consisting
of Chapters  and . This part deals with the development and testing of a methodol-
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ogy for short-term technical and economic optimisation of distribution networks. The
problems associated with optimal power flow (OPF) and operational planning (OP)
formulations for distribution networks are first discussed in Chapter . This highlights
the shortcomings of current research in the field, and outlines the requirements of an
ideal operational planning formulation. Subsequently, an exact operational planning
formulation for distribution networks employing the second-order cone programming
(SOCP) relaxation of the optimal power flow and integrating the flexibility models is de-
veloped. This model provides globally optimal solutions to the problem. A contingency
formulation to obtain a global optimum is also developed, to be used when the SOCP
relaxation fails. In Chapter , the exact OP formulation and the contingency formulation
are tested on two test distribution networks, and the results obtained are presented.

In Part III, consisting of Chapters  and , the exact OP formulation is extended to
incorporate decision making under uncertainty. Chapter  deals with an introduction to
uncertainty in short-term operations and discusses the various approaches to handling
and mitigating the effects of uncertainty. In the same chapter, three methods developed
to treat uncertainties in the OP formulation are presented. A framework to compare the
performance of these methods is also developed. Chapter  presents additional results
through tests of these methods. A large number of tests using the comparison framework
show the advantages and drawbacks of each of the formulations.

Part IV consists of the following: () the general conclusions of the work done in
this thesis and perspectives for future work are presented in Chapter , () references
cited in the thesis, and () a brief summary in French. Finally, appendices and additional
information to complement the work done as a part of this thesis are presented in Part V.

. general notes

The following points may be noted by the reader in order avoid any ambiguity when
consulting this thesis:

 We abuse notation in this thesis with respect to the term ‘losses’. Where it is used,
and unless otherwise specified, the term losses referes to the active power (ohmic
/ copper) losses in the network.

 The term endogenous flexibility refers to the flexibilities of Reconfiguration and
On-Load Tap Changers (OLTC). These elements are inherent to the network. The
term exogenous flexibility refers to the other flexibilties that the DSO does not
own (and therefore external to the network).

 The relaxation error of the Second Order Cone Programming (SOCP) problem
is expressed in VA (volt-ampere squared). This precision is made in case the
superscript is mistaken for a footnote.

 Unless otherwise specified, all the equations in the thesis use the nomenclature
presented in Page xvii of this thesis.

a
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2The Evolution from Passive to

Active Distribution Networks

« The measure of intelligence is the ability to change. »
- Albert Einstein

. introduction

.. Context

The basic goal of a power system is to connect electricity production and consumption
in a robust, efficient, and reliable manner. By production, on the one hand, we refer to
the multitude of electric power generation apparatus capable of injecting power into
a power system. On the other hand, by consumption, we refer to the multitude of
apparatus connected to this power system capable of consuming the injected power. The
history of the electrical power system dates back to the late th century, when the first
electrical networks were built. These networks were simple and small in size, with the
production and consumption located near each other. They were usually owned by the
city or municipality, which could allow private companies to operate them.

Fast forward in time, and the power system grew more and more complex. Inventions
like that of the transformer, combined with the growing economies of countries required
the construction of large and centralised power generation, usually running on fossil
fuels, hydro-power, or nuclear material. This power was transmitted over increasingly
longer distances as generation sites and load centres were increasingly further apart from
each other. A large portion of the power systems in developed countries was designed
and (re)constructed after the Second World War, when many economies boomed. The
generation, transmission, and distribution of power were ensured by the state, with
state-owned monopolies undertaking the responsibility of constructing, operating, and
maintaining these large infrastructures.

In France, the evolution of the ownership of power systems was a rather difficult one,
as the nationalisation of the power sector was viewed as a threat [Abd]. However, in
, after the Second World War, a vertically and horizontally integrated company, EDF
(Electricité de France) was created.

The earliest investments by EDF in production from the s to the s were
in large hydroelectric and thermal production units. The development of high-voltage
power networks accompanied these investments. French political policy during the oil
crisis of the s pushed EDF to nuclear power, to ensure the energetic independence
of France. Lately, its investments in renewable energy have increased, due to factors
described further in this section. The evolution of electricity production in France
from different sources of energy over time is illustrated in Fig... Today, the largest
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proportion of electricity generated in France comes from  nuclear reactors in 
different generation sites across the country.
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Figure .: Evolution of Electricity Production in France (Source: World Bank / IEA)

The ‘s saw two landmark changes that would shape the future of European and
in-turn French power systems. These changes were brought about in the context of
climate change and the monopoly of power system operations.

Man-made climate change, brought on by the industrial revolution and the unsus-
tainable exploitation of fossil fuel resources had grown steadily leading up to the ‘s.
The signature of the Kyoto protocol [Nat] in  signalled the beginning of inter-
national cooperation in the fight against climate change. These efforts, including the
recent negotiations at the COP [Fra] in Paris have continued to put pressure on
governments to create policies that would decrease their dependence on fossil fuels, and
in-turn decrease emissions of CO as well as other greenhouse gases.

A large portion of the electricity in the world is generated through polluting sources
of primary energy like fossil fuels. This contributes directly to man-made climate
change. In fact, studies such as reference [ORY+] have shown that electricity generation
(including cogeneration) are the largest contributors to greenhouse gas emissions, with a
share of a quarter of all CO emissions worldwide (see Fig. .).

Electricity Generation (including cogeneration): 25%

Agriculture & Land Use: 24%

Transportation: 14%

Industry: 21%

Other: 16%

Figure .: Worldwide CO Emissions by Sector ()

The efforts to decrease greenhouse gas emissions have therefore influenced power
systems to a great deal. In Fig.., one can see that the share of renewable energies in
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the French production mix have been growing steadily from the turn of the century. The
French case however is peculiar, as the French energy mix is low on greenhouse gas
emissions, largely due to the presence of nuclear and hydroelectric power. Nevertheless,
the reduction of these emissions is one of the many factors that contribute to the share
of renewable energies. In other countries like the USA, efforts to increase the share of
renewable energies are a direct effect of the efforts to reduce these emissions. National
policy in many countries has promoted investments in renewable energy sources through
Feed-in Tariffs (FIT), premiums and tax credits among others. For example, the concept
of FITs was explored as early as  in Denmark, as a part of its third energy plan
(Energi ) [IRE].

FITs were developed later-on in other countries to support small-scale investments
in distributed renewable energy sources (DRES). They allowed for the power produced
by DRES to be sold at a fixed price, borne by an electricity utility. These tariffs are high
enough to render investments in DRES profitable, but low enough to limit the share of
costs that end users of electricity had to pay. This delicate scheme and the actual price
has been the subject of a lot of discussions and laws, with several modifications over
short periods of time in countries like France.

As we will see in Section .. of this chapter, these incentive mechanisms have
kick-started a rapid integration of DRES in power systems. This is the first challenge
that power systems face today.

The second landmark change in European power systems was the adoption of the
European directive //EC [Eur]. This directive paved the way for deregulation in
power systems and the creation of electricity markets. It opened up competition between
actors in the European power sector by mandating the unbundling of the activities of
state-owned electricity companies into generation, transmission, and distribution. The
economy of power systems was now market-based, with several new actors involved in
the generation and trade of electricity (see Section .. for more).

The directive was enacted as law in France in , and progressively, the French
power system was liberalised. Today, the French power system can be considered
nominally liberalised, mainly owing to the lack of competition in the power sector. This
is however changing slowly, with mechanisms like ARENH (Accès régulé à l’électricité
nucléaire historique) being put in place, and should lead to a complete liberalisation of
the French power system in the years to come.

Other European directives like the energy efficiency directive [Eur] have set targets
for reduction in primary energy consumption and renewable energy integration. The
reduction in primary energy consumption in France and Germany between  and
 are shown in Fig. .. The global trend of the consumption in both countries shows
a decrease. It is to be noted that this trend has not been controlled for climatic aspects
that change every year. Both these countries are behind the EU targets in terms of energy
efficiency. Both these countries are behind the EU targets in terms of energy efficiency.

These targets have naturally affected network operators, who have had to work on
integration of DRES and the Quality of Service (QoS) among others. Roll-outs of smart
meters and other communicating devices have helped increase the ‘smartness’ of the
power system, but has also forced new responsibilities on network operators. All this has
contributed to the second challenge that power systems face: the changing environment
in which they function today.
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Figure .: Evolution of Primary Energy Consumption (Source: Eurostat)

Both these changes affect the operators of transmission and distribution networks.
Distribution networks and their operators (DSO) are in particular at the front-lines of
this change. This is because () a majority of the DRES connected to the network is
connected to distribution networks, and () DSOs have historically planned and operated
their networks in a passive manner. Further information on this is presented in this
chapter. What this means that they currently do not have the means to face these complex
challenges.

DSOs will have to evolve in order to meet them. This entails the adoption of new
roles, the utilisation of new services, new interactions, and the use of new and intelligent
tools and methods to plan and operate their networks. The concept of Active Distribution
Networks (ADN) encompasses all these new evolutions in distribution networks. One
of the intelligent tools that the DSOs will need in this context relates to the short-term
optimisation (operational planning) of their networks. This tool relies on new services
and interactions, and is the main focus of this thesis.

In this chapter, serving as an introduction to this thesis, the main focus is on the
new roles, services and interactions in the ADN context that will enable DSOs perform
operational planning on distribution networks. The organisation of this chapter with
respect to these concepts is presented in the next section.

.. Organisation of this Chapter

In this chapter, we first introduce a traditional electric power system and its structure
in Section .. We describe the various parts of this complex system and outline each of
their major functions. Next, the current state of electrical distribution networks in the
French / European context is described in Section ..

This throws light on the responsibilities of the operators of these networks: Transmis-
sion and Distribution System Operators (TSO & DSO). We focus particularly on the case
of DSOs, and introduce the current network planning and operation practices of DSOs.
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The two landmark changes and the associated problems facing distribution networks
– DRES integration and deregulation – are then discussed in Section .. Here, European
and French numbers for the DRES integration are first outlined and illustrated. The
effects of DRES integration on distribution network operation are subsequently described.
The changes brought about by deregulation: the creation of the electricity market,
new actors, and new services is then briefly described. The concept of flexibility is
discussed, and the various sources of flexibility in distribution networks are identified.
The problems and opportunities posed by these changes for DSOs are finally elaborated.

The concept of Active Distribution Networks (ADN) is then described in detail in
Section .. The new responsibilities that DSOs have to undertake in this context are
then outlined, with a specific emphasis on the roles needed to effectively adopt novel
operational planning practices. This naturally leads to the contextualisation of the
contributions of this thesis listed in Chapter . The concluding remarks for the chapter
are then made in Section ..

. generalised structure of a power system

As explained earlier in the chapter, large, centralised generation sources are usually
located away from consumption centres, and this means that the power generated
by these sources has to be transmitted over long distances before being supplied to
consumers. In order to do so, the power systems of the th century were built in a
specific way. A generalised structure of such a power system is illustrated in Fig. .. An
explanation on this structure follows. In the figure, four main network types can be seen.
They are: the transmission network, the sub-transmission network, the MV distribution
network, and the LV distribution network. Each of these networks has its own functions,
and is built and operated using different rules and criteria. We describe these network
types briefly in the sections below.

Transmission Network
(UHV / EHV / HV)

Sub-Transmission
Network (HV)

MV Distribution Network

LV Distribution Network

HV | HV

HV
—–
MV

LV | MV

Normally Open (NO) Line

Figure .: Generalised Structure of a Power System
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.. Transmission and Sub-Transmission Networks

Transmission networks are extra or ultra high-voltage networks that serve to gather
and transport the power generated by the centralised sources of power. The generated
power is transported at high voltages to reduce Ohmic losses. In Europe, transmission
network voltages are  or kV (see Fig. .). The choice of these voltages depends
largely on the distance over which power has to be transported. In countries like
China and India, these networks reach voltages of up to kV or even .MV. Step-up
transformers are therefore used to increase the voltage level of the power generated
by the centralised generators. Certain large industries are also directly connected to
the transmission network. In France, for example,  industries are connected to the
transmission network.

400 kV Lines 225 kV Lines

Figure .: The French Transmission Network in  (Source: RTE / EDF)

Transmission networks are complex, meshed, and interconnected systems. They are
built, operated and maintained by Transmission System Operators (TSO). In Europe,
there is a tight interconnection between the transmission networks in different countries.
This allows the exchange of power between neighbouring countries, and contributes to
better stability. At the European level, the cooperation between TSOs and their activities
is ensured by the association called ENTSO-E (European Network of Transmission
System Operators for Electricity).

Sub-transmission networks act as an interface between the transmission networks
and distribution networks. In some countries, these networks do not exist. Where they
do exist, these networks are high-voltage networks, and can also be used to gather power
generated by smaller centralised generators. In France, these networks are operated at a
voltage of  or kV. In other countries like Japan, these networks work at  or kV.

In the year , the total amount of energy transported by the transmission networks
in  countries whose operators belong to ENTSO-E was around TWh [ENT].

See http://lemag.rte-et-vous.com/dossiers/-entreprises-directement-connectees-au-reseau-rte-des-
enjeux-xxl (in French)
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The French TSO RTE, which had km of transmission and sub-transmission
networks in , transported about TWh [RTE] during this period.

.. Distribution Networks

Distribution Networks are usually medium and low voltage networks that serve to
distribute the energy from (sub-)transmission networks to consumers. In some countries,
some high voltage networks may also be included in this classification, as they come
under the purview of DSOs. The EU Directive //EC [Eurb] defines electricity
distribution as “the transport of electricity on high-voltage, medium-voltage and low-
voltage distribution systems with a view to its delivery to customers.” The electricity from
transmission networks is supplied to distribution networks via primary sub-stations,
where step-down transformers decrease the voltage level of the electrical energy. The
planning, construction, operation, and maintenance of distribution networks are usually
done by Distribution System Operators (DSO).

MV distribution networks function at voltages between  and kV. In France, a
majority of the MV distribution networks are operated at a voltage of kV. Some other
networks are operated at kV, while in rare occasions, networks operating at .kV
(like the network in Grenoble) can also be found. The main functions of MV distribution
networks are to supply the customers directly connected to the network, while also
ensuring that secondary sub-stations, which form the interface between MV and LV
distribution networks, are supplied with energy.

LV distribution networks are the final component in the power system. These are the
networks where loads are predominantly connected. They usually operate at V, with
some other voltage levels like V also employed in practice. Secondary sub-stations
have step-down transformers as well, allowing for this change in voltage.

Distribution networks cover a much larger area than transmission networks, given
the last mile nature of their functions. The line lengths of distribution networks therefore
far exceed those of transmission networks. Based on the data provided by ENTSO-E
[ENT] and Eurelectric [Eurb], the proportion of power line lengths for transmission
and distribution networks is presented in Fig. ..

Among the countries for which data is available, distribution networks constitute
more than % of lines constructed on an average. In France, the largest DSO, Enedis,
responsible for % of the country’s distribution networks, had around .million km
of power lines in operation in . Not all of these lines are necessarily used though, as
networks are built with redundant power lines (which are still live, but open). They can
be operated in a meshed manner, just like transmission networks, but are usually radial,
for simplicity.

In fact, simplicity has been one of the cornerstones of the technological choices of
DSOs in their networks for a very long time. Such choices may be related to the voltage
levels, earthing, cable dimensions and redundancy among others. This is partially
because of the sheer size of these networks, and also because of the traditional role that
these networks played as a liaison between transmission networks and customers. In the
next section, we describe the current practices of most DSOs in planning and operation
of their networks, and the various responsibilities they undertake today.
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Figure .: Comparison of Transmission and Distribution Network Line Lengths by Country (Europe)

. passive distribution networks – the status quo

Historically, most DSOs have planned, constructed, and operated their networks in
a passive manner, with a “networks follow (predicted) demand” approach [EDA+].
In such an approach, the evolution of network demand dictates their actions. Section
.. first outlines the responsibilities that DSOs have to fulfil. The current procedures
adopted by the DSOs for planning and operating these networks are then outlined in
Section ...

.. Responsibilities of the DSO

In order to ensure a safe, reliable, and efficient supply of power to customers, DSOs
must respect certain conditions. They are outlined in this section. It is to be noted that
the strictness of these conditions varies from country to country. In general, developed
economies have stricter conditions imposed on DSOs. In France for example, the law
 of  [Leg] defines these responsibilities. These responsibilities are categorised
into two: connection and access to the network and quality of supply.

... Connection and Access to the Network

DSOs are required by regulation / law to ensure that consumers and producers
of electricity have access to the public distribution network. This access has to be
indiscriminate, within the capacity of the distribution network. In order to provide
this access, DSOs are allowed to charge a fee. This fee can be broadly split into two: a
connection fee and a utilisation fee [AED].

The connection fee is, as the name suggests, charged to the user in order to be
connected to the network. Countries like Denmark charge a hefty connection fee for
large consumers. This fee includes all or part of the cost for network reinforcement





2.3. PASSIVE DISTRIBUTION NETWORKS – THE STATUS QUO

necessitated by the connection request (direct connection costs) and the costs of the
transformers in the network (indirect connection costs). Other countries like Belgium
and Portugal charge users only the direct connection costs to the network.

The utilisation fee is, as the name suggests, charged to the user in order to use the
network. It can be calculated either in terms of the energy injected / consumed, or
on the capacity of the connection. Countries like France have an advanced system for
charging the utilisation fee. This system, called TURPE (Tarif d’Utilisation des Réseaux
Publics d’Electricité or Tariffs for Use of Public Electricity Networks) consists of several
components, with different users charged for different components, based on the voltage
levels and the subscribed energy among others. Countries like Ireland charge this fee
irrespective of these criteria, while other countries like Portugal, Belgium and Germany
do not charge any utilisation fee.

... Quality of Supply

The Quality of Supply (QoS) defines the continuity of supply, the quality of power
supplied, and the customer support provided by the DSOs. National regulation in
countries often mandate strict performance requirements with respect to these criteria.
In Europe, the duration of interruptions across all networks in the power system is
considered low, with durations between  and minutes of outages a year [Eurb].
Indices like SAIDI (System Average Interruption Duration Index) and SAIFI (System
Average Interruption Frequency Index) are used for performance metrics with respect to
the continuity of supply. In France, a hypothetical penalty of e/MWh is often
associated to the énergie non-distribuée or energy not supplied in power system studies.

The quality of power supplied refers to the voltage deviations, the quality of the
power (harmonics, distortions), and the deviations in supply frequency. In Europe,
the voltage deviations allowed for MV distribution networks are fixed at ± % by the
European DSOs in order to be able to restrict voltage deviations to ± % for the LV end-
customer, as fixed by the standard EN  [CEN]. In normal operation, European
operators are required to keep the frequency deviation within ± % of its nominal value
of Hz. Among limits that exist for the different harmonics, depending on the voltage
level, the standard EN  stipulates that the total harmonic distortion of the power
waveform should be below %.

The regulation in more than half of the EU countries promotes adherence to these
performance criteria, by linking DSO revenues to their performance on these criteria
[AED]. Austria and Belgium are examples of countries where QoS is monitored but
not linked to DSO revenues.

.. Distribution Network Planning and Operation

The “networks follow (predicted) demand” approach, also called the “fit and forget”
approach to planning and operation of distribution networks, involves the resolution of
potential problems that may occur in distribution networks at the planning stage. In
this approach, the choice of the construction of new power lines and infrastructure, and
reinforcement of existing power lines is done with the current loads connected to the
network, and the future loads that can be connected to the network in mind.

The definition of these extreme conditions differs from country to country. The
French DSO Enedis considers that its MV distribution networks should function with-
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out violations of the voltage or current limits in the stable-state for two conditions:
() minimum production & maximum consumption, and () maximum production &
minimum consumption. The minimum production is considered to be equal to zero.
The maximum production is attained when all the generators connected to the network
generate power at their rated capacity. The maximum consumption in each feeder is not
equal to the connected load. It is decided every year through the measurement of the
power flows in primary sub-station feeders [ENE].The minimum consumption in each
feeder is defined as minimum the consumption measured in every feeder, or % of
the maximum consumption [Gar] in the feeder. The MV distribution network is then
designed to meet these criteria.

During the operational stage, DSOs then decide on the topological configuration
of the network. This configuration chooses the open and closed lines in the network,
and takes into account the seasonal variations in the load and the power lines under
maintenance among other things. The general structure of a radial MV distribution
network [Coi] is shown in Fig. .. This general structure can evolve depending on the
location, size and function of the network.

Primary Sub-station

To other networks

Secondary Sub-station (Closed)

Secondary Sub-station (Open)

Secondary Sub-station
(Non-Manoeuvrable)

Figure .: Structure of a MV Distribution Network

In the figure, three distinct radial distribution networks (red, blue & green) are
shown. The primary subIn the figure, three distinct radial distribution networks (red,
blue & green) are shown. The primary sub-stations and the secondary sub-stations are
also indicated. The topological configuration of these networks is chosen by opening or
closing the switches present in the manoeuvrable sub-stations (closed & open).

Closer to real-time operations, On-Load Tap Changers (OLTC) are used to regulate
the voltage in distribution network nodes. The operating principle of OLTCs consists of
changing taps that modify the transformation ratio of the power transformer they are a
part of. This changes the voltage at the secondary of the transformer, and thus its output
voltage. This operation depends on a set-point and is chosen based on one of the two
following strategies. In the first strategy, the set-point is chosen to be the voltage at the
primary of the transformer with the OLTC. The second, preferred strategy consists of
comparing the primary voltage to U −Z · I . Here, U and I are measured at the output
of the transformer, and Z is the equivalent impedance of the network as seen from the
secondary. The tap adjustment then raises or lowers the voltage of the secondary, thereby
influencing all the downstream voltages. Note that in both the strategies, the tap changes
are done without any visibility of the actual network conditions.

To illustrate how the OLTC works to solve voltage issues in the network, we present
a simple example in Fig. .. In the figure, we consider a network with one OLTC trans-
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former and two feeders. The node O of the network is the secondary of the transformer.
The graph on the right shows node voltages as a function of the distance ( – ) from
node O.

O 1 2 3

O Vmin

Vmax

Voltage before OLTC Operation

Voltage after OLTC Operation

Figure .: OLTC Operation

In Fig. ., the voltage profile before the OLTC operation is shown in orange. There
is an under-voltage violation in one of the nodes. Based on the set-point calculated in
either of the strategies mentioned above, the OLTC usually acts to increase the secondary
voltage. After this operation, the new voltage profile in the network (shown in green)
indicates that there are no voltage violations. Other traditional operational actions like
capacitor banks for reactive power consumption and injection are also used by many
DSOs in their networks.

Even with the automatic voltage correction in the OLTCs, this mode of planning and
operating distribution networks can be termed ‘passive’. This is because the network
problems in both planning and operation of the distribution network are solved as they
occur, in a reactive manner. With potentially oversized networks in planning, many
DSOs have been able to operate their networks reactively with seasonal reconfiguration
and real-time OLTC operation, given that the network voltages have always decreased
downstream. However, this may have to change very soon. In the next section, the
predicament that DSOs and distribution networks find themselves in is elaborated.

. dres & deregulation – the predicament

The current practices of many DSOs in planning and especially operation of their
networks works in a traditional, regulated set-up. However, as mentioned in Chapter ,
there are two major issues facing distribution networks. These issues adversely affect
the current operational practices of these DSOs. In this section, these two problems –
integration of intermittent DRES and deregulation – are described. The effects of the
two problems on the DSO practices are also explained.

.. The Rising Shares of Intermittent DRES

The EU // targets [Eur] have contributed to a notable increase in the share
of intermittent DRES (PV and wind power) in the energy mix of the European power
system. As a result, around GW of wind power and GW of PV power had been
installed in power systems in the EU- countries at the end of . To illustrate the
scenario of intermittent DRES at the European level, we first present a panorama of
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PV installations is illustrated in Fig. . as installed capacities and energy produced in
percentage of the annual consumption.

≥ 10GW 5–10GW 1–5GW
< 1GW No Data Available

(a) Installed Capacity

≥ 5% 1 to 5% < 1%
No Data Available

(b) Production as % of Consumption

Figure .: Solar Photovoltaic Power in Europe ()

The countries with the highest installed capacities of PV systems were Germany
(.GW) and Italy (.GW). The installed capacities of Germany, Italy, Spain and
France represented % of the total installed PV in Europe. During the period between
July  and June , solar PV power supplied .% of the total European electricity
consumption, with a maximum of .% attained in Italy. A similar panorama of wind
power installations in terms of installed capacities and energy produced in percentage
of annual consumption is illustrated in Fig. ..

≥ 10GW 5–10GW 1–5GW < 1GW

(a) Installed Capacity

≥ 15% 5 to 15% 3 to 5% < 3%

(b) Production as % of Consumption

Figure .: Wind Power in Europe ()
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The countries with the highest installed capacities of wind power were Germany
(.GW) and Spain (GW). In all, .% of European energy consumption was
procured from wind power, with Denmark attaining a high score of .%. This
information was sourced from ENTSO-E, Eurostat, and from references [SER] and
[SER]. As for the French case, at the end of , the country was th at the European
level in terms of the installed capacity of intermittent DRES, with .GW and .GW
of PV and wind power respectively.

Solar PV installations have grown steadily in France over the past few years, as
illustrated by Fig. .. The figure shows the yearly installations of PV DRES connected
to transmission and distribution networks, and the total installed power in the country
at the end of the year. The average yearly rate of growth between  and  was
a whopping .%. PV installations grew at a rapid pace between  and ,
primarily owing to the attractive Feed-in Tariffs (FIT). Since the FIT was replaced with
tender-based projects, PV installations have grown at about .% every year.
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Figure .: Installed Capacity in France - – PV Power

Wind power installations have also grown steadily in the period between  and
, as illustrated in Fig. .. This figure shows the yearly installations of wind DRES
connected to transmission and distribution networks, and the total installed power in
the country at the end of the year. New installed power in France grew at an average of
.% between  and .
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Figure .: Installed Capacity in France - – Wind Power

One can infer an important fact from the figures. A large share of the new installa-
tions of both PV and wind DRES were connected to distribution networks during this

Data available for networks managed by Enedis, serving % of the territory.
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period. In fact, among the .GW of installed PV power, only MW (or .%) is
connected to the transmission network. The rest is connected to the various distribution
networks in France, and to the island network in Corsica. It is a similar story with wind
power, where only MW (or .%) of the installed wind power is connected to the
transmission network. This means that distribution networks are at the forefront of this
integration of DRES. Any ill-effects of a massive integration of DRES will therefore be
directly felt by distribution networks.

.. Effects on Distribution Network Operation

With a large integration of DRES, distribution networks, which were planned and
are operated in a passive manner, will face several problems. Some of these problems are
not immediately apparent, as the initial integration of DRES tends to improve certain
network conditions. The effects of this integration, and in essence, the problems they
pose to distribution networks, are presented here.

... Effect No.  – OLTC Operation

The operation of OLTCs with and without compounding can be adversely affected by
the integration of intermittent DRES. We recall that the automatic voltage regulation
of OLTCs is done based on the measurement of the voltage at its secondary (without
compounding) or based on the voltage U − Z · I (with compounding). With DRES
integration, the taps chosen automatically may provoke voltage violations in the network.
This is illustrated with the case below.

Let us take the example of the OLTC voltage control achieved in Fig... Now, we
add a DRES to the network, as shown in Fig. .. The power injection from the DRES
causes an increase in voltage at the node where it is connected. We recall that the
operating principle for OLTCs considers that the voltages in the network decrease as we
move further away from the sub-station. This cannot account for an increase in voltage
downstream.

O 1 2 3

O

DRES

Vmin

Vmax

Voltage before OLTC Operation

Voltage after OLTC Operation

~

Figure .: OLTC Operation with DRES

In this case, if the OLTC were to operate and choose a tap setting that increases the
voltage, the under-voltage issue would be solved. However, the node with the DRES
would exhibit an over-voltage violation, as shown in the voltage profile after the OLTC
operation. In such a case, the OLTC is unable to maintain network voltages within the
specified limits. This means that the principles of OLTC operation must be rethought,
with a need for additional mechanisms for voltage regulation.
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... Effect No.  – Reverse Power Flows

The second effect of a high integration of DRES is reverse power flows. In MV
distribution network, when production exceeds consumption, power flows from these
networks to the transmission network. This phenomenon fundamentally affects the
design criteria of distribution networks. In the case of protection for example, unidirec-
tional trip relays will no longer suffice. This will necessitate additional investments in
these networks. This will also require extensive system-wide operational changes and
the implementation of additional control measures [SWE].

... Effect No.  – Losses

DRES Integration Rate (%)

L
os
se
s

Figure .: Losses with DRES

The third effect of a high integration
of DRES is the change in active power
losses. Depending on the location and the
amount of power generated by the DRES
connected to a distribution network, the
active power losses may either increase
or decrease. When DRES generation is
close to consumption, the power gener-
ated transits through smaller distances.
This decreases the losses in the network.
Conversely, when the DRES is connected
further away, losses increase. Losses also
increase during the night when the de-
mand is low and high power is generated
from wind DRES generators. Generally,
the trend is for the losses to decrease initially with low DRES integration, and then
increase at higher integration rates, as illustrated in Fig. ..

National regulation in many European countries promotes energy efficiency, and in
countries like France obliges DSOs to take responsibility for distribution network losses
[AED]. This means that DSOs in these countries must buy electricity in the market to
cover their losses, and usually negotiate long-term contracts to this effect. An increase
in losses adversely affects the DSOs and their energy efficiency. This will force DSOs to
find other ways to decrease losses, either in planning or during operation.

.. Deregulation and The Creation of New Actors & Services

The European directive //EC [Eur] mandated the liberalisation of the energy
sector and led to the creation of an internal European energy market. Competition
between different actors in the electricity sector was subsequently encouraged, and the
unbundling of production, transmission and distribution companies ensued. Today, this
liberalisation has created several new avenues for actors – traditional and new – in the
electricity value chain. Electricity markets, where electricity is traded from a long time
to a few minutes before operation of electricity networks, are playing a vital role in this
transformation. These markets and their actors are outlined in this section.

... Electricity Markets

An electricity market, like any other market, is a place where electricity (commodity)
is traded. This trade can take different forms, and can be done for different periods of
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time. An overview of the various electricity markets with the associated time-frames is
presented in Fig. ..

36h 12h 15min1h~y

Futures / Forward
Market Day-Ahead Market Intra-Day / Hour-Ahead

Market
Real-Time
Market

Real-Time

Figure .: Overview of Electricity Market Time-Frames

The futures / forward market is where electricity is traded between several years
to several days in advance. In this market, long-term electricity supply contracts are
negotiated. The main reason for trading electricity in these markets is to hedge against
the risk of price fluctuations. The prices in these markets tend to fluctuate less.

The day-ahead markets are where electricity is traded from  hours to  hours
before real-time. In these markets, electricity is traded in blocks of half or one hour.
The pricing in this market works on the Marginal Clearing Price (MCP) system [Nou]
where the highest price selected based on a merit order of supply contracts is paid to all
selected supply offers. The largest day-ahead markets in Europe are NordPool and EPEX
Spot.

The hour-ahead / intra-day market serves to adjust the power flows up to minutes
before the actual real-time, based on updated load and DRES forecasts. The pricing in
this market is also decided based on the MCP, and generally tends to be higher than
that of the day-ahead market. The day-ahead market and the hour-ahead market are
sometimes referred to as spot markets.

The balancing or adjustment market (real-time) functions a bit differently from the
rest of the markets. The main motivation of this market is to provide balancing and
ancillary services to ensure system reliability.

... New Actors in the Deregulated Environment

Before deregulation, only two major actors were present in the electricity value
chain. The first one was the electricity company. This company was usually state-
owned and constituted a monopoly. Its responsibility was to produce, transport, and
distribute electricity. The other actor was the consumer who purchased electricity from
the electricity company for consumption.

With deregulation, one of the first entities to be subject to unbundling was the
electricity company. Unbundling refers to the separation of the activities of a company.
This meant that in place of the electricity company, three actors were created: the
electricity supplier, the transmission system operator (TSO), and the distribution system
operator (DSO). This unbundling has been achieved to varying degrees in the countries
in Europe. Belgium and Denmark have achieved complete unbundling of these activities,
whereas other countries like France are still bundled in terms of the ownership. The
French government has the controlling stake in the largest electricity supplier – EDF,
the TSO – RTE, and the largest DSO – Enedis, and other DSOs like ESR (Strasbourg). A
brief description of these actors along with the other new actors follows.
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Grid users: Electricity suppliers and consumers are together called grid users, as they
access the power system to inject or consume electricity. An electricity supplier, also
called producer, is obliged to contribute to the voltage and reactive power control of
the network they inject power into under certain conditions. A consumer is either a
wholesaler or final customer of electricity. Wholesalers buy large blocks of electricity
in markets to sell them to final customers. The difference in pricing constitutes their
business model. France had more than  suppliers representing % of the national
electricity generation at the end of . The Netherlands and Italy had around 
suppliers, while Denmark topped the list with around  suppliers of electricity.

System Operators – TSO & DSO: System operators are responsible for the planning,
design, construction, operation, and maintenance of power systems. As explained
in Section ., the TSO is responsible for the transmission network, while the DSO
is responsible for the distribution network. France has  TSO and  DSOs, while
Germany has  TSOs and  DSOs.

Regulator: TSOs and DSOs are still regulated entities in the deregulated environment,
due to the geographic nature of their activities. They cannot discriminate between
different suppliers and must act in an unbiased manner during electricity trades in the
market. The responsibility of ensuring that this discrimination does not occur lies in the
hands of Regulators, which are independent public authorities.

Aggregator: An aggregator or flexibility operator is a new actor that aggregates and
offers flexibility (see Section ...) in electricity markets or via bilateral contracts to
system operators. The aggregator contracts flexibility from consumers and producers
for a price, and sells it in the market for a higher price. Their business model lies in the
difference in pricing.

Balancing Responsible Party (BRP): BRPs are actors who have a portfolio of generation
and consumption within a physical perimeter. Their responsibility is to guarantee
financial settlements for all imbalances recorded between injections and extractions
within this perimeter to the System Operator. This is primarily done because the
electricity supplied and consumed in a power system should be the balanced at all
times for its proper functioning. Suppliers can either take this responsibility themselves,
becoming BRPs, or contract a third-party to ensure this role.

... Flexibility – A New Service

A service can be defined as a business transaction between two or more parties to
achieve a particular goal. Aggregators, one of the new actors in a deregulated environ-
ment, offer flexibility in markets. This flexibility is a new service in the deregulated
environment. Its goal is to help system operators manage constraint violations in their
networks. But what is a flexibility, or how can one define flexibility? The answer to this
question may come from a largely agreed-upon definition in reference [Eurb], where
flexibility is defined as follows:

Definition .. Flexibility is the modification of generation injection and/or consumption
patterns in reaction to an external signal (price signal or activation) in order to provide a
service within the energy system.

However, this definition may be restrictive in terms of what can or cannot be con-
sidered flexibility. This is because it restricts flexibility to generation and consumption
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in the network. In the context of this thesis we broaden the scope of flexibilities. We
therefore redefine flexibility as follows:

Definition .. Flexibility is the modification of the state of an element in the network in
reaction to an activation signal in order to improve network conditions.

The justification for this new definition of flexibility is simple. We would like to
call any modification to the status of distribution networks during operation as brought
about by flexibility. This allows us to include OLTCs and reconfiguration, two traditional
network operations, as a part of flexibility. In a competitive, deregulated environment,
the DSO’s aim is to be cost-effective in the utilisation of flexibility. Endogenous flexi-
bilities like OLTCs and reconfiguration cannot be considered as free flexibilities, even
though their utilisation entails no actual costs. The investements done by DSOs on these
flexibilities have to be taken into consideration in this operation, and a utilisation cost
must be computed. Their integration under the umbrella of flexibility allows the DSO to
be cost-effective in their utilisation, as an unbiased comparison of the cost incurred to
use each of these flexibilities can be facilitated (see Chapter ). Based on this definition, a
non-exhaustive list of different types of flexibilities in distribution networks is presented
in Table ..

Table .: List of Flexibilities in Distribution Networks

Flexibility Acts on

DRES Curtailment Active Power Injection
DRES Q-Compensation Reactive Power Consumption / Injection

Load Modulation Active Power Consumption
Batteries Active Power Consumption / Injection

OLTC Tap Changer in Sub-station Transformers
Reconfiguration Topology of Power Lines

We briefly describe the flexibilities listed in Table . below. Chapter  of this thesis
revolves around this concept of flexibility and its cost-effective use in ADN. It also
describes their technical and economic aspects in detail.

DRES Curtailment refers to the reduction in the active power output of DRES for
a particular period of time. Some researchers also prefer to call it dispatch-down
of DRES generation. At the outset, this flexibility may seem detrimental to the very
concept of integration of DRES, and is a widely debated topic. However, in certain
situations, research has shown that this is beneficial to the cost-efficient operation of
networks [KJS]. When network constraints are violated, this curtailment is shown to
be acceptable.

DRES Reactive Power Compensation refers to the injection or consumption of reactive
power in the network through the power electronic interface equipment. Reactive power
compensation, also called Q-compensation is already widely used by some DSOs today to
improve network conditions, especially voltages. Some DSOs like Enedis already require
DRES connected to MV distribution networks to provide between -% and +% of
the active power injected as reactive power compensation [ENE]. In some cases, a
reactive power compensation of up to -% may also be demanded.

Load Modulation or demand-side Flexibility refers to the modification of consumption
in networks. Unlike generation-side flexibility, the physics of demand-side flexibility
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sometimes requires the restoration of the energy decreased. For example, if there is a
reduction in the consumption of industrial processes, this needs to be restored, as these
processes need a fixed amount of energy. Demand-side flexibility is therefore a reduction
or a shift in the demand.

Batteries and other storage devices can be charged or discharged for a change in
active power in the network. They work by storing and releasing energy through
electrochemical reactions. Batteries have a rated capacity that cannot be surpassed and
other restrictions on the charging and discharging rates that have to be met in order to
use them as flexibility.

OLTCs, as already explained earlier in this chapter, work by changing the transforma-
tion ratio of the power transformer, and can be used to regulate the voltage downstream
in the distribution network. When used as a flexibility, the way in which the taps are
changed will have to be rethought. The drawback of automatic tap changes has been
illustrated in Section ... Taps have to be chosen during the operational planning to
ensure coordinated control and to overcome the drawbacks of automatic tap changes.

Reconfiguration, as already explained earlier in this chapter, refers to the topology of
a radial distribution network. It takes advantage of the redundant power lines in the
network and modifies the paths through which the power flows. While reconfiguring the
network, one has to ensure that there is no islanding. One should also ensure that there
are no loops in the network, as such loops would provoke problems with protection
equipment.

... DSOs in a Deregulated Environment

Deregulation poses problems as well as opportunities for DSOs. To ensure the
proper functioning of a distribution network in a deregulated environment, DSOs
have to interact directly or indirectly with all the actors in electricity value chain. These
interactions will not just be limited to electricity flows, but also information and financial
flows. To effectively interact with these new actors, DSOs will have to undertake the
following tasks.

DSOs will first have to be capable of observing and controlling their networks.
Investments in modernising distribution networks and their operation will therefore be
necessary. The three major investment areas as identified by European DSOs are net-
work automation and communication, smart metering, and demand-side management
[Eura]. Communication devices and smart meters will help DSOs better understand
the state of their network, and forecast production & consumption. Automation devices
will help them control the state of their network based on these forecasts. Demand-side
management and other flexibilities will help them achieve better control over congestions
and voltage problems in their networks.

When DSOs can observe and control their networks, they will have to perform certain
roles in order to interact with the other actors. As a part of these roles, they will have to
obtain and offer certain services. Services that they can avail of, like that of flexibility,
cannot be used as such. Since DSOs would have to spend money to avail of flexibility,

A power system is said to be observable if its state variables (voltages, currents, and angles) can be
measured, or uniquely estimated based on the available measurements.
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decisions regarding its use must be streamlined. The cost of flexibility must first be
evaluated, and it must then be used in an optimised manner.

In a deregulated environment, DSOs will therefore have to evolve, as these interac-
tions will affect the way they build, operate, and maintain their networks. The new roles
and services of DSOs in such an environment, along with the changes in operational
practices necessitated by the integration of DRES are discussed in the next section on
Active Distribution Networks.

. active distribution networks – the solution?

The problems posed by the integration of intermittent DRES and the new respon-
sibilities that DSOs have to take up in a deregulated environment underline the need
to rethink the planning and operation of distribution networks. Active Distribution
Networks (ADN) and the associated Active Network Management (ANM) are touted to
be a means to solve these issues for DSOs. But what is an active distribution network,
and how is it different from distribution networks today? In reference [CCS+], active
distribution networks are defined as follows:

Definition .. Active distribution networks are networks that have systems in place to
control a combination of distributed energy resources (DERs), defined as generators, loads and
storage. Distribution system operators (DSOs) have the possibility of managing the electricity
flows using a flexible network topology. DERs take some degree of responsibility for system
support, which will depend on a suitable regulatory environment and connection agreement.

This definition focuses solely on the operation of distribution networks. In general,
ADN is an umbrella term that encompasses all intelligent management of distribution
networks, be it in planning, operation, or maintenance. The approach to managing
ADNs is Active Network Management (ANM). In this approach, the DSO performs
coordinated and optimised actions across different time-frames and domains [Eura].
Time-frames range from as early as several years before real-time operation of their
networks, to the real-time operation and beyond. The domains that DSOs will work with
in active distribution networks as identified in [EDA+] are listed in Table ..

Table .: Domains in Active Distribution Networks

Domain Description

NP Network Planning & Connection
OP Operational Planning

O&M Operation & Maintenance
TDC TSO-DSO Cooperation
MKT Market

In the network planning domain (NP), DSOs will to take into account the totality of
DRES connection requests instead of allowing access on a first-come first-served basis.
A coordinated grid connection request process like the case of “evacuation boards” in
Spain could be adopted. DSOs would also coordinate with TSOs and ensure that the
planned network integration of DRES does not saturate transmission networks upstream.
Network reinforcement decisions from DSOs would be coupled with flexibility in order
to intelligently invest in planning and avoid over-sizing of their networks for worst-case
network conditions.
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In the operational planning domain (OP), DSOs would be able to create schedules
for a coordinated control of their networks. As a part of these schedules, flexibilities that
are present in the network and those that have been contracted or bought on the market
could be activated, and be used to solve network constraint violations. These schedules
would be created in an optimised manner, with an objective to decrease expenditures.

In the operation & maintenance domain (O&M), DSOs would be able to optimise
their asset management and renewal processes, and take into account the operational
requirements while creating schedules for these processes. In the TSO-DSO cooperation
domain (TDC), DSOs would be able to communicate and manage TSO requests for
flexibility activation, and intimate the changes in their own networks to the TSOs. In the
market domain (MKT), DSOs would be able to first operate a market where flexibilities
can be traded for their distribution networks. Such markets could be coupled with
electricity markets for better access.

In all these domains, DSOs would work to offer services to new actors in the deregu-
lated environment. These services and the new roles that DSOs will have to take up in
order to offer them are discussed below.

.. DSO Services & Roles

The interactions between DSOs and other actors in the deregulated environment are
done through services. Fig. . shows the various services that DSOs can offer in the
context of ADN across time-frames and domains [EDA+].
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Figure .: Services Provided by the DSO in Active Distribution Networks (Source: evolvDSO)

Three services are identified in the NP domain, all performed during the long-
term planning time-frame. The two services in the OP domain are performed in the
operational planning time-frame. The service in the TDC domain is performed across
all time-frames. Two of the three services in the MKT domain are performed across all
time-frames as well. The other service is performed in the ex-post time frame (after
real-time). All these services are linked to responsibilities that DSOs must shoulder.

These responsibilities, called roles, and are illustrated in Fig... Some of these
roles are already being performed by DSOs and are shown in the figure as low innovation
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or extended roles. A majority of these roles are being studied by DSOs today and are
shown as medium innovation or evolving roles. Other roles are completely new to DSOs
and are shown as high innovation or new roles.

Contract and activate flexibilities at
different time-frames

Reinforce TSO-DSO
cooperation

Facilitate and elable
electricity markets

Optimise long-term and operational
network planning

Collect, store, and provide data (from distribution
network components, contracts, and smart meters)

Roll-out, maintain, and decommission
smart metering infrastructure

Provide regulated services based on
data management and provision

Distribution Constraints Market Offier (DCMO)

Neutral Market Facilitator (NMF)

Contributor to System Security (CSS)

Distribution System Optimiser (DSOP)

Data Manager (DM)

Smart Meter Operator (SMO)

Customer Relationship Manger (CRM)

Other Third Parties Relationship Manager (TRM)

High Innovation
(New Role)

Medium Innovation
(Evolving Role)

Low Innovation
(Existing Role)

Figure .: DSO Roles in Active Distribution Networks (Source: evolvDSO)

In the context of this thesis, the service we are particularly interested in is the
optimisation of network operations using operational planning schedules. A part of the
work leading to this thesis was applied to the development of a preliminary solution for
operational planning of distribution networks in the evolvDSO project (see Appendix
A). This work relied on this service, and the schedules created as a part of it enable the
DSO to solve network constraint violations through the use of flexibility.

The DSO interacts with aggregators, the grid users, and the TSO as a part of this
service. The main role that the DSOs need to perform in order to effectively optimise
their networks in operational planning is the Distribution System Optimiser (DSOP)
role. In this role, the DSO is tasked with improving the development, operation, and
maintenance of distribution networks by managing network constraint violations in a
cost-efficient and non-discriminatory manner.

One of the core responsibilities of DSOs is to ensure the safe operation of distribution
networks. In a changing environment, the adoption of this role is rather logical, as it
would permit DSOs to optimally use resources such as flexibilities in order to safely
operate distribution networks. The adoption of such a role would not be a leap forward
in terms of DSO responsibilities, but an evolution that would allow them to continue
undertaking this core responsibility in this changing environment [Eura], [RPAS+].

The other roles that the DSO would have to perform as a part of this service are those
of the Distribution Constraints Market Operator (DCMO) and the Data Manager (DM).
In the DCMO role, the DSO would be able to select, contract and activate flexibilities
in a dedicated market. In the DM role, the DSO would be able to collect, store, and
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analyse data pertaining to the distribution network and the components connected to it,
like the state of the network elements, the generation, and the consumption. This role
allows DSOs the improved observability of their networks that is necessary in ADN. A
conceptual model of the interactions and roles in this service is presented in Fig. ..

Distribution System Operator (DSO)

Roles

DSOP DCMO DM

Grid Users

TSO

Aggregators

Internal Interaction Electricity Flow Financial Flow Information Flow

Figure .: Conceptual Model of Roles and Interactions in the Operational Planning Service

The interactions in the figure are explained as follows. Four main types of inter-
actions constitute the service. Internal interactions are those that concern the DSO
and its capacity to perform the three main roles discussed previously in this section.
Electricity flows exist between the DSO and grid users, as electricity is distributed to
them via distribution networks. They also exist between the TSO and DSO. Information
is exchanged by the DSO with the TSO (regarding network status among other) and
aggregators (for flexibility use), while financial flows (flow of cash) exist between the
DSO and Grid users (who pay for electricity, in the case where the DSO is a retailer) and
aggregators (for flexibility use).

In practice, this service translates to a techno-economic short-term optimisation
of flexibilities in the distribution network, to maintain network conditions within the
prescribed limits. In the next section, the physical implementation of the service –
operational planning in active distribution networks – is described.

.. Operational Planning in Active Distribution Networks

Operational Planning (OP) involves the creation of short-term schedules for distri-
bution networks. These schedules are usually made for one day, on a day-ahead basis.
This is natural, as a day represents an elementary cycle of time that repeats itself. Opera-
tional planning can also be done for a few days or a week at a time. In these schedules,
set-points for the different flexibilities that the DSO is able to use are provided. Their
use solves constraint violations in these networks.

As discussed in the previous section, three DSO roles intervene in order to make the
operational planning process possible. These roles are the DCMO, the DM and the DSOP.
A typical framework for operational planning is illustrated in Fig. ..

In the Fig.., the market interface, and the flexibility block, shown in blue have
the following functions. The exogenous flexibilities available on the market & through
bilateral contracts, and those present endogenously (OLTC, reconfiguration and battery
systems) are evaluated here. The evaluation has to be done in an unbiased manner, as
the choice of using the flexibility has to be made without any preferential treatment.
This evaluation and interface is the responsibility of the DCMO role.





CHAPTER 2. THE EVOLUTION FROM PASSIVE TO ACTIVE DISTRIBUTION NETWORKS

Load & DRES
Forecasts

Grid Data

Original Network Conditions

Short-Term Techno-Economic Optimisation (Operational Planning)

M
ar
ke

t
In
te
rf
ac
e

Costs

External
Flex.

Internal
Flex.

Flexibility

Set-Point
Information

Selected
Flexibilities

Simulated
Output

Conditions

Inputs Outputs Role:DCMO Role:DM Role:DSOP

Figure .: Typical Framework for Operational Planning in ADN

The forecasts for loads and DRES connected to the network, as well as the details of
the network (Grid Data) are the responsibility of the DM role. The forecasts for loads can
be generated based on the data from smart-meters. This data allows for the simulation
of the conditions in the network, and allows the DSO to identify the time and location of
network constraint violations.

The DSO, in the DSOP role, is then able to perform an optimal selection of flexibilities
through the Short-Term Techno-Economic Optimisation. This optimisation should take
into account the following points:

 The cost of flexibility use must be minimised. We recall that the DSOP role is
to be performed in a cost-effective manner. This means that the objective of the
techno-economic optimisation should be to minimise costs.

 The losses in the network (or the expenditures on losses) have to be minimised as
well. This is necessary to mitigate the increase in losses due to DRES integration
and its adverse effects on DSO revenues and energy efficiency targets.

 The specificities of each of the flexibilities have to be accurately modelled in
the optimisation. Some flexibilities like load modulation require energy restora-
tion, while other flexibilities like OLTC are intricate in nature. The accuracy of
modelling these flexibilities directly affects the solution to the optimisation, and
therefore the DSO expenditures.

Finally, the output of the operational planning, shown in green, allows for the
information of the selected flexibilities to be displayed and communicated to the market
interface and for the simulation of the new network conditions. This can be directly
interfaced to DSO control or operation centres to control the selected flexibilities.
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In the next section, the contributions of this thesis are presented in the context of
DRES integration in a deregulated environment. The need for these contributions and
the improvements they bring for DSOs over the current scenario in are also outlined.

.. Contributions of the Thesis in Context

This thesis consists of  contributions numbered from C-, and presented in
Chapter . These contributions are divided into three major themes: the modelling
and economics of flexibility, the development of a convex optimisation formulation
for operational planning of distribution networks, and the analysis of uncertainty in
operational planning of distribution networks.

Contribution C of this thesis consists of analysing the technical characteristics of the
flexibility that DSOs can use in operational planning. Through this contribution, a first
step is made towards accurately modelling the technical characteristics of flexibilities.
Where not possible, these models are made based on practically applied DSO methodolo-
gies. This contribution is necessary as some of the flexibilities have underlying physical
constraints that have to be captured. We recall the example of load modulation with
energy restoration.

Through contribution C, economic models of these flexibilities are formulated for
short-term operational planning. The necessity of this economic modelling stems from
the need for DSOs to manage their expenditures and be cost-effective. An unbiased trade-
off for flexibilities is particularly necessary in this context, and to avoid any preferential
treatment afforded to a flexibility. This contributes to the overall economic optimality of
the flexibility choices made by the DSO.

For example, OLTCs and reconfiguration switches are network assets owned by
DSOs. The investment on these assets are considered as sunk costs in economics. In
such a scenario, the utilisation of these assets may entail lower costs for DSOs than
that for externally procured flexibilities. This may lead to overuse of these flexibilities,
and higher DSO expenditures. In order to avoid this, the economic modelling of these
flexibilities should integrate the investment cost as well.

Contributions C to C are towards the development of a convex optimisation for-
mulation for operational planning. In operational planning, DSOs aim to minimise
expenditures on flexibility. This means that any optimisation actions to choose these
flexibilities must provide a choice of flexibilities that entail the least possible expen-
ditures. Any simplifications in the underlying optimisation model may increase these
expenditures, and decrease the cost-effectiveness of the DSOs in the long-term. The
hindrance to this optimality comes from the non-linear and non-convex nature of the
models for distribution networks and flexibilities. Solutions to such models cannot be
guaranteed to be globally optimal, and may therefore not be the best in terms of DSO
expenditures.

Through these contributions, the flexibilities and the network model are first convex-
ified, and a formulation capable of providing a globally optimal choice of flexibilities
is then developed. Tests on different distribution networks are then conducted with
this formulation to show its effectiveness. A discussion on the effective use of these
flexibilities is also presented based on the results obtained.
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The optimality, or even the feasibility of the solutions provided by the convex for-
mulation depends on the accuracy of the input parameters. In practice, parameters like
DRES forecasts tend to change over time. While such forecasts are more accurate for
short-term operational planning than for other long-term studies, their variability may
decrease the quality of this formulation, or even render it infeasible.

In order to avoid this problem with solution quality and feasibility, the formula-
tion developed and tested in contributions C to C has to take this variability into
account. This is done through contributions C to C. Through these contributions,
the uncertainty in DRES is first analysed, and three different formulations that integrate
uncertainty are developed, tested, and compared.

. conclusions

In this chapter, the generalised structure of power systems was first presented. This
structure outlined the four major parts in power systems: transmission networks, sub-
transmission networks, MV distribution networks, and LV distribution networks. Each
of these parts and its functions were briefly described.

Next, the status quo in distribution networks was presented. The core responsibilities
of DSOs were first discussed. The current practices of DSOs with regards to planning
and operating their networks were then outlined. These practices are prevalent in what
can be called Passive Distribution Networks, where DSOs oversize networks in planning
and then perform minimal and reactive network operations to handle network constraint
violations.

The two major problems that face passive distribution networks were then presented.
The first problem, the massive integration of DRES and its effects on distribution net-
works, was first discussed. The rising shares of DRES in European countries including
France were illustrated with the latest publicly available data. The three adverse effects
of this DRES integration on distribution networks – on OLTC operation, on reverse
power flows, and on losses – were then discussed.

The second problem, deregulation and the creation of new actors and services, was
then outlined. The new actors created due to deregulation of power systems were
introduced. Flexibility as a service in the deregulated environment was also briefly
described. An introduction on the different types of flexibilities present in distribution
networks was done as a part of this description. The need for DSOs to evolve in light of
the new threats and opportunities posed by deregulation and related political decisions
was stressed upon.

These two problems underlined the need to rethink the current DSO practices. The
concept of Active Distribution Networks (ADN) was presented as a solution to these
problems. As a part of ADNs, DSOs would take up new responsibilities, called roles, and
offer new services, in order to interact with all the actors in a deregulated environment.

One of the services related to operational planning of distribution networks, the main
theme of this thesis, was then elaborated. The interactions and roles that this service
necessitated were then described. The practical implementation of this service was then
elaborated, and this lead to the contextualisation of the contributions of this thesis. This
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contextualisation explained the necessity and the role of each of the contributions with
respect to the information presented in this chapter.

In Chapter  of this thesis, the concept of flexibility in operational planning is
discussed. The technical and short-term economic models of the flexibilities identified
in this chapter are developed, and the utilisation costs of these flexibilities for a test case
are calculated from these models.

a
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3Flexibility in Operational

Planning

« Develop flexibility and you will be firm; cultivate yielding and you will be strong. »
- Lie Yukou (Liezi, ca.  BCE)

. introduction

.. Context

Flexibility has existed in power systems for a long time, even if it was limited to the
domains of power generation and the management of transmission networks. In this
traditional context, flexibility essentially referred to generation reserves. In distribution
networks, elements like reconfiguration and OLTCs existed and were used to manage
network constraints. However, they were not called flexibility, as the name implies
activation through external stimuli (signals) and an inherent optimal decision making
behind their use. Reserves in transmission networks were used in optimised dispatch,
where both activation signals and optimal decision making existed. In distribution
networks, OLTCs were used in a reactive manner, responding to changes in downstream
voltages. For its part, reconfiguration was in most cases used to change the network
topology seasonally, or after a fault. These elements could therefore not be called
flexibility in a traditional context.

However, with a rapid integration of intermittent DRES and in a deregulated envi-
ronment, the context in which power systems operate is changing. Distribution networks
are at the front-lines of these changes. A passive management of these networks with
OLTCs and reconfiguration may not suffice in this new context. The effects of this new
context on the operation of distribution networks, and the insufficiency of OLTCs for
instance, were detailed in Section .. of Chapter .

Active Distribution Networks (ADN) are shown to be a potential solution to these
ill-effects, and flexibility in distribution networks is one of their main components.
Flexibility is, as defined in Chapter , “the modification of the state of an element in
the network in reaction to an activation signal in order to improve network conditions.”
Sources of flexibility in distribution networks were also identified and outlined in the
same chapter. When reconfiguration and OLTCs are activated through external signals
in an optimised manner, they can also be considered as flexibilities. This is typically the
case in ADN.

Flexibility is arguably the key to integrating intermittent DRES in active distribution
networks. In long-term planning, we know that the integration of intermittent DRES
is causing dimensioning problems in planning. By considering flexibility in planning,
DSOs could potentially defer or avoid expensive oversizing of networks related to the
construction and reinforcement of power lines and other infrastructure [THJ+], [CE].
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With intermittent DRES, the traditional critical operating points will see a very low
probability of occurrence. In operational planning (OP), flexibility has been shown to be
useful in solving distribution network constraint violations, and improving the quality
of supply [DGR+].

However, the use of flexibility in ADNs entails certain requirements. In this con-
text, to integrate flexibility in operational planning, the following points have to be
considered:

 The effects of flexibility use on distribution networks have to be ascertained. This
means that flexibilities have to be modelled, and their operational limits have
to be assessed. Also, flexibility is a service in active distribution networks. A
service is a business transaction, and the DSO, in a deregulated environment, is
in competition with other actors. Any use of flexibility must therefore come at a
cost to the DSO.

 In operational planning, the DSO’s aim is to be cost-effective in using flexibilities
to solve network constraint violations. Since the use of flexibility entails DSO
capital and operational expenditures, its integration into operational planning
must be done only after these expenditures can be evaluated. To do so, models to
determine utilisation costs of flexibilities have to be developed.

 Since DSO-owned flexibilities like reconfiguration and OLTCs are also considered
as flexibilities, their economic models have to be developed in an unbiased
manner, considering the real cost of utilising these flexibilities. This would not
allow a preferential choice of these flexibilities and would actually result in the
use of the cheapest overall flexibilities in operational planning.

Conforming to the considerations listed above, in this chapter, the technical and
economic models for flexibilities in distribution networks are developed. The major
contributions of this chapter are listed below. The numbering is consistent with the list
in Chapter .

C The development of technical models of endogenous and exogenous network flex-
ibilities. These exact models accurately / practically capture the behaviour of the
flexibility, conforming to literature or to practically applied DSO methodologies.

C The economic analysis of these flexibilities in the short-term context, with an
emphasis on achieving an unbiased trade-off between endogenous and exogenous
flexibilities in terms of utilisation costs. The derivation of these utilisation costs
for flexibilities for a particular test case, to be utilised in a techno-economic
optimisation.

.. Organisation of this Chapter

This chapter is organised as follows. The current scenario for flexibility use in
operational planning in the case of five European DSOs is subsequently presented in
Section .. The information presented is the result of a survey conducted as a part of
this thesis and presented in [Pau]. The survey outlines the capabilities and barriers of
the DSOs with respect to the use of flexibilities. The impediments to the use of flexibility
are also discussed, along with the potential solutions that active distribution networks
can bring to them in the near future.
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The development of models for flexibilities in distribution networks is the focus
of Section .. In this section, a discussion on the real utilisation cost of DSO-owned
flexibility in the short-term is first presented. This discussion deals with the issue of
ascertaining the actual cost incurred by DSOs when they use endogenous flexibilities
like reconfiguration, OLTCs, and battery systems. It aims to facilitate the development
of unbiased economic models for endogenous flexibilities, as outlined in one of the
considerations presented in the introduction. Subsequently, the technical and economic
models of different flexibilities in distribution networks are developed. The technical
models developed aim to accurately depict the working of these flexibilities. Where
this is not possible, the models actually used by DSOs in practice are considered. The
economic models strive to provide a means to analyse the cost of use of each of the
flexibilities.

This is followed by the calculation of utilisation costs for these flexibilities for a
particular test case, and is presented in Section .. These utilisation costs are calcu-
lated in order to be used in a techno-economic operational planning formulation. The
concluding remarks are finally presented in Section ..

. current scenario – dso and flexibility use

As a part of the study on flexibility in electrical distribution networks, we conducted
a survey with  major DSOs in Europe. In this section, the survey results are first
presented. Then, a summary of the issues identified as a result of this survey with
respect to the use of flexibility in operational planning is presented. The results of the
survey have been published as a part of the evolvDSO project in reference [Pau].

.. Survey Results

The survey conducted with major European DSOs, with a total of around million
customers, consisted of questions related to the regulatory barriers for flexibility use,
the availability of endogenous flexibility, their capability to use flexibility, and their
current operational planning practices. An illustration of the responses is shown below
in Fig. .. Some of the responses in this section have been made anonymous at the
request of all the DSOs.

The responses to the survey indicate the following situations with respect to flexibili-
ties and DSOs. Regulatory barriers for the use of flexibility exist to some extent in all the
countries surveyed. In Italy for example, the DSO is not allowed control flexibilities at all.
In the other countries, regulation related to the control and exploitation of flexibilities is
not yet clear. In France, trial projects where the DSO is able to use flexibility are ongoing,
as indicated by the DSO.

All the surveyed DSOs indicate that their networks contain endogenous flexibility
like OLTCs in primary sub-stations and reconfiguration. The DSOs also indicate that
reconfiguration decisions are not made as a part of an optimisation routine. Three of the
five surveyed DSOs indicate that they are able to control the active and reactive power
flows in their networks through the use of flexibility.

As for the curtailment of DRES, the responses show that in most of the cases, DSOs
are allowed to curtail active power from DRES, even if only under special circumstances.
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Figure .: Survey Results on DSO Flexibility Use

In Italy, curtailment is not allowed in normal operation of distribution networks. In
Portugal, wind DRES is for example allowed to inject up to % above their contractual
power. This power can, when needed, be curtailed for free. In France, the DSO can
disconnect large DRES generation units over a limited number of hours per year for
free. They have to pay penalties if other DRES units are disconnected or curtailed. In
Germany, DSOs can curtail DRES if there is a problem with the amount of power injected.
They have to pay for this curtailment. However, if the DRES affects N- contingency
conditions (security conditions), they can curtail them for free.

Three out of the five surveyed DSOs showed interest in adopting operational plan-
ning formulations in their networks. However, only one of those DSOs actually uses
operational planning in their networks. The other two DSOs are testing operational
planning routines that take into consideration the forecasts for loads and DRES and
impose inter-temporal constraints.

In the survey, the DSOs also identified principal temporary impediments to the use
of flexibility and to operational planning in distribution networks. These impediments
are discussed in the section below.

.. Impediments to Flexibility use in Operational Planning

Three main temporary impediments to the use of flexibility in operational planning
were identified by the surveyed DSOs. These impediments, along with the potential
solutions that Active Distribution Networks can bring are discussed herein.
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The first impediment identified to the use of flexibility in operational planning is the
observability of distribution networks. DSOs today do not have a complete picture of
the state of their network, due to the lack of sensors in the network and of information
about the different grid users. With a large-scale roll-out of smart meters and other
communication devices, active distribution networks of the future promise to overcome
this issue. By taking up the Data Manger role, DSOs, with the help of communication
devices and control interfaces, should have sufficient observability of their networks.

The second impediment relates to the limited technical prowess access that DSOs
have today with respect to flexibility, more so in the case of exogenous flexibility than
endogenous flexibility. Pilot programs for flexibility use in distribution networks are
few in number, and are mostly used for transmission network purposes. This decreases
the possibilities for DSOs in operational planning. In the future, access to flexibility
should increase, given that the DSOs will improve their technical ability to use flexibility
through the use of optimised network planning and operational planning approaches.

The third impediment is that apart from the technical limitations to accessing flexi-
bility, DSOs today do not have access to the market for flexibilities. This should however
change if the proposals in the  Clean Energy Package from the European Com-
mission [Eurb] are to be accepted. The proposals allow for DSO access to energy
markets to contract and activate flexibility, including the procurement of standardised
services from resources such as distributed generation, demand-side response, storage,
and energy efficiency measures and from all market participants [Lin].

In the future, it should therefore be possible for DSOs to contract and use flexibility in
operational planning of their networks. In the next section, the technical and economic
models of flexibilities envisaged to be used in operational planning are developed.

. flexibility in operational planning – models

The flexibilities listed in Table . in Chapter  can be broadly classified into two
categories. Endogenous flexibilities like reconfiguration, OLTCs and batteries are owned
by the DSO. This means that investments for these flexibilities are made by the DSO
themselves. Exogenous flexibilities, like load modulation and flexibility from DRES, are
contracted flexibilities that are offered by other actors in the deregulated environment,
like aggregators. One of the proposals in the  Clean Energy Package [Eurb]
provides DSOs the ability to contract and use exogenous flexibility. However, citing
the proposal, “since many DSOs are part of vertically integrated companies which are
also active in the supply business, regulatory safeguards are necessary to guarantee the
DSOs’ neutrality in their new functions, e.g. in terms of data management and when
using flexibility to manage local congestions.”

In essence, the package allows DSOs to contract and use flexibility, but in an unbiased
manner. This means that the DSOs should not show preference to using a specific type
of flexibility, and will be held accountable by regulation to ensure that flexibilities are
used based on their merit. An unbiased use of these flexibilities is especially important
in a case where endogenous DSO flexibilities like reconfiguration and OLTCs will have
to be used alongside exogenous flexibilities.

The equipment allowing DSOs to utilise endogenous flexibilities are already present
in distribution networks. This means that for such equipment, investments have already
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been made. If these investments are considered as “sunk” costs, any economic model for
their utilisation costs would not consider the investment, and would result in an under-
estimation. When subsequently, these costs are used in an optimisation for operational
planning along with the costs for exogenous flexibilities, the results obtained may show
a bias towards the utilisation of endogenous flexibilities, even though these flexibilities
cost the DSO more. It is therefore necessary to consider a part of the investment costs in
the economic model describing the utilisation costs of endogenous flexibilities.

In this section, we develop technical and economic models of endogenous and
exogenous flexibilities. The economic models of endogenous flexibilities are developed
by integrating investment costs, in order to avoid the underestimation and bias described
above. The economic models of exogenous flexibilities are developed based on currently
available information with respect to the use of these flexibilities.

.. Reconfiguration

MV distribution networks are generally built to be meshed, but operated in a radial
fashion. This means that there is a potential to modify the topological configuration of
these networks by utilising the redundant lines in the network. The connection status of
the power lines in the network is modified to change the topology of the network. This
change is called network reconfiguration.

Traditionally, reconfiguration was a means used by DSOs to modify the network
topology after a fault, during maintenance, or to balance loads across network feeders
during seasonal changes in consumption patterns. The number of reconfiguration actions
performed in networks was therefore relatively low. This approach to reconfiguration was
justified for the following reasons. Firstly, the switching devices in distribution networks
were traditionally operated manually, in countries like Germany for example. This
meant that someone had to be physically present on-site to perform the reconfiguration
action. For actions containing many open / close operations across the network, a real
coordination was therefore necessary. Secondly, this manual coordination created loops
in the network, even if only for brief moments in time. This posed a problem related
to protection schemes and high short circuit currents. Thirdly, frequent use of these
switches in energised power lines resulted in rapid degradation of the material, as
traditional switching elements were not rated for looped operations. In countries like
France, where the switching elements were automatic, the issue with coordination did
not exist. However, the relatively low use of these elements was due to a voluntary choice
of the system operator.

In recent times, reconfiguration has become more interesting due to the following
changes. Firstly, new switching devices in distribution networks can be operated re-
motely from control centres. This greatly improves coordination during reconfiguration.
Secondly, this coordination makes it easier to maintain protection schemes, as the dura-
tion of momentary loops is reduced. Thirdly, switching devices are rated for between 
and  on-load (electrical) operations [Ena]. Network reconfiguration is therefore
an interesting flexibility to be considered in the operational planning of distribution
networks. In this section, we develop a technical and economic model for this flexibility.

A vast majority of distribution networks are radial. For simplicity, distribution networks are considered
radial in the scope of this thesis.
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... Technical Model

The purpose of reconfiguration is to find a new radial topology for the distribution
network without disconnecting any consumption or production. This means that in
general, loops and/or islanding of nodes cannot be accepted in the final topology. Recon-
figuration can be integrated in operational planning by imposing certain constraints. We
call these radiality constraints.

The constraint (.) is one such constraint used to ensure that the number of closed
lines in the network, represented by a binary reconfiguration variable eijt, is equal to the
difference between the number of nodes and the number of slack nodes in the network.
The reconfiguration variable takes a value of 0 or 1 depending on whether the line ij it
represents is connected or not. This status can change over time (index t). In steady-state
operation of the power system, the status of reconfiguration changing over time can
be used to accommodate for maintenance of power lines. Restoration of supply after
faults can also be considered, while keeping in mind that this work considers only the
steady-state modelling.

∑
ij∈Ω

eijt = nN − 1 ∀t ∈ T (.)

This constraint should usually suffice when imposing radiality on a network. How-
ever, as some researchers have observed, under a high penetration of DRES (or any
embedded generation for the matter), self-sufficient zones could be created wherein the
local production could be high enough to feed all the loads. This potentially creates
islands during reconfiguration, even if constraint (.) is satisfied. This is illustrated
below.

A -node meshed network is shown in Fig. .a, with two elementary loops L and L.
A permissible radial configuration, satisfying the constraint (.) is shown in Fig. .b.
In case a DRES is present in the network (Fig. .) and if this DRES produces enough
power to cater to local consumption, an island may be created as shown in Fig. .b.

1

L1 L2

2 3 4

6 57

(a) Meshed Network with Loops L and L

1

2 3 4

6 57

(b) A Radial Configuration

Figure .: Concept of Elementary Loops - 

Certain DSOs do not accept islanding in their networks. Therefore, to overcome
this issue, path constraints were introduced in [RRRSR]. However, the complexity
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(b) Islanded Nodes with DRES

Figure .: Concept of Elementary Loops - 

of these constraints increases exponentially with the number of loops and DRES. We
use a method based on elementary loops, first presented in [LFRR] and exploited in
[Tou] and [Van]. In this method, a second radiality constraint (.) is added. This
constraint imposes the number of closed lines in an elementary loop to be at most equal
to one less than the number of lines in the loop. The advantage of this constraint is that
its complexity increases linearly with the number of loops, and is independent of the
number of DRES in the network.

∑
ij∈C

eijt ≤ nC − 1 ∀C,∀t ∈ T (.)

In combination with constraint (.), constraint (.) ensures radiality even in a
case with a high penetration of DRES. The reader may consult references [LFRR] and
[Tou] for proof of this method.

... Economic Model

The economic model of reconfiguration aims to model the economics of the usage of
reconfiguration switches. A change in the status of these switches is called a switching
action. There are two components to the economic model of the switching action. The
first component is related to the depreciation of the investment on the switch. This
occurs whether or not the switch is in use. To model this depreciation cost ρdep, we
express the following.

ρ
dep
i = ρinv ·Ki/n i = 1, ...,n (.)

ρ
dep
d = ρdepi /365 (.)

Here, ρdepi and ρdepd are the yearly and daily depreciation, ρinv is the capital cost of
the switching device, Ki is the depreciation factor of the switching device for each year,
and n is the expected pay-back period for the switching device in years. The depreciation
factor is a factor that represents the ageing of the device. This factor has to conform to
the following constraint.

n∑
i=1

Ki = n (.)
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This means that the relationship between ρinv and ρdepi can also be expressed using
the following equations.

ρinv =
n∑
i=1

ρ
dep
i =

n∑
i=1

ρinv ·Ki/n (.)

At the end of the pay-back period n in years, the total depreciation cost of the switch
should be equal to the investment cost. In other words, the value of the switching
device should be equal to 0 at the end of the pay-back period. Considering a preventive
maintenance approach after a set number of operations, the cost of maintenance per
operation can be given by:

ρ
op
m =

ρtotm
nm

(.)

Here, ρopm , ρtotm , and nm are the cost per operation, total maintenance cost, and number
of operations before preventive maintenance respectively. The final cost of operation
of each switching device is represented by the two parameters ρrec1 and ρrec2 . They are
expressed as follows.

ρrec1 = ρdepd (.)

ρrec2 = ρopm (.)

In this thesis, the operational planning for distribution networks considers a time
horizon of one day. This is the reason for the calculation of the daily depreciation cost. It
is to be noted that among the two coefficients, ρrec1 is “incurred” by the DSO even when
there are no switching actions performed. We recall that these costs are not actually
incurred during every day in the operational planning, but are added to the utilisation
cost in order to reflect the real operational cost of flexibilities owned by the DSO.

.. On-Load Tap Changers

An On-Load Tap Changer (OLTC) is a mechanism in a transformer that changes the
transformation ratio of the transformer in discrete steps. Each of these steps, associated
with a particular transformation ratio, is called a tap. By switching the taps, and thereby
modifying the transformation ratio, the OLTC is able to change the voltage at the
secondary of the transformer.

OLTCs differ from Off-Load or No-Load Tap Changers in the sense that the switching
of taps can be done without de-energising the transformer. This is especially useful
when loads are connected to the network downstream of the transformer. In traditional,
mechanical tap changers, this switching action is achieved through the use of tap selec-
tors and diverter switches. This is illustrated in Figs. .a to .e, where the tap changes
from tap  to tap .

Other, newer generation OLTCs use hybrid power electronic switches to ensure
continuity of the on-load current when the tap change occurs. Some other OLTCs have
such switches to also change the taps, in addition to ensuring the continuity of current.
The advantage of these OLTCs is that there is no arcing during tap changes and higher
reliability, while the disadvantage is that auxiliary circuits are necessary to control these
switches, making the OLTCs more expensive.
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Figure .: Tap Changing in a Mechanical OLTC

... Technical Model

We model the OLTC and the transformer as a power line ij with a ratio kij that
represents the transformation ratio [Pra]. Since the taps in the OLTC are discrete, the
values that k can take are also discrete in nature, and constant for each tap. By choosing
one of the possible values that kij can take, the functioning of the OLTC which modifies
the transformation ratio can be simulated. OLTCs usually have  to  taps, although
others with  or  taps have also been studied and used in practice [Rau].

Fig. . shows the equivalent circuit of a transformer with an OLTC. In this figure, Y0
represents the no-load losses of the transformer referred to the secondary. The Ohmic
losses and other leakages are modelled using Zij . The value of kij is chosen depending
on the tap chosen by the OLTC, and acts on the impedance Zij . This model has already
been adopted in [Tou].

i j

Vi Vj

k2ij ·Zij

Y0

Iij

Figure .: Model of the OLTC with a Transformer

The voltage at the secondary of the transformer Vj is a function of the voltage of
the primary of the transformer Vi , its impedance referred to the secondary Zij , the
transformation ratio as set by the OLTC kij , and the current flowing through the main
circuit of the transformer Iij . This relation is described below.

Vj = Vi − Iij · k2
ij ·Zij (.)

... Economic Model

The economic model of an OLTC aims to model the economics of the usage of the
OLTC, when the current transits through it, and when tap changes are made. Two
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different methods can be used to develop the model for OLTCs. In the first, integral
method, the cost of each operation depends on the number of available operations
before a periodic maintenance operation. The OLTC can thus be used more frequently
at the beginning, when a high number of operations are available, and less when the
maintenance is imminent. The second method uses a fixed function that does not
depend on the how imminent the maintenance is, and instead focuses on using the OLTC
independently. In this method, the cost of each OLTC tap change is fixed, and a portion
of this cost is comprised by the cost of periodic maintenance. An example of the first
method can be found in [ZR]. The second methodology, described here, has been
developed as a part of this thesis and presented in [JJR+].

This economic model in this method is similar to the model developed for reconfigu-
ration. We first calculate the annual depreciation ρdepi of the OLTC as follows:

ρ
dep
i = ρinv ·Ki/n i = 1, ...,n (.)

ρ
dep
d = ρdepi /365 (.)

Here, ρdepi and ρdepd are the yearly and daily depreciation, ρinv is the capital cost of the
OTLC, Ki is the depreciation factor of the OLTC for each year, and n is the expected pay-
back period for the OLTC in years. The following conditions related to the depreciation
and investment have to be respected, like in the case of reconfiguration:

n∑
i=1

Ki = n (.)

ρinv =
n∑
i=1

ρ
dep
i =

n∑
i=1

ρinv ·Ki/n (.)

For the maintenance costs of the OLTC, given that there is a preventive maintenance
approach followed between every set number of operations, the cost can be given by:

ρ
op
m =

ρtotm
nm

(.)

Here, ρopm , ρtotm , and nm are the cost per operation, total maintenance cost, and number
of operations before preventive maintenance respectively. The two cost components
of the OLTC, ρoltc1 and ρoltc2 are respectively the depreciation cost during the period
considered for the operational planning and the maintenance cost per operation.

ρoltc1 = ρdepd (.)

ρoltc2 = ρopm (.)

Similar to the case for reconfiguration, the first component is related to the daily
depreciation, and is “incurred” whether or not the OLTC is used. This corresponds to
the actual cost of utilsation that factors the investment cost of the transformer and the
OLTC. Only the cost ρoltc2 is incurred in reality as a part of daily OLTC operations.
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.. Battery Systems

Battery systems consist of power electronic and electrochemical equipment to convert
and store energy respectively. Their use in distribution network applications has been
studied for quite sometime now. In Italy for example, the largest DSO e-distribuzione
plans to install battery storage systems in  primary sub-stations in its network [HJT].
However, to date, this has not been done. Apart from some planned large-scale pilot
applications like the one in Italy, very few actual applications of these systems have been
realised for batteries as distribution network flexibility. This is partly due to the high
capital costs of these systems [SWE]. With time, as some of the technologies behind
battery systems mature, the capital costs will naturally decrease.

With a high integration of intermittent DRES, storage technologies like battery
systems can be used to complement the variability of intermittent DRES. Their potential
uses in operational planning of distribution networks find their roots in the ability
of these systems to control power flows, regulate voltages, and smoothen the variable
production from DRES in a fast and efficient manner. In this section, we develop
technical and economic models for a generalised battery system.

... Technical Model

A battery system can be described by the following parameters: the rated energy, the
maximum power that the battery can store / discharge, the charging and discharging
efficiency, the state of charge, the allowed depth of discharge, and the lifetime energy
throughput.

The rated energy of the battery Ebat is expressed in MWh. It is the maximum
theoretical energy that the battery can store. The maximum power that the battery can
store or discharge P bat depends on the power conversion capability of the battery and
the power electronic interfacing equipment. The charging and discharging efficiency ηin

and ηout are used to account for the inefficiency in the power conversion in the power
electronic equipment and the battery. The state of charge Esoct provides an indication of
the additional energy that the battery can store or produce. A lower limit on the state of
charge is the depth of discharge (DoD) represented by the parameter Edod .

The lifetime energy throughout Elet is a measure of the total energy the battery can
produce in its lifetime. This can be further segregated into the expected lifetime nbat in
years, and the expected energy throughput Eeet in MWh/year.

In operational planning, a battery system can be modelled as follows. The first
equation developed below describes the state of charge of the battery at a given hour as a
function of the state of charge of the previous hour, and the power entering and exiting
the battery for the given hour.

Esoct = Esoct−1 + ηin · P batin,t − ηout · P batout,t ∀t ∈ T (.)

The state of charge can be restricted to minimum and maximum limits, and the
maximum ramp rate of charge and discharge can also be imposed using the following
constraints. Models to calculate the upper and lower limits on the state of charge in
terms of the age of the battery have been developed by researchers. In our case, given
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that the models are for use in operational planning, the limits on the state of charge can
be considered constant.

∀t ∈ T :
Esoc ≤ Esoct ≤ Esoc (.)

P batin,t ≤ P bat (.)

P batout,t ≤ P bat (.)

... Economic Model

The economic model of a battery system describes the cost of utilisation of the battery.
This utilisation cost is expressed in e/MWh. Research studies have already worked on
developing models for calculating the cost of utilisation [MSC+]. Among these studies,
we rely on the model proposed in [GTS+] to further develop an economic model for
the charging and discharging of battery systems in operational planning.

There are two components that make up the utilisation cost of the battery: () the
depreciation cost that represents the depreciation of the battery for every unit of energy
stored and consumed, and () the degradation cost that represents the degradation of
the hardware material of the batter for every unit of energy stored and consumed.

We first calculate the cost for depreciation of the battery ρdep. This is a function of
the investment cost ρinv , the expected pay-back period in years nbat, and the expected
energy throughput of the battery Eeet in MWh/year. This is expressed as follows.

ρdep =
ρinv

nbat ·Eeet (.)

This establishes a linear depreciation of the battery for every MWh of power that the
battery consumes or supplies. Next, we calculate the degradation cost of the battery ρdeg

as a function of the specific battery cost ρbat, the rated energy of the battery Ebat, the
expected pay-back period in years n, the expected energy throughput Eπ, and the input
and output battery efficiencies ηin and ηout.

ρdeg =
ρbat ·Ebat · ηin · ηout

nbat ·Eeet (.)

The total cost for a cycle (charge / discharge) of MWh of energy in the battery ρtot

is therefore given by the sum of the two components.

ρtot = ρdep + ρdeg (.)

The minimum charge and discharge prices of the battery, which will translate to the
minimum cost to the DSO for use of the battery, can therefore be expressed as a function
of the day ahead market price ρda, and the total unit cycle cost ρtot of the battery.

ρch =
ρtot

2
− ρda (.)
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ρdc =
ρtot

2
+ ρda (.)

The charge price is lower than the discharge price. This is done willingly, as the
stored energy has a monetary value, and can be sold later on. The difference between the
prices corresponds to the day-ahead price ρda, which is factored into the model. As a
result, the total expenditure to the DSO for a unit cycle (charge and discharge) of the
battery is equal to the total cycle cost ρtot.

.. Flexibility from DRES

In active distribution networks, the DRES connected to the network should partic-
ipate in system support [Eura]. This support translates to the regulation of voltage
and reactive power at the nodes where DRES is connected. The curtailment of DRES,
though considered as detrimental to their integration, has been shown to be useful and
even beneficial in certain conditions without remuneration.

In this section, we model two flexibilities from DRES: the reactive power compensa-
tion, and the active power reduction (curtailment). For both these flexibilities, we first
illustrate technical models below.

... Technical Model

Reactive power compensation from DRES involves the injection or consumption of
reactive power by the power electronic interfacing equipment. DSOs usually require
DRES to inject or consume reactive power as a function of the active power produced by
the DRES. The model we adopt is based on the guidelines followed by Enedis [ENE],
in line with the ENTSO-E grid codes established by the European regulation /
[Eura]. According to these guidelines, the reactive power capability of DRES connected
to MV distribution networks is between -% to +% of the active power injected by
the DRES. In other words, a consumption capability of %, and an injection capability
of % of the injected active power is demanded from all DRES units connected to the
MV distribution network. In some cases, the consumption capability can go as high as
%.

Enedis requires that this reactive power compensation be automatic for new DRES
units, based on a gradient and as a function of the voltage of the node at which the DRES
injects power. This requirement is illustrated in Fig. .. The figure shows the reactive
power compensation required, as a percentage of the active power produced by the
DRES, and as a function of the node voltage. Reactive power injection begins when the
node voltage decreases below .pu, and saturates at % when the voltage reaches
.pu. On the other side, reactive power consumption begins when the node voltage
increases above .pu, and saturates at between  and % when the voltage
reaches .pu.

Our technical model for DRES reactive power compensation is not automatic, mean-
ing that the injection or consumption of reactive power is decided as a function of the
voltage. as iIt is a decision variable in the OP formulation, meaning that its value can be
chosen independent of the voltage, as long as the grid codes in reference [Eura] are
respected. Hence, we consider the overall capability of the DRES in terms of reactive
power compensation as the technical limits of the flexibility. This means that we allow
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Figure .: DRES Reactive Power Flexibility – Capability and Limits

up to % consumption and % injection of reactive power as the binding constraint,
irrespective of the node voltage.

Active power curtailment from DRES is a widely debated topic. DRES generators
receive priority dispatch in electrical networks, as mandated by the European directive
//EC [Eura]. This priority holds as long as system security is not affected.
When the security of the system is under threat, curtailment of DRES can therefore
be practised. Today, research shows that curtailment occurs both as a consequence of
constraints in distribution and transmission networks and as a precautionary measure
to secure stability of the power system [KJS].

In this thesis, we consider a penalty cost for DRES curtailment. Since a penalty is
paid, we can technically curtail or even completely disconnect DRES generation in our
operational planning. This means that the limit for DRES curtailment that we consider
is up to %.

To model DRES curtailment and reactive power compensation mathematically, we
consider a DRES generator connected to node i, producing active power P git during time

period t. The curtailment P f git and the reactive power compensationQf git can be modelled
as follows:

P
f g
it ≤ P

g
it (.)

Q
f g
it ≤Q

f g
it ≤Q

f g
it (.)

Q
f g
it ≥ −0.35 · (P git − P

f g
it ) (.)

Q
f g
it ≤ 0.4 · (P git − P

f g
it ) (.)
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... Economic Model

DSOs like Enedis already use DRES reactive power compensation free of cost. They
are able to do so because connection contracts for DRES in MV distribution networks
clearly state that the DRES should be able to provide reactive power compensation.
Hence, for this flexibility, we consider that there is no cost of use.

For DRES curtailment, a high penalty has to be paid by the DSOs in case they curtail
DRES. This is because curtailment for any purpose other than security goes against the
policy of DRES integration mandated by European directives and national laws. In a
simple case, considering that the Feed-in Tariff is paid to the DRES for injecting power to
the network, the lowest penalty on the DSO should be this tariff. However, the concept
of Feed-in Tariff, and the costs associated with it change frequently. For example, in
France, these tariffs were once as high as .e/MWh for PV systems as fixed by the
law of  July  [Min], [Pho]. However, they have since decreased substantially,
and as of October , are between . and .e.

In case the power produced from DRES is traded on the electricity market, the
curtailment of this power will also entail penalties. The lowest imposed penalty on the
curtailment action will therefore have to be the market price paid to the DRES. In both
cases, the penalties paid will depend on the payment that DRES units receive [KJS].

.. Load Modulation

Load modulation consists of controlling flexible loads in operational planning. This
control primarily decreases or increases the power and energy consumption of a flexible
load during a period of time. Load modulation is a useful method to control congestions
in the network. By decreasing consumption at certain peak hours, system operators can

Before deregulation, electricity companies like EDF already used electricity tariffs as
a means to indirectly control peaks in consumption and achieve smooth consumption
curves. A few examples of such methods include the imposition of two electricity prices
a day, introduced in , or the definition of  critical days a year where electricity
prices were prohibitively high in order to promote lower consumption. Today, EDF
proposes a pricing scheme combining seasonal and peak tariffs [Bat].

The French law  of  allowed for the experimentation of load modulation
for small consumers and households for aiding the management of power system con-
straints. Consequently, the development of technical and economic models for load
modulation for small consumers is one of the challenges that researchers face today. In
this section, we will develop three different models for load modulation. These models
vary depending on how they are contracted, and what physical processes may be present
behind these flexible loads.

... Technical Model

We develop three different models for load modulation to be used in operational
planning. The models for these three types – type-, type-, and type- load modulation
– are described herein.

Type- Load Modulation: This type of load modulation is traded in fixed gate auction
electricity markets. It corresponds to an all-or-nothing order, meaning that the flexibility
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energy block must either be utilised to the fullest or not utilised at all. This modulation
is shown in Fig. .. The region shaded in red show the modulated energy. This type
of modulation is technically defined by two parameters: the energy of the block of
flexibility and the time period of the activation of the flexibility.
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Figure .: Type- Load Modulation (Modulated Load in Red)

Type- Load Modulation: This type of load modulation is also traded in fixed gate
auction electricity markets. However, the block of flexibility traded can be matched to
any proportion needed. This modulation is shown in Fig. .. This type of modulation is
technically defined by two parameters: the maximum energy of the block of flexibility
and the time period of the activation of the flexibility.
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Figure .: Type- Load Modulation (Modulated Load in Red)

Type- Load Modulation: This type of load modulation is obtained by the DSO through
long-term contracts. It is based on the reservation of a modulation capacity as opposed to
the purchase of modulation energy in types  and . The DSO can modulate the load up
to the reserved capacity a certain number of times during a day. This type of modulation,
based on the underlying physics of the load that is modulated, could require a rebound
of the modulated energy. To this end, we model three different sub-categories of type-
load modulation. Note that we only consider load decrease in type- load modulation,
meaning that any rebound in energy translates to an increase in load.

In the first sub-category, there is no rebound required. This is termed as a type-
rebound. In the second sub-category, the energy decreased has to be equalised over the
time period considered for operational planning. This is termed as a type- rebound. In
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CHAPTER 3. FLEXIBILITY IN OPERATIONAL PLANNING

the third sub-category that we will call type- rebound, there are two components to the
rebound [Bat]. The first component is a rebound that must occur in the time period
immediately after the activation of the flexibility. This component is called the power
rebound and occurs as a result of the restarting of the physical devices in the loads that
were switched off. The second component, called the energy rebound, can then occur
at any time during the operational planning time horizon. We differ from the model
adopted in [Bat] in this second rebound component.

In our model, the difference is that the energy rebound can be made before (antici-
pation) as well as after the flexibility activation. Practical difficulties exist nevertheless
with respect to anticipatory rebounds, and will have to be further explored in the future.
The proportion of energy in each of these rebounds can vary. In this thesis, we use
a power rebound for one hour corresponding to /rd of the decreased energy. The
remaining /rd is allocated to the energy rebound. This is just one of the many potential
proportions, and has been used in previous research [Des]. Type- load modulation
with rebound is illustrated in Fig. .. It is characterised by the capacity, the maximum
number of activations, and the type of rebound.
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Figure .: Type- Load Modulation with Type- and Type- Rebound

... Economic Model

The economic model for the utilisation of type- and type- load modulation is
straightforward. Since these types of load modulation are traded on the market, the
marginal clearing price of the market is the final price that is paid by the DSO. The
economic model of type- load modulation is developed below.

The price paid to contract type- load modulation consists of two components. The
first component is a fixed fee that the DSO pays to reserve a particular capacity from
a flexible load or aggregator. This fee can typically be expressed in e/MW/year. The
second component is a variable fee component that may monetise the activations of this
capacity. This fee is expressed in e/MWh.

In reference [JJR+], an international benchmark on capacity based load flexibility
products was done for more than  programs and for around a dozen countries. The
results of this benchmark provide an insight into the ranges for prices that system
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operators paid for this load flexibility, and are listed in Table .. For the economic
model of type- load modulation, we consider the same costs.

Table .: Type- Load Modulation – Cost of Reservation, Activation & Utilisation (Source: [JJR+])

Max. Activations (Hours) Cost of Activation

Per Year Per Day Fixed Cost (e/MW/year) Variable Cost (e/MWh)

   –  
   –  
   –  
   -  

. utilisation costs for flexibility – a test case

In the previous section, economic models for flexibility utilisation in operational
planning were developed. In this section, we employ these models to ascertain utilisation
costs for each of the flexibilities for a particular test case, with a view to integrate them
in the operational planning formulation developed in Chapter . It is to be noted that
in certain cases where data is unavailable, assumptions made to arrive at some of the
costs. It is also to be noted that the costs obtained in this section are parameters to the
operational planning (OP) of distribution networks, and that they can change depending
on the input conditions to the models, and the models themselves.

.. Reconfiguration

To calculate the utilisation cost of a switching action, we first refer to the commonly
available reconfiguration switches and their operational characteristics, as provided in
[Ena]. They are listed in Table ..

Table .: Switching Devices and their Characteristics

Company Product
Max. Current Electrical

Opening (A) Closing (kA) Endurance (CO)

Novexia
IA T 

 . 
Auguste

Schneider
RM   

Electric

ABB NXA    

Allias Pole Mounted
 . 

Electric Load Breaker

Nulec
RL Series

 . 
Load Breaker

The average electrical endurance among these devices is around  CO (close-open)
cycles. We consider a capability of  CO cycles for the switching device for which
the utilisation cost has to be calculated. Therefore, nm = 1000. The pay-back period
of the switching device n is assumed to be  years.We also consider that the capital
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investment ρinv = 15000e and the maintenance cost to be % of the capital investment
cost (ρtotm = 4500 e). An actualisation cost Ka of % year-on-year is used to calculate the
depreciation factor Ki . We use the following formula.

Ki =
n · (Ka − 1)
((Ka)n − 1)

The factor Ki takes a value of . for the first year, and . for the th year. The
evolution of Ki along with the yearly decrease in the value of the switching device as a
percentage of ρinv is shown in Fig. ..
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Figure .: Evolution of Ki during the Pay-Back Period n

To calculate the depreciation cost of the switch, we consider that Ki = 0.437, which
corresponds to the first year of installation of the switching device. Based on these
parameters, we calculate the values of the cost coefficients for reconfiguration. They are
listed in Table ..

Table .: Cost Coefficients – Reconfiguration

Coefficient Value

ρrec1 .e
ρrec2 .e per Switching Action

.. On-Load Tap Changer

To calculate the utilisation costs of OLTC operation, we first define the technical and
economic parameters of the OLTC. The parameters considered for this calculation are
listed in Table ..

Table .: OLTC Cost Calculation Parameters

Parameter Value

Transformer Rating MVA
Unit Cost  e/MVA

Actualisation Factor (Ka) .%
Operations before Maintenance (nm)  

The unit cost is calculated based on confidential DSO data, and has been used previously in [JJR+].





3.4. UTILISATION COSTS FOR FLEXIBILITY – A TEST CASE

The total investment cost ρinv for the transformer and OLTC is therefore 9500 · 25 =
237500e. The depreciation factor Ki is the same as that for reconfiguration switches, as
the actualisation factor is the same. Considering a maintenance cost equal to % of
ρinv , we arrive at the cost of maintenance per operation ρopm = 11.875e. The depreciation

cost per day ρdepd is equal to 14.219e. The final cost parameters for OLTC operation are
listed in Table ..

Table .: Cost Coefficients – OLTC

Coefficient Value

ρoltc1 .e
ρoltc2 .e per Tap Change

We remind the reader that the depreciation cost component ρ1 for both the OLTC
and reconfiguration is not actually incurred every day. This is a portion of the sunk cost
of these devices, and is included in the utilisation cost only in order to provide a level
playing field for all flexibilities.

.. Battery Systems

The minimum charge and discharge costs of battery systems depend on the Marginal
Clearing Price (MCP) of the day-ahead market ρda and the parameters of the battery
system including the investment cost and pay-back period. The MCP of the EPEX Spot
Day-Ahead market for the st of July  [EPE] is considered for ρda. The parameters
of the battery system are listed in Table .. In this case, we consider a lead-acid battery
system.

Table .: Battery System Cost Calculation Parameters

Parameter Value

Battery Rating .MWh
Unit Cost  e/MWh

Pay-Back Period (nbat)  years
Lifetime Energy Throughput (Elet) .MWh

Efficiencies (ηin, ηout) .

The lifetime energy throughput Elet is considered to be for  cycles at % depth
of discharge. The expected energy throughput Eeet = 36.25 MWh/year. Given these
parameters, the depreciation cost of the battery for a unit cycle ρdep is calculated to be
600e/MWh. The hardware degradation cost for a unit cycle ρdeg is calculated to be
486e/MWh. The total unit cycle cost ρtot is therefore equal to 1086e/MWh. Based on
this, the minimum charge ρch and discharge ρdc prices per MWh are can be calculated.
These prices are listed in Table. ..

The cost of the battery for this test case varies between . and .e/MWh
for charging and between . and .e/MWh for discharging. This falls within
the range of the levelised cost of usage of these batteries presented in [Laz].

The unit cost is based on the average cost of lead-acid battery systems for distribution network feeders
found in reference [Laz].
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Table .: Minimum Charge and Discharge Prices per MWh – Battery System

Hour ρch ρdc Hour ρch ρdc Hour ρch ρdc

 . .  . .  . .
 . .  . .  . .
 . .  . .  . .
 . .  . .  . .
 . .  . .  . .
 . .  . .  . .
 . .  . .  . .
 . .  . .  . .

.. DRES Curtailment

In this test case, we consider the curtailment of DRES to be a flexibility traded on
the day-ahead market. However, the price of DRES curtailment cannot be the MCP
of market. Additional penalties have to be imposed on DSOs for using this flexibility.
The current regulatory framework does not provide clear guidelines for these penalties.
Therefore, to calculate these penalties, we assume the following.

First, we assume (pessimistically) that any curtailed DRES has to be replaced by
the most polluting source of electricity – coal. The average CO emissions from coal
amount to around . kg/MWh of electricity generated. Second, we consider a factor
of ten on the carbon credits for the penalties imposed. The minimum fair-trade price for
carbon credits for renewable energy is .e per ton of CO emissions. The penalties
thus calculated amount to around e/MWh of DRES curtailed. For this test case, the
final cost per MWh of DRES curtailment ρcur is presented in Table ..

Table .: Cost of DRES Curtailment per MWh

Hour ρcur Hour ρcur Hour ρcur Hour ρcur

 .  .  .  .
 .  .  .  .
 .  .  .  .
 .  .  .  .
 .  .  .  .
 .  .  .  .

.. Load Modulation

Load modulation of types  and  are traded on the day-ahead market. Their price
ρlc is therefore considered to be equal to the MCP of the day-ahead market. These prices
are listed in Table ..

For type- load modulation, we know from the benchmark conducted in [JJR+]
that the prices for type- load modulation change depending on the contract rules (see
Section ..). To calculate the utilisation costs for each contract type, we consider the

Data sourced and averaged from [OPE]
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Table .: Cost per MWh of Load Modulation Types  & 

Hour ρlc Hour ρlc Hour ρlc Hour ρlc

 .  .  .  .
 .  .  .  .
 .  .  .  .
 .  .  .  .
 .  .  .  .
 .  .  .  .

average fixed cost of the contract. The calculated utilisation costs ρact, expressed in
e/activation/MWh, are listed in Table ..

Table .: Utilisation Cost – Type- Load Modulation

Max. Activations Utilisation Cost (ρact)
(year/day) (e/activation/MWh)

/ 
/ .

/ 
/ 

The utilisation cost ranges from e to e for every activation and MWh of
energy. This large range is primarily due to the difference in the contract rules. If the
DSO is sure to use a reasonably high number of activations per year with a reasonably
low number of activations per day, the flexibility is cheapest. If the DSO plans to use the
flexibility for a high number of activations per day, but only for a few days in the year,
it is expensive, even though the fixed cost is not that high. This is because of the high
variable cost of this flexibility.

However, it turns out that a very high number of activations per day and a high
number of activations per year makes the utilisation of the flexibility cheaper, even if the
fixed cost is higher. For this test case, we consider the least expensive of the utilisation
costs – e/MWh. It is to be noted that the technical constraints associated with this
pricing have to be imposed, notably the limit of a maximum of three activations per day.

We have therefore obtained utilisation costs for the endogenous and exogenous flexi-
bilities present in distribution networks and considered in this thesis for the operational
planning of distribution networks. To arrive at these costs, we use the models developed
in Section . of this chapter, and make certain considerations, all of which are outlined
for each flexibility. The input parameters that are used to obtain these costs can be
varied, and the resulting costs will invariably be different. In this thesis, we consider a
set of parameters, and we arrive at a set of corresponding utilisation costs.

. conclusions

The main focus of this chapter was the modelling the flexibilities for use in opera-
tional planning of active distribution networks. Towards this, the following items were
developed, presented, and discussed in this chapter.
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The results of a survey conducted as a part of this thesis (and the evolvDSO European
project) and presented in this chapter showed the capabilities and limitations of five
major European DSOs with respect to the use of flexibilities in their networks. The survey
consisted of regulatory barriers, the current capability of DSOs to control flexibility, the
ability to curtail DRES, and the status of operational planning in their networks. The
major impediments to flexibility use from a DSO’s point of view were then ascertained
based on the responses. The potential solutions that active distribution networks could
bring in the near future were also described as a part of the impediments. With the
new roles and responsibilities that DSOs are willing to take up in the near future, they
would be capable of better observing their networks and accessing flexibility in order
to manage network constraints in an optimised manner. The regulatory aspects related
to these changes should notably be addressed with the introduction of the  Clean
Energy Package [Eurb].

With a view on the current DSO situation with respect to flexibility use, the devel-
opment of technical and economic models of flexibilities in distribution networks was
subsequently done. The flexibilities for which these models were developed have been
listed in Chapter . Two types of flexibilities were identified. The first type, endogenous
flexibilities, was understood to be flexibilities owned by the DSO. This included flexibili-
ties like reconfiguration, OLTC, and in certain cases, battery systems. The second type,
exogenous flexibilities, was understood to be flexibility that the DSOs contracted from
other actors like aggregators.

One of the main considerations with respect to the development of these models was
the need to develop unbiased models that reflected the real cost of usage of endogenous
flexibilities. This real cost integrated the investment cost on the equipment that the DSOs
invested in to avail of these endogenous flexibilities, and also the actual operational costs
of such equipment. This was done in order to allow for an unbiased evaluation of the
actual costs incurred by the DSOs in flexibility use. As for exogenous flexibilities, the
economic models integrated publicly available information on these flexibilities, and in
the case of type- load modulation, a benchmark of more than  capacity based load
modulation programs.

Based on the economic models developed, the utilisation costs for these flexibilities
was calculated for a test case. The assumptions behind the calculation of these costs
were clearly outlined. This calculation was done with an ultimate aim of integrating
these costs into a techno-economic optimisation formulation for operational planning of
distribution networks. This leads to Part II of this thesis, where a novel techno-economic
operational planning formulation that integrates these flexibilities and their utilisation
costs is developed and presented.

a
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4A Novel Operational Planning

Formulation

« Tout objectif sans plan n’est qu’un souhait (A goal without a plan is just a wish). »
- Antoine de Saint-Exupéry

. introduction

.. Context

The two major changes affecting distribution networks, a high integration of DRES
and deregulation, were discussed in Chapter  of this thesis. Active Distribution Net-
works (ADN) and the associated Active Network Management (ANM) practices were
shown to help Distribution System Operators (DSO) counter the effects of these changes.
This was essentially through the adoption of new roles, and the use of new services
like that of flexibility. The technical and economic models for flexibility in distribution
networks were developed in Chapter .

To efficiently utilise flexibility in operational planning (OP) of distribution networks,
DSOs need to use new optimisation techniques. We call these techniques operational
planning formulations. These formulations should not only integrate the physical
features of distribution networks and flexibilities, but also the economics of distribution
network operation and flexibilities. Furthermore, these formulations should ensure
optimality, as they directly affect DSO expenditures on the operation of distribution
networks.

To this end, the main theme of this chapter is the development of a novel operational
planning formulation for operational planning of distribution networks. The main
contributions of this chapter are (numbering consistent with Chapter ):

C The reformulation of flexibility models developed via contributions C – C to
achieve exact linearisations. These exact linearisations can then be used in a
convex optimisation problem.

C The development of a novel operational planning (OP) formulation for active
distribution networks using the Second-Order Cone Programming (SOCP) relax-
ation of the Optimal Power Flow (OPF) problem. This formulation integrates the
linear flexibility models from contribution C, and solves the OP problem with
global optimality.

C The development of a dichotomic search heuristic that recovers a globally optimal
solution to the OP problem in the event of the failure of the SOCP relaxation.
This convergence to the globally optimal solution is proved experimentally.
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The physical characteristics of flexibilities and distribution networks mean that the
OP formulation is non-linear and non-convex. In essence, solutions to this formulation
cannot be guaranteed to be globally optimal. The contributions in this chapter therefore
focus on an OP formulation that can provide globally optimal solutions. The reformula-
tion of the mathematical models of flexibilities and distribution networks is done with
this optimality in mind. In the next section, the organisation of this chapter is outlined.

.. Organisation of this Chapter

This chapter is organised as follows. Mathematical concepts that underlie the OP
problem: reformulations, unit commitment & economic dispatch, the optimal power
flow, and the branch flow model are introduced in Section .. This is followed by a
review of the relevant state-of-the-art in the literature. This is presented in Section .
and focuses on the mathematical nature of the optimisation techniques used in power
system operational planning.

From this literature review, the best modelling and solution approaches to formu-
lating OP problems are evaluated. This evaluation focuses on different criteria like the
applicability to distribution networks, the accuracy and the optimality among others. It
is presented in Section ..

The novel operational planning formulation for distribution networks is then devel-
oped. This formulation uses the Second-Order Cone Programming (SOCP) relaxation
of the Optimal Power Flow (OPF) problem, and integrates the reformulated models of
flexibilities. This formulation, presented in Section ., is therefore a direct result of
contributions C and C.

Subsequently, the dichotomic search heuristic that recovers globally optimal solutions
is developed and presented in Section .. This heuristic develops on the novel OP
formulation, and works in the case of the failure of the SOCP relaxation. The optimality
of the solutions recovered through this approach is proven experimentally later in this
thesis, in Chapter . The concluding remarks are finally presented in Section ..

. underlying concepts

In order to better understand the OP formulation developed in this chapter, a defini-
tion of the techniques usually employed in short-term power system studies is important.
To this end, we present an introduction of the main underlying concepts for mathemati-
cal modelling of short-term power system studies. This section consists of introductions
to mathematical reformulations, the unit commitment & economic dispatch problems,
the optimal power flow problems, and the branch flow model. Reformulations allow for
the improvement of mathematical formulations, and are first presented below.

.. Mathematical Reformulations

Mathematical reformulations for optimisation problems have in general been ex-
plored for a very long time. The reasons for this are many. They may be in order to
simplify the problem, to obtain a formulation that can be solved faster, or to adapt
the problem to commercially available solvers. In essence, a reformulated problem is
a problem that shares some or all properties with the original problem, but is ideally
expected to perform better.
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Optimisation problems can be classified into different categories based on the mathe-
matical nature of their decision variables and equations, the type of constraints, on the
physical structure of the problem, and the number of objective functions among others.
Decision variables can either be discrete, continuous, or both, yielding discrete, continu-
ous, and mixed optimisation problems respectively. The problems can be constrained
(with constraints) or unconstrained (without constraints). The equations of the problem
can be linear, convex, or non-linear non-convex, and the resulting problems are called
the same way. The problem can also have one or multiple objectives.

A problem with continuous variables, imposed constraints, linear equations, and a
single objective would be classified as a bounded Linear Programming (LP) problem.
Problems in this classification are among the easiest to solve. On the other hand, a
problem with both continuous and discrete variables, imposed constraints, non-linear
equations, and a single objective would be called a Mixed-Integer Nonlinear Program-
ming (MINLP) problem. Problems in this classification are among the hardest to solve,
and are potential candidates for reformulations.

Several formal definitions of reformulations exist. Liberti et al. [LCT], whose work
we will rely on for our reformulations, define reformulations as follows:

Definition .. Any problem Q that is related to a given problem P by a computable formula
f (Q,P ) = 0 is called an auxiliary problem (or reformulation) with respect to P .

Based on Definition ., four different types of reformulations are presented in
reference [Cos]. These definitions are especially useful in understanding various
approaches to reformulations presented in this chapter:

• Exact reformulations: These are reformulations of problems where the optima
of the original problems are all preserved. This type of reformulation becomes
really attractive if the reformulated problem becomes easier to solve. These
reformulations are also called opt-reformulations.

• Narrowings: These are reformulations that eliminate certain optima, and for
mixed integer problems conserve at least one global optimum.

• Relaxations: These are reformulations of problems that eliminate certain con-
straints and bounds or the discrete nature of variables. The optimal solution to a
relaxed problem can be guaranteed to be optimal for its original problem under
certain conditions that can be proven mathematically.

• Approximations: These are reformulations that fall in any of the above categories
but are based on limiting the value of some parameters. There is no guarantee
for the optimality of approximations.

Indeed, other types of reformulations may exist. In the context of this thesis, we
are particularly interested in exact reformulations and relaxations. Formally, the two
reformulations are defined as follows in the same reference:

Definition .. Q is an exact reformulation (or opt-reformulation) of P if each local opti-
mum l ∈ L(P ) corresponds to a local optimum l′ ∈ L(Q) and each global optimum g ∈ G(P )
corresponds to a global optimum g′ ∈ G(Q).

Definition .. Q is a relaxation of P if F(P ) ⊆ F(Q), and considering minimisation problems
P and Q where fP and fQ are respectively their objective functions, if ∀x ∈ F(P ), fQ(x) ≤ fP (x).
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.. The Unit Commitment & Economic Dispatch (UC & ED) Problem

The Unit Commitment and Economic Dispatch (UC & ED) problem is a short-term
optimisation problem in power systems. The Unit Commitment (UC) problem is used
to select the on and off statuses of generators connected to the power system, while the
Economic Dispatch (ED) problem is solved in order to determine a production schedule
for the chosen generators. Together, all the decisions made to solve this problem strive to
meet the electrical demand of the system at lowest production cost. In its simplest form,
the problem can be mathematically expressed using the equations presented below. The
nomenclature for these equations can be found in Page xvii of this thesis.

min
∑
g∈Υ

∑
t∈T

(SU g
t + SDgt + ρgt · P gt ) (.)

Subject to:
P g ≤ P gt ≤ P g ∀g, t (.)∑
g∈Υ

P
g
t =

∑
c∈C

P ct ∀t (.)

This formulation ensures that: () the cheapest generators are selected, () all the
selected generators produce power within their limits, () the generation and load
balance is maintained, and () this is achieved at the lowest cost of operation. The
problem belongs in the Mixed-Integer Linear Programming (MILP) class of optimisation
problems. Other constraints, like the inclusion of reserves and generator ramping limits
[CW], [WS] and the introduction of fuel constraints for generators [RR], [VL]
can be included to render the problem more realistic.

Of late, most of the research in operational planning has been focused on another
type of problem, called the Optimal Power Flow (OPF) problem. This is because the
UC & ED problem has certain drawbacks. In practice, all the generators and loads in a
power system are not connected to one node. This means that the network of lines and
nodes which constitute a power system has to be taken into account in the optimisation
for it to be realistic.

Therefore, new constraints related to the network’s physical characteristics, like
line flows and voltage limits have to be introduced. This is especially important when
power systems begin operating near their physical limits, meaning that certain generator
schedules provided by the UC & ED problem may cause violations of physical constraints
like the power flows in a line. This subsequently implies that the state of the network,
characterised by four variables – the voltage magnitude, the voltage angle, and the active
and reactive power injections, has to be computed. The UC & ED problem, a linear
programming problem that focuses on generation dispatch only, does not provide a
means for such a calculation.

.. The Optimal Power Flow (OPF) Problem

Unlike the UC & ED problem, the Optimal Power Flow (OPF) problem can take into
account the physical characteristics of the network for which the production schedule
is being optimised. In its simplest form, the problem can be mathematically expressed
using the equations presented below [SM]. The nomenclature for these equations can
be found in Page xvii of this thesis.
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min
∑
g∈Υ

∑
t∈T

ρ
g
t · P gt (.)

Subject to:
∀t ∈ T :

P g ≤ P gt ≤ P g ∀g, t (.)

Sij ≤ Sijt ≤ Sij ∀ij ∈Ω (.)

Vi ≤ Vit ≤ Vi ∀i ∈ Γ (.)

P
g
jt − P cjt =

∑
i∈Γ u(j)

Vit ·Vjt
[
Gij · cos(θjt −θit) +Bij · sin(θjt −θit)

]
(.)

Q
g
jt −Qcjt =

∑
i∈Γ u(j)

Vit ·Vjt
[
Gij · sin(θjt −θit)−Bij · cos(θjt −θit)

]
(.)

The objective of the problem is to minimise the overall generation cost (.), subject
to many constraints. Constraint (.) is the same as the constraint (.) and imposes a
maximum production limit for each generator. Constraints (.) and (.) impose power
and voltage limits across lines and nodes respectively. Finally, constraints (.) and (.)
describe the relation between injected active and reactive power at a given node and the
voltage magnitude and angle in the node.

This OPF problem, though computationally difficult to solve, is versatile, meaning
that even with the advent of DRES and flexibility in power systems, researchers can
continue to use it as a base upon which short-term generator and flexibility scheduling
problems can be formulated. In its simplest, the left hand side of constraints (.)–
(.) can be used to represent the various power flexibilities that are integrated into
the optimisation mix. Of course, additional constraints pertaining to the physical
characteristics of these flexibilities have to be added in order for the OPF to be able to
handle them.

.. The Branch Flow OPF Model

The Branch Flow model (BFM) for optimal power flows, also called the DistFlow
model, was first developed by Baran and Wu [BWa], [BWc], and is an exact refor-
mulation of the OPF problem. The model describes radial distribution networks based
on the power flows in lines, as opposed to other methods, like the Bus Injection model
(BIM) which relies, as the name suggests, on equations that describe the power flows as a
function of the injections at various buses in the network. Fig. . shows a network with
n nodes and m lines. The power flows and loads in this network are also shown.

1 2 i j k n
S12 S2i Sij Sjk Skn

S2 Si Sj Sk Sn

Figure .: Branch Flow Model – A Network with n Nodes
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For this network, the BFM model can be described by the following complex equations:

Sij = Vi · I ∗ij (.)

Vj = Vi − zij · Iij (.)

Sj =
∑
i∈Γ u(j)

(Sij − zij · I2
ij )−

∑
k∈Γ d (j)

Sjk (.)

Equation (.) expresses the apparent power in the line ij as the product of the
voltage in the node i and the complex conjugate of the current in the line ij. The
apparent power can flow from node i to j, or from node j to i. Equation (.) states
that the voltage at node j is equal to difference between the voltage of the source node i
and the voltage drop in the line ij connecting the two nodes. Equation (.) describes
Kirchoff’s current law (KCL), which states that the net apparent power consumed in the
node j is equal to the difference between the sum of apparent powers imported from the
upstream nodes and the sum of that exported to the downstream nodes. The line power
losses are aggregated to the upstream nodes, as evidenced by the location of the term for
losses. In order to obtain equations for active and reactive power flows from equations
(.)–(.), we decompose the following variables:

Si = Pi + jQi (.)

Sij = Pij + jQij (.)

zij = rij + jxij (.)

z∗ij · Sij + zij · S∗ij = 2Re(zij · S∗ij ) (.)

Baran and Wu then derive the final equations which can be applied to optimal power
flows. The net consumption in each node is decomposed into the generation and loads.

P cj − P
g
j =

∑
i∈Γ u(j)

(Pij − rij · I2
ij )−

∑
k∈Γ d (j)

Pjk (.)

Qcj −Q
g
j =

∑
i∈Γ u(j)

(Qij − xij · I2
ij )−

∑
k∈Γ d (j)

Qjk (.)

V 2
j = V 2

i − 2(rij · Pij + xij ·Qij ) + I2
ij(r

2
ij + x2

ij ) (.)

I2
ij =

P 2
ij +Q2

ij

V 2
i

(.)

The advantage of the branch flow model is that the power flow equations take a neat
recursive structure, simplifying computation. This is especially useful for developing
optimisation algorithms based on the optimal power flow (OPF), and the OP formulation
developed in Section . is based on this model.
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. a literature review

Operational Planning (OP) can be thought of as OPF for multiple time steps, with
or without inter-temporal constraints linking them. The OP problem’s mathematical
characteristics are inherited from the characteristics of the OPF problem. The OPF
problem, as detailed in Section .., is non-linear, and therefore possesses certain
disadvantages:

 The OPF problem does not scale well with network size and complexity.

 There is no guarantee for a globally optimal solution. Depending on how the
OPF problem is cast – and the problem has been cast in several different ways
so far in literature – solution methods generally settle into local optima, if they
find these optima at all. Furthermore, some of these solution methods offer no
guarantee for global optimality of the physical solution.

In order to try and overcome these difficulties, several researchers have developed,
simplified, and reformulated the OPF problem since its introduction. Additionally, they
have also employed meta-heuristic solution techniques in order to circumvent these
difficulties. In this section, we highlight the past research work done in the OPF problem
formulation and solution, and in OP formulations specific to distribution networks. It
is to be noted that we concentrate on centralised approaches to solving these problems.
Other approaches like decentralised, hierarchical, heterarchical [Van] among others
have been explored by other researchers who have also highlighted the advantages
and disadvantages of each of these approaches. Such approaches are not in the scope
of this thesis. Also, this literature review does not, by any means, hope to provide a
complete picture of the research being carried out in OPF problems. The reader is
invited to consult references [PJ], [FSRa] and [FSRb] for extensive surveys of OPF
in literature.

When using deterministic solution techniques, the nature of the OPF problem to be
solved plays an important role in the efficiency, speed, and precision. Therefore, it may
be useful to explore the different classifications of OPF and OP problems in literature.
In this classification, we first begin with a review of non-linear programming problems,
problems with little or no reformulations to the OPF. We then present a review of
second-order cone programming (SOCP) and other relaxations for the OPF, where exact
reformulations are performed. Subsequently, we present a review of linear programming
problems (LP) for the OPF and OP, where approximations are performed in order to
develop the models. This is followed by a review of mixed-integer formulations for the
OPF and OP. Finally, we also present a review of literature in the field of meta-heuristic
solution techniques for these problems.

.. Classification of OPF and OP Problems

Advances in OPF formulations over the years have been in linearisation and convexi-
fication techniques, while trends in OP formulations include using these advances: the
original non-linear OPF, its DC counterpart, a linearised version of the OPF around a
particular operating point, or a reformulated quadratic non-linear or quadratic convex
OPF. Models that integrate uncertain parameters are also a trend lately, as methods to
handle uncertainty and ways to solve these problems continue to improve. Such models
are explored further in Chapter .
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... Non-Linear Programming (NLP)

To the authors’ knowledge, the first known OPF formulation proposed in literature
was from Carpentier [Car]. This formulation is non-linear in nature. The development
of NLP formulations, in spite of the disadvantages they had, was due to the fact that
NLP formulations captured the characteristics of power systems accurately. Certain
approximations were albeit performed, like the continuous approximations for discrete
decision variables like the OLTCs and reconfiguration [HW]. Recent NLP formulations
for the OPF almost always integrate discrete decision variables, and therefore are classed
in the Mixed Integer Programming (MIP) class of problems.

In [SDCa] and [SDCb], the authors propose a dynamic programming based
operational planning solution with Non Linear Programming (NLP) OPF problems at
each instance of the dynamic programming tree. They also advocate the use of costs for
flexibilities as opposed to reduction of losses, therefore obtaining a techno-economic
local optimum rather than a purely technical optimum. The non-linear nature of the
OPF, and its associated disadvantages, was one of the main reasons for research in
reformulations of the OPF. Such formulations are detailed below.

... The Second-Order Cone & Other Convex Relaxations

Convex relaxations of the optimal power flow have recently generated significant
interest in the research community. This is due to the fact that using these relaxations,
the OPF problem can potentially be solved feasibly with global optimality. This is due to
the fact that using these relaxations, the OPF problem can potentially be solved feasibly,
faster, and with global optimality. The increase in speed is due to a reduction of the
solution space brought about by the relaxation. There exist other reasons for this interest.
The first one is that the solution to such a relaxed OPF provides a bound for the quality
of locally optimal solutions provided by its non-linear non-convex counterpart. The
second one is that the relaxed OPF can be used to prove definitively that a particular OPF
problem is not feasible. The main types of convex relaxations for the OPF that have been
explored recently are the Semi-Definite Programming (SDP) relaxation [BWFW], the
Second Order Cone (SOC) relaxation [Jab], and the Quadratic Convex (QC) relaxation
[CVH]. These relaxations are not equivalent, and have their respective advantages
and disadvantages which have been discussed by the respective authors. In this thesis,
we focus solely on the SOC relaxation for the following reasons:

 The SOC relaxation can be solved by industrial-grade robust solvers like CPLEX
without any additional modifications. The same cannot be said about the SDP
relaxation, for example, solvers for which are still evolving.

 Solutions to the SOC relaxation have been shown to be the fastest to find
[CHVH]. The relaxation is generally faster than the QC relaxation, and in
some cases, much faster than the SDP relaxation.

The relaxation consists essentially in relaxing equation (.) to an inequation. It is done
as follows:

I2
ij ≥

P 2
ijt +Q2

ijt

V 2
it

(.)
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In order to recover a physically meaningful solution to the OP problem with the
relaxation, one has to ensure that the relaxation holds. While Jabr [Jab] was the first
researcher to explore this relaxation for OPF, a study of the exactness of the relaxation
was first only performed later, in [LL]. Farivar and Low [FL] were the first to
extend the formulation to the branch flow model (BFM). They prove that the relaxation
is exact for radial networks as long as upper bounds on the loads do not exist. In
[GLTL], the relaxation is proven to be exact under less restrictive conditions, namely
no upper bounds on voltages and one of four other sufficient criteria. However, these
criteria are unrealistic as they restrict the direction of the power flows, or the reactance
to resistance (X/R) ratio. Farivar and Low [FLa], [FLb] then derive even lesser
restrictive conditions for exactness, which are outlined below:

 The network graph is connected.

 The objective function of the optimisation problem is convex.

 The objective function is strictly increasing in I2
ij , non-increasing in load, and

independent of the apparent power S.

 The OPF problem solved using the relaxation is feasible.

Condition  is trivial as it refers to the state of the network (no islanding). Condition 
is also trivial as it imposes feasibility of the OPF. If the OPF problem were infeasible, one
would obtain no results, even in a model with no relaxation. Conditions  and  depend
on the objective function, and therefore on the developed formulation. Low has sum-
marised quite well the current state of understanding with respect to the SOC relaxation
for radial and meshed distribution networks in a two-part tutorial [Lowa],[Lowb].

... Linear Programming (LP)

Linear Programming (LP) formulations of the OPF gained traction because of the ad-
vantages that it offered: simplicity, computational tractability, and excellent convergence
speed. Any LP formulation of the OPF involves some form of approximation, given the
non-linear nature of the power flow equations.

The simplest of all the LP OPF formulations is called the DC Optimal Power Flow
(DC-OPF) [Nar]. In this linearised, simplified OPF formulation, the constraint (.)
from the original OPF presented is neglected. In constraint (.), the resistance of
the branches are neglected, all the voltages are assumed to take their nominal values
(1.0 p.u.), and the difference between the angles is assumed to be small, eliminating the
need to apply the sin() function. The new constraint is therefore:

P
g
jt − P cjt =

∑
i∈Γ u(j)

Bij(θjt −θit) (.)

The objective function (.) and the constraints (.)–(.) and (.) thus make
up the DC-OPF problem. The DC-OPF is non-iterative, meaning that computational
optimisation programs employing it can solve the problem in one go. This improves
the tractability of the OPF problem leaps and bounds. This is also the reason why the
DC-OPF is widely used in the industry today.

In other LP techniques such as Sequential Linear Programming (SLP), the original
NLP problems are approximated through a series of linear approximations [SJA]. An
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iterative process is therefore needed, where successive linearisations are performed
around the solutions at every iteration. Das [Das] argues that SLP methods for
OPF with only a few binding constraints are generally rapid with respect to detecting
infeasibility of the problem. However, if the linearisation of the NLP OPF gives an
unconstrained search direction, SLP approximations do not generally find an optimum
[FSRa]. We can cite attempts at using SLP for OPF like the research done by Zhang et
al. [ZRP] where the linearisation around solution points is done via the generation of
a st order Taylor series, or [ZS] for a multi-objective OPF using the SLP technique.

Other recent formulations that employ multiple linearisations include Christakou
[Chr] who has developed a unified centralised approach to real-time active distri-
bution network management using a sensitivity coefficient-based linearised OPF. The
flexibility employed to achieve voltage and power control in this work includes dis-
tributed storage systems and responsive loads. Bolognani et al. [BZ] derive an explicit
linear approximation of the AC-OPF, and also show that the errors in their formulation
can be bounded as a function of the network parameters.

... Mixed Integer Programming (MIP)

In the context of distribution networks, continuous NLP, convex, and LP formulations
do not accurately model certain network flexibilities like reconfiguration and OLTCs. To
achieve this, mixed-integer programming (MIP) formulations are necessary. While these
formulations can accurately capture the behaviour of discrete flexibilities and control
elements in networks, they have a downside. This is one of the reasons why most of
these formulations are solved using meta-heuristic methods and not using deterministic
methods [FSRa]. This is discussed later on, in Section ...

z

x

y

Second-Order Cone (z2 ≥ x2 + y2)

Figure .: The Second Order Cone Relaxation

Interest in solving MIP formulations
using deterministic solution techniques
increased with the advent of convex re-
laxations of the OPF. One such relaxation,
the second-order cone relaxation, creates
convex a solution space restricted by a
second-order cone (see Fig. .) allowing
researchers to find globally optimal solu-
tions to the OPF. allowed researchers to
use LP solvers without worrying about the
optimality of the successive restrictions
they apply (for e.g. the Branch-and-Cut
method used by CPLEX) [Tou]. The au-
thors of [JSP] derive a minimum loss re-
configuration problem based on the SOC
relaxation, but there is no proof provided
for optimality of their method. The authors of [HJL+] derive a formulation for the
reconfiguration problem that is shown to be more computationally efficient. Peng et al.
[PTL] then develop a reconfiguration problem with the SOC relaxation that is similar
to Merlin and Back’s sequential branch opening method [MB]. Their method is gener-
ally very fast, and provides solutions that are near-optimal. Tian et al. [TWZB] have
developed a MISOCP problem with reconfiguration and VAR compensation. However,
the OLTC model employed by them approximates the OLTC impedance to the primary
of the transformer and may not provide correct results in large systems.
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In [Tou], the author casts the OPF problem for distribution networks with recon-
figuration and VAR compensation, as a Mixed-Integer Second Order Cone program
(MISOCP) using the reformulation techniques presented in [LCT]. The author is able
to cast an OLTC model in this work without any simplifications. And based on the work
in [Sar], the author also proves that this formulation can be solved with global opti-
mality by commercial solvers such as CPLEX using the Branch-and-Cut (B&C) algorithm.
Vanet [Van] extends this formulation to include discrete active power flexibilities for a
single time-step and develops a simple solution recovery algorithm capable of recovering
a globally optimal solution when the relaxation fails.

As for the OP problem, Borghetti et al. [BBG+] have developed a two-stage linear
scheduling algorithm for distribution networks. The day-ahead stage of their algorithm
is formulated as a DC-OPF problem. They argue that this is sufficient owing to the fact
that the uncertainties in the parameters during the day-ahead stage already contribute
to inexactness in the solution, and that an exact model is therefore unnecessary. While
taken separately, this argument seems justified, the fact that they formulate the second,
real-time stage, of their model using an iterative linearised algorithm that uses sensitivity
coefficients to linearise the non-linear OPF around an operating point lends more weight
to the theory that simplified modelling was their original intention. The objective of their
optimisation is to minimise dispatch costs in the day-ahead stage, and the minimisation
of dispatch costs, losses, and penalties for voltage changes in the real-time stage. The
flexibility employed by them in order to achieve optimal operation of the network
includes scheduling of generators, reactive power compensators, and On-Load Tap
Changers (OLTC).

Other researchers like Gemine et al. [GEC] cast the OP problem as a convex relaxed
program using the SOC relaxation. The discrete nature of their problem arises from the
discrete activation signals for load modulation. They also argue that curtailing DRES for
operational planning purposes could be detrimental and should be used as a last resort.

.. Meta-Heuristic OPF Solution Techniques

Meta-heuristic methods to solve optimisation problems are a set of methods that
either evolve naturally or imitate natural phenomena to find an optimal solution to a
problem. They primarily interest researchers for the following reasons [FSRa]:

 They are very flexible and can often model practical constraints with ease.

 For feasible problems, they generally provide near-optimal solutions.

 They circumvent the mathematical difficulties faced by deterministic solvers with
complicated formulations, like the ones involving discrete decision variables.
They are therefore robust, and solution times often are independent of problem
size and complicating variables.

 In cases like those with MINLP problems, these methods may be the only practical
alternative with respect to the time available for optimisation.

Recently, there has been a proliferation of research into the different types of meta-
heuristic optimisation techniques. A non-exhaustive list of such methods includes

They do not provide any proof of optimality, nor a measure of how far they are from the optimum.
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Ant Colony Optimisation (ACO) [AMV], Artificial Neural Networks (ANN) [Ger],
Genetic Algorithm (GA) [MTK], Particle Swarm Optimisation (PSO) [KE], Simulated
Annealing (SA) [KGJV], and Artificial Immune Systems (AIS) [Jef] among others.
Such methods have been quite successfully applied to OPF problems in literature.
Reviews of such OPF problems can be found in references [FSRb], [NWX].

Some of these methods have been applied to the OP problem as well. We can cite
the following references among others for such applications. The authors of [GAA]
solve a day-ahead scheduling problem using GA. The flexibilities they employ include
reconfiguration, dispatchable distributed generation, and responsive loads. Through
tests on a -bus IEEE network, they show that considering reconfiguration in daily
dispatching can have a considerable effect on the optimal scheduling of these networks.
A number of other methods use the GA technique to solve the OP problem, with different
considerations [QL], [SMV], [MB].

Zaidi et al. [ZTOF] test a formulation based on the PSO method while considering
controllable loads and a high penetration of PV generation. They also formulate a
battery sizing problem, and show that the use of controllable loads has advantages for
the network, like the reduction of battery sizes. This implies that intermittent flows are
reduced by using controllable loads. Tan et al. [TXP] formulate the OP problem for
distribution networks using four different meta-heuristic algorithms: GA, PSO, AIS, and
vaccine-AIS. The results from this research show that the final solutions provided by the
different algorithms differ from one another.

Given the variety of mathematical models and solution techniques for OPF and
OP problems, choosing a particular model and solution technique is necessary in the
development of any such problem. In the next section, a discussion and analysis on the
ideal OPF formulation for OP problem in distribution networks is presented.

. the ideal opf formulation for op?

A good deal of research has been conducted into the different modelling and solution
techniques for OPF problems. Reformulation techniques like approximation, exact
reformulations, and relaxations have been applied to the OPF equations in an attempt
to simplify the problem resolution. Discrete decision variables in these formulations
have also been subject to these reformulations, and researchers have circumvented
the difficulty of these problems by successfully employing nature-inspired solution
techniques. Finally, many of these techniques have also been applied to the OP problem.

In this section, we attempt to choose an ideal formulation technique for the OPF
problem in the particular case of its application to the OP problem in distribution
networks. To achieve this, we analyse the characteristics of different OP modelling
and solution techniques. To this end, we use three characteristics. They are: () the
computational tractability, () the mathematical solution optimality, and () the real-
world solution accuracy.

.. Computational Tractability

Computational tractability is a measure of how easily a computer can solve an
optimisation problem. For deterministic solution techniques, this depends on the nature
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of the underlying model. The OP problem is a short-term optimisation problem. It
is designed for a time-frame of several days to one day before real-time operations.
Potential OP formulations can therefore be allowed take a few hours to find solutions
without there being a need for imposing restrictions.

The tractability notably increases with an increase in the number of discrete de-
cision variables in the formulation. This means that mixed-integer formulations are
less tractable than their continuous counterparts. The combinatorial nature of these
problems means that their solution space of can be intractable in certain cases. Care
should therefore be taken when modelling MIP, MINLP, and MISOCP problems when
deterministic solution techniques are employed. Meta-heuristic solution methods can
be used as an alternative to overcome the issue of computational tractability. This is
because the solution times for such methods do not directly depend on the problem
size. In cases where severe restrictions on tractability exist, they may be better suited to
solving such problems than deterministic solution techniques.

.. Mathematical Solution Optimality

The optimality of solutions to various OPF formulations is an internal characteristic
of the type of formulation. When solutions to these formulations found deterministically,
they can be guaranteed to be optimal in certain cases. Solutions to LP formulations of
the OPF can always be guaranteed to be optimal. Solutions to SOCP formulations can
be guaranteed to be optimal under the condition that the relaxation holds. Solutions to
mixed-integer versions of these formulations can also be guaranteed to attain at least
one global optimum. Solutions to NP and MINLP formulations can however not be
guaranteed to provide globally optimal solutions.

Nature-inspired solution methods not only provide no guarantee for optimality of
their solutions, they do not provide a measure of how far away their solutions are from
the global optimum either. Furthermore, different nature-inspired methods have been
shown to produce different results for the same problem [TXP]. Research has shown
that a .% difference in objective function values for power system studies, especially
when the objective is to minimise costs, can lead to very high expenditures in large-scale
networks [Sal]. Therefore, while nature-inspired approaches are easy to adopt, they
can be detrimental in the long run.

.. Real-World Solution Accuracy

Real-world solution accuracy is a measure of the accuracy of a mathematical solution
when applied to a real-world optimisation problem. It differs from mathematical opti-
mality in the sense that it integrates the errors in the solution caused by simplifications to
the optimisation model. Mathematical reformulations therefore affect this characteristic.
The DC-OPF and other LP formulations of the OPF are approximations. They rely on
neglecting resistances among other parameters in the network to be optimised. This may
work for transmission networks, where line resistances are low and the reactance-to-
resistance ratio (X/R) is high [PMVDB]. However, the power lines used in distribution
networks have a higher resistance. Therefore, the resistance cannot be neglected for
distribution networks. As a result, these formulations may provide erroneous results.

Other authors have also worked on the errors in linearised OPF problems for dis-
tribution networks [BZ]. While they show that approximation approaches do exist
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where these errors are low, the fact that errors still exist eclipses the qualities of these lin-
earised methods, notably their execution speed. Das [Das] argues that LP approaches
work quite well for networks in general where the objective function is separable and
convex, such as the minimisation of the total generation costs. However, in the case of
non-separable objective functions like the minimisation of losses, these formulations
are not as effective, producing significant inaccuracy. From our side, we also verify the
unsuitability of the DC-OPF for distribution networks in Appendix A.

NLP and SOCP formulations presented in the literature review can accurately capture
the physical characteristics of distribution networks. This means that they are better
from the point of view of real-world solution accuracy.

.. Summary of the Analysis

Table . summarises the different approaches in techniques for modelling and
solving OP problems that work best for each of the analysed characteristics. This
information can serve as a reference to choose a suitable OP formulation if the developer
is aware of the desired characteristics of the OP problem to be developed.

Table .: Performance of OP Formulations based on Desired Characteristics

Analysed Deterministic Solutions Meta-
Characteristics LP NLP SOCP MILP MINLP MISOCP Heuristics

Discrete
No No No Yes Yes Yes Yes

Variables

Tractability +++ + +* – – – – –* ?

Optimality +++# + +++* +++# + +++* ++

Accuracy – – – –* – +++ +++* +

Legend:
– – to +++ : Degrees of Conformity; * : Subject to Relaxation Exactness;

# : For the Approximated Problem; ? : Relationship Unknown

Meta-heuristic solution techniques generally perform decently well across all the
analysed characteristics. Their tractability with respect to the underlying problem model
cannot be ascertained as there is no direct relationship between them. Continuous LP
formulations provide low real-world accuracy, but are mathematically optimal for the
approximated problem and highly tractable. Continuous NLP formulations may provide
feasible accurate solutions, but they are less tractable. The continuous SOCP relaxed
formulation provides the same levels of accuracy and tractability as the continuous
NLP counterpart, but can provide a guaranteed optimal solution for the reformulated
problem. The MIP counterparts of each of these problem types all perform better in
terms of accuracy, are as optimal for the respective formulations, but are less tractable.

It is difficult to choose one particular formulation and solution technique to imple-
ment in an OP for distribution networks. This is because each of these formulations and
solution techniques has its advantages and disadvantages, and depend on the decision
variables and other practical constraints like the time available for optimisation. The
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diversity of formulations of the OPF that exist in literature means that choice of a tech-
nique can only be done if the exact modelling criteria are known. This means that OPF
formulations are generally tailor-made for specific applications.

In the context of this thesis, the criteria or the desired characteristics of the OP
formulation for distribution networks are known. The two desired characteristics of
the formulation are the ability to provide globally optimal solutions, and the ability
to handle discrete decision variables. The first desired characteristic arises out of the
necessity to decrease DSO expenditures in operational planning. This characteristic
imposes mathematical solution optimality and real-world solution accuracy. The second
characteristic is desired due to the fact that distribution networks contain discrete
flexibility like OLTCs and reconfiguration switches, and employing these flexibilities
is necessary in OP formulations. Given these desired characteristics, modelling the OP
formulation as an MISOCP problem is the best choice.

Apart from this choice of mathematical model and solution technique, the devel-
opment of any OP formulation has to satisfy certain general requirements. These
requirements are explained below.

.. General Requirements for an Ideal OP Formulation

Any OP formulation developed with the applicability in DSO environment in mind
has to take into account the current context under which these DSOs operate. In Chapter
, the current context in power systems was introduced. This context imposes practical
constraints on the approaches to OP formulation. For these problems to be practically
applicable, they will have to take into account the capabilities and limits of DSOs.

All the optimisation actions in OP formulations must come at a cost. These costs may
be internally incurred by the DSO, as is the case with the use of DSO-owned flexibility,
or paid to third-parties like aggregators against their offer of specific flexibility. At the
very least, a preliminary evaluation of these costs is necessary for operational planning.
More importantly, whatever the costs are in actual numbers, they have to be integrated
into the optimisation process in operational planning. Searching for technical optima
in networks is interesting from a research point-of-view, as it results in better models
and methods. But for this research to be practically applicable, techno-economic optima
have to be obtained. In situations where DSOs cannot own or dispatch generation, new
objectives like loss reduction or minimisation of the cost of flexibilities used could also
take their place. The novel OP formulation developed in the next section takes into
account these general requirements.

. a novel mixed-integer convex op formulation

In the previous sections, a review of the state-of-the-art various approaches to OPFs
was presented. This was followed by a discussion on the best OPF approach for OPs
in distribution networks. A mixed-integer SOCP model was chosen to be the best for
the formulation of an OP problem. In this section, we develop a novel deterministic OP
formulation for MV distribution networks using the SOCP relaxation of the OPF. The
main features of this formulation are as follows:

 This SOCP OP formulation includes a wide variety of flexibilities, discrete and
continuous, and for the first time integrates the economics of these flexibilities.
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 The problems caused by the non-linear non-convex nature of some of these
flexibilities are overcome through exact reformulations. The models of these
flexibilities are thus preserved, ensuring solution accuracy.

 A solution recovery algorithm to recover physically meaningful and globally
optimal solutions in case the relaxation fails.

In order to formulate the OP problem, we make the following assumptions:

 The MV distribution network is considered to be balanced across its phases,
allowing for a single-phase representation. For unbalanced networks, three-
phase modelling can be eventually be adopted through the use of sequence
components. Also, the transverse components of the network are ignored since
they have very little effect on the voltages when the networks are normally loaded.

 The loads and generation in the LV network are considered to be aggregated at
each node of the MV network (secondary substation).

 The loads are considered to be of the type PQ-constant. Subsequently, two types
of nodes are considered for the OPF: () slack nodes, representing the interface
between the transmission network and the distribution network, and () PQ
nodes, representing all the other nodes in the network. Other types of loads,
such as Z-constant, I-constant and ZIP can eventually be tested as well, as is the
case in reference [Tou]. This will however necessitate changes in active power
flexibility models.

nb The nomenclature for the equations developed below can be found in Page xvii.

Before we begin, we express the following new variables for the square of current and
voltage:

lij = I2
ij (.)

vi = V 2
i (.)

.. Objective Function

The objective of the problem is to minimise the overall expenditures of the DSO. Since
the utilisation of all flexibilities entails a cost, they are included in the objective function:
OLTC, load modulation, reconfiguration, and DRES curtailment. The functional and
economic aspects of these flexibilities are developed in Chapter  and are integrated into
the formulation below.

min
∑

(ij)∈Ω

24∑
t=1

(
ρl · rij · lijt

)
+
(
ρoltc1 + ρoltc2 ·∆w

)
+
(
ρrec1 + ρrec2 ·∆e

)

+
∑
i

24∑
t=1

[(
ρcurt · P f git

)
+
(
ρcht · P bat,init

)
+
(
ρdct · P bat,outit

)
+
(
ρlcup · P f cupit

)
+
(
ρlcdn · P f cdnit

)
+
(
ρact · aactit · P

f cact
it

)]
(.)

A special case for PQ nodes exists at the secondary of OLTCs, see Section ...
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In this function, the cost of losses and all the flexibilities that the DSO can use in OP
are minimised. Note that we abuse notation in this thesis with respect to losses. Where
it is used, and unless otherwise specified, the term losses referes to the active power
(ohmic) losses in the network. The cost components of flexibility use are represented by
the parameter ρ. The superscripts l, oltc, rec, cur, ch& dc, lcup & lcdn, and act represent
each of the flexibilities. They are the losses, the OLTC, reconfiguration, DRES curtailment,
batteries, types  &  load modulation, and type- load modulation respectively.

The associated variables indicate the use of these components. For the losses, this is
the active power losses rij · lijt. For OLTC and reconfiguration, the use pertains to the
number of operations, described by variable ∆. For all others, this is the active power
P . We abuse notation in the summation for i. The node i belongs in different sets for
different flexibilities, as defined in Page xvii of this thesis.

.. Power Flow Equations

For the slack node(s), at each time step, the power imported from the transmission
network must be equal to the power flowing to the downstream nodes. There is no com-
ponent for losses in these equations owing to the fact the branch flow model aggregates
the losses in the upstream power flows. The constraints on the slack bus are presented
in equations (.) and (.).

P Git =
∑
i∈Ω

Pijt ∀j ∈ Γ d(i) (.)

QGit =
∑
i∈Ω

Qijt ∀j ∈ Γ d(i) (.)

For PQ nodes, at each time step, the net power consumption at the node must be equal
to the difference between the sum of powers imported from the upstream nodes and the
sum of powers exported to the downstream nodes. Keeping with style of aggregating
losses to the upstream power flows, the losses appear in the first summation.

Pjt =
∑
i∈Γ u(j)

(Pijt − rij lijt) −
∑
k∈Γ d (j)

Pjkt (.)

Qjt =
∑
i∈Γ u(j)

(Qijt − xij lijt) −
∑
k∈Γ d (j)

Qjkt (.)

The secondary nodes of transformers with OLTC are a special case of the PQ node,
where the power flow is modelled through linearised variable δqijt for the current flow
through the transformer based on the chosen tap. The linearisation is presented in
Section ...

Pjt =
∑
i∈Γ u(j)

(
Pijt − rij

∑
q∈Ψij

dqijδqijt

)
−

∑
k∈Γ d (j)

Pjkt (.)

Qjt =
∑
i∈Γ u(j)

(
Qijt − rij

∑
q∈Ψij

dqijδqijt

)
−

∑
k∈Γ d (j)

Qjkt (.)
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At all the nodes except for the slack node(s), the net power consumption is calculated
as follows. This is subject to the availability of different flexibilities in the particular
node.

Pjt = P cit − P
g
it − P

f cup
it + P f cdnit + P f git (.)

Qjt =Qcit −Q
g
it −Q

f cup
it +Qf cdnit +Qf git (.)

.. Reconfiguration Constraints

We use the radiality constraints developed in Chapter  in order to constrain the
binary reconfiguration variable ejt. These constraints are expressed below once again,
for ease of reading.

∑
ij∈Ω

eijt = nN − 1 ∀t ∈ T (.)

∑
ij∈C

eijt ≤ nC − 1 ∀C,∀t ∈ T (.)

For reconfiguration to take effect on power lines, eijt has to be introduced to the
power flow equations in Section ... However, the product of a binary variable and
a continuous variable introduces non-convexities. In order to avoid this, a polyhedral
system of equations (.) - (.) is used. Finally, equation (.) forces the non-
manoeuvrable components of the network to be connected at all times. The notation ij
refers to a line from node i to j.

∀ij ∈Ω and < ξ, and ∀t ∈ T :

− eijtPij ≤ Pijt ≤ eijtPij (.)

− eijtQij ≤Qijt ≤ eijtQij (.)

∀ij ∈ ξ and ∀t ∈ T :
eijt = 1 (.)

In the polyhedral system presented above, eijt is multiplied with the upper and
lower limits of power flows in lines. Since these limits are parameters, there is no loss
of convexity. It is to be noted that these limits can be arbitrarily chosen, as the limits
imposed on line flows are usually expressed in terms of apparent power, or current.
If we want to express the reconfiguration variable as a variable independent of time
period (i. e. we allow each power line only one state during the entire time period of the
optimisation), we will have to modify equations (.)-(.). The new equations are
presented below.

∑
ij∈Ω

eij = nN − 1 (.)

∑
ij∈C

eij ≤ nC − 1 ∀C (.)
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− eijPij ≤ Pijt ≤ eijPij (.)

− eijQij ≤Qijt ≤ eijQij (.)

∀ij ∈ ξ:
eij = 1 (.)

.. Voltage and Current Constraints

The squared voltage terms in the constraint (.) are replaced by v as per equation
(.), and equation (.) is obtained as a result. However, a potential problem arises
with reconfiguration. In the case where a particular component ij is open (i. e. eijt = 0 or
eij = 0), equation resolves to vjt = vit. In order to avoid this, it is transformed as disjoint
constraints [LCT]. We obtain constraints (.) - (.) as a result.

∀i, j ∈ Γ and ∀t ∈ T :

vjt = vit − 2(rijPijt + xijQijt) + lijt(r
2
ij + x2

ij ) (.)

vjt ≤ vit − 2(rijPijt + xijQijt) + lijt(r
2
ij + x2

ij ) +M(1− eijt) (.)

vjt ≥ vit − 2(rijPijt + xijQijt) + lijt(r
2
ij + x2

ij )−M(1− eijt) (.)

vjt ≤ vit − 2(rijPijt + xijQijt) + lijt(r
2
ij + x2

ij ) +M(1− eij ) (.)

vjt ≥ vit − 2(rijPijt + xijQijt) + lijt(r
2
ij + x2

ij )−M(1− eij ) (.)

Here, M is a large value introduced to make sure that there is no overlap between
constraints (.) & (.), and between constraints (.) & (.). The safe range of
values that M can take in this case should be greater than the difference between the
square of the voltage limits vi − vi . The voltage and current limits in the network are
expressed below. Constraint (.) is a special case for the slack node where the node
voltage is imposed.

∀i ∈ Γ and ∀t ∈ T :
vit ≤ vi (.)

vit ≥ vi (.)

vit = (V Gt )2 (.)

∀ij ∈Ω and ∀t ∈ T :

lijt ≤ I2
ij (.)

.. Load Modulation Constraints

We recall that in Chapter , three different types of load modulation are modelled.
Here, we describe these flexibilities mathematically. In the first type, the flexible load
is purchased in a fixed gate auction market with a % minimum acceptance ratio
(all-or-nothing order). We model such an upward flexible load through the constraint
below.

P
f cup
it = aaonit · P

f aon
it (.)
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In the second type, for each time step, the upward or downward load flexibility is
modelled as a continuous variable with power limits. Such a flexibility is modelled
through the constraints below.

P
f cup
it ≤ P f cupit ∀i ∈ Γmod ,∀t ∈ T (.)

P
f cdn
it ≤ P f cdnit ∀i ∈ Γmod ,∀t ∈ T (.)

In the third type, the DSO reserves a particular upward capacity for a fee. This
capacity can come with a constraint for the maximum number of activations. The DSO
may or may not be required to equalise the activated power (energy) inside the time
horizon of the optimisation, according to different rules (rebound). A linearised model
for this flexibility is developed via the constraints (.) and (.). Here, ε represents
an infinitesimal value. Equation (.) imposes a maximum number activations of
modulation within the reserved capacity in the given time period. Two different types of
rebounds are modelled. In the first type (.), the DSO has the entire time horizon of the
optimisation (before or after the activation) to perform the rebound. In the second type,
two thirds of the activated flexibility has to be restored in the time period immediately
succeeding the activation, and the remaining one-third in the next time period. This is
modelled through constraints (.) and (.).

∀i ∈ Γact and ∀t ∈ T :

P
f cup
it ≥ aactit · ε (.)

P
f cup
it ≤ aactit · P

f cact
i (.)

∑
t

aactit ≤ aactit (.)

∑
t

P
f cup
it −

∑
t

P
f cdn
it = 0 (.)

t+2∑
t

aactit ≤ 1 (.)

P
f cdn
it = (1/3) · P f cupit−1 (.)

.. OLTC Constraints

We recall that in Chapter , the OLTC was modelled as a line with a transformation ra-
tio (kijt). In order integrate the OLTC into the OP problem, we rely on the convexification
adopted by [Tou]. For the bi-valued variable kqijt, the following is expressed:
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∀ij ∈ κ, ∀q ∈ Ψij , and ∀t ∈ T :

kqijt = dqij ·wqijt (.)

k2
qijt = d2

qij ·wqijt (.)

1
kqijt

=
1
dqij
·wqijt (.)

1

k2
qijt

=
1

d2
qij

·wqijt (.)

∀ij ∈ κ and ∀t ∈ T :∑
q∈Ψij

wqijt = 1 (.)

kijt =
∑
q∈Ψij

dqij ·wqijt (.)

k2
ijt =

∑
q∈Ψij

d2
qij ·wqijt (.)

1

k2
ijt

=
∑
q∈Ψij

1

d2
qij

·wqijt (.)

This means that the variable kqijt will hold the transformation ratio dqij if the tap q
is chosen at time t. Otherwise, its value will be 0. The binary variable wqijt indicates
whether or not the tap q is chosen. Of course, only one tap can be chosen for each time
period as indicated by constraint (.). The final transformation ratio is the sum of the
individual “transformation ratios.”

The OLTC has to be integrated into the voltage and current equations in the OPF.
However, the product between the binary variable wqijt and the continuous variables lijt
and vit can still lead to non-convexities. This is the reason we adopt another reformula-
tion. For each tap, we introduce continuous variables δqijt and γqijt such that:

0 ≤ δqijt ≤ I2
ij ·wqijt (.)

lijt − (Iij )2(1−wqijt) ≤ δqijt ≤ lijt (.)

V 2
i ·wqijt ≤ γqijt ≤ V 2

i ·wqijt (.)

vit −V 2
i (1−wqijt) ≤ γqijt ≤ vit −V 2

i (1−wqijt) (.)

Constraints (.) and (.) are then introduced are special cases of (.) and (.)
respectively. Constraints (.) and (.) are also introduced are special cases of (.)
and (.) respectively.

∀ij ∈ κ, ∀q ∈ Ψij and ∀t ∈ T :

vjt ≤
∑
q

γqijt

d2
qijt

+ (r2
ij + x2

ij )
∑
q

d2
qijt · δqijt − 2(rij · Pijt + xij ·Qijt) +M(1− eijt) (.)

vjt ≥
∑
q

γqijt

d2
qijt

+ (r2
ij + x2

ij )
∑
q

d2
qijt · δqijt − 2(rij · Pijt + xij ·Qijt)−M(1− eijt) (.)

vjt ≤
∑
q

γqijt

d2
qijt

+ (r2
ij + x2

ij )
∑
q

d2
qijt · δqijt − 2(rij · Pijt + xij ·Qijt) +M(1− eij ) (.)

vjt ≥
∑
q

γqijt

d2
qijt

+ (r2
ij + x2

ij )
∑
q

d2
qijt · δqijt − 2(rij · Pijt + xij ·Qijt)−M(1− eij ) (.)

∆wij ≤ ∆w (.)
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.. Linearisation of Register Variables

In order to count number of reconfigurations and tap changes, two register variables
∆eij and ∆wij exist. Here, we present a linearised method to evaluate them. We introduce
temporary variables ex and ec. Then, we express the following:

∀ij ∈Ω and < ξ, and ∀t ∈ T :

exijt ≤
e0
ij , t = 1

eijt−1, t > 1
(.)

exijt ≥
e0
ij + eijt − 1, t = 1

eijt−1 + eijt − 1, t > 1
(.)

ecijt =

e0
ij + eijt − 2 · exijt , t = 1

eijt−1 + eijt − 2 · exijt , t > 1
(.)

∆eij =
∑
t

ecijt (.)

∆eij ≤ ∆eij (.)

∆e =
∑
ij

∆eij (.)

Once again, in case the reconfiguration variable can take only one value for the entire time
period of the optimisation, we will proceed to calculate the number of reconfigurations
as follows:

∀ij ∈Ω and < ξ :
exij ≤ e0

ij (.)

exij ≤ eij (.)

exij ≥ e0
ij + eij − 1 (.)

∆eij = eij + e0
ij − 2exij (.)

∆e =
∑
ij

∆eij (.)

In both cases, the number of reconfigurations performed is calculated with respect to
an original configuration e0. In order to count the number of tap changes of the OLTC in
a linearised manner, we express the following:

∀ij ∈ κ, ∀q ∈ Ψij and ∀t ∈ T :
wxqijt ≤ wqijt (.)

wxqijt ≤ wqijt−1 (.)

wxqijt ≥ wqijt +wqijt−1 − 1 (.)

∆wij = 0.5
(∑

q

∑
t

(wqijt +wqijt−1 − 2wxqijt)
)

(.)

∆w =
∑
ij

∆wij (.)
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.. Battery System Constraints

To control the charging and discharging power of battery systems present in the
network, we impose the following constraints. These constraints have already been
developed in Chapter . Equation (.) describes the state of charge of the battery,
while equations (.)–(.) provide the limits for the state of charge and the charging
and discharging powers for the battery.

∀i ∈ Γbat & ∀t ∈ T :
Esocit = Esoci,t−1 + ηini · P bat,init − ηout · P bat,outit (.)

Esoci ≤ Esocit ≤ Esoci (.)

P bat,init ≤ P bati (.)

P bat,outit ≤ P bati (.)

.. DRES Flexibility Constraints

The models for flexibility from DRES connected to the network were elaborated in
Chapter  of this thesis. Here, we mathematically describe these limits as constraints.
The constraint (.) expresses the limits for for DRES curtailment, while constraint
(.) does the same for reactive power control of DRES.

∀i ∈ Γg :

P
f g
it ≤ P

f g
it (.)

Q
f g
it ≤Q

f g
it ≤Q

f g
it (.)

.. Other Constraints

Since we consider only PQ loads for the scope of this thesis, we need to constrain the
reactive power of the activated load flexibility as a function of the load’s power factor.
This is done through constraints (.)-(.) expressed below.

Q
f cup
it = P f cupit · tan(φ)i (.)

Q
f cdn
it = P f cdnit · tan(φ)i (.)

.. Second-Order Cone Relaxation

The second-order cone relaxation described in equation (.) becomes equation
(.) when the variable changes are performed. A computationally tractable version
of the relaxation (without the division) is shown in equation (.). The feasibility of
this relaxation can be measured by evaluating the left hand side of the same equation.

lijt ≥
P 2
ijt +Q2

ijt

vit
∀i ∈ Γ ,∀ij ∈Ω,∀t ∈ T (.)

4P 2
ijt + 4Q2

ijt + (lijt − vit)2 − (lijt + vit)
2 ≤ 0 (.)
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.. Baseline Expenditures

In order to measure the major aspect of the performance of the novel OP formulation,
the expenditures “incurred” by the DSO without the optimisation have to be computed.
This can subsequently be compared to the expenditures incurred by the DSO with the
optimisation, as computed by the objective function (.). These baseline expenditures
can be established by computing the expenditures of losses and the expenditures due to
the energy not distributed, as shown below:

ρorg =
(
ρl · rij · lijt

)
+
∑
i∈Γ !

∑
t∈T

(
ρend · P cit

)
+

∑
ij∈Ω!

∑
t∈T

(
ρend · Pijt

)
(.)

It is to be noted that this formula considers that during a particular time period,
any voltage violation in a node (represented by the set Γ !) or current violation in a
line (represented by the set Ω!) renders the injected / transported energy as energy not
distributed. The DSO is penalised accordingly. However, this penalty is only imposed in
order to compute a cost for benchmarking purposes. These costs for violations are not
really incurred by the DSO.

.. Final Model Equations

All the flexibilities described in Chapter  have thus been integrated into the novel
mixed-integer convex OP formulation. Now, to test this formulation, we develop test
cases. Based on the type of flexibility available for optimisation,  test cases are thus
developed. Table . in page  presents the equations and constraints that constitute
each of these cases.

. solution recovery – the dichotomic search

heuristic

In section ..., the conditions necessary for the exactness of the second-order
cone relaxation were discussed. For the operational planning problem described in this
chapter, the objective function satisfies condition  (convexity). However, it may not
always respect condition . This means that under certain cases, this relaxation can
fail. While it is to be noted that we obtain a lower bound for the overall expenditures
even if the relaxation fails, what we are really interested in is obtaining a usable optimal
solution.

The easiest way to achieve this is to change the objective function, and the simplest
objective function that satisfies condition  is shown in equation (.). However, since
the purpose of the optimisation is to minimise overall expenditures of the DSO, and not
just the cost of losses, the remainder of the original objective function has to be taken
into consideration as well. This is achieved by transforming the remainder into a new
constraint (.).

min
∑
ij∈Ω

∑
t∈T

(ρdat rij lijt) (.)
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Table .: Novel OP Formulation – Equations Constituting the Different Test Cases

Equations common to all test cases: (.) – (.), (.) – (.), (.) – (.), (.), (.) – (.), (.)

Test Description
Equations Specific to the Test Case

Case Reconfiguration Load Modulation

OP − eol2  for the optimisation horizon Type-
(.) – (.), (.) – (.), (.) – (.),
(.) – (.), (.) – (.)

OP − eol3a  for the optimisation horizon Types  to  – No Rebound
(.) – (.), (.) – (.), (.) – (.),
(.) – (.), (.) – (.)

OP − eol3b  for the optimisation horizon Types  to  – Rebound Type-
(.) – (.), (.) – (.), (.) – (.),
(.) – (.), (.) – (.), (.) – (.)

OP − eol3c  for the optimisation horizon Types  to  – Rebound Type-
(.) – (.), (.) – (.), (.) – (.),
(.) – (.), (.) – (.), (.) – (.)

OP − etol3a -T for the optimisation horizon Types  to  – No Rebound
(.) – (.), (.) – (.), (.) – (.),
(.) – (.), (.) – (.)

OP − etol3b -T for the optimisation horizon Types  to  – Rebound Type-
(.) – (.), (.) – (.), (.) – (.),
(.) – (.), (.) – (.)

OP − etol3c -T for the optimisation horizon Types  to  – Rebound Type-
(.) – (.), (.) – (.), (.) – (.),
(.) – (.), (.) – (.), (.) – (.)

nb The other modelled flexibilities are available for optimisation in all the problems.
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∑
i

24∑
t=1

[(
ρact · aactit · P

f cact
it

)
+
(
ρlcup · P f cupit

)
+
(
ρlcdn · P f cdnit

)
+
(
ρcht · P bat,init

)
+
(
ρdct · P bat,outit

)
+
(
ρcurt · P f git

)]
+
(
ρoltc1 + ρoltc2 ·∆w

)
+
(
ρrec1 + ρrec2 ·∆e

)
≤ ρlim

(.)

In this new formulation, all the equations for the different test cases presented in Table
. remain the same, except for the objective function (.). This function is replaced
by (.) and the constraint (.) is added to all the test cases. In order to obtain
a globally optimal solution in case the relaxation fails, we present a simple heuristic
procedure to be followed. A similar approach to obtaining globally optimal solutions
with only discrete load modulation flexibilities is presented in [Van]. In our case, the
heuristic procedure works with all types of load modulation.

∀t ∈ T : Let f ∗ be the solution to the original problem. In order to recover a physically
meaningful solution f ∗∗ for the problem, we run our new problem using the following
heuristic procedure.

: procedure GlobOpt(f ∗)
: low← f ∗
: high← ρlim

: err← high− low
: while err > 0.01 do
: f ∗∗ = min MISOCP-ΠDAb
: if relaxation holds and (f ∗∗ + ρlim) decreases then
: store f ∗∗, ρlim
: high← ρlim

: ρlim← ρlim − (ρlim − low)/2
: else
: low← ρlim

: ρlim← ρlim + (high− ρlim)/2
: end if
: err← high− ρlim
: end while
: if high− low > 0.01 then
: ρlim← high− 0.01
: Repeat steps 6 to 14
: end if
: return results
: end procedure

The procedure works on a dichotomic search heuristic, decreasing the gap between
the current feasible optimum and the global feasible optimum with each iteration. The
limiting cost ρlim decreases with every iteration where the relaxation holds and the final
objective (DSO expenditures) decreases. In each of the assignment statements, the cost is
rounded-up to the nearest cent (0.01e). The choice of ρlim affects the execution time of
the algorithm. In the worst case scenario, for a given value of ρlim, the algorithm executes
in logarithmic time. Experimental proof that this procedure produces an optimal result
for the novel OP formulation is presented in Section .. in Chapter .
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4.7. CONCLUSIONS

. conclusions

In this chapter, the concepts underlying the operational planning of power systems
were first introduced. This included the concept of mathematical reformulations, the
unit commitment and economic dispatch (UC & ED) problem, and the optimal power
flow (OPF) problem. This was followed by a review of the relevant literature in the field
of OPF formulation in general and OP formulations and for distribution networks. This
review highlighted the advantages and shortcomings of the methods currently employed
in research. A summary of the different approaches helped us select a modelling
technique for the novel OP formulation for distribution networks.

The novel OP formulation is a mixed-integer distribution network operational plan-
ning method based on a convex relaxation of the optimal power flow (OPF). This for-
mulation was subsequently developed and presented. This method, whose objective
is to decrease overall DSO expenditures on flexibilities, integrated both continuous
and discrete flexibilities in distribution networks. Discrete flexibilities like on-load tap
changers and reconfiguration were integrated without simplification with the aid of
reformulation techniques. The conditions under which the convex relaxation used in
this method holds, meaning the method can find a global optimum, were also discussed.
Different test cases were created based on the types of flexibilities used.

Since the objective function of the developed method does not always satisfy the
conditions, meaning that the obtained solution may not be feasible for the original OPF
problem, a new problem with a new objective function and an additional constraint was
cast. It was further argued that this new problem could be solved with global optimality
using a dichotomic search algorithm that is developed and presented.

In the next chapter, we test the novel OP formulation for distribution networks with
the test cases developed in Table .. The solution recovery algorithm is also tested in
the chapter. The main results from these tests are presented and discussed, and are used
to validate the models developed in this chapter.

a
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5Novel OP Formulation – Results

« One plus one equals three, for very large values of one. »
- Anonymous

. introduction

.. Context

The novel mixed-integer convex operational planning (OP) formulation developed in
this thesis was presented in Chapter . This formulation integrates discrete flexibilities
such as reconfiguration and OLTC, and convexifies the power flow equations, all through
reformulations. These reformulations, including the second-order cone programming
(SOCP) relaxation enables us to derive a mixed-integer SOCP (MISOCP) model for the OP
problem in distribution networks. This formulation represents the distribution network
and the flexibilities without loss of exactness. Therefore, its solutions, if feasible for
the underlying optimal power flow (OPF) problem, are globally optimal and physically
meaningful.

However, the SOCP relaxation may possibly fail under certain conditions. This will
render the solution physically useless. To recover a globally-optimal and physically
meaningful solution under such circumstances, a solution-recovery procedure based on
a dichotomic search heuristic was also presented in Chapter . Finally, a set of test cases
with different combinations of flexibilities was outlined (see Table .).

In this chapter, the results for tests of the novel OP formulation are presented. These
tests are performed for the day-ahead optimisation stage, and are conducted based on
the test cases outlined in Table .. The contributions of this chapter to the thesis are as
follows (numbering consistent with the contributions listed in Chapter ):

C Tests of the novel OP formulation with networks, for varying levels of DRES
integration, and for different levels of flexibility utilisation.

C A discussion of the use of flexibility in operational planning, and the effects on
the solution characteristics of the problem.

The inputs required for the novel OP formulation are outlined below:

 Flexibilities & Costs: The economic information pertaining to the flexibilities that
are considered in these tests is presented in Chapter . The linearised models for
these flexibilities have already been integrated into the novel OP formulation.

 Test Networks: Two test networks are used to test the novel OP formulation. One
of them is an IEEE test network, and the other is a real-world test network present
in PREDIS platform of Grenoble INP-Ense, in the University of Grenoble-Alps.
The test networks are briefly presented in Section ... Additional information
for these networks can be found in Appendix B.
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 Test Parameters: Parameters like the load and DRES forecasts are based on load
/ production curves available or used in literature. Other parameters like the
limits on flexibilities are based on intuitive decisions. In all cases, the choice of
parameters is explained. The test parameters are presented in Section ...

.. Test Networks

As mentioned earlier, two test distribution networks are used to evaluate the perfor-
mance of the developed novel OP formulation. Both the networks are briefly described
below. Further information on them can be found in Appendix B. This information
includes the resistances and reactances of the lines, information related to type, size and
location of DRES, and the calculations for load and DRES forecasts.

... The Baran Network
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Figure .: The Baran Test Network

The Baran test network [BWb] is a
.kV test network with  nodes and
 lines. Out of the  lines,  are nor-
mally closed, and  are normally open.
The network has one OLTC installed be-
tween nodes  and . This OLTC has 
taps. An illustration of the network is
shown in Fig. ..

This network does not have any DRES
installed originally. To insert DRES into
the network, we first refer to the details
related to the DRES installed capacity in
the distribution networks of Enedis, the
largest DSO in France [ENE]. The type,
location, and rating of the DRES to be
inserted into the network is then chosen
based on the available data. For our tests,
we choose a % insertion rate. Further
information on this calculation is presented in Appendix B. The main characteristics of
the network are summarised in Table ..

Table .: Baran Test Network – Main Characteristics

Characteristics Value

Nodes  ( Slack,  PQ)
Lines  ( NC,  NO, All Manoeuvrable)

Connected Load .MW (.MVA)
OLTC  Taps, .pu per tap

DRES (%)

Wind PV

Node Wp Node Wp

 .MW  .MW
 .MW
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... The PREDIS Network
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Figure .: The Baran Test Network

The PREDIS test network [LTCR+]
is an  kV mixed urban-rural network is
reduced scale test distribution network in
GELab/Grenoble INP-Ense, at the Uni-
versity of Grenoble Alps. This network
has  nodes and  lines. Out of the 
lines,  lines are normally open and 
are normally closed. The network has 
OLTCs installed between the nodes {-, -
, -}. The network has been extracted
from a kV real distribution network in
South of France respecting both sizing and
voltage drop characteristics, and is shown
Fig. ..

The PREDIS network (with urban
and sub-urban characteristics) is strong
enough to withstand a large integration of
DRES. To this end, for tests with the PREDIS network, we use a DRES insertion rate
of % instead of %. This network has wind DRES installed in nodes , , /, &
/. Given these locations of the DRES in the network, we choose to apply only forecast
weights to the DRES to obtain the final forecasts. The values for these final forecasts are
illustrated in Section ...

The connection points of the DRES connected to nodes / and / can be modified
nased on the need. Nodes - are rural nodes, and tests with DRES connected to these
nodes can therefore be made if necessary. In our test case, we consider the following.
The DRES connected to node moves to node  during the th hour, while the DRES
connected to node moves to node  during the th hour of the day. Further, all the
loads connected to this network can be controlled in a continuous manner. This means
that they can be modelled using type- load modulation. The main characteristics are
presented in Table ..

Table .: PREDIS Test Network – Main Characteristics

Characteristics Value

Nodes  ( Slack,  PQ)
Lines  ( NC,  NO, All Manoeuvrable)

Connected Load .MW (MVA)
OLTC  Taps, .pu per tap

DRES (%)

Wind

Node Wp Node Wp

 .MW / .MW
 .MW / .MW

The reasoning behind the choice of networks is as follows. Firstly, the Baran network
has an OLTC, can be reconfigured, and has all types of flexibilities available. This allows
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us to test all the flexibilities and the performance of the OP formulation on difficult test
cases. Secondly, in our tests, the SOCP relaxation fails for the PREDIS test network. This
will allow us to test the solution recovery search heuristic on the network.

.. Test Parameters

To test the novel OP formulation with the test networks presented in the next section,
values have to be chosen for various input parameters. These parameters include the
load and DRES forecasts, the DRES insertion rate, the voltage limits, the choice of
load modulation and the respective limits, the DRES curtailment and reactive power
compensation limits, battery characteristics, and the costs for flexibility among others.
The choice of these values is explained in this section.

... Forecasts

The novel OP formulation requires input forecasts for all the loads and DRES present
in the network to be optimised. Three different types of loads are considered in the tests:
residential, industrial, and commercial. Each of these types of loads shows different
consumption patterns during the day. We create weights to model this behaviour. These
weights are based on a modified, normalised version of the weights presented by Shih-An
and Chan-Nan [SC].

A typical PV forecast is constructed from the output measurements made between
 and  on the PV systems at GELab. Wind forecasts are considered to be
random. These forecasts are then converted to weights. The load forecast weights are
illustrated in Fig. ..
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Figure .: Load Forecasts – Weights by Type

DRES forecast weights for the Baran network are illustrated in Fig. .. For the
PREDIS network, they are illustrated in Fig. ..

... The Use of Reconfiguration and OLTC

We model two types of problems for network reconfiguration in Chapter . In
the first problem, the statuses of reconfiguration switches are time dependent. This
means that reconfiguration actions can be performed at any hour inside the optimisation
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Figure .: DRES Forecasts for the Baran Network – Weights by Type
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Figure .: DRES Forecasts for the PREDIS Network – Weights by Type

horizon. This is subject to a limit on the total number of reconfiguration actions allowed
for each switch during the entire optimisation time horizon. It is imposed by a constraint
on the variable ∆eij . In the second problem, the configuration of the network is time
independent. The reconfiguration actions are therefore imposed on the entire time
period. The second model is more tractable, but comes with the disadvantage of not
being able to change the configuration when needed, and also forcing changes in the
configuration of the network at the beginning of the optimisation period in a systematic
manner. In the first model, the tractability of the novel OP formulation is influenced by
the limits on ∆eij .

When weighing the effectiveness of the problems, the tractability of the problem
should however not be the only criterion. In practice, DSOs use reconfiguration for
seasonal / yearly reconfiguration of their networks. They do not use it on a daily basis.
This stems from the consideration that network reconfiguration switches are expensive
and unreliable, and that frequent reconfigurations create transients. Reconfiguration
can nevertheless be a highly valuable flexibility, and research has shown the added value
of network reconfiguration time and again.
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We therefore test reconfiguration in three different ways. In the first, we allow the
OP formulation to choose one configuration for every time-step of the optimisation.
This means that ∆eij is limited to  changes a day. In the second, we allow the OP
formulation to change the status of a line ij once, at any time-step of the optimisation.
This means that ∆eij is limited to . In the third, we impose the the time independent
reconfiguration model.

As for OLTCs, the number of tap changes permitted for each OLTC in the optimisation
time horizon can be controlled by imposing a constraint on the register variable ∆wij . In
practice, OLTCs automatically change taps based on the measurement of downstream
voltages. The advantage of this method is that it allows for as many tap changes as
required, without any need for exhaustive computation. However, we have already
shown in this thesis why such an automatic system would not be suitable with a high
integration of DRES (see Chapter , Section ..). Allowing the OLTC to be controlled
by the novel OP formulation can overcome this issue.

For operational planning done over  one-hour periods like the novel OP formula-
tion, a maximum of  tap changes can be allowed. As is the case with reconfiguration,
this influences the tractability. However, there is more clarity with the practical use
of OLTCs than that of reconfiguration. In keeping with the current DSO practices, we
therefore decide to allow for as many tap changes as possible. In order to see whether
these considerations on the use of endogenous flexibilities have any impact on the results,
we perform an analysis of the results with respect to their use. This is presented after
the results, in Section ..

... Load Modulation

We recall that three types of load modulation were modelled in Chapter . The
parameters for these load modulation types are outlined in Table .. These parameters
outline the limits for each type, along with the time-frame for these limits.

Table .: Load Modulation – Characteristics & Parameters

Type Limits

Type- %, %, % and % of load for each t
Type- Minimum load in T
Type- [-%, +%] for each t

For test cases with type- load modulation, a total of  nodes are chosen, resulting in
 type- flexibility offers ( x  x ). For the Baran network, the nodes chosen for
type- load modulation are nodes {, , , , , }. This choice is made as these
nodes have industrial loads connected to them, with potential processes allowing for
load modulation based on capacity reservation.

We also arbitrarily decide to choose all odd-numbered nodes in the network other
than any nodes with type- modulation for type- modulation. Similarly, all even-
numbered nodes other than any nodes with type- modulation are chosen for type-
modulation.
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... DRES, Battery & Voltage Limits

For DRES curtailment we choose a limit of % of the produced power. For DRES
reactive power compensation, this limit is [-%, +%]. This means that each DRES
can inject upto %, and consume % of its actual active power production in terms
of reactive power. This is in line with the model developed in Chapter , based on the
guidelines used by DSOs like Enedis [ENE]. As far as the batteries are concerned,
all the networks are considered to have a certain number of kWh batteries. These
batteries are installed in even-numbered nodes of the networks, and can ramp to %
in one hour. The voltage limits imposed on the network throughout the optimisation
period are ±%, in accordance with the widely accepted limits imposed by DSOs on
their MV distribution networks. These limits are imposed based on contractual rules
and allow for better voltage control on their LV networks. The voltage of the slack node
is set at .pu for all the optimisation tests.

... Cost Parameters

The novel OP formulation is a technico-economic optimisation formulation. It
requires the costs of the flexibilities it uses, in order to calculate the final expenditures
to the DSO. The calculation of costs for the flexibilities used in the formulation has
already been done as a part of the economic analysis of flexibilities in Chapter . For
convenience, we outline the costs of the flexibilities again in Table ..

Table .: Test Parameters – Flexibility Costs

Flexibility Cost

OLTC . e per day + . e per tap change
Reconfiguration . e per day + . e per switching action

Active Power Losses  e per MWh

Load Modulation
Types  &  Day-Ahead Market Price

Type-  e per MWh for every activation

Battery
Charge -. to -. e per MWh

Discharge . to . e per MWh

.. Test Environment

The General Algebraic Modeling System (GAMS) [GAM] with a Matlab® interface
is used to model the novel OP formulation. The Branch-and-Cut method in the IBM
CPLEX® solver is used to solve the MISOCP problems with global optimality. The proof
of optimality of the solution with this method is presented Appendix A. All the tests
for which the results are presented in this chapter and in Appendix B have been carried
out on a computer with a -core Intel® Xeon® E- processor and  GB of RAM,
running Windows Server .

.. Organisation of Results

The rest of this chapter is organised as follows. The main test results for the Baran
test network are presented in Section .. This is followed by the results for the PREDIS
network, presented in Section .. A discussion of the performance of the novel OP
formulation and the flexibilities is then presented in Section .. Finally, the conclusions
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on the test cases and the results are presented in Section .. Test results for some
combinations of the test cases / networks that have not been included in this chapter
can be found in Appendix B. An overview of the test cases and the location of the
corresponding results are presented is shown in Table ..

Table .: Organisation of Results for Test Cases

Test Networks Test Cases Main Results Additional Results

Baran
OP − eol3a – OP − eol3c Section . Appendix B
OP − etol3a – OP − etol3c Section . Section .
OP − eol3a Section . —

PREDIS OP − eol2 (Solution Recovery) Section . —

In order to illustrate the working of the solution recovery search heuristic, a simple
test case OP − eol2is presented. The algorithm is also applied to a test case for the Baran
network, for which the relaxation holds. This is done to prove that both the original
optimisation and the solution recovery algorithm converge to the same objective.

. results – the baran network

In this section, the results obtained when the novel OP formulation is tested using
the Baran network are presented. Due to the paucity of space, the results of three test
cases are elaborated and discussed, while the results of the other test cases are simply
outlined. A comparison of the performance of the algorithm across the test cases is also
presented. First, the original conditions in the network are outlined.

.. Original Conditions

We run simulations for the Baran network with the load and DRES forecasts, without
the use of flexibility. This provides an idea of the refereccnce / original conditions,
including the violated constraints. The original network voltages across the -hour test
period are shown in Fig. .. This illustration is a heat-map of the different voltages in
the nodes, with colours ranging from dark blue (.pu) to yellow (.pu).

The lowest voltage observed, .pu, occurs at hour  in node . Among the 
voltages calculated for the network, there are  violations of the lower voltage limit of
.pu, but no violations of the upper limit of .pu. There are no current violations
in the network. It can be concluded that this network therefore suffers only from under
voltage problems in this case. The nodes with major voltage issues are the end nodes of
the two longest feeders, nodes  and , with  hours of under voltages. Upstream,
there is a progressive decrease in the number of hours when under voltages occur, with
node  exhibiting  violations. The other feeders do not have any voltage violations. The
active power losses in the network over the -hour period are .MWh. Finally, the
expenditures “incurred” by the DSO, over the -hour period and on the entire network,
without the optimisation amount to  . e, as computed using the formula (.).
Note that these costs are not actually incurred, but serve as a reference to benchmark the
improvement attained with the novel OP formulation.

For verification of optimality of the solution recovery heuristic.





5.2. RESULTS – THE BARAN NETWORK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Node

T
im

e
(h
)

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

V
ol
ta
ge

(p
u
)

Figure .: Baran Network – Original Voltages for % DRES Insertion Rate

.. Results – All Flexibilities without Rebound

We now test the Baran network using all available flexibilities, without imposing
any rebound on type- load modulation. The test case in question is OP − etol3a. The
number of switching actions for every reconfiguration switch and the tap changes for all
OLTCs is set at one per time period. This translates to a total of  actions for each of
these flexibilities.

Because of the high number of discrete variables, this case is hard to solve. However,
by allowing the highest possible number of changes for every reconfiguration switch and
OLTC, this test case will, in the best scenario, provide the lowest objective function value
among all the cases. In the worst scenario, its objective function should be the lowest
as well. But depending on the results, other, more tractable cases may produce similar
results. More information on this is presented in Section .. A summary of the results
obtained for this test case is outlined in Table ..

Table .: Baran Network – Results for Test Case OP − etol3a
Description Value

DSO Expenditures (Objective) . e
Execution Time . seconds

Active Losses .MWh
Tap Setting  (Hours –)

Open Switches C (Hours –)

Load Modulation (kWh)
Type- Type- Type-
. . .

DRES Curtailment —
DRES Reactive Compensation .MVArh (Injection)

Average Relaxation Error . VA

The final objective function value (DSO expenditures) for this test case amounts to
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. e. This is very little compared to the original expenditures, and this is mainly
owing to the fact that there are no violations of the operating limits, and hence no energy
not distributed. The execution time for the optimisation is around ⁄ hours. There is
a .% reduction in active losses over the optimisation period. The OLTC in the
network is set to tap  for all the hours. Configuration C corresponds to the set of open
switches {–, –, –, –, –} in the network.

All three load modulation types are used. The total load modulation achieved is
around .MWh. None of the DRES is curtailed, while .MVArh of reactive power
compensation is used from the three DRES present in the network. Finally, the average
relaxation error is around .VA, meaning that the relaxation holds well for this test
case. Note that this error is calculated by evaluating the equation (.) with the values
of the decision variables obtained from the OP formulation. It is the difference between
the left and right hand sides of the equation.

The optimised network voltages for this test case are presented in Fig. .. For
uniformity, the colour-space from Fig. . is preserved. The lowest optimised voltage
in the network is .pu, observed at node  during hour . The highest optimised
voltage is .pu, observed at node  during hours  and .
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Figure .: Baran Network – Optimised Voltages for Test Case OP − etol3a

The aggregated load curves for the network before and after load modulation are
shown in Fig... Since there is no rebound, there is no load shifting observed in this
test case. Instead, it is only peak load shaving that occurs, during hours , , , & ,
in nodes , , & -. The total load modulation used by the novel OP formulation
corresponds to only .% of the total load in the network.

Node  is the only one chosen for Type- load modulation. A total of .kWh
is shaved off in this node during hour . This is illustrated in Fig. .. Type- load
modulation is employed in node . A total of .kWh is reduced from the peak load
during hours  and . This is illustrated in Fig. .a.


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Figure .: Baran Network – Aggregated Load Modulation Curves for Test Case OP − etol3a
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Figure .: Baran Network – Type-Modulation
(Node ) for Test Case OP − etol3a

As for type- load modulation, three
nodes – , , and  – are chosen. With-
out any need to reinject the modulated
energy, a total of .kWh of energy is
shaved off in these three nodes. Node 
contributes to a reduction of .kWh of
energy during hour . This is illustrated
in Fig. .b. Node  contributes to a re-
duction of .kWh during hour , as
illustrated in Fig..a. Finally, node 
contributes to a reduction of .kWh
during hours  and  and this is illus-
trated in Fig. .b.

The  DRES generators present in the
network contribute to the mitigation of
the voltage deviations in the network via
reactive power compensation. This contri-
bution is illustrated in Fig. .. In fact, all the generators are all maxed-out in terms of
their reactive power injection limit (tanφ = 0.4) throughout the optimisation period. In
the next section, the results for the Baran test network with all flexibilities and type-
rebound are presented.

.. Results – All Flexibilities with Type- Rebound

We now impose type- rebound on all the type- load modulation available in the
network. This corresponds to the test case OP − etol3b. We recall that in type- rebound,
the novel OP formulation is able to equalise the decrease in consumption over the entire
time horizon of the optimisation. A summary of the results obtained for this test case is
outlined in Table ..
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(a) Type- Load Modulation (Node )
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Figure .: Baran Network – Load Modulation Types  &  for Test Case OP − etol3a
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(a) Type- Load Modulation (Node )
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Figure .: Baran Network – Type- Load Modulation for Test Case OP − etol3a

Because of the high number of discrete variables, this case is once again hard to
solve. The final objective function value (DSO expenditures) for this test case amounts to
. e. The execution time for the optimisation is around ⁄ hours as well. There is a
.% reduction in active losses over the optimisation period. The OLTC in the network
is set to tap  for all the hours. Configuration C, which is the same as the configuration
chosen for the test case OP − etol3a, corresponds to the set of open switches {–, –,
–, –, –} in the network.

Once again, all three load modulation types are used. The total load modulation
achieved is around .MWh. None of the DRES is curtailed, while . MVArh
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Figure .: Baran Network – DRES Reactive Power Compensation for Test Case OP − etol3a

Table .: Baran Network – Results for Test Case OP − etol3b
Description Value

DSO Expenditures (Objective) . e
Execution Time . seconds

Active Losses .MWh
Tap Setting  (Hours –)

Open Switches C (Hours –)

Load Modulation (kWh)
Type- Type- Type-
. . .

DRES Curtailment —
DRES Reactive Compensation .MVArh (Injection)

Average Relaxation Error . VA

of reactive power compensation is used from the three DRES present in the network.
This is means that the reactive power injection from the DRES is maxed-out for this test
case as well. Finally, the average relaxation error is around .VA, meaning that the
relaxation holds well for this test case.

The optimised network voltages for this test case are presented in Fig... Once
again, the colour-space from Fig. . is preserved for uniformity. The lowest optimised
voltage in the network is .pu, observed at node  during hour . The highest
observed voltage in the optimised network is .pu, at node  during hour .

The aggregated load curves for the network before and after load modulation are
shown in Fig. .. This is a classic example of peak load shaving and shifting. During
peak loading hours  – , there is a reduction in the load. Part of this reduced load


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Figure .: Baran Network – Optimised Voltages for Test Case OP − etol − 3b

(type- load modulation) is moved to off-peak hours , , , , and , in an anticipation
of the reduction that occurs later in the day. The total load modulation in this test case
corresponds to .% of the total load in the network.
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Figure .: Baran Network – Aggregated Load Modulation Curves for Test Case OP − etol − 3b

Four Type- modulation offers are chosen in node . Among these,  are in hour
 and  is in hour . A total of kWh is decreased using this flexibility. This is
illustrated in Fig. .a. Type-modulation occurs during hours  and , in node ,
and corresponds to a reduction of .kWh. This is illustrated in Fig. .b. Two nodes
are chosen by the novel OP formulation for type- load modulation for this test case –
nodes  and . The modulation performed on the loads in these nodes is illustrated in
Fig. .. In node , a load reduction of .kWh occurs at hour , and this load is
shifted to hours  and . In node , a reduction of .kWh occurs during hour ,
and the reduced load is shifted to hours , , ,  & .


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Figure .: Baran Network – Type  and Type  Load Modulation for Test Case OP − etol − 3b
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Figure .: Baran Network – Type  Load Modulation for Test Case OP − etol − 3b

As mentioned earlier in the section, the reactive power compensation for this test
case from the  DRES present in the network is the same as that for test case OP − etol3a.
This has already been illustrated in Fig. .. In the next section, the results obtained for
the Baran network when the type- load modulation is used with type- rebound are
presented.

.. Results – All Flexibilities with Type  Rebound

The test case OP − etol3c corresponds to the use of all flexibility, and all type- load
modulation is used with type- rebound. We recall that type- rebound corresponds to a
rebound of one-third of the decreased load in the hour immediately after the decrease,


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with a possibility to equalise the remaining two-thirds of the decreased energy during the
entire time horizon of the optimisation. Given of the high number of discrete variables
and also the additional constraints imposed by the rebound, this case is probably the
hardest to solve. A summary of the results obtained for this test case is presented in
Table .. The optimised network voltages are illustrated in Fig. .. The colour-space
from Fig. . is preserved once again for uniformity.

Table .: Baran Network – Results for Test Case OP − etol3c
Description Value

DSO Expenditures (Objective) . e
Execution Time . seconds

Active Losses .MWh
Tap Setting  (Hours –)

Open Switches C (Hours –)

Load Modulation (kWh)
Type- Type- Type-
. . .

DRES Curtailment —
DRES Reactive Compensation .MVArh (Injection)

Average Relaxation Error . VA
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Figure .: Baran Network – Optimised Voltages for Test Case OP − etol3c
The final objective function value (DSO expenditures) for this test case amounts to

. e. The execution time for the optimisation is around  hours and  minutes.
There is a .% reduction in active losses over the optimisation period. The OLTC in
the network is set to tap  for all the hours. Configuration C, which is the same as
the configuration chosen for the test case OP − etol3a, corresponds to the set of open
switches {–, –, –, –, –} in the network. Once again, all three load
modulation types are used. The total load modulation achieved is around .MWh.

None of the DRES is curtailed, while .MVArh of reactive power compensation is
used from the three DRES present in the network. This is means that the reactive power
injection from the DRES is maxed-out for this test case as well. Finally, the average
relaxation error is around .VA, meaning that the relaxation holds well for this test


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case. The lowest optimised voltage is .pu, observed at node  during hour . The
highest optimised voltage observed is .pu, at node  during hours  and .

The aggregated load curves for the network before and after load modulation are
shown in Fig. .. This is another example of peak load shaving and shifting. During
peak loading hours  – , there is a reduction in the load. Part of this reduced load
is moved to off-peak hour . Another part is equalised during hours  and , due
to the type- rebound constraint. The rebound during hour  is not reflected on the
aggregated curve because of a larger load reduction at another node. The total load
modulation in this test case corresponds to .% of the total load in the network.
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Figure .: Baran Network – Aggregated Load Modulation Curves for Test Case OP − etol − 3c
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Figure .: Baran Network – Type-Modulation
(Node ) for Test Case OP − etol3c

Six type- load modulation offers from
node  are selected. Two of these offers
are during hour , and contribute to a re-
duction of .kWh. The four remaining
offers are selected during hour  and con-
tribute to a reduction of .kWh. This is
illustrated in Fig. ..

Nodes  and  are chosen for type-
 load modulation. In node , there is
a reduction of .kWh during hour .
This is illustrated in Fig. .a. In node
, a load reduction of .kWh occurs
during hours  and . This is illustrated
in Fig. .b.

Nodes  and  are chosen for type-
load modulation. In node , there is a re-
duction of .kWh during hour . One-
third of this energy, .kWh is equalised


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during hour . The remaining energy is equalised during hour . This is illustrated in
Fig. .a. In node , there is a reduction of .kWh during hour , with the equali-
sation happening on hour  (.kWh) and hour  (.kWh). This is illustrated in
Fig. .b.
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Figure .: Baran Network – Type- Load Modulation for Test Case OP − etol3c
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Figure .: Baran Network – Type  Load Modulation for Test Case OP − etol − 3c

The DRES reactive power compensation from the  DRES in the network amounts to
.MVArh (injection). This is the same compensation as in the test cases OP − etol3a
and OP − etol3b. This compensation was illustrated in Fig. ..
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.. Results for Other Test Cases & Analysis

In the previous sections, the results obtained with the Baran network for the test
cases OP − etol3a, OP − etol3b & OP − etol3c were elaborated. In this section, a brief
presentation of the results for other test cases is done. This brief presentation includes
an outline of the results of the additional tests and a comparative presentation of the
different main results obtained. These results are further presented in Appendix B. The
 test cases explored are OP − etol3a*, OP − etol3b*, OP − etol3c*, OP − eol3a, OP − eol3b
and OP − eol3c. The equations that make up these test cases can be found in Table . in
Chapter . A summary of the main results for these test cases is presented in Table .
in page .

We recall that between the different test cases, only the nature of reconfiguration
changes. For the test cases OP − etol3a to OP − etol3c,  reconfigurations ( per time
period) are permitted for each switch. For test cases OP − etol3a* to OP − etol3c*, a
maximum of one reconfiguration is permitted per switch, at any point during the time
horizon. And for the test casesOP −eol3a toOP −eol3c, the statuses of the reconfiguration
switches are independent of time (one configuration for the whole time horizon). For
the given DRES and load forecasts, the Baran network exhibits a peculiar phenomenon.
The reconfiguration results returned for the most difficult test cases (OP − etol3a to
OP − etol3c) correspond to those of the most tractable cases (OP − eol3a to OP − eol3c).
This means that the latter cases not only solve the OP problem faster, they are also as
optimal as the former cases. More information on this can be found in Section ..

We now test the novel OP formulation using different DRES insertion rates, ranging
from % to %, for the test case OP − eol3b. For all these insertion rates, the choice
of type, size, and location of the DRES in the network is made using the procedure
presented in Appendix B. The distributions of the original and optimised voltages
in the network when the novel OP formulation is tested are shown in Fig... The
distributions presented are for  different DRES insertion rates ranging from % to
%. The main results for these tests are outlined in Table .. The problems in the
un-optimised network are mostly under-voltages in the peripheral nodes. The case with
% DRES insertion is an exception, showing over-voltage issues as well. The novel OP
formulation is able to solve all these issues optimally, with reasonable solution times.
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Figure .: Baran Network – Network Voltage Distributions – DRES Insertion Rates from % to %
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Table .: Baran Network – Results for Test Cases

Test Case
Objective Execution Active Power Tap Open Load DRES DRES Q Avg. Error

Value Time Losses Setting Switches Modulation Curtailment Compensation (Relaxation)
(e) (sec) (MWh) (kWh) (MWh) (MVArh) (VA)

OP − etol3a* . . .  (h-) C (h-) . — . .
OP − etol3b* . . .  (h-) C (h-) . — . .
OP − etol3c* . . .  (h-) C (h-) . — . .

OP − eol3a . . .  (h-) C (h-) . — . .
OP − eol3b . . .  (h-) C (h-) . — . .
OP − eol3c . . .  (h-) C (h-) . — . .

Table .: Baran Network – Results for Test Case OP − eol3b for DRES Insertion Rates from % to %

Result
DRES Insertion Rate ( %)

% % % % % % % % % %

Objective (e) . . . . . . . . . .
Execution Time (sec) . . . . . . . . . .

Active Power Original . . . . . . . . . .
Losses (MWh) Optimised . . . . . . . . . .

Tap Setting
         (h–), 

(h–) (h–) (h–) (h–) (h–) (h–) (h–) (h–)  (h–) (h–)
Open Switches C C C C C C C C C C

DRES Q Compensation (MVArh) . . . . . . . . . .
Load Modulation (kWh) . . — . . — . . . .

Average Relaxation Error (VA) . . . . . . . . . .

Legend: Open Lines – C: {-, -, -, -, -}, C: {-, -, -, -, -}, C: {-, -, -, -, -},
C: {-, -, -, -, -}, C: {-, -, -, -, -}, C: {-, -, -, -, -}
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5.3. SOLUTION RECOVERY WITH THE PREDIS NETWORK

Overall, the utilisation of the flexibility to solve the constraint violations in this
network has been minimal. We analyse the results obtained for different DRES insertion
rates with the test case OP − eol3b to identify the flexibility procurement costs for
different flexibilities.

On an average, the following expenditures were made for the various flexibilities.
There was no DRES curtailment in any of the test cases. Type- load modulation was
procured for an average cost of .e per test case. Type- load modulation was procured
for about .e, while type- load modulation was procured for about .e. A single
tap change was registered for the OLTC for  out of the  test cases, with a cost of
.e. The only exception was the test case with % DRES insertion, where two
tap changes, with a total cost of .e, were made. Around .e was spent on
reconfiguring the network in each test case. Finally, there was an imperceptible use of
the battery systems in  test cases, to the order of . ce.

A discussion of the overall flexibility usage and the results for the test cases can
be found later in this chapter, in Section .. More illustrations for the tests with the
different DRES insertion rates, for test case OP − eol3b, can be found in Appendix B.

. solution recovery with the predis network

In this section, the results obtained when the novel OP formulation is tested using the
PREDIS network are presented. The SOCP relaxation fails for this network. Therefore,
we employ the solution recovery algorithm developed in Chapter  to obtain a globally
optimal solution. First, the original conditions in the network are outlined.

.. Original Conditions

We test the PREDIS test network with the original load and DRES forecasts, without
the use of flexibility.The voltages in the network for the given time period are illustrated
via a heat-map in Fig. ..
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Figure .: PREDIS Network – Original Voltages for % DRES Insertion Rate
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With a % DRES insertion rate, this network exhibits both under-voltage and over-
voltage problems. It is to be noted that this network has higher than normal loading
(generally not found in France), and this is the reason for the under-voltage issues. The
lowest observed voltage is .pu, at node  during hour . The highest observed
voltage is .pu, at node  during hour . There are a total of  under-voltages
and  over-voltages in a total of  voltage calculations. There is one current violation,
at hour  in the line connecting nodes  and , of .pu. The active power lost
in the network during the given time periods amounts to .MWh. The total DSO
expenditures for the original case, using the formula (.), are  .e.

.. Relaxation Failure - Example with Test Case OP − eol2
In our tests with this network, the second-order cone programming (SOCP) relaxation

has been shown to fail consistently. We present the results of the test case OP − eol2 to
illustrate this failure. We recall that all the loads in this network can be controlled in
a continuous manner and are therefore modelled using type- load modulation. The
results provided by the novel OP formulation are outlined in Table ..

Table .: PREDIS Network – Results for Test Case OP − eol2
Description Value

DSO Expenditures (Objective) . e
Execution Time . seconds

Active Losses .MWh
Tap Setting T (Hours –)

Open Switches C (Hours –)
Load Modulation —

DRES Curtailment —
DRES Reactive Compensation .MVArh (Injection)

Average Relaxation Error . VA

Tap setting T corresponds to the taps {, , } for the OLTCs -, -, and -
respectively. The configuration C corresponds to open switches {-, -, -, -
} in the network. However, the high value of the relaxation error indicates that the
SOCP relaxation fails. This can be further confirmed, if necessary, by running load flow
calculations based on the flexibility set-points.

.. The Solution Recovery Algorithm

Given that the relaxation fails for the test case OP − eol2, we apply the solution
recovery algorithm presented in Chapter , Section . to the problem, in an attempt to
recover a globally optimal solution. The objective function value of the original problem,
.e, gives us a lower bound for the final DSO expenditures. It is impossible for a
practically feasible solution to the novel OP formulation to yield an objective value that
is below .e.

To run the solution recovery algorithm, its input parameters high and low have to
be chosen. We know that the original objective value of .e is the lower bound
for a feasible OPF solution to the novel OP formulation in this case. The choice of
low is therefore simple. The choice for high is more complicated. The advantage of
choosing a large value is that in case the objective value of the actual optimum is very
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5.3. SOLUTION RECOVERY WITH THE PREDIS NETWORK

high, compared to the lower bound, we make sure that the search heuristic can always
converge. The disadvantage is that the exponential time nature of the problem increases
the solution time with a large value of high. In our case, we choose to use a value 
times that of low. Therefore, we choose high = 4674.8. We then run the search heuristic.
The results obtained are presented below.

The number of iterations to find the optimal solution using the search heuristic
was . The path taken by the dichotomic search is illustrated in Fig... It shows
the progressive decrease in the gap to the optimal solution. The optimal solution, as
indicated by the algorithm is .e. This corresponds to the cost constraint ρlim of
.e, yielding a cost of .e for active power losses.
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Figure .: PREDIS Network – The Dichotomic Solution Recovery Algorithm

The optimised voltages for the network are presented in Fig. . as a heat-map.
We conserve the colours from Fig. . for uniformity. The lowest observed voltage is
.pu, at node  during hour . The maximum observed voltage is .pu, at
node  during hours , , , ,  & , and at node  during hours , ,  & .
The set-points for flexibilities and the main results obtained using the solution recovery
algorithm are presented in Table ..

The optimised network shows a .% reduction in losses, mainly owing to the high
use of load reduction and DRES curtailment. The optimised voltages also contribute
to this reduction in losses. The tap setting T corresponds to tap positions {, , } for
the three OLTCs. The configuration C corresponds to open switches {-, -, -, -,
-} in the network. In the next section, experimental proof of the optimality of the
dichotomic search heuristic is presented.

.. Verification of Optimality

In order to experimentally verify the optimality of the solution recovery algorithm,
we test the Baran network, a network for which the relaxation has held in all our tests,
with the test case OP − eol3a. The results of this verification are presented here. We
use the parameters high = 1000 and low = 0 for the solution recovery algorithm. A
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Figure .: PREDIS Network – Optimised Voltages for % DRES Insertion Rate

Table .: PREDIS Network – Results with Solution Recovery Algorithm for Test Case OP − eol2
Description Value

DSO Expenditures (Objective) . e
Execution Time . seconds

Active Losses .MWh
Tap Setting T (Hours –)

Open Switches C (Hours –)

Load Modulation (MWh)
Type-

. (Decrease) . (Increase)

DRES Curtailment .MWh
DRES Reactive Compensation .MVArh (Injection)

Average Relaxation Error . VA

comparison of the results obtained with and without the solution recovery algorithm is
presented in Table ..

The minor differences in the solutions are due to the following reasons: () the
rounding-up of the cost constraints to the nearest cent e, and () the existence of
multiple global optima for mixed-integer programming problems. The path taken by
the search heuristic is illustrated in Fig. ..

The results prove that the solution recovery algorithm works, although it takes a
much higher execution time. For this test case, a total of  iterations were required
to find the optimal solution. One of the ways to improve the solution time of the
search heuristic could be to use a parallel asynchronous search algorithm. This could
be considered as a future improvement. In the next section, a discussion of the results
obtained for the test networks is presented.
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Table .: Baran Network – Comparison with Solution Recovery Algorithm for Test Case OP − eol3a

Description
Results

Original Solution Recovery

DSO Expenditures (e) . .
Execution Time (sec) . .
Active Losses (MWh) . .

Tap Setting  (Hours –)  (Hours –)
Open Switches C (Hours –) C (Hours –)

Load Modulation (kWh) . .
DRES Curtailment – –

DRES Reactive Compensation (MVArh) . (Injection) . (Injection)
Average Relaxation Error (VA) . .
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Figure .: PREDIS Network – The Dichotomic Solution Recovery Algorithm

. a discussion on results

The results obtained for the novel OP formulation were presented in Sections . – ..
The show that:

 The novel OP formulation solves all the test cases for the Baran network with
global optimality. The SOCP relaxation holds, with a very low error.

 For the PREDIS network, the SOCP relaxation fails. The solution recovery algo-
rithm, based on a dichotomic search heuristic, converges to the globally optimal
solution. This is experimentally proven through a test of the algorithm on a test
case for the Baran network.

A discussion on the role of flexibilities in the test cases is presented here. This
discussion mainly concentrates on the use of exogenous flexibilities, and the practicality
of imposing certain constraints on endogenous flexibilities in the novel OP formulation.
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.. The Use of Exogenous Flexibilities

In all the tests, the exogenous flexibilities available for optimising the networks
were DRES curtailment, DRES reactive power compensation, load modulation, and
batteries. DRES reactive power compensation was by far the most used flexibility. The
reason for this is simple. The flexibility came at no cost, and therefore did not affect the
objective function of the optimisation. In most of the test cases, the DRES reactive power
compensation was used to %.

The second most used flexibility was load modulation. All the three types of load
modulation were used to varying degrees in the test cases. Type- load modulation, being
cheaper than the other two, was generally preferred more. This preference however
varied slightly, depending on the type of rebound.

DRES curtailment was used relatively less. The only test case where it was used was
in the PREDIS test network. This is because of the high cost of DRES curtailment. A
cheaper combination of other flexibilities always proved to be sufficient to solve the
constraint violations in the Baran network. Finally, battery systems were imperceptibly
used in  test cases. Once again, this is because of the exceedingly high cost to store and
receive energy to / from these batteries.

The relationship between flexibility use and its price is clear. However, other con-
clusions may also be deduced from the results in terms of flexibility use. In the tested
networks, the main issues related to the under-voltages. This was the case even with a
large DRES integration, primarily owing to their location in nodes with severe under-
voltages. The only exception was the case with % DRES, where the DRES was placed
on nodes with good voltage profiles, causing over-voltages. This meant in general that
DRES curtailment, which would have resulted in further decreases in voltages, was used
very rarely.

In type- load modulation, the presence of a rebound decreased the final use of the
flexibility. This is understandable, given that load increases provoke voltage reductions.
The other aspect of the rebounds in the overall load modulation was related to peak
shifting. In the event where load modulation with rebound was the only choice of
flexibility, the rebound invariably occurred during hours with low loads. In the case
with type- rebound, the mandatory power rebound occurred in the hour succeeding
the reduction, but the energy rebound invariably occurred during hours with low loads.

.. Internal Flexibilities – Practical Reconfiguration Actions and Tap Changes

Two of the major network flexibilities, reconfiguration and OLTC, are modelled as
discrete variables in the novel OP formulation. For practicality, certain considerations
have to be made when using these flexibilities. These considerations are discussed below.

... Network Reconfiguration

The test cases in the chapter allowed us to test three different ways to reconfigure the
Baran network. Two of these ways consisted of allowing time-dependent configuration
changes, with limits of  and  imposed on the number of status changes of lines (∆eij ).
The third consisted of imposing time independent reconfiguration on the network. The
results obtained lead us to believe that limiting the number of reconfiguration actions
per switch to  is the best solution. This is due to the following reasons.
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Firstly, there is no change in the objective value (DSO expenditures) among the tests.
This is due to the technico-economic nature of the optimisation, where the improvement
in the objective brought about by additional reconfiguration actions is lower than the
cost of these actions. This could however change with other test networks / conditions,
notably with a low reconfiguration cost.

Secondly, the tractability of the solutions varies greatly depending on the type of
reconfiguration allowed. The cases with time independent reconfiguration are the most
tractable. Time dependent reconfiguration with ∆eij = 1 have comparable tractability.
However, time dependent reconfiguration with ∆eij ≤ 24 takes several hours to find the
same optimal solution as the other cases.

Thirdly, DSOs are not disposed to performing reconfiguration actions frequently,
meaning that they may find it difficult to adopt hourly reconfiguration. Eventually, the
choice between time dependent (∆eij = 1) and time independent reconfiguration should
be up to the DSOs, or any other end-user of the novel OP formulation.

... On-Load Tap Changers

In the OP formulation, we allowed a maximum of  tap changes per day (∆wij ≤ 24)
for the OLTC. However, we see that a large majority of the test cases, the OP formulation
chooses only one tap change over the optimisation period. The only exception is the test
case OP ˘eol3a in the Baran network, for a % DRES insertion rate, where there are two
tap changes occurring.

This reduced number of tap changing actions decided by the OP formulation is,
as with reconfiguration, due to the fact that the formulation is a technico-economic
optimisation. The improvement in the objective function (as a result of an improvement
in network conditions) brought about through additional tap changes is lower than
the cost to perform a tap change. The exception, the test case OP ˘eol3a in the Baran
network, for a % DRES insertion rate, arises out of the peculiar voltage conditions in
the network. Over-voltages provoked by the presence of DRES in nodes where reference
voltages without the DRES were already high necessitates the use of an additional tap
change to bring them inside the allowed limits.

. conclusions

In this chapter, the novel OP formulation was validated using two test networks.
The first, the Baran network is a medium-sized IEEE test network, while the second,
the PREDIS network, is a reduced scale test distribution network in GELab/Grenoble
INP-Ense, at the University of Grenoble Alps. These networks were first presented.

The test parameters used in the novel OP formulation were then outlined, and
parameter values were associated to each of them. These parameters included the DRES
and load forecasts, limits for the load modulation, the DRES curtailment and reactive
compensation, the batteries, & the voltages, and the costs flexibilities.

Nine different test cases were solved by the novel OP formulation for the Baran
network with global optimality. The results of three of these test cases OP − etol3a,
OP − etol3b, and OP − etol3c were presented, illustrated, and discussed. The results for
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the six remaining test cases were outlined. Further, a range of DRES insertion rates were
tested for the test case OP − eol3b, and the results obtained were outlined as well.

For the PREDIS network, tests showed that the SOCP relaxation did not hold. There-
fore, the solution recovery algorithm based on a dichotomic search heuristic was em-
ployed. A globally optimal solution was recovered for the test case OP − eol2 for the
network. In order to prove that the dichotomic search heuristic converges to a global
optimum, it was employed on the test case OP − eol3a for the Baran network. The results
showed that a convergence to the original solution occurred when the search heuristic
was employed. This experimentally proved that the algorithm worked. These tests
comprised contribution C of this thesis.

Finally, a discussion on the use of exogenous flexibilities and the practicalities of
using discrete endogenous flexibilities like reconfiguration and OLTCs was presented.
This discussion provided context for the optimisation from the perspective of the power
system. The choice to limit the number of operations for reconfiguration and OLTC was
justified in this discussion. This discussion comprised contribution C of this thesis.

In the next part of this thesis, we explore approaches to operational planning of
active distribution networks under uncertainty. We develop three different approaches
to OP, and solve them on the Baran test network. We also analyse the best approaches to
OP uncertainty.

a
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6Operational Planning under

Uncertainty – Formulations

« As far as the laws of mathematics refer to reality, they are not certain; and as far as they are
certain, they do not refer to reality. »

- Albert Einstein

. introduction

.. Context

Deterministic OPF formulations assume that the input parameters to these studies,
DRES generation forecasts for example, are accurate, and not susceptible to variations.
This is the case for the novel operational planning formulation presented in Chapter  as
well. In the real world, this is seldom the case. Generation forecast techniques for DRES
have greatly evolved in the past few years. However, even the most recent techniques
cannot guarantee a % accurate day-ahead forecast. This means that there is always a
chance for these forecasts to be inaccurate.

In optimisation, an uncertainty can be broadly defined as a factor that is unknown
but which may be modelled and taken into account. The inaccuracies in DRES forecasts
can therefore be considered as an uncertainty if this variation can be quantified, mod-
elled, and integrated into optimisation formulations. There is a need to integrate this
uncertainty in optimisation, failing which these problems can be rendered useless. This
is illustrated by the following example.

Consider the following maximisation problem:

max x+ y (.)

3x+ 4y ≤ 12 (.)

x ≥ 0 , y ≥ 0 (.)

Fig. .(a) shows the feasible region (shaded in blue) of the maximisation problem
in equation (.), subject to constraints (.) and (.). The red marker indicates the
optimal value of the objective, and it is attained when x = 4 and y = 0 ({4,0}). Now,
assuming that there is a slight variation in the coefficients of x and y, equation (.) is
replaced by constraints (.)–(.).

Ax+By ≤ 12 (.)

A ≥ 2 , B ≥ 2 (.)

6 ≤ A+B ≤ 8 (.)
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Suppose A and B are integers, the  extra constraints added to the problem (dashed
blue lines), the new feasible region (shaded green), and the new optimum at x = 1.5 and
y = 1.5 (red circle) are shown in Fig. .(b). It can be seen that the original solution at
{4,0} is no longer feasible with the new constraints, as it is outside the solution space.
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Figure .: Feasible Regions and Optimum for Certain and Uncertain Case

This example clearly illustrates the need for considering uncertainty, and is main
theme of this chapter. In this chapter, we deal with the characterisation, modelling,
and integration of uncertainty in DRES generation forecasts into the novel operational
planning formulation presented in Chapter . The contributions of this chapter to this
thesis are as follows (the numbering is consistent with the summary in Chapter ):

C An analysis of different approaches to operational planning under uncertainty for
distribution networks to identify the approaches that offer the best compromise
between five different factors.

C The development of an exact two-stage optimal deterministic operational plan-
ning formulation to counter uncertainties. This formulation optimises the distri-
bution network in the day-ahead, and hour-ahead stages, treating the additional
information on uncertainty in the second stage.

C The development of an exact two-stage optimal stochastic operational planning
formulation to counter uncertainties. This formulation optimises the distribution
network under uncertainty based on the scenario characterisation of uncertainty.

C The development of an exact optimal interval operational planning formulation
to counter uncertainty. This formulation treats uncertainty in the form of bounds
and optimises a deterministic forecast, while ensuring feasibility across the
bounds.

In all the developed formulations, the exact nature of the physical network and its
flexibilities is retained. This is done to guard mathematical optimality for the given
choice of uncertainty characterisation, in spite of the fact that this uncertainty provokes
loss of physically global optimality.
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.. Organisation of this Chapter

This chapter is organised as follows. A discussion and literature review of the various
approaches to handling uncertainty in short-term power system studies is first presented
in Section .. Four different approaches in power system studies are highlighted, based
on the characterisation of the uncertainty. A summary at the end of the section analyses
their suitability, advantages, and disadvantages for the specific case of an OP formulation
under uncertainty for distribution networks.

Based on this analysis, the novel OP formulation developed in Chapter  is then
extended and cast in three different formulations in Section . – a deterministic for-
mulation in Section .., a discrete stochastic formulation in Section .., and an
interval formulation in Section .. (contributions C to C). A method to compare
the performances of the three formulations is also presented, in Section ... This is
finally followed by a conclusion in Section .

. a discussion on opf and op under uncertainty

Two major types of uncertainty exist in short-term power system studies: uncertainty
in the network element state and uncertainty in the network injections. The former arises
out of lack of knowledge on whether or not elements in the network function properly or
on their parametric values like resistance and reactance among others. The latter arises
out of doubt over the accuracy of measurements / forecasts of the input parameters to
these studies. Uncertainty in network element state can be easily overcome through
close monitoring and supervisory actions in the network. In the short-term, it is easier to
predict whether or not a particular element will fail, and with preventive maintenance
schemes, unwanted network component failures can be prevented.

In this thesis, we deal with the second type of uncertainty, the uncertainty in network
injections. We concentrate specifically the case of DRES forecasts. The novel operational
planning formulation presented in Chapter  considers two main types of DRES, namely
PV farms and wind turbines. Forecast techniques for these two different sources of
energy have vastly improved in the last few years. Such forecast techniques have
increased in accuracy over time. However, controlling networks based on results from
deterministic optimisation formulations can still provoke network constraint violations,
as the variation in production may take network conditions beyond the imposed limits.

The OPF and subsequently the OP formulations must therefore consider these vari-
ations. A review of various approaches to OPF and OP formulations without the con-
sideration of uncertainty was presented in Chapter . In this section, we extend this
review to formulations under uncertainty, focusing on the different methods in which
the uncertainty is handled.

This review is organised as follows. Probabilistic formulations and approaches to
the OPF are first reviewed in Section ... This is followed by the review of formula-
tions which use bounds or ranges for uncertainties in Section ... All the reviewed
approaches have their advantages and disadvantages. We do not cite them along with the
approaches themselves. Instead, we do so at the end of the review in Section .., where
we discuss the challenges in formulating OP problems in one of the discussed approaches.
Finally, in a similar vein to Chapter , a comparison of the different approaches is done
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in Section ... This summary lays a specific emphasis on the applicability of these
approaches to operational planning formulations for MV distribution networks.

.. Probabilistic Formulations

Probabilistic formulations and models incorporate uncertain (or random) variables

through the definition of a probability distribution for these variables. The uncertain
variables therefore represent an outcome of an event, and the probability distribution
assigns probabilities to the outcomes of these variables. By incorporating uncertainty
directly into the model, probabilistic formulations provide a way to directly measure the
uncertainty that the outputs to the model have, as a function of the uncertain inputs.
The accuracy of the model therefore depends on the underlying representation of the
probability distribution. In this section, probability distributions for DRES generation
are first introduced. This is followed by a review of probabilistic OPFs. Then, the concept
of scenarios as a means to represent uncertainty in DRES is presented, followed by a
review of discrete stochastic approaches to formulating OPF problems.

... Probability Distributions and the Probabilistic OPF

When enough information is available on the behaviour of uncertain variables,
probability distributions or scenarios can be constructed to illustrate them. These
distributions associate a particular value of the random variable to its probability of
occurrence. They are therefore a list of all possible values that the variable can take with
their associated probabilities.

Probability distributions are often represented as distribution functions. In order
to construct these functions, actual measurements of the uncertain variables are first
made. When a sufficient number of measurements have been gathered, they are fit
onto a well-known mathematical distribution function. This approximation is done
with different levels of accuracy, depending on the exactness of the fit. If, for example,
an uncertain variable shows a behaviour similar to a normal distribution, it can be
fit to a normal distribution. The probability distribution of the variables can then be
represented, depending on the type of the variable and on the application, in three
different ways:

 Probability Density Function (PDF) is a function of a continuous random variable
whose integral across an interval gives the probability that the value of the
variable lies within the same interval. If the interval is a single point, the output
of the function gives the probability that the value of the variable lies at that
particular point.

 Cumulative Distribution Function (CDF) is a function of a random variable which,
for a single point interval X, provides the probability that the random variable
it describes takes a value less than or equal to X. For continuous variables, the
function provides area under the PDF for all values less than or equal to X.

 Probability Mass Function (PMF) is a function that assigns probabilities similar to
PDFs, but to the values of discrete random variables, as opposed to continuous
variables.

From the point of view of optimisation, uncertain parameters like DRES generation are also considered
as variables because their values are not fixed.
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Fig. . provides an example illustration of the PDF, CDF, and PMF ( samples) for a
normal distribution with a mean (µ) of 0 and a variance (σ2) of 1.
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Figure .: PDF, CDF, and PMF of a Normal Distribution with µ = 0 and σ2 = 1

To ascertain the probabilistic output powers of the two types of DRES considered in
this thesis, PV and Wind power, several probability density functions have been used in
the literature. Beta distributions are often used to model PV power generation, while the
Weibull distribution has been largely preferred over other distributions to model Wind
power generation [AAJM]. Several authors have however analysed and compared
other distributions for these two types of DRES that perform better in specific cases. A
discussion on the utility of probability distributions can be found later in this chapter,
in Section ....

The Probabilistic OPF (P-OPF), is an extension of the deterministic OPF (see Section
..) incorporating uncertainty directly in its formulation. A P-OPF formulation con-
sidering uncertainty in DRES generation for example uses the probability distributions
for the uncertain forecasts. Its output variables – the voltage magnitudes, the phase
angles, and the active & reactive powers – are uncertain. The P-OPF was first proposed
in [Bar], and has subsequently been developed by several researchers. The computa-
tional tractability of P-OPF formulations is very low. This is because the formulation
necessitates, in principle, the evaluation of a large number of OPFs for every proba-
ble combination of uncertain variable inputs. Such combinations can tend to infinity
when these inputs are continuous in nature. This is the reason why the resolution of
P-OPF problems has been the major subject of research in recent years. Approaches
and methods to solving the P-OPF can be largely classified into four different categories:
numerical and sampling methods, analytical methods, and approximation methods.

Numerical and sampling methods, such as the Monte-Carlo Simulation (MCS)
method rely on repetitive pseudo-random sampling of the uncertain variables according
to their PDFs. The advantage of such methods is their accuracy, and the fact that the
underlying deterministic OPF formulation can be an exact representation of the power
system. In principle, such methods substitute the P-OPF with a large number of deter-
ministic OPFs, one for each sample, and can therefore take a lot of time. This means that
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they are impractical. Other sampling methods have also been employed by researchers
to decrease this impracticality. Techniques like Latin hypercube sampling [YCW+],
and Quasi-MCS [CF] have been shown to improve tractability.

Analytical methods rely on mathematical formulations in order to find solutions to
the P-OPF. Traditionally, they have relied on simplifying the OPFs in order to manage
the size of the models. Such simplifications have included the linearisation of the OPF,
assumptions of independence among uncertain variables, and simplified PDFs [PJ].
Convolution techniques like Fourier and Laplace transforms have also been proposed to
counter the difficulty in solving these problems mathematically. Other methods like the
Cumulant method have been successfully applied to P-OPFs, under assumptions that
the uncertain variables are independent. First proposed in [SD], this method permits
the calculation of distributions of linear combinations of the uncertain variables in a
single step, thereby increasing computational speed.

Approximate methods rely, as the name indicates, on explicit approximations of
the PDFs of the uncertain variables to simplify the solution of P-OPFs. Examples of
such methods include the following. Point Estimation methods [MBCM] guess the
best value for an unknown variable based on PDFs. Transformations like the Unscented
Transformation method [AFFA] approximate PDFs to PMFs, allowing for fewer de-
terministic OPF calculations. These methods allow for correlations between uncertain
variables, which is of practical interest. Hybrid methods, combining one or more of
the methods above have also been developed by researchers. These methods focus on
providing a good trade-off between tractability and accuracy. For further information of
approaches to solving the P-OPF problem, the reader may consult the detailed surveys
in references [CCBJ], [Cap] and [PJ].

Possibilistic approaches to modelling the OPF problem under uncertainty rely on
possibility theory. Fuzzy logic, emerging from fuzzy set theory is one such approach
[Zad]. Fuzzy OPFs use this theory to model uncertainties. As opposed to probability
theory, uncertainty is modelled through how much a particular realisation of uncertainty
belongs to an uncertainty set, also called a fuzzy set. This degree of belonging is called a
degree of membership. Membership functions are functions that express this degree of
membership for an uncertain parameter. Membership functions associated to uncertain
input parameters are then used to calculate those of output parameters through methods
like α-cuts. The advantage of using Fuzzy logic lies in the fact that the bounds of the
output parameters can be computed with relative ease, as compared to methods that
employ probability theory.

Miranda and Saraiva [VJ], [JV] were among the first to model uncertainties in
load and generation as fuzzy numbers to be applied in linear DC OPFs. Gladkikh et al.
[THJ+] have recently cast a fuzzy logic based OPF with uncertain load and generation
in a planning problem. Fuzzy logic has also been used to model the uncertainty in crisp
network constraints, like the ampacity limits by researchers like Guan et al. [GLP].
Other authors like Vanet [Van] have modelled uncertainty in flexibility procurement
in the OPF using fuzzy logic. Approaches using fuzzy logic have not been explored in
this thesis as the modelling of uncertain parameters through possibility distributions
causes a loss of information about the uncertainty, when such information is available.
When there is already a lack of information, probability and possibility distributions
constructed from such information will inevitably be inaccurate. Therefore, these
approaches are not explored further.
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... Scenarios and the Discrete Stochastic OPF

Scenarios are a discretised way to represent the behaviour of uncertain variables, as
opposed to PDFs and CDFs, which represent them in a continuous way. They are a set of
values that a particular uncertainty can take. They are especially useful in describing
the temporal evolution of uncertain variables, something that probability distributions
are generally incapable of (see Section ...). The representation of scenarios is shown
in Fig. ., where an illustration of  different scenarios for PV power production for a
day is made.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (h)

P
ro
du

ct
io
n
(%

of
W
p
)

Figure .: Example –  Scenarios for PV Production Over a Day

There are three ways to generate scenarios for uncertain input variables. The first
is by eliciting the opinions of experts on the evolutions of uncertain variables in the
future. The second is by through statistical representation of the probability distributions
describing the outcomes of the uncertain variables. The third is by directly measuring
the outcomes of the uncertain variables and grouping them based on different criteria.
The generated scenarios are then given probabilities of occurrence, as is the case for
probability distributions. Whatever the method followed, the generation of scenarios is
generally difficult because they require a mastery of the understanding of the behaviour
of the uncertain variables. King and Wallace [KW] argue that the generation of
scenarios from distributions and from measured data requires some care, as it can affect
the optimal results of the stochastic formulations that use the scenarios.

Discrete stochastic optimisation is an optimisation technique that considers the
scenarios for uncertain variables and optimises an expected value of the objective func-
tion over all these scenarios. If the optimisation decisions have to be made before the
realisation of the uncertainty is known (one decision for all uncertainty realisations), this
is called a single stage stochastic problem. If a few decisions have to be made without the
knowledge of the uncertainty, and if the remaining decisions can be made with respect
to each of the scenarios, this is called a two-stage stochastic problem. Other, multi-stage
stochastic problems exist, where several decisions reversals or recourse actions are made
as more and more information on the uncertainty becomes available.
The term discrete indicates the nature of the input uncertainty – scenarios – and has nothing to do

with the nature of the optimisation problem itself.
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A two-stage stochastic problem can be formulated as follows:

min
∑
t∈T

(
f (x0t) +

∑
s∈S

πs · g(xs1t)
)

(.)

Here, f (x0) and g(x1s) are arbitrary functions of the decision variables x0 and x1s
whose values are independent and dependent on each scenario s respectively. πs is the
probability of occurrence of each scenario. As can be seen, the optimisation minimises
the expected value of the objective function across scenarios, and not for any particular
scenario. This means that the decisions for scenarios are not optimal for each scenario,
but for an ensemble of scenarios. The constraints applied to the a discrete stochastic
formulation are the same as for a deterministic formulation, with one difference. All
the variables whose values depend on scenarios have to be calculated for each of these
scenarios. This means that the constraints containing these variables have to be declared
across all scenarios.

Discrete stochastic optimisation has been successfully applied to OPF and OP for-
mulations, especially in transmission networks, for the unit commitment and economic
dispatch problems (see Chapter , Section ..). Wu et al. [WSL] were among the first
to formulate a security-constrained stochastic unit commitment model, using random
disturbances and load forecast inaccuracies. Constantinescu et al. [CZR+] studied the
impact of a massive penetration of Wind power on the unit commitment problem using
scenarios for wind power forecasts. It is to be noted that the number of scenarios chosen
for a particular optimisation influences the characteristics of the formulation like the
tractability, scalability, and accuracy (see Section ...). Some of the recent approaches
have therefore worked stochastic OPFs using scenario-reduction techniques (see Section
...).

Other research in unit commitment has expanded on to stochastic unit commitment
for multi-area systems [PO], or concentrate on solution techniques to the formulation
like parallelisation [WF]. Recently, Nick et al. [NCP] have cast the distribution
network OP problem under uncertainty in a stochastic formulation, with the use of
OLTC and battery systems. They consider a simplified representation of the OLTC with
 taps, with each tap providing a % voltage regulation. Gemine et al. [GEC] have
also developed a stochastic MISOCP formulation for distribution network operational
planning. Like their other formulations, the mixed-integer component of their formula-
tion arises solely out of the discrete activation signals for load modulation. They do not
consider OLTCs or reconfiguration.

In the next section, other approaches to formulating optimisation problems under
uncertainty are discussed and reviewed. These formulations are different from the for-
mulations in this section in the sense that they use bounds for representing uncertainty.

.. Formulations with Bounds for Uncertainty

Approaches to modelling uncertainties without the use of probabilistic information
exist in literature. These approaches are especially useful when the information available
with respect to the uncertainty is scarce. The scarcity of this information means that
the characterisation of the form that the uncertainty can take becomes unknown. In
most cases, only the ranges that these uncertainties can take are known. This was
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one of the reasons that motivated researchers to develop optimisation methods where
uncertainty is represented as ranges or bounds rather than probability distributions.
Other reasons do exist for this motivation. In situations where enough information is
available with respect to the uncertainty is sufficient, probability distributions can be
constructed. However, there are issues with respect to the accuracy of these distributions
in representing the spatial and temporal correlation in the behaviour of the uncertainty
(see Section ... for more).

Approaches to handling uncertainty under lack of information include Robust Opti-
misation [AA], Interval Optimisation [Ton], and Information-Gap Decision Theory
(IGDT) [Yak] based optimisation among others. They are discussed in the sections
below.

... Robust Optimisation Formulations

Robust optimisation represents optimisation problems in which ‘robustness’ is sought
against the uncertain behaviour of variables. Like all the methods that consider bounds
for uncertainty, it does not need to know the probability distributions of the uncertainty.
It assumes that the uncertain data resides in “uncertainty sets” [GYdH] that are some-
times symmetrical. Many authors have proposed formulations for robust optimisation
problems, like Soyster [Soy], and Ben-Tal et al. [AA]. Their formulations consider
the worst case uncertainty and protects the optimisation against it. Bertsimas and Sim
[BS] subsequently formulate an LP robust optimisation problem with a budget of
uncertainty. This budget of uncertainty allows the optimisation to choose the degree
of conservativeness with respect to the behaviour of the uncertain variable. This is
illustrated in Fig. ..

dmin dmax

Max. No. of Deviations

0

Objective worsensObjective betters

Budget of Uncertainty

Figure .: Uncertainty Set and Budget of Uncertainty

In the figure, the uncertainty set is represented by the bounds dmin and dmax. There
is no representation of the behaviour of the uncertainty inside the set. For LP problems,
the direction of the objective function can be identified based on the deviation of the un-
certainty, and this is used to select the worst case uncertainty for the robust optimisation
problem. The figure also shows the budget of uncertainty developed in Bertsimas and
Sim’s formulation. Mathematically, their formulation is represented as follows:

max
∑
j∈J
cjxj (.)
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Subject to: ∑
j∈J
ãx+ Γiwi +

∑
j∈J
zij ≤ b ∀i ∈ I (.)

wi + zij ≥ dmaxij xj ∀i ∈ I,∀j ∈ J (.)

wi ≥ 0 ∀i ∈ I (.)

zij ≥ 0 ∀i ∈ I,∀j ∈ J (.)

xj ≥ 0 ∀j ∈ J (.)

Here, the nomenclature used differs from the nomenclature in this thesis. In this
formulation, xj represents the decision variables, aij ,bi , cj the coefficients, dmaxij is the
maximum uncertainty in the direction where the objective worsens, wi and zij are
dummy variables for the reformulation, and Γi is the budget of uncertainty.

Although robust optimisation studies were first published as early as the s, it has
been actively developed only since the early s [GYdH]. The same reference also
cites research that shows its applications in finance, energy, supply-chain management,
healthcare and marketing among others. Robust optimisation problems have also been
formulated for OPF problems, with applications in unit commitment. Saric et al. [SS]
have developed a MILP robust formulation for Volt-VAr control. They employ OLTCs,
capacitor banks, and reactive power compensation from generators. Zhao and Zheng
[ZZ] formulate a two-stage robust SCUC problem considering uncertainty in wind
power production. Jiang et al. [JWG] then use the Bertsimas and Sim formulation
with uncertainty budgets to develop a robust unit commitment formulation with uncer-
tain wind power. Bertsimas et al. [BLS+] develop an adaptive robust SCUC problem
employing outer approximation and Benders decomposition.

Büsing and D’Andreagiovanni [BD] have extended the robust optimisation prob-
lem to a multi-band robust optimisation problem, where the uncertainty is represented
as multiple bands. They take advantage of the fact that inaccurate probability distri-
butions may still provide valuable information on the approximate values of uncertain
variables, which can then be grouped into bands. An illustration of these bands is
shown in Fig. .. This, according to them, provides finer control over the representation
of uncertainty, while still maintaining a bound-based approach. They argue that the
conservativeness of the optimisation is reduced as a result. Their approach has also been
applied to unit commitment problems by Dai et al. [DWW] Hu and Wu [HW] who
prove that this approach provides reduced expenditures, while maintaining the same
solution robustness.

While robust optimisation problems are computationally tractable, they provide
conservative solutions. Their suitability for power system optimisation problems is
discussed in Section ..., as a part of a discussion of the challenges to formulating OP
problems under uncertainty.

... Interval Optimisation Formulations

Interval optimisation formulations for OPFs are similar to discrete stochastic for-
mulations, except for a few things. First, instead of using a number of scenarios with
probabilities, the interval optimisation formulation uses only  scenarios. There is one
scenario for the central forecast (CF), and two for lower and upper bounds (LB & UB)
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dmin dmax
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0

Bands

Figure .: Multiple Bands for Uncertainty

on the forecast respectively. The central forecast can be compared to a scenario that
presents the “best guess” for a given uncertain variable, while the upper and lower
bounds represent the uncertainty spectrum. Second, the formulation does not optimise
the expected value of the objective function across scenarios. Instead, it optimises the
central forecast, while ensuring feasibility across the bounds. This is done as follows.

Consider the illustration in Fig. . for two time periods t and t+1 of a particular interval
optimisation problem:

CF

UB

LB
t t +1

I: CFt – CFt+1
II: CFt – UBt+1
III: CFt – LBt+1
IV: UBt – UBt+1
V: UBt – LBt+1
VI: LBt – UBt+1
VI: LBt – LBt+1

Figure .: Interval Programming and Associated Constraints

An interval optimisation problem for the above figure is formulated as follows:

min
∑
t∈T

(
f (x0t) + g(xcf1t )

)
(.)

Subject to, ∀t ∈ T :

x
cf
1t − x

cf
1t+1 ≤ ∆x1t (.)

x
cf
1t − xub1t+1 ≤ ∆x1t (.)

x
cf
1t − xlb1t+1 ≤ ∆x1t (.)

xub1t − xub1t+1 ≤ ∆x1t (.)

xub1t − xlb1t+1 ≤ ∆x1t (.)

xlb1t − xub1t+1 ≤ ∆x1t (.)

xlb1t − xlb1t+1 ≤ ∆x1t (.)
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If a parallel were to be drawn between interval optimisation and discrete stochastic
optimisation, it would be that the central forecast represents the scenario with the
highest probability, and that the upper and lower bounds represent the envelopes for
all the scenarios (shown in orange in Fig. .). It can be seen that the objective function
(.) optimises the central forecast. The seven additional constraints to be added to
the problem are (.)–(.), as proposed by the original authors. It is clear that three
of these constraints (.)–(.) are redundant, and can be dropped. When casting
an interval optimisation formulation, the deterministic formulation can be kept, with
the values for the central forecast substituting the values of the uncertain parameters.
The objective function has to be modified, and the interval constraints are the only ones
to be added to the problem. This method is simple to achieve, but promises a great
improvement in performance under uncertainty.
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Figure .: Envelopes for Scenarios

Like discrete stochastic programming, interval programming formulations have also
successfully been applied to short-term power system studies. Wang and Alvarado
[WA] were among the first to treat the traditional linearised power flow problem
using interval arithmetic. Das [Bis] then analysed power flow calculations in radial
power systems using interval analysis for uncertainties. Saric and Stankovic [SS]
formulated an economic dispatch problem for the electricity market where they con-
sidered uncertainties not in generation, but in values for physical network parameters.
Wang et al. [WXK] solved the unit commitment problem in transmission networks
considering intervals for volatile node injections (net values of loads and generators).
Wu et al. [WSL] then performed a comparative study of scenario-based stochastic and
interval optimisation techniques for the security constrained unit commitment (SCUC).
They concluded that interval optimisation required less computation time, but that its
optimal solution was very sensitive to the chosen uncertainty intervals, meaning that it
was not suitable for simulating random outages of generators and power lines.

Other researchers have improved the interval formulation for unit commitment.
Dvorkin et al. [DPOVK] propose a hybrid stochastic / interval unit commitment
method for transmission networks. They argue that some advantage can be take from
the fact that forecast techniques are more accurate for the first few time periods of the
optimisation as these periods are closer to the time at which optimisation is performed.
According to them, discrete stochastic optimisation can therefore be employed, with a
switch to interval optimisation for later periods. Pandzic et al. [PDQ+] propose the

In some research works, the term “economic dispatch” has been loosely used for OPF problems with an
economic objective function. Therefore, this does not mean that technical network parameters are ignored.
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relaxation of the bound constraints described in (.)–(.), as they argue that these
constraints are almost never enforced due to low probabilities of occurrence.

In the next section, a third approach to formulating uncertain optimisation problems
under severe lack of information, is outlined. This approach is based on information-gap
decision theory (IGDT).

... Information-Gap Decision Theory (IGDT) based Formulations

Information-Gap Decision Theory (IGDT) is an approach to handling of uncertainties
that focuses on the disparity between what is actually known about the uncertainty and
what could be known [ZCCM]. It is a way to look at the uncertainty from the other
side of the table.The question to be asked for formulating uncertain problems is not
“What do I do when I cannot account for some uncertain behaviours?” It is rather, “If I
can only deviate so much from my deterministic objective, how much uncertainty can I
accept?” IGDT can be an useful approach when there is severe lack of knowledge about
the uncertainty, to an extent that deterministic bounds may not be set. This also means
that approaches to solving problems using IGDT cannot be implemented directly, but
can only serve as a means to acquire information about the effect of uncertainty on a
particular optimisation problem.

IGDT is based on the pioneering work conducted by Ben-Haim [Yak]. It has been
applied to problems in power systems only quite recently. We can cite for example
[ZCCM] for research on a bidding strategy for large consumers on day-ahead markets
under uncertain market prices. Murphy et al. [MSK] present an IGDT based method to
manage voltage congestions for distribution networks in the presence of DRES. O’Connell
et al. [OCSK] then formulate an OPF based on IGDT to experimentally calculate
robustness and opportuneness in distribution networks under uncertain power injections.
Ben-Haim defines robustness in IGDT as a means to protect against changes in the
objective of optimisation problems when it worsens. In the same vein, opportuneness
is defined as the benefit that can be extracted by having a better objective value with
uncertainty. In the context of the work done by O’Connell, this relates to the increase
and decrease respectively in DSO expenditures with uncertainty.

.. Challenges to Modelling Uncertainty in OP

The addition of uncertainty in any optimisation problem is a challenge. The various
approaches to adding uncertainty to OPF problems presented in literature have shown
as much. In this section, we analyse the different challenges that formulating and solving
operational planning problems under uncertainty. Such an analysis is challenging in it-
self, because of the multitude of factors that affect the performance of these formulations.
Any practical optimisation problems under uncertainty have to deal with trade-offs.
This is analysed in Section ....

An analysis of the advantages and disadvantages of using probabilistic information
is done in Section .... This is followed by an analysis of the effect of scenarios on
discrete stochastic formulations, in Section .... The challenges in modelling recourse
actions for the approaches discussed above are outlined in Section .... Recourse
actions are defined as follows. Approaches to optimising under uncertainty like discrete
stochastic optimisation and interval optimisation possess certain common characteris-
tics. Both contain certain decision variables that are independent of the uncertainty
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realisation (x0), and other decision variables that are dependent on these realisations (x1).
Fine-tuning actions for the latter kind of variables are therefore necessary once these
realisations become known. These actions are called recourse actions.The final challenge,
related to the suitability of robust optimisation to the OP formulation is analysed in
Section ....

... Trade-Offs for Formulations

Many approaches to optimising under uncertainty were discussed in the previous
sections. All these approaches have different performances. The three major performance
criteria for these approaches are the tractability, scalability, and accuracy (Fig. .).
Unfortunately, all the approaches can only perform well across, at most, two of these
criteria. This means that for any algorithm we choose to model our operational planning
formulation under uncertainty, we will have to make trade-offs. While performing this
analysis, one has to ignore the challenges / problems associated with the modelling of
input uncertainties. These trade-offs are therefore purely based on the performance of
the approaches.

Optimisation
Under Uncertainty

Tractability

Scalability

Accuracy

Figure .: Trade-offs in Approaches to Optimisation under Uncertainty

Depending on the solution techniques adopted, probabilistic OPF P-OPF formula-
tions can be the most accurate. However, their tractability and scalability leave a lot
to desire. While approximate solution methods increase the tractability of the P-OPF,
there is a corresponding decrease in accuracy. Discrete stochastic OPF formulations
generally execute and scale better than P-OPFs. They are also accurate, to the extent of
the scenarios chosen and the probabilities associated with each scenario. They do suffer
from scalability issues, especially with respect to the number of scenarios. The reader
may refer to Section ... for more.

With the same uncertain inputs represented as bands instead of distributions, robust
optimisation formulations have the highest tractability and scalability. However, the

Accuracy in this context refers to the cost or optimality of the solution for the same input uncertainty.
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solution conservativeness means that the accuracy of the formulation is among the lowest.
Interval optimisation formulations sacrifice some of the tractability and scalability
for a higher accuracy. By optimising the central forecast while ensuring feasibility
across uncertainty bounds, interval formulations provide relatively better solutions.
Interval optimisation formulations also exhibit better scalability and tractability than
discrete stochastic formulations for the same uncertain input, albeit with a lower solution
accuracy [WSL]. For each execution of the formulation, IGDT-based formulations
present the same tractability and scalability as robust optimisation problems. However,
solution accuracy is not an element that can be used to describe these formulations,
typically because of the exploratory nature of these problems.

Table . presents a summary of the performances of the different approaches dis-
cussed. This table can be found below.

Table .: Trade-offs on Approaches to Optimisation under Uncertainty

Approach
Criterion

Tractability Scalability Accuracy

P-OPF – MCS – – – – – – ++
P-OPF – Analytical – – – – +++

P-OPF – Approximate – – – – +
Discrete Stochastic + – ++

Interval ++ ++ +
Robust +++ +++ – –
IGDT +++ +++ – –

... Can Probabilistic Information be Trusted?

Probability distributions are rarely accurate representations of uncertainty. They are,
at best, a very good approximation of the historical measurements. Different probability
distributions for PV and Wind power uncertainties have been explored in literature.
Representing the uncertainty using each of these distributions, its advantages, and its
disadvantages, have been studied by researchers. Probabilistic OPFs (P-OPF) that rely on
these distributions as inputs provide results that are largely influenced by the quality of
the distributions. This means that the precision of these distributions has to be spot-on.
This is a challenge that has been addressed in relatively few research works in power
systems. The use of probability distributions, and consequently a P-OPF formulation for
operational planning of distribution networks entails the following challenges.

In order for the behaviour of each of the MV DRES in distribution networks to be
characterised correctly, the spatial nature of the network has to be taken into account.
This means that probability distributions for all the DRES in the network (even of the
same type) are not the same. Different distributions may have to be constructed for
different DRES. This conclusion is supported by research. To cite a few, Drobinski
and Coulais [DC] have found that the characteristics of wind in certain areas of
France, like the Rhône valley, may not be accurately described by a single Weibull
distribution. Abdulkarim et al. [AAJM] show that distributions represent to various
levels of accuracy the behaviour of PV and Wind power in different parts of the world.

Another challenge is that the probability distributions among different production
uncertainties in networks show correlations. Models that take this into account are diffi-





CHAPTER 6. OPERATIONAL PLANNING UNDER UNCERTAINTY – FORMULATIONS

cult to formulate [Sex]. The use of marginal distributions for uncertainties ignoring
the interdependency provokes inaccuracies.

Two other challenges are put forward for PV power by Ren et al. [RYZ+]. First,
probability distributions do not represent the correlation of PV power between adjacent
moments. Second, they do not model the uncertainty of occurrence of the start and
end moments of the PV power during a day. They are consequently unsuitable for use
in operational planning, and are useful only in long-term planning studies. The first
condition can easily be extended to wind power as well, meaning that the distributions
for wind power cannot be used in operational planning either.

To summarise the issue with probability distributions, they are approximations of
the behaviour of the uncertainty. It is very difficult to represent correlations between
the various uncertainties through distributions. Finally, they are also unsuitable for
operational planning due to their inability to provide time-correlated information on
the behaviour of the uncertainty.

... Scenario Reduction

Discrete stochastic OPF formulations are more tractable and scale better compared
to P-OPF formulations. However, their scalability is highly dependent on the number of
scenarios they evaluate. With a high number of scenarios, the execution time of these
formulations explodes. On the other hand, a lower number of scenarios also means that
the behaviour of the uncertainty may not be captured exactly.

To overcome this issue, scenario reduction techniques, ranging from simple methods
like k-means, to reduction techniques that statistically represent the information in
the original scenario set like fast-forward selection and submodular optimisation exist
[FR], [DWPK], [WLK]. With these techniques, these OPF formulations are shown
to perform better. However, choosing the best scenario reduction technique is often a
very difficult exercise. The submodular optimisation technique developed in [WLK]
not only offers the advantage of reducing scenarios, it also optimises the number of
scenarios. This may be suitable when the right choice of the number of scenarios is
unclear.

One advantage of using scenarios is that unlike probability distributions, scenarios
can capture the correlations of uncertainty between adjacent moments. However, if
the scenarios for different types of uncertainty do not have the same probability of
occurrence, the number of scenarios increases exponentially, despite scenario reduction
techniques. This is detrimental to the solution time of these formulations.

... What About Recourse Actions?

The choice of decision variables that depend on uncertainty – and therefore that
need recourse actions – depends entirely on the physical characteristics of the decision
variables and the system being optimised, and on the preferences of the user. This
choice is challenging for Mixed-Integer Programming (MIP) problems as it can affect
their tractability. While formulating the OP problem for distribution networks, these
characteristics were taken into account in order to choose decision variables whose value
would depend on the uncertainty, and would therefore need recourse actions. Table .
presents a summary of the same.
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It is to be noted that the recourse actions in discrete stochastic optimisation are
performed in the second stage of the optimisation itself, while there is no explicit
recourse action stage defined in interval optimisation. This stage has to therefore
be implemented separately, usually at the hour-ahead stage, for a day-ahead interval
optimisation problem.

Table .: Recourse Actions for Flexibilities

Flexibility Recourse Action Constraints

OLTC No —
Reconfiguration No —

Load Modulation Types  &  No —
Load Modulation Type- Yes ∀aactt = 1

Battery System Yes (.) – (.)
DRES Curtailment Yes P f g ≤ P f g

DRES Q Compensation Yes Qf g ≤Qf g ≤Qf g
The physical characteristics of distribution network and the flexibilities used in the

optimisation mean that discrete, global flexibilities like the OLTC and reconfiguration
are chosen to be independent of the uncertainty. This choice is realistic for the following
reasons. Firstly, this tremendously increases the tractability of the OP problem. Secondly,
and more importantly, both these flexibilities affect the entire system, as opposed to other
flexibilities whose effects are local(ised). In practice, potentially changing the system
configuration or the OLTC tap for every realisation of uncertainty may be difficult to
achieve for the DSOs, given their current capabilities.

The choice to omit load modulation of types  and was also inspired by the nature of
these flexibilities – they are assumed to be purchased on the day-ahead market. Recourse
actions can however be performed on load modulation of type-. This is limited to
the periods when the modulation has already been activated, and has to respect the
constraint on reserved capacity. The equalisation or the rebound can however not be
guaranteed on the recourse action. DRES curtailment and reactive power compensation
are also included in the recourse actions taking into account their continuous nature and
the ease of practical implementation.

... Robustness for NLPs with Equality Constraints

Robust Optimisation is revolutionary in terms of tractability. Using the Bertsimas
and Sim [BS] formulation to formulate robust optimisation problems entitles only
one deterministic optimisation to be run for each budget of uncertainty. Indeed, robust
optimisation problems provide conservative solutions. This is the reason for the interest
in multi-band robust optimisation, which provides less conservative solutions.

However, is robust optimisation really suitable to operational planning for distri-
bution networks? There are two reasons why this may not be the case. The first has
to do with the presence of equality constraints in the problem. The uncertain variable
– the DRES production – is represented in equality constraints in the OP formulation.
This means that any robust optimisation is not automatically valid for other realisations
of uncertainty that are in the uncertainty set. One of the major advantages of robust
optimisation is that despite its conservativeness, there is no need for recourse actions.
This nullifies that advantage, effectively rendering any robust formulation of the OP
problem useless. All the research work on robust, and IGDT based optimisation for
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OPFs deal with equality constraints for power balance, meaning that they will also have
to use recourse actions.

The second, bigger issue, is the non-linearity of exact operational planning prob-
lems. For non-linear problems, the behaviour of the objective function with respect to
the change in uncertainty is not linear. This means that an assumption of the worst
uncertainty realisation cannot be made. Consequently, it is impossible to choose a
value of uncertainty against which the robust formulation can protect the system being
optimised. This renders the robust formulation unsuitable for our OP formulation. A
detailed illustration that elaborates further the two reasons outlined above can be found
in Appendix A.

Given all these issues and challenges, is there an ideal approach to OP under DRES
uncertainty? To answer this, a discussion with a specific emphasis on OP formulations
for distribution networks ensues in the next section.

.. An Ideal Approach to OP under Uncertainty?

The choice of an approach to OP under uncertainty depends on several factors. These
factors are intricately linked to each other. Firstly, there is the challenge of ascertaining
and characterising the uncertainty to be handled. This depends on the amount of
information available on this uncertainty. Since the characterisation of uncertainty
directly affects accuracy of the solution, the lack of information can do so as well. If
solution accuracy is the foremost factor for choosing an approach, information related to
the uncertainty is of utmost importance. However, in certain cases, such information
is lacking, and means that a highly accurate solution cannot be obtained. Instead, an
appropriate formulation will have to be chosen depending on other factors.

Secondly, the suitability for operational planning in distribution networks has to
be analysed. The suitability for operational planning is affected by the scalability and
tractability of the formulations, while the suitability for distribution networks is in-turn
affected by their physical characteristics. P-OPF formulations have the lowest tractability
and scalability in general, along with other inabilities in terms of uncertainty charac-
terisation for OP (see Section ...). They are therefore unsuitable for operational
planning. IGDT and Robust formulations suffer from their inability to handle non-linear
equality constraints without the need for recourse actions. They are therefore unsuit-
able for distribution networks.Thirdly, the trade-offs between accuracy, scalability and
tractability themselves has to be taken into account. They do affect the other two factors.
However, when taken separately, they also provide a measure of the performance of each
of the approaches (see Section ...).

In this thesis, we first emphasise on the information available on the uncertainty and
the suitability for OP in distribution networks. We then analyse the trade-offs for each
of the approaches. This is because the major constraints on the OP formulation under
uncertainty are imposed by these two factors. Fig. . illustrates this analysis.

From this analysis, it is clear that discrete stochastic OP and interval OP formulations
offer the best in terms of suitability, tractability, scalability, and accuracy. They are
therefore the best candidates for approaches to uncertainty. These approaches are
characterised by very high and low amount of information on the uncertainty respectively.
This augurs well, providing a means to formulate different approaches . However, at
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Figure .: Characteristics of Various Approaches to OP under Uncertainty

this juncture, another question arises: “can uncertainty be handled using multiple
deterministic optimisation stages?” This is certainly a valid and an interesting question.
Literature shows that multiple deterministic optimisations have been explored before
[BBG+], even if they were not explicitly to treat uncertainty. Therefore, apart from
interval and discrete stochastic optimisation formulations, we also formulate a two-stage
deterministic OP formulation in the next section. All these formulations are extensions
of the novel OP formulation in Chapter , and use the SOC relaxation to achieve exact
formulations that provide the best solutions for the considered uncertainty.

. novel and exact formulations for operational

planning under uncertainty

A review of the various approaches to optimisation under uncertainty, followed by
an analysis of challenges facing OPF and OP formulations under uncertainty was done
in the previous sections. The choice of an ideal approach for OP under uncertainty
was discussed in Section ... Based on this discussion, we formulate three different
approaches to OP for distribution networks under uncertainty. These formulations
are extensions of the novel op formulation presented in Chapter . They are: () a
two-stage deterministic formulation, () a two-stage stochastic formulation, and () a
two-stage interval formulation. The modelling of these formulations considers that
the operational planning under uncertainty is a multi-stage process, in line with the
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trends in current literature [PO]. These formulations have been developed with an
intention to test and compare their performances against one another. In addition to the
assumptions made for the original formulation, we make the following assumptions for
these formulations:

 The uncertainty in the formulations is caused by DRES. The way the uncertainty
is characterised by the formulations is different, but the underlying uncertainty
is assumed to be the same.

 The recourse actions allowed across the three formulations are considered to be
the same. This means that the actions allowed in the hour-ahead stage of the
deterministic formulation are the same as the actions that differ based on the
uncertainty in the stochastic and interval formulations. This is done in order to
enable a comparison of the three approaches in Chapter . The available recourse
actions are shown in Table ..

 The rebound effect for type- load modulation, modelled in Chapter  through
equations (.)–(.) cannot be achieved in two-stage formulations. This
is because any recourse actions performed on this modulation will effectively
nullify these constraints. Therefore, we consider type- load modulation without
rebound in these formulations.

.. A Two-Stage Deterministic OP Formulation

The first of the three formulations for OP under uncertainty is the two-stage determin-
istic OP formulation. The idea behind this approach is to perform a first, deterministic
optimisation on the day-ahead stage, based on day-ahead forecasts for loads and DRES,
in order to acquire flexibilities on the day-ahead market. We remind the reader that
flexibilities like types- and  load modulation, which are thus acquired, do not have
recourse actions. The second deterministic optimisation is done on the hour-ahead
stage, and optimises recourse actions and purchases on the hour-ahead market based on
hour-ahead DRES forecasts. An illustration of this approach is shown in Fig. ..

Day-Ahead Hourly
Load Forecasts

Day-Ahead Hourly
DRES Forecasts

Day-Ahead Set-Points

Day-Ahead Stage

Day-Ahead
Optimiser

(All
Flexibilities)

Flexibility Economics,
Market Interface

Hour-Ahead -min
DRES Forecasts

Recourse Set-Points

Hour-Ahead Stage

Hour-Ahead
Optimiser

(Recourse
Flexibilities

Only)

D - 12h H - 1h

Figure .: Functional Diagram of the Two-Stage Deterministic OP
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... The Day-Ahead Stage

The first stage of this formulation is the day-ahead stage, which, in keeping with
the current trend in deregulated power systems, is executed before the gate-closure of
the day-ahead market ( hours before midnight on day D of the optimisation). The
day-ahead DRES and load forecasts are for -hour time periods. This stage is similar
to the OP formulation developed in Chapter  and uses the same objective function
and different power flow constraints depending on the final problem. We present the
objective function once again for ease of reading. The power flow constraints imposed
on this optimisation stage are listed in Table ..

min
∑

(i,j)∈Ω

24∑
t=1

(
ρl · rij · lijt

)
+
(
ρoltc1 + ρoltc2 ·∆w

)
+
(
ρrec1 + ρrec2 ·∆e

)

+
∑
i

24∑
t=1

[(
ρcurt · P f git

)
+
(
ρcht · P bat,init

)
+
(
ρdct · P bat,outit

)
+
(
ρlcup · P f cupit

)
+
(
ρlcdn · P f cdnit

)
+
(
ρact · aactit · P

f cact
it

)]

Table .: Constraints for the Day-Ahead Stage of the Deterministic OP

Description Constraints

DistFlow (.) – (.)
Reconfiguration (.) – (.)

Voltage and Current Constraints (.) – (.)
Load Modulation (Types  & ) (.) – (.)

OLTC (.) – (.)
Reconfiguration & OLTC Registers (.) – (.), (.) – (.)

Battery Systems (.) – (.)
DRES & Load Power Factor (.) – (.)

SOCP Relaxation (.)

... The Hour-Ahead Stage

The day-ahead stage of the optimisation communicates pertinent results to the hour-
ahead stage of the optimisation. This stage is executed one hour before the actual hour
to be optimised. In this stage, the DSO is able to perform certain recourse actions for the
flexibilities contracted on the day-ahead stage. This could be provoked by new informa-
tion regarding the uncertainty becoming available, possibly causing constraint violations
with the day-ahead solution. In this stage, we deal with forecasts of a higher resolution,
given that the time horizon is that of an hour. This stage is therefore formulated with
-minute time periods, and hence with four such periods for every hour. The objective
function of the hour-ahead stage is as follows:

min
∑

(i,j)∈Ω

4∑
h=1

(
ρl · rij · lijh

)
+
∑
i

4∑
h=1

[(
ρcurh · P

f g
ih

)
+
(
ρchh · P bat,inih

)
+
(
ρdch · P bat,outih

)]
(.)

The hour-ahead optimisation is formulated for performing recourse actions, and
only the flexibilities with additional costs of utilisation are included in the objective
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function. The flexibilities on which recourse actions can be performed do not entail
expenditures and are not in the objective function. Other flexibilities are constrained to
their day-ahead values through the following constraints. In constraints (.), (.),
the reconfiguration variable and the tap choice are set to the variables from the day-
ahead optimisation for the hour in which the -minute time periods are considered.
Constraint (.) imposes the use of the reserved capacity of type  load modulation
only for the hours during which it was activated in the day ahead-stage.

∀(i, j) ∈Ω and ∀h ∈H :

ehaijh = edaij (.)

whaqijh = wdaqijt (.)

∀i ∈ Γact and ∀h ∈H :

P
f cup
it ≤ aact,dait · P f cacti (.)

Apart from these constraints, a combination of the power flow constraints from
the day-ahead stage are also imposed. These constraints are listed in Table .. The
reconfiguration and OLTC constraints, the type- load modulation constraints, the type-
 load modulation activation constraints, and the linearised register variable constraints
do not appear in the hour-ahead stage. They are replaced by the constraints (.) –
(.). This is because these are the flexibilities that have a limited applicability in the
recourse stage of the optimisation.

Table .: Constraints for the Hour-Ahead Stage of the Deterministic OP

Description Constraints

DistFlow (.) – (.)
Voltage and Current Constraints (.) – (.)

Hour-Ahead Constraints (.) – (.)
Battery Systems (.) – (.)

DRES & Load Power Factor (.) – (.)
SOCP Relaxation (.)

.. A Stochastic OP Formulation

The second of the three formulations developed is the discrete stochastic OP formu-
lation, based on the principles presented in Section .... This formulation adopts
a two-stage strategy, where the flexibilities without recourse actions are optimised in
the first stage, while the flexibilities with recourse actions are optimised in the second.
It is to be noted that since the stochastic optimisation explicitly describes discretised
scenarios, there is no guarantee that network constraints will not be violated when the
uncertainty behaves in a manner not described by scenarios, even if it is within the
scenario envelope (see Fig. .).

The two-stage discrete stochastic OP formulation developed in this thesis optimises
the expected cost incurred by DSOs over scenarios contained in a scenario set S. The
objective function of the formulation is shown in equation (.). The probability





6.3. NOVEL AND EXACT FORMULATIONS FOR OPERATIONAL PLANNING UNDER UNCERTAINTY

associated to each scenario is represented by the parameter πs.

min
(
ρoltc1 + ρoltc2 ·∆w

)
+
(
ρrec1 + ρrec2 ·∆e

)
+
∑
i

24∑
t=1

[(
ρlcup · P f cupit

)
+
(
ρlcdn · P f cdnit

)
+
(
ρact · aact,sit · P f cactit

)]
+
∑
s∈S

πs

24∑
t=1

 ∑
(i,j)∈Ω

(
ρl · rij · lsijt

)
+
∑
i

[(
ρcurt · P f g,sit

)

+
(
ρcht · P bat,in,sit

)
+
(
ρdct · P bat,out,sit

)]
(.)

Given that some of the decision variables depend on the scenarios s ∈ S, the con-
straints imposed on the problem may change with respect to the original deterministic
OP formulation. Some of the constraints remain the same, while others take an extra
index, that of the scenario s. This means that constraints of the latter kind are imposed
on every individual scenario. Table . provides a summary of all these constraints. The
constraints that change are rewritten for ease of understanding.

Table .: Constraints from Deterministic OP for Discrete Stochastic OP

Constraints Description New Constraints

Constraints that do not change

(.) – (.), (.) Reconfiguration

NA
(.) – (.), (.) Load Modulation Type-

(.) – (.), (.), (.) OLTC
(.) – (.) Reconfiguration Register
(.) – (.) OLTC Register

Constraints where P , Q, l and v are imposed an index s ∈ S
(.) – (.) DistFlow (.) – (.)
(.) – (.) Reconfiguration (.) – (.)
(.) – (.) Power Flow and Limits (.) – (.)
(.) – (.) Load Modulation Type- (.) – (.)

(.), (.) – (.) OLTC (.), (.) – (.)
(.) – (.) Battery System (.) – (.)

(.) – (.) DRES and Power Factor (.) – (.)
(.) SOCP Relaxation (.)

Constraints that change (∀s ∈ S, ∀t ∈ T , ∀i ∈ Γ , ∀ij ∈Ω and ∀q ∈ Ψij unless specified):

DistFlow Constraints:
P G,sit =

∑
i∈Ω

P sijt ∀j ∈ Γ d(i) (.)

QG,sit =
∑
i∈Ω

Qsijt ∀j ∈ Γ d(i) (.)

P sjt =
∑
i∈Γ u(j)

(P sijt − rij lijt) −
∑
k∈Γ d (j)

P sjkt (.)
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Qsjt =
∑
i∈Γ u(j)

(Qsijt − xij lijt) −
∑
k∈Γ d (j)

Qsjkt (.)

P sjt =
∑
i∈Γ u(j)

(
P sijt − rij

∑
q∈Ψij

dqijδqijt

)
−

∑
k∈Γ d (j)

P sjkt (.)

Qsjt =
∑
i∈Γ u(j)

(
Qsijt − rij

∑
q∈Ψij

dqijδqijt

)
−

∑
k∈Γ d (j)

Qsjkt (.)

P sjt = P cit − P
g,s
it − P

f cup,s
it + P f cdn,sit + P f g,sit (.)

Qsjt =Qcit −Q
g,s
it −Q

f cup,s
it +Qf cdn,sit +Qf g,sit (.)

Reconfiguration Constraints: ∀ij ∈Ω and < ξ :

− eijPij ≤ P sijt ≤ eijPij (.)

− eijQij ≤Qsijt ≤ eijQij (.)

Voltage Constraints:

vsjt ≤ vsit − 2(rijP
s
ijt + xijQ

s
ijt) + lsijt(r

2
ij + x2

ij ) +M(1− eij ) (.)

vsjt ≥ vsit − 2(rijP
s
ijt + xijQ

s
ijt) + lsijt(r

2
ij + x2

ij )−M(1− eij ) (.)

Voltage and Current Limits:
vsit ≤ vi (.)

vsit ≥ vi (.)

vsit = (V Gt )2 (.)

lsijt ≤ I2
ij (.)

Load Modulation Constraints (∀i ∈ Γact):

P
f cup,s
it ≥ aactit · ε (.)

P
f cup,s
it ≤ aactit · P

f cact
i (.)

OLTC Constraints (∀ij ∈ κ):

lsijt − (Iij )2(1−wqijt) ≤ δqijt ≤ lsijt (.)

vsit −V 2
i (1−wqijt) ≤ γqijt ≤ vsit −V 2

i (1−wqijt) (.)

vsjt ≤
∑
q

γqijt

d2
qijt

+ (r2
ij + x2

ij )
∑
q

d2
qijt · δqijt − 2(rij · P sijt + xij ·Qsijt) +M(1− eij ) (.)

vsjt ≥
∑
q

γqijt

d2
qijt

+ (r2
ij + x2

ij )
∑
q

d2
qijt · δqijt − 2(rij · P sijt + xij ·Qsijt)−M(1− eij ) (.)
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Battery System Constraints (∀i ∈ Γbat):

Esoc,sit = Esoc,si,t−1 + ηini · P bat,in,sit − ηout · P bat,out,sit (.)

Esoci ≤ Esoc,sit ≤ Esoci (.)

P bat,in,sit ≤ P bati (.)

P bat,out,sit ≤ P bati (.)

DRES Constraints (∀i ∈ Γg ):

P
f g,s
it ≤ P f g,sit (.)

Q
f g,s
it ≤Q

f g,s
it ≤Q

f g,s
it (.)

Load Power Factor Limits (∀i ∈ Γact):

Q
f cup,s
it = P f cup,sit · tan(φ) (.)

Q
f cdn,s
it = P f cdn,sit · tan(φ) (.)

SOCP Relaxation:

4(P sijt)
2 + 4(Qsijt)

2 + (lsijt − vsit)2 − (lsijt + vsit)
2 ≤ 0 (.)

It is to be noted that the constraints related to type- load modulation apply only
to nodes where such modulation is possible (Γact). Further, the constraints (.) and
(.) do not depend on the scenario s for all nodes i that do not belong in the type-
load modulation set Γact.

.. An Interval OP Formulation

The third formulation developed is the interval OP formulation, based on the prin-
ciples of interval optimisation presented in Section .... The scenario set S in the
formulation contains three scenarios (for lack of a better word) for DRES: the central
forecast (CF), the lower bound (LB), and the upper bound (UB). The objective function
of the interval OP formulation is presented in equation (.). The objective function
minimises the cost of the flexibilities that do not have recourse actions. It also minimises
the cost of the flexibilities that have recourse actions, but only for the central forecast.

min
(
ρoltc1 + ρoltc2 ·∆w

)
+
(
ρrec1 + ρrec2 ·∆e

)
+
∑
i

24∑
t=1

[(
ρlcup · P f cupit

)
+
(
ρlcdn · P f cdnit

)]
+

24∑
t=1

 ∑
(i,j)∈Ω

(
ρl · rij · lcfijt

)
+
∑
i

[(
ρcurt · P f g,cfit

)
+
(
ρact · aactit · P

f cact
it

)

+
(
ρcht · P bat,in,cfit

)
+
(
ρdct · P bat,out,cfit

)]
(.)
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As outlined in Section ..., additional constraints have to be imposed in order to
ensure that the inter-temporal transitions for flexibilities whose values change in the
scenarios do not violate their ramp limits. These flexibilities, namely DRES curtailment,
load modulation type-, and battery systems are imposed the additional constraints
expressed below.

∀i ∈ Γ ,∀t ∈ T :

P
f g,ub
it − P f g,cfit−1 ≤ ζ(P f gi ) (.)

P
f g,cf
it−1 − P

f g,lb
it ≤ ζ(P f gi ) (.)

P
f g,ub
it − P f g,lbit−1 ≤ ζ(P f gi ) (.)

P
f g,ub
it−1 − P

f g,lb
it ≤ ζ(P f gi ) (.)

∀i ∈ Γact ,∀t ∈ T :

P
f cact,ub
it − P f cact,cfit−1 ≤ ζ(P f cacti ) (.)

P
f cact,cf
it−1 − P f cact,lbit ≤ ζ(P f cacti ) (.)

P
f cact,ub
it − P f cact,lbit−1 ≤ ζ(P f cacti ) (.)

P
f cact,ub
it−1 − P f cact,lbit ≤ ζ(P f cacti ) (.)

∀i ∈ Γbat ,∀t ∈ T :

P bat,ubit − P bat,cfit−1 ≤ (P bati ) (.)

P
bat,cf
it−1 − P bat,lbit ≤ (P bati ) (.)

P bat,ubit − P bat,lbit−1 ≤ (P bati ) (.)

P bat,ubit−1 − P bat,lbit ≤ (P bati ) (.)

The ramp rate of DRES inverters can go up to % of their rated power per minute
[SMA], and the ramping of loads is instantaneous, given their switch-on / switch-off
nature. This means that in terms of ramping between the scenarios, these flexibiltiies
have more than sufficient ramping capabilities. For battery systems, the ramp rate is
fixed by the maximum power that the battery can deliver.

Apart from the equations (.) – (.), the following equations used in the discrete
stochastic OP formulation can be employed, and are shown in Table .. For equations
containing scenarios, S = {lb, cf ,ub}.

.. Comparing the Performance of the Formulations

The performance of the three formulations developed in Sections .., .. and
.. has to be based on various criteria to determine which among them perform better
under different conditions. A framework to perform such a comparison is presented in
this section.

The idea behind this comparison is the following. All the three formulations have
day-ahead stages. On one hand, the stochastic OP formulation provide recourse action
set-points for flexibilities for each input scenario. This means that if the realisation
of the uncertainty is not part of a scenario, a deterministic optimisation needs to be
run to obtain the new recourse action set-points. On the other hand, the interval OP

In these equations, P bat = P bat,out − P bat,in
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Table .: Constraints for Interval OP

Description Constraints

DistFlow (.) – (.)
Reconfiguration (.) – (.), (.), (.) – (.)

Voltage and Current Constraints (.) – (.)
Load Modulation (Types  & ) (.) – (.), (.), (.) – (.)

OLTC
(.) – (.), (.), (.), (.),
(.) – (.)

Reconfiguration & OLTC Registers (.) – (.), (.) – (.)
Battery Systems (.) – (.)

DRES & Load Power Factor (.) – (.)
SOCP Relaxation (.)

formulation chooses the flexibilities that can satisfy network constraints for all reali-
sations of uncertainties within predefined bounds. When the actual realisation of the
uncertainty becomes known, a deterministic optimisation has to be run to find the final
recourse cation set-points. This deterministic optimisation routine, and its function,
seems familiar. This is because it is. The hour-ahead stage of the deterministic two-stage
OP formulation is intended to perform the same function as the deterministic optimi-
sation routine that provides recourse action set-points for the other two formulations.
Consequently, the hour-ahead stage of the two-stage deterministic OP formulation can
be integrated to the other two formulations as well. The framework for comparing the
three formulations is illustrated in Fig. ..
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Figure .: Framework for Comparing the OP Formulations under Uncertainty
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In the day-ahead stage, a randomiser generates disturbances to create uncertainty in
the day-ahead DRES forecasts. The inputs to the day-ahead stage of the three formula-
tions also contain load forecasts. The three day-ahead stages then optimise the the given
distribution network based on these forecasts, and provide day-ahead set-points with
their associated costs. The results are also transmitted to the hour-ahead stage, which
optimises the recourse actions for the choice of flexibilities made by each of the three
formulations. This optimisation accepts -minute DRES forecasts for which there are
no uncertainties. The day-ahead load forecasts considered constant over the -minute
periods in an hour, considering that this framework is made only for comparison. The
final set-points and costs are then obtained for the three formulations, for analysis and
comparison.

. conclusions

In this chapter, the need for considering uncertainty in optimisation was first un-
derlined using a simple example. This example showed how solutions to deterministic
optimisation problems can be infeasible when the input parameters to the optimisation
become uncertain. This was followed by a discussion and review of the characterisation
of uncertainty, and the various approaches in literature to solving optimisation problems
under these characterisations of uncertainty. The two major characterisations explored
were the probabilistic characterisation and the characterisation using bounds. Two
approaches were reviewed as a part of the first type of characterisation: the probabilistic
OPF (P-OPF) and the discrete stochastic OPF, while three approaches were reviewed
as a part of the second: the interval OPF, robust OPF, and the IGDT OPF. This review
presented the recent and important work in these approaches.

An analysis of the challenges to modelling distribution network operational planning
formulations using these approaches was then presented. As a part of this analysis,
the advantages and disadvantages of each of these methods were explored. Specific
emphasis was applied on the application of these methods to distribution network
operational planning. A summary at the end of this analysis identified two different
methods, the discrete stochastic OPF and the interval OPF. A third, simpler way of
handling uncertainty, using a two-stage deterministic approach was also chosen.

The three approaches were then used to cast the distribution network operational
planning problem, with uncertainty in the DRES forecasts. The formulations were
derived from the deterministic OP formulation developed in Chapter  and tested in
Chapter . The two-stage deterministic OP formulation relies on a day-ahead and an
hour-ahead stage, both employing deterministic OP formulations. The stochastic OP
formulation considers discrete scenarios to characterise the uncertainty in DRES. The
interval OP formulation treats the same uncertainty via a central forecast and bounds.
To enable a comparisonof the performances of these three methods, a comparison
framework was developed and presented. In the next chapter, results of the tests on
these three formulations are presented, and their performances are analysed with respect
to various factors.

a
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7Operational Planning under

Uncertainty – Results

« Errors using inadequate data are much less than those using no data at all. »
- Charles Babbage

. introduction

.. Context

The novel OP formulation for distribution networks developed in Chapter  was
extended to create three formulations that handle uncertainty in Chapter . The three
formulations are a two-stage deterministic formulation, a stochastic formulation, and an
interval formulation. A framework to compare the performance of these formulations
was also developed in the same chapter.

In this chapter, the results of the tests on the three operational planning formulations
under uncertainty are presented. The results of the comparison of the three formulations,
using the framework developed in Section .., are also presented. The tests are per-
formed on the day-ahead and hour-ahead stages, with uncertainty in DRES production.
For the comparison framework, a total of  DRES production scenarios are generated
to test the performance of the three formulations. The main contribution of this chapter
to the thesis is (numbering consistent with the contributions listed in Chapter ):

C Tests on the different formulations developed for operational planning under
uncertainty. A comparison and analysis for the performance of the different
formulations for different realisations of uncertainty.

The tests on the different formulations allow us to show that they are effectively
able to handle uncertainty in DRES forecasts, presented in three different forms: de-
terministic forecasts, scenarios, and bounds. The results of tests using the comparison
framework serve to show how the formulations perform when the actual realisations of
the uncertainty become known in the hour-ahead stage. To perform these tests, we use
the parameters and conditions described in the next section.

.. Test Parameters and Conditions

... Test Network

To test the three formulations and the comparison framework, the test network
employed is the Baran Test Network. The network consists of  nodes, with  lines
( NC and  NO). The characteristics of this network have already been presented in
Chapter . Additional details for this network are also presented in Appendix B. For
ease of reading, we present the main characteristics of the Baran network once again in
Table ..
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Table .: Baran Test Network – Main Characteristics

Characteristics Value

Nodes  ( Slack,  PQ)
Lines  ( NC,  NO, All Manoeuvrable)

Connected Load .MW (.MVA)
OLTC  Taps, .pu per tap

DRES (%)

Wind PV

Node Wp Node Wp

 .MW  .MW
 .MW

... Forecasts & Uncertainty Generation

We recall that the uncertainty in our OP problem arises from the DRES forecasts. This
means that the DRES forecasts considered in Chapter  are not valid for the tests of the
OP formulations under uncertainty. To test these formulations, the DRES forecasts must
include a way to represent uncertainty. We remind the reader that the representation of
the forecasts depends on the formulation it is used in.

For the two-stage deterministic OP formulation, the day-ahead and hour-ahead DRES
forecasts are all deterministic. For the stochastic OP formulation, these forecasts are
represented as scenarios. And for the interval OP formulation, this is a central forecast
with the bounds on uncertainty. To generate these DRES forecasts, we rely on the random
uncertainty generator from the comparison framework presented in Fig. ..

In this chapter, we test and present the results of the formulations for an instance
of the uncertainty generated by this random uncertainty generator. We consider an
insertion rate of % for generating DRES forecasts. The type, size, and location of
DRES corresponding to this insertion rate have already been presented in Table ..
These forecasts are illustrated for each formulation in their respective sections.

As for the load forecasts, in the context of this thesis, we consider that there is no
uncertainty. This means that the load forecasts used in Chapter  can be reused for
all the tests in this chapter. We recall that there are three types of loads: residential,
commercial, and industrial. The load and net load profiles for the Baran network can be
found in Appendix B.

... Flexibility Limits

Among the flexibilities available, the flexibilities without recourse actions (choice
independent of uncertainty) are that of the OLTC, reconfiguration, and type- load
modulation. Type- load modulation is constrained with respect to the activation
hours across the uncertainty realisations. However, the actual load reduction can vary
depending on the uncertainty realisation. The other flexibilities whose set-points can be
changed depending on the uncertainty realisation are those of DRES curtailment and
batteries. Overall, the numerical limits imposed on the flexibilities in the tests are shown
in Table ..

A specific point to be noted is with respect to the nodes where type- and type- load
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Table .: Flexibility Limits for Tests under Uncertainty

Flexibility
Limits

Description Constraints

OLTC Register ∆wij ≤ 24

DRES Curtailment Maximum Limit P
f g,s
it = P g,sit

DRES Q-Compensation
Injection Limit Q

f g,s
it = 0.4 · (P g,sit − P

f g,s
it )

Consumption Limit Q
f g,s
it = −0.35 · (P g,sit − P

f g,s
it )

Battery
Maximum Ramping (P bati ) ≤ 0.25 MW/h
State of Charge Esoci = 0.8Ebati
State of Charge Esoci = 0.2Ebati

modulations are available. In the absence of type- load modulation, the nodes, where it
was available, are converted to one of the other two types. All the odd-numbered nodes
in the network are thus considered for type- load modulation, while the even-numbered
nodes are considered for type- load modulation.

... Cost Parameters

The cost parameters used in the formulations under uncertainty is the same as the
cost parameters used in the novel OP formulation. This has been presented in Section
... of Chapter . For convenience, these parameters are presented again in this
section, in Table ..

Table .: Test Parameters – Flexibility Costs

Flexibility Cost

OLTC . e per day + . e per tap change
Reconfiguration . e per day + . e per switching action

Active Power Losses  e per MWh

Load Modulation
Types  &  Day-Ahead Market Price

Type-  e per MWh for every activation

Battery
Charge -. to -. e per MWh

Discharge . to . e per MWh

.. Test Environment

The General Algebraic Modelling System (GAMS) [GAM] with a Matlab® interface
is once again used to model the different formulations developed in Chapter . The
Branch-and-Cut method in the IBM CPLEX® solver is used to solve the models. All the
tests for which the results are presented in this chapter and in Appendix B have been
carried out on a computer with an -core Intel® Xeon® E- v processor and 
GB of RAM, running Windows Server .
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.. Organisation of Results

The results presented in this chapter are organised as follows. The main test results
for the two-stage deterministic OP formulation are presented in Section .. This is
followed by the presentation of the results for the stochastic OP formulation in Section
.. The results for the interval OP formulation are presented in Section .. Additional
results for the formulations can be found in Appendix B of this thesis.

The comparison framework is used to test the effectiveness of the three formulations.
Tests using this framework are done for two different levels of uncertainty, and the main
results from these tests are presented in Section .. An analysis on the performances of
the different formulations along with the conclusions to the chapter are finally presented
in Section ..

. the two-stage deterministic op formulation

.. Original Conditions

The deterministic day-ahead and hour-ahead forecasts generated by the random
uncertainty generator are illustrated in Fig. . and Fig. . respectively. We remind the
reader that for a DRES insertion rate of %, the tests in Chapter  were done with a
wind power generator of .MW at node , and PV generators of . and .MW
at nodes  and  respectively.
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Figure .: Two-Stage Deterministic OP Formulation – Day-Ahead DRES Forecasts

The original conditions for this test case in the day-ahead stage have already been
evaluated. This can be found in Section .. of Chapter . For ease of reading, we
remind the reader that the network suffers from under-voltage issues in this test case,
with a lowest observed voltage of .pu. The total DSO expenditures without the
optimisation stand at  .e.

.. Results for the Day-Ahead Stage

In the day-ahead stage, the two-stage deterministic OP formulation has access to all
flexibilities available for optimisation. This includes reconfiguration, OLTC, types  and
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Figure .: Two-Stage Deterministic OP Formulation – Hour-Ahead DRES Forecasts

 load modulation, DRES curtailment and Q-compensation, and battery systems. The
main results obtained for this stage of the OP formulation are outlined in Table ..

Table .: Two-Stage Deterministic OP Formulation – Results for the Day-Ahead Stage

Description Value

DSO Expenditures (Objective) . e
Execution Time . seconds

Active Losses .MWh
Tap Setting  (Hours –)

Open Switches C (Hours –)

Load Modulation (kWh)
Type- Type-
. .

DRES Curtailment —
DRES Reactive Compensation .MVArh (Injection)

Average Relaxation Error . VA

The major difference between this test and the test caseOP −etol3a in Chapter  is the
absence of type- load modulation. Despite this absence, the optimal DSO expenditures
are the same, and stand at .e. In fact, results obtained for this stage are almost
similar in all respects with those obtained for the test caseOP −etol3a. The lack of type-
load modulation is compensated for with a higher use of type- load modulation. In fact,
the total used type-modulation in this test case (.kWh) is very similar to the total
of the used types  and  load modulation (.kWh) in the test case OP − etol3a. All
the other results are similar, leading to the same final expenditures (accurate to  ce) for
the DSO. The configuration C corresponds to the configuration with the same name in
Chapter , illustrated in Appendix B.

The optimised network voltages are shown in Fig. .. We conserve the colour-space
from Fig. . in Chapter  for uniformity. The minimum and maximum voltages in the
optimised network are .pu and .pu respectively.


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Figure .: Two-Stage Deterministic OP Formulation – Optimised Network Voltages

Nodes  and  are chosen for type- load modulation, while nodes , , and
 are chosen for type- load modulation. The total reduced load amounts to a meagre
.% of the total load in the network. The DSO spends a total of .e towards the
utilisation of load modulation in this stage.

.. Results for the Hour-Ahead Stage

In the hour-ahead stage, new -minute DRES forecasts are available to the DSO.
When the flexibility set-points provided by the day-ahead formulation are applied to the
network with these new DRES forecasts, additional violations of the network constraints
may occur.

We observe two voltage violations in the network when the day-ahead solution is
applied with the new hour-ahead forecasts. These violations occur in nodes  and 
during hour . This is due to the following reasons. In the day-ahead solution, the
voltages at these nodes were . and .pu respectively, meaning that they were
close to the lower limit of the allowed voltage. The power injection from DRES in the
nodes  and  during this hour were . and .pu respectively. However, the
new DRES power injections in these nodes during the first ’ of the hour are lower
than the day-ahead forecast values, at . and .pu respectively. This causes the
voltages downstream (nodes  and ) to drop below the permissible limits, to .
and .pu respectively (see Fig. .).

By applying the hour-ahead formulation for each hour, we find that corrective actions
are taken during hour . This eliminates the voltage violations. The results obtained
for this stage are presented below, in Table ..

Hour  is the only hour where recourse actions that result in additional DSO
expenditures are made. During the other hours, the only recourse actions made are
that for type- load modulation and DRES reactive power compensation. During hour
, the battery in node  injects . kWh, improving the voltage downstream, and
contributing to the elimination of the under-voltages in nodes  and .





7.3. THE STOCHASTIC OP FORMULATION

32 33
0.9495

0.9500

0.9505

0.9510

0.9515

Node

V
ol
ta
ge

(p
u
)

Voltages with DA Forecast Voltages with HA Forecast Voltage Limit

Under-voltage Region

Figure .: Voltage Violations with Hour-Ahead Forecasts

Table .: Two-Stage Deterministic OP Formulation – Results for the Hour-Ahead Stage

Description Value

DSO Expenditures (Objective) . e
Execution Time . seconds

Active Losses .MWh
Type- Load Modulation (kWh) .

DRES Curtailment —
Battery . kWh (Injection)

DRES Reactive Compensation .MVArh (Injection)
Average Relaxation Error . VA

The actualised operational cost for DSOs is the cost incurred for the flexibility chosen
on the day-ahead stage and the total DSO expenditures on the hour-ahead stage. We
recall that the flexibilities chosen on the day-ahead stage are reconfiguration, OLTC, and
load modulation types  and . In this test case, the actualised operational costs are
therefore .e (.e on the day-ahead stage). Fig. . shows the operational costs
incurred for each hour.

Some additional results for the hour-ahead stage are presented in Appendix B. It
is to be noted that the results presented here are for an example of the hour-ahead
forecasts. Additional tests that compare the performance of the two-stage deterministic
OP formulation with the other formulations are done for  different sets of hour-
ahead forecasts. The results of these tests are presented in Section ..

. the stochastic op formulation

.. Original Conditions

The stochastic OP formulation requires discrete scenarios to represent the uncertainty
in DRES forecasts. In this test case, the random uncertainty generator generates 
scenarios for the DRES present in the network, in nodes , , and . The generated
scenarios are shown in Fig. .. Each of these scenarios is also associated a probability of
occurrence by the random uncertainty generator. These probabilities are listed in Table


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Figure .: Two-Stage Deterministic OP Formulation – Hourly DSO Expenditures

.. Scenario  has the highest probability of occurrence at .%. The scenario with
the lowest probability of occurrence is scenario , with a .% probability.

4 8 12 16 20 24
0

0.1

0.2

0.3

0.4

Time (h)

Fo
re
ca
st

Po
w
er

(M
W
)

4 8 12 16 20 24
0

0.1

0.2

0.3

0.4

Time (h)
4 8 12 16 20 24

0

0.1

0.2

0.3

0.4

Time (h)

Wind – Node 4 PV – Node 26 PV – Node 27

Scenarios

Figure .: Stochastic OP Formulation – DRES Forecast Scenarios

Table .: Stochastic OP Formulation – Scenario Probabilities

Scenario     

Probability (%) . . . . .

Scenario     

Probability (%) . . . . .

Across the scenarios, the unoptimised network shows only under-voltage violations.
The voltage profiles in the network for the scenarios are shown in Fig. ..


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Figure .: Stochastic OP Formulation – Minimum Unoptimised Network Voltages

The lowest observed voltage across all the scenarios is .pu, occurring in node
 with scenario . Since the stochastic OP formulation provides an expected value of
DSO expenditures, the hypothetical DSO expenditures without optimisation are also
presented as an expected value. We remind the reader that these expenditures are
calculated with respect to the losses and the energy not distributed, and outlined in
Section .. in Chapter . To ascertain this, we compute the DSO expenditures in each
scenario, and multiply the obtained value with the associated probability. This expected
value amounts to  .e.

.. Results with the Stochastic OP Formulation

We run the stochastic OP formulation on the Baran network with the given input
conditions and scenarios. The main results obtained from the formulation are presented
in Table . in Page . These results include the DSO expenditures (objective value),
the active losses, the load modulation, the battery use, and DRES reactive power com-
pensation for each scenario. The expected value of the DSO expenditures with the given
scenarios amounts to .e.

An interesting aspect of the results for this formulation is the difference between the
losses in the original and the optimised network as shown in the Table. In  of the 
scenarios, the losses in the optimised network are higher than that of the original network.
The losses are not the only objective of the optimisation. However, this alone cannot
explain the increase, given that the results presented for deterministic formulations have
always provided lower losses. The additional reason is that the stochastic OP formulation
optimises network expenditures across a set of scenarios in a combined manner.

In the formulation, the network configuration, the OLTC tap setting, and the load
modulation are constant across scenarios. Type- load modulation is used to the maxi-
mum available extent, subject to the activation constraints. This is the reason why its
value is constant across scenarios. DRES curtailment is not used in any of the scenarios.
Battery systems are used in  of the  scenarios. In particular, the battery systems in
nodes , , , and  inject a total of .kWh in scenario . They help improve
the voltages in the peripheral nodes of the network. Their injection patterns are shown
in Fig. . in Page .


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Table .: Stochastic OP Formulation – Results Across Scenarios

Result \ Scenario          

Objective (e) . . . . . . . . . .

Execution Time (sec) .

Active Power Original . . . . . . . . . .
Losses (MWh) Optimised . . . . . . . . . .

Tap Setting  (h–)

Open Switches C: {-, -, -, -, -}

DRES Q Compensation (MVArh) . . . . . . . . . .

Load Modulation (kWh) . (Type-: Nodes  & ; Type-: Nodes , , & )

Battery (Injection) (kWh) . — — . . — — — — .

Average Relaxation Error (VA) .
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Figure .: Stochastic OP Formulation – Battery Injection in Scenario 
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The original and optimised voltages in the network across the tested scenarios are
shown in Fig. .. There is a marked improvement in the voltages in the optimised
network. The median voltage in the optimised network is .pu, while that of the
unoptimised network is .pu. The minimum and maximum voltages in the optimised
network across all scenarios are . and .pu, while those of the unoptimised
network are . and .pu respectively.
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Figure .: Stochastic OP Formulation – Original and Optimised Network Voltages across Scenarios

Load modulation is utilised in nodes , , ,  and . In nodes  and ,
this corresponds to type- load modulation, while in the other nodes, it corresponds
to type- load modulation. The total load reduction achieved via load modulation
across scenarios stands at .kWh. The aggregated load curves, presented in Fig. .,
illustrate the reduction in the loads before and after load modulation. It can be seen that
the modulation is achieved during hours , ,  and .
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Figure .: Stochastic OP Formulation – Aggregated Load Curves Before and After Load Modulation
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Figure .: Stochastic OP Formulation – Type-
Modulation (Node )

In node , type- load modulation
is used during hours  and , and
corresponds to a total load reduction of
.kWh. During hour , a total load
of .kWh is reduced, while during hour
, the load reduction is .kWh. The
voltages in node  range between .
and .pu during hour  and be-
tween . and .pu during hour
 across the tested scenarios. This load
modulation helps improve these voltages,
and is illustrated in Fig...

The other node with type- load mod-
ulation, node , sees total load reduction
of .kWh, also during hours  and
. The reduction during hour  corre-
sponds to .kWh and the reduction
during hour  to .kWh. This helps improve the original voltages in the node, which
ranged between . and .pu during hour  and between . and .pu
during hour . This load modulation is illustrated in Fig. .a. With the given cost
parameters, the DSO spends a total of .e to achieve this load modulation.

Type- load modulation employed in nodes ,  and  contribute to a load
decrease of .kWh, at a total cost of .e to the DSO. In node , it is used for
a reduction of .kWh during hour , improving voltages ranging from . to
.pu. This is illustrated in Fig..b. In node , it is used for a reduction of
.kWh during hour , improving voltages ranging from . to .pu. This
is illustrated in Fig. .a. In node , it is used for a reduction of .kWh during
hours  as well as . This improves voltages in the node, which are between .
and .pu during hour  and between . and .pu during hour . This
load modulation is illustrated in Fig. .b.

A break-up of the DSO expenditures as provided by the stochastic OP formulation
is presented in Fig. .. It is to be noted that the results provided are expected values.
However, we know for sure that network reconfiguration, OLTC, and load modulation
are constant across scenarios. This means that only the cost of losses and battery use are
presented as expected values.

The stochastic OP formulation is able to optimise the network over a set of 
DRES scenarios, providing feasible results for all scenarios, and an optimal expected
value of DSO expenditures across the scenarios. Additional tests on the stochastic OP
formulation are performed in Section ., where the formulation is compared with the
other formulations under uncertainty. In the next section, the results of the interval OP
formulation are presented.


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Figure .: Stochastic OP Formulation – Load Modulation Types  & 
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Figure .: Stochastic OP Formulation – Type- Load Modulation

. the interval op formulation

.. Original Conditions

The interval OP formulation requires a central forecast and bounds for the uncer-
tainty. To ensure homogeneity, we consider the following with respect to DRES forecasts
for the interval OP formulation:

 The scenario with the highest probability in the stochastic OP formulation be-
comes the central forecast for the interval OP formulation.


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Battery (8.28e*): 1.83%

Copper Losses (356.85e*): 79.21%

Load Modulation (9.02e): 2%

Reconfiguration (50.33e): 11.17%

OLTC (26.09e): 5.79%

* – Expected Value

Figure .: Stochastic OP Formulation – Break-up of DSO Expenditures

 The upper and lower bounds for the forecasts required by the interval OP formu-
lation are envelops of the  scenarios in the stochastic OP formulation.

This homogeneity allows us to compare the results obtained with the two formula-
tions as the underlying uncertainty is The DRES forecasts is retained across formulations.
The DRES forecasts thus obtained are illustrated in Fig. .. The central forecast for
the DRES is shown as a continuous line, the lower bound as a dotted line, and the upper
bound as a dashed line.
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Figure .: Interval OP Formulation – DRES Forecasts with Bounds

The minimum voltages in the original, unoptimised network are shown, for each
node and for each hour in Fig. .. There are a total of  voltage violations for the
central forecast. For the lower and upper bounds of the forecasts, the voltage violations
stand at  and  in number respectively. The lowest observed voltages for the three
DRES scenarios all occur at node  during hour . They are .pu for the central
forecast, .pu for the lower bound, and .pu for the upper bound. The total
hypothetical baseline DSO expenditures stand at  .e for the central forecast,
and at  .e &  .e for the lower and upper bounds respectively.
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Figure .: Interval OP Formulation – Minimum Network Voltages across Nodes and Hours

.. Results with the Interval OP Formulation

Unlike the stochastic OP formulation, the interval OP formulation optimises the
network for the central forecast only, while ensuring feasibility across the bounds. The
main results from the interval OP formulation are presented in Table ..

The total DSO expenditures with the formulation stand at .e. This is higher
than the expected value obtained with the stochastic OP formulation for the following
reasons:

 DRES uncertainty realisations with the lowest probabilities (at the bounds) are as
likely to occur as that of the realisations with the highest probabilities. This is
because the interval OP formulation treats the uncertainty as bounds.

 The interval OP formulation forces feasibility of inter-hour transitions with low
probabilities (see equations (.) – (.) in Chapter ) at all costs.

Table .: Interval OP Formulation – Main Results

Description Value

DSO Expenditures (Objective) . e
Execution Time . seconds

Active Losses .MWh
Tap Setting  (Hours –)

Open Switches C(Hours –)

Load Modulation (kWh)
Type- Type-
. .

DRES Curtailment —
DRES Reactive Compensation .MVArh (Injection)

Average Relaxation Error . VA

For solution feasibility, the losses in the bounds are optimised, as required by the SOCP relaxation.
The cost of losses at the bounds are subsequently removed from the objective function in final result.

See Appendix B for details on the network configuration C.


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The formulation takes a significant amount of time for a solution. However, it is
faster than the stochastic OP formulation. This is primarily owing to the need to optimise
only the central forecast, and the reduced number of scenarios in the formulation. Similar
to certain scenarios in the stochastic OP formulation, the losses in the optimised network
are higher for the central forecast as compared to those in the original network. This
increase is explained by the fact that the solution found has to be feasible for the bounds
of DRES production.

The load modulation activated by the interval OP formulation amounts to .MWh
in terms of the load reduced in the network. This is around .% of the total energy
consumed by the loads in the network. The DSO expenditures towards load modulation
are .e. The total modulated load is shown in Fig...
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Figure .: Interval OP Formulation – Aggregated Load Curves Before and After Load Modulation

Type- load modulation is activated in  nodes  (hours  & ; .kWh), 
(hours -; .kWh) and  (hours & -; .kWh). Type- load modulation
is activated at  different nodes. Table . summarises the load modulation in these
nodes. They are further illustrated in Appendix B.

The original and optimised voltages in the network for the central forecast and
the bounds are shown in Fig. .. Once again, there is a marked improvement in
the voltages in the optimised network. The median voltage in the central forecast in
the optimised network is .pu, as compared to the median voltage of the central
forecast in the original network, which is .pu.

The interval OP formulation is able to optimise the network for the central DRES
forecast, while ensuring feasibility across its bounds. When compared to the stochastic
OP formulation, the interval OP formulation provides a higher value of the objective
(DSO expenditures). However, it should technically be able to provide lower recourse
costs than either the deterministic or the stochastic OP formulations. To verify this aspect
of the formulations, we compare their performances for a large number of scenarios of
DRES forecasts, in the next section.


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Table .: Interval OP Formulation – Load Modulation

Type Node Hour
Reduction

Type Node Hour
Reduction

(kWh) (kWh)

Type-


 .

Type-

  .
 .   .



 .



.

 . 
 .


 .

 .  .



 .



. . 

 . 
 .




. . 
Type-   . 
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Figure .: Interval OP Formulation – Original and Optimised Network Voltages across Scenarios

. results from the performance comparison

framework

The two-stage deterministic OP formulation (day-ahead stage), the stochastic OP
formulation, and the interval OP formulation provide set-points for flexibilities on the
day-ahead stage. Their solutions differ from each other, owing to the difference in the
way the uncertainty in the DRES is characterised. The deterministic OP formulation
provides the lowest objective value, while the interval OP formulation provides the
highest objective value.

In this section, we test the performance of these formulations for various realisations
of uncertainty. We use the framework presented in Section .. of Chapter  for this
comparison. The randomiser generates total of  scenarios for DRES production for


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each hour of the day-ahead stage. These scenarios have -minute intervals, and there
consequently exists four DRES production values for each hour. They are generated from
a normal distribution bounded by the DRES forecast bounds. Then, for the day-ahead
results obtained with each formulation, the hour-ahead optimisation routine is executed
with these new forecasts. The flexibilities with recourse actions are then allocated new
set-points in this stage if need be. A total of  such executions are done (one test for
each hour and for each scenario). Table . summarises the main results obtained.

Table .: Performance of the Formulations – Main Results

Result Deterministic OP Stochastic OP Interval OP

Average Daily Objective (e) . . .
Average Losses Cost (e) . . .

Recourse Activations (No.) *   
DRES Curtailment (No.)   

Battery Actions (No.)   
Infeasibility   

*: Recourse Actions that cost money

Out of the  executions, none were infeasible. This first means that the recourse
flexibilities available were sufficient to offset the changes in the network conditions
provoked by the different uncertainty realisations of the DRES. On an average, the
lowest objective with recourse actions was provided by the flexibility set-points of the
interval OP formulation. This is the case in spite of the fact that on  out of the
 tests, there was a need for recourse flexibility that cost money (as opposed to
DRES Q-Compensation, which is free recourse flexibility). This is primarily because the
cost for losses, which makes up a major part of the objective, is lower for the interval OP
formulation. Battery systems were the recourse flexibility that was the most used, with
an average total usage cost of .e, .e, and .e for the three formulations.

A plot of the recourse actions that cost money to the DSO for the three formulations
is shown in Fig. .. All the recourse flexibility activations that cost money to the DSO
were made between hours  and  for the three formulations. The interval formulation
made , , , and  activations respectively during these hours.

We analyse the reason why these activations were made. To do so, we observe the
network voltages before the hour-ahead routine is run. These are the network voltages
when the flexibility set-points from the formulations are applied and when the network is
simulated with the  scenarios for DRES. The only voltage violations encountered in
the network occur in node . Fig. . shows the distribution of voltages in node  for
the hours – across scenarios when the interval OP formulation’s flexibility set-points
are applied. It is clear that the number of voltage violations each hour corresponds more
or less to the number of recourse flexibility activations solicited during the hour-ahead
stage.

We know that the interval OP formulation provides the cheapest recourse actions on
an average, even though such actions are more in number. In Fig. ., the probability
distributions of the recourse action costs for the three formulations are presented. The
CDFs are shown in bold lines, while the PDFs are shown in dotted lines. It is clear
from these distributions that the interval OP formulation outperforms the other two





7.5. RESULTS FROM THE PERFORMANCE COMPARISON FRAMEWORK

19 20 21 22

200

400

600

800

1,000

Time (h)

Sc
en

ar
io

Deterministic OP

19 20 21 22

200

400

600

800

1,000

Time (h)

Stochastic OP

19 20 21 22

200

400

600

800

1,000

Time (h)

Interval OP

Figure .: Recourse Actions for the OP Formulations
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Figure .: Voltages at Node  with the Interval OP Formulation Results and  DRES Scenarios

formulations across all scenarios. However, the distribution suffers from a rather large
tail. This is also the case with the deterministic OP formulation. The stochastic OP
formulation has a tight distribution of the recourse action costs.

The day-ahead costs of the formulations, which comprise the cost of reconfiguration,
OLTC and load modulation, are not integrated in this illustration. These costs amount
to .e for the two-stage deterministic OP formulation, .e for the stochastic
OP formulation, and .e for the interval OP formulation. When these costs are
integrated to the recourse action costs for the formulations, we obtain the actual DSO ex-
penditures for optimising their networks. The distributions of these actual expenditures
are presented in Fig. ..

The distribution shows that the interval OP formulation is not the cheapest in terms
of the actual DSO expenditures. In fact, it is by far the most expensive of the three
formulations. This makes it uninteresting, and is a direct result of the enforcement of
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Figure .: Probability Distributions of Recourse Action Costs for  DRES Scenarios
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Figure .: Probability Distributions of Total DSO Expenditures for  DRES Scenarios

transitions with low probabilities, translating to a high day-ahead cost. This overesti-
mation permits the DSO to spend less on recourse actions, but the high day-ahead costs
offset this advantage.

The stochastic and two-stage deterministic OP formulations show interesting charac-
teristics. There is a .% probability that the two-stage deterministic OP formulation
performs better than the stochastic OP formulation. The average difference in the
DSO expenditures, in this case, is around .e. However, when the stochastic OP
formulation performs better, it does so with a much higher difference in resultant DSO
expenditures. The difference is around .e on an average. This is evidenced by the
long tail that the probability distribution of the two-stage deterministic OP exhibits,
as opposed to the tighter shape of the probability distribution of the stochastic OP
formulation.


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The stochastic OP formulation provides average total DSO expenditures of .e
as opposed to the two-stage deterministic OP formulation, for which the average DSO
expenditures are .e. The stochastic OP formulation performs marginally better.
However, it comes at a large computational cost. The average execution time for the
stochastic OP formulation, combined with the hour-ahead optimisation routine, is
observed to be around  seconds or  day,  hours, minutes, and  seconds.
Using a more powerful computer, decreasing the number of scenarios, or employing
mathematical decomposition techniques may improve solution time. However, even
a % improvement in solution time brought about by these techniques may not be
sufficient. As it stands, it is therefore unrealistic to use the stochastic OP formulation on
a day-ahead basis, primarily because it takes more than a day to solve the problem. On
the other hand, the two-stage deterministic OP formulation executes with a much lower
average time of  seconds.

The choice between the three formulations in terms of performance, based on the
results of this test case, is clear. The interval OP formulation performs the best when
the day-ahead costs are ignored, but becomes the most expensive formulation when
the actual DSO expenditures are considered. The stochastic OP formulation performs
marginally better than the two-stage deterministic OP formulation, which suffers from
rather large expenditure differences in certain scenarios. The two-stage deterministic
OP formulation is however the most computationally tractable of the three formulations.
In the next section, we will present concluding remarks on the results obtained for tests
on the different formulations and the comparison of the performances.

. conclusions

The treatment of uncertainty is a necessary step in operational planning. In Chapter
, we developed three different formulations to perform operational planning under
uncertain DRES production. In this chapter, we tested the three formulations. The tests
showed that these formulations were all able to optimise the network with their respec-
tive uncertainty characterisations. Owing to the difference in these characterisations, the
feasible and optimal results they provided were different as well.

Firstly, the two-stage deterministic OP formulation showed that it was possible to first
optimise the network with deterministic DRES forecasts on the day-ahead stage, followed
by a second, hour-ahead optimisation using recourse flexibilities when accurate DRES
forecasts became available. The effectiveness of this formulation lay in its computational
tractability. However, the uncertainty in DRES forecasts was not factored into the
formulation. Therefore, there could be cases where the recourse flexibilities do not
suffice when the actual uncertainty realisations become known in the hour-ahead stage.

Secondly, the stochastic OP formulation showed that it was possible to optimise
the network across a set of scenarios for DRES forecasts. By explicitly considering
uncertainty in the DRES production, the formulation produced results that could be
guaranteed as feasible when the actual uncertainty realisations became known, albeit
with the use of recourse flexibilities. However, the construction of scenarios often re-
quires expert knowledge of the uncertainty. This is an issue that merits consideration, as
constructing scenarios for the sake of exercise may not work in the real-world. Further,
the tractability of the stochastic OP formulation is the lowest of the three formulations.
Where more powerful computational resources are unavailable, further work in this
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regard would need to focus on mathematical decomposition techniques. Scenario reduc-
tion, as discussed in Section ... of Chapter , would help increase tractability, but
may pose other problems related to the accuracy of the representation of uncertainty.

Thirdly, the interval OP formulation optimised the network using a central forecast
and bounds for DRES forecasts. The bounds were obtained from the stochastic DRES
scenario envelopes, in order to ensure homogeneity between the results. The central fore-
cast was the scenario with the highest probability, which was also the day-ahead forecast
for the two-stage deterministic OP formulation. Tests on this formulation showed that
the DSO expenditures were the highest. The tractability of the formulation was better
than that of the stochastic OP formulation, but worse than that of the deterministic OP
formulation.

Finally, the comparison of the performances of the three formulations was also done.
A total of  DRES scenarios were constructed based on a normal distribution within
the bounds of the interval OP to test optimise the network using recourse flexibilities.
The day-ahead flexibility set-points of the three formulations were applied to each of
the scenarios, and the additional cost to optimise the recourse flexibilities, if needed,
were computed. A total of  tests were thus done (one test for each hour and
for each scenario) for each formulation, and the results show that the interval OP
formulation performed the best when recourse action costs were considered. However,
owing to a high day-ahead cost, the total operational cost of this formulation was the
highest, making it an uninteresting option. The two-stage deterministic OP and the
stochastic OP formulations had comparable performances. The two-stage deterministic
OP formulation performed slightly better than its stochastic counterpart for .% of
the scenarios tested. However, in the rest of the scenarios, the stochastic OP formulation
performed much better.

The main issue of the stochastic OP formulation was its computational tractability. If
this can be improved, either through the use of more powerful computers, or through
mathematical decomposition techniques, the stochastic OP formulation would be the
best choice. In the lack of such options, the two-stage deterministic OP formulation,
which provides no guarantee for feasible hour-ahead solutions using recourse flexibilities,
would be the best choice.

Part IV of this thesis follows this chapter, and focuses on the conclusions, perspectives,
references, and a summary of the thesis in French. It begins with Chapter , where
the general conclusions of the work done in this thesis, along with the perspectives for
future work are outlined.

a
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8Conclusions & Future Work

The rising shares of DRES in power systems, more particularly in distribution net-
works is one of the main challenges for power systems. This, combined with deregulation,
presents two challenges that DSOs, among others, will have to face. Both these chal-
lenges affect the status-quo of distribution network planning and operation, which can
be considered passive for most DSOs today. Intermittent DRES renders planning and
operation techniques adopted today infeasible or sub-optimal. The new deregulated
environment forces DSOs to interact with new actors, provide new services, and take up
new responsibilities. In this context, the various achievements of this thesis are presented
in the following sections. The work done was composed of different contributions, listed
in Chapter , and together lead to the achievements of this thesis.

. achievements of this thesis

The problems posed by the integration of intermittent DRES and the new challenges
that DSOs face in a deregulated environment underlined the need to rethink the planning
and operation of distribution networks. The concepts of Active Distribution Networks
(ADN) and the associated Active Network Management (ANM) were presented in the
thesis as a potential means to overcome these challenges.

In the ADN context, DSOs will take up new and innovative roles and offer new
services. This will allow them to plan, operate, and maintain their networks in a
cost-effective, a more flexible, and a more intelligent manner. The improvement in
network observability and controllability brought about by ADN, along with services
like flexibility available in the deregulated environment, will allow them to achieve this
evolution. The ability of DSOs to optimally use flexibility in operational planning (OP)
of their networks is arguably one of the keys to this evolution.

Operational planning (OP) of active distribution networks, taking place in the short-
term (usually day-ahead) time-frame is a preparatory step in the operation of these
networks. Adverse network conditions like voltage and current constraints, provoked by
intermittent DRES, foreseen through forecasts in OP. The goal of the OP is then to use
flexibilities in an optimised manner to mitigate these adverse network conditions. To
achieve this, the flexibilities used must be modelled.

In this thesis, these flexibilities were first modelled accurately or by using practically
adopted DSO methodologies, depending on the level of detail available for each of them.
This allowed for a realistic technical representation of these flexibilities in the opera-
tional planning formulations and was contribution C of the thesis. In a competitive
environment, DSOs should have to contract and use these flexibilities in an unbiased
manner. This allows them to be cost-effective and allow for the choice of the best flexibil-
ities. The economic models developed for the flexibilities, resulting in the computation
of utilisation costs, facilitates this choice. In this context, the economic modelling of
these flexibilities done as a part of this thesis was a significant step. These models were
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derived for short-term time-frame, with a specific emphasis on the total cost of operation,
including especially in the case of endogenous flexibilities like reconfiguration and
OLTCs. This was contribution C of the thesis.

Currently, there is a lack of methods and tools in OP for distribution networks. This
hinders the adoption of operational planning. In order to overcome this, an analysis of
the literature in optimal power flows and operational planning allowed us to identify the
best approaches to operational planning for distribution networks. The mixed-integer
second-order cone programming (MISOCP) approach to the OPF was chosen as the
best approach, primarily owing to its exactness in modelling the OPF problem and
its accuracy in capturing the physical characteristics of distribution networks. This
approach was employed to develop a novel OP formulation for distribution networks.
The aim of this OP formulation was to use DRES and load forecasts to decrease day-ahead
DSO expenditures on flexibilities and losses in the network.

The biggest challenge to developing the novel OP formulation was the non-linearity
of the OPF equations and the flexibility models used. The first achievement (contribution
C) of the development was the reformulation of flexibility models, both technical and
economic, resulting in exact linearisation of these models. The second, related achieve-
ment concerned the reformulation of the OPF equations. Different exact reformulation
techniques, both continuous and discrete, were used to integrate the OPF equations into
the novel OP formulation (contribution C).

The SOCP relaxation of the power flows allowed the transformation of the mixed-
integer non-linear non-convex OP into a mixed-integer convex OP. This meant that for
the first time, an exact operational planning formulation for distribution networks, inte-
grating discrete flexibilities like reconfiguration and OLTCs, and providing a guaranteed
optimal solution was created. This meant, in addition, that the solution allowed DSOs to
contract and use flexibilities in a cost-effective manner, and maintain good operating
conditions in their networks.

The SOCP relaxation is guaranteed to hold only under certain conditions, one of
which the novel OP formulation does not conform to. The challenge then was to develop
an algorithm that would guarantee globally optimal solutions to the OP problem even in
the event of the failure of the relaxation. This was achieved through the development of a
dichotomic solution recovery and search heuristic, relying on constraint transformation,
and achieving a globally optimal solution via an iterative procedure (contribution C).

The novel OP formulation was then tested on two distribution networks using
different test cases, and for a range of DRES insertion rates (contribution C). For the
Baran network, the results of these tests showed that the formulation could solve all
constraint violations that arose in the network using the cheapest set of flexibilities. For
the PREDIS network, the SOCP relaxation did not hold, as evidenced by an abnormally
high relaxation error. The dichotomic solution recovery search heuristic was then
employed, and as a result, globally optimal solutions to the OP problem for the PREDIS
network were also found. A discussion on the use of flexibility in operational planning,
based on these results, provided insights into the use of endogenous and exogenous
flexibilities in operational planning, and the reasons why certain flexibilities were used
often, and others sparingly. This was contribution C of the thesis.

The novel OP formulation considered deterministic DRES and load forecasts. Any
changes in these forecasts, in intermittent DRES for example, brought the risk of solution
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infeasibility. The main challenge was to develop OP formulations capable of handling
uncertainty. The achievements of this thesis in operational planning under uncertainty
consist of the following. First, an analysis of the best approaches to operational planning
under uncertainty was done. This analysis highlights the drawbacks of some commonly
used methods like robust optimisation in handling parametric uncertainty in OPF and
OP problems. This was contribution C of the thesis. The other achievement of the
thesis was the development of three different approaches to OP under uncertainty, based
on this analysis. These approaches each model the uncertainty in DRES differently.

The two-stage deterministic OP formulation considered deterministic forecasts for
DRES over two stages, a day-ahead stage and an hour-ahead recourse stage (contribution
C). The stochastic OP formulation considered scenarios for DRES forecasts (contribu-
tion C). And the interval OP formulation modelled the DRES uncertainty in terms of
a central forecast and bounds (contribution C). In order to compare the performance
of the three formulations, a comparison framework was also developed. The three
formulations were tested on the Baran network with uncertain renewable production.
The comparison framework used  different scenarios for DRES, and performs a total
of  tests (one per hour of the day and per scenario). Through the use of recourse
flexibilities, the framework optimises the network for each of the scenarios. This was
contribution C of the thesis.

In the next section, perspectives for future work in the field are discussed. These
perspectives include further developments that can be done on the achievements in this
thesis, as well as other avenues for the development of methods for operational planning.

. future work perspectives

In terms of the work done towards the analysis and modelling of flexibilities in
active distribution networks, the following future work can be envisaged. The technical
modelling of flexibilities has been done with a consideration on their accuracy and the
realistic nature. The economic models derived have been done with the short-term usage
in mind. Future work in flexibilities could be done in integrating additional flexibilities,
like CHPs and capacitor banks among others. The modelling of CHPs consists of multi-
physical phenomena, necessitating the introduction of thermal comfort and other related
multi-temporal constraints, and in general resulting in an increased problem size.

As for economic modelling of flexibilities, we have made certain assumptions to
arrive at the economic models and utilisation costs of flexibilities. These models could
be revised / refined based on real-world data from DSOs (which is usually confidential).
While the economic models developed in this thesis allowed us to execute the OP
formulations, higher precision in utilisation costs of flexibilities could result in higher
solution quality.

The novel OP formulation developed in the thesis worked with the SOCP relaxation
of the OPF. This relaxation is shown to fail for one of the two networks tested in this
thesis. The dichotomic solution recovery search heuristic is able to find the globally
optimal solution even with this relaxation fails. However, it is significantly slower than
the novel OP formulation. The number of iterations required for it to recover globally
optimal solutions are high. Two future prospects could be foreseen in this area. The
first lies in the development of algorithms that perform better, resulting in accelerated
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solution times. The second lies in the development of parallelised search heuristics to
overcome the physical limitations of the calculation routines, allowing multiple instances
of the problem to be executed in tandem.

The SOCP relaxation is one of the many relaxations like the Quadratic Convex (QC)
relaxation and the Semi-definite Programming (SDP) relaxation. One of the future
developments envisaged could be the development of OP formulations using these
relaxations, in order to compare their performances.

In terms of handling uncertainty in operational planning, future development could
concentrate on two distinct areas. The first area is the improvement of the performance
of the formulations. In particular, interval and stochastic OP formulations have been
shown to take a significant amount of time to solve the operational planning problem
under uncertainty. Mathematical techniques like decomposition could be employed to
improve their performance.

The second area for development is the integration of other types of uncertainty.
In all our tests under uncertainty, we considered only DRES forecasts as uncertain.
Other parametric uncertainty, like that in load forecasts, was not considered. These
uncertainties could be integrated in future. In some formulations like the two-stage
deterministic OP and the interval OP, additional sources of parametric uncertainty like
that of loads can easily be integrated. This is because the two-stage deterministic OP
considers deterministic forecasts, and the uncertainty realisations (also deterministic)
are known in the hour-ahead stage. The interval OP formulation models uncertain
parameters through bounds, and consequently can also treat additional sources of
uncertainty like that of loads easily. The stochastic OP would however scale badly,
especially of there is no correlation between load and DRES uncertainty. Simplifications
and or better solution methods may be required for such a formulation.

A different approach to operational planning lies organisational structure of the
problem itself. Decentralised and heterarchical approaches provide interesting avenues
for research. They rely on modelling and solving multiple small problems locally, as
opposed to a centralised paradigm, where a single, large problem is formulated and
solved. This speeds-up execution, and may provide faster results. Such approaches,
which have attracted much interest recently, and can be thought of as alternative ways
to simplify the problem, while ensuring optimality.

In general, further tests on each of the formulations developed in the thesis, using
real-world distribution networks, would allow a better evaluation of the abilities and
practical constraints of the formulations. A field implementation of the formulation
will therefore be necessary, and this could be developed in collaboration with a DSO.
The comparison of the performance of the OP formulations under uncertainty stand to
particularly benefit from such tests.

a
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Résumé de la Thèse

Il y a deux changements majeurs que subissent les réseaux électriques d’aujourd’hui.
Le premier défi est lié au réchauffement climatique, avec comme cause l’industrialisation
et la dépendance sur les matières primaires fortes en gaz à effet de serre. Cela a provoqué
une augmentation importante des températures terrestres. Les accords internationaux
comme ceux de Kyoto [Nat] et COP [Fra] ont pour but le maintien des tempéra-
tures mondiales en dessous d’une certaine limite par rapport aux celles constatées avant
la révolution industrielle. Les efforts menés par ces accords misent notamment sur la
réduction des émissions du gaz à effet de serre.

La production de l’électricité à partir des matières primaires fortement polluants est
l’une des premiers émetteurs de ces gaz. Cela fait de la production d’électricité un des
cibles importants de ces efforts, et on constante aujourd’hui un changement fondamental
dans la manière de production d’électricité. En Europe, les directives comme celle de
// [Eur] issues de ces accords provoquent un taux croissant des générateurs
d’énergie renouvelables (GED).

Le deuxième défi est lié à la dérégulation du système électrique de ces dernières
années a crée de nouveaux acteurs et services. Traditionnellement, le système électrique
est un exemple parfait de monopole. Cette infrastructure collective était et financée
par les gouvernements, qui investissaient dans des grosses centrales de production
centralisées et des réseaux (de transport et de distribution). Dans un premier temps,
le taux croissant des GED provoque un changement dans la manière dont l’électricité
est produite. Ensuite, la dérégulation vise à démanteler ce monopole, en séparant les
activités de production, de transport, et la distribution d’électricité.

En Europe, la directive de la Commission européenne de  pour la dérégulation
du marché intérieur de l’électricité [Eur], parmi la première de nombreuses autres
directives émises à l’effet de la déréglementation, de l’efficacité énergétique et de l’accès
à l’électricité, a amorcé le démantèlement de ces monopoles. Les nouveaux acteurs
créés ont favorisé une concurrence et une complexité accrue de l’ensemble du système
électrique.

la problématique

Ces changements touchent le système électrique dans tous les domaines: la pro-
duction, le transport et la distribution. Dans la production, le taux croissant des GED
continuera de changer le mix de production d’électricité et obligera les investisseurs à
mettre en place d’autres stratégies d’investissement. En ce qui concerne le transport
et la distribution, les gestionnaires n’auront aucun autre choix que de faire face à ces
changements grâce à une évolution systématique de leurs pratiques de planification,
d’exploitation et de maintenance. Les réseaux de distribution et ses gestionnaires (GRD)
en particulier sont les plus touchés.
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Traditionnellement, l’électricité provient des générateurs centralisés, transportés
via des réseaux de transport, et distribués par des réseaux de distribution. Ce type de
fonctionnement a permis aux GRD de dimensionner leurs réseaux en fonction d’un
ensemble de règles qui ne considéraient que les scénarios les plus critiques. Cela a
entraîné des réseaux nécessitant peu de décisions à court terme (jour-avant et temps
réel). Cette approche cessera cependant d’être efficace dans une situation où plus en
plus de GED intègrent le réseau. Leur intermittence, la raison principale de cela, peut
également provoquer des flux de puissance vers le réseau de transport.

Les réseaux de distribution actifs sont une solution potentielle pour ces problèmes.
Le concept de ces réseaux consiste à une planification, maintenance et exploitation
plus intelligent, efficace et rentable [Eura]. Ces réseaux dépendront d’un concept qui
s’appelle la flexibilité. Les GRD bénéficieront potentiellement en rendant leurs réseaux
actifs, car ils arbitre leurs décisions d’investissement et d’opération, créant un cadre
rentable. Cependant, une telle modification nécessite un effort important et concerté de
leurs parts. Les GRD devront évoluer et prendre de nouveaux rôles. Un accent particulier
devrait être mis sur leur capacité à contracter et à utiliser la flexibilité, et à gérer leurs
réseaux dans le court terme à l’aide d’algorithmes d’optimisation intelligents (gestion
prévisionnelle). Cela nécessitera également une modification de la réglementation, sans
laquelle les GRD se trouveront incapables de prendre ces rôles.

Dans un scénario où la réglementation permet aux GRD de prendre ces nouveaux
rôles, les différents types de flexibilité qu’ils pourront contracter et utiliser devront
être caractérisés. Un compromis, concernant les flexibilités, entre celles appartenant
aux GRD et celles fournies par des acteurs externes, doit être possible. Enfin, des
algorithmes d’optimisation pour la gestion prévisionnelle devront être développés afin
que ces flexibilités puissent être utilisées de manière rentable et efficace. Ces algorithmes
doivent prendre en compte: () les différences dans la modélisation par rapport à
la nature (discrète ou continue) des différentes flexibilités, () l’aspect temporel des
contraintes liées à certaines d’entre elles, () les caractéristiques physiques des réseaux de
distribution comme leur faible rapport de réactance à résistance (X/R) et () l’incertitude
dans certains paramètres d’entrée.

De nombreuses recherches ont récemment été menées dans le cadre de la gestion
prévisionnelle grâce à des progrès dans des techniques de modélisation et d’exploitation
des réseaux. Cependant, la plupart de ces recherches ont des inconvénients. Par exemple,
l’inadéquation de la recherche dans un contexte pratique et la qualité de la modélisation
mathématique de ces méthodes se traduisent, entre autres, par la qualité des solutions
obtenues.

les contributions de la thèse

Les contributions de cette thèse dans le cadre de la gestion prévisionnelle des réseaux
actifs de distribution sont numérotées du C au C. Une partie de cette thèse a été
réalisée dans le projet FP européen evolvDSO [evo] ainsi que dans deux groupes de
travail sur les pertes techniques et non-techniques et sur la flexibilité.

Cf. chapitre , section .. pour plus d’informations.
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Flexibilité – modélisation et analyse économique

C Le développement des modèles techniques des flexibilités. Ces modèles visent
à décrire de manière précise / pratique le comportement des flexibilités et sont
basés sur ceux dans la littérature ou utilisés par les GRD.

C L’analyse économique des flexibilités, avec un accent sur la rationalisation entre
le coût d’utilisation des flexibilités internes et externes. Le développement de ces
coûts est aussi effectué pour un cas de test particulier, avec pour but l’utilisation
dans une optimisation technico-économique.

Gestion prévisionnelle – optimisation convexe

C La reformulation des modèles de flexibilité développés dans les contributions C
– C afin d’obtenir des modèles linéaires et exactes.

C Le développement d’une formulation de gestion prévisionnelle (Novel Opera-
tional Planning (OP) Formulation). Cette formulation utilise la relaxation du
cône de second-ordre du calcul de répartition des charges. Cette formulation
intègre les modèles de flexibilité obtenus via la contribution C, et résout le
problème avec une optimalité globale.

C Tests sur la Novel OP Formulation avec différents réseaux, avec différents taux
d’intégration de GED et d’utilisation de flexibilités.

C Le développement d’un heuristique capable à résoudre le problème de gestion
prévisionnelle avec optimalité dans le cas où la relaxation du cône de second-
ordre ne tienne. La convergence de l’heuristique est prouvée de manière em-
pirique.

C Une discussion sur l’utilisation des flexibilités dans la gestion prévisionnelle et
les effets sur les caractéristiques des solutions obtenues.

Analyse de l’incertitude dans la gestion prévisionnelle

C Une analyse de différentes approches pour la gestion prévisionnelle des réseaux
de distribution sous incertitude. Cette analyse permet d’identifier les meilleurs
approches en fonction de  différents critères.

C Le développement d’une formulation exacte déterministe de deux étapes pour la
gestion prévisionnelle. Cette formulation optimise le réseau pour le jour-avant et
l’heure-avant.

C Le développement d’une formulation stochastique pour la gestion prévisionnelle.
Cette formulation optimise le réseau avec des scénarios pour l’incertitude.

C Le développement d’une formulation par intervalles pour la gestion prévision-
nelle. Cette formulation traite l’incertitude par intervalles et optimise une prévi-
sion centrale, tout en assurant la faisabilité aux extrémités.
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C Tests sur les trois formulations développés via les contributions C – C. Une
comparaison entre la performance de ces formulations pour nombreuses réalisa-
tions de l’incertitude.

organisation / accomplissements de la thèse

Pour répondre à la problématique, les différentes contributions ont été listées dans
la section précédente. Dans cette section, l’organisation de ce manuscrit est décrite. Ce
manuscrit est composé de  différentes parties, avec  chapitres en total.

La partie I de ce manuscrit, composée de chapitres  et  traite les aspects détailles
de l’évolution des réseaux de distribution et les gestionnaires de ces réseaux (GRD). Le
problèmes posés par le taux croissant des GED et la dérégulation souligne la nécessité
de repenser la planification et l’opération des réseaux de distribution.

A cette fin, le chapitre  présente une analyse de l’état actuel technique et réglemen-
taire en ce qui concerne les réseaux de distribution ainsi que les challenges auxquels
cet état fait face aujourd’hui. Le concept des réseaux actifs de distribution est ensuite
présenté. Dans le contexte des réseaux actifs de distribution, les GRD prendront de
nouveaux rôles innovateurs et offriront de nouveaux services. Cela permettra aux GRD
de planifier, opérer et faire des travaux dans leurs réseaux de manière rentable, flexible
et intelligente. Les améliorations dans l’observabilité et la contrôlabilité dans ce contexte,
combiné avec de nouveaux services comme la flexibilité, permettront les GRD à le faire.
Or, le GRD doivent être capables d’utiliser la flexibilité de manière optimale. Pour cela,
une meilleure compréhension de la flexibilité est requise.

Dans le chapitre , la flexibilité dans des réseaux de distribution est décrite et carac-
térisée. La modélisation technique des flexibilités est faite, dans la mesure du possible,
avec précision. Dans le cas où les informations suffisantes manquent, la modélisation
est faite en prenant en compte les pratiques adoptées par les GRD. Cette thèse à réussi
une telle modélisation des flexibilités à travers la contribution C. Quant à l’utilisation
des flexibilités dans les différents processus d’optimisation des GRD, la modélisation
économique est nécessaire. Dans un environnement compétitif, l’approvisionnement des
flexibilités est fait via des contrats. L’utilisation de ces flexibilités coûte donc de l’argent
pour les GRD. Les flexibilités internes font objet, elles aussi, d’un coût d’utilisation,
même si elles ne sont pas «achetées ». Pour assurer, dans un souci de rentabilité, que les
GRD utiliseront ces flexibilités de manière optimale, la modélisation économique faite
dans cette thèse prend en compte ce fait. La contribution C de cette thèse met en place
une modélisation réaliste et un arbitrage entre les flexibilités internes et externes.

Parmi les différents outils que les GRD devront utiliser dans le contexte des réseaux
actifs de distribution, la gestion prévisionnelle (GP) est une étape préparatoire court-
terme (jour J-). Les violations de contraintes dans les réseaux telles que la tension et
le courant, souvent provoquées par les GED intermittents sont d’abord identifiées. Le
but de GP est d’ensuite utiliser les flexibilité disponibles pour résoudre ces violations de
contraintes. La partie II de cette thèse est dédiée à la gestion prévisionnelle. Dans cette
partie, composée de chapitres  et , le développement d’une méthodologie de gestion
prévisionnelle, suivi par des tests de cette méthodologie sont présentés.

Actuellement, il y a un manque d’outils et de méthodologies de gestion prévisionnelle
dans des réseaux de distribution. Les problèmes associés à ce manque sont d’abord
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soulevés dans le chapitre . Les caractéristiques idéales d’une méthodologie de gestion
prévisionnelle sont ensuite identifiées. Afin de procéder ensuite à la modélisation d’une
telle méthode, une analyse bibliographique des méthodes de calcules de répartition
de charge et de la gestion prévisionnelle est présentée. L’approche de modéliser notre
problème à travers un modèle «Mixed-Integer Second-Order Cone Programming (MISOCP)
»est ensuite choisie. Ce modèle nous permet de surmonter le problème de non-convexité.

Ce modèle intègre deux contributions différentes. La reformulation des modèles
de flexibilités modélisées à travers les contributions C et C est accomplie dans la
contribution C. Quant au calcul de répartition de charge qui est le cœur de la gestion
prévisionnelle, les reformulations mathématiques telles que les linéarisations exactes
et aussi la relaxation convexe du cône de second-ordre, les accomplissements de la
contribution C, aident à la convexification du modèle final de gestion prévisionnelle.
Ce modèle, qui intègre aussi les flexibilités modélisées dans la contribution C, est
appelé «Novel OP Formulation ».

Ce Novel OP Formulation offre pour la première fois la possibilité d’obtenir une
solution optimale garantie pour un modèle de gestion prévisionnelle intégrant des
flexibilités variées, y compris les flexibilités discrètes comme la reconfiguration et les
régleurs en charge. Cependant, la relaxation du cône de second-ordre doit tenir pour
que les solutions optimales obtenues soient physiquement valables. Si la relaxation ne
tient pas, les solutions ainsi obtenues ne seront pas utilisables.

Ce modèle a ensuite été testé sur deux réseaux de distribution dans le chapitre  pour
un certain nombre de cas d’études et de taux d’insertion des GED. Ces tests font partie
de la contribution C de cette thèse. Pour le réseau Baran, les résultats montrent que le
modèle trouve des solutions optimales pour tous les cas d’études. Pour le réseau PREDIS,
la relaxation du cône de second-ordre ne tient pas. Pour retrouver une solution optimale
qui soit physiquement valable, la contribution C dans le chapitre  prévoit un modèle
heuristique basé sur la recherche dichotomique. Ce modèle repose sur une méthode
de transformation de contraintes, où la fonction objective de l’optimisation gestion
prévisionnelle est transformée en fonction objective plus une contrainte. Cette nouvelle
fonction objective fait que la relaxation du cône de second-ordre tienne et la solution
optimale est retrouvée grâce à la recherche dichotomique qui restreint progressivement
la contrainte.

Suite aux tests avec le modèle heuristique, une analyse sur l’utilisation des flexibilités
est menée via la contribution C dans le chapitre . Cette analyse fournit des explications
sur les raisons pour lesquelles il existe des différences dans l’utilisation des flexibilités.

La Novel OP Formulation ne traitant pas des incertitudes, dans des prévisions par
exemple, la partie III est dédiée à son extension pour inclure l’incertitude. Cette partie
est composée par les chapitres  et . Dans le chapitre , une analyse des meilleures
approches pour la gestion prévisionnelle sous incertitude est menée. Pour une incertitude
choisie – celle de la puissance produite des GED – cette analyse fournit les avantages
et inconvénients des différentes approches sous incertitude. La contribution C est
composée de cette analyse et trois formulations différentes sont ensuite choisies pour le
développement des méthodes de gestion prévisionnelle sous incertitude.

La «Two-stage Deterministic OP Formulation »traite l’incertitude dans la production
des GED en considérant des prévisions déterministes sur deux étapes : une première
étape au jour J- et une deuxième à l’heure H-. Le développement de son modèle est
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fait à travers la contribution C. La «Stochastic OP Formulation »considère des scénarios
pour la représentation de l’incertitude et compose la contribution C). Finalement,
la «Interval OP Formulation »traite l’incertitude à travers une prévision centrale et
des bornes supérieures et inférieures. Le développement de ce modèle est fait via la
contribution C.

Dans le chapitre , les trois formulations sont testées sur le réseau Baran, pour
différents cas d’études et taux d’insertion, et les résultats obtenus sont présentés. Une
comparaison des performances des formulations développées est aussi faite pour 
scénarios différents, à travers  tests. Tous les travaux de ce chapitre composent la
contribution C de cette thèse.

La partie IV de cette thèse est composée des conclusions générales et perspectives
de cette thèse (chapitre ), des références bibliographiques et de ce résumé en français.
Finalement, les annexes présentées dans la partie V viennent compléter les informations
présentées dans cette thèse.

a
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AAppendix to the Operational

Planning Models

This appendix provides the following additional information to support the work
done in this thesis. In Section A., the unsuitability of the DC-OPF for distribution
networks is illustrated via tests performed on an IEEE test network.

In Section A., the initial OP-tool solution developed as a part of this thesis for the
evolvDSO project is outlined. In Section A., a simple merit-order based congestion
management procedure is outlined. This procedure was used in the OP-tool in order to
provide feasible initial solutions to a constraint programming optimisation routine in
the tool.

In Section A., the proof of optimality of the solution obtained to MISOCP problems
using the Branch & Cut method is presented. Finally, in Section A., the unsuitability of
robust optimisation formulations for distribution network OPFs under uncertainty is
provied.

a. distribution networks – unsuitability of dc-opf

In order to test the DC-OPF’s suitability for distribution networks, a modified version
of the well-known IEEE -bus system [Ric] is used. The French DSO Enedis uses
certain cross sections (CS) of power cables in its distribution networks [ENE]: , ,
and mm Aluminium (Al.), and mm Copper (Cu.). The resistance and reactance
of the lines in test system are modified based on the typical unit values for these cross
sections shown in Table A..

Table A.: Typical R and X values for kV Power Cables used by Enedis

Type CS (mm) R/km X/km X/R Ratio

Al.
 . . .
 . . .
 . . .

Cu.  . . .

The modified network is subject to a total of   tests. The tests were carried out
using the MATPOWER library, and the average error between the DC and the AC load
flows in the network were obtained for each of the tests. The results of these tests are
shown in Fig. A. through a scatter and histogram count plot. They show that the error
when using the DC OPF is generally very high, with an average of about .%. The
minimum and maximum errors across all tests are about .% and .% respectively.
At these levels of losses, one can conclude that the DC OPF is definitely unsuitable for
distribution networks.
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Figure A.: Errors in the DC Load Flow for Distribution Networks

a. evolvdso – the op-tool as an initial solution

An initial solution to the OP problem partly developed in this thesis and presented
in the evolvDSO European project is the operational planning tool (OP-Tool) for distri-
bution networks. The development was carried out by a consortium of three research
institutions: RSE SpA from Italy, VITO NV from Belgium, and Grenoble INP from
France. The OP-Tool developed by the consortium was the result of an effort to create a
modular tool for the short-term planning of distribution networks. The framework of
the developed tool is shown in Fig. A..
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Figure A.: Framework of the Operational Planning Tool (evolvDSO)

The inputs and interfaces to the framework are represented in red, processes in blue
and orange, and outputs in green. A brief description of the main modules that can be
found in the framework follows.

The market interface module that is used to collect information related to flexibilities
available for use in the distribution network to be optimised, and also to acquire the
flexibilities selected by the optimisation. Two input modules that provide data on the
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network to be optimised, and the load & DRES forecasts in the network, and a third
module that aggregates this information and calculates the input network conditions
and the constraints violated.

The economic analysis module that sorts flexibilties for use in one of the optimisation
approaches developed in the project. This module integrates the work done on the
economic analysis of flexibilities in Chapter  in to the framework. The module also
creates a “merit-order” for flexibilities in the broad sense of the word. An example
merit-order methodology developed for active power flexibilities developed as a part of
this thesis and used in the evolvDSO project is presented in Section A..

The techno-economic optimisation module that combines the inputs and uses two
different optimisation approaches in order to alleviate the constraint violations in the
network. It consists of two different solvers. The first solver is a constraint programming
solver developed by VITO NV. The aim of the constraint programming solver is to find
near-optimal solutions to the OPF problems underlying the OP formulation in a timely
manner. The solver models the power flow constraints as linear approximations of the
power flow equations around a particular operating point. The sensitivity factors for
these approximations are calculated analytically. Flexibilities are integrated into the
solver as constraints that describe their functional aspects. The solver uses a three-stage
search heuristic to guide the overall search process using lower and higher-resolutions of
the problems. The second solver, developed by RSE SpA, relies on a MINLP formulation
of the OPF.

The flexibilities to be used are modelled as constraints, along with the different
constraints for the active and reactive power balance, the voltage and current limits, and
battery storage. This solver does not integrate network reconfiguration in the formu-
lation. Three output modules, the first interfacing with the market for acquiring the
selected flexibilities, the second providing set-points and other operational information
to the DSO, and a third informative module for displaying simulated output conditions
after the optimisation. The framework proposed in Chapter  closely resembles this
framework. For further information, the reader may consult reference [DGR+].

a. congestion management using flexibility

merit-order – a simple example

The economic analysis module in Fig. A. is also responsible for generating a hi-
erarchical merit order for active power flexibilities in the network. This is especially
useful for the constraint programming solver, whose solution times depend on the initial
solutions provided as an input. Apart from speeding up the execution of optimisation
solvers which may need initial solutions, this merit order also provides an immediate
outlook with respect to the active power flexibilities that can be of interest at different
time-frames, in different parts of the network. Of course, these merit orders are not time
dependent, meaning that inter-temporal constraints that link certain flexibilities are not
described.

We consider a radial distribution network with one substation, two feeders, and
seven nodes. This network is illustrated in Fig. A.. There is a load connected to every
node. For a given time minute period, we assume that there is a congestion of  MW
in Feeder , in the line connecting the substation and the first downstream node. Also,
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there is a MW congestion in the substation, meaning the transformer is overloaded.
There are five active power flexibilities A, B, C, D, and E. Each of these flexibilities has
their respective availabilities and unit costs as shown.

A

B

C

D

E

1 MW
10€/MW

1.5 MW
50€/MW

0.8 MW
15€/MW

1 MW
35€/MW

1MW
50€/MW

1 MW overload

2 MW overload

Substation

Feeder 1 Feeder 2
A

B
C

D
E

A

C D

B
E

Figure A.: Hierarchical Merit-Order for Active Power Flexibilities (evolvDSO)

The bottom-up approach to constructing the merit order starts from the nodes
furthest from the substation, and checks for a network congestion in the power line
immediately upstream. If there is a network congestion present, it aggregates all the
available flexibilities and ranks them in an ascending order of their prices. Then, it
indicates that the use of certain flexibilities can solve the congestion, and updates their
status. This is the case with Feeder . The first congestion encountered is that of 1
MW. And there are two flexibilities: A and B available to solve it. By ranking them an
indication that flexibility A can solve the congestion is obtained. Only the remaining
amount of flexibility A can be used for upstream congestion solving. In this case, this
amount is 0 MW. Therefore, flexibility A is used completely to solve the congestion, and
is unavailable for exploitation to solve congestions that may be found upstream. This is
shown in the aggregated merit order curve for Feeder , where A is indicated as used
up (in orange). This not only indicatively solves the congestion in the feeder, but also
decreases the congestion in the substation by 1 MW. This means that when the next
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encountered congestion in this case is at the substation, and is only 1 MW (as compared
to 2 MW originally). At the substation (node N), there are now four flexibilities: B, C,
D, and E. When a new ranking is done, the indication is to use C to its fullest, and D
to the tune of 0.2 MW. This also provides the final merit order, with the indications for
flexibility use in the entire network.

This simple case can be extrapolated to a radial distribution network of any size,
provided that congestions and active power flexibilities exist. In cases where the available
flexibility is not sufficient, merit order routine will still generate one with indications to
solve congestions as much as possible (even if it means indicating that all levers in the
network should be activated). The merit order generator for active power flexibilities
was tested with the operational planning solution developed in the evolvDSO project.
The results of these tests, along with those of the OP tool, can be found in [JJR+].

a. the branch & cut method and misocp problems

– optimality of solutions

In order to solve the different operational planning formulations developed in this
thesis, we rely on the Branch & Cut (B&C) method employed by CPLEX. In Chapter , we
developed a mixed-integer second-order cone programming (MISOCP) formulation that
could guarantee globally optimal solutions to the OP problem for distribution networks.
This work would be rendered useless of the solution technique were to provide results
without any guarantee on their optimality. Therefore, we set out to prove that the B&C
method can gurantee optimal solutions to MISOCP formulations. To this end, we first
explain the working of the method, and then explain how this method converges to a
globally optimal solution for MISOCP formulations. We rely on the work of Drewes
[Sar] and Touré [Tou] for this proof.

A.. Branch & Cut Method – Working

Consider a mixed-integer problem Π with a continuous decision variable set C and
a discrete decision variable set D. Mathematically, the problem can be represented
through the equations (A.) – (A.).

min f0(x) (A.)

Such that:
fi(x) = bi ∀i ∈ n (A.)

fj(x) ≤ bj ∀j ∈m (A.)

x ∈ C ×D (A.)

A continuous relaxation of the problem Π can be derived by relaxing the integrality
constraint of the variables in set D. We obtain the relaxed problem Π as a result. The
decision tree is the result of an iterative process where each tree node is a relaxed sub-
problem. A parent node is a node that has sub-problems. The method begins by solving
the continuous relaxation Π. If the solution x is discrete and feasible, the problem has a
solution. Otherwise, the B&C method creates two sub-problems by adding equations
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x ≤ dxe and x ≥ bxc. The de and bc operators correspond to ceiling and floor functions
respectively. The manner in which the Branch & Cut (B&C) method solves the problem
is by creating a decision tree of these sub-problems. Each node of the decision tree with a
non-discrete solution is a lower bound on the solutions to the sub-problems of the node.
In a similar fashion, each discrete solution is an upper bound to the entire problem.
Each sub-problem thus adds constraints to either the lower or the upper bounds that,
over several iterations, become more restrictive. At a given stage, the lower bound to a
sub-problem meets and upper bound of the entire problem, and this is the solution of
the problem. To explain the working in another way, we state the three rules that the
B&C method uses:

 If the solution to a node in the tree is feasible and discrete, then any and all
soluions to the sub-problems of the node will have a higher objective value.
Hence, there is no interest in exploring these solutions.

 If the solution to a node in the tree is greater larger than the upper bound of the
entire tree, any and all discrete solutions to sub-problems of the node will only
provide a larger upper bound. There is no need to explore these solutions.

 If the solution to a node is infeasible, any and all solutions to the sub-problems
of the node will be infeasible as well. There is no need to explore these solutions.

We now present an instance of the decision tree to a mixed-integer problem Π in
Fig. A.. To explain the working of this tree, we define a discrete set J = {j / x ∈ D}, a
lower bound LB and an upper bound UB of the problem Π, the optimal solution x∗k of a
node k, and a set N that contains all the cuts, the lower bounds, and upper bounds of the
problem at the node k.

Π1

Π2 Π3

Π4 Π5

Π6 Π7

Πk Πk+1

x1j

x2j
(infeasible)

dx1j e

dx3j e

dx4j e

dx7j e

bx1j c

bx3j c

bx4j c

bx7j c

f 5
0 ≥UB

x6j ∈D
f 6
0 =UB

(stop)

Figure A.: Illustration of the B&C Decision Tree [Sar]

In the figure, the problem Π1 is first evaluated by the algorithm. It is checked for
infeasibility. If it is infeasible, then the entire problem is infeasible as well (rule ). If
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not, two sub-problems Π2 and Π3 are created with the new cuts x2 ≥ bx1c and x3 ≤ dx1e
respectively. At the creation of every sub-problem, it is checked for infeasibility. If it
is infeasible as is the case with Π2, further search in this direction is abandoned. If
not, the optimal solution x∗3 is evaluated. If this a non-discreet solution higher than the
current lower bound and lower than the global upper bound, a new cut x∗3 is added to
the sub-problems of the node. The process continues with the sub-problems Π4 and
Π5. If the optimal solution to any problem is higher than the global upper bound (Π5),
the search in this direction is stopped (rule ). Otherwise, new lower bound cuts are
added, and sub-problems are generated. If the solution to any sub-problem is a discrete
solution, this becomes the new upper bound, and the search in this direction is stopped
as well (rule ). This process of refining the lower and upper bounds continues until
there is no difference (or a tolerable difference) between the lower and upper bounds.
The node where this result is achieved is the node whose solution is the solution to the
problem Π.

A.. Optimality with MISOCP Problems

In order to verify that the solutions to MISOCP problems using the B&C method
are optimal, let us consider a MISOCP problem Π. The continuous relaxations of this
problem results in a continuous second-order cone programming (SOCP) problem. At a
node k, consider two values of the objective functions of the problem f 1

k and f 2
k , such

that f 1
k < f

2
k . If the minimisation of the problem Πk provides the objective value of f 2

k , it
means that the problem is not convex. In other words, and convex problem Πk can only
provide one minimum value of its objective function, f 1

k .

In the case of the OP formulation, the discrete variables to be relaxed are that of
reconfiguration and OLTCs. The final result of the B&C method consists of finding
discrete values for the reconfiguration variables and OLTCs with the least objective value
of the continuous relaxations. Since the relaxed problems in each node of the decision
always provide optimal solutions to the continuous OP formulation, the final result of
the B&C method is the globally optimal solution for the MISOCP problem. In other
words, for the B&C method to guarantee a globally optimal mixed-integer solution, the
relaxed sub-problems will have to be solved optimally as well. This is the case with
SOCPs, and the parent MISOCP problem can therefore be solved with global optimality.

a. the unsuitability of robust optimisation for opf

The concept of recourse actions, and its necessity when optimising under uncertainty
was explained in Chapter , Section .... One of the biggest advantages of robust
optimisation in general is that the obtained solution is feasible for all realisations of
uncertainty that lie within the uncertainty set. This means that for traditional robust
optimisation problems, recourse actions are unnecessary for any such realisation of
uncertainty.

However, this is untrue for power system optimisation formulations such as unit
commitment (UC) and optimal power flow (OPF). The reasons for this, as explained in
Chapter , Section ..., are two-fold. First, OPF problems with parametric uncertainty
have equality constraints. Second, some OPF formulations are non-linear in nature. To
better illustrate the issues caused by the non-linearity and equality constraints, we make
use of constraint (.) in Chapter , constraint (.) from Chapter , and Fig. .(b), also
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from Chapter . For ease of understanding, these constraints and the figure are shown
once again. In the following sections, the two issues are further explained with the help
of these equations and figure.

∑
g∈Υ

P
g
t =

∑
c∈C

P ct ∀t

∑
j∈J
ãx+ Γiwi +

∑
j∈J
zij ≤ b ∀i ∈ I

0 1 2 3 4

1

2

3

x

y

A.. The Presence of Equality Constraints

Robust optimisation treats uncertainty in inequality constraints, as shown via con-
straint (.). The first problem related to the use of robust optimisation in OPFs and
OPs is therefore related to the presence of uncertainty in equality constraints. The Con-
straint (.) is a the power balance constraint in Unit Commitment. This is an equality
constraint, and it conserves this equality even in OPF formulations (see constraints
(.)–(.) in Chapter ). If the DRES production (or even the demand) is considered
uncertain, it is in this power balance equation that the uncertainty will appear.

A solution obtained with a conservative estimate of the uncertain parameter (DRES
production) may therefore not be feasible for other, less conservative, realisations of
the parameter. This is because the solution obtained with an equality constraint may
be mathematically valid only for the given set of values that variables and parameters
take in the equation. This infeasibility can be illustrated with the optimisation problem
described by the equations (.), (.)–(.), the presence of an equality in constraint (.)
would transform the solution space from a -D region (shaded in green) into -D lines
(dotted blue). Recourse actions may therefore be necessary when the actual realisation
of the uncertain parameter becomes known. This defeats the original purpose of the
robust optimisation, as the solution is technically no longer robust.

This issue may be overcome by using approximations. The power balance equality
constraint can be transformed into an inequality constraint via a direct approximation.
However, for any solution to be feasible, the inequality must be tight, and such a
guarantee cannot be provided in the OP formulation. One or more variables in the
equality constraint may be eliminated in order to convert the equality constraint into
an inequality constraint. However, these variables have to be state / analysis variables
that do not need the compuation of an optimal value [GYdH], [ALA]. In any case,
an approximation is not guaranteed to produce an optimal, or even a feasible result.

A.. Non-Linearity in the Problem

The presence of non-linear constraints in the robust optimisation problem poses two
problems. The first problem is related to the feasibility of recourse actions. In a case
where recourse actions are allowed in the robust optimisation formulation with equality
constraints, certain decision variables change their values depending on the realisation
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of the uncertain parameter. However, these actions can be guaranteed as feasible only if
the problem is linear. This stems partly from the non-linear behaviour of the system to
be optimised with respect to the uncertainty, where certain realisations may not have
feasible recourse actions.

The second problem is related to the identification of the worst case scenario, against
which the robust optimisation protects the system to be optimised. This identification is
easy if the problem is linear, as the behviour of the system with respect to the uncertainty
is linear. Evidently, this means that one of the bounds of the uncertainty is the worst-case.
However, if the problem is non-linear, this may not necessarily be the case (non-linear
convex problems are exempt). The worst-case condition may be caused by a realisation
of the uncertainty that could be anywhere in the uncertainty set. It is impossible to
evaluate this. Therefore, a robust optimisation problem cannot be formulated.

a
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BAppendix to the Test Networks

and Test Results

This appendix presents the following information. In Section B. the technique used
to decide the type, size, and location of the DRES in the test networks is presented.
Then, in Section B., the additional data for the Baran test network, like the line resis-
tances, the line reactances, the load profiles, and additional information on the network
characteristics are presented. In Section B., similar data is presented for the PREDIS
network.

In Section B., the additional test results for the novel OP formulation are presented.
This includes an illustration of the configurations C – C chosen by the OP formula-
tions. Finally, in Section B., the additional test results for the OP formulations under
uncertainty are presented.

b. pseudo-random dres allocation

The working principle of the technique for deciding the type, size, and location of
the DRES in the test cases is described here. It is based on the MADGIC method in
[AHBG+] to evaluate the maximum insertion rate of DRES in networks.

To realistically distribute the DRES in a given network, our technique relies on real-
world information of the distribution of the type and size of DRES. This information is
available in [ENE], and is synthesised in Table B..

Table B.: Installed Capacities of PV and Wind Power in Enedis MV Distribution Networks [ENE]

Production Installed Proportion (%)
Range Capacity (MW) In Range In Total Installed
(MW) Solar Wind Total Solar Wind of Range Cumulative

. – . . . . . . . .
. –  . . . . . . .
 –  . . . . . . .
 – . . . . . . . .
. –  . . . . . . .
 –  . . . . . . .
 –  . . . . . . .
 –       . 

In this table, the installed capacities are first shown in different ranges of rated
production. The proportion of PV and wind power in each range is also indicated. This is
followed by the indication of the proportion of the capacity in each range as a percentage
of the total installed capacity in all ranges. Finally, the cumulative installed capacity
taking into account the installed DRES in and below the ranges is calculated.
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Based on this data, a new probability distribution is created for the chance of oc-
currence of DRES in an MV distribution network. This distribution is illustrated in
Fig. B..
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Figure B.: Probability Distribution (PMF) for DRES Size and Type

The DRES insertion rate τ in a network is the ratio of the maximum power that can
be produced by all DRES connected to the network (P gmax) to the connected load in the
network (P cmax). It is given by the formula (B.).

τ =
P
g
max

P cmax
· 100 (B.)

We also define other parameters for this method whose values are extracted from
Table B.. They are the DRES generation P g , the range of DRES production rg , the type
function of the DRES type(), the probability function prob(), the allocated power P al ,
the remaining power P rem, and the iteration register i. Then, we develop the following
procedure to pseudo-randomly allocate DRES in the network:

: procedure DRESAlloc(P g )
: P rem = P cmax · τ
: P al = 0
: i = 1
: while P rem ≥ 0 do
: Select rg where P rem can lie
: Normalise prob(rg ) for selected ranges
: Select one range from rg according to prob(rg )
: P

g
i = rand(rg )

: Select type(P g(i)) according to prob(type(P g(i)))
: if P gi > p

rem then
: P

g
i = prem

: end if
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: P al = P al + P gi
: P rem = P rem − P gi
: Store P gi and type(P gi )
: i = i + 1
: end while
: return results
: end procedure

In this procedure, the maximum power that can be allocated, based on the DRES
insertion rate τ is first ascertained. Then, in an iterative way, the production and the
type of DRES are allocated based on the probability laws that govern their occurrence.
This is done until no power is left to be allocated. It is to be noted that this procedure
does not produce repeatable results, as the range and type of the DRES are decided
pseudo-randomly in all iterations.

b. additional data – baran network

In this section, additional data pertaining to the Baran test network are presented.
First, the per-unit resistances and reactances for the Baran test network are presented in
Table B.. These per-unit values are calculated on a base of .kV and MVA.

Table B.: Baran Test Network – Line Resistances and Reactances

Node Resistance Reactance Node Resistance Reactance
From To (pu) (pu) From To (pu) (pu)

  . .   . .
  . .   . .
  . .   . .
  . .   . .
  . .   . .
  . .   . .
  . .   . .
  . .   . .
  . .   . .
  . .   . .
  . .   . .
  . .   . .
  . .   . .
  . .   . .
  . .   . .
  . .   . .
  . .   . .
  . .   . .
  . .

The spread of load types in the different nodes in the network is shown in Fig. B..
The nodes , , , ,  and  are chosen for type- load modulation, and are
assumed to be provided by the industrial loads connected to these nodes. The connected
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load and load power factor at each of the nodes in the network is shown in Table B..
The load values have been calculated on a MVA base.
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Figure B.: Baran Network – Load Proportions per Node

Table B.: Baran Test Network – Loads

Node
Load Power Power

Node
Load Power Power

Active Reactive Factor Active Reactive Factor
(pu) (pu) (tanφ) (pu) (pu) (tanφ)

   –  . . .
 . . .  . . .
 . . .  . . .
 . . .  . . .
 . . .  . . .
 . . .  . . .
 . . .  . . .
 . . .  . . .
 . . .  . . .
 . . .  . . .
 . . .  . . .
 . . .  . . .
 . . .  . . .
 . . .  . . .
 . . .  . . .
 . . .  . . .
 . . .

The load and net load profiles for various DRES insertion rates are illustrated in
Fig. B.. These profiles are based on the weights introduced in Section ... of Chapter
, and are used in the test cases presented in Section . of the same chapter.





B.3. ADDITIONAL DATA – PREDIS NETWORK

4 8 12 16 20 24
0

1

2

3

4

5

6

Time (h)

Po
w
er

(p
u
)

Load Net Load (10%) Net Load (20%) Net Load (30%)
Net Load (40%) Net Load (50%) Net Load (60%) Net Load (70%)
Net Load (80%) Net Load (90%) Net Load (100%)

Figure B.: Baran Network – Load and Net Load Profiles (% DRES Insertion)

b. additional data – predis network

The per-unit resistances and reactances for the PREDIS test network are presented in
Table B.. These per-unit values are calculated on a base of kV and MVA.

Table B.: PREDIS Test Network – Line Resistances and Reactances

Node Resistance Reactance Node Resistance Reactance
From To (pu) (pu) From To (pu) (pu)

  . .   . .
  . .   . .
  . .   . .
  . .   . .
  . .   . .
  . .   . .
  . .   . .
  . .   . .
  . .

The spread of load types in the different nodes in the network is shown in Fig. B..
The nodes  and  have industrial loads. However, this is only to construct the load
profiles, and not for load modulation. Since this is a real-world test network where loads
can be finely controlled, only type- load modulation is associated to the loads in this
network. The connected load and load power factor at each of the nodes in the network
is shown in Table B.. The load values have been calculated on a MVA base. The





APPENDIX B. APPENDIX TO THE TEST NETWORKS AND TEST RESULTS

load and net load profiles for % DRES insertion rate are illustrated in Fig. B.. These
profiles are based on the weights introduced in Section ... of Chapter , and are
used in the test cases presented in Section . of the same chapter.
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Figure B.: PREDIS Network – Load Proportions per Node

Table B.: PREDIS Test Network – Loads

Node
Load Power Power

Node
Load Power Power

Active Reactive Factor Active Reactive Factor
(pu) (pu) (tanφ) (pu) (pu) (tanφ)

     . . .
 .      
     . . .
 . . .  .  
 .    .  
 .      
 .  
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Figure B.: PREDIS Network – Load and Net Load Profiles (% DRES Insertion)
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b. novel op formulation – additional results

B.. Baran Network – Configurations

The novel OP formulation and the OP formulations under uncertainty chose 
different configurations for the Baran network. These configurations, numbered C to
C, are illustrated here. The configurations C and C are first shown in Fig. B.. The
dotted red lines are the open lines in each of the configurations.
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(b) C

Figure B.: Baran Network – Configurations C – C showing open lines

The open lines in configuration C are {-, -, -, -, -}. The open
lines in configuration C are {-, -, -, -, -}. The configurations C
and C are shown in Fig. B..
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(a) C
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(b) C

Figure B.: Baran Network – Configurations C – C showing open lines
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The open lines in configuration C are {-, -, -, -, -}. The open
lines in configuration C are {-, -, -, -, -}. The configurations C and
C are shown in Fig. B..
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Figure B.: Baran Network – Configurations C – C showing open lines

The open lines in configuration C are {-, -, -, -, -}. Finally,
the open lines in configuration C are {-, -, -, -, -}.

B.. Additional Results – Test Case OP − eol3b
The test case for which these results are presented isOP −eol3b. The results for DRES

insertion rates from % to % are presented. The test with % DRES insertion is the
only test where the unoptimised network shows over-voltage problems. The unoptimised
and optimised voltages for this network are therefore shown in Fig. B. as heat-maps.
The colour profile is maintained across the figures to facilitate understanding.
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Figure B.: Original and Optimised Voltages – Test Case OP − eol3b – % DRES Insertion
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There are a total of  over-voltage violations in the original network. All the over-
voltage violations occur in nodes - between hours -. The highest observed voltage
in the network is .pu, occurring in node  during hour . They are provoked by
the DRES in nodes , , and .

As for under-voltage violations, there are a total of  such violations in the network.
They occur during the beginning (hours  & ) and during the end (hours -) of the
day, in nodes - and -. The lowest observed voltage is .pu occurring at node
 during hour . In the optimised network, all these voltage violations are eliminated.
The lowest and highest observed voltages in the optimised network are . and .pu
respectively.

The load modulation chosen by the novel OP formulation in this test case for all
DRES insertion rates is illustrated in Fig. B.. The maximum load modulation used is
for the case with % DRES insertion, where .kWh of load is reduced. The least
amount of load modulation used is in the case with % DRES insertion. Here, no load
reduction occurs.
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Figure B.: Load Modulation vs Time for DRES Insertion Rates – Test Case OP − eol3b

The cumulative load modulated for all the insertion rates is shown in Fig. B.. The
figure also shows the proportion of each of the type of load modulation within the
modulated load. Type- load modulation is by-far the most utilised load modulation.
Its utilisation averages .MWh across the tests. Types  &  average . and
.MWh respectively. This is understandable, as type- load modulation is economi-
cally interesting, even with the rebound constraint. Type-modulation is also easier to
use, as it is modelled as a continuous flexibility.

For DRES insertion rates of , , , and %, the available DRES reactive power
compensation is not fully used. For example, for the case with % insertion, the DRES
consumes reactive power in order to regulate the voltage. This is illustrated in Fig. B..
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Figure B.: Cumulative Load Modulation for DRES Insertion Rates with Type – Test Case OP − eol3b
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Figure B.: Reactive Power Compensation for Test Case OP − eol3b with % DRES Insertion

The net reactive power compensation in this case was .MVArh. The total reac-
tive power injection was .MVArh, while the total consumption was .MVArh.
Reactive power is consumed by the inverter of the PV generator in node  during the
hours  – . This is because of the high active power injection from this PV generator
during these hours, causing a voltage increase in the feeder where it is connected.

This difference can be clearly seen in the node voltages in this feeder, as illustrated in
Fig. B.. Without DRES reactive power consumption, there are a total of  over-voltage
violations in the network. These violations occur predominantly during hours  to .
The highest voltage in the network without reactive power consumption would have
been .pu.





B.4. NOVEL OP FORMULATION – ADDITIONAL RESULTS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

Node

V
ol
ta
ge

(p
u
)

Voltage with Q Compensation Voltage without Q Compensation

Over-voltage Region

Figure B.: Voltages with and without Q-Compensation for Test Case OP − eol3b with % DRES
Insertion

The proportion of DSO expenditures across the DRES insertion rates is shown in
Fig. B.. The main components of the expenditures are Losses (red), Load Modulation
(orange), Reconfiguration (green), and OLTC (blue). There is no DRES curtailment. The
use of battery systems is imperceptible and is therefore not shown.
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Figure B.: Proportion of DSO Expenditures – Test Case OP − eol3b for -% DRES Insertion

The results show that, as is the case with all the other results, the highest expenditures
arise out of copper losses (.% - .%). This is not completely borne by the DSO,
as they will eventually transfer these expenditures on to the customers. However, as
explained earlier in this thesis, the reduction of losses is an important step for DSOs
in order to eventually comply with national regulation, and to gain incentives / avoid
penalties. Reconfiguration is the second biggest expenditure on an average for the DSOs
across the tests (.% - .%), followed by OLTCs (% - .%), load modulation
(% - .%), and batteries (imperceptible use).
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b. op under uncertainty – additional results

B.. Two-Stage Deterministic OP – DRES Q-Compensation and Battery Use

The additional results for the hour-ahead stage of the two-stage deterministic OP
formulation are presented here. We first illustrate one of the recourse actions in the
hour-ahead stage, DRES reactive power compensation. This free recourse action is shown
in Fig. B.. The set-points for Q-compensation from the three DRES units in the network
change in the hour-ahead stage. This change is shown in the figure. The dashed lines
represent the day-ahead set-points for the DRES, while the bold lines represent the
hour-ahead set-points.
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Figure B.: Two-Stage Deterministic OP – Recourse Actions for DRES Q-Compensation

The difference in the set-points is primarily due to the change in DRES active power
production. In all the cases, the ratio of the reactive power to the active power of
the DRES remains close to the % limit for reactive power injection. The second
recourse action is the use of the battery. The power injection from the battery amounts
to .kWh in the hour-ahead stage of the optimisation. This is illustrated in Fig. B.
as a function of the nodes and the time periods.
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Figure B.: Two-Stage Deterministic OP – Hour-Ahead Battery Use
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As seen from the figure, the injection is provided by the battery situated in node ,
at time period  (second ’ period in the th hour of the day). This is the only time
period in which the battery is used in both in the entire optimisation. We remind the
reader that the day-ahead stage had no battery use.

It is to be noted that for node , the figure shows a battery injection (in terms of
power) of .kW. For time period , the same injection is .kW. This is because
the power injected in the node is expressed for a period of one hour, while the injection
in the time periods is expressed for a period of minutes. The final injected energy is
the same (.kWh), whether expressed with respect to the node or to the time period
(. · . = .kWh).

B.. Stochastic OP – DRES Q-Compensation and Battery Use

The additional results for the stochastic OP formulation are presented here. Given
that the formulation has  scenarios, the utilisation of flexibilities whose values can
change across scenarios are an interesting source of information. We first analyse the
DRES Q-compensation in the different scenarios. Two illustrations to this effect are
presented in Fig. B..
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Figure B.: Stochastic OP – DRES Q-Compensation across Scenarios

In the sub-figure on the left, the ratio of reactive to active power is represented for all
the DRES in the network for each scenario. Each scenario is represented by a particular
colour of the scatter marker. In the sub-figure on the right, the same ratio is represented
as a function of the active power that the DRES produces. The colour of the scatter
markers are maintained in this figure.

Scenario  shows the tightest set of DRES Q-compensation set-points, while scenario
 has the set with the widest range of set-points. There is no correlation between the
lack of DRES production and the Q-compensation (injection). Intuition would however
dictate that this be the case, given that lower DRES production values are associated to
lower network voltages for the Baran network.

In Chapter , the battery injection in Scenario  was illustrated. The other scenarios
in which battery systems are used are scenarios , , and . In these scenarios however,
the battery systems are used to a much lesser extent than in scenario  (., ., and
.kWh, as compared to .kWh). These injections are illustrated in Fig. B..
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APPENDIX B. APPENDIX TO THE TEST NETWORKS AND TEST RESULTS
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Figure B.: Stochastic OP – Battery Use in Scenarios ,  & 

B.. Interval OP – The Use of Load Modulation

The results presented here complement those presented for the load modulation
obtained using the interval OP formulation in Section . in Chapter . The overall
modulated load was presented in Fig. . in the same chapter. We now illustrate the
modulation at individual nodes. Nine nodes where chosen for load modulation in all. Of
these nodes, three nodes were chosen for type- load modulation: , , and . The
load modulated in these nodes is shown in Fig. B..
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Figure B.: Interval OP – Type- Load Modulation

In node , .kWh of load is reduced during hours  & . In node , .kWh
is reduced during hours -. And in node , .kWh is reduced during hours 
& -. Type- load modulation is employed in  nodes of the network: , , , ,
, and . Fig. B. shows the load modulated in nodes , , and .

In node  of the network, type- load modulation is solicited twice during the day,
at hours  and . The load reduction achieved through this modulation amounts to
.kWh. In node , type- load modulation is solicited once, during hour , for a
reduction of .kWh. And in node , type- load modulation is solicited twice, during
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Figure B.: The Interval OP Formulation – Type- Load Modulation ()

hours  and , for a total reduction of .kWh. Fig. B. shows the load modulation
achieved in nodes , , and .
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Figure B.: The Interval OP Formulation – Type- Load Modulation ()

In node , type-modulation is solicited twice, during hours  and . The load
reduction achieved in the node is .kWh. In node , it is solicited thrice, during
hours , , and , for a total reduction of .kWh. It is also solicited thrice in node
, during hours , , and , with a total reduction of .kWh.
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Power systems are faced by the rising shares of distributed renewable energy sources (DRES)
and the deregulation of the electricity system. Distribution networks and their operators (DSO)
are particularly at the front-line. The passive operational practices of many DSOs today have to
evolve to overcome these challenges. Active Distribution Networks (ADN), and Active Network
Management (ANM) have been touted as a potential solution. In this context, DSOs will streamline
investment and operational decisions, creating a cost-effective framework of operations. They will
evolve and take up new roles and optimally use flexibility to perform, for example, short-term op-
erational planning of their networks. However, the development of such methods poses particular
challenges. They are related to the presence of discrete elements (OLTCs and reconfiguration), the
use of exogenous (external) flexibilities in these networks, the non-linear nature of optimal power
flow (OPF) calculations, and uncertainties present in forecasts. The work leading to this thesis deals
with and overcomes these challenges. First, a short-term economic analysis is done to ascertain the
utilisation costs of flexibilities. This provides a common reference for different flexibilities. Then,
exact linear flexibility models are developed using mathematical reformulation techniques. The
OPF equations in operational planning are then convexified using reformulation techniques as well.
The mixed-integer convex optimisation model thus developed, called the novel OP formulation, is
exact and can guarantee globally optimal solutions. Simulations on two test networks allow us to
evaluate the performance of this formulation. The uncertainty in DRES forecasts is then handled
via three different formulations developed in this thesis. The best performing formulations under
uncertainty are determined via a comparison framework developed to test their performance.

Keywords: Active Distribution Networks, Convex Optimisation, Integration of Renewables, Flexi-
bility, Mathematical Reformulations

a

Les réseaux électriques subissent deux changements majeurs : le taux croissant de générateurs
d’énergie distribuée (GED) intermittents et la dérégulation du système électrique. Les réseaux
de distribution et leurs gestionnaires (GRD) sont plus particulièrement touchés. La planification,
construction et exploitation des réseaux de la plupart des GRD doivent évoluer face à ces change-
ments. Les réseaux actifs de distribution et la gestion intelligente de associée est une solution
potentielle. Les GRD pourront ainsi adopter de nouveaux rôles, interagir avec de nouveaux acteurs
et proposer de nouveaux services. Ils pourront aussi utiliser la flexibilité de manière optimale
au travers, entre autres, d’outils intelligents pour la gestion prévisionnelle de leurs réseaux de
moyenne tension (HTA). Développer ces outils est un défi, car les réseaux de distribution ont des
spécificités techniques. Ces spécificités sont la présence d’éléments discrets comme les régleurs en
charge et la reconfiguration, les flexibilités exogènes, la non-linéarité des calculs de répartition de
charge, et l’incertitude liée aux prévisions des GED intermittents. Dans cette thèse, une analyse
économique des flexibilités permet d’établir une référence commune pour une utilisation rentable
et sans biais dans la gestion prévisionnelle. Des modèles linéaires des flexibilités sont développés
en utilisant des reformulations mathématiques exactes. Le calcul de répartition de charge est
“convexifié” à travers des reformulations. L’optimalité globale des solutions obtenues, avec ce
modèle d’optimisation exact et convexe de gestion prévisionnelle, sont ainsi garanties. Les tests sur
deux réseaux permettent d’en valider la performance. L’incertitude des prévisions de GED peut
pourtant remettre en cause les solutions obtenues. Afin de résoudre ce problème, trois formulations
différentes pour traiter cette incertitude sont développées. Leurs performances sont testées et
comparées à travers des simulations. Une analyse permet d’identifier les formulations les plus
adaptées pour la gestion prévisionnelle sous incertitude.

Mots-clés : Réseaux actifs de distribution, Optimisation convexe, Intégration des renouvelables,
Flexibilité, Reformulations mathématiques
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