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Introduction

What are the challenges of modern physics? The description of matter and of its elementary
components follows all the predictions of quantum mechanics and of the Standard Model, con-
firmed again in 2012 by the detection of the Higgs boson at the LHC. The detection of gravita-
tional waves in 2015 by the LIGO detector supports the predictions of general relativity theory,
which describes the physics at its largest scale. Despite their sweeping success since these the-
ories were developed, major challenges still remain in the description of the fundamental laws:
dark matter and dark energy are mainly phenomenological ingredients, necessary to explain
the observed universe and yet not justified by any fundamental law. At the level of particles
physics, the mass hierarchy problem is still unsolved, and a resolution of these paradoxical sit-
uations both in cosmology and high-energy physics probably requires a theory that would go
beyond the Standard Model and the general relativity, which is probably the main challenge of
the twenty-first century fundamental physics.

Does it mean that the comprehension of the world between these two extreme scales is now
complete? Obviously not. Even if quantum mechanics explain with accuracy the microscopic in-
teractions, many open problems still remain in condensed matter physics: what are the relevant
mechanisms in high-temperature superconductivity? What is the nature of the glass transition
that leads to the formation of amorphous solids? Fluid mechanics also has its share of prob-
lems and, for instance, turbulence that arises as solutions of the Navier–Stokes equation are
still ill-understood. At the macroscopic level, physicists are now also puzzled by new situations
stemming from biology, sociology, neurosciences: collective motion and behaviour of bacteria,
animals or human beings, morphogenesis of living organisms, the understanding of gene expres-
sion or large networks of interacting neurons, are just examples of the wealth of open problems
arising as physicists try to tackle more and more complex systems. In such systems, the larger
entities formed by this collective behaviour display new and original features that were not
present in the individual agents. This emergence phenomenon stirs more and more attention
amongst scientists.

The main difficulty that comes up when studying these systems is that although the micro-
scopic description of the interactions between each of the components may be well-established,
the coupling of all these degrees of freedom rapidly makes an exact resolution intractable. Of
course, recent progress in computational power has allowed for the simulations of systems de-
scribed at their microscopic level (sometimes even by solving quantum mechanics equations)
through molecular dynamics computation. However, if these new methods yield useful informa-
tion about chemical reactions at the quantum level, proteins conformations, or solid properties,
they usually deal at most with few thousands of particles, whereas macroscopic systems are
composed of typically 1023 particles...

In the case of weakly-correlated systems, this large number of particles is yet not so de-
manding and statistical physics approaches have long proved their predictive power; classical
equilibrium thermodynamics is an amazing example of the macroscopic description of systems
composed of a very large number of particles. Complications, however, arise when the particles
start to act in a collective fashion, such that they become strongly correlated, and the usual
mean-field tools break down. This happens for example in the vicinity of second-order phase
transitions where particles are correlated at larger and larger distances: at the critical point, par-
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2 INTRODUCTION

Figure 1 – (Left) Reduced temperature T/Tc versus the reduced density ρ/ρc of coexisting liquid and
gas phases for a number of simple molecular fluids. The experimental points support a data collapse
to a universal curve (solid line). However, the curve does not have the behaviour predicted by the
mean-field (van der Waals’) theory and renormalization group techniques are needed to capture
the correct physics. Picture from [2]. (Right) Part of the coastline at Lake Mead, United States,
displaying a fractal structure. Credits: Chris Moran, “Fractal Coast”, 4 April 2010. Online Image.
Flickr.

ticles arbitrarily far apart will be correlated. In the 1940s, although the Onsager exact solution
for the two-dimensional Ising model [1] showed that phase transitions can be understood via
statistical physics tools, the overall situation of the critical phenomena remained puzzling: in
1945, Guggenheim showed that the mean-field approach failed to predict the scaling behaviour
of various liquids near their critical temperature [2], suggesting that the strong correlations tak-
ing place in these systems were not taken into account properly by the mean-field theory (see
Fig. 1).

The understanding of criticality on the theoretical point-of-view remained elusive for twenty
more years. A major step was made in 1966 when Kadanoff developed the idea of coarse-
graining variables to reduce the number of microscopic degrees of freedom while conserving
the same macroscopic description [3]. Wilson then gave to these intuitions their full computa-
tional power by adapting the renormalization group techniques used in particles physics to the
study of these strongly-correlated systems [4]. Kadanoff and Wilson approach relies in partic-
ular on the scale invariance of critical systems: at the critical point, the only relevant length
scale, the correlation length, diverges, meaning that the critical system becomes scale free and
looks self-similar at all scales. Using this simple idea, they constructed a theory that is able to
explain the power-law behaviour observed near critical points, and also to give a justification to
“universality” – the fact that different microscopic systems have the very same scaling properties
near the critical point – observed in these phenomena.

Since this theoretical breakthrough, the renormalization group techniques have been applied
with success to compute and understand the critical behaviour of various systems, even the more
intricate such as topological phase transitions [5], or quantum phase transitions [6]. Open
problems related to phase transitions of course still remain, in particular in systems that are not
at the thermodynamics equilibrium, because of the variety of nonequilibrium phase transitions,
and of the very peculiar features they may exhibit [7]. For instance, in the case of transitions
to an absorbing state [8], one of the phases of the system is a state where there is no more
fluctuation and from which the system cannot escape: this situation is of course very different
from the phase transitions at equilibrium where fluctuations occur on both sides of the transition.

In addition, although at equilibrium the scaling behaviour requires the fine tuning of a pa-

https://www.flickr.com/photos/buggs_moran/4516938146/
https://www.flickr.com/photos/buggs_moran/4516938146/


3

rameter (for instance the temperature is fine-tuned to its critical value Tc) to be observed, some
nonequilibrium systems display generic scaling, that is scaling without any fine tuning. This
feature is obviously very interesting and may explain why fractal or scale-invariant phenomena
are so common in nature: clouds, mountain ranges, coastlines have fractal shapes (see Fig. 1 for
an illustration). When looking at the temporal correlations of many phenomena, a behaviour in
1/fα with f the frequency and α > 0 is often observed. The preponderance of this “1/f noise”
in very diverse systems such as changes in yearly flood level of the river Nile, pitch fluctuations
in music, etc. [9] have stirred a particular attention on this generic scaling feature, and many
“self-organized criticality” (SOC) models appeared in the literature to explain these observa-
tions [10, 11]. Since then, it has become more and more obvious that many nonequilibrium
systems (and not only the SOC models) such as the Navier-Stokes equation1, or the Kardar-
Parisi-Zhang (KPZ) equation describing roughening phenomena [13], display generic scaling.

These nonequilibrium systems have however often proved to be much more complicated to
handle than their equilibrium counterparts: the KPZ equation, for instance, eludes most per-
turbative renormalization group approaches in d > 1, which urges toward the development of
new tools for studying these phenomena. The nonperturbative2 renormalization group (NPRG)
figures amongst the candidates: relying on Wilson and Kadanoff’s ideas as its perturbative coun-
terpart, the nonperturbative renormalization group uses different (not dependent on a series
expansion in a small parameter and hence nonperturbative) approximation schemes to describe
phase transitions and critical phenomena [14]. In the context of nonequilibrium systems, it
has proven very effective to tackle turbulence in Navier-Stokes equation for instance [15], or to
describe the KPZ equation in d = 2 [16] (some theoretical difficulties still exist in dimensions
d > 2).

Therefore, having in mind to keep on building a deeper understanding of critical phenomena
in a nonequilibrium context, my Ph.D. work has been focused on applying nonperturbative
techniques to nonequilibrium systems. The outline of this manuscript will be the following:

In the first chapter, a general description of critical phase transitions is given, as well as Wil-
son and Kadanoff’s ideas that lead to the construction of the renormalization group. We show
how the simple block-spin idea can be generalized and applied to critical systems. These sim-
ple yet general considerations already allow us to understand how universality arises in phase
transitions. A presentation of the nonperturbative renormalization group in equilibrium is then
given: we show how the NPRG takes care of the growing spatial fluctuations that arise near crit-
icality through the use of a regulating function [14]. Some of its features are illustrated on the
O(N) model. Finally, comments about the approximation schemes performed within the NPRG
formalism are made, and justifications are given to oppose the criticisms that are formulated
against it. We show in particular how the regulator permits and validates the approximations
that are performed within the NPRG context.

In the second chapter, the focus is shifted toward nonequilibrium systems, and in particu-
lar to the path-integral formulation of models describing out-of-equilibrium phenomena. These
field theories are the starting point of the NPRG studies in the remaining chapters. Two dif-
ferent path-integral methods exist and stem from two different descriptions of the system: if a
microscopic description at the particle level using a master equation is available – as it is the
case for reaction-diffusion processes –, the Doi–Peliti method can be used to obtain an equiv-
alent field-theoretical description [17]. On the other hand, if the description is made through
a Langevin equation describing the coarse-grained dynamics of the system, the Martin–Siggia–
Rose–de Dominicis–Janssen (MSRDJ) formalism provides the derivation of the field theory [18].
Furthermore, and this is the first main result of this manuscript [19], we connect the two pre-
vious approaches (Doi–Peliti and MSRDJ) to derive from the microscopic dynamics a Langevin

1Obviously the scaling in turbulence was known since the seminal work of Kolmogorov in 1941 [12], but its
complete understanding from its mesoscopic Navier-Stokes description still remains an intricate problem.

2The terminology functional RG or exact RG can also be found in the literature.



4 INTRODUCTION

equation that describes exactly (not in terms of a coarse-grained variable) the evolution of the
system. Although this idea is not new, we show that the usual approach found in the literature
is plagued with inconsistencies and generates Langevin equations with imaginary noises, which
are difficult to manipulate and analyze [20]. By contrast, the approach we provide is consistent,
well-justified and yields exact and real Langevin equations that give the correct description of
the system at the microscopic level.

The third chapter has two purposes: on the one hand, starting from the field-theoretical
description elaborated in the preceding chapter, we explain how the NPRG formalism can be
extended from equilibrium to nonequilibrium systems [21]. On the other hand, and this is
the second main result of this manuscript [22], we argue that nonequilibrium system requires,
in addition to the usual space regulator which is the hallmark of the NPRG method, a time-
regulator which ensures that the growing time fluctuations are taken care of in the same way
as the spatial fluctuations are controlled. This issue, often overlooked in the literature, is in fact
crucial for the sake of the approximations that are made in the NPRG context [23]. Furthermore,
when engineering this frequency regulator, constraints such as causality and the symmetries of
the model have to be taken into account. To benchmark this newly designed frequency regulator,
we study it on simple relaxational models: the kinetic Ising model and the kinetic O(N) model.
We show that adding a frequency regulator yields better quantitative results for the computation
of the dynamical exponent. Moreover, for these relaxational models, we show that designing a
regulator that satisfies the fluctuation-dissipation theorem drastically simplifies the NPRG flow
equations and is surely a desirable feature.

Finally, in the last chapter, light is shed on an anisotropic model describing the erosion of
tilted landscapes. Understanding the erosion of landscapes, and how the fractal behaviour of
natural landscapes arises has a long history [24]. Amongst the wealth of possible models for ero-
sion, the Kardar–Parisi–Zhang (KPZ) is believed to provide a correct description of the observed
phenomena and scaling behaviour of landscape erosion at large length scale [25]. However, at
smaller length scale, the isotropic KPZ description breaks down and the existence of a preferred
direction (that of the slope of the mountain) is believed to play a role. An alternative non-linear
model including anisotropy was therefore proposed to describe the smaller length scale dynam-
ics [26]. This model was the root of some misunderstandings concerning the relevance of the
coupling constants, and was shown to possess infinitely many relevant coupling constants [27].
Its critical behaviour, instead of being determined by a discrete set of fixed points, was shown
to possess a line of such fixed points, although their precise description – in particular their
stability – was still eluding. The third and last main result of this manuscript [28] is to provide a
comprehensive description of this model and its line of fixed points using the NPRG techniques
developed in the preceding chapters. In particular, this whole line of fixed points is found to
be attractive, indicating a non-universal behaviour of erosion at this scale, while preserving the
scale-invariance feature that is indeed observed in real data.
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Usual abbreviations

RG : renormalization group
NPRG : nonperturbative renormalization group
MSRDJ : Martin–Siggia–Rose–De Domicis–Janssen
KPZ : Kardar–Parisi–Zhang
PCPD : pair-contact process with diffusion
PCGV : parity conserving generalized voter

Usual notations

d : dimension of space
x ≡ (~x, t) ≡ (x, t) : position and time
q, p : momenta
ω, ν : frequencies
a : microscopic scale (lattice spacing)
Λ : inverse lattice spacing (Λ = 1/a) or “ultraviolet” cut-off
k : RG momentum scale
s ≡ log(k/Λ) : RG time (negative)
Z : partition function
S : microscopic action
Γ : Gibbs free energy or generating functional of the one-particle irreducible correlation
functions.

All the hatted variables (for instance φ̂, Û , etc.) are dimensionless.

Short-hand notations∫
x
≡
∫
x,t
≡
∫

ddx dt∫
q,ω
≡
(

1

2π

)d+1 ∫
ddq dω

df

dt
≡ ∂tf(t) ≡ ḟ(t)

Conventions

• We define the Fourier transform of a function f as (using abusively the same name for the
function and its Fourier transform):

f(q, ω) =

∫
x,t
f(x, t) e−i(qx−ωt) (1)

• All the Langevin equations are interpreted in the Itō (pre-point) sense.
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When studying a physical system with many particles1 far from a phase transition, one can
often assume that the particles composing the system are weakly-correlated, and usual statisti-
cal physics tools allow us to compute the macroscopic laws of these systems: the law of perfect
gases, the law of mass action are examples of this simple behaviour [29]. Adopting a slightly
more probabilistic formulation, weakly-correlated particles can be seen as independent stochas-
tic variables, and the fact that simple behaviours arise from very large system is a consequence
of the central-limit theorem.

However, in the vicinity of a phase transition2, the components of a statistical system start
to behave in a collective fashion: correlations become non-negligible even at large scale, the

1Particles here should be understood as entities describing the system at its smallest scale, it can be individuals
if one is interested in studying human or animal group phenomena, or atoms or molecules if one wishes to describe
the phase transitions occurring in a liquid, or during a chemical reaction.

2In the case of second-order phase transition, that will be our focus in this whole manuscript.

7
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central-limit theorem breaks down and the mean-field predictions become invalid. This theo-
retical difficulty is also accompanied by surprising facts: critical systems very different in their
microscopic description behave similarly at the macroscopic scale. Such a feature – called uni-
versality – hints toward some kind of mechanism taking place at criticality that washes out the
microscopic details. The second surprising fact is that at criticality, the fluctuations at all length
scales of the system adds up in a coherent way, and no intrinsic length scale can be defined. This
absence of intrinsic length scale also implies the self-similarity of the system at criticality.

These observations helped Wilson and Kadanoff to design the renormalization group, a the-
oretical tool that is unavoidable to study generic critical phenomena beyond their mean-field
description (for an introduction to the renormalization group and its techniques see for in-
stance [30, 31]). As we will see in this chapter, Wilson and Kadanoff use the scale invariance of
the system to coarse-grain the microscopic details and obtain a simplified though correct large
scale description of the system. In a sense, the renormalization group procedure generalizes the
central-limit theorem for correlated variables [32], which is needed to give a correct description
of these systems in the vicinity of a phase transition. In a first part of this chapter, we therefore
describe the implementation of the renormalization group, and show how this formalism – al-
though simple in the underlying ideas – explains qualitatively universality and the power-law
behaviour that are the signature of second-order phase transitions.

After this rather general introduction, we introduce the nonperturbative renormalization
group (NPRG) which is the tool we use throughout this manuscript (for a review, see [14], in-
troductory courses can be found in [33, 34] and [35] is a very clear Ph.D. thesis in french on this
matter). The NPRG, introduced by parallel works of Wetterich, Morris and Ellwanger [36–38],
follows Wilson and Kadanoff’s ideas of coarse-graining, but performs this task using a regulating
function. This regulator has a major role in the NPRG context, and justifies the approximations
that are made within this formalism. Notice that contrary to the usual perturbative renormaliza-
tion group, the NPRG approximations do not rely on a series expansion with respect to a small
parameter, and therefore depend crucially on this regulating term. We then briefly expose how
the NPRG works on the example of the O(N) model and present some usual methods to solve
the nonlinear partial differential equations that one has to tackle when using the NPRG.

Finally, we try to review some of the criticisms that the NPRG has often been facing, and
explain why many of them are unjustified; it will also be an opportunity to discuss the differences
between the perturbative and the nonperturbative methods in order to understand why the
usual perturbative approach sometimes breaks down and could be efficiently replaced by its
nonperturbative counterpart.

I.1 Scale invariance and phase transitions

I.1.1 Phase transitions

I.1.1.a What is a phase transition?

A phase transition occurs when a small change of some external conditions (for instance the
temperature, the pressure, an external magnetic field) induces a major change in some prop-
erties of the system. The simplest examples, usually known as phase changes, are familiar to
anyone: it is for instance the freezing of water when placed below 0˚C, or its vaporization when
boiled above 100˚C. These two examples are however called first-order phase transitions, while
we will be interested in this manuscript only with second-order phase transitions.

The reason for this segregation is simple: in a first-order phase transition the two phases (for
instance the boiling liquid water and its vapor) coexist at the transition point and the system
is heterogeneous since all parts of the system do not undergo the transition at the same time
(see Fig. I.1 for an illustration). In particular, the correlations between two particles of the
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T � Tc T ' Tc T = Tc

Figure I.1 – Left. Ice formation from a seed in supercooled water. The transition is of first-order
and one observes the coexistence of the two phases, ice and liquid water. Picture from [39]. Right.
Pictures of a laser beam shining through a test tube that contains a liquid near its critical temper-
ature Tc. At T = Tc the density fluctuations are very large in the system and cause a scattering of
the light (critical opalescence). These large fluctuations are the signature of the second-order phase
transition that occurs at T = Tc. From [40].

system always remain finite. In the case of a second-order phase transition on the other hand,
this correlation length diverges, meaning that all scales are contributing to the criticality and
particles arbitrarily far apart are correlated. Paradoxically, we will see that this divergence of
the correlation length allows for drastic simplifications when considering these systems since it
reflects the fact that the microscopic details are washed out at criticality.

Examples of systems displaying a second-order phase transition are numerous: it is the case
for instance of the liquid/gas phase transition at the critical point. In this example, the criti-
cal opalescence is the signature of fluctuations occurring at all scales and causing a scattering
of light (see Fig. I.1 for an illustration). The ferromagnetic phase transition is also a classical
example: below its critical temperature, the Curie point, a ferromagnetic material has a nonva-
nishing magnetization and acts as a magnet. When the temperature is raised above this critical
value, the property of having a global ferromagnetic order is lost. The Ising model, which was
first used to describe this transition, has become particularly famous in the physics of phase
transitions, and will be used later on to introduce the renormalization group formalism.

As a teaser for the following of this manuscript, let us remark that out-of-equilibrium sys-
tems can also undergo phase transitions. Take the example of a toy-model for the spreading of
epidemics: if the disease is very contagious, a large number of individuals in the population will
soon be infected, the system is in an “active phase”. On the other hand, if people recovers easily
from the disease (or if the disease is not very contagious), the disease will soon be eradicated,
the system is in the “absorbing phase”. Notice that some out-of-equilibrium systems may become
critical without fine-tuning of any parameter. In this case it would be abusive to refer to it as
a phase transition (since the system does not slip from one phase to the other), but the same
formalism can be used to understand these critical systems. It is the case of an erosion model
presented in Chap. IV.

I.1.1.b The Ising model

In the following we focus on second-order phase transitions, and for concreteness we describe
– at least in the beginning – this kind of transitions using the famous Ising model, which can
be seen as a toy-model for the description of a magnetic material near the Curie point. To set
the notations, we recall briefly the definition of the Ising model: at each point of a lattice in d
dimensions is placed a spin Si which can be either up or down (Si = 1 or Si = 0). Each spin
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interacts with its nearest neighbours according to the Hamiltonian:

H[Si, Sj ] = −J
∑
〈i,j〉

SiSj (I.1)

where 〈i, j〉 indicates that the sum is performed over the nearest neighbours and J > 0 is the
strength of the interaction between two spins that energetically favours the spins pointing in the
same direction.

At low temperatures, the system tries to minimize its energy, which means that neighbouring
spins have a tendency to align with each other: there exists a global order and the system
displays a nonvanishing magnetization. As the temperature increases, the spins are allowed to
explore more states and they are less and less inclined to follow their neighbours. Above the
critical temperature Tc, the global order is lost and the magnetization vanishes.

To describe accurately the phase transition that occurs at the Curie temperature Tc, we de-
fine the average magnetization per spin M = L−d 〈∑i Si〉, where Ld is the volume of the d-
dimensional system, and M is called the order parameter of this system. An order parameter
describes the state of the system: it vanishes in the disordered phase, and has a nonzero value in
the ordered phase. Notice that here and in the following the average 〈·〉 is an ensemble average
made over realizations of the statistical system.

I.1.2 Universality in the second-order phase transitions

I.1.2.a Universality and critical exponents

The first important point to underline when studying continuous phase transitions is the emer-
gence of universality. Intuitively, universality is the fact that near a phase transition, systems
that may be microscopically very different act in a similar way because their collective behaviour
at the critical point has washed out the microscopic details.

To be more specific in our description of universality, we need to be able to characterize the
behaviour of a system near its critical point. As explained in the introduction, critical systems
display a scaling behaviour, meaning that some of their properties display a power-law behaviour
near the critical point, characterized by critical exponents. For instance, in the case of the Ising
model, the magnetization has a power-law behaviour

M ∼
T→Tc

|T − Tc|β (I.2)

near the critical point and this defines a first critical exponent β3 [29]. Other critical exponents
that characterize the system near its critical point can be defined (see below).

A given set of critical exponents defines a universality class4, which gathers all the systems
that display the same critical behaviour. Quite naturally, because microscopic details play a
limited role at the transition, most of fluids (independently of their composition) display the
same set of exponents when they undergo a liquid/gas transition, and therefore belong to the
same universality class. More surprisingly, the ferromagnetic transition at the Curie temperature
also belong to this class, and the same holds true for the liquid/liquid demixion transition. In
fact, the Ising model that we just presented, despite its simplicity, also belongs to the same
universality class. Because it is minimalist and because it is the simplest model in this class, it is
referred to as the Ising universality class.

3In this formula β denotes of course not the inverse temperature 1/kBT but a critical exponent.
4This is not fully correct, in fact a universality class is defined by a set of critical exponents and scaling functions.

For instance, in the Kardar-Parisi-Zhang model, one can identify two different universality classes (depending on the
initial conditions) which differ by their scaling functions, although they have the same set of critical exponents [41].
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I.1.2.b Order parameter and symmetries

In the example of the Ising model, we have seen that the phase transition is described by the
order parameter, the magnetization M , which vanishes in the disordered (high-temperature)
phase, and has a nontrivial value in the ordered (low-temperature) phase. The Ising model pos-
sesses a Z2 symmetry5, that is, remains invariant if all the spins are flipped: {Si} → {−Si}. The
first point to notice is that the symmetry of the Ising model is broken in the ordered phase since
the system acquires a nonvanishing magnetization. This spontaneous symmetry breaking that
occurs at the critical point under the effect of a collective behaviour of the particles, has in fact
far-reaching consequences: in high energy physics for instance, the Brout-Englert-Higgs mech-
anism [42, 43], that explains how particles acquire a mass, relies on a spontaneous symmetry
breaking mechanism.

The symmetries of the order parameter (and of the Hamiltonian) therefore plays an impor-
tant role for the critical properties of the system, and its belonging to a given universality class
is mainly determined by symmetries, dimensionality and the range of the interactions between
particles [29]. Landau’s early description of phase transitions was therefore mainly based on
symmetry considerations [44], and proved useful to give a description of the phenomenon at
the mean-field level.

Beyond this mean-field description, symmetry considerations still are of paramount impor-
tance and constructing Hamiltonians that respect the symmetries of the system is capital. As an
example, the “φ4-model”, involving a scalar order parameter φ and the following Hamiltonian:

H =
1

kBT

∫
ddx

[
1

2
(∇φ(x))2 +

r

2
φ2 +

g

4!
φ4

]
(I.3)

also belongs to the Ising universality class and the Hamiltonian obeys a Z2 symmetry. Conse-
quently, the study of phase transitions is often performed on a simplified model (the φ4-model
for instance is simpler to manipulate in the renormalization group context than the discrete Ising
model) that respects the symmetries of the original model while neglecting microscopic features
that are not relevant at the critical point for the universal quantities.

Symmetry considerations are usually the starting point for the construction of a model to
describe a given physical system: once the order parameter is identified and the group G under
which the system remains invariant has been established, one then builds a Hamiltonian that
respects these symmetries and is invariant under the same group G. The phase transition, which
corresponds to a symmetry breaking, means that the order parameter in the ordered phase is
invariant under the transformations of a subgroup of G, even though the Hamiltonian itself
remains invariant under the full group G [29].

Notice finally that the order parameter may not be a scalar but a vector: it is the case of
the O(N) model in which the field φ in the Hamiltonian (I.3) is replaced by a vector ~φ with
N components. Consequently, the Hamiltonian is invariant under the transformations of the
orthogonal group O(N) in N dimensions [31]. The O(N) models have been extensively studied
in the literature for they are relatively simple and have been the starting point of many renor-
malization group studies [30, 31], and also because they capture interesting physical models.
For instance, the O(2) [or U(1)] model is used to describe the breaking of the U(1) symmetry
in superfluid helium, and some phase transitions in liquid crystals are also captured by the O(2)
model [29].

I.1.2.c Correlation length

Another important notion when studying a continuous phase transition is the correlation length ξ,
which we already alluded to, and which measures the typical length scale of correlations in the

5In addition to an invariance under time reversal, time translation, and spatial rotations and translations.
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β = 0.55 β = 0.56 β = 0.57 β = 0.58 β = 0.59

Figure I.2 – Numerical simulation of the 2d Ising model from [45] for different inverse temperatures
β = 1/kBT . Up spins are in black and down spins in white. The critical (inverse) temperature is
βc ' 0.586. The correlation length ξ is the typical size of the Ising clusters (spins pointing in the
same direction).

system. For instance, in the case of the Ising model, the correlation length will be the typical
size of a cluster of spins pointing in the same direction6 (see Fig. I.2). Formally, the correlation
length is defined via the spin-spin correlation function in the following way:

〈SiSj〉 ∼
r→∞

e−rij/ξ (I.4)

where rij is the distance between the spins i and j.
As the spin system gets closer to the critical point T = Tc, the size of the Ising clusters

(clusters where all spins have the same orientation) grows more and more and the correlation
length diverges as a power law:

ξ ∼ |T − Tc|−ν (I.5)

where ν is a second universal critical exponent. The fact that the correlation length diverges
has far-reaching consequences. First, it means that the number of spins that have a collective
behaviour is infinite. At T = Tc, there are thus percolating clusters of spins pointing in the
same direction. Second, it means that besides the microscopic scale a (in the Ising case, the
distance between two neighbouring spins on the lattice) which does not play a role anymore
at criticality, the only other length scale is the correlation length ξ, which diverges. It means
that there is no intrinsic length scale at criticality and the system becomes scale invariant, a
characteristic feature that will be of paramount importance in the whole manuscript.

I.2 Renormalization group

Studying continuous phase transitions is a difficult task and requires new tools to tackle large
number of correlated variables. This new tool is the renormalization group (RG), which relies
on the scale invariance that arise at criticality, and that we will use throughout this manuscript
to study critical phenomena.

I.2.1 Integrating the microscopic degrees of freedom step by step

I.2.1.a Kadanoff’s block spin

In 1966, Kadanoff proposed to decrease in a systematic way the number of degrees of freedom
of a critical system through the use of block-spin variables [3]. His idea is to describe the large-
distance physics as aggregates of components at shorter distances. This simple yet powerful

6This picture, although true in d = 2, is not fully correct and requires some comments. In d = 3 for instance, the
Ising clusters are percolating at a temperature Tp < Tc. One must in fact consider a subset of these Ising clusters, the
Fortuin-Kasteleyn clusters, to have a percolation transition that coincides with the Ising phase transition at Tc [46].
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decimation−−−−−−−→ renormalization−−−−−−−−−−→

←→
a

←−−−−−→
3a

←→
a′

Figure I.3 – Kadanoff ’s decimation and renormalization procedures on the two-dimensional Ising
model. In a first step (left) the microscopic degrees of freedom (spins) are grouped in blocks (orange
rounded squares). Each block-spin defines a new spin variable on a new lattice with four times less
variables (middle). This is the decimation. Notice that lattice spacing is twice as big as the original
spacing a. The second step of the procedure, the renormalization, consists in rescaling all length
with the new lattice spacing a′ = 3a, such that the new lattice is identical to the original, except
that the number of spins has been reduced by coarse-graining (right).

thought is the precursor of the renormalization group and is quite illuminating to understand
the mechanism of second-order phase transitions. Let us describe this procedure in the case of
the Ising model on a two-dimensional square lattice.

The partition function which describes the system is written as:

Z =
∑
{Si}

e−βH[Si,Sj ] (I.6)

where H is the Hamiltonian defined in Eq. (I.1), β = 1/kBT is the inverse temperature and the
sum runs over all possible spin configurations. The difficulty of computing this partition function
stems from the fact that the sum runs over infinitely many spins correlated to each other via a
nearest neighbour interaction. Kadanoff’s procedure consists in reducing the number of degrees
of freedom by partitioning the lattice in blocks of 9 spins, and then assigning to each of these
blocks a “block spin” variable S′i (see Fig. I.3 for illustration). Each of these coarse-grained
variables is of the same nature as the original microscopic spin, and its value is for example
given by a majority rule from the values of the Si. This step, called “decimation”, reduces the
number of microscopic degrees of freedom as desired.

However, the distance between each block after decimation is now twice the original lattice
spacing 3a, whereas it was a in the original microscopic configuration. Since the idea is to obtain
a system which is a similar yet coarse-grained version of the previous one, we now redefine a
new lattice spacing a′ = 3a. This second step – a rescaling of the length scale – is called
“renormalization”. The combination of a decimation and a renormalization of the length scale
is called a RG step.

One now computes the new Hamiltonian H ′[S′i, S
′
j ] describing the interactions between

block-spin variables7. Performing more and more of these decimation and renormalization steps,
one obtains a family {H → H ′ → H ′′ → · · · } of Hamiltonians which describe the system at a
more and more coarse-grained level, although they all describe the same macroscopic thermo-
dynamical system. This sequence of Hamiltonians is often referred to as a flow of Hamiltonians.

7Notice that H ′[S′i, S
′
j ] 6= H[Si, Sj ] and is in fact much more complicated. Approximations will have to be made

in order to use this procedure in a practical scheme.
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Notice that we have achieved what we wanted: reducing step by step the microscopic degrees
of freedom while keeping the same long-range description.

At criticality (and at a sufficiently coarse-grained scale), the scale invariance of the system
implies that the flow of Hamiltonians converges to a fixed point H∗ such that (H∗)′ = H∗. It
means that changing the scale of description of the system does not affect its behaviour any
more, the system looks the same and the interactions between the new block-spin variables
remain the same after the coarse-graining procedure.

I.2.1.b Decimation in continuous space

Before describing in more details the physical consequences of scale invariance and its imple-
mentation through the renormalization group, let us now describe RG transformations for more
general systems. We adopt the language of field theory, and assume that our system is described
by a partition function Z:

Z =

∫
Dφ(x) e−S[φ(x)] (I.7)

where S = βH[φ(x)] is the action of the microscopic system and φ(x) is a scalar field describing
the state of the system at position x. The sum over all possible spin configurations has been trade
for a functional integral over all possible values of the field. Notice that, in the previous section,
we could have chosen to compute the block-spin variables as an average over the previous ones
rather than via a majority rule. Doing so, we would have lost the fact that our system remains
an Ising spin system; on the other hand, after a few iterations the new “spins” variables would
acquire a quasi-continuous range of value and a field description as Eq. (I.7) would have been
justified. The formulation of the models in terms of a path integral will be the starting point of
our RG studies in the following of the manuscript.

The idea of the renormalization group to study such a system near criticality is to perform the
integration appearing in the previous definition only for the small (microscopic) length scale,
such that we can rewrite the partition function as:

Z =

∫
Dφ(x > `a) e−S

′[φ(x>`a)] (I.8)

with

e−S
′([φ(x>`a)] =

∫
Dφ(x < `a) e−S[φ(x)] , (I.9)

where ` is the rescaling factor and a is the smallest length scale of the system (the lattice spacing
in the Ising model). Formally, one can thus write R(S, `) = S ′ with R(·, `) an operator mapping
the original action S to its coarse-grained version S ′. The mapping of S into S ′ is called a
RG step, and the evolution S → S ′ → S ′′ → · · · is called a RG flow. Obviously, performing
two successive coarse-graining of scale `1a then `2a, or performing a single operation of scale
(`1 × `2)a is equivalent, such that this procedure indeed has a semi-group structure:

R (R(S, `1), `2) = R(S, `1 × `2) (I.10)

and this semi-group structure highlights the scale-invariant behaviour of the system. Indeed,
right at the phase transition, the system is truly scale invariant since the only length scale –
the correlation length ξ – diverges, which means that the system displays the same behaviour
regardless the scale at which it is observed. It means that the critical action S∗ must be a fixed
point of the RG transformation:

R(S∗, `) = S∗ . (I.11)
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Notice at this point that if one were able to compute exactly S ′ from S, then one could also
compute exactly the partition function Z, and the model would be integrable. Therefore, for the
moment, the RG has not simplified the problem since one still has to perform the highly difficult
functional integration Eq. (I.9). The power of the renormalization group will become clear when
we will restrict the functional form of the successive actions: instead of considering a functional
dynamical system, we will consider a function dynamical system, or even a dynamical system
over a finite number of real variables. In the next section we will explain why the RG method
already gives us highlights on which interactions can be neglected when studying a given phase
transition, and how we can use this information to perform drastic approximations.

I.2.2 Universality seen by the renormalization group

I.2.2.a Renormalization group flow

As we have seen in previous parts, a RG transform modifies the length scale of the system
a → `a → `2a → · · · , with ` > 1 (` = 3 in the case of the block-spin example), as well as the
action itself: S → S ′ → S ′′ → · · · . We now write the successive actions in terms of an infinite
number of couplings constants K. For instance, in the case of the so-called “φ4-model”, the
initial action reads

S =

∫
ddx

[
1

2
(∇φ(x))2 +

r

2
φ2 +

g

4!
φ4

]
(I.12)

where only two couplings r and g suffice to describe the model: S[φ;K1 = r,K2 = g]. For
reasons that will become clearer in the following, the φ4-model also belongs to the Ising univer-
sality class, and is therefore the field-theoretical counterpart of the discrete Ising model when
one studies this universality class.

Although only two couplings r and g appear in the initial action, after a single RG step in-
finitely more coupling constants8 will however be generated and one has S ′ ≡ S ′[φ;K ′1,K

′
2,K

′
3 6= 0, · · · ].

Therefore, instead of following the flow of actions, we now focus on the flow of the coupling
constants K → K ′ → · · · , and we write explicitly the dependence of the coupling constants in
the RG dilatation factor: K`.

Let us now describe how the coupling constants evolve under an infinitesimal RG step, that
is, compare the couplings K` with the couplings K`(1+ε) obtained after an infinitesimal RG
transformation. This yields a differential equation that is the starting point of any RG procedure.
By definition of the RG operator R(·, `) , the change in the coupling constants reads:

K`(1+ε) −K` = R(K`, 1 + ε)−R(K`, 1) (I.13)

where we have used the fact that R(·, 1) is the identity. We therefore get:

`
dK`

d`
=
∂R
∂`
|(K`,1) (I.14)

and we define the β functions as:

β(K`) =
∂R
∂`
|(K`,1) . (I.15)

We are now interested in studying the fixed point K∗ and its vicinity. For this purpose we
define the infinitesimal variation δK = K` −K∗. The linearization of the previous equation in
the neighbourhood of K∗ yields:

`
d δK

d`
= M δK (I.16)

8Constrained however by the symmetries of the system one considers.
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where the stability matrix M is defined as:

Mi,j =
∂βi
∂K`,j

|K∗ (I.17)

and we have used the fact that β(K∗) = 0 by definition, and K`,j is the jth component of K`.
Although M is in general not symmetric, we assume that it can be diagonalized:

Mei = λiei (I.18)

and that its (right) eigenvectors {ei} form a complete basis, such that we can write

δK` =
∑
i

vi(`)ei . (I.19)

Inserting the previous relation into the linearized flow near the fixed point, Eq. (I.16), we obtain:

`
dvi(`)

d`
= λivi(`) (I.20)

which can be integrated as:

vi(`) = vi(1)`λi . (I.21)

I.2.2.b Relevant and irrelevant coupling constants

From Eq. (I.21), we see that we can classify the eigenvalues λi into three categories, depending
on their sign9:

• if λi < 0, then each RG iteration will make smaller the associated coupling vi that will
eventually go to zero and the coupling constant is thus called irrelevant under a RG trans-
form.

• if λi > 0, then the associated coupling constant is called relevant under a RG transform.
Notice that these relevant coupling constants correspond to unstable directions of the RG
fixed point. If one wishes to reach the RG fixed point, all the relevant coupling constants
have to be fine-tuned to 0. For instance, the reduced temperature t = (T − Tc)/Tc or an
external magnetic field are relevant coupling constants in the Ising model.

• if λi = 0, the associated coupling constant is called marginal and one must go to the next
order to know its behaviour under a RG transform. Notice that the flow in this direction is
slow since it is logarithmic instead of being a power law.

As we will see in the next paragraphs, these categories play an extremely important role in
the RG formalism and in the insights we can obtain out of it. Very general considerations about
the relevance of the coupling constants will yield universality, critical exponents and scaling
behaviour.

I.2.2.c Critical exponents and scaling behaviour

Let us now show why these simple considerations can already explain the scaling behaviour we
have described in the previous parts. We use again the example of the Ising model. In this
case, there exist two relevant coupling constants: the external field h applied on the system,

9The eigenvalues could also be complex, in which case we are interested in the sign of their real part.
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and the reduced temperature t = (T − Tc)/Tc; both of these parameters have to be fine-tuned
to t = h = 0 in order to be at criticality.

Let us consider the effect of a RG transform on the correlation length ξ of the Ising model.
This correlation length depends on all the coupling constants of the system, and after one RG
iteration we get:

ξ(t′, h′,K ′3,K
′
4, . . . ) =

1

`
ξ(t, h,K3,K4, . . . ) (I.22)

where the 1/` in front of the right-hand side of the previous equation accounts for the rescaling
(the renormalization) one has to perform during a RG step. In the neighbourhood of the critical
point, that is near t = h = 0 we can use Eq. (I.21) and write10

ξ(t′, h′,K ′3,K
′
4, · · · ) = ξ(t`λt , h`λh ,K3`

−λ3 ,K4`
−λ4 , . . . ) =

1

`
ξ(t, h,K3,K4, . . . ) (I.23)

where all the λi have been defined to be positive (we recall that all the coupling constants but
t and h are irrelevant). We now choose the renormalization parameter ` � 1 such that the
irrelevant coupling constants become negligible: Ki`

−λi � 1. Choosing furthermore ` in order
to have t`λt = 1 (which is consistent with the initial assumption of being near the critical point,
since it means t� 1, i.e. in the critical regime for the temperature) yields:

ξ(t, h,K3,K4, · · · ) = t−1/λtξ(1, ht−λh/λt , 0, 0, · · · ) . (I.24)

Finally, setting the other relevant coupling to be zero: h = 0, we are left with the well-known
power-law divergence of the correlation length at criticality, that is:

ξ(t, h,K3,K4, · · · ) ∼
t→0

t−1/λt (I.25)

and the critical exponent ν defined above [Eq. (I.5)] is therefore found to be ν = 1/λt. This
corresponds to the leading behaviour of the correlation length as t → 0. A similar proof yields
β = (d − λh)/λt [where the critical exponent β was defined in Eq. (I.2)], and all the critical
exponents can in fact be expressed in terms of the two relevant eigenvalues λt and λh [31].

I.2.2.d Universality classes and critical surface

Let us now describe how universality and the universality classes we have described earlier
arise naturally in the formalism of the renormalization group. Since a RG flow takes place in
the space of the coupling constants, we define a point in the RG space as an (infinite) set of
coupling constants K.

Critical surface. Let us first introduce the notion of the critical surface. As stated earlier, a
phase transition is characterized by the fact that its correlation length diverges: ξ = ∞. This
means that if a point K in the RG space is critical (that is such that ξ = ∞), then after a RG
transform, ξ′ = ξ/` =∞ and the system remains critical. We define the critical surface as the set
of points K such that the correlation length diverges. Notice that in general, it is sufficient to
fine-tune a few parameters (for instance the reduced temperature t and the external magnetic
field h) to make the system critical. Therefore, in the space of the coupling constants, the
critical surface has typically a low co-dimension (one or two). Notice also that if K belongs to
the critical surface, then so does R(K): the critical surface is stable under RG transformations.

10Notice that in this formula we have assumed that t and h correspond to eigendirections of the RG flow. It is not
necessarily the case, and the fact that they are both relevant parameters only means that they have a nonvanishing
projection onto the relevant eigenvectors. We ignore this subtlety since it does not play a role for the following
discussion.
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ξ = ∞

system 1

system 2
system 3

K1

K2

K3

K∗K1
c

K2
c

K3
c

Figure I.4 – Schematic representation of the coupling space; only three couplings K1, K2, K3 are
represented. The critical surface, defined as the hypersurface where the correlation length ξ diverges
is represented by the blue plane. We pictured the “trajectory” of three physical systems: these
trajectories are the evolution in the coupling space of these systems when a physical parameter (for
instance the temperature) is varied. These systems are critical when their physical line crosses the
critical surface (at the points K1

c , K2
c , K3

c ). The black lines correspond to RG trajectories: under
RG transformations, the three trajectories end up at the same fixed point K∗. These three systems,
although microscopically different (they have different critical temperature for instance), are all
described by the same critical behaviour given by the fixed point and its vicinity: they all belong to
the same universality class.

Basin of attraction. We have seen that there exist fixed points of the RG transformations,
that belong to the critical surface and that are such that K∗ = R(K∗). If these fixed points are
attractive, then all the points in the vicinity ofK∗ converge to it under RG transformations. The
basin of attraction of a given fixed pointK∗ is then defined as the domain on the critical surface
such that the flow of any point on this domain converges to K∗.

Universality. Let us now consider a system, described by its microscopic coupling constants
K1. If this system displays a (second-order) phase transition, it means that one can fine-tune
the relevant coupling constants and obtain a set K1

c of coupling constants which now belongs
to the critical surface. Applying RG transformations on K1

c , we reach the fixed point K∗, corre-
sponding to the basin of attraction on which sits the physical critical system K1

c .
Let us now consider a second system K2, which differs at the microscopic level with the

first one. We can also fine-tune it to its critical point K2
c . Now, although K2

c 6= K1
c , if these

two systems belong to the same basin of attraction, their respective RG flow converges toward
the very same fixed point K∗. Since the critical exponents and the critical behaviour in general
is prescribed by the fixed point and its vicinity, the two microscopically different systems will
have the same critical properties. The existence of these fixed points of the RG flow and their
associated basin of attraction therefore gives an explanation for the appearance of universality
classes to which very different models can belong (see Fig. I.4 for illustration).

The beauty of the RG now starts to become clear: without performing a single calculation,
we have already explained (i) the existence of universality classes, regardless of the microscopic
details of the system; (ii) the scaling behaviour of thermodynamical quantities in the vicinity of
the critical point; (iii) the exact relations between critical exponents11.

11We have not derived the scaling relations between the different critical exponents, but in Sec. I.2.2.c we have
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I.2.3 An example: the central-limit theorem seen by the RG

As an illustration of the RG formalism and to explicit slightly the concepts seen above, we focus
on the central-limit theorem which is probably the most famous example of universality. Indeed,
the central-limit theorem states that the probability distribution of the mean value of n indepen-
dent random variables with the same distribution P (x) converges to a Gaussian distribution as
n → ∞, provided that P decays sufficiently rapidly at large x. Therefore, universality arises
here in the sense that the initial distribution P of the “microscopic” variables is washed out and
a universal Gaussian distribution arises at the “macroscopic” scale.

To prove this theorem, we follow [31] and use a RG approach, that is we use the decimation
and renormalization procedure as explained earlier. For this purpose, we consider that there are
initially n = 2m independent variables. We then proceed to the decimation of the variables by
averaging recursively over pair of variables, and therefore decreasing the number of variables
by a factor 2 at each iteration. To perform this decimation, we recall that the distribution of
the sum of two independent random variables with the same distribution P is given by the
transformation:

[RP ](x) =

∫
dy P (y)P (x− y) (I.26)

and we introduce a renormalization of this sum depending on the parameter λ such that

[RλP ](x) = λ

∫
dy P (y)P (λx− y) , (I.27)

where λ = 1 corresponds to the sum, and λ = 2 to the mean of the initial variables. Using the
Fourier transform defined in Eq. (1) and after a few calculations we get:

[RλP ](q) = P 2(q/λ) , (I.28)

where we have kept the same name for P (x) and its Fourier transform P (q). In terms of the
generating function of the cumulants, w(q) = logP (q), the last equality can be rewritten in a
simpler, linear form:

[Rλw](q) = 2w(q/λ) . (I.29)

Our goal is now to study the properties of the iterated transformation Rmλ as m → ∞. We
assume that there exists a limiting distribution and therefore a fixed point of the transformation,
that we write w∗(q) and which verifies:

[Rλw∗](q) = w∗(q) = 2w∗(q/λ) . (I.30)

Then we define the cumulants expansion of w∗ as:

w∗(q) = −iw1q −
1

2
w2q

2 +
∑
j=3

(−iq)j
j!

wj (I.31)

where the wj are the cumulants (w1 = 〈x〉 is the mean, w2 =
〈
x2
〉
− 〈x〉2 is the variance,

etc.), and w0 = 0 by definition of w and by conservation of the probability (P (q = 0) = 1).
If we furthermore assume that the limiting distribution w∗ is centred12 (that is w1 = 0), then
identifying the q2 term in Eq. (I.30) yields:

w2 =
2w2

λ2
(I.32)

seen that amongst the critical exponents, two only can be independent since there are only two relevant eigenvalues.
It therefore exists scaling laws that link the critical exponents to each other [30, 33].

12The case of a non-centred distribution is also rather simple and is discussed in [31].



20 CHAPTER I. SCALE INVARIANCE, UNIVERSALITY AND RENORMALIZATION GROUP

which means λ =
√

2 and this implies that all the other wj must vanish. One can therefore
perform an inverse Fourier transform to deduce the limiting probability distribution:

P ∗(x) =
1

2π

∫
dq eiqx−w2q2/2 =

1√
2πw2

e−x
2/2w2 , (I.33)

which is indeed a Gaussian distribution, as expected from the central-limit theorem. We can
also study the fixed-point stability by perturbing the fixed-point solution: w(q) = w∗(q) + δw(q).
It yields eigenvectors of the form δw(q) = qα with eigenvalues σ = 21−α/2, and therefore the
following possibilities:

(i) α = 1 ⇒ σ =
√

2 > 1 which is an unstable direction since the corresponding eigenvector
will diverge as m→∞. It is therefore a relevant perturbation in the RG language. Indeed,
if α = 1, the perturbation is linear in q which violates the centred condition w1 = 0 that
we assumed for the proof.

(ii) α = 2⇒ σ = 1 is a marginal perturbation which only modifies the value of w2.
(iii) α > 2⇒ σ < 1 are irrelevant perturbations and their amplitudes go to 0 as m→∞.

I.3 The nonperturbative renormalization group

I.3.1 Exact renormalization group equation for the action

We describe in this section the ideas of the nonperturbative renormalization group (NPRG)
and show how it can be used to study critical phenomena on a relatively simple example. As its
denomination indicates, the NPRG follows very closely the RG ideas of Wilson and Kadanoff that
we introduced in the previous section. However, and contrary to its perturbative counterpart,
we will see that it calls upon approximations that are not Taylor expansions in terms of a small
coupling constant, and is nonperturbative in this sense. However, the systems that we will be
studying are far beyond the reach of exact methods, and the NPRG also resorts to approximation
schemes. More details about the NPRG can also be found on the pedagogical reviews [33, 34],
or on a more exhaustive one [14], or also on a thesis in french [35].

Before giving the modern implementation of the NPRG, which was formulated in parallel
works of Wetterich, Morris and Ellwanger [36–38], we give a brief overview of its original
formulations. These earlier formulations follow the ideas of the decimation in continuous space
as described previously and translate it into a differential equation over the renormalization
scale.

Because the equations we will derive in the following acquire a simpler form in Fourier space,
we now switch to these variables, and define the Fourier transform of a function according to the
convention Eq. (1). In particular, we now describe a RG transform in terms of the momentum
scale k = 1/(`a) and define the slow modes φ< ≡ φ(|q| < k) and the rapid modes φ> ≡ φ(|q| >
k) accordingly. With this notation, we will now follow a flow of actions Sk, evolving from the
microscopic scale k = Λ = 1/a down to the macroscopic scale k = 0.

In fact, this evolution between k = Λ and k = 0 can be stated in terms of an exact differential
equation over k by computing how the action Sk is modified by an infinitesimal change of the
RG scale dk. In its original version, this equation was derived by Wegner and Houghton [47]
in the case where all the (slow) modes of scale |q| < k were left untouched, whereas all the
(rapid) modes with |q| > k were integrated over; such a separation between the modes is called
a “sharp cut-off”, and we will see in the following that more sophisticated separation between
the rapid and slow modes can be performed.

In fact, the problem of such a sharp cut-off is that it leaves no latitude for controlling the
approximations that are made on the action Sk in order to find its fixed point; in addition,
this kind of cut-off yields singularities in the flow of the actions Sk, making it unusable in
practice, but for the simplest approximation schemes. An alternative equation was then derived
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by Polchinski [48] involving a smoother cut-off function. Instead of a sharp separation between
slow and rapid modes, he introduced a cut-off function Kk(q) separating smoothly the modes
around scale k during the decimation procedure. An exact differential equation for the action Sk,
known as the Wilson-Polchinski equation was therefore derived, involving the cut-off function
and its derivatives [48]. The Wilson-Polchinski flow equation is exact and contains all the physics
of the model. However, written as such in terms of the action Sk, this equation deals with
very abstract objects, on which little physical insight can be expected in order to make sensible
approximations. Indeed, the action Sk is a functional of the slow mode fields φ<, which are not
the precursors of the order parameter (the magnetization), since there is still a path integral
to perform. It is also a difficult task to extract the long-distance physics from the sequence of
Sk, which only describes the interactions between the slow modes, but in no case describes the
thermodynamical properties of the system at scale k [33].

Since the physical thermodynamics properties of the system are rather encoded in the order
parameter, and in the correlation functions (the moments of the probability distribution), it
is much more convenient to work with the precursors of these objects, that is the precursor
of the order parameter ψ = 〈φ〉, and the precursor of the one-particle irreducible correlation
functions, the Gibbs free energy Γ. This will be the task of the nonperturbative renormalization
group (NPRG), which we introduce in the following section.

I.3.2 The effective average action method

Before introducing the NPRG formalism in details, let us summarize the ideas behind this for-
mulation and which are refinements of the ideas already introduced in the previous approaches
by Polchinski, Wegner and Houghton, Wilson and Kadanoff. (i) The integration over the fluc-
tuations (over the microscopic degrees of freedom) appearing in the partition function will be
performed step by step, or more precisely momentum shell by momentum shell, following the
idea of the decimation of the degrees of freedom as proposed by Wilson and Kadanoff. (ii)
This step-by-step integration allows for a reformulation of the complicated problem of comput-
ing path integrals with non-Gaussian weights for a (also complicated) problem of computing a
functional partial differential equation, on which we will be able to perform controlled approx-
imations in order to make the differential equation tractable. (iii) The separation between the
rapid and slow modes will be performed in a subtle way by distorting the partition function
and adding a regulator term to the action, as it is the case in the Wilson-Polchinski approach.
As we will see in the following, this regulator plays a capital role in the justification of the ap-
proximations. (iv) Last but not least, the object of interest on which will be stated the exact
renormalization flow equation is the effective average action Γk (a precursor of the Gibbs free
energy Γ), a thermodynamical object on which one can have much more physical intuition than
on the flow of actions in the case of the Wilson-Polchinski approach.

I.3.2.a The regulator

The whole idea of the RG is to integrate the fluctuations momentum scale by momentum scale.
The NPRG keeps this idea and improves it by introducing a regulator term ∆Sk in the partition
function:

Zk[J ] =

∫
Dφ e−S[φ]−∆Sk[φ]+

∫
q J(q)φ(−q) (I.34)

whose role is reminiscent of Wilson and Kadanoff’s ideas to create a separation between the
slow and rapid modes. Notice also that we add a source term J(q) coupled linearly to the order
parameter φ(−q) and that allows for the computation of the correlation functions.
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In the NPRG context, the role of the regulator is to freeze the fluctuations at scale smaller
than k. This is made possible by giving to ∆Sk the shape of a “mass term”, i.e. by writing it as:

∆Sk[φ] =

∫
q
φ(q)Rk(q)φ(−q) . (I.35)

To understand why such a term can indeed play the role of a regulator and freeze the fluctuations
at large length scale (i.e. at |q| < k), let us give an intuitive explanation. More explanations
about the regulator will be given in a following section. Think of the Ginzburg-Landau approach
to a phase transition [29]: in this case the description of the phase transition is done by assuming
that the thermodynamic potential for the magnetization is given by:

Γ[ψ] =

∫
ddx

[
1

2
(∇ψ)2 +

r

2
ψ2 +

g

4!
ψ4

]
(I.36)

where Γ is the Legendre transform of W = logZ, defined as: Γ[ψ] + W[J ] =
∫
q Jψ (more

details are given in the following). In this mean-field description, the temperature appears as
r ∝ T−TMF

c
13 in factor of the ψ2 term, and therefore a vanishing factor in front of ψ2 means that

the system is critical (at the mean-field level). Adding a regulator term (I.35) also proportional
to ψ2 therefore modifies the temperature of the system and its distance to criticality. Within the
RG formalism, the story is slightly different since the coupling r starts “running”, that is, becomes
dependent on the RG scale k: r = r(k), but still characterizes the distance to criticality (at scale
k). In particular, if r(k = 0) = 0, the non-regularized system is critical. Therefore, adding
the regulator Rk and choosing it large for |q| < k will in practice freeze the fluctuations of the
modes with |q| < k, since the regulator places these fields with |q| < k away from criticality,
that is gives them a very large temperature such that they can be treated as non-fluctuating (or
mean-field) fields.

In the language of quantum field theory, the term in factor of ψ2 is the mass, and a massive
particle interacts at a short range with other particles. The regulator can be seen in this case
as an extra “mass term” which adds a large mass to the modes of the fields with |q| < k. The
interaction of these particles with the others can thus be neglected: the fluctuations of these
modes are frozen.

Now that we have some intuition about the regulator term Rk(q), let us summarize the
characteristics it must have. (i) The regulator must be large for |q| < k in order to freeze the
fluctuations at scale smaller than k. In particular, at k = Λ, all the fluctuations must be frozen,
such that the model is described by its microscopic action. (ii) It should leave (almost) unaltered
the fluctuations at scale |q| > k since we want to compute these fluctuations. In particular, when
k = 0, all fluctuations are integrated, which means Rk=0(q) ≡ 0. (iii) The regulator term Rk(q)
must have some regularity (at least be continuous), because we will see later that its derivatives
play a role in the exact differential flow equation. From the points (i) and (ii) we deduce the
following limits for the regulator: Rk(q) −−−→

k→Λ
∞

Rk(q) −−−→
k→ 0

0 .
(I.37)

Let us introduce two regulators that are commonly used in the NPRG context. The Θ-
regulator [49]:

RΘ
k (q) = (k2 − q2)Θ(k2 − q2) , (I.38)

13Notice that the mean-field critical temperature TMF
c is not equal to the actual critical temperature of the sys-

tem, Tc. In practice, the fluctuations (that are neglected in the mean-field approximation) have a tendency to desta-
bilize the system, such that the system remains in the ordered phase at a lower temperature than the one expected
from the mean-field theory: Tc < TMF

c .
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Figure I.5 – Shape of the different regulator functions defined in Eqs. (I.38) and (I.39). The sharp
regulator Rsharp

k (q) = k2(1/Θ(q2 − k2) − 1) can be seen as the old way to separate the slow and
rapid modes as thought initially by Wilson.

where Θ(q) is the Heavyside step-function (Θ(q < 0) = 0 and Θ(q ≥ 0) = 1). This regulator
is quite convenient (especially at the lowest order approximations) since it allows for analytical
computations of the momentum integral in the RG flow Eq. (I.43). However, the presence of
the step function yields singular contributions when higher-order approximation schemes are
used [50]. The second commonly-used regulator is known as the “exponential” regulator:

Rexp
k (q) =

q2

eq2/k2 − 1
, (I.39)

which is more regular than the Θ-regulator, and therefore more versatile. However, it does
not permit analytical computation of the momentum integral in the RG flow and they have to
be computed numerically. The shape of these two regulators is displayed on Fig. I.5, and a
comparison of these regulators is given in Sec. I.4.3.b.

Let us make several comments about the regulator term we have just introduced. Notice
that adding the extra term ∆Sk means that we have distorted the initial partition function Z
into a one-parameter family of scale-dependent partition functions Zk. This family of partition
functions interpolates smoothly between the mean-field scale k = Λ where the physics is (usu-
ally) simple, and the macroscopic scale k = 0 where fluctuations play a major role and make the
problem difficult to solve.

Although it might seem we are giving ourselves more objects to compute (all the k-family
of partition functions), we will see that this formulation allows us to write down the evolution
of the system when we add a little more fluctuations to it, i.e., when we go from the scale k to
the scale k − dk: we will be able to derive a differential equation over the scale k and that will
be our task in the following. Even more crucially, we will see in the following that the regulator
is the cornerstone of the NPRG formalism since it justifies the approximation schemes that are
used. Indeed, because the NPRG does not rely on a series expansion with respect to a small
parameter, the regulator ensures that the approximations made are controlled.

I.3.2.b The effective average action

As stated before, the partition functions Zk are extremely abstract and complicated objects, since
they involve a path integral and because the physics of the system cannot be simply extracted
from them. We are therefore looking for a more practical object, which is given by the effective
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average action Γk, defined as the (modified) Legendre transform of logZk, that is:

Γk +Wk =

∫
q
J(q)ψk(q)−∆Sk[ψk] (I.40)

where Wk[J ] ≡ logZk[J ], and ψk(x) = δWk
δJ(x) = 〈φk(x)〉. Notice that in (I.40), there is an extra

term ∆S[ψk] in addition to the usual Legendre transform. This extra term enforces Γk=Λ = S
(see for instance [33] for a proof).

The effective average action Γk has several advantages with regard to the partition function:
(i) it is a functional of ψk(x) = δWk

δJ(x) = 〈φk(x)〉 which can be seen as the magnetization of a

system of size 1/kd. The average effective action Γk can consequently be interpreted as the free
energy of a smaller system of size 1/kd. (ii) It provides a smooth interpolation between the
action Γk=Λ = S at the microscopic scale k = Λ, and the Gibbs free energy Γk=0 = Γ at the
macroscopic scale k = 0. (iii) The Gibbs free energy Γ is the generating functional of the one-
particle irreducible correlation functions. For example, the second derivative of Γ is the inverse
of the propagator G and reads:

G−1(x− y) ≡ δ2Γ

δψ(x)δψ(y)
= 〈φ(x)φ(y)〉−1

c . (I.41)

and the effective average action Γk can therefore be seen as a (regularized) precursor of the
generating functional of the one-particle irreducible correlation functions (see also next section).

Notice that the two-point correlation function G(x − y) is a well-defined analytic function
for T 6= Tc but behaves as

G(x− y) ∼
|x−y|→∞

1

|x− y|d−2+η
(I.42)

at criticality (T = Tc), where this (nonanalytic) power-law behaviour is a signature of the scale
invariance of the critical system. Notice that we have introduced the anomalous dimension η > 0
which can be understood as a shortening of the range of the correlations due to fluctuations. The
important point is that the regulator term ensures that the effective average action Γk and its
(functional) derivatives remain analytic for all k 6= 0 (it maintains the system out of criticality).
In particular, Rk regularizes the nonanalytic behaviour of G(x − y) for all k 6= 0, as we will
see in the following. Ensuring that the derivatives of Γk are smooth functions of the momenta
is the main role of the regulator, and it allows for performing approximations such as Taylor
expansions in terms of the momentum, which is the essence of the approximation schemes that
are used within the NPRG formalism and that we describe and justify in the following.

I.3.2.c Flow equation

Using the definitions of Γk and Zk, one can now compute the derivative of Γk with respect to k,
that is, the “flow” of Γk when one goes from scale k to the scale k − dk. Using the definition of
Γk, Eq. (I.40), and performing a derivation with respect to the scale k, one finally obtains the
Wetterich equation [36, 37]:

∂kΓk =
1

2

∫
q
∂kRk(q)

[
Γ

(2)
k (q) +Rk(q)

]−1
(I.43)

where we define the vertex functions:

Γ
(n)
k ({xi}) =

δnΓk[ψ]

δψ(x1) · · · δψ(xn)
(I.44)
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and their Fourier transform are defined using the convention (1). Notice that in most cases the
systems that we study have a translational invariance that is transmitted to the NPRG equations.
This invariance imposes a vanishing sum of the momenta appearing in the Fourier transform
of the integrands, and it is thus particularly convenient to use the short-hand notation for the
two-points function: Γ

(2)
k (q,−q) ≡ Γ

(2)
k (q). Notice that the flow equation is complemented by

its boundary condition: when k = Λ, all the fluctuations are frozen by the regulator term and
the system is described by its microscopic action: Γk=Λ = S. When k = 0, all the fluctuations
are taken into account and we have a description of the macroscopic system: Γk=0 = Γ. We
will neither derive the exact flow equation, nor prove that the initial condition Γk=Λ is indeed
equal to the microscopic action S, but the interested reader can find these proofs in [14, 33] for
instance.

Some comments about the Wetterich equation are needed:

• It is an exact equation, hence containing all the physics of the model, perturbative and
nonperturbative, weak and strong couplings, topological excitations, etc.

• Although it is exact, its functional and nonlinear nature makes it non solvable without
approximations, that we will present in the following. The nature of these approximations
however will be nonperturbative in the sense that they do not rely on a Taylor expansion
in a coupling constant. Notice however that if one performs perturbative approximations
on the exact Wetterich equation, one retrieves the usual perturbative results, as expected.

• The regulator function Rk(q) plays a major role in the flow equation. We will discuss its
role in more details in the following, but notice already that it ensures that the propagator
[Γ

(2)
k (q)+Rk(q)]

−1 does not become singular at criticality whenever k 6= 0. This is called an
infrared (IR) regularization because its prevents the apparition of poles in the IR domain
q → 0. The ultraviolet (UV) regularization (when q → Λ) is also tackled by the regulator,
but this time by its derivative term ∂kRk, which decays sufficiently rapidly at large q to
suppress the UV divergences.

• Finally, now that we have discussed three different versions (the Wegner-Houghton, the
Wilson-Polchinski and the effective average action methods) of the exact flow equation,
let us underline the differences between them. (i) The regulator function: the Wegner-
Houghton approach differs from the two others by its regulator function. A very sharp
cut-off function is used which discriminate between the slow modes and the rapid modes.
In the modern implementation, it would mean that the regulator function Rk(q) is a step
function with Rk(q) = 0 if q > k, and Rk(q) = ∞ if q < k (see Fig. I.5 for illustration).
The Wilson-Polchinski approach, as the effective average method are thus more subtle
with regard to the regularization, and use a smooth regulator function. (ii) The object
of interest: in the Wegner-Houghton and in the Wilson-Polchinski approaches, the flow
equation is written in term of an effective action Sk. These actions are very abstract
objects, since one still has to perform a path-integral in order to have access to the physical
quantities. By contrast, although the Wetterich equation (I.43) is formally equivalent to
the Wilson-Polchinski equation (see [37] for a proof), the former equation deals with
the effective average action Γk, which bears more physical content. In particular, since
the variable of the effective average action ψk(x) = δWk

δJ(x) = 〈φk(x)〉 can be seen as the

magnetization of a system of size 1/kd, the average effective action Γk can consequently
be interpreted as the free energy of a smaller system of size 1/kd.

I.3.2.d Approximation schemes

Although the Wetterich equation (I.43) governing the evolution of the effective average action
Γk with the scale k is exact, its functional form makes it in practice unsolvable without resorting
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to approximation schemes. Two main approximation schemes exist which are quite different in
spirit and can be used to probe different properties of the critical systems. The most commonly
used approximation within the NPRG context is called the derivative expansion (DE) and is
quite natural since the idea is to restrict the functional form of Γk by imposing its shape via an
ansatz [14, 37]. We will use it throughout the manuscript and will therefore describe it in details.
The second approximation was introduced by Blaizot, Mendéz-Galain and Wschebor [51, 52]
and does not rely on an ansatz for the action but is based on an approximation that allows one
to obtain a closed set of flow equations on the correlation functions.

The derivative expansion (DE). The idea of this approximation [14, 37] is to transform the
functional flow equation into a system of coupled partial differential equations describing the
flow of “coupling” functions. For doing so, we therefore specify an ansatz for Γk that constrains
its form. In other words, we perform a projection of Γk on a (much) simpler functional subspace.
The ansatz we choose (i.e. the subspace) is an approximation of the exact functional and must
therefore be chosen with great care. In particular, it must respect all the symmetries of the initial
model, and one must be sure that the terms that have not been retained in the approximation are
indeed negligible. A balance between the complexity of the ansatz (leading to more complicated
analytical and numerical calculations) and the precision of the approximation will then have to
be found.

When studying phase transitions, the physics of interest is that of large length scale, when
all the microscopic degrees of freedom start to behave collectively and long-range order arises.
It means that we are interested in the large-distance physics, or equivalently in the small-
momentum physics q → 0. For this reason, the spirit of the derivative expansion is to perform
a Taylor expansion of the effective average action Γk near q → 0, that is a Taylor expansion in
power of the spatial derivatives. More details and justifications will be given in Sec. I.4.3.

For instance, in the context of the φ4 model, this leads us to writing the effective average
action as:

Γk[ψ] =

∫
ddx

(
Uk(ψ) +

1

2
Zk(ψ)(∇ψ)2 +O(∇4)

)
(I.45)

which is a derivative expansion at the second order in space derivative. Constraining the func-
tional form of Γk[ψ] means that Wetterich functional equation (I.43) translates into two coupled
partial differential equations for the functions Uk(ψ) and Zk(ψ). Evaluated in a uniform field
configuration, Uk(ψ) identifies to Γk(ψ) up to a volume factor. Consequently, Uk=0 is propor-
tional to the effective Γ14, and we recall in App. A.1 that the thermodynamic potential U = Uk=0

is directly linked to the probability distribution of the magnetization (at least when the system
is not critical). The function Zk contains the physics of the configurations (slowly) variating in
space. Notice that more drastic approximations can be made: setting Zk(ψ) = 1 for instance
is called the Local Potential Approximation (LPA) and usually yields already reasonably good
quantitative results (except for the anomalous dimension η which is vanishing in this scheme).
The LPA’ is a slightly more refined approximations for which Zk(ψ) = Zk is a mere number. This
refinement allows us in particular to compute a nonvanishing η exponent. Finally, and we will
discuss it a following section, a series expansions in ψ of the potential Uk(ψ) may be performed
(usually known as a field expansion), leading to further simplifications.

Let us already notice that the derivative expansion will allow us to calculate not only uni-
versal quantities, such as critical exponents (see for instance [53] for the computation of a
nonequilibrium exponent in the kinetic Ising model after a critical quench, more examples are
also given in the following), but also nonuniversal quantities defined at vanishing momenta,

14Since we have performed a derivative expansion, this is not the exact effective potential, but an approximation
of it.



I.3. THE NONPERTURBATIVE RENORMALIZATION GROUP 27

such as phase diagrams (see for example [54]). However, it does not give access to the full-
momentum dependence of correlation functions, something desirable in many situations and
that will be given by the BMW approximation (see for instance [55] for a detailed discussion
about the differences between these two approximation schemes).

The Blaizot–Mendéz-Galain–Wschebor (BMW) approximation. The BMW scheme [51,
52] is very different in spirit to the derivative expansion: instead of restricting the form of Γk,
this scheme limits the infinite number of coupled equations for the n-points functions Γ

(n)
k into

a closed system of equations. Indeed, because of the presence of Γ
(2)
k in the right-hand side of

the Wetterich equation (I.43), the flow of the Γ
(n)
k contains all the vertex functions up to Γ

(n+2)
k .

For instance, let us derive the flow of the second derivative of the effective average action.
We first define the Fourier transform of Γ

(2)
k as:

Γ
(2)
k (p) ≡ FT

(
δ2Γk

δψ(x)δψ(y)

∣∣∣∣
ψ=ψunif

)
(p,−p) (I.46)

where FT(f)(p1, p2) is the Fourier transform of the function f(x, y), using the convention (1).
Notice that Γ

(2)
k is evaluated at a uniform field configuration ψunif . We immediately drop the

superscript for the uniform field ψunif to alleviate the notation and write ψ = ψunif . To compute
the flow of these quantities under a change of scale k we use the Wetterich equation (I.43).
Writing the full propagator Gk(q;ψ) ≡ [Γ

(2)
k (q) +Rk(q)]

−1, the flow of Γ
(2)
k reads:

∂kΓ
(2)
k (p) =

∫
q
∂kRk(q)Gk(q;ψ)

[
Γ

(3)
k (q,−q − p, p)Gk(p+ q;ψ)Γ

(3)
k (p+ q,−q,−p)

− 1

2
Γ

(4)
k (q,−q, p,−p)

]
Gk(q;ψ) .

(I.47)

We therefore see that the flow of the two-point function Γ
(2)
k (p), given above, contains the

vertices Γ
(3)
k and Γ

(4)
k . The aim of the BMW scheme is to close this infinite hierarchy of equation15

through an approximation, justified by the presence of the regulator function Rk(q). Indeed, we
recall that the regulator has two roles: (i) it ensures that the Γ

(n)
k are smooth functions of the

momenta (because the regulator places the system out of criticality where these functions are
analytic) and (ii) it cuts off the momenta larger than q & k under the integral in the right-hand-
side of the Wetterich equation (I.43) via the ∂kRk term. This justifies to compute the vertices
Γ

(n)
k appearing under the integral at vanishing internal momentum q. For instance, in Eq. (I.47),

one replaces:

Γ
(3)
k (q,−q − p, p)→ Γ

(3)
k (0,−p, p) and Γ

(4)
k (q,−q, p,−p)→ Γ

(4)
k (0, 0, p,−p) . (I.48)

This approximation then allows one to use the exact identity [51, 52]:

Γ
(m+1)
k ({pi}, pm+1 = 0) = ∂ψΓ

(m)
k ({pi}) (I.49)

which is the essential ingredient for closing the set of coupled equations. Using this formula, the
flow of any vertex Γ

(n)
k now contains vertices of order at most n. For instance, the flow of Γ

(2)
k

in Eq. (I.47) now reads:

∂kΓ
(2)
k (p) =

∫
q
∂kRk(q)Gk(q)

[
∂ψΓ

(2)
k (p)Gk(p+ q)∂ψΓ

(2)
k (p)− 1

2
∂2
ψΓ

(2)
k (p)

]
Gk(q) , (I.50)

15The flow of Γ
(2)
k depends on Γ

(3)
k and Γ

(4)
k , whose flow depends on Γ

(5)
k , Γ

(6)
k , etc.
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and it involves only Γ
(2)
k (p).

The BMW scheme, because it keeps the full-momentum contribution of the vertices can
be used to compute momentum-dependent quantities such as scaling functions (see for in-
stance [56–58]), a task which is out-of-reach of the derivative expansion since this approxi-
mation is only valid at vanishing external momenta [55].

I.3.3 An example: the φ4 theory

In this section, we give a pedagogical example of application of the NPRG on the archetypical
φ4 model. As stated in the previous section, the derivative expansion, at second order, reads:

Γk[ψ] =

∫
ddx

(
Uk(ψ) +

1

2
Zk(ψ)(∇ψ)2 +O(∇4)

)
. (I.51)

To solve this problem in this approximation scheme, we therefore have to find the flow of the
functions Uk(ψ) and Zk(ψ) that we define as:

Uk(ψ
unif) =

1

Ω
Γk(ψ

unif) (I.52)

Zk(ψ
unif) =

1

Ω

[
∂p2 FT

(
δ2Γk

δψ(x)δψ(y)

∣∣∣∣
ψ=ψunif

)
(p,−p)

]∣∣∣∣∣
p=0

(I.53)

where Ω ≡
∫

ddx is the volume of the system, and FT(f)(p1, p2) is the Fourier transform of
the function f(x, y), using the convention (1). Notice that Γk and its derivatives are evaluated
in a uniform field configuration ψunif (and again we immediately drop the superscript for the
uniform field ψunif and write ψ = ψunif). The flow of these quantities under a change of scale
k is computed using the Wetterich equation (I.43), and we first have to write explicitly the full
propagator Gk(q;ψ) ≡ [Γ

(2)
k (q) +Rk(q)]

−1 which is in this case rather simple:

Gk(q;ψ) =
1

Rk(q) + q2Zk(ψ) + U ′′k (ψ)
, (I.54)

and we can now proceed to the computation of the flow of Uk.

I.3.3.a Calculation of the flow of Uk

The flow of Uk follows immediately from the Wetterich equation (I.43) and from the equation
for the propagator (I.54). It reads:

∂kUk(ψ) =
1

2

∫
q

∂kRk(q)

Rk(q) + q2Zk(ψ) + U ′′k (ψ)
. (I.55)

When describing the RG ideas in the block-spin example, we have seen that the rescaling (the
renormalization) of the length after each decimation step was necessary in order to have a sys-
tem that remains self-similar after each RG step. This rescaling means that we have to measure
all the lengths in units of the running lattice spacing. In the NPRG formalism, the scale k is
the analogue of the inverse running lattice spacing, and expressing the quantities appearing in
the flow equations in the units of the running lattice is equivalent to writing the equations in a
dimensionless form where the k-dependence is no longer explicit. To give a concrete example,
if we compute directly Eq. (I.55) using the Θ-regulator (I.38) and setting Zk(ψ) = 1, we obtain:

k∂kUk(ψ) =
4vd
d

kd+2

k2 + U ′′k (ψ)
. (I.56)
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Studying the large-distance physics k → 0 in this form is obviously not convenient since the
right-hand side of the equation seems to vanish in this limit. It is therefore important to follow
the evolution of Uk and Zk in the “co-moving” frame, that is, to zoom out as the scale k is
modified. In practice, this is made possible by switching to dimensionless variables.

The starting point to switch to dimensionless variable is to notice that the effective average
action Γk has the dimension of an action and is thus dimensionless: [Γk] = [k0]. This allows us
to deduce the dimension of the field and of the potential:

[ψ] = [k
d−2

2 ] and [Uk] = [kd] (I.57)

which we use to define the following dimensionless variables:

x̂ ≡ kx ,
y ≡ q2/k2 ,

s ≡ log(k/Λ) ,

ψ̂(x̂) ≡ k 2−d
2 Z̄

1/2
k ψ(x) ,

Û(ψ̂) ≡ k−dUk(ψ) ,

Ẑ(ψ̂) ≡ Z̄−1
k Zk(ψ) ,

r(y) ≡ y−1k−2Z̄−1
k Rk(q) ,

(I.58a)

(I.58b)

(I.58c)

(I.58d)

(I.58e)

(I.58f)

(I.58g)

where we have introduced the renormalization time s. Notice that the dimensionless variables
are written with a hat [except for y, s and r(y)], and that their dependence in the renormaliza-
tion time s is not explicit, for instance, Ûs(ψ̂) is written Û(ψ̂). Notice moreover that we have
introduced the running coefficient Z̄k to define the dimensionless function Ẑ(ψ̂), and have mod-
ified the dimensionless field ψ̂ and regulator r(y) accordingly. This extra running coefficient is
necessary to capture the anomalous dimension that appears at criticality [see Eq. (I.42)] and
which can be seen as a shortening of the correlation length due to fluctuations. Indeed, ac-
cording to Eq. (I.42), the fields are expected to have a scaling φ(q) ∼ k(d−2+η/2) as k → 0, and
the extra running coefficient Z̄k scales as Z̄k ∼ k−η when k → 0 and captures this anomalous
scaling.

In prevision to this power-law behaviour, we furthermore define a running anomalous di-
mension ηs as ηs = −∂s ln Z̄k, matching the anomalous dimension η when k → 0 (or equiva-
lently when s → −∞): ηs=−∞ = η. Finally, Z̄k is defined such that Ẑ(ψ̂ = ψ̂0) = 1, where ψ̂0

can be chosen arbitrarily but is in practice chosen as the (running) minimum of the potential Û .
We also define the Z2-invariant variable: ρ̂ ≡ ψ̂2/2. Using these dimensionless variables, we

can now cast the flow equation (I.55) into a dimensionless form:

∂sÛ = −dÛ + (d− 2 + ηs)ρ̂Û
′ + vd

∫
y
yd/2

g(y)

h(y, ρ̂)
(I.59)

with Û ≡ Û(ρ̂), Û ′ ≡ ∂ρ̂Û , where the integration factor v−1
d ≡ 2d+1πd/2Γ(d/2) comes from the

spherical invariance of the integral over q, and we have defined g(y) = −ηsr(y) − 2yr′(y) and
h(y, ρ̂) = y(Ẑ(ρ̂) + r(y)) + Û ′(ρ̂) + 2ρ̂Û ′′(ρ̂).

I.3.3.b Calculation of the flow of Zk

The flow of Zk requires a little more work. First, we recall that the flow of the second derivative
of the effective average action Γ

(2)
k (p) ≡ FT(δ2Γk/δψ(x)δψ(y)|ψ=ψunif reads:

∂kΓ
(2)
k (p) =

∫
q
∂kRk(q)Gk(q;ψ)

[
Γ

(3)
k (q,−q − p, p)Gk(p+ q;ψ)Γ

(3)
k (p+ q,−q,−p)

− 1

2
Γ

(4)
k (q,−q, p,−p)

]
Gk(q;ψ) ,

(I.60)
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where we have dropped the superscript for the uniform field ψunif . After some more computation
and casting the equation into a dimensionless form using Eqs. (I.58), one obtains:

∂sẐ = ηsẐ + (d− 2 + ηs)ρ̂ Ẑ
′

+ 2vd

∫
y
yd/2

g

h2

[
2ρ̂f2

h2

(
4

d

yh′2

h
− h′ − 2

d
yh′′
)

+4ρ̂Ẑ ′
f

h

(
1− 2

d

yh′

h

)
+

2ρ̂

d
(Ẑ ′)2 y

h
− Ẑ ′

2
− ρ̂Ẑ ′′

]
,

(I.61)

where v−1
d = 2d+1πd/2Γ(d/2), ρ̂ = ψ̂2/2, h(y, ρ̂) = y(Ẑ(ρ̂) + r(y)) + Û ′(ρ̂) + 2ρ̂Û ′′(ρ̂), f(y, ρ̂) =

yẐ ′(ρ̂) + 3Û ′′(ρ̂) + 2ρ̂Û ′′′(ρ̂) and g(y) = −ηsr(y)− 2yr′(y). We have omitted to write the depen-
dence of the function on their variables, and have written h′ = ∂yh to alleviate the notation.

I.3.3.c Finding the fixed-point solution

Our main interest when studying critical phenomena is usually the fixed-point solution of the
flow equations, as stressed in the previous parts. Equations (I.59) and (I.61), together with
the conditions Û ′(κ̂) = 0 (where κ̂ is the running minimum of the potential, and therefore
the precursor of the magnetization16) and Ẑ(κ̂) = 1 (by definition) form a closed system of
nonlinear partially differential equations. When searching for the fixed-point solution ∂sÛ = 0
and ∂sẐ = 0 it becomes a system of nonlinear ordinary differential equations. This kind of
system remains usually highly nontrivial to solve, and we therefore show in the following some
usual techniques that can be tried on.

Numerical root finding. A first method consists in discretizing the fixed-point version of
equations (I.59) and (I.61) over a grid ρ̂ ∈ [0, ρ̂max] and evaluating the derivatives using for
example a “five-point stencil” method17. If the grid has N points, this yields a system of 2N
coupled nonlinear algebraic equations. This system can then be solved using usual root-finding
algorithms. Notice that one also has to perform a numerical integration of the integrals over
the momenta. Using a Θ-regulator (I.38), which allows for an analytical computation of these
integrals when Ẑ is independent of ρ̂, can therefore simplify the numerical task in this case.
Notice moreover that these root-finding methods necessitate an initial condition for Û and Ẑ,
and they converges toward a solution only if the initial condition is realistic. To obtain such an
initial condition, one can either start from a better known theory (for example, start at the upper
critical dimension d = 4 in our case) and then approach the desired model (lower the dimension
d). An alternative path can be to start with a simpler model (for instance set Zk = 1), solve this
model and then resume to the more complicated one. The two other methods we show in the
following are therefore explained for the case Zk = 118.

Shooting method. For this method, we assume that Zk = 1. The idea of this technique is
to solve directly the fixed-point version of equation (I.59) by numerical integration [60, 61]. A
priori, this task is complicated since we only have one boundary condition, Û ′(ψ̂0) = 0, whereas
we have a second-order partial differential equation, and we therefore expect to have infinitely

16At vanishing external field, we have ∂U/∂ψ = J = 0 and the magnetization therefore corresponds to the
minimum of the potential.

17This method is simply a finite-difference approximation that uses the point and its four neighbours on the grid
to compute the derivatives [59]. On the boundaries of the discretization box the computation of the derivatives is
made using only the points inside the box.

18Setting Zk = 1 means to neglect the field anomalous dimension, that is to set ηs = 0. This method is known in
the NPRG context as the local potential approximation, since the renormalization of the space-dependent part of the
effective average action is neglected.
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many solutions, indexed by the value of Û ′′(ψ̂0) ≡ b19. In fact, the only physical solution b∗

is the only solution of the previous equation that does not blow up at finite ψ̂. The shooting
method therefore consists in a dichotomy on b, trying to obtain the b for which the numerical
solution exists for all values of ψ̂. Notice that to perform this shooting, it has been proven more
efficient to compute the asymptotic behaviour of Û when ψ̂ → ∞, and then to proceed to a
shooting-to-origin rather than the more intuitive shooting from the origin method [61].

Conformal mapping. For the presentation of this method we also assume that Zk = 1. As
for the shooting method, the goal is to find the only value for which Û has a physical solution.
This time, all the potential solutions of Eq. (I.59) are indexed by r̂ ≡ Û(0). The idea is the
following [62]: a series expansion of Û is performed:

Û(ρ̂) =

M∑
n=0

ûnρ̂
n , (I.62)

and the coefficients ûn are determined by plugging this series expansion into the fixed-point
version of Eq. (I.59) and solving it order by order. Doing so, the coefficients ûn are therefore
function of the free parameter r̂: ûn ≡ ûn(r̂), and we want to find the value r̂∗ corresponding to
the non-blowing physical solution.

In fact, it can be proven that the series expansion (I.62) has a finite radius of conver-
gence [63], and the idea is to perform a conformal mapping in order to obtain the large ρ̂
behaviour of Û . Defining ŵ the conformal variable, and Ŵ ≡ Û(ŵ) the corresponding trans-
formed potential, one can perform a series expansion of Ŵ as:

Ŵ (ŵ) =
M∑
n=0

ŵn(r̂)wn (I.63)

where the ŵn(r̂) are functions of the ûn(r̂). This series expansion of the conformal potential in
the conformal variable captures the large-field behaviour of the potential. The idea is then to
compute r̂∗ by assuming that ifM is sufficiently large, the series expansion ofW should converge
and therefore the last term ŵM can be neglected. Solving ŵM (r̂) = 0 yields a polynomial on r̂
and one of its roots is the value r̂∗ we are seeking20, and we can therefore compute (the series
expansion of) Ŵ as a function of r̂∗. An inverse conformal transformation finally yields a good
approximation for Û .

I.3.3.d Solving the flow equations

Although the integration of the flow given by Eqs. (I.59) and (I.61) is a more complicated task
than finding a fixed-point solution, it also yields more information. In particular, it provides
us with flow in the vicinity of the fixed points, therefore allowing us to compute the critical
exponents that characterize this approach21, such as the exponent ν. Having access to the flow
of the coupling constants can also yield information about non-universal quantities [64, 65] or
information about crossover phenomena and finite-size scaling effects (see for instance [66]):
if there exist other (unstable) fixed points, the flow may spend a long time in the vicinity of
these fixed points before reaching the actual stable fixed point of the model. This effect has a
concrete translation when one performs experiments or numerical simulations: the computed
critical exponents can differ from the theoretical ones because of finite-size effects.

19The shooting method is in fact more effective on the function Û ′(ψ̂), which is reason why we define Û ′′(ψ̂0) = b
(rather than Û(ψ̂0) = b for instance).

20The value r̂∗ can be found amongst the other roots of the polynomial by checking the shape of the resulting Û ,
and its large-field behaviour for instance.

21The critical exponents can also be computed from the linear stability of the fixed point equations, as we will see
in the following.
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Field expansion. Solving numerically the two coupled nonlinear partial differential equa-
tions (I.59) and (I.61) can be a very tedious task, and one can therefore perform, on top of
the derivative expansion, a series expansion of the functions Û and Ẑ. For a generic function
F̂s(ρ̂) ≡ F̂ (ρ̂), we define its Taylor expansion around its running minimum as:

F̂ (ρ̂) =

M∑
n=0

f̂n(ρ̂− κ̂)n (I.64)

where κ̂ is the running (s-dependent) minimum of the potential, Û ′(κ) = 0. Note that F̂ and the
f̂n are functions of the renormalization time s as well. Performing this expansion, we transform
the coupled partial differential equations (I.59) and (I.61) into a system of ordinary differential
equations, which is easier to integrate numerically22. Notice that, contrary to the derivative
expansion which is controlled because of the regulator Rk (this will be explained in Sec. I.4.3 in
more details), the field expansion is a cruder approximation, and it must be checked carefully
that the series expansion is indeed convergent by checking the convergence of the coupling
constants/exponents as the order of the expansion M is increased. The convergence of this
expansion for the O(N) model has been well studied (see for instance [67, 68] and references
therein). Although this convergence is very rapid for 3 ≤ d ≤ 4, one has to include more and
more terms as d is lowered to 2, and it is therefore preferable to work with the functions F̂
rather than their series expansion as soon as d < 3 in these models.

Numerical integration. In the general case, the build-in numerical solvers are not able to
deal with the flow equations, and a numerical code has to be written. A rather simple nu-
merical scheme is usually sufficient: the field ρ̂ is discretized over a finite grid ρ̂ ∈ [0, ρ̂max],
the derivatives are computed using a finite-difference scheme (for instance a “five-point stencil”
method [59]), and the renormalization flow is then integrated numerically starting from an ini-
tial condition at k = Λ and using a Runge-Kutta algorithm [59]. Notice that the specification of
the initial condition, for instance:

Û(ρ̂)|k=Λ =
1

2
(ρ̂− κ̂Λ)2 (I.65)

is equivalent to specifying the temperature of the system via κ̂Λ. Therefore, if κ̂Λ > κ̂c (where κ̂c
is the critical value for κ̂Λ which corresponds to T = Tc) then the system ends up in the ordered
phase, while it ends up in the disordered phase if one started with a κ̂Λ < κ̂c. Finding the
fixed-point solution therefore requires to start exactly at κ̂Λ = κ̂c. Numerically, we proceed by
dichotomy to approach the critical value, and therefore approach the true fixed-point solution.
We explain this in more details on a specific example in the following section.

I.3.4 Results

In this section we present the results of the numerical integration of the flow equations in the
case of the XY model (or O(2) model) in d = 3. For simplicity, we use a LPA’ approximation,
such that the ansatz for the effective average action reads:

Γk =

∫
dx

[
1

2
(Z̄k∇~ψ)2 + Uk(ρ)

]
(I.66)

where ρ = 1/2 ~ψ2 is the invariant of the O(2) symmetry and Z̄k is a mere number (not a function
of ρ). With Z̄k is associated a running anomalous dimension ηs such that ηs = −∂s log Z̄k. We

22It can usually be performed using any numerical solver from Maple or Mathematica for instance.
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Figure I.6 – Flows of the (dimensionless) minimum of the potential κ̂(s) (left) and of the coupling
constant û(s) (right) as a function of the negative RG time −s. The blue curves correspond to
an initial condition κ̂Λ > κ̂c, and as s → −∞, the system converges toward the low-temperature
Nambu-Goldstone fixed point. The orange curves correspond to κ̂Λ < κ̂c and ends up in the Gaussian
fixed point. After a transient time, the flows reach a plateau corresponding to the vicinity of the
Wilson-Fisher critical point. This plateau is left when s ' sξ, value at which the RG scale k is
comparable to the inverse correlation length 1/ξ of the system.

perform in addition a field expansion for the potential in its dimensionless form Û at order 3 in
ρ̂ around its running minimum κ̂, that is:

Û(ρ̂) =
û

2
(ρ̂− κ̂)2 +

û3

3!
(ρ̂− κ̂)3 (I.67)

where û, û3 and κ̂ are the coupling constants and are renormalized along the flow. Even in this
very crude approximation, the quantitative picture [compared to the flow we could obtain by
integrating the flow of the functions Û(ρ̂) and Ẑ(ρ̂)] is preserved and correct; it allows us to
show a rather simple illustration of renormalization flows. The dimensionless flow equations
may be found in App. A.2, and we just give in the main text the flow for κ̂:

∂sκ̂ = (2− d− ηs) κ̂+
8vd (2 + d− ηs)

d(2 + d)

2κ̂2û3 + 2κ̂û2 + 2û+ κ̂û3

û(2κ̂û+ 1)2
, (I.68)

where d is the spatial dimension and v−1
d = 2d+1πd/2Γ(d/2) is the volume factor coming from

the momentum integration. Notice that we have used a Θ-regulator [see Eq. (I.38)] to compute
the momentum integrals. The initial condition for the numerical integration of the flow is given
by:

Û(ρ̂)|k=Λ =
ûΛ

2
(ρ̂− κ̂Λ)2 +

û3,Λ

3!
(ρ̂− κ̂Λ)3 (I.69)

with ûΛ = 10−2 and û3,Λ = 10−5 and κ̂Λ is tuned to be either in the low- or high-temperature
phase. A fine-tuning of κ̂Λ allows us to find the critical point κ̂c. Notice that to describe the flows
we use the renormalization time s ≡ log(k/Λ), with s = 0 at the beginning of the flow (mean-
field) and s → −∞ when all the fluctuations have been integrated over and the macroscopic
state is reached.

I.3.4.a Flows of the dimensionless variables

We first focus on the flows of the dimensionless variables, which are simpler to study since they
reach a (finite) fixed point when κ̂Λ = κ̂c. Depending on the initial value κ̂Λ, we expect the flow
to end up either in the ordered, or disordered phase.
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Flow near Tc. We choose a temperature T slightly smaller (resp. larger) than the critical
temperature Tc, that is κ̂Λ slightly larger (resp. smaller) than κ̂c. In both cases the flow of the
coupling constants displays three regimes: (i) at the beginning of the renormalization procedure
(at s = 0), the initial condition (I.69) describes the system at the mean-field level23. As soon
as the renormalization procedure starts (s is lowered), that is as soon as fluctuations are taken
into account, the coupling constants are renormalized and change rapidly, and, since the system
is almost critical, they seem to converge toward their fixed-point value. (ii) Since T ' Tc, the
flow is really slow near the critical point: a plateau in the flow can be observed, which is longer
and longer as T is closer to Tc. In particular if T = Tc the size of the plateau becomes infinite.
(iii) For T 6= Tc, when the coarse-graining procedure has reached the correlation length of the
system, that is when k ' 1/ξ (we denote the RG time corresponding to this scale as sξ), the
system realizes that it is not critical and the coupling constants start varying again. The plateau
is left and the dimensionful24 coupling constants converge now toward their true macroscopic
value (see Fig. I.6 for an illustration).

Flow for T > Tc: the Gaussian fixed point. If T > Tc, the system ends up into the disor-
dered phase as soon as the renormalization scale k is of order 1/ξ, which corresponds to a RG
time s ' sξ. In this phase the average magnetization vanishes, which means that the minimum
κ̂ vanishes at finite k. The flow below this scale (that is for −∞ < s < sξ) can be continued
using a truncation of the form Û(ρ̂) = m̂ρ̂+ 1

2 λ̂ρ̂
2 [14].

Flow for T < Tc: the Nambu-Goldstone fixed point. If T < Tc, the system ends up in the
ordered phase when k ' 1/ξ. The system shows a spontaneous magnetization ψ0 =

√
2ρ0 with

ρ0 the minimum of the potential. On Fig. I.6, one observes that the dimensionless minimum κ̂
diverges as s → −∞ which seems to be in contradiction with having a finite spontaneous mag-
netization. In fact, the correct (physical) variable is the dimensionful minimum ρ0 = kd−2κ̂: in
d = 3, the scaling prefactor kd−2 goes to 0 when k → 0, and the product ρ0 = kd−2κ̂ has a finite,
nonvanishing limit, as expected (see Fig. I.7). One also notices on Fig. I.6 that the potential is
not quadratic since û reaches its Nambu-Goldstone fixed-point value û(s→ −∞) = ûNG.

Flow of the potential: approach to convexity. Observing the evolution of the dimensionful
potential

Uk(ψ) = kdÛ(k−
d−2

2 ψ) (I.70)

is also illuminating. Indeed starting from the unphysical (because nonconvex) potential Uk=Λ(ψ),
one observes on Fig. I.8 that the potential Uk(ψ) converges toward a convex potential, whose
final shape depends on the final state of the system. If T > Tc, the potential evolves toward
a parabola with a single minimum on ψ = 0 (we recall that we have to modify the ansatz to
obtain this Gaussian fixed point). If T < Tc, the potential becomes completely flat between −ψ0

and ψ0, whereas if T = Tc, the system resembles the flat potential for k 6= 0, its flat part shrinks
as k → 0 such that there is finally a single minimum exactly at k = 0.

I.3.4.b The critical point

Although the flows of the coupling constants and of the potential are interesting and insightful,
especially because they allow for a concrete picture of the often abstract RG flows, the true

23In particular, although κ̂Λ 6= 0 which means that the microscopic potential has a nontrivial minimum, the
macroscopic system (i.e. when k = 0) is in the disordered phase κ̂k=0 = 0 whenever κ̂Λ < κ̂c.

24To be more precise, the dimensionful quantities converge toward their macroscopic values. For instance, for
T < Tc the dimensionless minimum diverges as k → 0 whereas its dimensionful counterpart will flow toward a finite
value since the magnetization of the macroscopic system is finite.
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Figure I.7 – Left. Flow of the dimensionful minimum of the potential κ(s) for T < Tc as a function
of the negative RG time −s. After leaving the vicinity of the Wilson-Fisher fixed point at s ' sξ,
the running minimum reaches its non-vanishing value κ0, signaling that the system is indeed in
the ordered phase. Right. Flow of the running anomalous dimension η(s) for an initial condition
κ̂Λ > κ̂c (blue curve) and κ̂Λ < κ̂c (orange curve) as a function of the negative RG time −s. After a
transient time, the flows reach a plateau corresponding to the vicinity of the Wilson-Fisher critical
point. This plateau is left when s ' sξ, value at which the RG scale k is comparable to the inverse
correlation length 1/ξ of the system. The anomalous dimension η vanishes both in the Gaussian
and in the Nambu-Goldstone fixed points.

U
k
(ψ

)

ψ
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Figure I.8 – Approach to convexity of the potential Uk(ψ) in the ordered phase. Each curve cor-
responds to a different value of the RG scale k. At k = Λ (blue curve), the initial condition is a
nonconvex potential, but as k is lowered, the bump at ψ = 0 shrinks and the flow converges toward
a convex potential with a completely flat region between −ψ0 and ψ0, the spontaneous magnetiza-
tion.

power of the RG blooms when studying a critical point and its vicinity. Indeed, the RG tools
relies on the scale invariance of the system, which is truly effective when the system is critical.
We therefore explain here how one can compute the critical exponents of a system using the
NPRG formalism.

The anomalous dimension η. The anomalous dimension η is associated with the spatial
fluctuations of the order parameter, and to an effective modification of the scaling behaviour of
the correlations due to these fluctuations, as explained Sec. I.3.2.b. In the NPRG formalism, we
have access to the running anomalous dimension, and the fixed point can be read directly on
the flow if T ' Tc (see Fig. I.7). Notice that to find the precise value of η∗, one therefore has to
be as close to Tc as possible, which is usually done by dichotomy.
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The approach to the fixed point and the exponent ν. The critical exponent ν is usually
defined as the exponent characterizing the scaling behaviour of the correlation length ξ when
one approaches the critical temperature, that is:

ξ ∼
T→Tc

|T − Tc|−ν (I.71)

with ν > 0 since the correlation length diverges when T → Tc. As explained in Sec. I.2.2.a, this
exponent can be directly computed from the first eigenvalue of the stability matrix computed at
the nontrivial fixed point.

However, there exists an alternative path to compute the exponent ν, more suited to a dy-
namic integration of the flow equations: the exponent ν describes how the potential Û (or any
coupling constant) flows away from the fixed-point solution Û∗ when T ' Tc but T 6= Tc. An
expansion of the potential near its fixed-point value can therefore be written as:

Û(ρ̂, s) =
T∼Tc

Û∗(ρ̂) + e−s/νg1(ρ̂) + es ωg2(ρ̂) (I.72)

where there is indeed a minus sign in the exponential defining ν since s is negative and ν
describes how the potential escapes its unstable fixed point when the relevant coupling (T −Tc)
is not fine-tuned to 0. Notice that we also defined the exponent ω which describes the approach
toward the fixed point, and is therefore related to the smallest positive eigenvalue of the stability
matrix, associated to the “less irrelevant” coupling constant.

Notice that the other exponents (for instance β) can also be found using the RG flows but
are not as simple to obtain as ν and η. Since there are only two independent critical exponents,
all of them can be computed from ν and η using scaling relations [30, 33].

I.4 NPRG: some answers to its criticisms

Despite its successes in many domains – high-energy physics [69], frustrated magnets [70],
quantum phase transitions [71], disordered systems [72] and out-of-equilibrium physics [21] –
the NPRG methods are often undeservedly criticized for several reasons: (i) the NPRG is some-
times thought to be unable to retrieve the perturbative results, even at low order. (ii) The NPRG
methods are (wrongly) accused to rely on unjustified approximations. (iii) The approximation
schemes do not converge. (iv) The NPRG formalism is technically difficult and the underlying
physics is therefore hidden by the technical details. In the following, we address these criticisms
and try to justify why the NPRG is a useful tool, that should not be discarded blindly.

Obviously, the perturbative RG is also a very powerful tool and the Standard Model as well
as the equilibrium statistical physics have thrived thanks to the tools of the perturbative RG.
In many modern physics problems, the perturbative RG remains unavoidable and often allows
for a very accurate resolution of some models, or it gives the first qualitative results to probe
the underlying difficulties of more intricate problems. The NPRG does not claim to replace
the perturbative RG: in some cases, it provides an alternative method for tackling a problem
and therefore contest, refine or agree with the perturbative results. In some other cases, the
intrinsic nonperturbative nature of the model makes it the only available option to address it.
Finally, in some other context, the NPRG results are simply not (yet) available, or too difficult to
implement, and the perturbative results may be the only ones available.

In the following, we give an answer to these criticisms by taking most of the time the example
of the O(N) model, for which many NPRG and perturbative RG results are available.

I.4.1 NPRG results

Before addressing the questions raised above, we present some of the NPRG results. Since
the focus of this whole manuscript is on the nonequilibrium systems, this rapid review will
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be focused on the nonequilibrium results obtained through the NPRG formalism, although this
method has proven useful in various areas. Let us also remark that in this manuscript we are
mainly interested in the computation of universal quantities (in particular critical exponents).
However, to the contrary of the perturbative RG, the NPRG is also able to compute non-universal
quantities such as critical temperatures (see for instance [64, 65]).

O(N) model. The O(N) model is probably the most studied model for phase transitions
and is therefore a good benchmark for the NPRG. In Tables I.1 and I.2 we display the results
for the critical exponents η and ν for different values of N in d = 3. We report the results
obtained within the derivative expansion [73, 74] and the BMW [55] approximation schemes,
together with results coming from the perturbative RG [75], Monte Carlo methods [76–80] and
conformal bootstrap techniques [81] for comparison. One observes that the results of the NPRG
are in reasonably good agreement with the Monte Carlo results, especially for the values of
the ν (less than 1% error for its value in the case of the Ising model, N = 1). The results are
comparable to those obtained with the perturbative RG, and differ from the expected numerical
results by a few percents. For the O(N) model, the conformal bootstrap methods are obviously
the best suited.

Notice that similar results are available for the d = 2 case, in particular in d = 2 and N = 2
where the Berezinskii-Kosterlitz-Thouless phase transition is expected [82, 83]. We discuss this
case in the following part. We finally report the results obtained in this manuscript for the kinetic
O(N) model in d = 3 in Table I.3. More details about these results are given in Chap. III.

Kardar–Parisi–Zhang equation. In one dimension, the Kardar–Parisi–Zhang (KPZ) equa-
tion [13] has been studied extensively and a mapping to the random matrix theory yields ana-
lytical and exact solutions in this case [41, 89]. In d > 1 however, the situation is more delicate
and the perturbative approaches fail to capture the critical behaviour of this model, which is
genuinely nonperturbative [90]. By contrast, the NPRG has proven quite effective in the study
of the KPZ equation [16, 91]. The NPRG captures well the nonperturbative fixed point in d = 2
and is in good agreement with Monte Carlo results, see Table I.4. Nonetheless, the NPRG ap-
proach is still unable to capture the correct exponents for higher spatial dimensions [16]. To
be slightly more precise, the NPRG results are expected to be correct yet less accurate up to
dimension d = 3.5 but not reliable above dimension d = 3.5, where a more sophisticated ap-
proximation scheme is probably needed in order to yield consistent results (see [16] for more
details about these issues).

Navier–Stokes equation. The NPRG has also been successful in the study of the Navier-
Stokes equation in its turbulent regime, that is when an external stirring/energy injection is
performed at the macroscopic scale to counterbalance the otherwise dissipative dynamics of the
fluid dynamics equation [15, 92, 93]. Understanding the scaling behaviour of turbulence in the
Navier–Stokes equation, and deriving Kolmogorov’s scaling predictions from first principles still
remains a challenge for the perturbative RG. The NPRG has therefore made a pioneering step
in this direction by deriving, from the Navier-Stokes equation, predictions that go beyond the
standard observations and Kolmogorov theory. For instance, a stretched exponential decay as
k−5/3 exp(−µ̂(λk)2/3) (with k the wave number, µ̂ a non-universal constant and λ the Taylor
scale25) of the energy spectrum is predicted – and observed – in the dissipative (small-scale)
range (see Fig. I.9).

25The Taylor scale is given by λ ∼ LR
−1/2
λ where L is the “integral” (large scale) length at which the energy is

injected and Rλ is the Reynolds number.
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N DE BMW PFT MC CBS
0 0.039 [74] 0.034 [55] 0.0272(3) [75] 0.0303(3) [76]
1 0.0443 [73] 0.039 [55] 0.0318(3) [75] 0.03627(10) [77] 0.036298(2) [81]
2 0.049 [74] 0.041 [55] 0.0334(2) [75] 0.0381(2) [78] 0.03852 [81]
3 0.049 [74] 0.040 [55] 0.0333(3) [75] 0.0375(5) [79] 0.03856 [81]

Table I.1 – Values of the anomalous dimension η in d = 3 for the O(N) model for different values of
N and different methods. See [55] for the references of the different values. The NPRG results are
reported for the derivative expansion (DE) and for the BMW approximation schemes. PFT stands for
Perturbative Field Theory, MC for Monte Carlo studies, and CBS for Conformal Bootstrap methods.

N DE BMW PFT MC CBS
0 0.590 [74] 0.589 [55] 0.5886(3) [75] 0.5872(5) [80]
1 0.6307 [73] 0.632 [55] 0.6306(5) [75] 0.63002(10) [77] 0.629971(4) [81]
2 0.666 [74] 0.674 [55] 0.6700(6) [75] 0.6717(1) [78] 0.6719 [81]
3 0.704 [74] 0.715 [55] 0.7060(7) [75] 0.7112(5) [79] 0.7121 [81]

Table I.2 – Values of the critical exponent ν in d = 3 for the O(N) model for different values of
N and different methods. See [55] for the references of the different values. The NPRG results are
reported for the derivative expansion (DE) and for the BMW approximation schemes. PFT stands for
Perturbative Field Theory, MC for Monte Carlo studies, and CBS for Conformal Bootstrap methods.

N DE PFT MC
1 2.024 [22] 2.0237(55) [84] 2.032(4) [85]
2 2.025 [22] 2.026 [86]
3 2.022 [22] 2.026 [86]

Table I.3 – Values of the dynamical exponent z in d = 3 for the kinetic O(N) model (model A) for
different values of N and different methods. The derivative expansion (DE) results are those of this
manuscript and are derived in Chap. III, using a frequency regulator. For N = 1, the results are
obtained at the second-order of the DE, whereas for N = 2, 3 they are obtained at the LPA’. PFT
stands for Perturbative Field Theory and MC for Monte Carlo studies. The dynamic exponent z for
N = 2, 3 is computed using the value of η from [87] and the relation z = 2 + cη from [86], which
is a relation obtained perturbatively at order ε4, with ε = 4 − d. Very few MC studies exist for the
determination of z. More details on the determination of this exponent can be found in [88].

d 1 2 3 4
α (LO) 1/2 0.330(8) 0.173(5) 0.075(4)
α (NLO) 1/2 0.373(1) 0.179(4)
α (literature) 1/2 0.379(15) 0.300(12) 0.246(7)

Table I.4 – Values of the roughness exponent α of the Kardar-Parisi-Zhang equation in various
dimensions d. LO (Leading Order) and NLO (Next to the Leading Order) are from the NPRG
approach in [16]. The references for the literature values can be found in [16]. In d = 1 the value
of α is known exactly. In d = 2 the NPRG is able to reproduce the simulations results to the contrary
of the perturbative RG. In d > 2 on the other hand the NPRG approach seems to break down as
well.
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Figure I.9 – Figure from [15]. Kinetic energy spectra in d = 3 obtained from direct numerical
simulations at different Taylor-scale Reynolds numbers Rλ plotted in a rescaled dimensionless form
against (kη)2/3 where η is the Kolmogorov length scale at which the energy cascade is finally dis-
sipated, and k is the wave-number. The NPRG predicts a crossover from the k−5/3 power-law to a
stretched exponential decay exp(−µ̂(λk)2/3) in the dissipative range (dashed lines), which is ob-
served in the numerical data (plain lines with symbols).

Reaction-diffusion processes. The reaction-diffusion processes will be the focus of the
Chap. II and we will give more details about these systems. But let us already mention that
in the case of branching and annihilating random walks (BARW) with the reactions A σ−→2A,
2A λ−→∅ for instance (see Fig. I.10), the perturbative RG approach is unable (at all orders) to find
a phase transition to the absorbing state in dimension greater than two [94] because the phase
transition is not perturbatively accessible [95, 96]. This fact is made easily understood when we
have access to the phase diagram (see Fig. I.10), on which we see that for d > 2 the transition
occurs at for a finite value of λ/D. This finite value cannot be reached from a perturbative
expansion near λ = 0. The NPRG, on the other hand, successfully predicts a phase transition in
all dimensions [95] (see Fig. I.10), a fact that is corroborated by Monte Carlo simulations, an
exact result in the single-site approximation [97], and more recently, by a new perturbative RG
approach done in the vicinity of the pure annihilation fixed point (2A→ ∅) and perturbative in
σ [96]. NPRG methods have also provided satisfactory quantitative results for the computation
of the critical exponents in these systems [98].

I.4.2 Retrieving the one-loop perturbative results

Let us now address the point (i) of the criticism expressed in the beginning of this section. We
show that the NPRG allows us to retrieve the one-loop perturbative results in the general case,
and we then give more details in the case of the O(N) model.

I.4.2.a General case

The starting point of the proof is to rewrite the Wetterich equation (I.43) as:

∂kΓk =
1

2
∂̃k

∫
q

log
(

Γ
(2)
k +Rk

)
, (I.73)

where ∂̃k acts only on the k dependence of Rk, that is

∂̃k ≡
∂Rk
∂k

∂

∂Rk
. (I.74)
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Figure I.10 – Branching and Annihilating Random Walk with the reactions A σ−→2A, 2A λ−→∅ and
diffusion coefficient D. Left: Space-time diagrams of a one-dimensional BARW, from [8]. When
λ� σ, the annihilation dominates and the system ends up in the absorbing state after a finite time,
whereas when λ� σ, the system remains in the active phase. A phase transition occurs for λ ∼ σ.
Right: Phase diagrams for the same BARW in dimensions d = 1 to d = 6, from [54]. Lines present
NPRG results, symbols follow from numerical simulations. Whereas the perturbative RG predicts
the absence of a phase transition in dimension greater than two, the NPRG is able to capture the
transition in all dimensions.

Written in this form (I.73), the Wetterich equation closely resembles a one-loop equation. In-
deed, if one replaces Γ

(2)
k in the right-hand side by the (second derivative of the) classical action

S(2), then the derivative ∂̃k can in fact be replaced by the usual derivative ∂k, and the integration
over k can be performed and yields:

Γk[ψ] = S[ψ] +
1

2

∫
q

log
(
S(2)[ψ] +Rk

)
, (I.75)

which is the usual one-loop result [14], and we give examples in the following.

I.4.2.b The example of the O(N) model

We now provide slightly more details in the case of the O(N) model, and show how the pertur-
bative results for the critical exponents at the one-loop order can be retrieved from the NPRG
flow equations. Even more interestingly, we will see that the NPRG results provide at least a
clever interpolation between the one-loop perturbative results in d = 2 + ε and d = 4− ε.

Since we want to compare the NPRG results with those of the perturbative renormalization
group, we consider a similar approximation scheme. We therefore proceed to a lowest-order
field expansion of the potential:

Û(ρ̂) =
1

2
λ̂(ρ̂− κ̂)2 , (I.76)

where the couplings λ̂ and κ̂ depend on the scale k, and λ̂ is the usual φ4 coupling whereas 2λ̂κ̂
is the mass term. Within this approximation, the NPRG flow equations for any dimension d and
any spin component N reads (details of the calculations can be found in [70]):

∂sκ̂ = −(d− 2 + ηs) κ̂+ 2vd(N − 1)`d1(0) + 6vd`
d
1(2λ̂κ̂) ,

∂sλ̂ = (d− 4 + 2ηs) λ̂+ 2vd(N − 1)λ̂2`d2(0) + 18vdλ̂
2`d2(2λ̂κ̂) ,

ηs =
16vd
d

κ̂λ̂2md
2(2λ̂κ̂) ,

(I.77a)

(I.77b)

(I.77c)
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where vd is a volume factor, and the functions `ji and mj
i are called the threshold functions, they

involve an integration over the momentum y and depend on the regulator r(y) (and its deriva-
tives). Their exact form is not interesting for us and can be found in [70]. Notice however that
a signature of the nonperturbative approach is the fact that these threshold functions are non-
polynomial. More importantly, notice that in the equations appear a term proportional to N −1,
and a term in factor of `d1(2λ̂κ̂). The latter term corresponds to the longitudinal mode (parallel
to ψ) which has a mass 2λ̂κ̂. The former term correspond to the N −1 transverse (or Goldstone)
modes, which are massless. In this form, the flow equations reflect explicitly the spontaneous
symmetry breaking that occurs at low temperatures [70].

Study in d = 4 − ε. The upper critical dimension of the O(N) model is d = dc = 4, above
which the φ4 coupling becomes irrelevant and the long-distance physics is described by a van-
ishing φ4 coupling: λ̂ = 0. The usual perturbative approach therefore studies the model in
dimension d = 4 − ε where the coupling λ̂ at the fixed point is of order ε and one can thus
performed a series expansion in λ̂.

We therefore proceed to a series expansion at the lowest nontrivial order in λ̂ of our Eq. (I.77),
that is at second order. At this order, the equation for ηs is of order 3 in λ̂ and therefore the
anomalous dimension vanishes, ηs = 0. Using the properties of the threshold functions, one can
rewrite Eq. (I.77) at lowest order in λ̂. One obtains:

∂sκ̂ = −(2− ε) κ̂+
N + 2

16π2
`41(0)− 3

8π2
λ̂κ̂ ,

∂sλ̂ = −ελ̂+
N + 8

16π2
λ̂2 ,

ηs = 0 .

(I.78a)

(I.78b)

(I.78c)

These equations admit a trivial (Gaussian) fixed point (κ̂∗ = (N + 2)`41(0)/(32π2), λ̂∗ = 0) which
is stable for ε < 0 (that is d > 4), and the nontrivial Wilson-Fisher fixed point [99]:

(κ̂∗, λ̂∗) =

(
(N + 2)`41(0)

32π2
,

16π2ε

N + 8

)
, (I.79)

which becomes stable as soon as ε > 0. We can now compute the expression of the critical
exponent ν, which describes how the correlation length ξ diverges near the critical point. This
is done by computing the eigenvalues of the stability matrix at the nontrivial fixed point, as
explained in Sec. I.2.2.a. One gets:

ν =
1

2
+
ε

4

N + 2

N + 8
, (I.80)

which does not depend on the regulator, and which indeed coincides with the one-loop pertur-
bative result [31].

Study in d = 2 + ε. We now focus on the lower critical dimension d = 2 at which the
critical temperature becomes zero for N > 226. The usual perturbative approach consists in a
low-temperature expansion of the nonlinear σ-model [31]. To compare the NPRG results with
those of the usual perturbative approach, we therefore have to link the couplings κ̂ and λ̂ to the
parameters of the nonlinear σ-model, whose partition function is given by:

Z =

∫
D~φ δ(~φ2 − 1)e−

1
2T

∫
ddx (∇~φ)2

. (I.81)

26For N = 2 the O(2) model in d = 2 is known as the XY -model, and it undergoes a “topological” phase transition
at Tc 6= 0, the Berezinskii–Kosterlitz–Thouless phase transition [82, 83].
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Therefore, re-expressing the hard unity constraint as an exponential and after a change of vari-
able ~φ→

√
T ~φ, we get:

Z =

∫
D~φ e−

1
2

∫
ddx [(∇~φ)2−g(~φ2T−1)2] (I.82)

when g → ∞. This implies that the minimum of the potential ~φ2 = 1/T diverges when T → 0,
and the low-temperature expansion in this model therefore corresponds to a large κ̂ (which is
the minimum of the potential) expansion in the NPRG approach. Therefore, setting this time
d = 2 + ε and performing a series expansion in 1/κ̂, Eq. (I.77) yields:

∂sκ̂ = −εκ̂+
N − 2

4π

∂sλ̂ = −2λ̂+
N − 1

4π
λ̂2`22(0)

ηs =
1

4πκ̂

(I.83a)

(I.83b)

(I.83c)

which reproduces the one-loop results of the nonlinear σ-model (after setting T = 1/2κ̂) and
leads to the critical exponents:

ν =
1

ε
and η =

ε

N − 2
, (I.84)

in agreement with the perturbative expansion at one-loop of the nonlinear σ model [31].

Some remarks about the O(N) model. In the case of the O(N) model, the NPRG proves
extremely powerful since the same (lowest-order) approximation (I.76) allows us to retrieve the
one-loop perturbative results in d = 4 − ε and d = 2 + ε. Notice that in the perturbative case,
a different model is used for the different dimensions, whereas the NPRG uses the same model
and therefore provides an interpolation between the one-loop results between d = 2 and d = 4.

Of course, between d = 2 and d = 4 one can compute using the NPRG, with accuracy
and with a good quantitative agreement with the experimental/numerical results, the critical
exponents of the O(N) model for any value of N (see for instance Tables I.1 and I.2 for the
values of the exponents η of ν computed via the NPRG and other methods in d = 3. Similar
results are available in d = 2).

An even more striking result of the NPRG is its ability to capture the physics of the XY -
model (or O(2) model) in d = 2. Indeed, in d = 2, the XY model undergoes a topological phase
transition at Tc 6= 0 known as the Berezinskii-Kostelitz-Thouless (BKT) phase transition [82,
83], which is usually solved using the Villain approach, which introduces explicitly the vortex
configurations in the action. The power of the NPRG approach is that at the second-order of
the derivative expansion, the qualitative and quantitative features of the BKT phase transition is
obtained directly from the microscopic degrees of freedom, and without having to introduce by
hand the vortex configurations [14, 70, 74].

Finally, the limit N → ∞ is also particularly illuminating since the flow equation for the
effective potential Û can be computed analytically [14, 100, 101]. Indeed, in this limit the flow
equation is drastically simplified27 and for instance the exact values of the critical exponents in
d = 3 can be computed:

ν = 1 β = 0.5 δ = 5 γ = 2 η = 0 (I.85)

in agreement with the perturbative results [31].

27In the limit N →∞, the flow of Û do not depend on Ẑ(ρ̂), which can be set to one. Accordingly, the anomalous
dimension η vanishes.
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Two-loop result. Notice that the two-loop perturbative results can also be retrieved using a
NPRG scheme (see for instance [23]). Indeed, one can recursively plug the one-loop result (I.75)
into the right-hand side of the flow equation (I.73). Performing the k integration, one there-
fore gets a two-loop equation that allows for retrieving the perturbative results at this order of
approximation.

We recall that the Wetterich equation (I.43) being exact, any perturbative approximation can
be used on it and yields the corresponding perturbative results. It is however usually not the
best way to proceed, and the two-loop results are already quite cumbersome to retrieve through
the NPRG formulation.

I.4.3 Controlling the approximations

A common attack from the detractors of the NPRG is the lack of control on the approximations
that are performed in the NPRG context, and the dependence on the regulator of the NPRG
results. In this subsection, we explain why these claims are unsubstantiated. We focus on the
case of the derivative expansion, although the justification for the BMW approximation stems
from the same arguments.

I.4.3.a Theoretical justification

The principle of the derivative expansion that has been introduced previously, is that we are
mostly interested in the long-distance physics, that is the small-momentum region |q| → 0 of
the model. Therefore, when designing an ansatz for the effective average action Γk, we perform
a series expansion in |q|, that is in terms of the derivatives of the magnetization ∇ψ, while
keeping all the field dependence. Notice at this point that if we perform on top of the derivative
expansion a field expansion, and retain only the lowest nontrivial order, we would get the
following ansatz:

Γk[ψ] =

∫
x

[
rk
2
ψ2 +

gk
4!
ψ4 +

1

2
(∇ψ)2

]
(I.86)

which looks very much like the usual Ginzburg-Landau-Wilson Hamiltonian from which one
usually starts a perturbative approach in the coupling constant of the quartic term. The tremen-
dous difference is that this ansatz is for the effective average action Γk and not the action S. It
will therefore not be the starting point of a perturbative expansion, but will be inserted into the
exact flow equation (I.43).

Let us now give some reasons why the derivative expansion is expected to be a well-behaved
approximation. Let us first give a justification based on physical arguments, that we will then
refine. The RG scale k, together with the regulator Rk(q) act as if one was considering a system
of size k−1 instead of an infinite-size system28. Therefore, as long as k > 0, the system remains
away from the phase transition (which occurs only at infinite system size). Thus, even though
the free energy Γ is singular at T = Tc, this is not the case for the regulated effective average
action Γk which remains a smooth function as long as k > 0. This justifies a series expansion
in ∇ψ.

To be more specific, we recall that the Wetterich equation (I.43) involves an integral over
all the momenta 0 < |q| < ∞. If one performs a series expansion of Γk at low momentum
|q| → 0, and thus of the term Γ

(2)
k (q) in Eq. (I.43), the question of the validity of this expansion

at large |q| has to be asked. This seemingly uncomfortable situation is in fact tackled by the

28As we have seen in Sec. I.3.2.a, the role of the regulator is to freeze the fluctuations of the fields with |q| < k,
which means that their fluctuations decouple from the rest of the system (for which the regulator is almost vanishing).
Therefore, the regularized system is not exactly of size k−1, but the modes of the field above this scale do not interact
with the rest of the system and may therefore be overlooked.
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f k
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Figure I.11 – Typical shape of the integrand appearing in the right-hand side of the flow equa-
tion (I.43), fk(q) = |q|d−1∂kRk(q)Gk(q), for various dimension. The factor |q|d−1 in fk(q) comes
from the rotational invariance of the integrand. The bumps of the curves are located near q ' k,
which means the momenta which are integrated with a nonvanishing weight are obtained for q ∼ k.

regulator term Rk(q) and its derivative ∂kRk which ensure that the integrand is nonvanishing
only for values of |q| . k, see Fig. I.11. Therefore, the regulator Rk validates a series expansion
of Γk in power of |q|/k inside the integral, and ensures that the terms with large |q| (where the
approximation is not valid) are effectively cut off. We will discuss this question in more details
in the introduction of Chap. III.

This justification of the derivative expansion as a meaningful approximating scheme raises
two questions (i) the role of the regulator and its influence on the (approximate) results and (ii)
the convergence of the expansion as higher and higher terms in the series expansion in |q|/k are
added. We discuss these points in the following.

I.4.3.b Role of the regulator

If we were able to solve exactly the flow equation (I.43), the precise choice of the regulator
would have no influence on the final result (provided that it vanishes when k → 0 and diverges
when k → Λ). However, once approximations enter into the game, the specific choice of the
regulator affects the quantitative results (see for instance [102]). The influence of the regulator
has however to be negligible to validate the whole NPRG formalism.

Of course, the question of the influence of the regulator, and of the choice of an “optimal”
regulator are quite difficult to answer since the regulators live in an infinite dimensional space,
and the minimal properties that they have to comply with (fast decay when |q| > k etc.) still
leave us with infinitely many choices. Many attempts to find the optimal regulator have been
carried out, in particular by Litim [49, 103] who argued that the Θ-regulator

RΘ
k (q) = a(k2 − q2)Θ(k2 − q2) (I.87)

with a = 1 is optimal (using a “gap criterion”) in the case of the O(N) model and at the lowest
order of the derivative expansion (LPA). Moreover, this propagator has the advantage of allow-
ing analytical computation of the momentum integrals [for instance in Eqs. (I.55) and (I.60)].
However, it is not clear whether this regulator is still optimal beyond the LPA [67], and be-
cause of the Θ step function, this propagator yields singular contributions to the flow equations
when higher order approximations (such as the derivative expansion at the fourth order) are
performed and can simply not be used any more [73].
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Alternative approaches for finding an optimal regulator have therefore be experimented,
for example by adding an extra free parameter a in the definition of the regulator (see for
instance [67]). For the exponential regulator, it reads:

Rexp
k (q) =

a q2

eq2/k2 − 1
. (I.88)

This extra parameter a is used to find the “optimal” regulator according to Stevenson’s principle
of minimal sensitivity (PMS) [104] (see also App. C.2) for each regulator and each approxima-
tion scheme.

Fortunately, on the simpleO(N) model, the specific choice of the regulator is usually marginal
– provided a PMS criterion is used – and the qualitative picture is not influenced by this choice.
The quantitative results – especially the value of the critical exponents – are more sensitive
to this choice, although the differences are usually small (up to 5%, depending on the critical
exponent computed) [67].

This debate is far from being closed: while Litim gap criterion is not satisfactory beyond
the LPA, the PMS criterion – although simple to set up for a given choice of regulator – does
not allow for a comparison between regulators (Θ versus exponential regulator for instance).
Alternative approaches for finding an optimal regulator within a given model and approximation
scheme have therefore been proposed in [105] and more recently in [106].

I.4.3.c Approximations and scheme dependence

The question of the regulator, as emphasized throughout this chapter, is crucial, and the fact
that the physical quantities eventually depend on it is of course problematic. Finding an optimal
regulator also seems difficult and is probably model- and approximation scheme-dependent.
However, it is important to recall that this problem is in fact not specific to the NPRG, but is
rather inherent to the use of approximations.

In the perturbative RG context, if one were able to compute the perturbative series at all
orders, the final result would not depend on the specific scheme used to perform the series
expansion. However, since a truncation of this series is made, the arbitrary choices that are
made influence crucially the physical quantities that are computed [104]. This is reflected at
several levels:

• The choice of the perturbative scheme itself, that is, what is considered as a small parame-
ter in the initial model, is crucial. For instance, we have seen previously that in the case of
the directed percolation model, the perturbative RG near the usual, Gaussian fixed point
yields wrong prediction, whereas a perturbative scheme near the pure annihilation fixed
point is in agreement with NPRG and Monte Carlo results [96]. More generally, the “im-
proved” or “optimized” perturbation theory is often based on perturbative schemes near a
fixed point that is not the Gaussian one [104].

• The “scheme dependence”: in addition to the crucial dependence on what is considered
as a perturbation in the initial mode, the perturbative expansion is also dependent on
the several arbitrary choices that are made during the renormalization procedure. For
instance, the choice of the renormalization point or of the very definition of the coupling
constants used to perform the expansion are arbitrary [107].

• The different resummation schemes that are used to obtain more precise results within
a given order of approximation is also subject to many discussions. Indeed, within the
RG formalism, the series expansion obtained in terms of the coupling constant is at best
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asymptotic, and usually not convergent29. However, to extract as much information as
possible from the computed terms, Borel resummation techniques can be used on the
perturbative series. All the resummation techniques (involving Padé approximants, etc.)
would be equivalent if infinitely many terms were available. Since it is not the case, the
final result obtained using these different techniques are also dependent on the precise
scheme that is used [107].

Of course, physical quantities must be independent of the particular scheme used to renor-
malize the theory, but this independence breaks down as soon as approximations are made, in
the case of the NPRG as well as in the case of the perturbative RG. For the NPRG, the choice
of the regulator bears almost entirely this difficulty, while in the perturbative RG the choice of
the scheme (which specifies the coupling constant on which the perturbative series expansion
is performed) is as crucial as in the nonperturbative case, although this arbitrariness is often
overlooked.

I.4.3.d Convergence of the approximations

The last important issue to address concerns the convergence of the approximations: as the
order of the series expansion in |q|/k is increased, we expect to obtain results more and more
accurate, and that the critical exponents converge toward their exact values. A systematic study
of the convergence of the approximations has been carried out for the O(N) model where the
derivative expansion has been studied at the order 2, 4 [67, 68], and it is currently under
investigation at order 6 [108]. At order 6, the derivative expansion finds critical exponents that
are in even better agreement with the Monte Carlo and conformal bootstrap methods than the
order 4 of this approximation. For instance, in d = 3 and for the Ising model (N = 1), one gets
the following exponents [108]:

η = 0.0358 and ν = 0.6301 , (I.89)

which can be compared with the results already displayed in Tables I.1 and I.2, and indeed
seems to show the convergence of the derivative expansion in the case of the O(N) model.

As a remark, notice that in order to observe the convergence of the derivative expansion,
it is necessary to apply the PMS to select the best30 value of the parameter a appearing in the
regulator. This nontrivial convergence of the derivative expansion seems to emphasize the im-
portance of having a criterion to select one particular regulator amongst the family of regulators
indexed by the parameter a.

I.5 Conclusion

In this chapter we introduced the nonperturbative renormalization group (NPRG) which is the
tool that will be used throughout this manuscript to tackle nonequilibrium critical systems. We
have shown that the NPRG is based on Wilson and Kadanoff’s idea to compute the fluctuations
step by step and in a controlled way. To perform this task, the cornerstone of the NPRG approach
is its regulator function Rk(q) which freezes the fluctuations that take place at scales |q| . k.
The regulator combines two roles: (i) by freezing the small momenta fluctuations it puts the
system out of criticality as long as k 6= 0, and one therefore manipulates functions that are
analytic. (ii) It ensures, during the integration of the fluctuations which is performed smoothly

29Notice that in quantum electrodynamics (QED), the coupling constant (the fine-structure constant) is indeed
small and the first orders of the perturbative expansion usually yield good predictions. The situation is different in
critical systems where the coupling constants are usually of order one.

30That is the value which renders stationary the dependence of the physical results on the regulator (see also
App. C.2).
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using a partial differential equation, that only the fluctuations that are well-described by the
approximation schemes are computed, the non-controlled part being cut off by the regulator.
Because of its key importance, Chap. III will be devoted to designing a proper regulator for
out-of-equilibrium systems. Indeed, as we will see, in a nonequilibrium context, the temporal
fluctuations have to be treated on the same footing as the spatial fluctuations.

We have also tried in this chapter to highlight some of the successes of the NPRG approach,
focusing on the nonequilibrium systems that are our main interest here. However, this does not
mean in any way that a perturbative RG method is always useless: the perturbative approach
still remains a powerful theoretical tools that have cracked many problems out-of-equilibrium
and it often offers a first theoretical description of the phenomena. However, when indications
hint toward nonperturbative features (as it is the case in the KPZ equation for instance), or
when the perturbative approach breaks down for unknown reasons (as it is the case for the
pair-contact process with diffusion (PCPD), a reaction-diffusion process that we describe in the
next chapter), alternative options such as nonperturbative methods should not be discarded.

To conclude, the NPRG formalism is not miraculous and relies on approximations as well as
the perturbative RG. Higher-order approximation schemes such as the derivative expansion at
fourth order are as computationally demanding as high-order loop expansion in a perturbative
scheme. The regulator dependence in the NPRG context is also problematic, and so is the
scheme dependence in the perturbative RG procedure. Finally, although we have shown some
examples where the NPRG approach is promising (and we will see more of them in the following
chapters), some physical systems are still beyond the reach of the NPRG: it is a tool amongst
others, that should be used to validate and support other approaches, or replace them when
they fail.
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Out-of-equilibrium phase transitions
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In the previous chapter we have given a description of the phase transitions occurring at
equilibrium, and have underlined the scaling-behaviour they display at criticality. Surprisingly,
systems which are sometimes very different at the microscopic level are found to display the
same critical behaviour (that is, share the same set of critical exponents and scaling functions),
hence forming a universality class. We have also introduced the renormalization group (RG) –
and especially its nonperturbative version – which is able to explain qualitatively the existence
of these universality classes by showing that the microscopic details are in fact washed out at
criticality when the system acts as a whole. The RG techniques have also proven very powerful
to compute, quantitatively, the value of the critical exponents of some universality classes at
equilibrium.

In this chapter and in the following, we will be interested in phase transitions and critical
phenomena that take place out of equilibrium. Out-of-equilibrium phenomena are of course
much more numerous, rich and widespread than their equilibrium counterparts, but they are
also more difficult to tackle on the theoretical point of view, since some basic tools of equilibrium
statistical physics are not as efficient out of equilibrium. In this context, one can wonder how
the global understanding we have of phase transitions translates to nonequilibrium systems:

49
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are there universality classes? Is there an equivalent to the Ising model, that is a simple model
that would allow us to fully understand critical properties? Can we apply the perturbative or
nonperturbative RG techniques to compute the associated critical exponents?

The answer to these questions is not straightforward. As this chapter and the following
ones will illustrate, there exist many “out-of-equilibrium” physics, and one of the difficulty that
arises when leaving the equilibrium world is to deal with the plethora of systems that come up.
Some systems for instance are said to be close to equilibrium – usually because some variant of
a fluctuation-dissipation theorem holds –, and are relatively well-understood. For this reason,
they are the starting point of a theoretical study in Chap. III.

On the other hand, many systems are said to be far from equilibrium and may display very
exotic behaviours: this is the case of systems with an absorbing state on which we focus in this
chapter. These systems have the peculiarity of possessing a state which, once reached by the
system, cannot be left. This state is therefore called absorbing and is very different from what
is known at equilibrium because the system stops fluctuating once it has reached it, and the
dynamics is stopped. Other systems, and that will be the case of erosion models in Chap. IV,
are also very peculiar because they display criticality without fine-tuning any parameter (usually
the temperature). Scale-invariance (in landscapes for instance) will therefore appear naturally
in these systems, and the RG will be the tool of choice to handle them.

Despite the large variety of nonequilibrium models and the nontrivial behaviour they display,
many progresses in characterizing them have been achieved in the last decades. Through the sys-
tematic use of numerical simulations and RG techniques, several very broad universality classes
have emerged, such as the Kardar-Parisi-Zhang (KPZ) universality class which gather models
describing growth processes, front propagation and kinetic roughening phenomena (such as the
front of a forest fire or coffee particles accumulating at the edge of a coffee drop), randomly
stirred fluid (Burgers’ equation), directed polymers in random media [109, 110], landscape
erosion [25], random matrix theory [41], etc. Another vast universality class that we will en-
counter in this manuscript is the directed percolation (DP) universality class, which, initially
stated for the description of a fluid flowing by gravity through a porous medium, has been
found to describe epidemics processes – at least at the metaphorical level –, forest fire, diffusion
in disordered media, catalytic chemical reactions, etc.

However, the picture is not as bright as one could imagine: in the case of the KPZ universality
class for instance, RG techniques have long been doomed to failure in space dimension greater
than one until recent advances made by the NPRG1 [16]. As for the directed percolation class,
the situation is also much more complicated and discussions about the very existence of the
transition above two dimensions2 was at stake until recently (more details will be given in
the following). In addition, a process that looks much alike to directed percolation , the pair-
contact process with diffusion for instance, is still elusive to a proper characterization and both
numerical and theoretical studies are unable to prove whether it belongs to an already existing
universality class or if it forms a different one [111].

These unanswered questions and theoretical difficulties therefore require proper tools to
be addressed. In this chapter, we will therefore explain how nonequilibrium models can be
described, either in a coarse-grained version using Langevin equations, or taking into account
the microscopic details via a master equation approach. Our main goal will be to derive the field
theory associated both to the Langevin and to the master equation formalism, which will be our
starting point for translating the NPRG formalism to nonequilibrium systems in Chap. III and IV.

In this chapter we also provide a novel approach – and this is one of the main results of
this manuscript [19] – to derive an exact (that is not stated in terms of a coarse-grained field)

1Notice that if the NPRG is able to give results in d = 2 for the KPZ equation, it still encounters difficulties in
d > 3.

2For a particular reaction-diffusion process for which the one-particle decay is not considered in the microscopic
description [35].
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Langevin equation describing the dynamics of a microscopic system. Although similar methods
have long existed in the literature to achieve such exact description, we will show that these
approaches are either incorrect, or lead to ambiguous imaginary-noise Langevin equations that
are unusable in practice for both numerical and theoretical treatment.

II.1 Summary of the different Langevin equations

At the end of this chapter (page 92) is displayed Table II.1 that summarizes the different ap-
proaches that will be discussed throughout this chapter and that lead to a Langevin equation
for a reaction-diffusion process. The two first methods (Gillespie’s and van Kampen’s) are only
approximate methods, and the Langevin equations obtained using them are therefore stated in
terms of a coarse-grained variable. The approximate coarse-graining procedure makes these
methods particularly efficient when applied to complicated systems possibly involving several
species of particles. These methods however break down when the particle number is low, for
instance near a transition to an absorbing state. These methods are explained and derived in
Sec. II.4.1.

The three other methods (Poisson representation, formal field-theoretical method and dual-
ity formalism) are on the other hand supposed to describe the exact dynamics of the microscopic
reaction-diffusion process, and are therefore not stated in terms of a coarse-grained variable,
but on an auxiliary variable which does not have a direct physical meaning [and the table also
provides the link between the moments of the reaction-diffusion (RD) process and those of the
Langevin variable (LE)]. For this reason, they are believed to be an efficient tool for studying
transitions to an absorbing state. The usual derivation of the Poisson representation and the for-
mal field-theoretical method are given in Sec. II.4.2, where we will argue that they are incorrect
and lead to inconsistencies. The corresponding Langevin equations in these two cases should
therefore be treated with care, especially when they involve imaginary noise (more details will
be given in the following).

Accordingly to the purpose of studying low-density states and having an exact description of
the microscopic dynamics, the last method (the duality formalism) stands out of the crowd since
it provides only real Langevin equations, to the contrary of the two others that can also produce
complex Langevin equations. For reasons that we explain later on in this chapter, complex
Langevin equations are usually not useful in practice, and their numerical integration is plagued
with instabilities. The derivation of these dual Langevin equation is the first main result of this
manuscript, and is given in Sec. II.5.

II.2 Mesoscopic description: the Langevin equation

Historically, the description of nonequilibrium phenomena has started with the study of the
Brownian motion, first experimentally with the seminal work of Robert Brown in 1828 and its
description of the erratic motion of a pollen particle in water3 [113]. A more formal description
then appeared in the works of Louis Bachelier [114] and Albert Einstein [115], and then Paul
Langevin [116], who gave its name to the stochastic equations on which the focus is set in this
section.

The description of the Brownian motion of a particle led to several mathematical difficulties:
how to take into account the stochastic nature of the motion? How to write an equation of
motion for a process that is continuous but nowhere differentiable? On this aspect, the works of
several mathematicians such as Wiener, Kolmogorov, and Itō (amongst many) gave the proper

3In fact, Jan Ingen-Housz had already noticed in 1784 the erratic motion of ground charcoal in alcohol [112].
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background for a well-defined description of the phenomenon and set the bases of the stochastic
calculus, which is now widely used in the study of nonequilibrium phenomena.

In this section we will therefore briefly introduce the formalism and some of the difficulties
than can be encountered. We also highlight some reasons that can explain why the Langevin
formalism has become so popular to describe nonequilibrium phenomena. In essence, there
are at least two main reasons that explain the enthusiasm for Langevin equations: (i) they
provide a simple heuristic description at a mesoscopic scale, such that the perfect knowledge
of the underlying microscopic dynamics is not necessary. (ii) They are the starting point for
both numerical and theoretical treatments (in particular, we will show in a second part how a
Langevin equation can be cast into a path-integral formulation).

II.2.1 A phenomenological approach

Langevin equations are ubiquitous in out-of-equilibrium statistical physics [117] because they
offer a simple and intuitive way of describing nonequilibrium systems [118, 119]. Indeed, in
addition to the classical, macroscopic description of a system by an equation of motion, one
adds a noise term represents the effects of the microscopic degrees of freedom not taken into
account in the macroscopic equation. The deterministic part of the Langevin equation therefore
expresses the “mean-field” description of the model while the noise term appears as a correction
to this mean-field terms coming from the microscopic fluctuations. The Langevin description is
therefore made at a mesoscopic scale: the microscopic degrees of freedom are coarse-grained
into a noise term, while the macroscopic forces are also acting on the dynamics. This meso-
scopic, coarse-grained description is probably the key of the success of this description, because
a precise knowledge of the microscopic details is not required to write down a sensible Langevin
equation that yet captures the correct macroscopic picture. Despite the simplicity of this phe-
nomenological approach, we will see with a few examples that designing the properties of the
noise term is of crucial importance and therefore requires a particular care. Indeed, by con-
trast to the equilibrium case, in the nonequilibrium context there is no simple equivalent of the
fluctuation-dissipation theorem to dictate the form of the noise correlations [7].

II.2.1.a Brownian motion

To illustrate the Langevin approach, let us start with the simple and historical description of the
motion of a pollen particle of mass m in water, the Brownian motion. The Langevin equation of
motion takes the following form:

m∂tv(x, t) = −γv(x, t) + ζ(x, t) (II.1)

where v(x, t) is the speed of the pollen particle, γ is the drag coefficient, and ζ(x, t) is a Gaussian
white noise. The simplicity of the Langevin description in this simple case is striking: to the
Newton’s equation of motion which describes the macroscopic motion of the particle is added
the noise term which takes into account the shocks of the water molecules with the Brownian
pollen particle and accounts for its erratic motion. Of course, despite this simple form, the
underlying mathematical and physical content is already rich and nontrivial.

II.2.1.b Law of mass action

To unveil more subtleties of the Langevin description, we focus on the description of a chemical
reaction which provides us with an example of non-Gaussian noise term.

Describing a chemical reaction using a differential equation has a long history since it started
in 1850 when Ludwig Wilhelmy used an (ordinary) differential equation to characterize the
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evolution of the concentration in the conversion of sucrose into glucose [120]. For example, a
reaction A+B µ−→C is described at the mean-field level by the law of mass action, which reads:

∂tρA(t) = −µρA(t)ρB(t) (II.2)

where ρA,B(t) are respectively the density of particles A or B at time t, assuming that the
system is perfectly stirred. A richer description is possible by allowing spatial heterogeneity in
the system:

∂tρA(x, t) = −µρA(x, t)ρB(x, t) +DA∇2ρA(x, t) +DB∇2ρB(x, t) (II.3)

where DA,B are the diffusion coefficients of the particles A and B. This description therefore
allows for spatial fluctuations of the density and a very rich physics can already be described
through this formalism: pattern formation (for example in morphogenesis [121]), oscillating
reactions [122], genetics [123, 124], etc.

However, this description remains at a mean-field level and do not capture all the physics,
especially when the density of particles becomes small. In fact, we know from quantum me-
chanics that a chemical reaction is also subject to an intrinsic randomness and the encounter
of a particle A and a particle B does not surely imply a chemical reaction. Furthermore, as
in the case of the Brownian motion, the motion of the particles is also erratic. We can there-
fore treat this randomness heuristically and introduce for this purpose a reaction rate (that is, a
probability that the reaction occurs) and refine our description by including a noise ξ(ρA,B;x, t)
modelling the randomness of the microscopic details. This time, the noise itself should depend
on the density of particles, and one expects in particular that when either ρA = 0 or ρB = 0, the
noise term vanishes since no reaction can happen. This starts to highlight the difficulties that
can be encountered when writing a noise term and the question of finding the precise form of
the noise probability distribution will be the guiding thread of this chapter.

II.2.1.c Noise term

The previous example highlights one of the main difficulty when describing a system by a
Langevin equation: its noise term. This noise term obviously accounts for a large part of the
underlying physics, and different noise terms describe very different physical systems.

Additive noises. Even in the case of a noise term that does not depend on the density field
ρ but only on time and/or space – an additive noise –, the behaviour of the system can change
dramatically when the noise probability distribution is modified. The simpler Langevin systems
usually involve a Gaussian white noise, as it is the case for the Brownian motion (II.1). This kind
of noise is in fact quite ubiquitous in nature since it reflects the central-limit theorem, and the
fact that if the underlying degrees of freedom represented by the noise term are not correlated,
then the sum of their contributions has a Gaussian distribution. Therefore, even if the Gaussian
white noise represents the simplest additive noise term, it already encompasses a wealth of
phenomena. For instance, in Chap. III, we will see that the fluctuations of the dynamics of the
Ising model are well taken into account by this simple noise.

The family of the additive noises is of course infinitely larger than the Gaussian noises,
since they may display any probability distribution. A famous family amongst the non-Gaussian
noises are the Lévy flights (or Lévy processes) for which the probability distribution does not
have a fast decay as in the Gaussian case, but rather has an heavy-tailed probability distribution
and a decay in power law. This kind of noises are used to describe for instance the foraging
behaviour of animals or bacteria (see for instance [125]), but can also be used to describe
epidemics propagation since they catch to some extend the basics of human mobility patterns
(for instance [126]).
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Multiplicative noises. In addition to the probability distribution of the noise, which itself
plays a major role, the dependence of the noise in the density field makes the Langevin descrip-
tion even more richer, and complicated. A first classification of these noise terms depending on
the fields can be done by expanding them in term of the density and writing:

ξ(ρ;x, t) = ργζ(x, t) (II.4)

where ζ(x, t) is now a Gaussian noise (possibly not δ-correlated). Such a noise is called mul-
tiplicative, because a Gaussian noise is multiplied to the density field to a certain power γ.
Depending on the exponent γ, very different behaviours are expected. For example,

• γ = 0 corresponds to an additive noise.

• γ = 1/2 appears when describing reaction-diffusion processes, that we will encounter
and present in more details in the next section. This kind of noise is usually associated
with systems displaying a phase transition between an active phase – in which the system
has nontrivial activity and fluctuations – and an absorbing phase – where the system is
trapped forever once it has reached it and where no fluctuation occurs. We will have a
special interest in these phase transitions in the following.

• γ = 1 appears for instance in the famous Kardar-Parisi-Zhang equation4 which was first
derived in the context of the growth of an interface [13], but is also the main representa-
tive of a quite broad universality class. Moreover, we shall see in Chap. IV that the KPZ
equation is also a sensible model for the erosion of landscape.

These few examples illustrate the crucial role of the noise term when describing a nonequilib-
rium process, since an unmotivated choice can easily lead to a completely different model and
a different universality class. For this reason, models for which the noise term can be deduced
from the microscopic dynamics play a special role and have been studied accordingly. A large
part of this chapter is devoted to the derivation of noise terms, either in an approximate, or
exact manner.

II.2.1.d Transition to an absorbing state

Amongst the Langevin equations with multiplicative noise, we are particularly interested in
those describing a system with an absorbing state (see Fig. II.1 for an example of a reaction-
diffusion system exhibiting a transition to an absorbing state). In general, such processes can be
written as a Langevin equation with a square-root noise and take the form:

∂tρ(x, t) = D∇2ρ+A(ρ) +
√

2B(ρ) ζ(x, t) (II.5)

where ρ(x, t) is for instance a density field, D is the diffusion constant and ζ(x, t) is a Gaussian
noise. The function A(ρ) is a drift term, and B(ρ) is positive and vanishes for some values
ρ0. An absorbing phase is a special state of the system which once reached cannot be left: in
the previous equation, it corresponds to ρ0 with the extra condition A(ρ0) = 0, and a system
may have several absorbing states. Such transitions to an absorbing state are genuinely out-of-
equilibrium because, by definition, there cannot be microscopic reversibility near such a state.
The two phases, the absorbing phase from which the system cannot escape, and the active phase
where the system evolves according to a given dynamics, are therefore very unlike. In particular,
the absorbing state is not subject to fluctuations (the noise term B(ρ0) vanishes), which is very
different from the equilibrium picture where fluctuations exist on the both sides of a phase
transition.

4In its Cole-Hopf version involving a “density” field rather than the usual description in terms of the height of the
interface.



II.2. MESOSCOPIC DESCRIPTION: THE LANGEVIN EQUATION 55

t
←−
−−

x−−−−→

λ� σ λ ∼ σ λ� σ

Figure II.1 – Figure from [8]. Temporal evolution of a one-dimensional reaction-diffusion process
with reactions A σ−→ 2A and 2A

λ−→ ∅. Initially there is a particle on each site on the x axis. When
the branching rate σ is large compared to the annihilation rate λ, the particles keep reacting and
the system is in the active state, where nontrivial density fluctuations are observed (right panel).
To the contrary, if annihilation dominates, all particles annihilate exponentially fast and the system
terminates in a nonfluctuating absorbing state from which it cannot escape (left panel).

This very special kind of transitions has therefore stirred a very enthusiastic research and
some major steps have been achieved, for example the existence of a very wide universality
class, called the directed percolation (DP) universality class (on which we give more details in
the following), was unravelled. However, and in particular because of the numerical difficulties
that such transitions imply, many shades of unknown still remain: some processes, very similar
to those belonging to the directed percolation universality class still have an unclear status, and
whether they belong to the directed percolation class or if they form a new universality class
with different critical exponents is still an open question (see Sec. II.3.1.c). We shall come back
on this matter later in this chapter when we discuss reaction-diffusion processes.

Finally, note that the systematic study of these processes using numerical simulations is a
quite demanding task: as we will see in the next section, some tricks are necessary to solve
them without violating the positivity condition on B(ρ). The other difficulty that arises in the
vicinity of these special states comes from the fact that the particle density is usually low, and
approximate methods for deriving Langevin equations generally rely on a large density assump-
tion (see Sec. II.4.1). These methods are usually unable (or even false) to describe properly the
phase transition, especially near an extinction transition where the particle density ρ goes to
zero. Our goal in the following will therefore be to derive an exact Langevin equation for this
kind of systems, in order to have a precise description of the low density regions which play a
crucial role near the phase transition.

II.2.2 Numerical resolution of a Langevin equation

The great versatility of the Langevin equations, and the fact that they are relatively simple to
write imply that they often appear in the description of out-of-equilibrium systems. A numerical
resolution of these equations is often a first step for studying them, or is used to compare the
numerical results with the theoretical predictions. Also, because a Langevin equation is usually
a coarse-grained approach of a complicated microscopic system, simulating a Langevin equation
can be much easier than simulating (usually with Monte Carlo methods) the underlying micro-
scopic process. Having a fast and reliable numerical scheme to solve these equations is therefore
often a necessary condition for studying out-of-equilibrium processes.

However, some Langevin equations, in particular those involving square-root multiplicative
noises such as Eq. (II.5), which correspond to systems with absorbing states, are especially
difficult to solve numerically, and we explain rapidly what are the usual schemes that overcome
these difficulties. This kind of Langevin equations raise numerical difficulties if not treated
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properly: for instance, even a zero-dimensional version of the Eq. (II.5), studied using an explicit
Euler scheme reads:

ρ(t+ ∆t) = ρ(t) +A(ρ(t))∆t+
√

2B(ρ(t))∆tN (0, 1) (II.6)

whereN (0, 1) is a normal random variable. At each time step ∆t > 0, there is a finite probability
that B(ρ) becomes negative, which is unphysical. These nonphysical values of ρ happen all the
more often as one gets closer to the values where B(ρ) ' 0, which is also the absorbing state and
thus the interesting point when studying transitions to an absorbing state. Another route, which
would trade the square-root noise term for a less singular term using for example a Cole-Hopf
transform (of the form ρ = e−φ) is also a dead end since it generates pathological deterministic
terms when the original variable ρ goes to 0 [127].

To tackle this numerical issue, several schemes have been proposed that guarantee the po-
sivity of the Langevin variable at all time, and we now review them quickly.

Dickman’s algorithm. Dickman for instance proposed to discretize the values that can be
taken by the field ρ [128]. Quite ironically, this scheme breaks the continuous nature of the
Langevin equation and retrieves the discrete nature that was the signature of the original mi-
croscopic system. This is in fact problematic since this algorithm is then plagued with the same
long transients near the phase transitions as the microscopic models. Finally, as for the Euler
approximation (II.6), Dickman’s approach has a precision of order O(

√
∆t) as ∆t→ 0.

Balanced implicit methods. The balanced implicit methods (BIM) is an algorithm intro-
duced by Schurz and co-workers [129, 130] which uses implicit Euler methods to impose the
nonnegativity of the solution. It has the same order of convergence as the Euler algorithm,
that is an error of order O(

√
∆t) as ∆t → 0 for approximations of individual trajectories, but

it guarantees that the term appearing under the square-root remains positive. However, as well
as for the Euler approximation (II.6), Schurz’s algorithm fails to reproduce the large density
fluctuations at low density.

Splitting-operator scheme. The so-called “splitting-operator” scheme was first proposed
by Pechenik and Levine [131] and then improved by Dornic, Chaté and Muñoz [127]. Let
us describe this algorithm in zero-dimension for simplicity, although the main asset of this al-
gorithm is that it can be used for spatially-extended systems as well. The idea is to split the
Langevin equation (II.5) into two parts, (i) the deterministic part A(ρ), and (ii) the stochastic
term

√
2B(ρ) ζ. In a first step, the noise term (ii) is sampled exactly, that is not by using a Gaus-

sian random number (which would lead to negative ρ), but using directly the probability distri-
bution computed from the Fokker-Planck equation associated with the noise term

√
2B(ρ) ζ. In

other words, a random number ρ∗ is generated using the exact probability distribution p(ρ, t),
which is computed by solving the Fokker-Planck equation associated with ∂tρ =

√
2B(ρ) ζ, that

is ∂tp(ρ, t) = ∂2
ρ [B(ρ)p(ρ, t)]. We then use this number ρ∗ to evolve the remaining part (the

deterministic part) of the Langevin equation, that is ρ(t + ∆t) = ρ∗ + A(ρ∗). Notice that al-
though this algorithm is very powerful and enables to probe much larger simulation times than
Dickman’s algorithm for instance (see Fig. II.2), the implementation of this algorithm yet re-
quires to know exactly the probability distribution corresponding to the Fokker-Planck equation
∂tp(ρ, t) = ∂2

ρ [B(ρ)p(ρ, t)]. If this is not the case, then one has to sample this distribution using
a Monte-Carlo method and the algorithm looses its computational efficiency. For more details
see [127, 132], and [133] for a comparison between Dickman, BIM and splitting-operator algo-
rithms (and see also [134] for a proof of the equivalence between the different splitting-operator
algorithms).
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Figure II.2 – Figure from [127]. Density decay 〈ρ〉 ≡ 〈ρ(x, t)〉x ∼ t−θ in a directed percolation
process at criticality in dimension d = 1. The upper (blue) curve is obtained using Dickman’s
method with ∆t = 10−3 while the lower (red) curve is obtained using the Splitting-operator scheme,
with ∆t = 0.25. The inset shows the plateau of the decay exponent.

II.2.3 Field theory for a Langevin equation

Now that we have shown how a nonequilibrium process can be stated in terms of a Langevin
equation, we discuss how this equation can be cast into a field theory, in order to be able to
apply standard and nonperturbative renormalization group techniques and thus study phase
transitions occuring in this out-of-equilibrium context. The usual approach – derived by Martin,
Siggia and Rose [135] – consists in employing an auxiliary field, called the response-field for rea-
sons that will become clear in the following, to express the Langevin equation in a path-integral
formalism. This auxiliary field is then used to build a response functional whose formulation
originates from parallel works of Janssen [136] and De Dominicis [137]. For these reasons, the
formalism is usually known in the literature as the MSRDJ or response-field formalism, and its
derivation goes as follow: starting from a generic Langevin equation of the form

∂tφ(x, t) = F (φ) +K(φ) ζ(x, t) (II.7)

where φ(x, t) is a coarse-grained field, F a macroscopic force acting on it (possibly involving
diffusion), ζ(x, t) is a Gaussian white noise and K is the noise kernel, depending on the field φ
and possibly adding space or time correlations to the white noise.

The starting point for the response-function formalism is to write down the expectation value
[over the realizations of the noise ζ(x, t)] of an observable O[φ(x, t)]:

〈O[φ]〉ζ =

∫
Dζ P (ζ)O[φζ ] (II.8)

where φζ ≡ φζ(x, t) is the solution of the Langevin equation (II.7) for a given realization ζ(x, t)
of the noise, and P (ζ) is the distribution of the noise. Since it is a Gaussian white noise, it reads:

P (ζ) ∝ e−1/4
∫
x ζ(x)2

(II.9)

where we have defined x ≡ (x, t) and
∫
x ≡

∫
x,t. The above formula yields in particular the

following correlations: 〈
ζ(x)ζ(x′)

〉
= 2 δ(t− t′)δd(x− x′) . (II.10)
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The average value of the observable O can be rewritten as:

〈O[φ]〉ζ =

∫
Dζ P (ζ)

∫
Dφ δ [φ(x)− φζ(x)]O[φ] . (II.11)

Using, by analogy, the usual property of the Dirac distribution δ(x − x0) = |f ′(x0)| δ(f(x)), the
previous formula now reads:

〈O[φ]〉ζ =

∫
Dζ P (ζ)

∫
Dφ δ(C[φ(x, t)])J [φ]O[φ] (II.12)

where C[φ(x)] = ∂tφ(x) − F (φ) − K(φ) ζ(x) and J [φ] is the Jacobian of the transformation,
that is J [φ] = |det (δC[φ]/δφ)|. We prove in the following that choosing an Itō discretization in
the initial Langevin equation is equivalent to setting this Jacobian to unity, and we therefore set
J [φ] = 1 from now on.

Then, using the integral definition of the Dirac distribution δ(x) =
∫
q e−iqx, one gets:

〈O[φ]〉ζ =

∫
Dζ P (ζ)

∫
DφDφ̃ e−

∫
x φ̃(x)[∂tφ(x)−F (φ)−K(φ) ζ(x)]O[φ] (II.13)

where we have introduced the response-field φ̃(x), which is a purely imaginary field. At this
point, one notices that the integration over the noise ζ(x) can be easily computed since it is
a Gaussian integral. Integrating over the noise therefore finally yields the field-theoretical de-
scription of the Langevin equation (II.7):

〈O[φ]〉ζ =

∫
DφDφ̃ e−SLE[φ,φ̃]O[φ] (II.14)

where SLE[φ, φ̃] is the Janssen-De Dominicis [136, 137] response functional, also called action
by analogy with its equilibrium counterpart, and reads:

SLE[φ, φ̃] =

∫
x,t
φ̃
(
∂tφ− F (φ)−K(φ)2 φ̃

)
, (II.15)

and we have omitted the time and spatial dependence of the fields for simplicity. By analogy with
equilibrium, one usually defines the “partition function” ZLE[J, J̃ ] which is in fact the generating
functional of the correlation and response functions, and reads:

ZLE[J, J̃ ] =

∫
DφDφ̃ e−SLE[φ,φ̃]+

∫
x,t (Jφ+J̃ φ̃) . (II.16)

Notice that within this formalism, the linear response function χ(x,x′) is defined to be the
variation of the mean value of the field φ at time t and position x caused by the variation of the
external source J coupled to φ at time t′ and position x′. Mathematically, it reads:

χ(x,x′) ≡ 〈δφ(x)〉
δJ(x′)

∣∣∣∣
J→0

. (II.17)

According to the generating function ZLE defined just above in Eq. (II.96), the response function
reads:

χ(x,x′) =
〈
φ̃(x′)φ(x)

〉
, (II.18)

and for this reason the auxiliary field φ̃ is usually known as the response-field.
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II.2.3.a Onsager-Machlup action

Notice that an alternative description of the same stochastic process can be obtained by inte-
grating at an earlier stage over the noise, and therefore not introducing the response-field φ̃.
It yields a more complicated action, but depending only on a single field. We remind from the
previous section that we had:

〈O[φ]〉ζ =

∫
Dζ P (ζ)

∫
Dφ δ(C[φ(x)])J [φ]O[φ] (II.19)

∝
∫
DφDζ J [φ]O[φ]e−

1
4

∫
x ζ(x)2

δ [∂tφ(x)− F (φ)−K(φ) ζ(x)] (II.20)

The integration over the noise is straightforward and yields the Onsager-Machulp functional:

〈O[φ]〉ζ =

∫
DφJ [φ]O[φ] exp

(
−1

2

∫
x

[∂tφ− F (φ)]2K−1(φ)

)
. (II.21)

This alternative formulation, which we will not use in the following, is more common in the
context of the large-deviation theory for instance [138]. Notice moreover that under this form,
the positivity of the generating functional (II.96) is made obvious because the path-integral is
performed over real fields, whereas we had to deal with an imaginary response-field in the
previous case. The positivity of Z is crucial in the following chapters since we will be taking its
logarithm to define the effective average action Γk.

II.2.3.b Jacobian and Itō discretization

Let us now discuss in more details the computation of the Jacobian J [φ] = |det(δC[φ]/δφ)|. For
this purpose we discretize time, and write ti = i∆t. For the field and the noise we use the
shorthand notations φi = φ(x, ti), Fi = F (φi), Ki = K(φi) and ζi = ζ(x, ti). The force F (φ) can
then be evaluated at any point in the interval [ti−1, ti]. One can choose the point at which it is
evaluated, such that the discretized version of the Langevin equation (II.7) now reads:

C[φi] =
φi − φi−1

∆t
− τFi − (1− τ)Fi−1 − τKiζi − (1− τ)Ki−1ζi (II.22)

Notice that τ = 0 corresponds to the Itō “pre-point” discretization, and τ = 1/2 to the Stratonovich
“mid-point” scheme. The matrix whose determinant yields the Jacobian is therefore simple since
most of the terms are zero, except for those on the diagonal and lower diagonal. Thus, the de-
terminant is the product of the diagonal terms and reads:

J =
∏
i

(
1

∆t
− τ δFi

δφi
− τ δKi

δφi
ζi

)
(II.23)

=

(
1

∆t

)n∏
i

(
1− τ∆t

δFi
δφi
− τ∆t

δKi

δφi
ζi

)
(II.24)

∼
∆t→0

(
1

∆t

)n
exp

[
−τ
∑
i

∆t

(
δFi
δφi

+
δFi
δφi

ζi

)]
(II.25)

We can then resume to a continuous description of the model: the term (1/∆t)n is absorbed in
the integration measure Dφ, the sum becomes an integral, and the argument of the exponential
in Eq. (II.14) now reads:

−
∫
x,t

[
φ̃ (∂tφ− F (φ)−K(φ) ζ) + τ

δF

δφ
+ +τ

δK

δφ
ζ

]
(II.26)
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Figure II.3 – Reaction-diffusion process: on a d-dimensional lattice, particles diffuse (a) and react,
for instance annihilate (b) according to the reaction 2A → ∅, or generate offsprings (c) according
to A→ 2A.

which is consistent with the announced result, that J [φ] = 1, and is therefore coherent with
Eq. (II.15), since the Itō representation means taking τ = 0. Notice also that in the path-
integral representation of an Itō process, one must take great care when performing a change
of variables, and additional terms – corresponding to the additional terms in the Itō formula for
Langevin equations (see App. B.1) – have to be added in the action. This issue has been made
very clear recently in the following paper [139].

II.3 Microscopic description: the master equation

The other popular approach for describing a stochastic process – this time at the microscopic
level – is the master equation [118, 119]. The master equation provides a description of a
stochastic system stated as the time evolution of its microscopic probability distribution, and
can be used whenever the states of the microscopic process at each time are countable. This is
the case for instance of chemical reactions where one can label each molecule individually, or
for an epidemics propagation where one is interested in following the fate of each individual.
The master equation can also be cast into a field-theoretical form, as we show in the following,
which is especially interesting if we have in mind to apply renormalization group techniques.

In the following, we focus only on a special kind of such processes called reaction-diffusion
processes. These processes have a special status in the nonequilibrium phase transition world
for several reasons: (i) as we will see in the following, they are formulated in a very simple
way, and in this perspective they are often regarded as the equivalent of an Ising description
of systems out of equilibrium. (ii) Similarly to the Ising model, some of these processes are
believed to be the (simplest) representatives of universality classes. (iii) Although they are
stated at the microscopic level, they can be cast into a field-theoretical form, which, in turn,
can be identified with a Langevin equation. This third point will be our focus in the core of this
chapter and will be discussed in details, in particular because it raised numerous paradoxical
situations. (iv) Because these systems offer a master equation, a field-theoretical and a Langevin
equation description, they provide very different techniques to be studied and understood, and
have often been for these reasons the reference models for theorists.

II.3.1 Reaction-diffusion processes

II.3.1.a Definition

Reaction-diffusion processes are defined in the following way: on a lattice of dimension d,
“particles”5 are allowed to react and to diffuse (see Fig. II.3 for an illustration). These reactions
and diffusion occur with some given probability or rate. To be more specific, a simple reaction-

5These particles can be actual particles as in chemical reaction, but they can as well be a model for infected/sound
human beings in a disease-spreading model, trees in a forest fire model, genes in a population genetics model, etc.
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diffusion process is given by the following reactions:

A+ ∅ D←→ ∅+A

A
µ−→ ∅

(II.27a)

(II.27b)

where particles diffuse (hop to a neighbouring site) at rate D, and may spontaneously decay
at rate µ. More complicated processes involving different reactions and more particles can be
added, such as coagulation 2A → A, annihilation 2A → ∅, creation of offsprings: A → 2A,
2A→ 3A etc.

It is important to emphasize at this point that although we chose to describe the microscopic
system using the language of chemical reactions, the variety of systems whose physics can be
captured by this simple modelization is much broader. Indeed, as well as in equilibrium where
the language of magnetization – the Ising model – is used to describe a whole universality class,
out of equilibrium these reaction-diffusion systems are expected to represent universality classes,
encompassing many different physical phenomena. We present in the following some of these
universality classes.

II.3.1.b The directed percolation conjecture

Directed percolation (DP). Amongst the universality classes that can be represented by a
reaction-diffusion scheme, the most famous and studied is probably the directed percolation
(DP) universality class. This universality class, first studied in the context of percolation with
a preferred direction (hence the name directed percolation), has been found to characterize
also the critical behaviour of very various systems such as oil or gas in a porous rock, forest
fires, diffusion in disordered media, some catalytic chemical reactions, the propagation of an
infectious disease [8, 140], and more recently it has been shown to describe the turbulence in
liquid crystals [141] or in a Couette flow [142].

Before introducing the directed percolation in the reaction-diffusion context, let us state it
in its original setting [140]. Let be a lattice in d dimension where each bond between two
neighbouring sites has a probability p to be open, and a probability 1 − p to be closed. This is
the simple model of isotropic percolation. Directed percolation adds a preferred direction to the
model by imposing a direction for choosing the links. It is therefore a basic model for studying
the flow of a liquid (water, or oil...) into a porous medium, the preferred direction is that of
gravity, and a bond being open means that the liquid can flow through it. Notice that when
p = 0, all bonds are closed and the fluid does not flow at all. To the contrary, p = 1 means all
bonds are open and the fluid go all the way to the bottom of the lattice. Now, starting from p = 0
and increasing this probability, the depth that a fluid reaches becomes larger and larger. For a
critical value pc, these paths stripe the whole lattice from top to bottom, forming a percolating
path of open bonds. There exists therefore a phase transition at p = pc between the “dry” phase
where the water never flow throughout the whole lattice, and the “wet” phase in which there
are percolating paths.

In dimension d = 1, the percolation of a path necessitate all the bonds to be open, which
means that the transition occurs only for pc = 1. For an infinite dimension, that is for a Bethe
lattice where all nodes are connected to the other nodes, as soon as p > 0, there is at least
one open bond between two nodes and therefore always a path of infinite length. The dry
phase is therefore reduced to p = 0 whereas the system is in the wet phase as soon as p is
nonvanishing. For any other dimension d > 1 the system undergoes a second-order phase
transition at 0 < pc < 1 [54].

The directed percolation model can be translated in the language of reaction-diffusion and
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Figure II.4 – Example of a two-dimensional directed percolation on a lattice. Water (in blue) flows
in the preferred direction (bottom) whenever a link is open. Alternatively, the directed percolation
process can be seen as a reaction-diffusion process with reactions (II.28) in one dimension, the
vertical axis being the time.

is given by a process obeying the following rules:

A+ ∅ D←→ ∅+A diffusion

A
α0−→ ∅ spontaneous decay

A
α2−→ 2A offspring creation

2A
β1−→ A coagulation

(II.28a)

(II.28b)

(II.28c)

(II.28d)

and the static directed percolation set-up in d dimensions can be translated to this reaction-
diffusion scheme in d − 1 dimensions where the time plays the role of the preferred direction
(see Fig. II.4 for illustration). Notice that one can trade the coagulation reaction for an anni-
hilation reaction 2A → ∅6, and/or remove the spontaneous decay while remaining in the same
universality class [8].

Mean-field study. Let us describe the directed percolation at the mean-field level to under-
stand some characteristics of a transition to an absorbing state. We are interested in the average
density of particles A that we denote n(t), and we start by assuming that the system is well-
stirred, such that we can neglect the spatial fluctuations (and the diffusion). The law of mass
action for the reactions (II.28) reads:

∂tn(t) = (α2 − α0)n(t)− 2β1n(t)2 , (II.29)

where the coagulation occurs when two particles meet at the same site and is therefore pro-
portional to n(t)2. The assumption made when writing this equation is the absence of density
fluctuations, such that the mean-field equation (II.29) is directly written in term of the average
density n(t). If ∆ = (α2−α0) < 0, the density decreases until all particles have disappeared and
the stationary state is nabs = 0. If ∆ = (α2 − α0) > 0, a balance between creation and decay of
particles is met and the density saturates at the stationary value:

nact =
∆

2β1
. (II.30)

The full temporal solution of Eq. (II.29), for an initial density n0, reads:

n(t) =
n0 nact

n0 + (nact − n0)e−∆t
, (II.31)

6There is in fact an exact mapping between these two processes (see [143]).
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which goes to the stationary solution nabs or nact depending on the sign of ∆. Notice that these
two stationary states are reached exponentially fast. By contrast, if ∆ = 0, the density decreases
algebraically to the absorbing state:

n(t) =
n0

1 + 2β1n0 t
, (II.32)

which is the signature of the phase transition between the absorbing state nabs = 0 and the
active state nact = ∆/2β1. The fact that the dynamics switch from an exponential behaviour to
an algebraic decay at the phase transition is typical in these phenomena and is known as the
critical slowing down (see also Fig. II.1 for an illustration of the behaviour of the system in the
different phases).

Mean-field exponents. At the mean-field level, we can compute the critical exponents de-
scribing the power-law behaviour of the system in the same manner as we did for equilibrium
systems. Although at equilibrium two independent critical exponents are sufficient to charac-
terize completely the critical scaling behaviour [30], one needs an additional exponent (the
dynamical critical exponent) to describe nonequilibrium critical behaviour [7].

Similarly to the equilibrium case, we first define β, the exponent that characterizes how the
order-parameter vanishes near its critical point:

nact ∼
∆→0

|∆|β , (II.33)

and thus β = 1 in the mean-field approximation, according to Eq. (II.30). Furthermore, we de-
fine the dynamical critical exponent z which characterizes the divergence of the order-parameter
dynamics upon approaching the transition as [7]:

trelax ∼
∆→0

|∆|−νz , (II.34)

where trelax is the relaxation time, and ν is the last critical exponent we need to compute and
which characterizes the divergence of the correlation length ξ:

ξ ∼
∆→0

|∆|−ν . (II.35)

The relaxation time trelax can be easily computed from the exponential decay of Eq. (II.31):
trelax = 1/∆, and we immediately deduce νz = 1. Computing the correlation length necessitates
to include spatial fluctuations in our simple model and write a “local” mean-field equation:

∂tn(t) = (α2 − α0 +D∇2)n(t)− 2β1n(t)2 , (II.36)

with D the diffusion coefficient. Since the diffusion up to a distance d takes a time of order
√
t,

we deduce:

ξ ∼
√
trelax ∼

∆→0
|∆|−1/2 (II.37)

and we finally have the following mean-field exponents:

β = 1 , ν =
1

2
, z = 2 . (II.38)

These mean-field exponents are valid as long as the fluctuations remain negligible, which is the
case when the spatial dimension is large. For directed percolation, the upper critical dimension
above which the mean-field theory predicts the correct exponents is dc = 4. Below this upper
critical dimension, the exponents differ from their mean-field values and have been computed by
the means of the NPRG in [54, 144], the perturbative RG [145], in experimental settings [141]
and through Monte Carlo simulations [146] (see also [8] for a review).
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The directed percolation conjecture. The prominence of the directed percolation univer-
sality class and its apparition in a large variety of settings led to the statement of a conjecture,
the directed percolation conjecture, originally stated by Janssen [147] and Grassberger [148].
The directed percolation conjecture states that any process displaying a transition from an ac-
tive to an absorbing state and satisfying the following conditions will fall under the directed
percolation universality class:

(i) single absorbing state,
(ii) scalar order parameter,

(iii) spatially and temporally local microscopic dynamics,
(iv) absence of other symmetry,
(v) absence of quenched disorder.

However, although the directed percolation universality class seems quite common in nat-
ural settings, experiments that would unambiguously yield the directed percolation exponents
have long remained elusive despite intensive experimental trials (see references in [141]). Until
2007 and a clear characterization of the directed percolation critical exponents (in two spatial
dimensions) in an experiment involving turbulent liquid crystals [141], the directed percolation
class and its conjecture were thus in a somewhat awkward situation of being virtually ubiqui-
tous in the models involving a transition to an absorbing state both in theory and in numerical
simulations, and yet nowhere to be found on the experimental side.

Notice also that the directed percolation is an example for which the perturbative RG breaks
down qualitatively since it is unable to predict the correct phase diagram, while the NPRG
performs very well. Indeed, taking α0 = 0, the perturbative RG claims that there is no phase
transition for d ≥ 2 [94, 149] and that the system remains in the active phase. On the other
hand, the NPRG and Monte Carlo studies predict a phase transition between an absorbing and
an active phase in all dimensions d > 2 [54, 144]. The explanation for this qualitative failure
of the perturbative RG is subtle [35]: in d < 2, a phase transition occurs because particles
encounter sufficiently often by diffusion so that they can effectively annihilate and reach the
absorbing phase. On the other hand, in d > 2, diffusion is less effective and particles that are
far apart may never meet each other. The only process that then may lead to an effective decay
is the combination A → 2A followed by 2A → ∅. This is possible when the ratio β0/D is large
(that is large annihilation rate or sufficiently slow diffusion), and this somehow explains why
the perturbative expansion fails: the usual perturbative approach is performed as an expansion
at small reaction rates β0/D and α2/D, and therefore cannot probe the large β0/D region where
the transition indeed occurs. The NPRG, on the other hand, does not rely on such an expansion
and do conclude in a phase transition in all dimensions. This conclusion and explanation was
also highlighted by a more recent perturbative approach, this time done in the vicinity of the
pure annihilation fixed point (that is, the perturbative expansion is done in terms of α2/D,
whereas β0/D is arbitrarily large), which supports the NPRG predictions of a transition in all
dimensions [96, 150]. See also Sec. (I.4.1) for some additional comments.

II.3.1.c Some other (presumed) universality classes

Pure annihilation (PA). This universality class is represented by the simple process where
the only reaction is the pair annihilation:

A+ ∅ D←→ ∅+A

2A
β0−→ ∅

(II.39a)

(II.39b)

This set of reactions without branching always reaches in the long-time limit the empty ab-
sorbing state. The response-functions are however nontrivial and the long-distance physics is
governed by a non-Gaussian RG fixed point in d < 2. This simple class has been the subject
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of intense discussions, in particular because its description in terms of a microscopic Langevin
equation yields an imaginary noise term, whose physical interpretation is complicated. This
point will be discussed thoroughly in the following.

Parity conserving generalized voter (PCGV). The parity conserving generalized voter uni-
versality class is the twin version of the directed percolation scheme in the case where the parity
of the number of particles is locally preserved:

A+ ∅ D←→ ∅+A

A
α2−→ 3A

2A
β0−→ ∅

(II.40a)

(II.40b)

(II.40c)

hence the name. However, the parity conserving property has been shown not to be a relevant
criterion for belonging to this universality class [151], but the more important characteristics is
the existence of two symmetric absorbing states7, a feature that is represented by the generalized
voter universality class [151, 153]. Despite quite intensive numerical [151, 152] and theoretical
works (perturbative RG [94, 149], NPRG [95] and perturbative RG near the pure annihilation
(PA) fixed point [96, 150]), even a clear picture of the phase diagram is not yet known, and the
precise value of the upper critical dimension dc (which should lie between d = 1 and d = 2)
remains elusive.

Pair-contact process with diffusion (PCPD). The pair-contact process with diffusion is dif-
ferent from the directed percolation and PCGV processes in that all reactions now require at
least two particles to meet. A set of reactions for this process is the following:

A+ ∅ D←→ ∅+A

2A
β3−→ 3A

2A
β0−→ ∅

3A
γ0−→ ∅

(II.41a)

(II.41b)

(II.41c)

(II.41d)

where the last reaction is a limiting reaction (otherwise the number of particles blows up in
finite time in the active phase).

Although the microscopic requirement that all processes necessitate at least a pair of particles
is not expected to be a relevant ingredient for defining a new universality class, the PCPD has
largely resisted to analysis so far [111] in such a dramatic way that it is not even known whether
the PCPD forms a new universality class or whether it belongs to the directed percolation class
(see [154] and references therein). Even the status of its upper critical dimension is unclear.
Usual numerical and theoretical methods (RG and NPRG) have proven so far ineffective to tackle
this peculiar reaction-diffusion process.

More species. Obviously, even in the case of single species processes, it may exist other
universality classes in addition to the few we just presented. The example of the PCPD for
which the addition of a seemingly irrelevant reaction to the directed percolation class possibly
change the universality class is quite worrying in this regard.

In the case of reactions involving more species of particles, the situation is therefore even
more complex, and the theory beyond the mean-field level, still in its infancy. Even the simplest

7In d = 1, the particles of the PCGV in a space-time diagram can be seen as interfaces between “+” and “-”
domains in a spin system (see for instance [152]), and the two absorbing states are the Z2-symmetric states of the
spin system.
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two-species reaction A + B → ∅, first studied in [155, 156], and whose critical behaviour
above its critical dimension dc = 2 is quantitatively understood, still remains out-of-reach of
RG procedure in d ≤ 28 [157]. In more complicated cases such as 2A → ∅, A + B → ∅ and
2B → ∅, results are sometimes available beyond the mean-field level, but they usually rely
on assumptions (for instance for this model, the limit where the density of either A or B is
much greater than that of the other) [158]. Amongst these obviously infinite possible reaction
schemes, let us also mention the variants of the directed percolation class with several species:
in some cases, for instance the case of particles A and B both subject to the directed percolation
reactions with the additional coupling reactions A → 2B and 2A → B, the inclusion of these
extra reactions happen not to change the critical properties since the corresponding couplings
are in fact irrelevant in the RG sense [157]. In some other cases such as directed percolation
coupled to a non-critical conserved density (DP-C), the model is renormalizable but yields a new
critical point [159]. On the other hand, its related model where only the active individuals can
diffuse, known as the conserved directed percolation (C-DP) model, is now known to belong to
another different universality class known as the Manna class [160, 161].

II.3.1.d Numerical difficulties

To the contrary of the usual coarse-grained Langevin equations, the description of systems dis-
playing a transition to an absorbing state using a microscopic description is exact. One could
therefore hope that the theoretical difficulties coming from an approximate Langevin equation
could be clarified when studying directly the exact microscopic process. However, other hurdles
appear near these transitions: a field-theoretical computation in the case of the directed percola-
tion [162], establishes the following scaling form at criticality of the particle number probability
distribution: Pn(t) ≈ t−(η+2δ)Φ(n/tη+δ). This form shows that the distribution of the Pn(t) has
a fat tail. It is therefore not possible for instance to try to make the approximation Pn(t) = 0 for
some n > M in order to truncate the infinite hierarchy of equations set by the master equation
(that we introduce in the following). It therefore appears that a numerical studies of these phe-
nomena near criticality have to take care of large number of particles during long time, a task
that can be computationally demanding. We therefore briefly review some methods that have
been used to study the reaction-diffusion processes we have just discussed above (especially the
controversial PCPD model):

• Monte Carlo methods. Near the phase transition to an absorbing state, bursts of activ-
ity separated by long quiescent periods are often observed, and Monte Carlo simulations
have thus to be run for very long time near the critical point. For some particular pro-
cesses such as the PCPD, an unusual absence of scaling of the probability distribution of
the number of particles at the critical point with the size of the system L is observed [163],
indicating that some improvements are still needed. Monte Carlo methods remain how-
ever very popular for studying reaction-diffusion processes in their non-critical regime. As
an illustration of this rich literature we can cite Gillespie’s method (see [164] and refer-
ences therein) for studying chemical reactions involving several species of reactants, or
Moro’s hybrid algorithm [165] used to compute the front propagation in the stochastic
Fisher-Kolmogorov-Petrovsky-Piscunov (sFKPP) equation [124, 166].

• Density matrix renormalization group (DMRG) study. This method yields a direct ac-
cess to the critical exponents through the eigenvalues of the master equation operator L9

over a finite lattice of length L. However, only small values of L are accessible (L . 60)

8At least in the case of equal initial concentrations of A and B where the RG calculations involve a difficult
nonperturbative sum over the initial “surface” term [157].

9The operator L describe the evolution of the probability distribution in a reaction-diffusion process. It will be
defined in the following, Eq. (II.52).
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and the finite-size scaling extrapolations are affected by some ill-understood correction
terms [111].

Therefore, at the end of this section we see that for some (difficult) problems such as PCPD
and systems involving several species of particles, we are confronted to the following situa-
tion when studying transition to an absorbing state: the exact microscopic description involves
many degrees of freedom which all play a role near the transition and become very difficult
to handle numerically. The microscopic approach fails to provide results that can be faithfully
extrapolated to infinite-size system. On the other hand, the Langevin description, which could
hopefully describe properly this systems even near the phase transition, breaks down in the low
density limit since the usual derivation of a Langevin equation rely on a large density approxi-
mation. In Sec. II.4, we show how an exact Langevin description can be derived directly from
the microscopic description, hence giving an answer to these difficulties. Before that we explain
in the following how the microscopic description of a reaction-diffusion process can be cast into
a field-theoretical formulation.

II.3.2 Master equation for reaction-diffusion processes

We now derive the master equation which describes the evolution of the probability distribution
of the different configurations in a reaction-diffusion process. As we illustrate later on, this
equation results simply in a book-keeping of the gains and losses of probability due to the
microscopic reactions which occurs with given rates.

In more general context, that is for a generic Markov process (a memoryless process),
the master equation is usually derived by considering the general Chapman-Kolmogorov equa-
tion [118, 119]. This general form is then adapted to the case of reaction-diffusion processes10.
Since in this chapter we are only interested in reaction-diffusion processes, we derive the master
equation directly for this kind of processes and our approach follow [164, 167] which have in
mind the description of chemical reactions. After deriving the master equation for very general
processes, we will furthermore simplify it and drastically restrict the reactions that we allow.

II.3.2.a General case

We consider a system of volume Ω containing N (chemical) species {S1, · · · , SN} that can react
through M (chemical) reactions {R1, · · · , RM}. In this section we consider that the system is
well-mixed and that we can therefore neglect spatial inhomogeneities, which simplifies because
the densities are then no longer space-dependent. The spatially-extended case including the
diffusion of the different species can however be tackled, as explained for instance in [168].

The state of the system at time t is completely given by the vectorX(t) ≡ (X1(t), · · · , XN (t))
whereXi(t) is the number of particles of species Si at time t. Our goal is to describe the evolution
of the state vector X(t), given that the system was in state X(t0) ≡ x0 at the initial time t0.
Following [164, 167], we define for each reaction Rj:

(i) aj(x)dt the probability, given X(t) = x, that one Rj reaction will occur inside the system
during the next time interval [t, t+ dt[,

(ii) νj ≡ (ν1,j , · · · , νN,j) the change in the {Si} particles population caused by oneRj reaction.
Hence, if the system is in a state x, it will jump at t+ dt to the state x+ νj if the reaction
Rj occurs.

Finally, if we define the probability

P (x, t|x0, t0) = Prob (X(t) = x given that X(t0) = x0) (II.42)

10Also known as birth and death processes in the zero-dimensional case.
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then the (chemical) master equation that describes the evolution of probabilities is directly given
by:

∂tP (x, t|x0, t0) =
M∑
j=1

[aj(x− νj)P (x− νj , t|x0, t0)− aj(x)P (x, t|x0, t0)] . (II.43)

and is in fact simply a book-keeping equation that states the conservation of probabilities. We
give a very simple illustration of the master equation in the following.

II.3.2.b Restriction of the reactions

In the following we will be interested in a drastically simplified setting, for some points of our
formalism cannot (yet!) tackle more complicated schemes. In particular, we consider only one
species of particles, A, and restrict the allowed reactions to the following ones:

A+ ∅ D←→ ∅+A

A
αp−→ pA

2A
βq−→ qA

(II.44a)

(II.44b)

(II.44c)

and any combination of them. Although these processes are less general than those involved
in the general setting we presented above, notice that they already describe most chemical
reactions (involving a single species) since reactions involving three reactants or more are really
unlikely in nature.

The state of the system at a time t can therefore be specified by the (stochastic) number
of particles N(t). For the introduction of the formalism and to lighten the proofs, we keep
considering the case of a single-site system, but the whole formalism can be translated to a
d-dimensional system (and this is shown in Sec. II.3.3.d).

The reaction-diffusion process (II.44) can be described by a master equation which follows
the time evolution of the probability Pn(t) ≡ Prob(N(t) = n) and reads

∂tPn(t) =
∑
m

LnmPm(t) (II.45)

where the elements of the rate transition matrix L are

Lnm =
∑
p

αpm(δn+1−p,m − δm,n) +
∑
q

βqm(m− 1) (δn+2−q,m − δm,n) . (II.46)

This matrix is simply determined by computing the “gains” and “losses” of probability coming
from the microscopic reactions. For instance, consider the reaction A α0−→ ∅: let us assume that
we want to compute the probability of having n particle at time t+dt, Pn(t+dt). This probability
is formally given by:

Pn(t+ dt) = Pn(t) + “gains”− “losses” (II.47)

A particle disappears during a time interval dt with probability α0dt. The probability of having
n particles at time t + dt is increased if there were n + 1 particles at time t and one of them
disappeared, which means that the gain term reads:

Pn+1(t)× (n+ 1)α0 dt , (II.48)

whereas the probability of having n particles at time t+ dt is decreased if there were n particles
at time t but one of them disappeared. Therefore the loss term is:

Pn(t)× nα0 dt , (II.49)

which finally yields – for the reaction A α0−→ ∅ – the simple master equation:

∂tPn(t) = α0 [(n+ 1)Pn+1(t)− nPn(t)] . (II.50)
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II.3.3 Field theory for reaction-diffusion processes: the Doi-Peliti formalism

II.3.3.a Creation and annihilation operators

We now introduce a field-theoretical description for reaction-diffusion processes. Since the state
of the system is entirely determined by the number of particles at time t, it has become natural to
introduce a “second-quantized” form of the master equation. This formalism was first introduced
by Doi [169] and Peliti [170] and is therefore often referred to as the Doi-Peliti formalism.
Following [17, 157, 171], we now introduce the procedure that allows us to write a path-integral
version of the master equation (II.45). We define a Hilbert space spanned by the “occupation
number” vectors {|n〉} which are the eigenvectors with eigenvalues n of the “number” operator
N̂ = a†a, with a and a† the “annihilation” and “creation” operators satisfying the relations:
[a, a†] = 1, a|0〉 = 0, a|n〉 = n|n − 1〉, and a†|n〉 = |n + 1〉. We also introduce the scalar
product11: 〈m|n〉 = n!δmn and a† is the Hermitian conjugate of a.

From these definitions, we introduce the state vector |P (t)〉 associated with the set of prob-
abilities {Pn(t)}:

|P (t)〉 =

∞∑
n=0

Pn(t)|n〉 (II.51)

and such that the master equation can now be rewritten in terms of the creation and annihilation
operators:

∂t|P (t)〉 = L(a†, a)|P (t)〉 (II.52)

where L reads:

L(a†, a) = A(a†) a+B(a†) a2 . (II.53)

Notice that, by its very construction, L is automatically normal-ordered, that is all the a† are
to the left and the a to the right. The functions A and B are determined by the reaction rates
through:

A(a†) =
∑
p

αp[(a
†)p − a†] and B(a†) =

∑
q

βq[(a
†)q − (a†)2] . (II.54)

Notice that we have derived the operator L in the case of the reactions (II.44), and we further
assume that q < 2 for the reaction (II.44c). This in prevision of what we show in the following
and which depends crucially on these assumptions, although the Doi-Peliti formalism that we
are presenting here is more general and can be applied to a generic reaction-diffusion system.
Therefore, for the reactions we deal with, the coefficient of the second derivative reduces to a
second order polynomial in a†:

B(a†) = (β0 + β1)(a† − `)(1− a†), ` ≡ −β0/(β0 + β1). (II.55)

The master equation in its new form (II.52) now looks like an imaginary-time Schrödinger
equation and we use some standard quantum mechanics tools to derive a path-integral for-
mulation of this equation. Notice however that there are several differences compared to the
Schrödinger equation: (i) the operator L(a†, a) is not necessarily Hermitian, (ii) the states are
linear functions of the probabilities, rather than linear functions of the probability amplitudes
as it is the case in quantum mechanics.

11Notice that the occupation number vectors |n〉 are not normalized to one (〈n|n〉 6= 1), to the contrary of what is
customary in quantum mechanics.
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II.3.3.b Computing observables

As in quantum mechanics, we would like to use the scalar product to compute average of ob-
servables O(N(t)):

〈O(N(t))〉 =
∑
n

Pn(t)O(n) . (II.56)

For this purpose, we introduce the “projection” state 〈·| defined as:

〈·| ≡ 〈0|ea , (II.57)

and we also “quantify” the observable O and associate with it the operator Õ which is simply
obtained by replacing n by a†a in the Taylor series of O: Õ ≡ O(a†a) and such that O is also
normal-ordered. These new definitions allow us to write the average value of an observable as:

〈O(N(t))〉 = 〈·|Õ|Pn(t)〉 . (II.58)

II.3.3.c Path integral representation

Let us now compute observables starting from a given initial condition. Since the “quantum
mechanics” form (II.52) of the master equation is linear in time, we can write its formal solution
as:

|P (t)〉 = eL(a†,a)t|P (0)〉 , (II.59)

which yields for the average value of an observable:

〈O(N(t))〉 = 〈·|ÕeL(a†,a)t|P (0)〉 . (II.60)

We now split the time interval t into infinitesimally small increments δt = t/M , and we use
the Trotter formula to write:

〈O(N(t))〉 = lim
M→∞

〈·|Õ
M∏
i=0

eL(a†,a)δt|P (0)〉 . (II.61)

We now introduce between each infinitesimal time step a complete set of coherent states |φ〉,
such that:

1 =
i

2π

∫
dφdφ∗ e−φφ

∗ |φ〉〈φ∗| (II.62)

where the coherent states |φ〉 are defined as the eigenvectors of the annihilation operator a with
eigenvalue φ and read:

|φ〉 ≡ eφa
† |0〉 . (II.63)

Our average therefore reads:

〈O(N(t))〉 = lim
M→∞

∫
{dφi}

M∏
i=1

[
e−φiφ

∗
i 〈φ∗i |eL(a†,a)δt|φi−1〉

]
︸ ︷︷ ︸

A

〈·|Õ|φM 〉︸ ︷︷ ︸
B

〈φ∗0|P (0)〉︸ ︷︷ ︸
C

(II.64)

where we have defined {dφj} ≡
∏M
k=0 i dφkdφ

∗
k/(2π); note that the factor i/(2π) has been

included in the integration measure for convenience. Let us compute the terms appearing in
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this formula. We first focus on the term A, composed of M − 1 terms, in which the scalar
product reads:

〈φ∗i |eL(a†,a)δt|φi−1〉 =
δt→0

〈φ∗i |1 + δtL(a†, a)|φi−1〉 (II.65)

=
δt→0

〈0|eφ∗i a(1 + δtL(a†, a))eφi−1a
† |0〉 (II.66)

=
δt→0

eφ
∗
i φi−1〈0|eφi−1a

†
(1 + δtL(a† + φ∗i , a+ φi−1))eφ

∗
i a|0〉 (II.67)

where we have used the formulas:

eλaf(a†) = f(a† + λ)eλa (II.68)

eλa
†
f(a) = f(a− λ)eλa

†
(II.69)

and since L is normal-ordered, the whole formula is normal-ordered and the operator a (resp.
a†) yields a vanishing contribution when acting on the ground-state |0〉 (resp. 〈0|). We therefore
get, after a re-exponentiation of the δt-term:

〈φ∗i |eL(a†,a)δt|φi−1〉 =
δt→0

eφ
∗
i φi−1eδtL(φ∗i ,φi−1) . (II.70)

We can now compute the whole integral involving the A term:∫
{dφi}A =

δt→0

∫
{dφi} e−φ0φ∗0

M∏
i=1

e−φ
∗
i (φi−φi−1)+δtL(φ∗i ,φi−1) . (II.71)

Notice that in the continuous-time limit δt → 0, the term (φi − φi−1) can be interpreted as
the time-derivative of φ(t). Using this fact and the Trotter formula in the other way, we get a
path-integral formulation:∫

{dφi}A =
δt→0

∫
Dφ(t)Dφ∗(t) e−φ(0)φ∗(0)e−SRD[φ,φ∗] (II.72)

where we have introduced the Doi-Peliti action SRD for a reaction-diffusion process as:

SRD[φ, φ∗] ≡
∫

dt [φ∗∂tφ+ L(φ∗, φ)] . (II.73)

Notice that when going to continuous time, we have interpreted the term L(φ∗i , φi−1)→ L(φ(t)∗, φ(t))
where both fields are evaluated at equal time. This choice means that the whole path integral
must be interpreted in the Itō sense.

It now remains to evaluate the terms B and C. We have:

B = 〈0|eaÕ(a†, a)eφMa
† |0〉 (II.74)

= 〈0|eφMa†Õ(a† + 1, a+ φM )ea|0〉 (II.75)

= eφM Õ(1, φM ) (II.76)

where we have followed the same tricks as before for evaluating this scalar product. The last
term C will in fact depend on the choice of the initial state |P (0)〉 and we will compute it
afterwards.

Finally, putting all the terms together we are able to express the average of an observable in
terms of a path-integral over coherent states:

〈O(N(t))〉 =

∫
DφDφ∗ Õ(1, φ(t)) e−SRD[φ,φ∗]+φ(t) e−φ

∗(0)φ(0)〈φ∗(0)|P (0)〉 (II.77)
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Notice that if the initial distribution of particles is a Poisson distribution with parameter φinit,
that is the probability of having n particles at t = 0 is: Pn(0) = e−φinitφninit/n!, then the initial
state is almost a coherent state and reads: |P (0)〉 = e−φinit |φinit〉. This allows for a simplification
of the previous formula:∫

dφ∗(0) e−φ
∗(0)φ(0)〈φ∗(0)|P (0)〉 =

∫
dφ∗(0) e−φ

∗(0)[φ(0)−φinit]e−φinit (II.78)

and the integral over φ∗(0) yields a δ-distribution, which determines the lower bound of the
path integral at φ(0) = φinit. In the case of an initial Poisson distribution, we therefore have:

〈O(N(t))〉 =

∫
φ(0)=φinit

DφDφ∗ Ô(1, φ(t)) e−SRD[φ,φ∗]−SBC (II.79)

where we have introduced the boundary term SBC ≡ φ(0) − φ(t). Finally, a common transfor-
mation in the literature is to perform a “Doi shift”, that consists in changing φ∗ to φ∗ + 1 which
has the advantage of cancelling the boundary term φ(0) − φ(t). Indeed, after a Doi-shift, one
has:

〈O(N(t))〉 =

∫
φ(0)=φinit

DφDφ∗ Õ(1, φ(t)) e−Sshift[φ,φ
∗] (II.80)

where Sshift[φ, φ
∗] =

∫
dt [φ∗∂tφ+ L(φ∗ + 1, φ)], and the boundary term was killed by the time-

derivative contribution, which yields after the Doi-shift:
∫

dt (φ∗ + 1)∂tφ = φ(t) − φ(0) +∫
dt φ∗∂tφ.

Notice also that in the following we are interested in the stationary limit and we therefore
assume that the boundary contribution has been washed out. This assumption allows us to write
down, as we did in the case of the Langevin equation, a generating functional ZRD that reads:

ZRD[J, J̃ ] =

∫
DφDφ∗ e−SRD[φ,φ∗]+

∫
dt (Jφ+J̃φ∗) . (II.81)

II.3.3.d Spatially-extended case

As claimed in the beginning of this section, the whole formalism can be adapted to a d-dimensional
lattice instead of focusing on a single site. In this case, we also introduce the diffusion of the
particles as the reaction:

A+ ∅ D←→ ∅+A (II.82)

where D is the diffusion coefficient and the diffusion acts as an exchange of a particle at a
given site and its neighbouring sites. The description of a d-dimensional system also require to
introduce the probability distribution Pn(t) where n = (n1, . . . , nN ) is the number of particles
at site 1, 2, . . . , N , and the master equation (II.45) now contains a sum over all the sites:

∂tPn(t) =
∑
i

∂tPni(t) , (II.83)

where each ∂tPni(t) is simply obtained by replacing n by ni in the zero-dimensional case, and
adding an extra term coming from the diffusion reaction (II.82). This extra term reads:

D
∑
{v}

[
(nv + 1)P(...,ni−1,nv+1,... )(t)− niP(...,ni,nv ,... )(t)

]
, (II.84)

where {v} indicates the sites neighbouring site i.
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The Doi-Peliti formalism is then straightforwardly extended to the d-dimensional case. The
state vector becomes |n〉 = |n1, . . . , nN 〉 while we now associate one creation a†i and annihi-
lation ai for each site i, and modify the commutation relation accordingly: [ai, a

†
j ] = δij . The

modification of the master equation then translates to the operator L(a†, a) defined in Eq. (II.52)
which now involves all the {ai, a†i} and displays a sum over the sites i. Finally, diffusion (II.82)
adds the following term to L:

−D
∑
{v}

a†i (av − ai) . (II.85)

After introducing the complex-conjugated coherent states φi and φ∗i for each site of the lattice,
this adds a contribution

−D
∑
{v}

φ∗i (φv − φi) (II.86)

to the action.

Continuous space limit. Finally, the last step to obtain a usual continuous space description
in terms of a continuous variable x and coherent sates φ(x, t), we have to make the assumption
that the lattice spacing a is infinitely small, and define the new continuous variables: φi →
adφ(x), φ∗i → φ∗(x) and

∑
i → a−d

∫
ddx. Then, the difference between nearest neighbours

appearing in Eq.(II.86) becomes a Laplacian term at the first order of the continuous limit:∑
{v}(φv − φi)→ a2∇2φ(x). Finally, redefining the reaction rates as αp → αp, βq → a−2dβq and

D → a−2D, we obtain the following Doi-Peliti action:

SRD[φ, φ∗] =

∫
ddxdt

[
φ∗(∂t −D∇2)φ+ L(φ∗, φ)

]
(II.87)

where we have omitted the (x, t) dependence of the fields for clarity.

II.4 Langevin equations for reaction-diffusion processes

In the previous sections we have introduced two methods for studying out-of-equilibrium sys-
tems: the Langevin approach provides a very powerful and versatile tool, since a precise de-
scription of the microscopic degrees of freedom of the model is not needed. This is especially
efficient when the small-scale details are not completely known or difficult to modelize, as it is
the case for the study of landscape erosion (see Chap. IV). The other approach stems from a
microscopic description and therefore has the great advantage of giving an exact description of
the phenomenon. When studying some critical phenomena such as the transitions to an absorb-
ing state, an exact description of the phenomenon is however requested since at the transition
between the active and the absorbing state, keeping track of very low number of particles is
extremely important.

In the case of reaction-diffusion processes, one notices that the Doi-Peliti generating func-
tional (II.81) and the one of the response-field formalism (II.96) look superficially identical, the
major difference being that the former is written in terms of complex conjugated fields whereas
the latter involves a real and an imaginary fields. We would now like to make the connection
between the microscopic reaction-diffusion description and the Langevin description.

This connection is important for several reasons: (i) Langevin equations are mostly phe-
nomenological. Having derived a Langevin equation from the microscopic dynamics would give
us some insight on how to derive them generically, and this is especially important for the deter-
mination of the noise term. (ii) As explained previously, when studying processes that display a
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transition to an absorbing state, the microscopic description may not be numerically tractable,
and a Langevin description could be more efficient in this perspective.

In the first (i) case, a mesoscopic approach is requested, and therefore an approximate
derivation from the microscopic master equation to a coarse-grained Langevin equation is ad-
missible. We will rapidly explain how this kind of derivation can be performed. On the other
hand, in the second (ii) case, we would in fact like a Langevin process that would not be a
coarse-grained version of the master equation, but rather a dual, equivalent version of the mas-
ter equation.

II.4.1 Approximate derivation of a Langevin equation

Before describing in details the derivation of exact Langevin equations that are needed for the
study of transitions to an absorbing state, we first quickly review the different approximate
methods that exist for deriving a coarse-grained Langevin equation from a master equation. In
many cases, an approximate Langevin equation is sufficient for describing the system at the
mesoscopic level, and the coarse-grained nature of the equation obtained by this approximate
approach makes it simpler to study both numerically and theoretically than the usually very
complicated microscopic process. This coarse-graining procedure however relies on a large
density limit, and therefore breaks down in the vicinity of a phase transition to an absorbing
state, when the particle density is too low for approximations to remain valid.

II.4.1.a Kramers-Moyal expansion of a master equation

Starting from the master equation (II.43), the Kramers-Moyal expansion is in fact already an
approximation since it will assume that the particle numbers X(t) appearing in Eq. (II.43) are
real-valued (rather than integer-valued). Although this approximation is probably legitimate at
large number of particles, it is definitely more controversial as soon as this number of particle is
0 or 1, which is the case near a transition to an absorbing state. A second assumption is that the
functions fj(x) ≡ aj(x)P (x, t|x0, t0) must be analytic in x, such that we can write their series
expansion:

fj(x− νj) = fj(x) +
∞∑
n=1

∑
m1+···+mN=n

1

m1! · · ·mN !
(−νj,1)m1 · · · (−νj,N )mN

∂nfj(x)

∂xm1
1 · · · ∂xmNN

.

(II.88)

The Kramers-Moyal expansion is then simply obtained by substituing this expression into the
master equation (II.43). It yields [167]:

∂tP (x, t|x0, t0) =

∞∑
n=1

(−1)n
∑

m1+···+mN=n

1

m1! · · ·mN !

∂n

∂xm1
1 · · · ∂xmNN

 M∑
j=1

(νm1
j,1 · · · νmNj,N )aj(x)

P (x, t|x0, t0)

 ,
(II.89)

which is the starting point of many approximating schemes. Indeed, if one truncates this expan-
sion at the second order, the previous equation boils down to a Fokker-Planck equation. This
truncation obviously necessitates further arguments to be justified. We quickly present them and
the resulting Langevin equations in the following.

II.4.1.b Truncation at second-order: Gillespie’s chemical Langevin equation

In the limit of a large number of reactant molecule populations, Gillespie argued that the trunca-
tion at the second-order of the Kramers-Moyal expansion (II.89) is justified and therefore yields
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a Fokker-Planck equation which can be translated to a Langevin equation, usually called the
chemical Langevin equation (CLE), that reads [167]

∂tXi(t) =

M∑
j=1

νj,iaj(X(t)) +

M∑
j=1

νj,i

√
aj(X(t)) ζj(t) for i = 1, . . . , N (II.90)

where the ζj are independent Gaussian white noises. Notice that in the simpler case of the
master equation (II.45) there is only a single species and X(t) reduces to a single-component
vectorX1(t) = x(t). Moreover, for the reactions (II.44) the reactions probability are a1(x) = αpx
and a2(x) = βqx(x− 1). The previous equation therefore takes the form:

∂tx =
∑
p

(p− 1)αpx+
∑
q

(q − 2)βqx(x− 1) +

√∑
p

(p− 1)2αpx+
∑
q

(q − 2)2βqx(x− 1) ζ(t)

(II.91)

and one may notice already that the limit of small number of particles x < 1 is problematic.
For instance, taking all the αp = 0 (that is, no reaction with a single reactant) yields a negative
argument in the square-root for x < 1. This was indeed to be expected from the very derivation
of this equation.

II.4.1.c Van Kampen’s system-size expansion

Before Gillespie, van Kampen proposed a justification for performing a simplification of the
Kramers-Moyal expansion of the master equation which involves only derivatives up to the
second-order [172]. The idea of his approximation is to perform a large-volume expansion
near the mean-field solution of the Kramers-Moyal expansion (II.89). Thus, the starting point
of this approximation is to write the stochastic variable X(t) = Ωφ(t) + Ω1/2y(t) where Ω is
the size of the system, φ is the deterministic solution of the mean-field equation, and y is a
stochastic variable which can be seen as a small perturbation of the mean-field behaviour. In the
case of the reactions (II.44), this approximation yields the following Langevin equation for the
stochastic variable y(t) [173]:

∂ty =

(∑
p

(p− 1)αp +
∑
q

(q − 2)βq(2φ− 1)

)
y +

√∑
p

(p− 1)2αpφ+
∑
q

(q − 2)2βqφ(φ− 1) ζ(t)

(II.92)

where φ is the solution of the (deterministic) mean-field rate equation:

∂tφ(t) =
∑
p

(p− 1)αpφ(t) +
∑
q

(q − 2)βqφ(t)(φ(t)− 1) . (II.93)

This approximation is very crude since on top of the large system-size expansion, a “linear noise”
approximation is performed and the noise term does not depend on the stochastic variable y.

We emphasize that both Langevin equations (II.90) and (II.92) are only approximate, coarse-
grained descriptions of the master equation (II.43) and valid only in the limit of a large number
of reacting particles. In the following we will on the other hand derive exact, that is micro-
scopic Langevin equations which describe in an equivalent fashion the dynamics of the master
equation.
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II.4.2 Microscopic Langevin equation and imaginary noise

In this section and in the following we consider the class of single-species reaction-diffusion
processes involving at most two particles and all possible reactions of the form:

A
αp−→ pA

2A
βq−→ qA

(II.94a)

(II.94b)

with p arbitrary and q = 0 or 1. For this class of reaction-diffusion processes, there exists a formal
connection between the master equation description and a Langevin equation. This connection
is known for a long time, and is either derived using Gardiner’s Poisson representation [118] or
via a field-theory formalism [17, 18], and we present both derivations in the following.

II.4.2.a Field theory formalism

The usual method found in the literature to obtain a microscopic Langevin equation stems from
a formal comparison between the Doi-Peliti approach and the MSRDJ formalism. As we will see,
this method is not correct and its derivation suffers several inconsistencies. The aim of the next
section, which is also the first result of this manuscript [19], is to solve these inconsistencies and
obtain an exact Langevin equation describing the microscopic dynamics.

In Sec. II.3.3, we have seen that using the Doi-Peliti formalism, we can write a “partition
function” – that is the generating functional of the correlation and response functions – for a
reaction-diffusion process written in terms of the master equation (II.45):

ZRD[J, J̃ ] =

∫
DφDφ∗ e−SRD[φ,φ∗]+

∫
dt (Jφ+J̃φ∗) (II.95)

with the action SRD[φ, φ∗] =
∫

dt [φ∗∂tφ−L(φ, φ∗)] and where φ and φ∗ are complex-conjugated
fields.

On the other hand, we have seen in Sec. II.2.3, that a Langevin equation can generically be
cast into a field theory, and the MSRDJ formalism allows us to write similarly the generating
functional for a Langevin process:

ZLE[J, J̃ ] =

∫
DψDψ̃ e−SLE[ψ,ψ̃]+

∫
dt (Jψ+J̃ψ̃) (II.96)

where this time, ψ is a real field, and ψ̃ is purely imaginary.
Because of the obvious similarity between Eqs. (II.95) and (II.96), virtually every physicists

have been tempted to replace formally the complex-conjugated fields φ and φ∗ by a real field
ψ and an imaginary field ψ̃, and therefore obtain a Langevin equation12 that describes the
microscopic reaction-diffusion process. Although we will see why this formal replacement is not
valid in the following, let us however show that it can be justified at all orders of the perturbation
theory.

Perturbative mapping between the Doi-Peliti and the MSRDJ formalism. We review the
usual (zero-dimensional) perturbative argument showing that the functional integral written in
terms of complex-conjugate (coherent states) fields φ and φ∗ can be equivalently written in terms
of a purely real field ψ and a purely imaginary field ψ̃. The idea is to show that for the Gaussian
measure this formal replacement is exact, and since the perturbative approach is simply a series

12By using the MSRDJ formalism in the reverse order.
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expansion near this Gaussian measure the result follows immediately. The starting point is the
following relations:

n! δmn =

∫ +∞

−∞
dxxn

(
− d

dx

)m
δ(x) (II.97)

=
1

2π

∫ +∞

−∞
dx dy xn(iy)me−ixy. (II.98)

Now, working with a complex number z we have:

n! δmn =
1

π

∫
dz dz∗ zn(z∗)me−|z|

2
(II.99)

which is easily proven by considering polar variables and where, by definition, dz dz∗ = d(Rez)d(Imz).
Thus, up to a factor 2, we find that for this integral we obtain the same result if we consider as
in Eq. (II.99) that z and z∗ are complex conjugate variables or if we take as in Eq. (II.98) that z
is real (z → x) and z∗ imaginary (z → iy) and independent of z. It follows that for any Gaussian
measure (denoted by an index 0), we have:

〈zn(z∗)m〉0 = 〈xn(iy)m〉0 . (II.100)

Within perturbation theory, this is sufficient to prove the same equality:

〈zn(z∗)m〉 = 〈xn(iy)m〉 , (II.101)

for any theory since the non-Gaussian part of the action, that is, the non-quadratic part of
the exponential, is expanded around the Gaussian measure. Of course, the weak point of this
derivation is the interchange between the series expansion and the integration.

Inconsistencies in the formal replacement. Let us now show why the formal replacement
of the complex-conjugates fields by real and imaginary fields cannot yield exact results. We
consider as an illustrative example the pure annihilation case in zero dimension:

2A
β0−→ ∅ (II.102)

then applying the Doi-Peliti formalism, ones gets the following generating functional:

ZPA =

∫
DφDφ∗ e−

∫
dt [φ∗∂tφ−β0φ2+β0(φ∗)2φ2] . (II.103)

At this point, φ and φ∗ are complex conjugated fields, and the leading term in the exponential is
therefore −β0(φ∗)2φ2 = −β0|φ|4 < 0 meaning that the integral is convergent and well-defined.
However, if one performs the formal transformation and identify φ as a real field and φ∗ = iψ̃ as
an imaginary field, then the leading term becomes −β0(iψ̃)2φ2 = +β0ψ̃

2φ2 > 0 and the integral
is strongly diverging. The perturbative expansion, since it considers the leading term in the
exponential as a perturbation, has of course lost this crucial information.

In fact, this is not the only problem that arises when performing such a formal replacement
and to see these others issues, let us finish the formal derivation. Using the MSRDJ formalism
in the reverse order, one obtains the following Langevin equation13:

∂tφ(t) = −2β0φ
2 + i

√
2β0φ ζ(t) , (II.104)

13Notice that one first has to perform a “Doi shift” φ∗ → φ∗ + 1 such that the action is proportional to φ∗ and the
MSRDJ can be applied.
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with ζ a Gaussian white noise. We now have an imaginary noise term and therefore even
starting from a real initial condition, the field φ itself becomes complex! This yields two more
inconsistencies: (i) in the previous step, we assumed that φwas a real field, and we now discover
that it is in fact complex. (ii) Starting from Eq. (II.104), one would be quite embarrassed to
perform the MSRDJ formalism since this formalism requires a Gaussian integration over the
noise term. If the noise is purely imaginary, this integral is no longer convergent and the whole
formalism breaks down.

Difficulties of a complex Langevin equation. Let us now point out the last problem stem-
ming from this formal derivation: the complex Langevin equation itself. As stated by Cardy in its
lecture notes [17], a complex Langevin equation is not problematic with regard to the physical
interpretation: in the case of pure annihilation, two different particles survive if they do not
diffuse in the same area, meaning that particles must be anti-correlated in this process. This
anti-correlation for the density can be obtained only if the noise term in the Langevin equation
governing the dynamics of the density is purely imaginary. The pure annihilation case is also
associated with the narrowing of the initial Poisson distribution of particles, narrowing which
can be obtained only with an imaginary noise, since a real noise always leads to a broaden-
ing of the initial distribution (see for example [171]). The fact that φ is a complex variable is
neither a problem since φ is an auxiliary variable that has no physical meaning: only its mo-
ments are linked to the moments of the particle number14. For instance one may even have〈
φ(t)2

〉
< 0 while having a positive variance for N(t) [174]. The fact that the moments of the

actual physical process N(t) are indeed real-valued was proven to be true at least in the case of
the zero-dimensional annihilation reaction 2A→ ∅ [20].

This was the brighter side of the problem. In fact complex Langevin equations have a much
more controversial status for several reasons: even if the moments are real-valued, their very
existence is still unclear because some trajectories of the Langevin equation blow up in a finite
time and may therefore jeopardize the existence of well-defined moments [20]. On the theoret-
ical side, these complex Langevin equations are still lacking some understanding [174] and it is
not completely clear whether they can lead to tractable computations in general cases.

Moreover, even if these complex Langevin equations do have some sense15, they are not
numerically tractable. Even in the zero-dimensional cases, these Langevin equations start to
diverge after finite time [20, 171, 175]. This last point is quite problematic since we were
seeking for these Langevin equations in order to solve the problems of Monte Carlo and/or
direct master equation simulations which often break down near phase transitions.

A solution to these difficulties. The situation we have depicted here therefore seems quite
dramatic: the whole field-theoretical derivation seems to be only formal and leads to major
inconsistencies that jeopardize its whole derivation, while the corresponding Langevin equation
that is obtained is plagued with theoretical and numerical hurdles when the noise is imaginary.

In fact, we will see in Sec. II.5 that all these hurdles can be overcome: the replacement
of the complex conjugated fields by a real and imaginary fields can indeed be performed, at
the condition of making proper contour deformations. This is not a formal step and it must
be conducted carefully, that is by making sure that the integral of the Doi-Peliti formalism [for
instance in Eq. (II.103)] remains convergent at all time during the contour deformations. Doing
these transformations, we will get an exact and real Langevin equation, therefore solving all the
previous issues.

14We will see in the following that the moments of φ are equal to the factorial moments of N , see Eq. (II.122).
15We remind however that the derivation of these Langevin equations in the case of the field theory formalism is

not correct.
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II.4.2.b Poisson representation

Before showing in details how the difficulties encountered above can be solved using contours
deformations, we discuss the Poisson representation, which is an alternative method for formally
deriving Langevin equations that leads to the same equations as in the previous section and is
thus plagued with the same problems.

The reasons why the following derivation is only formal is not as obvious as in the previous
case, and is not the subject of this manuscript; we only hint to the weakest points of the proof.
This elegant method was first introduced by Gardiner and Chaturvedi [176, 177] and does not
rely on a field-theoretical formalism but uses rather the probability-generating function G(z, t)
which is a standard tool when studying reaction-diffusion processes; it is defined as:

G(z, t) ≡
∞∑
n=0

Pn(t)zn . (II.105)

Notice that the probability-generating function G(z, t) is a well-defined analytic function for z in
the complex unit disk: |z| ≤ 1. The probability normalization is encoded throughG(z = 1, t) = 1,
and the derivatives of G with respect to z and evaluated in z = 1 give access to the (factorial)
moments of the number of particles:

∂(k)
z G(z, t)|z=1 = 〈N(t)(N(t)− 1) · · · (N(t)− k + 1)〉 . (II.106)

Some works in the literature have also shown how one can extract some rare-events statistics in
reaction-diffusion systems from the behavior of G(z, t) near z = 0 [178].

Using the probability-generating function (II.105), the master equation (II.45) can be sub-
sumed as an evolution equation for G(z, t):

∂tG(z, t) = LzG(z, t) (II.107)

where L ≡ L(z, ∂z) is a second-order evolution operator:

L(z, ∂z)· = A(z)∂z ·+B(z)∂2
z · (II.108)

with A and B determined by the reaction rates through:

A(z) =
∑
p

αp(z
p − z) and B(z) =

∑
q

βq(z
q − z2) . (II.109)

Note that for the reactions we deal with, the coefficient of the second derivative reduces to a
second order polynomial in z:

B(z) = (β0 + β1)(z − `)(1− z), ` ≡ −β0/(β0 + β1). (II.110)

Notice already that the operator L appearing in Eq. (II.107) is the very same operator as the one
appearing in the master equation in its “quantum” form, Eq. (II.52). The second-order operator
L is not a Fokker-Planck operator that could be associated with the number of particles N(t).
The goal of the Poisson representation is therefore to find an alternative Fokker-Planck equation
for an auxiliary variable, which is then linked to the initial particle number.

Let us assume that we can expand Pn(t) as a superposition of uncorrelated Poisson distribu-
tions:

Pn(t) =

∫
dy

e−yyn

n!
f(y, t) (II.111)

which means that the probability-generating function G can be rewritten as:

G(z, t) =

∫
dy e(z−1)yf(y, t) (II.112)
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and its substitution into Eq. (II.107) yields (see App. B.2):

∂tG =

∫
dy e(z−1)y∂tf(y, t) =

∫
dy L̃(1 + ∂y, y)e(z−1)yf(y, t) (II.113)

=

∫
dy e(z−1)yL(1− ∂y, y)f(y, t) (II.114)

where L̃(1+∂y, y)· = yA(1+∂y) ·+y2B(1+∂y)· and the last equality comes from an integration
by parts and after dropping the surface terms. Assuming vanishing boundary terms is probably
the weak point of this derivation and it implicitly assumes some convergence properties for
the function f(y, t). Drummond [179] already pointed out this weakness and suggested an
alternative “gauge” Poisson representation to cope with this problem, and it seems that his
method yields more behaved Langevin equations, yet still complex-valued.

This remark being made, the previous equality allows us to write a partial differential equa-
tion for f :

∂tf(y, t) = L(1− ∂y, y)f(y, t) . (II.115)

This partial differential equation can be interpreted as a Fokker-Planck equation if it is at most
of second-order, which is the case if we also impose p ≤ 2. In this case, we can explicitly write
the Fokker-Planck equation:

∂tf(y, t) = −∂y [µ(y)f(y, t)] +
1

2
∂2
y

[
σ(y)2f(y, t)

]
(II.116)

with

µ(y) = (α0 + α2)y − (2β0 + β1)y2 and σ(y)2 = 2α2y − 2(β0 + β1)y2 , (II.117)

which is equivalent to the Langevin equation for the stochastic variable Y (t):

∂tY (t) = µ(Y (t)) + σ(Y (t))ζ(t) (II.118)

where ζ is a Gaussian white noise. Notice that we would have obtained the very same equation
for the Doi-Peliti variable φ if we had used the formal derivation we described in the previous
part. This analogy between the Poisson representation and the field-theory approach was first
pointed out by Droz and Mc Kane [180].

Therefore, although the subtleties of the proof are hidden in the boundary term, we believe
that this derivation and the resulting Langevin equation are plagued with the same inconsis-
tencies as those we highlighted in the previous part, in particular when the reaction scheme is
chosen such that σ(Y (t))2 becomes negative, therefore yielding complex Langevin equations.

As a conclusion for this part, let us notice that although we derived a new Langevin equa-
tion (II.118) that supposedly describes the microscopic dynamics of the initial reaction-diffusion
process, we have not explained how the stochastic Langevin variable is connected to the orig-
inal number of particles N(t) of the reaction-diffusion process. The strength of this formalism
stems from the fact that all the moments of the original reaction-diffusion process can in fact be
computed via the moments of the auxiliary Langevin variable Y (t) in a simple way:〈

N(t)k
〉factorial

RD
≡ 〈N(t)(N(t)− 1) · · · (N(t)− k + 1)〉 (II.119)

=
∑
n

Pn(t)n(n− 1) · · · (n− k + 1) (II.120)

=
∑
n

∫
dy

e−yyn

n!
f(y, t)n(n− 1) · · · (n− k + 1) (II.121)

=

∫
dy ykf(y, t) ≡

〈
Y (t)k

〉
LE

(II.122)
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where 〈·〉RD (resp. 〈·〉LE) means an average over the reaction-diffusion process (resp. the
Langevin process). Therefore, the factorial moments of the number of particles N(t) are equal
to the moments of the associated Langevin variable Y (t).

In the next section we derive properly real and exact Langevin equations for reaction-
diffusion processes. These equations are obviously stated in a different auxiliary variable that
will not have the simple relation (II.122) to be linked to the original reaction-diffusion process.
We will have to derive a duality relation to make the correspondence between the two processes.

II.5 Microscopic Langevin equation and duality formalism

In this section we now derive one of the main results of this manuscript [19], and explain how a
real and exact Langevin equation can be obtained starting from a microscopic description [19].
This Langevin equation is obviously not stated in terms of a coarse-grained variable (otherwise
we would be performing approximations, for instance valid at large system size), but in terms
of a “dual” variable. In order to extract the physics from this Langevin equation on this auxiliary
variable, we also prove a duality relation, which links the moments of the auxiliary field to the
moments of the particle number of the original reaction-diffusion process.

The section will be organized as follow: we first start by giving the result and write the
dual Langevin equation and duality relation, and then we will describe how these equations are
derived using two different yet equivalent methods.

II.5.1 Langevin equation in the duality formalism

Langevin equation. Using the procedure that we detail in the following sections, we can
give the form of the dual Langevin equation for a generic reaction-diffusion process described
by the master equation (II.45) or, equivalently, by its “quantum” version Eq. (II.52). This dual
Langevin equation is written in terms of a stochastic variable Z(t) and reads:

∂tZ(t) = A(Z(t)) +
√

2B(Z(t)) ζ(t), (II.123)

where ζ(t) is a zero mean unit variance Gaussian white noise, and A and B are the functions
defined in Eqs. (II.54) and (II.55) [or equivalently in Eqs. (II.109) and (II.110)]. Crucially, due
to the form of the drift and diffusion functionsA(z) andB(z), the stochastic variable Z(t) always
remains (if initially so) in the bounded real interval [`, 1] where

√
B(z) ≥ 0 by definition. This

Langevin equation therefore remains real at all time.
Notice that the evolution of Z(t) stops when it has reached the absorbing barrier located

at 1 (whose fixed location can be traced back to the probability conservation). This implies the
existence of a delta-peak term at z = 1 in the probability distribution p(z, t) of Z(t)16. Depending
on the values of the αp, a second delta-peak at z = ` appears whenever (the otherwise always
nonnegative) A(`) vanishes. Thus, the general form of p(z, t) reads:

p(z, t) = pc(z, t) + q1(t)δ(1− z) + q`(t)δ(`− z) (II.124)

where pc(z, t) is the continuous part of the distribution and q1, q` the weights at the boundaries.
Note however that Z(t) is not a density and is not simply related to the particle number in the

original reaction-diffusion process. We therefore need a relation between these two quantities
Z(t) and N(t), and we show in the following that the determination of the statistics of Z(t)
suffices to extract “all the physics” of interest for the original reaction-diffusion process. This
connection between the two formalisms is called the duality relation.

16The appearance of this delta-peak in the distribution is due to the specific form of the noise and drift terms. The
shape of these terms may change the nature of the boundary (according to Feller’s classification [181], or see for
instance [182]).
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Figure II.5 – Survival probability P (m)
surv(t) in the pure annihilation process 2A → ∅ with a unit

rate. The three curves correspond to different value of m. The solid lines are obtained directly from
the reaction-diffusion process, that is P (m)

surv(t) = 1 − P0(t). The symbols are computed through the
duality relation: 〈Z(t)m〉LE =

∫ 1
−1 dz p(z, t|0, 0)zm = 1− P (m)

surv(t).

Duality relation. The duality relation, that links the moments of the particle number N(t)
in the reaction-diffusion process, and the moments of the Langevin variable Z(t) of the dual
process reads: 〈〈

Z(t)N(0)
〉

LE

〉
RD

=
〈〈
Z(0)N(t)

〉
LE

〉
RD

(II.125)

where 〈·〉RD (resp. 〈·〉LE) has to be understood as an averaging over the reaction-diffusion
process (resp. the Langevin process). Notice that this relation generalizes an analogous one
derived by Doering et al. for the reversible coagulation-decoagulation process A
 2A [183].

Using the probability distribution p(z, t) of the Langevin variable Z(t), we can rewrite ex-
plicitly the duality relation as:∫ 1

`
dz

∞∑
n=0

p(z, t)Pn(0)zn =

∫ 1

`
dz

∞∑
n=0

p(z, 0)Pn(t)zn . (II.126)

Notice that on the left-hand side of the duality relation (II.125) appears N(0), which is the
initial condition of the reaction-diffusion that one wishes to study, whereas on the right-hand
side appears Z(0), the initial condition for the Langevin equation. This initial condition Z(0)
is arbitrary, and we will show that choosing it cunningly allows for the computation of various
observables of the reaction-diffusion process.

The beauty of the duality relation is that it links in a nontrivial way the two processes, and
means that solving one process is equivalent to solving the other. The duality relation (II.125)
allows us to trade the very difficult problem of solving the reaction-diffusion process for solving
instead a Langevin equation, which, in the numerical as well as theoretical view-point, offers
new perspectives for cracking difficult reaction-diffusion processes.

Examples. Before getting into the details of the proof of the duality relation, let us give some
examples on how it can be used to compute actual quantities of interest of the reaction-diffusion
process, such as the survival probability and the moments of the probability distribution Pn(t).

The survival probability P
(m)
surv(t) is defined as the probability that, starting at t = 0 with

m > 0 particles, at least one particle survives at time t: P (m)
surv(t) = 1− P0(t). Using Eq. (II.126)
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with p(z, 0) = δ(z) and Pn(0) = δmn, we obtain

1− P (m)
surv(t) =

∫ 1

`
dz p(z, t|0, 0)zm = 〈Z(t)m〉LE (II.127)

where p(z, t|z0, 0) is the conditional transition probability of the Langevin equation with p(z, t = 0) = δ(z − z0)
as initial condition and the mth-order moment is a readily measurable quantity in a Langevin
equation simulation. To give an explicit example, we consider the pure annihilation process in
zero dimension. In this case, the probability generating function G(z, t) can be computed ex-
actly as a sum of orthogonal polynomials [184]. The dual probability distribution p(z, t) can be
computed exactly as well and it allows us to test on a very simple example the duality relation
(see Fig. II.5).

Similarly, the moments of the reaction-diffusion process can be derived from G(z, t) using
p(z, 0) = δ(z − z0) as initial condition; Eq. (II.126) yields17:

G(z0, t) =

∫ 1

`
dz

∞∑
n=0

p(z, t|z0, 0)Pn(0)zn. (II.128)

Differentiating G(z0, t) with respect to z0 and evaluating it at z0 = 1 yields the (factorial)
moments of the reaction-diffusion process. For instance, the average particle number reads

〈N(t)〉 = ∂z0

∫ 1

`
dz
∑
n

p(z, t|z0, 0)Pn(0)zn
∣∣∣∣
z0=1

. (II.129)

All formulas above can be easily generalized to the spatially extended case in the presence
of diffusion. For instance, putting m particles at one site i and 0 elsewhere in the reaction-
diffusion process and choosing Zj(0) = 0 for all sites j for the LE, Eq. (II.127) is replaced by:
P

(m,i)
surv (t) = 1− 〈Zi(t)m〉LE

18.

II.5.2 Duality in the field-theoretical context

Our goal in the following is to show a correct proof for the derivation of the dual Langevin equa-
tion (II.123) using a field-theory formalism. We will show that the complex-conjugate (coherent
states) fields φ and φ∗ can indeed be transformed into a real field ψ̃ and a purely imaginary field
ψ. However, the Wick rotation one has to perform in order to make this transformation cannot
be done blindly, to the contrary of what the perturbation theory would suggest, and we take
a special care of the convergence of the integrand of ZRD and of making sure that its leading-
order term remains negative to ensure this convergence. For this purpose, we proceed to several
contour deformations in the complex plane, and we will see that the price to pay to guarantee
the convergence of the integrand is a restriction of the real field ψ̃ to a bounded interval, instead
of living on the whole real axis as the usual proof would suggest.

The starting point of the proof is the Doi-Peliti partition function that we recall here:

ZRD[J, J̃ ] =

∫
DφDφ∗ e−SRD[φ,φ∗]+

∫
dt (Jφ+J̃φ∗) . (II.130)

17Note that choosing Pn(0) = δmn in Eq. (II.128), one recovers that the survival probability Eq. (II.127) is nothing
but 1−G(0, t).

18Notice that because of homogeneity, the mth-order moment at site i can in fact be estimated in a numerical
simulation of the Langevin equation as an average over all sites: 1/Ld

∑
i < Zi(t)

m >LE.
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Figure II.6 – Left. The initial integration circle |ψ̃| = ρ (dashed line) and the circle C in which it is
distorted. Inside C the integral over ρ is not convergent. Right. Deformation of the circle C including
a bump around the origin, where the action S′′ in Eq. (II.137) shows an essential singularity. The
integration contour is split into γu and γd which are two (distorted) half-circles, above and below
the real axis, respectively.

II.5.2.a Derivation of the Langevin equation

The proof we show here is directly inspired by appendix A of [185] (in which a different contour
deformation was used to make ψ real and ψ̃ purely imaginary). We expose it for simplicity for
the reversible coagulation-decoagulation process (without diffusion):

A
α2−→ 2A

2A
β1−→ A

(II.131a)

(II.131b)

and we generalize it below to the case with diffusion. It can also be adapted to all the reactions
we consider in this chapter, which are summed up in Eq. (II.44) with the extra restriction q < 2.

In this simplified zero-dimensional setting and for this specific case of reactions, the corre-
sponding generating functional of correlation and response functions reads (we have dropped
the subscript RD to alleviate the notation in the proof):

Z =

∫
C

dφ dφ∗

2iπ
e−S[φ,φ∗]+Jφ+J̃φ∗ (II.132)

where

S[φ, φ∗] = −α2

(
(φ∗)2 − φ∗

)
φ− β1

(
φ∗ − (φ∗)2

)
φ2 (II.133)

and we recall that dφ dφ∗ = dφ1 dφ2 with φ = (φ1 + iφ2)/
√

2, and that α2 and β1 are positive
since they are reaction rates. Notice that for clarity we first consider that the time is frozen, and
furthermore that J = J̃ = 0, the case with sources and with time-dependence will be treated
below.
Step 1. The proof begins with a first change of variables and the introduction of polar coordi-
nates:

φ = ρeiθ, φ∗ = ρe−iθ, (II.134)

such that we now have:

Z =

∫ ∞
0

2ρdρ

2iπ

∫ 2π

0
dθ e−S

′[ρ,θ] . (II.135)
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Figure II.7 – Left. Wick rotation by angle ϕ of the integration axis in the complex ρ-plane. The
contribution of the integral over the circular arc of radius R vanishes when R → ∞. Right. In
the complex ψ̃-plane, the circle C defined by the convergence condition (II.138) is modified by the
Wick rotation and becomes the circle C′. The forbidden region (shaded area) is also modified in
consequence.

Step 2. When ρ is fixed, the integration over the angle θ can be rewritten as a contour integration
on the circle of radius ρ over the variable ψ̃ = ρe−iθ:

Z =

∫ ∞
0

2ρ dρ

2π

∮
|ψ̃|=ρ

dψ̃

ψ̃
e−S

′′[ρ2,ψ̃] (II.136)

with

S′′[ρ2, ψ̃] = β1ρ
4

(
1− 1

ψ̃

)
+ α2ρ

2(1− ψ̃). (II.137)

Since at fixed ρ the integrand is holomorphic on C∗ and in anticipation of step 4, we distort
the integration contour over ψ̃ on the smallest contour C such that the integral over ρ remains
convergent at large ρ, which is given by the locus of points where the coefficient in front of ρ4

in the action (II.137) has a positive real part:

Re
(

1− 1/ψ̃
)
> 0 ⇔ |ψ̃| > cos(arg(ψ̃)), (II.138)

which defines a circle, see Fig. II.6 (left).
Step 3. The contour over ψ̃ is now deformed, for all ρ, into the circle C previously defined.
Given that the integrand in Eq. (II.136) has an essential singularity at ψ̃ = 0, C is in fact slightly
distorted to keep the singularity inside the integration domain, see Fig. II.6 (right).

Remark that along this particular contour, the real part of the leading term in ρ4 of the
action (II.137) vanishes, and the convergence at large ρ of the integral is now determined by
the sub-leading term in ρ2. The convergence is therefore guaranteed whenever

Re
(
α2

(
1− ψ̃

))
> 0 , (II.139)

which is verified on the half-plane Re(ψ̃) < 1 since α2 > 0, and in particular all along the
previously defined distorted circle γu ∪ γd, see Fig. II.6 (right). The partition function can
therefore be rewritten as:

Z = Zu + Zd =

∫ ∞
0

2ρ dρ

2π

(∫
γu

+

∫
γd

)
dψ̃

ψ̃
e−S

′′[ρ2,ψ̃]. (II.140)
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Figure II.8 – Left. New contour γ′d obtained after the Wick rotation. Right. Contour γ′′d obtained
by taking the limit ϕ→ π/4 of γ′d.

Step 4. We first consider the integration over the lower contour γd. The integration over ρ is
Wick-rotated by an angle ϕ which means that the integration axis is tilted by an angle ϕ in the
complex ρ-plane. This is allowed because no singularity is swept by the integration axis during
the rotation and because the integration at infinity does not contribute, see Fig. II.7 (left). Then,
Zd reads:

Zd =

∫ ∞ eiϕ

0

2ρdρ

2π

∫
γd

dψ̃

ψ̃
e−S

′′[ρ2,ψ̃] (II.141)

and the change of variable ρ2 = ρ′2eiϕ yields:

Zd =

∫ ∞
0

2ρ′ dρ′

2π
eiϕ

∫
γd

dψ̃

ψ̃
e−S

′′[ρ′2eiϕ,ψ̃] . (II.142)

Step 5. After the Wick rotation, the convergence condition (II.138) becomes:

Re

(
e2iϕ

(
1− 1

ψ̃

))
> 0 , (II.143)

which defines a new circle C′ (see Fig. II.7 (right)), and the contour γd is modified into a new
one γ′d which follows C′, except for a small detour in order to avoid the singularity, see Fig. II.8
(left).
Step 6. In the limit ϕ→ π/4, the radius of the circle C′ goes to infinity and the lower part of the
circle that we are considering becomes the interval [0, 1] and the integration contour becomes
γ′′d , see Fig. II.8 (right):

Zd =

∫ ∞
0

2ρ′ dρ′

2π
eiπ/4

∫
γ′′d

dψ̃

ψ̃
e−S

′′[ρ′2eiπ/4,ψ̃]. (II.144)

The limit ε→ 0 is still singular and is therefore not performed yet.
Step 7. A new Wick rotation of angle π/4 is performed on ρ, as well as a new change of variable
ρ′2 = ρ′′2eiπ/4:

Zd =

∫ ∞
0

2ρ′′ dρ′′

2π

∫
γ′′d

dψ̃

iψ̃
e−S

′′[iρ′′2,ψ̃]. (II.145)
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Step 8. A last change of variable ψ = iρ′′2/ψ̃ performed to get back to Cartesian coordinates
finally yields:

Zd =

∫ i∞

0

dψ

2π

∫
γ′′d

dψ̃ e−S[ψ,ψ̃] (II.146)

where S is indeed the very same action as the one we started from in Eq. (II.133). The limit
ε → 0 is now trivial because there is no more a singularity when ψ̃ → 0 (the singularity was an
artifact coming from the polar variables). Therefore, the integration over the path γ′′d is simply
an integration over the segment [0, 1], and Zd finally reads:

Zd =

∫ i∞

0

dψ

2π

∫ 1

0
dψ̃ e−S[ψ,ψ̃] . (II.147)

Let us insist on the fact that we get a variable ψ̃ that is bounded. Although the usual formal
replacement that one can find in the literature does not raise such question and assumes that
the real field lives on the whole real axis, it should not be so surprising after all: ψ̃ belonging
to [0, 1] simply reflects the fact that the leading term of the action (II.133) (the one in factor
of β1) must remain negative in order to have convergence of the integrand. This is the case as
long as φ∗ − (φ∗)2 > 0 (since there is a minus sign in front of the action), that is φ∗ ∈ [0, 1]. Of
course, the usual approach, which is justified by perturbative arguments, misses completely this
fact since the series expansion is done in terms of β1, and the question of the convergence of the
integrand is completely overlooked.

The computation of Zu follows the same steps as those for Zd up to the difference that the
lower half-plane is replaced by the upper one. We finally get the expected result, that is, two
complex conjugated variables are replaced by two independent variables, one purely imaginary,
the other real. The important subtlety is that the real variable ψ̃ is compact with the proper
integration boundaries given by the contour deformations, which is a priori far from being
trivial:

Z =

∫ i∞

−i∞

dψ

2π

∫ 1

0
dψ̃ e−S[ψ,ψ̃] . (II.148)

The generating functional Z can now be converted into a Langevin equation using the (re-
verse) MSRDJ formalism. The quadratic term in ψ of the action S, Eq. (II.133), can now be
eliminated by a Hubbard-Stratonovich transformation:

exp
[
β1

(
ψ̃ − ψ̃2

)
ψ2
]

=

∫
dζ exp

[
−
(
ζ2/2 +

√
2β1

(
ψ̃ − ψ̃2

)
ψζ

)]
. (II.149)

If we now reintroduce the time-dependence in S by adding the term ψ∂tψ̃, the integration over
the imaginary variable ψ in Eq. (II.148) yields a Dirac-delta function of the Langevin equation
over the real variable ψ̃:

∂tψ̃ = α2

(
ψ̃2 − ψ̃

)
+

√
2β1

(
ψ̃ − ψ̃2

)
ζ (II.150)

where ζ is in fact a Gaussian white noise since its probability distribution is given in Eq. (II.149)
by P(ζ) = exp

(
−ζ2/2

)
. Notice now that the fact that ψ̃ ∈ [0, 1] completely makes sense since it

therefore guarantees that the square-root terms has a positive argument, and that the Langevin
equation remains real.

Remark that taking into account the time-dependence does not invalidate the proof because
the extra ψ∂tψ̃ term only adds a sub-leading term (in factor of ρ2) to the action S′′ defined in
Eq. (II.137). This sub-leading term is significant only when the contour is exactly on the circle C′.
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Figure II.9 – Taking into consideration time and spatial dependence: a new contour γ′d,2, shifted
from the contour γ′d by a factor ε2, is defined such that the sub-leading terms are never relevant.

One can therefore slightly shift all the previously defined contours by a factor ε2 in order not to
lie on the circle C′, as illustrated on Fig. II.9 in the case of the contour γ′d. The rest of the proof
remains unchanged, except that the limit ε2 → 0, which is not singular, has to be taken at the
end.

The spatially-extended case is treated in the same way since the extra term coming from
spatialization also contributes only in a sub-leading way.

Let us now briefly discuss the case with sources, with space and time frozen. In the limit
where the sources J and J̃ are infinitesimal, the original partition function (II.132) can be
expanded as a power series and reads:

Z[J, J̃ ] =

∫
dφ dφ∗

2iπ
e−S[φ,φ∗]+Jφ+J̃φ∗

=

∫
dφ dφ∗

2iπ
e−S[φ,φ∗]

(
1 + Jφ+

1

2
J2φ2 + · · ·

)(
1 + J̃φ∗ +

1

2
J̃2(φ∗)2 + · · ·

)
(II.151)

and the deformations described above can be applied to all the terms in the sum, which proves
that adding infinitesimal sources is not an issue.

Notice that the proof was shown here for the particular choice of reactions (II.131) but is
in fact generic for any set of reactions of the form A −→ pA, 2A −→ qA with q < 2, except that
the deformation contours would be different. For instance, if one were to consider the pure
annihilation reaction 2A −→ ∅, the convergence condition Eq. (II.138) would be modified and
would define a lemniscate instead of the circle C.

II.5.2.b Proof of the duality relation

We now prove the duality relation (II.126) using the “quantum” formalism. And for this purpose
we first define the bra 〈p̃(t)|:

〈p̃(t)| ≡
∫ 1

`
dz p̃(z, t|z0, 0)〈z| ≡

∫ 1

`
dz pc(z, t)〈z|+ q1(t)〈1|+ q`(t)〈`| (II.152)

and assume it evolves via:

∂t〈p̃(t)| = 〈p̃(t)|L(a†, a) . (II.153)
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The proof goes as follows: we first show that the bra 〈p̃(t)| we have just defined is associated
with the probability distribution p(z, t) of the dual Langevin equation (II.123), and in a second
time we prove the duality relation (II.126).

We have: 〈
p̃(t)|z′

〉
=

∫ 1

`
dz p̃(z, t|z0, 0)eizz

′
(II.154)

and thus
∫ ∞
−∞

dz′ e−iyz
′ 〈
p̃(t)|z′

〉
=

∫ 1

`
dz p̃(z, t|z0, 0)δ(y − z) (II.155)

= p̃(y, t|z0, 0) (II.156)

and we can therefore compute the time evolution of p̃:

∂tp̃(y, t|z0, 0) =

∫ ∞
−∞

dz′ e−iyz
′
〈
p̃(t)|L(a†, a)|z′

〉
(II.157)

=

∫ ∞
−∞

dz′ e−iyz
′


∫ 1

`
dz pc(z, t)L(z, iz′)︸ ︷︷ ︸

=L(z,∂z)

eizz
′
+q`(t)L(`, iz′)︸ ︷︷ ︸

=A(`)

ei`z
′
+q1(t)L(1, iz′)︸ ︷︷ ︸

=0

eiz
′

 .

(II.158)

Since we have L(z, ∂z) = A(z)∂z + B(z)∂2
z , we perform to integrations by parts in the second

integral. Taking care of the boundary terms, we get:

∂tp̃(y, t) =

∫ ∞
−∞

dz′ e−iyz
′
{∫ 1

`
dz
(
−∂z(A(z)pc(z, t)) + ∂2

z (B(z)pc(z, t))
)

eizz
′

+
[
A(z)pc(z, t)e

izz′ +B(z)pc(z, t)∂ze
izz′
]1

`
−
[
∂z(B(z)pc(z, t))e

izz′
]1

`
+ q`(t)A(`)ei`z

′
}
.

(II.159)

The first boundary term vanishes, and we proceed to the integration over z′, which yields Dirac
distributions, such that we now have:

∂tp̃(y, t) = −∂y(A(y)pc(y, t)) + ∂2
y(B(y)pc(y, t))︸ ︷︷ ︸

L†(y,∂y)pc(y,t)

−∂z(B(z)pc(z, t))|z=1︸ ︷︷ ︸
J(1,t)

δ(y − 1)

+ (∂z(B(z)pc(z, t))|z=` + q`(t)A(`))︸ ︷︷ ︸
J(`,t)

δ(`− y)
(II.160)

where we have defined the probability current J(z, t) = +A(z)pc(z, t)− ∂z [B(z)pc(z, t)]. Notice
that the currents escaping through the barriers at y = ` and y = 1 governs the time evolution of
the peaked probability distributions q1(t) and q`(t), such that the last equality can be rewritten
as:

∂tp̃(y, t) = L†(y, ∂y)pc(y, t) + ∂tq1(t)δ(1− y) + ∂tq`(t)δ(y − `) (II.161)

= L†(y, ∂y)p̃(y, t) . (II.162)

Therefore, p̃ is indeed a probability distribution evolving according to the dual operator L†(y, ∂y)
which is a Fokker-Planck operator. The associated dual Langevin equation is Eq. (II.123), which
terminates the first point of the proof, that is p̃ = p is indeed the probability distribution of the
dual Langevin variable Z.

We now have to prove the duality relation, which is rather simple in this formalism. On the
one hand we have:

〈p̃(t)|P (0)〉 =
∑
n

Pn(0)

∫ 1

`
dz p̃(z, t|z0, 0) 〈z|n〉︸ ︷︷ ︸

=zn

, (II.163)
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and on the other hand,

〈p̃(0)|P (t)〉 =
∑
n

Pn(t)

∫ 1

`
dz p̃(z, t|z0, 0)zn . (II.164)

The equality between these two terms, which is the duality relation, is now straightforward from
the definition of the evolution of the bra 〈p̃(t)|:

〈p̃(t)|P (0)〉 =
〈
p̃(0)|eL(a†,a)t|P (0)

〉
= 〈p̃(0)|P (t)〉 (II.165)

which terminates the proof.

II.5.3 Duality in the probability-generating function formalism

Proving the duality relation in the probability-generating function formalism is simpler than in
the field-theory formalism. Yet, it was important to prove it using the latter formalism in order to
clarify the paradoxical situation pointed out in Sec. II.4.2.a, where we have seen that a suppos-
edly real field was in fact described by a complex Langevin equation. The proof also highlighted
the importance of the nature of the fields: the fact that the response-field is imaginary, and more
interestingly that the real field ψ̃ is in fact bounded is often overlooked in the literature.

First, notice that the probability-generating function G(z, t) associated with the reaction-
diffusion process and the probability distribution Pn(t) evolves according to Eq. (II.107):

∂tG(z, t) = LG(z, t) (II.166)

where L is the second-order differential operator defined in Eq. (II.108). Although it is not a
Fokker-Planck operator, its adjoint – or dual – operator L† defines a Fokker-Planck operator for
the dual probability distribution p(z, t) that we define as evolving according to the following
equation:

∂tp(z, t) = L†p(z, t) (II.167)

and to which is associated the dual Langevin equation (II.123):

∂tZ(t) = A(Z(t)) +
√

2B(Z(t)) ζ(t), (II.168)

where Z(t) is the dual variable.
To prove the duality relation, we first need to compute the time evolution of the mth moment

of Z(t), which is done by performing a change of variable in the previous Langevin equation.
Using the Itō formula (see App. B.1), we thus obtain:

∂tZ(t)m =
∑
n

LnmZ(t)n +mZ(t)m−1
√

2B(Z(t)) ζ(t) (II.169)

where Lnm is the transition matrix defined in Eq. (II.45). Taking the average of the previous
equation, we finally get:

∂t 〈Z(t)m〉LE =
∑
n

Lnm 〈Z(t)n〉LE . (II.170)

Indeed, the last term of the right-hand side of Eq. (II.169) has a vanishing average since the
noise ζ is independent of the stochastic variable Z(t).

Notice now that the process M(t) =
∑

m Z(t)mPm(T − t) with 0 ≤ t ≤ T is a martingale,
that means that its average value is independent of the time t at which it is evaluated. The
proof is direct by showing that ∂t 〈M(t)〉RD = 0. Then, evaluating the average of M at t = 0
and t = T , we obtain the duality relation (II.126). The spatially-extended case is treated in
App. B.3.
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II.6 Conclusion

In this chapter we have introduced two formalisms to obtain a field-theoretical description of a
nonequilibrium phenomenon. The MSRDJ formalism starts from a Langevin description of the
system, whereas the Doi-Peliti approach stems from the microscopic description of a reaction-
diffusion process in terms of a master equation. The MSRDJ formalism will be the starting point
of the NPRG studies in Chaps. III and IV.

More importantly, we have shown that for single species reaction-diffusion processes, the
Doi-Peliti path integral can be interpreted as a MSRDJ path integral and therefore yields an
exact Langevin equation that is dual to the initial reaction-diffusion process. The derivation of
this result, although known in the literature for a long time, is plagued with inconsistencies and
produces complex Langevin equations if not conducted with some care. The first main result of
this manuscript was therefore to show properly how one can derive an exact and real Langevin
equation starting from the reaction-diffusion description.

The very fact that one could obtain real Langevin equation for the description of some of
these systems was not obvious. Indeed, in the literature, the appearance of an imaginary noise
was associated with the fact of having anti-correlations in the system and an imaginary noise
is the only mean of getting a narrowing of the probability distribution which is the hallmark
of these anti-correlations. How, in this condition, could one get anti-correlations while having
a real Langevin dynamics? The answer lies in the duality relation (II.125): the real Langevin
equation that we have derived does not describe the evolution of the reaction-diffusion particle
number N(t) but that of a dual variable Z(t). This dual variable Z can be seen in a sense as
describing some kind of “time-reversed” dynamics [in the path-integral derivation, this is made
clear by the fact that Z(t) = ψ̃(−t), whereas in the probability generating formulation, we have
seen that the evolution of N(t) is coupled to that of Z(T − t)]. Therefore, the broadening of
the probability distribution of Z(t) under the real Langevin dynamics indeed corresponds to a
narrowing of the probability distribution of N(t), and the paradox is resolved.

However, it happens that this remarkable formalism only seems to hold for a single species
of particles and we were not able to extend the derivation to several species reaction-diffusion
processes. When several particles are involved, we cannot perform contour deformations that
guarantee the convergence of the integrand at all time and we systematically get imaginary-
noise Langevin equations. This problem may be solved if we were able to find the “right”
variables: in the one species problem, the right variable on which is stated the Langevin equa-
tion appears naturally as the “response field” ψ̃. In the case of several species, this miraculous
variable yielding real equations may be a non trivial combination of the fields describing each
species.

Finally, we argued in this chapter that real Langevin equation would prove very useful for
the numerical study of some controversial reaction-diffusion processes near their critical point.
Let us mention that Al Hammal et al. already studied the parity conserving generalized voter
(PCGV) universality class through a phenomenologically derived Langevin equation [152] which
turns out to be indeed the dual Langevin equation one would have obtained starting with set of
reactions A α3−→3A, A α5−→5A, 2A β0−→∅ that indeed belongs to the PCGV class.
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Method Langevin
equation

Example: A α2−→ 2A and 2A
β0−→ ∅ Connection between the moments Comments

van Kam-
pen

Eq. (II.92)

∂ty = (α2 − 2β0(2φ− 1)) y

+
√
α2φ+ 4β0φ(φ− 1) ζ

〈
Nk
〉

RD
=
〈

(Ωφ+ Ω1/2y)k)
〉

LE

Approximate method valid in
the large density and small
noise limit. Can be applied to
any reaction-diffusion process,
even involving several species.

Gillespie Eq. (II.91)

∂tx = α2x− 2β0x(x− 1)

+
√
α2x+ 4β0x(x− 1) ζ

〈
Nk
〉

RD
=
〈
xk
〉

LE

Approximate method valid in
the large density limit. Can
be applied to any reaction-
diffusion process, even involv-
ing several species.

Poisson
represen-
tation

Eq. (II.118)

∂tY = Y (α2−2β0Y ) +
√

2Y (α2−β0Y ) ζ
〈
Nk
〉factorial

RD
=
〈
Y k
〉

LE

Inconsistencies in the proof.
Yield complex Langevin equa-
tions. Valid for a restricted set
of reactions, Eq. (II.44).

Formal
field-
theoretical
method

Eq. (II.118)

∂tφ = φ(α2−2β0φ) +
√

2φ(α2−β0φ) ζ
〈
Nk
〉factorial

RD
=
〈
φk
〉

LE

Inconsistencies in the proof.
Yield same complex Langevin
equations as the previous
method. Valid for a restricted
set of reactions, Eq. (II.44).

Duality Eq. (II.123)

∂tZ =−α2Z(1−Z) +
√

2β0(1−Z2) ζ
〈〈
Z(t)N(0)

〉
LE

〉
RD

=
〈〈
Z(0)N(t)

〉
LE

〉
RD

Exact method, yield real
Langevin equations. Valid for
a restricted set of reactions,
Eq. (II.44).

Table II.1 – Comparison of the different Langevin equations obtained from a microscopic reaction-diffusion process. Note that the example is given for a
zero-dimensional system for simplicity, although all the methods can be generalized to any spatially-extended system.



Chapter III

Frequency regulator

Contents
III.1 NPRG approach to nonequilibrium . . . . . . . . . . . . . . . . . . . . . . . . . 96

III.1.1 Effective average action and exact flow equation . . . . . . . . . . . . . . . 96

III.1.2 Some general properties of the out-of-equilibrium regulator . . . . . . . . . 97

III.2 The model A as a benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

III.2.1 Model A, field theory and fluctuation-dissipation theorem . . . . . . . . . . 98

III.2.2 NPRG formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

III.2.3 NPRG results without a frequency regulator . . . . . . . . . . . . . . . . . . 104

III.2.4 NPRG results with a frequency regulator . . . . . . . . . . . . . . . . . . . . 106

III.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

In the previous chapter, we have seen how generic out-of-equilibrium processes can be cast
into a path-integral formulation, which is the starting point of RG methods. The aim of this
chapter will therefore be twofold: (i) detail how the NPRG approach can be extended from equi-
librium critical systems to their nonequilibrium counterpart and (ii) explain how the regulator
term of the NPRG approach must be modified in order to take care of the temporal fluctuations
that arise in nonequilibrium critical phenomena. The implementation of the NPRG in an out-of-
equilibrium context has been developed more than ten years ago [35, 54, 144] and have proved
to be a very powerful and versatile tool for models where the usual RG approach was often inef-
fective. Examples are the reaction-diffusion processes and in particular the directed percolation
transition [144], the Kardar-Parisi-Zhang equation [16, 91, 186, 187] and more recently the
Navier-Stokes equation [15, 92, 93]. It has also proven useful for the study of the kinetic Ising
model [21, 188] (on which we give more details in the following) and its universal dynamics
after a quench to the critical temperature [53]. On the other hand, the design of a frequency
regulator that takes care of the growing temporal fluctuations near a nonequilibrium critical
point has never been studied and represents the second main result of this manuscript [22].

As we have seen in the first chapter, the key to the success of the NPRG approach in equi-
librium physics is its ability to take care of growing fluctuations near criticality by integrating
them out in a controlled way. This is achieved by coarse-graining the spatial fluctuations using
a regulator function Rk(|x − y|) in the action of the model which has a typical range |q| . k in
momentum space. This key feature of the NPRG, reminiscent of the block-spin idea, is probably
not sufficient in many nonequilibrium problems, where temporal fluctuations also play a major
role. The introduction of a regulator that would also take care of these temporal fluctuations
therefore seems essential, and designing such a regulator is the aim of this chapter.

The most used approximation in the NPRG context is the derivative expansion (DE). In
this approximation, we have explained in Sec. I.4.3 that the contributions of all the correlation

93
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f k
(q
)

0
q k kRDE

Figure III.1 – Typical shape of the integrand fk(q) inside the integral in Eq. (III.1). Because of the
regulator function Rk(q), the integrand is peaked around q = k. Since the derivative expansion has
a finite radius of convergence RDE, all the contributions to the integral for q > RDEk will be wrong.
Fortunately, the regulator ensures that this contribution is very small (blue shaded area), ensuring
that these wrong terms do not contribute too much to the computation of the flow equations.

functions to the RG flow are retained, but their momentum/frequency dependence is replaced
by a Taylor expansion. The role of the regulator Rk is to ensure that the momentum region
where this approximation is not valid is effectively cut off. To be more specific, within the
NPRG formalism, one has to compute the flow of the vertices Γ

(i)
k ({pj}), which are composed

of terms involving a product of the propagator Gk(q) ≡ [Rk(q) + Γ
(2)
k (q)]−1 to some power, and

of the vertices Γ
(m)
k (with m ≤ i + 2) both evaluated at some combination of the internal and

external momenta q and {pj}. For instance, in the case of the Ising model, the flow of the second
derivative of the effective average action reads [c.f. Eq. (I.47)]:

∂kΓ
(2)
k (p) =

∫
q
∂kRk(q)Gk(q)

[
Γ

(3)
k (q,−q − p, p)Gk(p+ q)Γ

(3)
k (p+ q,−q,−p)

− 1

2
Γ

(4)
k (q,−q, p,−p)

]
Gk(q) .

(III.1)

In the spirit of the derivative expansion – that is a series expansion in terms of the momentum –,
the flow of these vertices are evaluated at vanishing external momenta {pj = 0} and in addition
each term under the integral is replaced by its series expansion in q. For instance the propagator,
at the second-order of the derivative expansion reads:

Gk(q)
−1 −Rk(q) =

q→0
U ′′k (ψ) + q2Zk(ψ) +O(q4) . (III.2)

The obvious problem of this approximation is that the integration over the internal momentum q
in Eq. (III.1) runs up to |q| → ∞, where the series expansion (III.2) is clearly no longer valid. In
fact, the NPRG tackles this problem using a regulator function. Indeed, in the presence of the
regulator Rk, the typical shape of the integrand appearing in the right-hand side of Eq.(III.1)
is shown in Fig. III.1 and one sees that the momenta |q| & k are simply discarded from the
integral. Therefore, the derivative expansion is valid and accurate provided that the radius of
convergence RDE of this Taylor expansion is larger than the range of the integrals over the
momentum and frequency in the RG flow equations.

One can thus wonder what the radius of convergence of the derivative expansion is. This
question is of course very delicate, and its value depends on the particular choice of the regulator
Rk, but we can however try to give an estimate of this value. For the O(N) model, it is known



95

that the series expansion of Γ
(2)
k=0(p) of the massive theory (that is at a finite distance from the

critical point), which reads

Γ
(2)
k=0(p) =

p→0
m2

(
c1 + c2

p2

m2
+O

[
(p/m)4

])
, (III.3)

where c1 and c2 are constants and m is the mass, has a radius of convergence RLT = 2 in the
low-temperature phase, and RHT = 3 in the high-temperature phase [189–191]. Therefore,
since we have argued in Chap. I that in the NPRG formalism the scale k plays the role of a mass,
we can infer that the series expansion of Γk at the critical point will take the form of a series
expansion in p/k:

Γ
(2)
k (p) =

p→0
m2

(
c′1 + c′2

p2

k2
+O

[
(p/k)4

])
, (III.4)

with a radius of convergence RDE that we can guess to be RDE ' 2-3 by analogy with the
previous result. At equilibrium, the role of the regulator Rk(q) introduced within the NPRG
framework is therefore paramount, since it has to effectively cut off the momentum integration
from |q| ∈ [0,∞[ to 0 ≤ |q| . RDEk in order to allow for the replacement of the correlation
functions and the propagator by their Taylor expansion in the integrals of the flow equations.
This efficient cut-off function Rk probably explains the success of the derivative expansion [23,
192].

For nonequilibrium systems, this issue is subtler because the RG flow equations involve also
a frequency integral. This integral is convergent without any regularization1 which means that
the integrand decreases sufficiently rapidly for the region of large frequencies to contribute a
finite amount. However, the fact that the frequency integral is convergent does not guarantee
that it is accurately computed when the correlation functions are replaced in the integrand
by their frequency-expansion. Therefore, this integral must also be cut off by a regulator to
avoid summing contributions at large frequencies corresponding to a region where the Taylor
expansion of the correlation functions is not valid.

Examples where such a frequency regulator could be needed are numerous: a first example is
the parity conserving generalized voter model, that we already met in Sec. II.3.1.c, and which is
a one-species reaction-diffusion system where the parity of the number of particles is conserved
by the dynamics [151, 153]. As we already emphasized, some approximate results obtained with
the NPRG [95] for this model disagree qualitatively with exact ones [96], indicating that the
fluctuations are not properly taken into account, at least within this level of approximation (the
local potential approximation), which has proven to be very efficient in equilibrium problems.

Our goal in this chapter is to design frequency regulators that generalize the role played by
the regulators in the usual equilibrium NPRG settings to nonequilibrium cases. We therefore
start in the following by explaining how the NPRG is implemented in a general context of out-
of-equilibrium statistical physics. We then discuss the general theoretical properties a frequency
regulator must fulfill. These requirements are then refined when testing our regulators on bench-
mark models: the model A (also called the kinetic Ising model), and its multidimensional-spin
counterpart (the kineticO(N) model) [193]. For these models, we will see that enforcing impor-
tant physical constraints such as causality and the fluctuation-dissipation theorem is especially
important.

1This is true at order two of the derivative expansion, but depending on the approximations performed, the
integral over the frequencies could diverge, in which case regularization would of course be necessary.
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III.1 NPRG approach to nonequilibrium

III.1.1 Effective average action and exact flow equation

As in equilibrium statistical physics, the starting point of the NPRG is a field-theoretical descrip-
tion of the system, usually derived either starting from a coarse-grained description involving a
Langevin equation and using the MSRDJ formalism, or starting from a microscopic description
using a master equation and applying the Doi-Peliti formalism (see Chap. II for a description of
these two formalisms). In both cases, one can derive the analog of the partition function which
has the general form2:

Z[j, j̃] =

∫
DφDφ̃ e−S[Φ]+

∫
x J(x)T ·Φ(x) (III.5)

where x ≡ (~x, t) and
∫
x ≡

∫
dd~x dt, and we now use a matrix notation and define the following

vectors

Φ(x) =

(
φ(x)

φ̃(x)

)
and J(x) =

(
j(x)

j̃(x)

)
. (III.6)

As in equilibrium, the generating functional of the connected correlation and response functions
is W[J ] = logZ[J ]. We also introduce its Legendre transform, the generating functional of the
one-particle irreducible correlation functions Γ[Ψ], where Ψ = 〈Φ〉.

In order to determine the effective action Γ, we apply the NPRG formalism and write a
functional differential equation which interpolates between the microscopic action S and the
effective action Γ. As explained in Chap. I, the interpolation is performed through a momentum
scale k and by integrating over all the fluctuations with momenta |q| > k, while those with
momenta |q| < k are frozen. At scale k = Λ, where Λ is the ultra-violet cutoff imposed by the
(inverse) microscopic scale of the model (e.g. the lattice spacing), all fluctuations are frozen and
the mean-field approximation becomes exact; at scale k → 0, all the fluctuations are integrated
over and the original functional Z is recovered. The interpolation between these scales is made
possible by using a regulatorRk(x), whose role is to freeze out all the fluctuations with momenta
|q| < k. This regulator is introduced via an extra term to the action and thus defining a new
partition function Zk:

Zk[j, j̃] =

∫
DφDφ̃ e−S−∆Sk+

∫
x J(x)T ·Φ(x) , (III.7)

with

∆Sk =
1

2

∫
x,x′

Φ(x)T · Rk(x− x′) · Φ(x′) , (III.8)

where Rk is a 2 × 2 regulator matrix, depending both on space and time, and whose task is to
cancel slow-mode fluctuations. We shall see in the following sections that the regulator form
(and especially its frequency part) is constrained by causality and by symmetry considerations.
We also define the effective average action Γk as a modified Legendre transform of Wk[J ] =
logZk[J ]:

Γk[Ψ] +Wk[J ] =

∫
x
JT ·Ψ− 1

2

∫
x,x′

Ψ(x)T · Rk(x− x′) ·Ψ(x′) (III.9)

2Notice however that depending on the formalism from which it stems from, the fields φ and φ̃ have a different
nature. In the Doi-Peliti formalism they are complex conjugated, whereas one is real (and may be bounded) and the
other imaginary in the MSRDJ context.
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in such a way that Γk coincides with the action at the microscopic scale (Γk=Λ = S) and with
Γ at k = 0 (Γk=0 = Γ), when all fluctuations have been integrated over. The evolution of the
interpolating functional Γk between these two scales is given by the Wetterich equation [36, 37]:

∂kΓk[Ψ] =
1

2
Tr

∫
x,x′

∂kRk(x− x′) ·Gk[x,x′; Ψ] (III.10)

where Gk[x,x′; Ψ] ≡ [Γ
(2)
k +Rk]−1 is the full, field-dependent, propagator and Γ

(2)
k is the 2× 2

matrix whose elements are the Γ
(2)
k,ij defined such that:

Γ
(n)
k,i1,··· ,in [xi; Ψ] =

δnΓk[Ψ]

δΨi1(x1) · · · δΨin(xn)
. (III.11)

The Wetterich equation (III.10) represents an exact flow equation for the effective average action
Γk, which is of course too complicated to be solved without approximations. In the following,
we will use the derivative expansion (DE), which will restrict the functional form of Γk. Instead
of following the full Γk along the flow, only the first terms of its series expansion in space and
time derivatives of Ψ are considered. These terms have to be consistent with the symmetries of
the action S, and we will therefore discuss them when we will consider a specific model.

III.1.2 Some general properties of the out-of-equilibrium regulator

Before focusing on a specific out-of-equilibrium model, we would like to stress out some im-
portant properties that the regulator matrix Rk(x) must fulfill. First of all and for the whole
consistency of the NPRG approach, we recall that the regulator must have a large value when
k → Λ in order to retrieve Γk=Λ = S. Second, the regulator must vanish when k → 0 in order to
have Γk=0 = Γ when all fluctuations have been integrated over. The minimal requirements for
the k-dependence of Rk(x) therefore read:Rk(x) −−−→

k→Λ
∞

Rk(x) −−−→
k→ 0

0
(III.12)

Out of equilibrium, the dependence of the regulator on ~x and t is also constrained, and it is
crucial to have an intuitive idea of the meaning of the regulator for the underlying physical
model. We will therefore describe how this regulator term modifies the underlying model, and
how it implies new specifications for its behaviour.

III.1.2.a Properties for a field theory stemming from a Langevin equation

In this part we consider that the field theory stems from a coarse-grained Langevin equation
which reads:

∂tφ(x) = F [φ] + ξ(x) (III.13)

where F [φ] is a macroscopic force and ξ is some (non-necessarily white) noise. Let us first notice
that the MSRDJ formalism together with Itō’s prescription does not allow for a term in the action
not proportional to the response field φ̃, see Sec. II.2.3. This implies that there is no cut-off term
in the φ2 direction if we wish to preserve this property, and the regulator matrix Rk(x) can be
written in full generality as:

Rk(x) =

(
0 R1,k(x, t)

R1,k(x,−t) 2R2,k(x, t)

)
(III.14)
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where the minus sign in R1,k(x,−t) is a consequence of ∆Sk being written in a matrix form and
the factor 2 in front of R2,k has been included for convenience. Notice that these two regulator
terms have a meaning for the underlying Langevin equation. Indeed, adding a regulator R1,k

means changing the external force in the Langevin equation:

F → F + ∆Fk (III.15)

where ∆Fk(x) = −
∫
uR1,k(u − x)φ(u). The regulator R1,k is thus similar to the usual mass-

like regulator used at equilibrium. We restrict ourselves in the following to additional forces
∆Fk which are causal. This implies R1,k(x, t > 0) = 0, which translates to R1,k(x, t) ∝ Θ(−t)
(Θ being the Heaviside step function).

On the other hand, adding a regulator R2,k is equivalent to modifying the distribution of the
noise. The noise correlations are therefore shifted as:

C(x,x′) ≡
〈
ξ(x)ξ(x′)

〉
→ C(x,x′)−R2,k(x− x′) . (III.16)

In particular, if the initial noise is white: C(x,x′) = δ(x − x′), it becomes “colored” by the
regulator along the flow and the δ-correlations are recovered only at k = 0, where R2,k must
identically vanish (according to Eq.(III.12)).

As we will see in the following, dependent on the specific system that is studied, extra
specifications can be added. In the case of the model A, the fluctuation-dissipation theorem will
for instance enforce a relation between R1,k and R2,k.

III.1.2.b Properties for field-theories stemming from a master equation

Giving an interpretation of the regulators R1,k and R2,k for a field theory stemming from a
reaction-diffusion process is less obvious. The R1,k can be interpreted as a modification of
the reactions involving a single reacting particle, it modifies in particular the diffusion. If R1,k

modifies the diffusion coefficient, a very large R1,k for q > k means that the system is well-mixed
for q > k, and can be treated as a mean-field system. We retrieve the usual interpretation of the
regulator term.

The R2,k on the other hand is more difficult to handle, since it would account for reactions
of the form:

∅ → 2A (III.17)

with a rate R2,k and therefore depending on space and time. Near a transition to an absorbing
state, having a production of particles by the means of the regulator R2,k could thus place the
system out of the critical regime.

III.2 The model A as a benchmark

Now that we have introduced the NPRG formalism for out-of-equilibrium systems, and that we
have given some basic properties that the regulators must fulfill, we focus on the specific exam-
ple of the model A, which will be our benchmark to design and try out a frequency regulator.

III.2.1 Model A, field theory and fluctuation-dissipation theorem

III.2.1.a Model and field theory formalism

The model A or kinetic Ising model is one of the simplest models one can think of to describe
out-of-equilibrium critical phenomena. It is a coarse-grained description of Glauber dynamics
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for Ising spins [7, 193]. On a d-dimensional lattice, Ising spins are allowed to flip with transition
rates that depend on the orientation of their neighbours and satisfy the detailed-balance con-
dition, guaranteeing the system relaxes toward equilibrium at large time. The model A uses a
Langevin description of the spins dynamics, and it is therefore stated in terms of a coarse-grained
local spin variable φ(x, t) following the stochastic equation (in the Itō sense)3:

∂tφ(x, t) = −δH
δφ

+ ζ(x, t) , (III.18)

where H = H[φ] is the usual Ginzburg-Landau Hamiltonian:

H[φ] =

∫
x

(
1

2
(∇φ)2 + V (φ)

)
(III.19)

with x ≡ (x, t),
∫
x ≡

∫
ddx dt, V (φ) = r/2φ2+u/4!φ4, and ζ(x) is a Gaussian white noise taking

into account the fluctuations of the order parameter coming from its coarse-grained nature. The
noise probability distribution P (ζ) is consequently:

P (ζ) ∝ e−
1
4

∫
x ζ(x)2

(III.20)

yielding in particular 〈
ζ(x)ζ(x′)

〉
= 2 δ(t− t′)δd(x− x′) , (III.21)

where we have rescaled the time and the field such that the variance of the noise is 2. At
long time, the system relaxes toward the equilibrium state associated to the Ginzburg-Landau
Hamiltonian (III.19), and such a system is called “relaxational” for this reason. The relaxational
models are usually the simplest nonequilibrium systems to study, since they present extra prop-
erties (such as the fluctuation-dissipation theorem (FDT) that we will detail in the following)
and reach at long time a known equilibrium state.

From the Langevin equation (III.18) a field-theoretical approach can be derived using the
Martin-Siggia-Rose-de Dominicis-Janssen (MSRDJ) approach as explained in Sec. II.2.3. We
recall that within this formalism, the mean value (over the realizations of the noise) of a given
observable O[φ] is given by:

〈O[φ]〉ζ =

∫
DφDφ̃ e−S[φ,φ̃]O[φ] (III.22)

with the action

S[φ, φ̃] =

∫
x
φ̃

(
∂tφ− φ̃+

δH

δφ

)
. (III.23)

III.2.1.b Fluctuation-dissipation theorem

Let us recall that in the MSRDJ formulation of a Langevin equation, the linear response function
χ(x,x′), defined as:

χ(x,x′) ≡ 〈δφ(x)〉
δJ(x′)

|J→0 , (III.24)

3Notice that in this description, the order parameter (the magnetization M) is not conserved by the dynamics. An
alternative version, the model B, describes the relaxation to equilibrium in the case of conservative dynamics for the
order parameter [193].
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can be computed directly from the two-point correlation function

χ(x,x′) =
〈
φ̃(x′)φ(x)

〉
. (III.25)

This property will be used to find how the time-reversal symmetry is encoded within the MSRDJ
formalism.

After the initial conditions have been washed out by the dynamics, the model A relax at
long time toward its equilibrium (Ising) state. This relaxation toward equilibrium is related to a
time-reversal symmetry of the system, which implies in turn that the action S [c.f. Eq. (III.23)]
must be invariant under the following transformation [194, 195]:{

φ′(x, t) = φ(x,−t)
φ̃′(x, t) = φ̃(x,−t)− φ̇(x,−t)

(III.26)

where ḟ(t) ≡ ∂tf(t). Indeed, the correlation functions of φ are invariant under this field trans-
formation, whereas the application of the transformation (III.26) to the response functions〈
φ(x, t)φ̃(x′, t′)

〉
yields:〈

φ(x, t)φ̃(x′, t′)
〉

=
〈
φ(x, t′)φ̃(x′, t)

〉
−
〈
φ(x, t′)φ̇(x′, t)

〉
. (III.27)

If t > t′ then the first term in the right-hand side of the previous equation vanishes because of
causality, and we get the fluctuation-dissipation theorem:〈

φ(x, t)φ̃(x′, t′)
〉

= −
〈
φ(x, t′)φ̇(x′, t)

〉
, (III.28)

which is the hallmark of time-reversal symmetry and links the correlation function (the fluctua-
tions, in the right-hand side of the previous equation) to the response function (the dissipation,
in the left-hand side) in equilibrium dynamics.

III.2.2 NPRG formulation

III.2.2.a Ansatz for the effective average action

We study the model A using the derivative expansion (DE) approximation, which means that
we propose an ansatz for the effective average action Γk built as a Taylor expansion in terms
of the time and space derivatives of the fields. To construct this ansatz we use the symmetries
of our model, and in particular the fluctuation-dissipation theorem, encoded in the transforma-
tion (III.26). This allows us to write the following ansatz for Γk, at first order in time derivative,
and second order in space derivative [21]:

Γk[ψ, ψ̃] =

∫
x
ψ̃

[
Xk(ψ)

(
∂tψ − ψ̃

)
+
δγeq,k

δψ(x)

]
=

∫
x
ψ̃

[
Xk(ψ)

(
∂tψ − ψ̃

)
+ U ′k(ψ)− Zk(ψ)∇2ψ − 1

2
Z ′k(ψ)(∇ψ)2

]
(III.29)

where, at equilibrium:

Γeq,k[ψ] =

∫
ddx γeq,k(ψ(x, t)) (III.30)

=

∫
ddx

[
1

2
Zk(ψ)(∇ψ)2 + Uk(ψ)

]
. (III.31)
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Let us briefly justify the form of Γk. It is natural to choose it invariant under transformation
(III.26) so that the fluctuation-dissipation theorem holds at all k. This implies that terms
proportional to ψ̃2 and ψ̃∂tψ renormalize in the same way and therefore depend on a single
function Xk, which is a tremendous simplification of the RG flow. The second part of the
ansatz, ψ̃ ∂γeq,k/∂ψ(x, t) is linear in ψ̃ and therefore invariant on its own since the transfor-
mation (III.26) generates a term proportional to ∂tψ ∂γeq,k/∂ψ(x, t) = ∂tγeq,k(ψ) that vanishes
after time integration in the stationary regime. Notice that because of the fluctuation-dissipation
theorem, higher-order terms in ψ̃ are not allowed at this order of the derivative expansion, and
thus Uk, Zk, and Xk are functions of ψ only (see also [188] for further explanations).

Choosing ansatz (III.29) implies to use only regulators compatible with (III.26) and we show
in the following that it is indeed possible to devise such regulators even when they depend on
frequencies. Of course, it is possible to consider regulators that are incompatible with (III.26)
at the price of giving up the fluctuation-dissipation theorem for k > 0. This implies that in
Γk the two terms ψ̃2 and ψ̃∂tψ do no longer renormalize in the same way. In this case, the
ansatz (III.29) becomes

Γk[ψ, ψ̃] =

∫
x
ψ̃

[
Xk(ψ)∂tψ +Wk(ψ)ψ̃ +

δγeq,k

δψ(x)

]
. (III.32)

Notice that when the field dependence of Xk(ψ) and Wk(ψ) is neglected (Xk(ψ) → X̄k and
Wk(ψ) → W̄k) and that the regulator is frequency-independent the flows of X̄k and W̄k are
identical (see for instance [53]). This incidental property is however lost when the field depen-
dence of these functions is kept.

Using ansatz (III.29) drastically simplifies the resolution of the Wetterich equation since a
functional differential equation is converted into a set of partial differential equations over the
functions Uk, Zk and Xk. The role of the regulator is essential for the validity of this approxi-
mation, and we therefore discuss its properties in more details in the following section.

III.2.2.b Derivation of the flow equation

In Sec. III.1 we introduced the NPRG formalism for an out-of-equilibrium system in a formal way
and we now give more details and explain how to derive the flow equations. Since the formalism
is the same for the multidimensional-spin counterpart of the model A, the kinetic O(N) model,
we focus in the following on the general case where the coarse-grained spin variable φ is now
a N -dimensional vector, denoted φ. We therefore modify the ansatz for the effective average
action Γk to be

Γk[ψ, ψ̃] =

∫
x

∑
i

ψ̃i

[
Xk(ρ)

(
∂tψi − ψ̃i

)
+ ψiU

′
k(ρ)

+
ψi
2
Z ′k(ρ)(∇ψ)2 − Zk(ρ)∇2ψi − Z ′k(ρ)∇ψi(ψ · ∇ψ)

+
ψi
4
Y ′k(ρ)(∇ρ)2 +

1

2
Yk(ρ)∇ρ∇ψi

]
,

(III.33)
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where ρ = ψ2/2. In order to compute the RG flow of the functions involved in Eq. (III.29), we
define them in the following way:

U ′k(ρ) =
1

ψ
FT

(
δ Γk

δψ̃1(x)

∣∣∣∣
Ψ=(ψ,0)

)∣∣∣∣∣
ν=0,p=0

(III.34)

Zk(ρ) =

[
∂p2 FT

(
δ2Γk

δψ̃2(x)δψ2(y)

∣∣∣∣
Ψ=(ψ,0)

)]∣∣∣∣∣
ν=0,p=0

(III.35)

Xk(ρ) =

[
∂iν FT

(
δ2Γk

δψ̃2(x)δψ2(y)

∣∣∣∣
Ψ=(ψ,0)

)]∣∣∣∣∣
ν=0,p=0

(III.36)

where Ψ = (ψ, 0) is a 2N constant vector where Ψ1 = ψ1 = ψ is a constant field and Ψ2 =
· · · = Ψ2N = 0, where FT(·) means the Fourier transform as defined in Eq. (1) and p and ν
are the momentum and frequency associated to this transform. Notice that in the case of the
model A, the function Yk does not appear in the ansatz for Γk, and that the functions Zk and
Xk are evaluated in the ψ1 = ψ, ψ̃1 = ψ̃ direction. In the spirit of the derivative expansion, we
evaluate the renormalization functions at zero external momentum and frequency since it is in
this limit that the approximation is valid. The flow of these functions is then computed using
the Wetterich equation (III.10) with the initial conditions U ′Λ = V ′, ZΛ = 1 = XΛ.

As an example, the flow of U ′k for the model A (N = 1) is given by

∂kU
′
k(ρ) =

1

ψ
FT

(
δ

δψ̃
∂kΓk

∣∣∣∣
Ψ=(ψ,0)

)
(III.37)

=
1

ψ
FT

(
1

2
∂̃kTr

[∫
ti,xi

Γ
(3)

k,ψ̃
·Gk

]∣∣∣∣
Ψ=(ψ,0)

)
(III.38)

where Γ
(3)

k,ψ̃
≡ δΓ

(2)
k /δψ̃ and ∂̃k ≡ ∂kRk ∂/∂Rk. Taking the appropriate functional deriva-

tives of (III.29) and evaluating the result at the uniform and stationary field configuration
Ψ(x, t) = (ψ, 0), one finds in Fourier space:

Γ
(3)

k,ψ̃
(p, ν; q, ω;ψ) = ψ

(
h3(p, ν; q, ω; ρ) −2X ′k(ρ)
−2X ′k(ρ) 0

)
(III.39)

with h3 = 2ρU
(3)
k + 3U ′′k +Z ′k(p

2 + q2 +p · q)− iνX ′k, which is a function of ρ. The propagator Gk
in Eq. (III.38) is obtained by inverting the 2× 2 matrix (Γ

(2)
k +Rk) evaluated at Ψ(x, t) = (ψ, 0).

One finds:

Gk(q, ω; ρ) =

(
−R2,k(q2,ω)+2Xk
P (q2,ω)P (q2,−ω)

1
P (q2,−ω)

1
P (q2,ω)

0

)
(III.40)

where P (q2, ω) = h(q2, ω) + iωXk with h(q2, ω) = Zk(ρ)q2 +R1,k(q
2, ω) + U ′k(ρ) + 2ρU ′′k (ρ).
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Figure III.2 – Typical shape of the real part of the regulator R1,k(q, ω) in the case where the fre-
quency and momentum contributions can be factorized as in Eq. (III.42). Only the region where
both |q| . k and |ω| . k acquire a large mass (left). An alternative regulator (right) could
give a large mass to the system both when |q| . k or |ω| . k. It is however difficult to design a
non-factorized regulator which fulfills causality.

III.2.2.c Definition of the dimensionless variables and functions

Since we are interested in the scale-invariant regime, we introduce the dimensionless and renor-
malized variables, fields and functions:

x̂ = k x

t̂ = Z̄kX̄
−1
k k2 t

s = log(k/Λ)

ˆ̃
ψ(x̂, t̂ ) = k(2−d)/2Z̄

1/2
k ψ̃(x, t)

ψ̂(x̂, t̂ ) = k(2−d)/2Z̄
1/2
k ψ(x, t)

ρ̂(x̂, t̂ ) = k2−dZ̄kρ(x, t)

Û(ρ̂) = k−dUk(ρ)

Ẑ(ρ̂) = Z̄−1
k Zk(ρ)

X̂(ρ̂) = X̄−1
k Xk(ρ)

(III.41a)

(III.41b)

(III.41c)

(III.41d)

(III.41e)

(III.41f)

(III.41g)

(III.41h)

(III.41i)

where the running coefficients Z̄k ≡ Zk(ρ0) and X̄k ≡ Xk(ρ0) are defined at a fixed normal-
ization point ρ0, and we have defined s the (negative) RG time. In the critical regime, these
running coefficients are expected to behave as power laws Z̄k ∼ k−η(k) and X̄k ∼ k−ηX(k) with
η(k) = −k∂k ln Z̄k and similarly for ηX(k). The anomalous dimension η and the dynamical ex-
ponent z can be expressed in terms of the fixed-point values of η(k) and ηX(k) as η ≡ η∗ and
z ≡ 2− η∗ + η∗X .

We furthermore define the dimensionless regulators r1 and r2 such that:

R1,k(q, ω) = yZ̄kk
2r1(y, ω̂)

= yZ̄kk
2ρ1(ω̂)r(y) (III.42)

R2,k(q, ω) = X̄kr2(y, ω̂)

= yX̄kρ2(ω̂)r(y) (III.43)

with y = q̂2 and ω̂ = X̄kZ̄
−1
k k−2ω and where we have assumed for simplicity that the spatial

and frequency parts of the regulators can be factorized, and where r(y) is the usual momentum
regulator, for example an exponential regulator:

r(y) =
a

ey − 1
(III.44)
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where a is a free parameter. The frequency part of the regulators, ρ1 and ρ2, also have to satisfy
condition (III.55), and we give explicit examples in the following.

Notice that we have assumed that the spatial and frequency parts of the regulators can
be factorized, for the causality condition of the regulator can be simply enforced in this case.
However, having a factorized form means that only the region where both |q| . k and |ω| . k
will efficiently be cut off, although it might be more sensible to cut off regions where either
|q| . k or |ω| . k, see Fig. III.2. In the latter case, it is however difficult to enforce causality and
we have thus only focused on factorized regulators as in Eqs. (III.42) and (III.43).

From the previous definitions we deduce the regulator derivatives with respect to k:

∂sR1,k(q, ω) = −k2Z̄ky(ηr1 + 2y∂yr1 + (2− η + ηX)ω̂∂ω̂r1) (III.45)

∂sR2,k(q, ω) = −X̄k(ηXr2 + 2y∂yr2 + (2− η + ηX)ω̂∂ω̂r2) . (III.46)

Finally, applying the Wetterich equation (III.10) on the definitions (III.34),(III.35) and (III.36)
of the functions Û ′, Ẑ and X̂, we can derive their flow equation as the sum of a dimensional
part and a dynamical part:

∂sÛ
′ = ∂sÛ

′|dim + ∂sÛ
′|dyn (III.47)

∂sẐ = ∂sẐ|dim + ∂sẐ|dyn (III.48)

∂sX̂ = ∂sX̂|dim + ∂sX̂|dyn (III.49)

The definition of the dimensionless variables yields the following dimensional parts:

∂sÛ
′|dim = (η − 2) Û ′ + (d+ η − 2) ρ̂ Û ′′ (III.50)

∂sẐ|dim = η Ẑ + (d+ η − 2)ρ̂ Ẑ ′ (III.51)

∂sX̂|dim = ηX X̂ + (d+ η − 2)ρ̂ X̂ ′ (III.52)

whereas the dynamical part depends on the frequency regulator and we discuss it in the follow-
ing.

III.2.3 NPRG results without a frequency regulator

In a first step, we consider frequency-independent regulators, which means R2,k = 0 and
R1,k(q, ω) = R1,k(q). In this case, the calculation of the flow equations is much simpler since
the integration over frequency can be done analytically using residues. We show the explicit
expression of the flow equations in the case not regularized in frequencies in App. C.1.

In the kinetic Ising case, we keep the full ρ-dependence of the functions Uk, Zk and Xk and
derive the flow equation for the derivative expansion (DE) at the first order in time derivative
and second order in space derivative. On the other hand, we perform in the kinetic O(N)
case, on top of the derivative expansion, a field expansion usually called the local potential
approximation prime (LPA’) which consists in discarding the function Yk(ρ) and neglecting the
field dependence of Zk(ρ) and Xk(ρ): Zk(ρ)→ Z̄k and Xk(ρ)→ X̄k.

In both cases, notice that the flows of Û ′(ρ̂) and Ẑ(ρ̂) do not depend on X̂(ρ̂) and are the
standard equilibrium flow equations of the Ising model (respectively the O(N) model). This
is not surprising because with the regulators chosen above, the model A satisfies for any k the
fluctuation-dissipation theorem which is the hallmark of thermal equilibrium. Consequently, the
critical exponents ν and η for the model A (resp. the kinetic O(N) model) are the same as in
the static Ising model (resp. O(N) model).

Our results are optimized with respect to the parameter a of the regulator using the principle
of minimum sensitivity (PMS) [104] (see the App. C.2 for a more detailed explanation about the
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Figure III.3 – Values of the critical exponents η (a), ν (b) and the dynamical exponent z = 2+ηX−η
(c) in d = 3 for the frequency-independent regulator R1,k(q, ω) = R1,k(q), R2,k(q, ω) = 0 and
different values of the regulator parameter a in Eq. (III.44). The PMS value is reached for a ' 2 for
the two static exponents η and ν and for a ' 0.6 for the dynamical exponent z.

PMS). According to this principle, the critical exponents do not depend on the unphysical pa-
rameter a if no approximation is performed, and we therefore select the values of this parameter
where the exponents are stationary (see Fig. (III.3) for model A in d = 3).

The numerical integration of the flow equations (C.1)-(C.3) for the model A yields the results
displayed in Table III.1 for d = 3 together with the results coming from perturbative field theory
(PFT), Monte Carlo (MC) simulations and previous NPRG works where the field-dependence of
the functions Zk and Xk was neglected. For d = 2, the results are given in Table III.2.

Similarly, for N = 2 and N = 3, the integration of the equations (C.4)-(C.6) yields the
results displayed in Table III.3. Note that an expansion of these equations in ε′ = d − 2 yields
η = ηX = ε′/(N − 2) and therefore a trivial dynamical exponent z = 2 in d = 2 for N > 2.

Finally, notice in the plots of Fig. III.3 that stationarity yields values of a that are close to each
other for both η and ν: aPMS

η ' aPMS
ν ' 2, whereas the PMS for z is obtained when aPMS

z ' 0.6.
The internal consistency of the PMS relies on the fact that the values of an exponent computed
either at its stationary point or at the stationary points of the other exponents remain close. This
is not the case here since we find for instance that η(a = aPMS

z ) = 0.0499 which differs by about
13% from its PMS value whereas η(a = aPMS

ν ) and ν(a = aPMS
η ) differ from their PMS values

by less than 1%. This is a signal that the exponent z is poorly determined and it is therefore
mandatory to study the impact of the frequency-dependence of the regulator on this exponent.
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Reference ν η z

This work 0.628 0.0443 (a): 2.032 (b): 2.024
(c): 2.024 (d): 2.023

NPRG 0.6281 [95] 0.0443 [95] 2.14 [188]
PFT [196] 0.6304(13) 0.0335(25)
MC [77] 0.63002(10) 0.03627(10)
CBS [81] 0.629971(4) 0.036298(2)
PFT [84] 2.0237(55)
MC [85] 2.032(4)

Table III.1 – Critical exponents of model A in d = 3 from different methods. In the first row,
(a): without frequency regulator, (b): using the first frequency regulator defined by Eq. (III.56),
(c): second regulator (III.59) and (d): third regulator (III.60). All these results are obtained at
the stationary points, aPMS. The exponent z in the NPRG row was obtained in [188], where the
field-dependence of the functions Zk and Xk was neglected. PFT stands for perturbative field theory
methods, MC for Monte Carlo simulations, and CBS for conformal bootstrap methods.

III.2.4 NPRG results with a frequency regulator

We now focus on regulating the frequencies in the flow equations and show how it modifies the
NPRG results.

III.2.4.a Fluctuation-dissipation theorem for the frequency regulator

In addition to the properties we discussed before, the regularization of frequencies for the
model A necessitates an extra property which is to fulfill the fluctuation-dissipation theorem
for all k. Indeed, because we choose the ansatz (III.29) to be invariant under the fluctuation-
dissipation theorem transformation (III.26), the regulator terms must also satisfy this symmetry
along the flow. We show in App. C.3 that this implies that R1,k and R2,k satisfy the following
relation:

R1,k(x)−R1,k(x,−t) + Ṙ2,k(x)− Ṙ2,k(x,−t) = 0 . (III.53)

The above condition, together with the facts that we choose R1,k to be causal and R2,k even in
time [since it comes in

∫
x,x′ φ̃(x)R2,k(x− x′)φ̃(x′)], lead to the following relation:

R1,k(x) = 2Θ(−t) Ṙ2,k(x) . (III.54)

Notice that the case R2,k(x) = 0 which implies that R1,k(|x|, t) ∝ δ(t) is not included in the
solutions of (III.54) which holds only for t 6= 0. Eq. (III.54) becomes in Fourier space:

R2,k(q, ω) =
R1,k(q,−ω)−R1,k(q, ω)

2iω
(III.55)

where the Fourier transform is defined in Eq. (1). Notice that the particular case R2,k = 0 and
R1,k(q, ω) independent of ω is a solution of (III.55).

III.2.4.b Specific choices of frequency regulators

We now have determined all the constraints a frequency regulator for the model A must fulfill,
and we present here the three specific regulators – all suited for regulating large frequencies but
not equally efficient – we use for computing the dynamical exponent z.
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Reference ν η z

This work 1.13 0.29 (a): 2.28 (b): 2.16 (c): 2.15 (d): 2.14
Exact 1 0.25
PFT [197] 2.093
MC [198] 2.1667(5)

Table III.2 – Critical exponents of model A in d = 2 from different methods. In the first row, (a):
without frequency regulator, (b): using the frequency regulator defined by Eq. (III.56), (c): second
regulator (III.59) and (d): third regulator (III.60). All these results are obtained at the stationary
points, aPMS. We also display results for the dynamical exponent z coming from perturbative field
theory (PFT) and Monte Carlo (MC) simulations.

Reference ν η z

This work (N = 2) 0.70 0.039 (a): 2.029 (b): 2.024 (c): 2.023
This work (N = 3) 0.75 0.037 (a): 2.025 (b): 2.021 (c): 2.021
PFT (N = 2) 0.6704(7) 0.0349(8) 2.026
PFT (N = 3) 0.7062(7) 0.0350(8) 2.026

Table III.3 – Critical exponents of the kinetic O(N) model in d = 3 for different values of N and
from different methods. The exponents η and z have been computed in this work using the LPA’ (see
Sec. III.2.3 in the main text for a definition). In the two first row, (a): without frequency regulator,
(b): using the frequency regulator defined by Eq. (III.56) and (c): second regulator (III.59). All
these results are obtained at the stationary points, aPMS. The static exponents η and ν for the per-
turbative field theory (PFT) comes from [87], the dynamic exponent z is computed using the value
of η from [87] and the relation z = 2 + cη from [86], which is a relation obtained perturbatively
at order ε4, with ε = 4 − d. Very few MC studies exist for the determination of z. More details on
the determination of this exponent can be found in [88] (see also reference [199] for a review of
the determination of the static exponents).

A first convenient choice for the regulator in direct space is the following:

R1,k(x, t) =
1

τk
Θ(−t) et/τkrk(x) , (III.56)

where rk(x) is the space regulator (usually exponential) whose Fourier transform is given by
Eq. (III.44), and τk = β X̄kZ̄

−1
k k−2 with β a dimensionless free parameter that we use for

optimization. We display the time-dependent part ρ1(t) of this regulator in Fig. III.4. The
choice of this first regulator is motivated by three main reasons: (i) it is causal and satisfies
relation (III.54), (ii) it decays sufficiently fast in time so that the noise correlations (III.16)
are not modified too drastically, (iii) its Fourier transform can be computed analytically and is
a simple rational fraction. Indeed, using dimensionless frequencies, the Fourier transforms of
their frequency part read:

ρ1(ω̂) =
i

i− βω̂ , (III.57)

ρ2(ω̂) =
β

1 + β2ω̂2
. (III.58)

When β → 0, we retrieve the usual non-regulated in time theory. Now that we have specified the
frequency and space parts of the regulators, we check that they both fulfill NPRG requirements:
in addition to a sufficiently fast decay, they must also satisfy some limits when k → 0 and k → Λ:
R1,k(q, ω) and R2,k(q, ω) must both vanish when k → 0 in order to retrieve the original theory.
In the limit k → Λ, we design R1,k such that R1,k(q, ω) ∼

k→Λ
Λ2 � 1: the system acquires a large
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Figure III.4 – Typical shape of the time-dependent part ρ1(t) of the three regulators studied: the
first regulator is defined in Eq. (III.56), the second in (III.59) and the third in (III.60).

“mass” that freezes the fluctuations. Finally, one finds R2,k(q, ω) ∼
k→Λ

aβ, which means the initial

noise correlation is modified which is harmless for the computation of universal quantities.
In order to compare the results obtained with different frequency regulators, we have engi-

neered two other regulators in addition to this simple first one (see Fig. III.4 for a plot of their
time-dependent part). The second regulator we propose is defined as:

R1,k(x, t) =
rk(x)

2τk
×
{

(t+ 2τk)/τk if − 2τk ≤ t ≤ 0,
0 otherwise.

(III.59)

Notice that its Fourier transform can also be computed analytically. Since singularity in the time
domain means slow decay in the frequency domain, the more singular in t the slower the decay
of ρ1(ω̂) at large ω̂. This second regulator is discontinuous at t = 0 and t = −2τk and we
therefore expect it to be less effective than the first one.

Finally, the third frequency regulator we consider is the following:

R1,k(x, t) =
A

τk
Θ(−t) e−(1+t/τk)2+τk/trk(x) (III.60)

where A is a constant such that the area under its curve is one, in order to retrieve a Dirac
function as β → 0. This third regulator is infinitely differentiable at t = 0 and we therefore
expect it to be sharper than the two previous regulators in the frequency domain. On the other
hand, the computation of its Fourier transform has to be done numerically.

Finally, we insist on the fact that enforcing causality along the flow is not an obvious task:
although choosing a regulator that is causal [R1,k(x, t) ∝ Θ(−t)] seems at least necessary to
preserve causality, one must check that it also preserves causality all along the flow [21]. As we
explain in App. C.4, causality means that the poles of the response function

χ(ω) =
1

P (q2,−ω)
=

1

h(q2,−ω)− iωXk
, (III.61)

where h(q2, ω) = Zk(ρ)q2 + R1,k(q
2, ω) + U ′k(ρ) + 2ρU ′′k (ρ), must lie in the lower-half of the

complex ω-plane. When R1,k(q
2, ω) is a (simple) rational fraction as it is the case for the first

regulator defined by Eq. (III.56), it is easy to check that the causality of the response function is
enforced all along the flow. For the second regulator (III.59) and the third regulator (III.60), we
only checked it for the initial condition, and at the fixed point of the flow.

We also stress that if R1,k(q
2, ω) is a rational fraction, one can hope to design “by hand”

a regulator for which all the poles of the response function have a negative imaginary part.
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Figure III.5 – Values of the critical exponent z in d = 3 for the flow regulated in frequencies for
different values of the regulator parameter a. For each value of a, the value of β has been chosen
such that z is extremal. The three curves are obtained from top to bottom by the regulators defined
in Eqs. (III.56), (III.59) and (III.60). The PMS value is reached for a ' 1.5 for the three regulators.

However, if one wishes to build a regulator that decays faster than a power law, then the only
remaining option is to construct it in direct space and afterwards check the decay in Fourier
space.

III.2.4.c Results with a frequency regulator

In the presence of the three regulators defined respectively in Eqs. (III.56,III.59,III.60), the flow
equations of Û ′ and Ẑ remain identical to those at equilibrium (C.1)-(C.2) since the fluctuation-
dissipation theorem is valid all along the flow. On the other hand, the flow of X̂ now depends
on β and is more complicated than without a frequency regulator. For the first regulator defined
by Eq. (III.56), the integrals over the frequencies in the flow equation can still be performed
analytically since its Fourier transform is a simple rational fraction in ω̂. For the two other
regulators, the integrals over frequencies must be computed numerically.

We have numerically integrated the new flow equations for different values of a and β in
order to compute the critical exponents at the stationary point in the (a, β)-plane. For each
value of β, we find a value of a where z is extremal. This yields a curve z(a), see Fig. III.5, that
shows a maximum which is therefore the stationary point in the (a, β)-plane. One notices that
the PMS value is now obtained for aPMS

z ' 1.5 (instead of 0.6 in the case without a frequency
regulator), which is closer to the PMS value of η and ν (obtained at a ' 2). More precisely, we
find for instance for the model A in d = 3 that η(a = aPMS

z ) differs by about 1% from its PMS
value, and ν(a = aPMS

z ) and z(a = aPMS
ν ) differ from their PMS values by less than 1%.

In the light of the above, it is clear that the frequency-independent regulators are simply
a particular class of regulators. In our examples, they correspond to the limit β → 0 of the
three frequency regulators studied. Their main advantage is their simplicity since there is only
one regulator which lies in the φ̃ − φ direction and also because the frequency integrals can be
performed analytically in the flow equations. However, we can see in Fig. III.6 that from the
point of view of the PMS, the class of regulators with β = 0 does not correspond at all to an
extremum in the β-direction, even for the value a = 0.6, which is optimal at β = 0. Moreover,
the difference between aPMS

z ' 1.5 and a = 0.6 is not only quantitatively important, it is also
qualitatively important because it makes the PMS a self-consistent criterion for optimizing the
critical exponents. It is remarkable and reassuring that this latter value of aPMS

z , which has a
meaning per se because it can be compared to aPMS

η ' aPMS
ν ' 2, is extremely stable when
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Figure III.6 – Exponent z forN = 1 in d = 3 as function of the parameter β of the regulator (III.56).
This curve is obtained for a = 0.6 which corresponds to the stationary point of z at β = 0.

changing the shape of the regulator, see Figs. III.4 and III.5. Finally, we find as expected that the
accuracy of the optimized value of z−2 found in this work compared to the average of the other
estimates, z − 2 ' 0.028, is comparable to the accuracy of the optimized value of η compared to
the world’s best value, that is, is around 15%, see Table. III.1. Together with the stability of our
results, this is a strong indication that the regulators we study here are almost optimal at this
order of the derivative expansion.

III.3 Conclusion

We have shown in this chapter how to engineer regulators of the NPRG flow equations acting
on frequencies, a feature that is believed to be of tremendous importance when solving generic
out-of-equilibrium problems with the derivative expansion, since the regulator guarantees the
validity of this approximation. Causality, of course, has to be taken care of and is the main pre-
occupation when designing such a regulator. Therefore, to the contrary of the space regulator
which can be engineered directly in Fourier space, it is convenient to think first in direct space
for a frequency regulator to enforce causality. For systems that relax toward equilibrium, intro-
ducing a second regulator in the φ̃− φ̃ direction connected to the other one in the φ̃−φ direction
is mandatory to preserve the time-reversal symmetry all along the flow, a feature that is surely
desirable and that, at least, simplifies the formalism. The status and whether or not a regulator
in the φ̃− φ̃ is mandatory for non-relaxational models depend on the precise symmetries of these
models.

Moreover, to discriminate between the functions that are candidates for regularizing the fre-
quencies, a deeper study could be carried out: either by testing the convergence of the approx-
imation schemes when different regulator are used in the following of [67], or by comparing
their effect on the trajectories of the flow in the spirit of [106].

The next step will be to implement frequency regulators for generic out-of-equilibrium mod-
els not displaying such a strong constraint as the fluctuation-dissipation theorem. For instance,
in the previous NPRG studies of the directed percolation universality class, only results at the
LPA’ were reported [98, 144]. Improving these results by going at order two of the derivative
expansion surely requires the use of a frequency regulator. The parity conserving generalized
voter model is another candidate since the NPRG results are not fully satisfactory for this model;
see [96] for an exact result that disagrees with the conclusions of [95] obtained within the LPA
without frequency regulators.
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Scale invariance is ubiquitous in natural landscapes: mountain ranges, river networks, coast-
lines [9, 200]. All have portions of their features that can be considered as a reduced-scale image
of the whole. Coastlines are especially famous for being self-similar since Mandelbrot entitled
his seminal paper about fractals “How long is the coast of Britain?” [201], underlining the fact
that the length of a fractal object depends on the length scale. Indeed, measuring the length of
the coastline of Britain (following all the bays and peninsulas) with a one-kilometer ruler yields
some (finite) result. Start again taking now a one-meter ruler: you will realize that the bays
and peninsulas you were measuring contain in fact more sub-bays and sub-peninsulas, and the
resulting length will be much larger than the previous one. Measure again with a one-millimeter
ruler: the final length will still be growing. Such a puzzling result – that the length of an object
may depend on the length scale and may therefore grow to infinity as the length scale is reduced
– is simply the signature of a fractal (or scale-invariant) property. Such objects do not have an
intrinsic length scale (except of course the microscopic length of the smallest part composing
it), and a measure of their length relative to a given scale does not really make sense. How fast
grows the length when the measuring scale is reduced, however, has a meaning and yields the
definition of the fractal dimension introduced by Mandelbrot [202].

This kind of self-similar behaviour is found everywhere when studying landscapes: the self-
similarity of branching rivers networks – with brooks merging into creeks that become streams
flowing to form rivers – is also a well-known fact in geomorphology and was studied exten-
sively (see [24, 200] and references therein). As an example, the length ` of a river (or any
stream) is found to be related to the drainage basin area a – that is the area of all the streams
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flowing to this river – by a scaling law which reads:

` ∝ aθ (IV.1)

where θ ' 0.5 − 0.6 according to experimental data. This scaling behaviour, first noticed by
Hack in 1957 [203] is verified experimentally for most river networks across the Earth (see for
example Fig. IV.1). Many other experimental scaling laws exist concerning rivers that highlight
their intrinsic scale invariance, and one may therefore wonder where this self similarity comes
from.

Being familiar with phase transitions, we could be tempted to notice that scale invariance
is a feature that arises naturally at criticality where the only characteristic length of the system
– the correlation length ξ – diverges, hence leading to a self-similar regime. However, as far as
equilibrium phase transitions are concerned, this critical behaviour demands the fine tuning of a
parameter, usually the temperature, which has to be set precisely to T = Tc in order to observe
the scale-invariant regime. Which parameter is then fine-tuned in natural landscapes that makes
them display this critical behaviour?

To answer this question, the so-called self-organized criticality (see for instance [10, 11]
and reference therein) was very appealing and has been thought to be a good candidate for
explaining and understanding this fine-tuning to criticality. However, the ambiguity for defining
precisely the self-organized criticality and the difficulty to link the theory to the natural data
decreased its attractiveness, at least on the theoretical point-of-view.

On the other hand, some other out-of-equilibrium systems (such as the Navier-Stokes equa-
tion in its turbulent regime, or the Kardar-Parisi-Zhang equation) are known to display generic
scaling, that is to be critical without fine-tuning. For this reason, we are interested in this
chapter in finding a coarse-grained description of the phenomena leading to the formation of
scale-invariant landscapes, having in mind to find equations that would display generic scaling.
More precisely, we will not be interested in coastlines or river networks but rather in the erosion
of landscapes.

The characterization of the scale invariance of erosional landscapes is not as obvious as the
fractal behaviour of river networks. However, given the topographic map of an area, one can
easily deduce the associated river network since water flows according to the steepest slope.
Therefore, if river networks display scale invariance, it seems sensible that the topographic map
itself also exhibit some scaling, and we will see in the following that it is indeed the case.

IV.1 Experimental facts and models

IV.1.1 Experimental data

In this chapter we are mainly interested in erosional landscapes, such as mountain ranges, that
also display scale invariance [204]. This scale invariance – less obvious than for other geophysics
phenomena – is unraveled by computing the roughness of the landscape, given by the height-
height correlation function:

C(~r) =
√
〈|h(~x+ ~r)− h(~x)|2〉~x , (IV.2)

where 〈·〉~x denotes a spatial averaging (over ~x). This correlation function is shown in various
empirical measurements to scale as C(~r) ∼ |~r|α, where α is known as the roughness exponent.
Although the scaling behaviour of erosional landscapes is a well-documented fact [26, 205–
212], an unambiguous and unique value of the roughness exponent α remains elusive as we will
explain in the following. We briefly review the different methods that exist for computing the
roughness exponent α, and that have been used to gain insights about the erosion mechanisms.
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Figure IV.1 – Figure from [200]. Main stream length ` versus the area a of the drainage basin
for 37 of the world’s largest basins. Hack’s exponent θ appearing in Eq. (IV.1) is estimated to be
θ ' 0.50 in this case.

IV.1.1.a Field measurements

Deeper insight into the structure and scale invariance of landscapes has been gained after the in-
troduction of digital elevation maps (DEMs). Usually, these DEMs consist of elevations, obtained
by topography from space, in a grid whose spacing is of the order of 10− 90 m. Using this grid
of digital elevations, various methods can be used to compute the roughness exponent α, such
as variograms, box-counting, power-spectrum, etc. (see for instance [24] for details about these
methods). We should however warn that these different methods may yield different values of
the roughness exponent, mostly because of the finite range of available data [9, 213, 214]. One
should at least make sure that the same method is used when computing α for different areas
in order to compare their roughness [214]. Notice that in the geophysics literature one can also
find, instead of the roughness exponent, the fractal dimension D. The relation between the two
quantities is α = d+ 1−D, where d is the spatial dimension [9].

Let us briefly explain one of the existing method to compute the roughness of a landscape:
the variogram technique (see for instance [206]), which simply relies on the computation of
the height-height correlation function (IV.2). The variogram is constructed by considering the
variance of the elevation as a function of the horizontal distance: for a pair of point (x1, y1, z1)
and (x2, y2, z2), the contribution to the variance is (∆z)2 = (z1−z2)2 and the horizontal distance
is ∆x =

√
(x1 − x2)2 + (y1 − y2)2 (see Fig. IV.2 for an illustration). These quantities are then

computed for every pair of points on the grid, and the slope of the logarithmic plot of the
standard deviation against the logarithm of the distance yields the roughness exponent.

IV.1.1.b Laboratory experiments

In addition to the natural data available through digital elevation models, laboratory experi-
ments that mimic natural erosion of landscapes have flourished in the recent years (see [208]
and references therein for a review). Although imperfect and in spite of differences of spatial
scale, material properties and the simplicity of the settings, these experiments produce spatial
structure and kinematics that compare quite well with natural systems. The fact that despite a
clear understanding of the underlying erosional mechanisms, very simple experimental models
still resemble strikingly to natural landscapes probably arises from the scale-invariant property
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Figure IV.2 – Schematic illustration from [206] of the computation of variograms. The variance of
the elevation difference ∆z is the height-height correlation function (IV.2) from which the roughness
exponent can be computed.

of the natural systems, and is probably the signature of some universality in these phenomena.
Unfortunately, and despite the large number of such experiments, it seems that none of them

focused on the scale invariance of the topography itself, and there is no available results for the
roughness exponent α from these laboratory experiments.

IV.1.1.c Numerical studies

Numerical studies have a long history in the geophysics of erosion, and more precisely in trying
to understand the formation of river networks in landscapes (see for instance [24] and refer-
ences therein). Many of these numerical models are based on discrete models, where erosion is
simulated by following the flow of discrete units of raindrop down the steepest slope and erod-
ing the hillslope with some phenomenological dependence between the erosion process and
the slope (see for instance [206, 209, 210]). Some other numerical studies rely on continuous
descriptions based on partial differential equations, such as the Kardar-Parisi-Zhang equation
(that we will describe in more details in the following) or on various other equations, focusing
on different features of the landscape erosion [211, 212].

Most of the time, these numerical procedures are run to produce a given landscape topog-
raphy, which is in turn used to create an associated river networks. Although these models are
usually able to reproduce some of the fractal properties of the river networks1, they often miss
some other scaling properties depending on the precise model that is considered [216].

Since most of these simulations are rather focused on the river network than on the topogra-
phy itself, these numerical studies do not pay a particular attention on the roughness exponent
and are therefore of little use in our case, although these extensive numerical studies have
widely contributed to the understanding of landscape formation.

IV.1.1.d Some facts about the roughness exponent

Despite an important effort made for computing the roughness of landscapes using the different
methods that have quickly been presented above, finding a unique value for the roughness expo-
nent α has been inconclusive. However, from the large amount of experimental data available,
at least two features can be extracted: (i) The roughness exponent has a large variability, and it
seems to span the whole range between α ' 0.2 and α ' 1, (ii) There is a tendency to find larger

1Such as the Horton’s law [215] which finds scale invariance in the way stream networks are organized. See for
instance [24] for more details about it.
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Figure IV.3 – Figures extracted from [217]. (Left) Digital elevation map of an area of the Ap-
palachian Plateau, in Northwest Pennsylvania. Elevations are given in meters. The spatial resolu-
tion is 90 m. (Right) Averaged height-height correlation function C(r) for the landscape displayed
on the left, and where r is oriented in the vertical direction of the elevation map. A plot of similar
shape, but with smaller values of C(r), is obtained in the horizontal case. Logarithms are computed
from quantities measured in units of meters.

values of the roughness exponent (0.70 . α . 0.85) at intermediate length scales (. 2 km), and
smaller values (0.30 . α . 0.55) at larger length scales [26, 205–207]. This second feature is
made particularly clear on Fig. IV.3. This suggests that two different regimes exist in the erosion
of landscapes, which therefore require two different mechanisms to be described.

Notice however that this assumption of two different regimes characterized by two differ-
ent scaling exponents should be treated with caution, since this scaling behaviour is only ob-
served for one or two logarithmic decades at most, and more experimental evidence stemming
from laboratory experiments (or maybe geophysical data from other planets) would probably
be necessary to make a definitive statement about this crossover. We will nonetheless make
the assumption that this crossover has a physical meaning and is indeed the signature of a first
mechanism at small scale which is then taken over by a different erosion mechanism at larger
scale. We will argue in details in the following that at large length scale an isotropic and non-
conservative Kardar-Parisi-Zhang description of the erosion is satisfactory, whereas at smaller
length scale, the intrinsic anisotropy of the process (due to a preferred direction, that of the
slope of the mountain) requires an alternative description.

In the following we explain in details these two models and, before that, we present the
minimal ingredients to reproduce landscape formation and scale invariance, that have been
identified thanks to the different experimental and numerical methods we presented above.

IV.1.2 Minimal ingredients for an erosion model

The physical phenomena involved in the erosion of landscapes are numerous (rainfalls and
storms, freezing events and changes in temperature, chemical erosion, landslides and avalanches,
etc. [218]). Because of the complexity and variety of these erosion mechanisms, a model stem-
ming directly from them seems out of reach. However, the scale invariance displayed by these
systems suggests that the intermediate and large-scale physics of these systems is, at least to a
large extent, independent of the smallest scale details. A simple phenomenological model that
would capture the relevant elements could thus be sufficient to reproduce this power-law be-
haviour and predict the value of the roughness exponent. So far, some necessary elements for
this self-similarity to emerge have already been identified [25] and we now discuss them.

First, at the simplest level of description, the flowing of eroded material by diffusion of the



116 CHAPTER IV. LANDSCAPE EROSION

soil has of course to be considered, and the evolution of the height profile h(~x, t) is given by
simple diffusion:

∂th(~x, t) = D∇2h(~x, t) (IV.3)

which accounts for the smoothing of the irregularities of the landscape. In some simple cases
such as river deltas formation, diffusion in itself can be sufficient to explain the delta front pro-
file [219]. However, the nontrivial scaling property of the correlation function C(r) in eroding
landscapes is not reproduced with this sole ingredient. One can moreover notice that diffusion
is a smoothing mechanism, and we should look for an ingredient that would instead have a
roughening contribution.

This second ingredient is a noise term [25, 212] that takes into account the roughening
mechanisms that occur at small scale: rainfalls, variability in the erodibility of the soil (which
may depend both on the position ~x and the height h itself), randomness of tectonic events etc.
In full generality, this noise term may depend on ~x, t and h, and we will see in the following that
the choice of the noise distribution can indeed lead to different predictions for the model [209].
In the simplest case of an additive noise2 – on which we focus in the following –, the evolution
of the height through the combined action of diffusion and noise is known as the Edwards-
Wilkinson model of noisy diffusion. However, this model is known for displaying scale invariance
only in dimension d = 1, with a nonvanishing value of α. In d = 2 however, which is the
dimension of physical interest for the erosion of landscape, one finds h ∼ log x which means an
effective roughness exponent α = 0 and a smooth landscape [220].

Therefore, a third ingredient is requested: a nonlinear term, that counterbalances the smooth-
ing effect of diffusion and creates a rough landscape [204, 221]. As we will see in the following,
this nonlinear term can take different forms that also lead to different predictions for the value
of the roughness exponent. The combination of these three elements is minimal to get scaling
features in an erosive model, and we now proceed to a more precise description of models that
were proposed to describe the erosion of landscapes.

IV.1.3 Large length scale: the Kardar-Parisi-Zhang equation

Amongst the equations displaying the features highlighted above, the Kardar-Parisi-Zhang (KPZ)
equation stands out of the crowd [13]. First derived and famous in the context of surface
growth, Sornette and Zhang suggested that the KPZ equation is also a plausible model to de-
scribe isotropic erosion of landscapes at large length scale [25].

It is not so surprising that this equation, although derived in a different context, still remains
a good candidate for an erosion model: in addition to possessing the three ingredients we dis-
cussed above (diffusion, nonlinearity and noise) that are minimal for finding a scaling-behaviour,
the KPZ equation is in fact the simplest nonlinear equation for an isotropic, independent of the
absolute height, noisy diffusion problem.

To derive this equation, we consider the erosion of an initially flat surface, which we take
as the origin for computing the height h(~x, t), and the positive axis for h is taken to point
downward. The simplest erosion mechanism can be written as [25]:

∂th(~x, t) = D∇2h+ v(h) (IV.4)

with D > 0 and the first term D∇2h accounts for the smoothing effect due to gravity. Indeed, a
negative local curvature ∇2h < 0 (that is, a bump), has a negative contribution to ∂th and will
therefore decrease and be smoothed out. To the contrary, a positive local curvature ∇2h > 0 (a
well) will grow since it yields a positive contribution to ∂th, which also has the effect of making
the surface smoother (see Fig. IV.4 for an illustration). The velocity term v(h) is the local

2That is, a noise noise independent of the height h.
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Figure IV.4 – Cartoon representation of the different terms appearing in the KPZ equation (IV.6).
(a): diffusive term∇2h. Diffusion of the material has a smoothing effect: bumps shrinks while wells
are filled by the eroding material (symbolized by the arrows). (b): nonlinear term (∇h)2. This
term accounts for an erosion proportional to the surface of exposed material, and takes place in a
direction orthogonal to the slope (symbolized by the arrows). As a consequence, the irregularities
of the surface are increased by this term which therefore makes the surface rougher. (c): noise term
η(~x, t). The noise is used to model the wealth of events that contributes to erosion and to rough
landscapes: showers, storms, inhomogeneities in the erodibility of the soil.

effective rate of material removal per unit area and since we are interested in the fluctuations
of the height around a surface that is flat on average, we can assume that the slope is small and
perform an expansion in term of ∇h of the velocity term:

v(h) = v0 +∇h ∂v

∂(∇h)
+

1

2
(∇h)2 ∂2v

∂(∇h)2
+O

[
(∇h)3

]
. (IV.5)

The first term v0 accounts for a systematic global erosion process and can be removed by going
in the co-moving frame h → h − v0t. The second term linear in ∇h can be removed as well
by a Galilean transformation: ~x → ~x − t ∂v/∂(∇h). Finally, the third term (∇h)2 admits a
geometrical interpretation: if the local slope is∇h, then the local exposed surface is proportional
to
√

1 + (∇h)2 and this third term therefore accounts for an erosion proportional to the local
exposed surface (see Fig. IV.4 for an illustration).

Finally, and as we argued before, a noise term is added to the diffusion and nonlinear terms,
and we obtain the celebrated KPZ equation [13]:

∂th(~x, t) = D∇2h+ λ(∇h)2 + η(~x, t) . (IV.6)

The noise term, in addition to being necessary for having an erosion model displaying scale
invariance, also accounts for the other erosion mechanisms that cannot be described by a geo-
metric term. For instance it describes the erosion due to showers and storms, that are erratic in
time, space and intensity. A “quenched”/static noise term can also account for the heterogeneity
of the materials that are being eroded (different kinds of rocks and soil). Notice that similarly
to the nonlinear term, the noise has the tendency of making the eroding surface rougher and
rougher (see Fig. IV.4 for an illustration).

The KPZ equation has been extensively studied in the literature, experimentally, numerically
and theoretically, mainly because it is the representative of a very broad universality class which
describes or can be mapped to a wealth of problems, such as propagation and kinetic roughen-
ing phenomena (for instance the front of a forest fire, or coffee particles accumulating at the
edge of a coffee drop), randomly stirred fluid (Burgers’ equation), directed polymers in random
media, etc. [109]. The KPZ equation is also famous for causing troubles to the perturbative RG:
although exacts results exist in d = 1 thanks to extra symmetries in this case (and a mapping
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to random matrices theory [41, 89]), the perturbative expansion has failed to accurately de-
scribe the KPZ fixed point in dimension d > 1, because the KPZ “strong-coupling” fixed point is
genuinely nonperturbative in d > 1 and therefore cannot be reached from an ε expansion near
d = 1. By contrast, the NPRG and its nonperturbative approach has proved very well suited for
studying this equation and its critical properties in d = 23 [16, 91, 186, 187].

Numerical simulations [222] and NPRG approach [16] predict a roughness exponent α ' 0.4
in d = 2. However, although a description of erosion by the KPZ equation seems satisfactory
for large scale landscapes, where erosion is indeed isotropic and where the KPZ prediction for
the roughness exponent α seems to meet the experimental data (for which 0.30 . α . 0.55), it
is not the case for intermediate length scales, where erosion occurs along a preferred direction
(the slope of the mountain), and the KPZ equation – which is isotropic – fails to capture this
important additional ingredient and underestimate the roughness exponent (which is of order
0.70 . α . 0.85) [200]. In addition, the KPZ equation is also nonconservative, a feature that is
not realistic for smaller scale erosion [212]. Notice finally that the breakdown of a description
by the KPZ equation at small length scale is not completely surprising since the KPZ equation
can be seen as a gradient expansion, and should therefore be valid in the low-momentum limit
|q| → 0, that is at large length scale. We therefore present in the following a different approach
to describe erosion at this smaller scale.

IV.1.4 Small length scale: an anisotropic model

IV.1.4.a Controversy

As discussed before, the KPZ equation does not provide a satisfactory description of the erosion
of landscapes at small length scale, for it predicts a roughness exponent which is too small com-
pared to the field measurements. To bridge this gap, Pastor-Satorras and Rothman suggested a
nonlinear yet conservative description, and to add anisotropy on top of the three main ingre-
dients discussed above [26, 217]. Their perturbative renormalization group (RG) analysis that
retains only one coupling constant yields exponents in surprisingly good agreement with field
measurements. Unfortunately, a recent paper by Antonov and Kakin [27] revealed a mistake in
their analysis, showing that there is not a single but infinitely many relevant coupling constants
in the theory, which invalidates their results. Antonov and Kakin are however unable to predict
the value of the roughness exponent α, but they suggest that the correct model has a line of fixed
points, and therefore possibly a continuous range of values for α if this line is attractive, which
they cannot show. Moreover, Antonov and Kakin’s paper focus only on a single type of noise (the
isotropic noise, which we describe in more details in the following), while Pastor-Satorras and
Rothman studied in addition a more interesting model involving a static noise. In this second
model, it is not known whether a line of fixed points also exists.

In the following of the chapter, and this is the last result of this manuscript [28], we tackle
this anisotropic erosion model with two different kinds of noise using again the NPRG formal-
ism, which is perfectly suited for studying a model involving infinitely many coupling constants,
since the NPRG is functional in essence. We do agree with Antonov and Kakin about the infinite
number of coupling constants involved in the model and with the fact that any truncation re-
taining only a finite number of them yields wrong predictions in the case of the isotropic noise.
We show in addition that this conclusion holds for the two types of noise.

Furthermore, we are able to integrate numerically the flow equation, and find that in the
case of the static noise, there indeed exists for this model an interval of stable fixed points in the
case of physical interest d = 2. This interval shrinks to a single fixed point, the trivial Edwards-
Wilkinson fixed point, in the case of an isotropic noise. This results is of course in marked

3We recall that the NPRG approach breaks down in d > 3.5, and yields poor roughness exponent in d > 2 [16].
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Figure IV.5 – Figure from [217], illustrating the settings for an anisotropic erosion model.

disagreement with those of [26, 217] and in partial disagreement with those of [27] in which it
is argued that the isotropic noise case could yield nontrivial exponents.

Moreover, although we are not able to predict whether the whole line of fixed points can be
reached from realistic initial conditions, the very existence of this line of fixed points could be
a first step to explain the large variability observed in the experimental values of the roughness
exponent α.

IV.1.4.b Anisotropic model

We now present the anisotropic erosion model as originally proposed by Pastor-Satorras and
Rothman [217]. Their idea is that at smaller length scale the erosion takes place in a preferred,
downhill direction, that is the direction of the slope of the mountain. Notice that an anisotropic
version of the KPZ equation had already been suggested by Hwa and Kardar in [223, 224],
but their approach was mostly based on symmetry considerations, whereas Pastor-Satorras and
Rothman’s model relies on the underlying erosion mechanisms.

To describe the erosion of a surface with a fixed mean tilt which introduces an intrinsic
anisotropy in the model, the preferred direction is identified by a unit vector that we denote ~e‖
(see Fig. IV.5). Thus, the d-dimensional horizontal position ~x can be decomposed as ~x = ~x⊥ +
x‖~e‖ with ~x⊥ · ~e‖ = 0, and ~x⊥ is therefore a (d − 1)-dimensional vector. We also define the
derivative in the slope direction as ∂‖ ≡ ∂/∂x‖ and in the transverse direction as∇⊥ ≡ (∂/∂x⊥,i)
with i = 1 . . . (d− 1). Note that similarly to the KPZ description, the height h(~x, t) is positive in
the downward direction.

By contrast to the KPZ equation which is isotropic but nonconservative, Pastor-Satorras and
Rothman suggested a locally conservative dynamics such that one can write:

∂th = −∇ · ~J + ξ (IV.7)

where ξ is a stochastic noise term that we discuss in the following, and ~J is the current of soil
per unit length. This current represents two effects: (i) an isotropic diffusion term similar to the
one appearing in the KPZ equation and that we already discussed in the previous section and
(ii) an anisotropic contribution due to a global flow of dragged soil in the downhill direction.
We can therefore write the current as:

~J = −ν∇h− γ∇‖h (IV.8)
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where the first term corresponds to Fick’s law for diffusion, and the second term represents the
anisotropic contribution, with γ playing the role of an anisotropic diffusivity. Consider that this
term stems from the flow of overland water: the greater this flow, the stronger the stress exerted
on the soil. Because of the anisotropy, the flow increases with the distance downhill x‖, but
since the height h increases with x‖, we can as well parameterize the anisotropic diffusivity as
a function of h and write γ ≡ γ(h). For notational convenience, we write γ(h) = ν0 + b(h) with
b(0) = 0, and we moreover define B(h) =

∫
dh b(h) in order to have:

b(h)∂‖h =
dB

dh
∂‖h = ∂‖B(h) . (IV.9)

Finally, substituting the current (IV.8) into Eq. (IV.7) we get the equation derived by Pastor-
Satorras and Rothman in [26, 217] to describe the evolution of the height profile as a minimal
Langevin equation that takes into account diffusion, nonlinearity, noise, conservation of matter,
and anisotropy. It reads:

∂th(x) = ν‖∂
2
‖h(x) + ν⊥∇2

⊥h(x) + ∂2
‖B(h(x)) + ξ(x) (IV.10)

where x ≡ (~x, t), ν⊥ = ν, ν‖ = ν + ν0. Notice that to preserve the symmetry h → −h, ~J → − ~J
of Eq. (IV.7), the function B(h) must be an odd function of the height. As usual, the above
Langevin equation has to be understood in the Itō sense.

Let us now discuss the noise term. Its probability distribution P (ξ) reads:

P (ξ) ∝ e−
1

4D

∫
x,t′ W (t−t′)−1ξ(x,t)ξ(x,t′) (IV.11)

with
∫
x ≡

∫
ddx dt (notice that we now drop the arrow above the spatial vector ~x to alleviate

the notation), and the noise correlations are:〈
ξ(x)ξ(x′)

〉
= 2DW (t− t′)δd(x− x′) , (IV.12)

where W (t − t′) = 1 for a static noise, and W (t − t′) = δ(t − t′) for an isotropic noise. In this
model, the choice of the noise is paramount [212], since different noises will lead to different
universality classes, different critical dimensions, and therefore either to a trivial (α = 0), or
nontrivial roughness exponent in d = 2 as we will see in the following. As we already argued
in the previous section, a static/quenched noise W (t − t′) = 1 expresses the fact that different
types of soil (with various erodibility) can be originally present, whereas a thermal/isotropic
noise W (t − t′) = δ(t − t′) is more suited for mimicking the action of rainfalls over the eroding
land. As will be shown in the following, the former leads to a nontrivial roughness exponent in
d = 2, whereas the latter results in smooth landscapes.

From the Langevin equation (IV.10), an equivalent field theory can be derived using the
Martin-Siggia-Rose-de Dominicis-Janssen (MSRDJ) approach as explained in Sec. II.2.3. In this
formalism, the mean value (over the different realizations of the noise) of a given observable
O[h] is given by:

〈O[h]〉ξ =

∫
DhDh̃ e−S[h,h̃]O[h] (IV.13)

with the action

S[h, h̃] =

∫
x
h̃(x)

[
∂th(x)− ν‖∂2

‖h(x)− ν⊥∇2
⊥h(x)− ∂2

‖B(h(x))
]

−
∫
x,t,t′

W (t− t′)h̃(x, t)h̃(x, t′) .
(IV.14)

where we recall that h̃ is an extra field introduced by the MSRDJ formalism, called the “response”
field. Notice that up to a rescaling of the time t, the longitudinal direction x‖, and of the fields
h̃ and h, one can set ν‖ = ν⊥ = D = 1, which is the normalization we keep in the following and
which simplifies the symmetry analysis.
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IV.2 NPRG approach for erosion

In this section we describe briefly the implementation of the NPRG formalism for the anisotropic
erosion model. We have already seen in Chap. III how the NPRG is built for nonequilibrium
models, and we will therefore be very concise. We define the generating functional at scale k:

Zk[j, j̃] =

∫
DhDh̃ e−S−∆Sk+

∫
x J(x)T ·H(x) (IV.15)

where we use a matrix notation and define the following vectors

H(x) =

(
h(x)

h̃(x)

)
and J(x) =

(
j(x)

j̃(x)

)
. (IV.16)

The regulator term ∆Sk reads

∆Sk =
1

2

∫
x,x′

H(x)T · Rk(x− x′) ·H(x′) (IV.17)

where Rk is a 2 × 2 regulator matrix, depending both on space and time, and whose task is to
decouple slow-mode fluctuations. In the following, we only consider a space regulator, that is,
a regulator which is trivial in the time direction, such that

Rk(x) =

(
0 Rk(x)δ(t)

Rk(x)δ(t) 0

)
. (IV.18)

In this paper we use the Θ-regulator which allows for an analytical computation of the integrals
over momentum, and which is defined in Fourier space as:

Rk(q) = (k2 − q2)Θ(k2 − q2) (IV.19)

where Θ(q) is the Heavyside step-function (Θ(q < 0) = 0 and Θ(q ≥ 0) = 1). We also define the
effective average action Γk as a modified Legendre transform ofWk[J ] = logZk[J ]:

Γk[Φ] +Wk[J ] =

∫
x
JT · Φ− 1

2

∫
x,x′

Φ(x)T · Rk(x− x′) · Φ(x′) (IV.20)

where Φ = 〈H〉. We remind that Γk coincides with the action at the microscopic scale (Γk=Λ = S)
and with Γ at k = 0 (Γk=0 = Γ), when all fluctuations have been integrated over. The evolution
of the interpolating functional Γk between these two scales is given by the Wetterich equation
that we recall here:

∂kΓk[Φ] =
1

2
Tr

∫
x,x′

∂kRk(x− x′) ·Gk[x,x′; Φ] (IV.21)

where Gk[x,x′; Φ] ≡ [Γ
(2)
k +Rk]−1[x,x′; Φ] is the full, field-dependent, propagator and Γ

(2)
k is

the 2× 2 matrix whose elements are the Γ
(2)
k,ij defined such that:

Γ
(n)
k,i1,··· ,in [xi; Φ] =

δnΓk[Φ]

δΦi1(x1) · · · δΦin(xn)
. (IV.22)

We finally recall that the Wetterich equation (IV.21) represents an exact flow equation for the
effective average action Γk, which we solve approximately by restricting its functional form.
We use in the following the derivative expansion (DE), stating that instead of following the full
Γk along the flow, only the first terms of its series expansion in space and time derivatives of
Φ are considered. The terms retained in this derivative expansion have to be consistent with
the symmetries of the action S, and we therefore discuss them before giving an explicit ansatz
for Γk.
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IV.2.1 Approximation and symmetries

IV.2.1.a Symmetries

In order to find a meaningful and simple ansatz for the effective average action Γk, we start by
studying the symmetries of the action. We consider the following shift-gauged symmetry:

h̃′(x) = h̃(x) + ε(x⊥, t) (IV.23)

where ε is an arbitrary infinitesimal function. The action (IV.14) is not strictly invariant under
the transformation (IV.23), but since the variations of the action following this transforma-
tion are linear in the fields, it also yields useful Ward identities [91, 93]. Under transforma-
tion (IV.23), the integral (IV.15) remains unchanged, which yields:∫

x

[
j̃(x)ε(x⊥, t)− ε(x⊥, t)∂t 〈h(x)〉+ ε(x⊥, t)∇2

⊥ 〈h(x)〉 −
∫
x′
ε(x⊥, t)Rk(x− x′)

〈
h(x′)

〉]
+2

∫
x,t′

W (t− t′) ε(x⊥, t)
〈
h̃(x, t′)

〉
= 0 .

(IV.24)

Notice that we have integrated by parts the terms involving a derivation with respect to x‖,
and that the boundary terms that result from this integration by parts vanish because of the
symmetry x‖ → −x‖.

Then, using the definition (IV.20) of the modified Legendre transform to eliminate the exter-
nal field j̃, and using the fact that, by definition, 〈h〉 = φ and 〈h̃〉 = φ̃, the previous expression
becomes: ∫

x

[
δΓk

δφ̃
− ∂tφ+∇2

⊥φ+ 2

∫
t′
W (t− t′)φ̃(x, t′)

]
ε(x⊥, t) = 0 . (IV.25)

Since this equality is true for any function ε(x⊥, t), it means that the Fourier transform [defined
in Eq. (1)] of the term inside the brackets vanishes at q‖ = 0. Consequently, at q‖ = 0, the
functional

Γk −
∫
q
φ̃(−q)

[
−iω + q2

⊥
]
φ(q) +

∫
q
W (ω)φ̃(−q)φ̃(q) (IV.26)

vanishes under transformation (IV.23). It finally means that only the terms ∂‖h and ∂‖B(h)

[which are invariant under (IV.23)] are renormalized, while the terms
∫
φ̃∂tφ,

∫
φ̃∇2
⊥φ and∫

W (t − t′)φ̃(x, t)φ̃(x, t′) are not. Thus, at lowest order in the space and time derivatives, the
most general ansatz for the effective average action Γk[φ, φ̃] reads:

Γk[φ, φ̃] =

∫
x,t
φ̃(x, t)

[
∂tφ−∇2

⊥φ− ∂2
‖Ak(φ)

]
−
∫
x,t,t′

W (t− t′)φ̃(x, t)φ̃(x, t′) . (IV.27)

We conclude that at this order only one function, Ak(φ), has a nontrivial renormalization flow
that we derive in the following.

IV.2.1.b Upper critical dimension

Before deriving the flow equation and giving the results using the NPRG, we discuss here the
upper critical dimension of this model, and try to clarify the misunderstanding about the rel-
evance of some operators. First, depending on the nature of the noise, isotropic or static, the
model has different upper critical dimensions. This upper critical dimension is d stat

c = 4 in the
case of a static noise, and d iso

c = 2 in the case of an isotropic noise.
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Indeed, the computation of the upper critical dimension is made very simple once the model
has been cast into its simplest form (IV.27) using symmetry considerations. From this equation,
we find that the engineering dimension of the field φ (expressed in momentum scale) is:

[φ] =
d− 2κ

2
(IV.28)

where κ = 1 for an isotropic noise, and κ = 2 for a static noise. Therefore, a coupling constant
in front of a φn term is irrelevant for d > dc = 2κ, which indeed yields the previous upper critical
dimensions.

However, the important and surprising feature of this model is that exactly at the upper
critical dimension d = d stat

c or d = d iso
c , the dimension of the field φ vanishes, meaning that

all terms
∫
x φ̃ ∂

2
‖φ

n coming from the expansion of the function Ak(φ) in Eq. (IV.27) are equally
relevant, as pointed out in [27, 225] in the isotropic case. It therefore invalidates the whole
approach of [26, 217] since infinitely many coupling constants were discarded. We indeed
show in the following that truncating the function Ak greatly modifies the physics and the
computation of the critical exponent of the model.

IV.2.2 Flow equation

We now compute the flow of the function Ak(φ), which we define as:

Ak(φ) =
1

Ω

(
∂p2
‖
FT

(
δΓk

δφ̃(z)

)
(p)

)∣∣∣∣
φ(x,t)=φ,p=0

(IV.29)

where Ω is the volume of the system, and FT(f)(q) refers to the Fourier transform of the function
f(x) with the convention (1). Notice that one has to evaluate it at constant field after having
performed the momentum derivation. This is unusual in the NPRG context, and we therefore
give slightly more details of the derivation of the flow in the App. D.1. In order to find a fixed
point of the RG flow, one has to write the flow equation in terms of dimensionless variables. We
define them in the following way:

x̂⊥ = k x⊥

t̂ = k2 t

s = log(k/λ)

Â(φ̂) = Ā−1
k Ak(φ)

x̂‖ = k1+(d−2κ)/3Ā
−2/3
k x‖

φ̂ = k(4κ−2d)/3Ā
1/3
k φ

ˆ̃
φ = k2(κ−d)/3Ā

1/3
k φ̃

(IV.30a)

(IV.30b)

(IV.30c)

(IV.30d)

(IV.30e)

(IV.30f)

(IV.30g)

where we define the running coefficient Āk such that Â′(φ̂ = 0) ≡ 1 where the prime means
derivation with respect to φ, and we defined the (negative RG time s). In the critical regime
and at small k, this running coefficient is expected to behave as a power law Āk ∼ k−η

∗
A , and

we therefore define a running exponent ηA(k) = −∂s ln Āk such that ηA(k = 0) ≡ η∗A. The
roughness exponent α and the anisotropy exponent ζ correspond respectively to the anomalous
dimension of the field φ and to the anomalous dimension of the longitudinal direction x‖. They
can thus be expressed in terms of the fixed point value of η∗A as:

α ≡ (4κ− 2d− η∗A)/3 , (IV.31)

ζ ≡ 1 + (d+ 2η∗A − 2κ)/3 . (IV.32)
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The flow of the function Â(φ̂) can be split into two parts:

∂sÂ(φ̂) = ∂sÂ(φ̂)|dim + ∂sÂ(φ̂)|dyn (IV.33)

where the dimensional part of the flow ∂sÂ(φ̂)|dim directly follows from the previous defini-
tions (IV.30) and reads:

∂sÂ(φ̂)|dim = ηAÂ(φ̂) +
2d+ ηA − 4κ

3
φ̂Â′(φ̂) , (IV.34)

while the dynamical part of the flow is derived in App. D.1 and reads:

∂sÂ(φ̂)|dyn =
(3κ− 2)Kd

2

∫ ∞
y=0

∫ π

θ=0

yd/2−κ sin(θ)d−2r′(y)Â′′(φ̂)(
r(y) + sin2 θ + Â′(φ̂) cos2 θ

)1+κ (IV.35)

where Kd = (2d−1πd/2Γ(d/2))−1 = Sd−1/(2π)d with Sd the surface of the d-dimensional unit
hypersphere. Moreover, the definition of the running anomalous dimension ηA(k) provides us
with the additional equation ∂sÂ′(0) = 0, which yields:

ηA = κ− d/2− 3(3κ− 2)Kd

8Â′(0)

∫ ∞
y=0

∫ π

θ=0

yd/2−κ sin(θ)d−2r′(y)Â′′′(0)(
r(y) + sin2 θ + Â′(0) cos2 θ

)1+κ . (IV.36)

Notice that in Eqs. (IV.33) and (IV.36) the dimension d, as well as the nature of the noise κ are
real parameters that can be chosen at will. Starting from the flow equations (IV.33) to (IV.36),
one can easily retrieve the one-loop perturbative results obtained in [27], and the truncated
results of [26, 217]; this is explained in App. D.2.

Notice that in the case of static noise, in d = 2 and with the Θ-regulator (IV.19), the flow
equation (IV.33) can be rewritten in a much simpler form:

∂sÂ = ηAÂ+
ηA − 4

3
φ̂Â′ − (1 + 3Â′)Â′′

4(Â′)3/2
(IV.37)

where we have omitted the argument of Â and its s-dependence for convenience.

IV.2.3 A line of fixed points

We now study the properties of the flow equation (IV.33). Notice that at the fixed point (namely
when Â(φ̂) = Â∗(φ̂) such that ∂sÂ∗(φ̂) = 0), the flow equation provides us with an iterative
scheme for computing the derivatives Â∗(j)(0) ≡ âj for all j. Indeed, at the fixed point and
evaluated at φ̂ = 0, the derivatives of Eq.(IV.33) can be rewritten as:

f3(η∗A, â3) = 0

f5(η∗A, â3, â5) = 0

f7(η∗A, â3, â5, â7) = 0

...

(IV.38a)

(IV.38b)

(IV.38c)

where the fi are linear functions of their last argument. For instance, for the static noise in d = 2
and with the Θ-regulator (IV.19), the previous equations yield:

â3 =
4

3
(η∗A − 1)

â5 =
4

3
(η∗A − 1)(5η∗A − 7)

...

(IV.39a)

(IV.39b)
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Therefore, provided that the Taylor expansion of Â∗(φ̂) around φ̂ = 0 can be analytically con-
tinued on the whole real axis then a line of fixed points parametrized by the values of η∗A exists,
as claimed in [27]. On the other hand, notice that a truncation of Â at any finite order will not
yield a line of fixed points. For instance, writing Â = φ̂+ â3/3! φ̂3 means that the coefficient â5

vanishes and thus yields η∗A = 1 or η∗A = 7/5 according to Eq. (IV.39b). Instead of improving
the accuracy of η∗A, increasing the rank of the truncation will rather yield more and more (dif-
ferent) fixed points, with some stable and some unstable. The correct picture is therefore only
accessible when the problem is tackled functionally, that is with the full function Â(φ̂).

Studying numerically these fixed points as well as their stability is nontrivial as we show in
the following but simple physical arguments already allow us some comments: (i) the line of
fixed points is upper-bounded in all dimensions because the roughness exponent α is positive,
and we therefore deduce from Eq. (IV.31) that η∗A ≤ 2(2κ − d); (ii) the anisotropy exponent
ζ characterizes the ratio between the roughness exponent in the transverse direction, α⊥ ≡ α,
and the roughness exponent in the parallel direction α‖ [26, 217]. In our anisotropic model, we
expect this ratio to be larger than 1, i.e. ζ ≥ 1, which translates for η∗A as [using Eq. (IV.32)]:
η∗A ≥ (2κ− d)/2.

The first inequality is directly encoded in the flow equation since there exists no scaling
solution (of the form Â∗(φ̂) ∼ φ̂γ at large field) of the fixed point equation (IV.33) when η∗A is
such that α < 0. The second inequality also has a signature in the flow equation, more precisely
on the scaling form of the fixed point function Â∗(φ̂): indeed, studying Eq. (IV.33) at large fields,
one finds that the fixed-point function should scale as:

Â∗(φ̂) ∼
φ̂→∞

φ̂ γ with γ =
3η∗A

4κ− 2d− η∗A
(IV.40)

and the inequality ζ ≥ 1 is equivalent to saying that Â∗(φ̂) is sub-linear at large field, which is
not unphysical, but simply does not correspond to the model that we study where we expect
nonlinearity and a power-law behaviour at large field. These considerations allow us to discard
the isotropic noise (κ = 1) since in dimension d = 2 = d iso

c (the physical dimension of our
problem), the only value of α that satisfies both inequalities is the trivial Edwards-Wilkinson
exponent α = 0. Within this erosion model, an isotropic noise can therefore not explain the
observed landscapes roughness, see Fig. IV.6.

IV.2.4 Stability of the fixed points and numerical solution

IV.2.4.a Line of fixed points

We are now interested in confirming the existence of the line of fixed points found above from a
Taylor expansion around φ̂ = 0 and studying their stability. We focus on the case of a static noise,
in d = 2 and with the Θ-regulator (IV.19), although the method we present remains true for a
different noise, dimension or regulator. The flow equation in this case is given by Eq. (IV.37).

We thus solve numerically the fixed point equation: ∂sÂ
∗(φ̂) = 0 together with the two

boundary conditions Â∗(0) = 0 coming from the fact that A(φ) is odd and Â∗′(0) = 1 which
defines ηA(k). The numerical integration is performed on a finite grid φ̂ ∈ [0, φ̂max]. The deriva-
tives of Â∗ are then computed on this grid using the usual “five-point stencil” method. At the
leftmost part of the grid (φ̂ = 0), we use the fact that Â∗(−φ̂) = −Â∗(φ̂). On the rightmost part
of the grid, we do not impose any boundary condition and the derivatives are computed using
only points inside the grid. This simple scheme confirms the existence of a line of fixed points:
for any given η∗A (such that α ≥ 0) we find a fixed point function Â∗ solution of Eq. (IV.37).
The precision of each of these solutions is refined when the size of the box φ̂max or the number
of discretization points is increased. In particular, the scaling at large field, Eq. (IV.40), is very
well reproduced (at least when φ̂max is large enough) which confirms the global existence of
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Figure IV.6 – Critical exponent ηA for isotropic (a) and static (b) noises as a function of the physical
space dimension d. Recall that for landscape erosion, the dimension of interest is d = 2. The upper
colored region is unphysical(α < 0). Its lower boundary is the Edwards-Wilkinson fixed point with
α = 0. The bottom region is the physical yet uninteresting region for which the anisotropy exponent
ζ is lower than 1. In this region, the function behaves like Â∗k ∼ φ̂γ as φ̂→∞, with γ < 1, and the
system does not display the kind of nonlinearity we were looking for. The blank region in between
is therefore the interesting region for our model, it ends up in a single point at the upper critical
dimension, d iso

c = 2 (a), or d stat
c = 4 (b). In the case of the anisotropic noise (b), we see that there

is an interval of fixed points (red line) in d = 2.

the fixed points. Notice that an exact solution of the fixed point equation (IV.37) for η∗A = 0
is available (see App. D.3) which allows for a check of our numerical solution in this particular
case.

The stability of these fixed points is a subtler issue. Usually, the stability analysis is simply
performed by linearizing the flow around the fixed point, that is, by computing the (discretized)
stability matrix and evaluating its eigenvalues. The sign of these eigenvalues then provides the
stability of each fixed point. An alternative path consists in perturbing the fixed point solution:
Â(φ̂) = Â∗(φ̂) + εeλsg(φ̂) (where s is the (negative) RG time and ε� 1 a small parameter) and
then solving the differential equation for g while using a shooting method to find the eigenval-
ues [61, 62, 226]. In this model however, none of these methods yield reliable results since we
do not observe any convergence of the eigenvalues when the size of the box or the number of
discretization points is increased.

To tackle this issue, we perform a numerical integration of the flow equation (IV.37) starting
with different initial conditions Âinit(φ̂). We use a Runge-Kutta scheme and the same discretiza-
tion for the field φ̂ as explained above for the fixed point equation, up to a minor modification of
the computation of the derivatives at the rightmost side of the grid, that we explain and detail
in the following. For each different initial conditions, we observe that ηA(s) reaches a different,
fully attractive, fixed point (see Fig. IV.7). Changing the initial conditions, we can virtually ob-
tain any value of η∗A such that α ∈ [0, 1]. We conclude from this numerical study that the whole
interval of fixed points is stable, and we show in the following that the convergence to one of
this fixed point is determined by the large-field behaviour of the initial condition. This crucial
dependence over the initial condition signs the breakdown of universality for this model.

IV.2.4.b Numerical difficulties and solution

In the previous part, we gave the answer to the stability issue through the numerical integration
of the flow, using slightly modified derivatives near φ̂max. Let us now detail why and how we
modified the numerical scheme to obtain the correct results, and let us show some numerical
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Figure IV.7 – RG flows (s = log(k/Λ) is the RG time) of the exponent ηA for two different initial
conditions, obtained by integrating numerically the flow equation (IV.37), with improved compu-
tation of the derivatives of Â around φ̂max (see main text). Dotted line: initial condition with a
large field behaviour Âinit(φ̂) ∼ φ̂8 for which we expect from Eq. (IV.40) an exponent η∗A ' 2.91

which is indeed what is observed on the plateau. Solid line: same as above with Âinit(φ̂) ∼ φ̂3.5 and
η∗A ' 2.15 which is observed on the plateau.

subtleties that this model is hiding.
Usually (for instance in the case of the O(N) model), the numerical integration of the flow is

performed by discretizing the field φ̂ in a box [0, φ̂max]. The derivatives of the potential Â(φ̂) are
then computed using a “five-point stencil” method, that is a finite-difference approximation that
uses the point φ̂i and its four neighbours on the grid to compute the derivatives in φ̂i. On the
left-side of the discretization box (in φ̂ = 0), we use the fact that Â(−φ̂) = −Â(φ̂) to compute
the derivatives in the same way as they are computed in the bulk of the box. On the right-side
of the box (in φ̂ = φ̂max), the computation of the derivatives is made using only the points to the
left of φ̂max (inside the box). Using this rather simple scheme (and a Runge-Kutta routine), one
usually obtains well-behaved flows (similar to those displayed in Chap. I). As requested for the
consistency of the numerical scheme, these flows do not depend on the value of φ̂max, provided
that φ̂max is sufficiently large so that the large-field behaviour (the scaling regime) is captured.

The peculiarity of the flow equation (IV.33) of this model, which caused our difficulties,
is a dramatic dependence of the flow on the value of φ̂max, even though this value is already
large enough so that the scaling regime is captured (in particular, φ̂max is large enough so that
the large-field behaviour (IV.40) is obtained). More precisely, we will see that the numerical
difficulties come from the inaccurate computation of the derivatives at the rightmost side of the
grid.

Let us now detail the numerical issues and the results we obtain if we integrate the flow
naively. For various initial conditions, we observe in fact that ηA(s) reaches a first plateau (see
Fig. IV.8) which depends on the initial condition, and which is left after a finite RG time. Then,
the flows (regardless of the initial condition) reach a second plateau where they stay forever.
Whereas the position of the first plateaus depends on the initial condition, the second plateau is
the same for all initial conditions; this seems to indicate the existence of a unique fully attractive
fixed point, for which η∗A ' 2.29, whereas all the other fixed points (corresponding to the first
plateaus) are unstable. However, increasing the size of the box φ̂max increases the length of the
first plateaus (see Fig. IV.8) and it seems that except for numerical stability issues4, we could
virtually extend these plateaus for an arbitrary long RG time by increasing φ̂max.

4The numerical difficulty comes in particular from the fact that at large field the power-law behaviour of Â
generates very large numbers that are difficult to manipulate numerically.
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Figure IV.8 – RG flows (s = log(k/Λ) is the RG time) of the exponent ηA for two different initial
conditions, obtained by integrating numerically the flow equation (IV.37). Dotted lines a and b:
same initial condition as for the dotted line in Fig IV.7, for which we expect from Eq. (IV.40) an
exponent η∗A ' 2.91 which is indeed what is observed on the plateau 1. Solid lines a′ and b′: same
initial condition as for the solid line in Fig IV.7, for which we expect η∗A ' 2.15 which is observed
on the plateau 1′. At large s, both flows end on the plateau 2. The curves b and b′ are obtained by
increasing the size of the box φ̂max, which increases the length of the plateaus 1 and 1′.
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Figure IV.9 – Solid line: fixed point solution Â∗(φ̂) of Eq. (IV.33) for ηA = ηplateau
A ' 2.91. Dashed

line: asymptotic behaviour in φ̂ 3ηA/(4−ηA) with ηA = ηplateau
A . Dots: plateau solution Âplateau(φ̂)

for φ̂max = 80 (blue), 200 (yellow) and 400 (red) taken from the numerical solution of Eq. (IV.33)
at RG time s = −5. The plateau solution converges toward the true fixed point solution as φ̂max is
increased.

Furthermore, we notice that all the plateau functions Âplateau(φ̂) match with the fixed point
solutions found by integrating Eq. (IV.37) directly at the fixed point and for ηA = ηplateau

A (see
Fig. IV.9). This indicates that the first plateaus do correspond to fixed points of Eq. (IV.37), but
they are (numerically) unstable. Figure IV.9 also highlights the fact that the scaling behaviour
is reached, and yet the large-field behaviour continues to drive the flow. The inaccurate compu-
tation of the derivatives creates the drift that eventually leads the flow to leave plateaus 1 and
1′ of Fig. IV.8.

A first idea to tame this dramatic dependence in the size of the box φ̂max is therefore to
compactify the field φ̂. Indeed, the numerical problems come from the fact that we can only
reach finite φ̂max and could therefore be solved if we had an infinite-size box. The aim of this
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compactification is therefore to map the whole interval φ̂ ∈ [0,∞[ onto a compactified variable
ŷ ∈ [0, 1] that can be discretized. We also have to give a compactified form to the function Â,
and we proceed in the following way. We define a first function Ĉ1 such that:

Â(φ̂) =
√
x̂ Ĉ1(x̂) , (IV.41)

with x̂ = φ̂2 and such that we do not require Ĉ1(x̂) to be even or odd. We then define a second
function Ĉ2 as:

Ĉ2(x̂) =
log(Ĉ1(x̂))

log(2 + x̂)
, (IV.42)

and such that Ĉ2 is finite when x̂→∞. We finally define the compactified variable ŷ = x̂/(m+ x̂),
with m > 0 a free parameter and ŷ ∈ [0, 1]. This defines a last function D̂, such that:

D̂(ŷ) = Ĉ2

(
mŷ

1− ŷ

)
. (IV.43)

The whole interval φ̂ ∈ [0,∞[ is mapped onto ŷ ∈ [0, 1] as requested, and the function Â now
has a compactified form: D̂(ŷ) ∈ [0, γ/2 − 1/2], where the value of D̂(ŷ = 1) comes from the
scaling behaviour (IV.40) of Â at large field.

In this compactified version, the flow of D̂ provides us with a boundary condition at the
rightmost side of the new box, ŷ = 1. The numerical integration of this compactified version
reveals that each initial condition converges toward a different fixed point, that is, to a single
plateau (reminiscent of the plateaus 1 and 1′ (see Fig. IV.8) in the noncompactified version),
different for each initial condition. This qualitative feature is not modified when the number of
discretization points is increased or when m is varied. This therefore highlights the fact that the
previous stable fixed point, reached at large RG time and observed in Fig. IV.8 on the unique
plateau 2, is a numerical artifact. However, the quantitative picture, that is, the precise positions
of the plateaus analogous to the plateaus 1 and 1′ in Fig. IV.8, is modified when the number
of discretization points is increased, which is of course problematic for the consistency of this
numerical procedure. We have not been able to obtain fully converged results by increasing the
number of points in the grid which indicates that the behaviour of D̂ in the vicinity of ŷ ' 1 is
not well captured by our numerical scheme in the compactified version.

The final remedy to these numerical hurdles is the following: going back to the noncompact
formulation in terms of φ̂ and Â, we modify the way the derivatives of Â are computed around
φ̂max. Instead of using the “five-point stencil” method, we now fit the large-field region by a
function b φ̂γ [where γ is given by Eq. (IV.40)], and compute the derivatives at the boundary
using this fitting function. This fit prevents the numerical drift (coming from the inaccurate
computation of the derivatives at φ̂max) that eventually leads the flows to leave the plateaus 1 or
1′, and confirms that the convergence at large RG time toward the fixed point η∗A ' 2.29 is only
a numerical artifact. Using this method, we get the correct picture that we presented in the first
place, see Fig. IV.7. Notice that the beginning of the flow is not modified whatsoever between
the “five-point stencil” method or the fitting method we used to cure the numerical issues. The
fitting method only prevents the numerical drift that eventually leads the flows to leave their
true fixed-point value.

Finally, let us emphasize the subtlety of these numerical issues: notice that the size of the
grid is sufficiently large so that the function Â is already in its scaling regime at large φ̂ when
the first plateau 1 or 1′ is reached (see Fig. IV.9). However, the flow still leaves the plateau
because the very last values of Â are not computed correctly, meaning that the very last points
of the grid drives the flow in the large (negative) RG-time regime. Since we are interested in the
fixed point solutions, this is exactly the regime we are looking for. Even more dramatic, if one
takes a too small value for φ̂max, the intermediary plateau 1 or 1′ may be missed, and the flow
directly reaches the plateau 2, which is a numerical artifact. This could – erroneously – lead to
the conclusion that there exists a single stable fixed point.
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IV.3 Conclusion

In this chapter we have seen that despite the obvious scaling behaviour of natural erosional land-
scapes, characterized by a nonvanishing value of the roughness exponent, a clear understanding
of the underlying mechanisms leading to this power-law behaviour is still missing.

Let us emphasize again some limitations coming from the data available for natural land-
scapes: the scale-invariant regime with a power-law behaviour and a clearly defined exponent
α is often limited only to a few decades in log-scale, and sometimes even a single decade for the
small length scale regime that has been the focus of this chapter. Second, the way the compu-
tation of the exponent α is carried out sometimes varies from one author to the other; although
this method (box-counting, variograms, etc.) should not matter for an infinite-size system and
an infinitely precise resolution, the finite range accessible in data may lead to discrepancies in
the value of the exponents between different methods [213]. At least, when comparing different
values of α from different datasets, one should make sure that they were computed using the
same method [214].

These caveats being made, experimental measurements indicate a tendency to have large
values of α at small length scale, and small values at large length scale. The large length scale
seems to be rather well described by the KPZ equation, which predicts α ' 0.4 in d = 2, while
experimental data agrees on 0.30 . α . 0.55. On the other hand, the KPZ equation breaks
down for larger length scale where 0.70 . α . 0.85 and an anisotropic model was proposed
to explain this different regime. What we showed however in this chapter is that this model
displays a line of attractive fixed points, leading to a continuous range for the values of α. In
the light of this result, it is needless to say that the discussion about the origin of the scaling in
erosional landscapes is not completely closed. However, some new elements are now available:
anisotropy is indeed a relevant feature in this context, and should not be overlooked when
proposing a model for erosion at short length scale. The nature of the noise is also a main
characteristic and drastically modifies the scaling behaviour of the model, since it changes its
universality class.5 Moreover, we believe that the results presented in this chapter may give
some insights for the wide dispersion of the values of the roughness exponent α when looking at
different in situ measurements: if this model is valid (or at least the fact that an interval of fixed
points may be generic in more realistic erosion models), then the dispersion of the roughness
exponent is likely to be a signature of this line of fixed points, each of them corresponding to a
different value of the exponent due to the difference in the initial conditions, i.e. differences in
the geological context in the case of real landscapes.

Finally, we can hope that extra data coming either from laboratory experiments or different
natural settings (Mars or other planets topography for instance) may help to elucidate the status
of the small scale erosion, but the study in itself of this anisotropic model is rather surprising
and interesting: although this model is quite simple (there is only one renormalized function), it
yields a very nontrivial RG physics, functional in essence and displaying a line of fully attractive
fixed points.

5As a remark, notice that within the NPRG formalism, the noise term could be studied for noninteger values of
κ between 1 and 2, therefore giving rise to a smaller range of accessible α. The status of a noninteger value of κ is
not mathematically clear, but one can see it as an interpolation between the two meaningful values κ = 1 (isotropic
noise) and κ = 2 (static noise).



Conclusion

The guiding thread throughout this manuscript has been the study of critical phenomena in a
nonequilibrium context. To understand these phenomena theoretically and beyond the mean-
field level, the renormalization group is usually the most versatile tool, capable of tackling
generic critical problems and capable of handling the large number of correlated degrees of
freedom present at the critical point. In this work, the focus was set on the nonperturbative
version of the renormalization group: following the idea of a systematic reduction of the num-
ber of correlated variables through coarse-graining, the nonperturbative renormalization group
(NPRG) conducts this coarse-graining of the fluctuations with the help of a regulator function
which plays a pivotal role in controlling the approximations and thus in the success of the NPRG
techniques to handle critical systems.

We have therefore shown in this manuscript that an improvement of the regulator function is
necessary in the nonequilibrium context in order to take care of the temporal part of the critical
fluctuations, which are not regularized by the usual equilibrium regulator. Without this upgrade,
the approximations made within the NPRG formalism are jeopardized since they crucially rely
on the regulator function to be justified. The benchmark study we carried out on the kinetic Ising
andO(N) models of this frequency regulator showed indeed an improvement of the quantitative
results for the computation of the dynamical exponent. The step forward would be to make a
concrete use of this frequency regulator to study genuinely nonequilibrium models. Two paths
have to be investigated: (i) does a frequency regulator systematically improve the quantitative
results (for instance the values of the computed critical exponents) obtained up to now for
nonequilibrium systems? (ii) Can a frequency regulator be used to cure inconclusive attempts
of the NPRG in some models such as the Kardar–Parisi–Zhang (KPZ) equation in d > 2, the
parity conserving generalized voter (PCGV) and the pair-contact process with diffusion (PCPD)
universality classes, etc? Finally, we have seen that similarly to the equilibrium situation, many
frequency regulators are candidates. Finding some criteria to discriminate the most suitable one
for a given model and within a given approximation scheme should also be investigated in more
details.

In the case of reaction-diffusion processes, we have seen in Chap. II of this manuscript that
some of the difficulties that arise in this context can be cured by a nonperturbative approach
as well. Indeed, we recall that for reaction-diffusion processes, a microscopic Langevin equa-
tion can be derived from the microscopic description of the system stated in terms of a master
equation. The variable of this Langevin equation is therefore not coarse-grained (as it is usu-
ally the case for Langevin equations), but describes the exact dynamics. This variable is not
the density itself (which evolution is described by the master equation), but an auxiliary field6

whose moments are simply linked to those of the density. In this context, a longstanding issue
was the appearance of imaginary-noise Langevin equations whose numerical and theoretical
handling was facing major difficulties. This paradoxical situation remained and no definitive
statement about it was made: these complex Langevin equations were simply overlooked be-
cause intractable. In this manuscript, I have shown that this situation can be resolved: the
Langevin equations that have been derived are simply not correct and their derivation relied on

6Abusively called “density field” in the literature.
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an erroneous argument, although valid at all orders of the perturbative expansion.
A more rigorous approach, nonperturbative in spirit and relying on contour deformations

shows that exact, real Langevin equations can in fact be derived. The real Langevin variable
introduced in this formalism is clearly not the same auxiliary field as in the previous approach,
but it can still be linked to the initial reaction-diffusion process via a duality relation. These real
Langevin equations overcome the hurdles of complex stochastic variables and can in particular
be solved numerically: in fact, such a dual Langevin equation had already been intuited in
the literature [152], providing results for the PCGV universality class. The path forward is
now to further investigate reaction-diffusion processes near their critical point using these well-
behaved Langevin equations. A major step forward would be made if this exact derivation of real
Langevin equations could be generalized to multi-species reaction-diffusion processes. However,
and despite our efforts, this generalization remains elusive.

Finally, the last part of this manuscript was dedicated to the study of the erosion of land-
scapes. More precisely, erosional landscapes are known to present a scaling behaviour, char-
acterized by a power-law behaviour of the height-height correlation function. The scaling ex-
ponent of this correlation function is called the roughness exponent α and is found to match
the one of the KPZ equation for erosion at large length scale. For smaller length scale, how-
ever, the roughness exponent is much larger and does not agree with the KPZ prediction. This
mismatch urged for the introduction of a different model to capture the physics at small length
scale. It was done by the suggestion of an anisotropic erosion model that takes care of the in-
trinsic anisotropy (the slope of the mountain) at these scales. The initial study of this model by
the perturbative renormalization group however yielded false predictions. In this manuscript, I
have applied the NPRG techniques to tackle this model, and the results are quite surprising since
this model happens to display a line of fixed points. This line of fixed points is consistent with
the generic scaling observed in natural landscapes, but means also nonuniversality: each initial
condition (i.e. each soil particularities, climate properties, etc.) leads to a different topography
and roughness exponent. Although perturbing, this scenario could explain the large variability
of the roughness exponent observed in experimental data.

Let us however temper this statement by emphasizing the fact that the data available at
small length scale is limited: only one decade in log-scale is accessible to support the existence
of this scaling. In any case, the theoretical study of this model already shows that generic scaling
and nonuniversality can arise from a rather simple nonequilibrium model and such results are
probably worth noticing in themselves.

Furthermore, although this last chapter was focused on the erosion of landscapes and on
the topography itself, continuum models have also been devised and applied to river land-
scapes [227, 228]. Numerical studies stemming from these models have been carried out but
they still lack a theoretical study. The NPRG framework could be applied successfully to these
models.

The perspectives in the physics of nonequilibrium critical phenomena are countless. In ad-
dition to the further investigations suggested above, many more open problems exist that could
be treated using nonperturbative approaches.

For instance, in the following of [53], the NPRG techniques can be adapted to handle ini-
tial conditions and capture the universal scaling associated to quenches to the critical point.
This study of the quench dynamics was performed within a derivative expansion approximation
in [53], and it is reasonable to believe that further results could be obtained for such quenches
using the BMW approximation, that allows for the computation of momentum/frequency depen-
dent quantities. So far, the BMW approximation has been very sparsely used in a nonequilibrium
setting and implementing it on a rather simple model is surely valuable.

Many other nonequilibrium models could use a NPRG approach: for instance, a chemotactic
model where cells diffuse, die, divide and interact at long-range through concentration fields
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has recently been studied by Gelimson et al. [229] using a perturbative renormalization group
approach. However, they used an approximate Langevin equation to describe the birth and death
process, which breaks down at low concentrations where an interesting behaviour could arise.
Using rather an exact Langevin equation that we have derived in this manuscript could yield a
different picture. Furthermore, they reported the existence of a nonperturbative fixed point that
was out-of-reach of their approach and could therefore be studied using NPRG techniques.

Another challenging domain in nowadays nonequilibrium physics is the transition to col-
lective motion: many models exist in the literature to describe and understand the “flocking”
behaviour of animals (birds, fishes, bacteria...), the most famous one being probably the Vicsek
model [230], which captures a rich dynamic behaviour with minimal ingredients. However, de-
spite intensive numerical and experimental works on these models, a theoretical description of
the associated phase transition is still lacking. An alternative model was proposed by Toner and
Tu [231] that is more suited for field-theoretical approaches. It has been studied through the
perturbative renormalization group, but an alternative nonperturbative approach could there
again prove useful.
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Appendix A

Scale invariance, universality and
renormalization group

A.1 Probability distribution of the effective potential

In this appendix, we recall how the thermodynamic potential U(σ) is directly related to the
probability distribution of the mean spin σ. Following [31], we consider the Ising model on a
d-dimensional cubic lattice and define the mean spin σ ≡ L−d

∑
j Sj , with L the length of the

lattice. The mean spin is a stochastic variable (whose mean 〈σ〉 = M is the magnetization) and
we would like to compute its probability distribution p(σ).

Since
〈

e−iq
∑
j Sj
〉

is the characteristic function of the random variable Ld
∑

j Sj , the proba-
bility distribution of the mean spin p(σ) is given by its Fourier transform as:

p(σ) = Ld
∫
q

eiqL
dσ
〈

e−iq
∑
j Sj
〉
. (A.1)

Moreover, the characteristic function
〈

e−iq
∑
j Sj
〉

has in fact a simple relation to the analytic
continuation of the partition function in the presence of an imaginary external field h = −iq:〈

e−iq
∑
j Sj
〉

=
Z[h = −iq]
Z[h = 0]

. (A.2)

Using this equality and defining W [h] ≡ logZ[h], we can rewrite the probability distribution
p(σ) as:

p(σ) =
Ld

Z[h = 0]

∫
q

eiqL
dσ+W [−iq] (A.3)

=
Ld

Z[h = 0]

∫
q

eL
d(iqσ+w[−iq]) (A.4)

where we have furthermore defined w[h] = W [h]/Ld. In the thermodynamics limit, we consider
L → ∞, and the above integral over q can be computed by the steepest-descent method, the
saddle point q0 being given by the implicit equation:

σ = W ′[−iq0] , (A.5)

which yields for the probability distribution:

p(σ) =
1

Z[h = 0]

√
Ld

2πw′′[−iq0]
eL

d(iq0σ+w[−iq0]) . (A.6)
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Figure A.1 – Figure extracted from [232] of the effective potential V (ρ) for the averaged activity ρ
measured in cells of linear sizem in a square lattice of sizeN = 256×256. The potential V is defined
for each value of m as V = − log p(ρm) where p(ρm) is the steady-state probability distribution of
the activity ρ averaged in boxes of linear size m, with m = 1 (left) or m = 64 (right). Colors
represent different values of a parameter of their microscopic system which is not crucial here. On
the other hand, we see that as the coarse-graining scale m is increased, the shape of the effective
potential V changes from its microscopic shape (m = 1) – which is typical of a first-order phase
transition – to a shape typical of a second-order transition at larger coarse-graining scale (m = 64).

Finally, we define the Gibbs free energy Γ[σh] as the Legendre transform of Γ[σh] +W [h] = hσh
and σh = ∂W [h]/∂h. The thermodynamics potential U(σh) is the Gibbs free energy per unit
volume and therefore yields:

p(σ) =

√
LdU ′′(σ)/2π

Z[h = 0]
e−L

dU(σ) . (A.7)

This result is however no longer valid at criticality since the different thermodynamic functions
W and Γ are no longer analytic.

However, in the NPRG context, the introduction of the scale k by means of the regulator
renders Γk and Uk analytic. Since this scale k can be seen as a coarse-graining scale of the
model, the potential Uk is associated to the probability distribution of a system of size k−1. When
k = Λ the inverse lattice-spacing, the system is not coarse-grained and the average potential
Uk=Λ is the mean-field potential, while its minimum κΛ is the mean-field magnetization1. When
k → 0, Uk(ψ) is the precursor of the thermodynamic potential U = Uk=0 and we can follow the
evolution of the probability distribution along the renormalization flow.

Notice that this idea of following the evolution of the potential with the coarse-graining scale
has been investigated recently via numerical simulations in [232]. In Fig. A.1, we see how the
microscopic potential V is modified by the averaging over boxes of size m: Whereas the system
is, at the microscopic level, described by the potential of a first-order phase transition, at the
coarse-grained level one observes that it shifts to a second-order type potential.

1To be consistent with our notation, κk is the minimum of Uk(ρ) and the precursor of the magnetization is
therefore

√
2κk.
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A.2 Dimensionless flow equations for the O(2) model.

We give here the dimensionless flow equation for the O(2) model at the LPA’ and with the
potential Û(ρ̂) expanded at the third order in ρ̂. They read:

∂sκ = (2− d− ηs)κ+
8vd (2 + d− ηs)

d(2 + d)

2κ2u3 + 2κu2 + 2u+ κu3

u(2κu+ 1)2

∂su = (d− 4 + 2ηs)u+
8vd (2 + d− ηs)

d(2 + d)
×

8κ3u6 + 12κ2u5 + 6κu4 + 10u3 + 10κu2u3 + uu3

(
6κ2u3 − 1

)
+ κu2

3

u(2κu+ 1)3

∂su3 = (2d− 6 + 3ηs)u3 −
48vd (2 + d− ηs)

d(2 + d)

1

(2κu+ 1)4
×(

14u3 + 4κ3
(
4u6 − 4u4u3 + u3

3

)
+ 8κ4u5

(
u2 − u3

)
+ 4κ2u

(
3u4 − 3u2u3 + 2u2

3

)
+ κ

(
4u4 + 8u2u3 − 5u2

3

)
− 8uu3

)

(A.8a)

(A.8b)

(A.8c)

where d is the spatial dimension, v−1
d = 2d+1πd/2Γ(d/2) is the volume factor coming from the

momentum integration and we have dropped hats above the dimensionless variables to alleviate
the notation.
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Appendix B

Out-of-equilibrium phase transitions

B.1 Stochastic differential equations

Change of variables and Itō formula

Changes of variables in a Langevin equation are subject to rules that differ from usual calculus.
Assuming we have the following stochastic Itō equation:

dXt = µt dt+ σt dBt (B.1)

with Bt a Brownian motion. Then the variable Yt = g(t,Xt) verifies the following equation:

dYt =

(
∂g

∂t
+

∂g

∂Xt
µt +

1

2

∂2g

∂X2
t

σ2
t

)
dt+

∂g

∂Xt
σt dBt . (B.2)

This rule for changing variables is known as the Itō formula [184].

B.2 From the probability-generating function to the Poisson repre-
sentation

In the following we will need the following formulas:

∂nz ey(z−1) = yney(z−1) (B.3)

zpey(z−1) = (∂y + 1)pey(z−1) (B.4)

The first formula is straightforward, while the second is simply proven by recurrence: if p = 1,
one has the following relation:

(∂y + 1)ey(z−1) = [(z − 1) + 1] ey(z−1) = zey(z−1) (B.5)

then for p > 1:

(∂y + 1)pey(z−1) = (∂y + 1)p−1zey(z−1) = zpey(z−1) (B.6)

which terminates the proof. Consequently, an operator L(z, ∂z) acting on ey(z−1) can be rewritten
as an operator L̃(y, ∂y) such that:

L(z, ∂z) ey(z−1) = L̃(∂y + 1, y) ey(z−1) (B.7)

with

L̃(∂y + 1, y)· = yA(∂y + 1) ·+y2B(∂y + 1)· (B.8)
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B.3 Probability-generating function: the spatially-extended case

In the field-theoretic formulation, we showed in the previous section that the spatially-extended
case is handled by a slight deformation of the contours in order to take care of the sub-leading
term coming from diffusion. We describe here how it is treated in the probability-generating
function formalism.

To take into account the spatial structure in the reaction-diffusion process, the system is now
described as a d-dimensional lattice indexed by an integer i. Each site has a number Ni(t) of
particles at time t. A hopping reaction between nearest neighbours is introduced to account for
diffusion:

A∅ D↔ ∅A (B.9)

whereD is the diffusion coefficient. The state of the system is now described by P{n}(t) ≡ Prob(N1(t) = n1, . . . , Nm(t) = nm),
whose time-evolution is still described by the master equation with the additional diffusion term:

D

h2

∑
<i,j>

[
(ni + 1)P...,ni−1,nj+1,... − niP{n}

]
(B.10)

where < i, j > means that sites i and j are nearest neighbours, and h is the lattice spacing. In
this context, the probability-generating function for a spatially-extended system now reads:

G(z1, . . . , zn, t) =
〈
z
N1(t)
1 · · · zNm(t)

n

〉
RD

(B.11)

and is subject to the Fokker-Planck equation:

∂tG =
D

h2

∑
<i,j>

(zj − zi)∂ziG+
∑
i

A(zi)∂ziG+
∑
i

B(zi)∂
2
ziG (B.12)

where the functions A and B are defined in the main text. One notices that the term coming
from the diffusion defines a discrete Laplacian over z{n}. After taking the continuous limit in
space [z{n} → z(x)], it therefore yields the following Langevin equation for the spatialized
stochastic variable Z ≡ Z(x, t):

∂tZ = D∇2Z +A(Z) +
√

2B(Z) ζ (B.13)

where ζ ≡ ζ(x, t) is a Gaussian white noise.



Appendix C

Frequencies regulator

C.1 Flow equations for the model A and the kinetic O(N) model

C.1.1 Model A

One can show for the model A that the dynamical parts of the dimensionless renormalization
functions read1:

∂sÛ
′|dyn = −vd

∫
y
yd/2

fg

h2
(C.1)

∂sẐ|dyn = 2vd

∫
y
yd/2

g

h2

[
2ρ̂f2

h2

(
4

d

yh′2

h
− h′ − 2

d
yh′′
)

+4ρ̂Ẑ ′
f

h

(
1− 2

d

yh′

h

)
+

2ρ̂

d
(Ẑ ′)2 y

h
− Ẑ ′

2
− ρ̂Ẑ ′′

] (C.2)

∂sX̂|dyn = vd

∫
y
yd/2

g

h2

(
8ρ̂X̂ ′

f

h
− 3

f2

h2
ρ̂X̂ − X̂ ′ − 2ρ̂X̂ ′′

)
(C.3)

where ∂t ≡ k∂k, v−1
d = 2d+1πd/2Γ(d/2), ρ̂ = ψ̂2/2, h(y, ρ̂) = y(Ẑ(ρ̂) + r(y)) + Û ′(ρ̂) + 2ρ̂Û ′′(ρ̂),

f(y, ρ̂) = yẐ ′(ρ̂) + 3Û ′′(ρ̂) + 2ρ̂Û ′′′(ρ̂) and g(y) = −ηsr(y) − 2yr′(y). One notices immediately
that X̂ does not contribute to the flows of Û ′ and Ẑ, that are the standard flows of the static
Ising model. This is due to the relaxational nature of the model A.

C.1.2 Kinetic O(N) model

For the kinetic O(N) model, for simplicity we only consider the Local Potential Approximation
prime (LPA’) of the Derivative Expansion, which means we only retain U ′k as a function of ρ,
and Zk and Xk are mere numbers. While the flow of the dimensional part of the dimensionless
renormalization functions is still given by Eqs. (III.50)-(III.52), the flow of the dynamical part is
given this time by the following equations:

∂sÛ
′|dyn = −vd

∫
y
yd/2g

(
3Û ′′ + 2ρ̂Û (3)

h2
L

+
(N − 1)Û ′′

h2
T

)
(C.4)

∂sẐ|dyn = −8vd

∫
y
yd/2gρ̂Û ′′

(
hy
h2
Lh

2
T

+
2yhyy
dh2

Lh
2
T

−
2yh2

y

dh2
Lh

2
T

(
1

hT
+

1

hL

))∣∣∣∣∣
ρ̂=ρ̂0,k

(C.5)

∂sX̂|dyn = −4vd

∫
y
yd/2gρ̂Û ′′2

(
h2
L + 4hLhT + h2

T

h2
Lh

2
T (hL + hT )2

)∣∣∣∣
ρ̂=ρ̂0,k

(C.6)

1Notice that our equations differ from those of reference [91] that involve a misprint.
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where g(y) = −ηsr(y) − 2yr′(y), hL = y(r(y) + 1) + Û ′ + 2ρ̂Û ′′, hT = y(r(y) + 1) + Û ′, hy =
1 + r(y) + r′(y) and hyy = 2r′(y) + yr′′(y). Notice that since we are working at the LPA’, the flow
equations for Ẑ and X̂ are evaluated at the (running) minimum of the potential ρ0,k. Once again,
X̂ does not contribute to the flows of Û ′ and Ẑ, that are the standard flows of the equilibrium
O(N) model at the LPA’.

C.2 Principle of minimal sensitivity

If we were able to solve the Wetterich equation (I.43) exactly, the precise choice of the reg-
ulator would be meaningless. Indeed, if no approximations are performed, the regulator has
no physical meaning and does not influence the behaviour of the physical system when the RG
scale k goes to 0, since the regulator is designed to vanish at this scale. However, the whole
point of introducing a regulator is to perform controlled approximations that allows for find-
ing approximate solutions of the Wetterich equation. These solutions, of course, depend on
the approximation itself, but within a given approximation scheme (in this manuscript, usually
the derivative expansion), the approximate solution also depends on the specific choice of the
regulator.

For a given approximation scheme, one would therefore like to be able to choose the “best”
regulator. This is a difficult task and it is often necessary to try out different types of regulators
and pick out the one which provides the more satisfactory solutions.

For a given shape of regulator, for instance an exponential regulator:

Rk(q) =
a q2

eq2/k2 − 1
(C.7)

we can add the non-physical parameter a, and ask for which value of a the solution of the
Wetterich equation has the most physical meaning. An answer to this question is given by the
principle of minimal sensitivity (PMS) [104], which states that if an approximant A depends on
an unphysical parameter a, then the value of this parameter should be chosen so as to minimize
the sensitivity of A with respect to a, that is one should choose a = aPMS, such that:

∂A
∂a
|a=aPMS = 0 . (C.8)

The reason for this is that in the space of the unphysical parameters, the exact result is indepen-
dent of these parameters, and is therefore constant. The most reliable approximate result is thus
likely to lie where the dependence on the unphysical parameter is the flattest. See Stevenson’s
paper [104] for a more detailed discussion on this topic. See also [67, 73] for an extensive study
of the PMS within the NPRG context.

C.3 Relation between R1 and R2

We show here that the invariance of the action under transformation (III.26) enforces constraints
on R1 and R2. Let us define

∆S1 =

∫
x,x′

φ̃(x, t)R1(x′ − x, t′ − t)φ(x′, t′) , (C.9)

∆S2 =

∫
x,x′

φ̃(x, t)R2(x′ − x, t′ − t′)φ̃(x′, t′) , (C.10)

in which, for notational convenience, we drop in the following the spatial dependence in the dif-
ferent terms. After transforming the fields by (III.26), ∆Si[φ, φ̃] become ∆Si[φ′, φ̃′] ≡ ∆S ′i[φ, φ̃]
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which read:

∆S ′1 =

∫
t,t′
φ̃(t)R1(t− t′)φ(t′)−

∫
t,t′
φ̇(t)R1(t′ − t)φ(t′) , (C.11)

∆S ′2 =

∫
t,t′
φ̃(t)R2(−t′ + t)φ̃(t′)−

∫
t,t′
φ̃(t)

[
R2(−t′ + t)

+R2(t′ − t)
]
φ̇(t′) +

∫
t,t′
φ̇(t)R2(−t′ + t)φ̇(t′) .

(C.12)

In ∆S ′2 we notice that the first term gives back ∆S2, and the third term is symmetric in t and t′

and can be rewritten as:

1

2

∫
t,t′
φ̇(t)

(
R2(−t′ + t) +R2(t′ − t)

)
φ̇(t′) (C.13)

The invariance of the action under transformation (III.26) yields the equality ∆S ′1 + ∆S ′2 =
∆S1 + ∆S2, that reads:∫

t,t′
φ̃(t)

(
R1(−t′ + t) + Ṙ2(−t′ + t)− Ṙ2(t′ − t)−R1(t′ − t)

)
φ(t′)

+

∫
t,t′
φ̇(t)

(
−R1(−t′ + t) +

1

2

(
Ṙ2(−t′ + t)− Ṙ2(t′ − t)

))
φ(t′) = 0 .

(C.14)

which should be valid for all fields φ and φ̃. In order to deduce an identity on the integrand
of (C.14), we first need to integrate it by parts and symmetrize it with respect to t and t′. This
yields two equations that are in fact redundant, and hence we deduce the following sufficient
condition for R1 and R2:

R1(t)−R1(−t) + Ṙ2(t)− Ṙ2(−t) = 0 (C.15)

C.4 Causality and Kramers-Kronig theorem

The linear response function χ(t, t′) is defined to be the variation of the mean value of the field φ
at time t caused by the variation of the external source J coupled to φ at time t′. Mathematically,
it reads:

χ(t, t′) =
〈δφ(t)〉
δJ(t′)

|J→0 . (C.16)

Because of time translation invariance, it is a function of t− t′ only and we may write χ(t, t′) =
χ(t − t′). In the MSRDJ formalism (also called response-function formalism), the response-
function reads:

χ(t, t′) =
〈
φ̃(t′)φ(t)

〉
, (C.17)

and its Fourier transform χ(ω) is simply given by the upper-right element of the propagator
matrix Gk:

χ(ω) =
1

P (q2,−ω)
=

1

h(q2,−ω)− iωXk
, (C.18)

with h(q2, ω) = Zk(ρ)q2 +R1,k(q
2, ω) +U ′k(ρ) + 2ρU ′′k (ρ). Causality imposes χ(t < 0) = 0, which

means that χ(ω) must be an analytic function of ω in the upper-part of the complex plane. In
other words, the poles of χ(ω) must have a negative imaginary part.
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Let us add that the Kramers-Kronig theorem provides an alternative translation of the causal-
ity of the response function. Indeed, the fact that χ(t < 0) = 0 yields the following equalities
for the Fourier transform χ(ω), called the Kramers-Kronig relations [7]:

Re(χ(ω)) =
1

π
P
∫

dω′
Im(χ(ω′))

ω′ − ω (C.19)

Im(χ(ω)) = − 1

π
P
∫

dω′
Re(χ(ω′))

ω′ − ω (C.20)

where P denotes the Cauchy principal value of the integral.



Appendix D

Landscape erosion

D.1 Derivation of the flow equations

In this Appendix we derive the flow of the non-linear function Ak(φ), defined in Eq. (IV.29).
Having in mind this definition, we use the Wetterich equation (I.43) to deduce the following
equality:

∂kFT
(
δΓk

δφ̃(z)

)
(p) = −1

2
Tr
∫
k1,q1,q2

∂kRk(k1) ·Gk(−k1,−q1;φ) · Γ(3)

k,ψ̃
(q1, q2,p) ·Gk(−q2,k1;φ)

(D.1)

where
∫
q ≡ 1/(2π)d+1

∫
q,ω dd−1q⊥ dq‖ dω, and Γ

(3)

k,ψ̃
≡ δΓ(2)

k /δψ̃ reads:

Γ
(3)

k,ψ̃
(q1, q2,p)=

(
p2
‖ TF(A′′k(φ))(q1 + q2 + p) 0

0 0

)
(D.2)

Notice that we keep the same name for a function and its Fourier transform, such that a function
f(q) has to be understood as the Fourier transform of f(x), and we recall the convention:
f(q) =

∫
x f(x)e−i(qx−ωt).

In order to get the flow of Ak, one now has to take the derivative of the previous expression
with respect to p2

‖, and then to evaluate it at p = 0 and uniform field φ. Since Γ
(3)
k (q1, q2,p) ∝ p2

‖,
the whole expression is proportional to p2

‖ and the only non-vanishing term after the derivation
and the evaluation at zero external momentum (p = 0) is the one obtained when deriving
Γ

(3)
k (q1, q2,p) with respect to p2

‖, and evaluating every other Fourier Transform at p = 0. This
means that one can already perform the evaluation at constant field, which simplifies drastically
the computation. One therefore gets:

∂kAk = −1

2
Tr
∫
q1

∂kRk(q1) ·Gk(−q1;φ) ·
(
A′′k(φ) 0

0 0

)
·Gk(q1, φ) (D.3)

where the full propagator Gk is now evaluated at uniform field and reads:

Gk(q;φ) =

(
2W (ω)

P (q2,ω)P (q2,−ω)
1

P (q2,−ω)
1

P (q2,ω)
0

)
(D.4)

with P (q2, ω) = Rk(q
2
‖, q

2
⊥)+q2

⊥+q2
‖A
′
k(φ)+iω, andW (ω) = 1 for an isotropic noise, andW (ω) =

δ(ω) for a static noise. After performing the matrix product and the trace, the integration over
the frequencies is straightforward and yields for the flow of Ak:

∂kAk = −(3κ− 2)Kd

2
×
∫ ∞
|q⊥|=0

∫ ∞
q‖=−∞

∂kRk(q
2
‖, |q⊥|2) |q⊥|d−2A′′k(φ)(

Rk(q
2
‖, |q⊥|2) + |q⊥|2 + q2

‖A
′
k(φ)

)1+κ (D.5)
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where κ = 1 for an isotropic noise, and κ = 2 for a static noise, and whereKd = (2d−1πd/2Γ(d/2))−1 =
Sd−1/(2π)d with Sd the surface of the d-dimensional unit hypersphere. Notice that we have used
the rotational invariance in the transverse direction to rewrite the integral over q⊥ as an integral
over its norm. Finally, one performs the change of variable q‖ =

√
y cos(θ) and q⊥ =

√
y sin(θ)

with y ∈ [0,∞[ and θ ∈ [0, π]. If we furthermore chose the regulator Rk to be a function of
y = q2

⊥ + q2
‖ only, we can write:

Rk(q
2
‖, |q⊥|2) = yk2r(y) (D.6)

with r(y) the usual momentum regulator, for example an exponential regulator:

r(y) =
a

ey − 1
(D.7)

where a is a free parameter. Finally, using the dimensionless variables as defined in Eq. (IV.30),
the particular form of regulator (D.6) and Eq. (D.5) one finally gets the dynamical part of the
flow, Eq. (IV.35).

D.2 Retrieving the one-loop perturbative results

To retrieve the perturbative results from [26, 217], and from [27], we first evaluate the previous
equations at the upper critical dimension dc, which depends on the noise type: d stat

c = 4 for a
static noise, and d iso

c = 2 for an isotropic noise. We define accordingly ε = dc − d.

D.2.1 Pastor-Satorras and Rothman’s results

The equations derived in [26] are retrieved by performing a lowest-order expansion of the
function Â(φ̂):

Â(φ̂) = φ̂+
â3

3!
φ̂3 (D.8)

where â1 ≡ 1 by definition of the anomalous dimension ηA. Then, taking derivatives of the flow
equation (IV.33), and evaluating them at φ̂ = 0, one finds:

ηA =
ε

2
+

3πKd

8
â3 (D.9)

k∂kâ3 = −εâ3 +
3πKd

2
â2

3 (D.10)

Notice that at first order in the ε-expansion, the integrals of the dynamical part of the flow can
be computed analytically at d = d stat

c or d = d iso
c . Moreover, at the first-order in the ε-expansion,

one notices that the flow equations do not depend on the precise shape of the regulator r(y).
Finally, the definition of the term in front of the cubic term in Â, â3, differs from that of [26] and
the relation between the two is â3 = 2λ. Their dimensionless parameter λ̄ is also proportional to
ours and we have the following relation between the two: â3 = 2(2π)d−1/Sd−1λ̄ where Sd is the
surface area of a d-dimensional unit sphere. Up to these notation, and up to a factor −1 which
comes from the fact their equations are derived for the real-space variable l, whereas ours are
derived for the momentum k, Eq. (D.10) is indeed equivalent to their Eq. (6) in [26]. We also
agree with their results for the roughness (and anisotropy) exponent, and the stable fixed point
of Eqs. (D.9)-(D.10) indeed yields:

α ≡ (4κ− 2d− η∗A)/3 =
5

12
ε (D.11)

We still emphasize that this result is not correct, even for ε → 0, because the expansion (D.8)
discards an infinity of equally relevant coupling constants and is thus not valid.



D.3. AN EXACT SOLUTION OF THE FIXED POINT EQUATION 147

D.2.2 Antonov and Kakin’s results

Following [27], we set κ = 1 (isotropic noise), dc = d iso
c = 2 and we expand the function Â(φ̂)

as:

Â(φ̂) = φ̂+

∞∑
i=2

âi
i!
φ̂i (D.12)

Notice that Â is not an odd function of φ̂. Again, taking derivatives of the flow equation (IV.33),
and evaluating them at φ̂ = 0, we are able to retrieve the equations derived in [27], except that
we do not agree on their integration over the momenta. Indeed, in [27], the integration over
the momenta

∫
dk seems to be performed as if k was isotropic, yielding a factor Sd whereas we

argued it should be a factor Sd−1. A factor π coming from the integration over the angle θ is also
missing. Up to this difference and notational discrepancies, our flow equations are in a one to
one agreement with the β functions of [225] (those of the first article [27] involved a misprint
in the β2 function).

Notice also that contrary to what is stated in [27], taking âi = 0 for all i 6= 3 makes the RG
equations of [27] boil down to those of [26, 217] (up to the factor coming from the momentum
integration discussed in the previous paragraph).

D.3 An exact solution of the fixed point equation

In the special case of η∗A = 0 (which is not interesting for the physics since it means ζ = 1/3 < 1),
the fixed point solution of the flow equation (IV.37) can be solved exactly. Indeed, one can show
that Â′(φ̂) is solution of the simple differential equation:

4
(

2φ̂2 + 5
)2

(Â′)3 −
(

9Â′ + 1
)2

= 0 (D.13)

which can be solved exactly in terms of an integral over an algebraic integrand. In this special
case, we therefore have a proof that a well-defined function exists on the whole real axis.

Moreover, this function is in fact also solution of a linear ordinary differential equation of
order 4, on which the study of the singularities can be performed. The main singularity lies at
φ̂2 = −5/2 and not on the real axis. Thus, at least in this case, the series expansion around
φ̂ = 0 of the fixed point solution coincides with the fixed point solution although it has a finite
radius of convergence, R =

√
5/2.

Although it is difficult to extrapolate this result to the physically interesting values of η∗A, we
have nonetheless checked that our numerical integration of the fixed point equation for η∗A = 0
matches this exact result.
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Phénomènes critiques hors-équilibre: équations de Langevin exactes, érosion
d’un paysage en pente.

Résumé : L’objet de cette thèse a été l’étude de phénomènes critiques hors-équilibre. Pour
décrire ces systèmes, les équations de Langevin sont souvent incontournables car elles four-
nissent un point de départ idéal pour des simulations numériques ou des approches de théorie
des champs. Dans la plupart des cas, ces équations sont obtenues de façon phénoménologique
en rajoutant un terme de bruit (qui modélise les degrés de liberté microscopiques du système)
à une équation déterministe. Toutefois, j’ai montré qu’il est possible, dans le cas des processus
de réaction-diffusion, d’aller au delà de cette approche phénoménologique et de dériver une
équation de Langevin exacte qui décrit la dynamique au niveau microscopique.

Une seconde partie de ma thèse a été consacrée à l’étude de modèles spécifiques de phénomènes
critiques hors-équilibre à l’aide du groupe de renormalisation non-perturbatif (NPRG), qui est la
version moderne des blocs de spins de Wilson et Kadanoff. Cet outil théorique est maintenant
largement répandu dans l’étude des phénomènes critiques à l’équilibre pour lesquels il tire son
succès de sa capacité à contrôler les fluctuations qui se construisent au voisinage de la transition
de phase grâce à l’utilisation d’une fonction de régulation, ou régulateur. Hors équilibre, les
fluctuations temporelles doivent être traitées de la même façon, et j’ai donc conçu un régulateur
qui contrôle à la fois les fluctuations spatiales et temporelles.

Enfin, j’ai appliqué les techniques du NPRG à un modèle d’érosion. En effet, l’apparition
générique de lois d’échelles dans les paysages naturels suggère l’existence d’un mécanisme sous-
jacent qui conduit naturellement ces systèmes à leur point critique. L’équation célèbre de Kardar-
Parisi-Zhang semble ainsi modéliser de façon satisfaisante l’érosion à grande échelle (> 2 km),
mais ne s’accorde pas aux lois de puissance observées à plus petite échelle. Un modèle différent,
qui tient compte de l’anisotropie intrinsèque de ces plus petites échelles (la pente d’une mon-
tagne), fut donc suggéré. À l’aide du formalisme du NPRG, je montre que ce modèle possède une
ligne de points fixes qui correspond à un domaine continu d’exposants d’échelle, ce qui pourrait
expliquer la grande variabilité observée au niveau expérimental.
Mots-clefs : Phénomènes critiques hors-équilibre, groupe de renormalisation non-perturbatif,
équations de Langevin, processus de réaction-diffusion, régulateur en fréquences, érosion de
paysages.



Nonequilibrium critical phenomena: exact Langevin equations, erosion of tilted
landscapes.

Abstract: This manuscript is focused on the study of critical phenomena taking place out-of-
equilibrium. In the description of such phenomena, Langevin equations are ubiquitous and are
derived most of the time in a phenomenological way by adding a noise term to a deterministic
mean-field equation. However, I show that for reaction-diffusion processes it is in fact possible
to derive an exact Langevin equation from the microscopic process.

A second part of my thesis work has been devoted to the study of specific nonequilibrium
critical phenomena using the nonperturbative renormalization group (NPRG), which is a mod-
ern implementation of Wilson and Kadanoff’s block spin idea. This tool, well-developed and
very powerful in an equilibrium context, takes care of the growing spatial fluctuations that arise
near criticality through the use of a regulator function. In a nonequilibrium context, the situa-
tion is more complex and the temporal fluctuations also have to be controlled. I have therefore
designed a regulator that tackles both spatial and temporal fluctuations.

Finally, I have applied the NPRG techniques to a model of landscape erosion: Indeed, the
generic scaling behaviour that appear in erosional landscapes suggests the existence of an under-
lying mechanism naturally fine-tuned to be critical. The famous Kardar-Parisi-Zhang equation
seems to give a correct model for landscape erosion at large length scale (> 2 km), but fails
to predict the scaling observed at smaller scale. A different model was thus suggested which
takes into account the intrinsic anisotropy at smaller length scale (the slope of the mountain).
Using NPRG techniques, I show that this model possesses a line of fixed points associated with
a continuous range of scaling exponents, which could explain the great variability observed in
experimental data.
Keywords: Nonequilibrium critical phenomena, nonperturbative renormalization group, Langevin
equations, reaction-diffusion processes, frequency regulator, landscape erosion.


