A. Descos, Conception, fabrication et réalisation de sources lasers hybrides III-V sur silicium, 2014.

H. Duprez, De la conception à la fabrication de sources lasers hybrides III-V sur silicium pour des circuits photoniques intégrés

T. Ferrotti, Design, fabrication and characterization of a hybrid III-V on silicon transmitter for high-speed communications
URL : https://hal.archives-ouvertes.fr/tel-01529424

T. H. Maiman, Stimulated Optical Radiation in Ruby, Nature, vol.187, issue.4736, pp.493-494, 1960.
DOI : 10.1103/PhysRevLett.4.564

S. E. Miller, Integrated Optics: An Introduction, Bell System Technical Journal, vol.48, issue.7, pp.2059-2069, 1969.
DOI : 10.1002/j.1538-7305.1969.tb01165.x

F. P. Kapron, D. B. Keck, and R. D. Maurer, RADIATION LOSSES IN GLASS OPTICAL WAVEGUIDES, Applied Physics Letters, vol.48, issue.10, pp.423-425, 1970.
DOI : 10.1002/j.1538-7305.1969.tb01169.x

T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, Ultimate low-loss single-mode fibre at 1.55 ??m, Electronics Letters, vol.15, issue.4, pp.106-108, 1979.
DOI : 10.1049/el:19790077

A. V. Krishnamoorthy, Progress in Low-Power Switched Optical Interconnects, IEEE Journal of Selected Topics in Quantum Electronics, vol.17, issue.2, pp.357-376, 2011.
DOI : 10.1109/JSTQE.2010.2081350

N. B. Feilchenfeld, An integrated silicon photonics technology for O-band datacom, 2015 IEEE International Electron Devices Meeting (IEDM), 2015.
DOI : 10.1109/IEDM.2015.7409768

F. Boeuf, Silicon Photonics R&D and Manufacturing on 300-mm Wafer Platform, Journal of Lightwave Technology, vol.34, issue.2
DOI : 10.1109/JLT.2015.2481602

A. Novack, A 30 GHz silicon photonic platform, pp.878107-878107, 2013.
DOI : 10.1117/12.2019207

C. Baudot, Introducing photonic devices for 40Gbits/s wavelength division multiplexing transceivers on 300-mm SOI wafers using CMOS processes, pp.89880-89880, 2014.
DOI : 10.1117/12.2042496

URL : https://hal.archives-ouvertes.fr/hal-01490317

A. E. Lim, Review of Silicon Photonics Foundry Efforts, IEEE Journal of Selected Topics in Quantum Electronics, vol.20, issue.4, pp.405-416, 2014.
DOI : 10.1109/JSTQE.2013.2293274

D. H. Lee, S. J. Choo, U. Jung, K. W. Lee, K. W. Kim et al., hard mask and fluorine-based dry etching, Journal of Micromechanics and Microengineering, vol.25, issue.1, p.15003, 2015.
DOI : 10.1088/0960-1317/25/1/015003

W. Bogaerts, Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology, IEEE Journal of Selected Topics in Quantum Electronics, vol.16, issue.1, pp.33-44, 2010.
DOI : 10.1109/JSTQE.2009.2039680

C. Sciancalepore, Low-Crosstalk Fabrication-Insensitive Echelle Grating Demultiplexers on Silicon-on-Insulator, IEEE Photonics Technology Letters, vol.27, issue.5, pp.494-497, 2015.
DOI : 10.1109/LPT.2014.2377075

M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith et al., Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems, Optics Express, vol.19, issue.1, pp.306-316, 2011.
DOI : 10.1364/OE.19.000306

B. B. Bakir, Low-Loss (<formula formulatype="inline"><tex Notation="TeX">$&#x0003C;$</tex> </formula>1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers, IEEE Photonics Technology Letters, vol.22, issue.11, pp.739-741, 2010.
DOI : 10.1109/LPT.2010.2044992

A. Mekis, A Grating-Coupler-Enabled CMOS Photonics Platform, IEEE Journal of Selected Topics in Quantum Electronics, vol.17, issue.3, pp.597-608, 2011.
DOI : 10.1109/JSTQE.2010.2086049

B. Szelag, B. Blampey, T. Ferrotti, V. Reboud, K. Hassan et al., Multiple wavelength silicon photonic 200 mm R+D platform for 25Gb/s and above applications, Proc. SPIE 9891, Silicon Photonics and Photonic Integrated Circuits V, 98911C, 2016.

L. Liao, High speed silicon Mach-Zehnder modulator, Optics Express, vol.13, issue.8, pp.3129-3135, 2005.
DOI : 10.1364/OPEX.13.003129

D. Marris-morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan et al., Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure, Optics Express, vol.16, issue.1, pp.334-339, 2008.
DOI : 10.1364/OE.16.000334

L. Virot, Développement de photodiodes à avalanche en Ge sur Si pour la détection faible signal et grande vitesse, 2014.

X. Xiao, High-speed, low-loss silicon Mach???Zehnder modulators with doping optimization, Optics Express, vol.21, issue.4, pp.4116-4125, 2013.
DOI : 10.1364/OE.21.004116

J. V. Campenhout, Low-Voltage, Low-Loss, Multi-Gb/s Silicon Micro-Ring Modulator based on a MOS Capacitor, Optical Fiber Communication Conference, pp.2-4, 2012.
DOI : 10.1364/OFC.2012.OM2E.4

A. J. Zilkie, Power-efficient III-V/Silicon external cavity DBR lasers, Optics Express, vol.20, issue.21, pp.23456-23462, 2012.
DOI : 10.1364/OE.20.023456

M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, Efficient silicon light-emitting diodes, Nature, vol.53, issue.9, pp.805-808, 2001.
DOI : 10.1063/1.1325229

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao et al., An efficient room-temperature silicon-based light-emitting diode, Nature, vol.69, issue.6825, pp.192-194, 2001.
DOI : 10.1063/1.117678

N. Daldosso, Er-Coupled Si Nanocluster Waveguide, IEEE Journal of Selected Topics in Quantum Electronics, vol.12, issue.6, pp.1607-1617, 2006.
DOI : 10.1109/JSTQE.2006.885141

URL : http://diposit.ub.edu/dspace/bitstream/2445/8757/1/553549.pdf

A. Pitanti, coupled to Si nanoclusters rib waveguides, Silicon Photonics and Photonic Integrated Circuits, pp.699619-699619, 2008.
DOI : 10.1117/12.781443

D. J. Lockwood, Light Emission in Silicon Nanostructures, Nanoscale Science and Technology, pp.185-209, 1998.
DOI : 10.1117/12.452153

P. M. Fauchet, Light emission from Si quantum dots, Materials Today, vol.8, issue.1, pp.26-33, 2005.
DOI : 10.1016/S1369-7021(04)00676-5

URL : https://doi.org/10.1016/s1369-7021(04)00676-5

S. G. Cloutier, P. A. Kossyrev, and J. Xu, Optical gain and stimulated emission in periodic nanopatterned crystalline silicon, Nature Materials, vol.126, issue.12, pp.887-891, 2005.
DOI : 10.1364/OPEX.12.005690

L. Pavesi, L. Dal-negro, C. Mazzoleni, G. Franzò, and F. Priolo, Optical gain in silicon nanocrystals, Silicon-based and Hybrid Optoelectronics III, pp.440-444, 2000.
DOI : 10.1117/12.426932

H. Rong, A continuous-wave Raman silicon laser, Nature, vol.29, issue.7027, pp.725-728, 2005.
DOI : 10.1364/OL.29.001224

J. Liu, X. Sun, R. Camacho-aguilera, L. C. Kimerling, and J. Michel, Ge-on-Si laser operating at room temperature, Optics Letters, vol.35, issue.5, pp.679-681, 2010.
DOI : 10.1364/OL.35.000679

R. E. Camacho-aguilera, An electrically pumped germanium laser, Optics Express, vol.20, issue.10, pp.11316-11320, 2012.
DOI : 10.1364/OE.20.011316

L. Carroll, Direct-Gap Gain and Optical Absorption in Germanium Correlated to the Density of Photoexcited Carriers, Doping, and Strain, Physical Review Letters, vol.109, issue.5, p.57402, 2012.
DOI : 10.1103/PhysRev.105.885

M. Virgilio, C. L. Manganelli, G. Grosso, G. Pizzi, and G. Capellini, -type germanium, Physical Review B, vol.2008, issue.23, p.235313, 2013.
DOI : 10.1103/PhysRevB.76.115202

B. Dutt, D. S. Sukhdeo, D. Nam, B. M. Vulovic, Z. Yuan et al., Roadmap to an Efficient Germanium-on-Silicon Laser: Strain vs. n-Type Doping, IEEE Photonics Journal, vol.4, issue.5, pp.2002-2009, 2012.
DOI : 10.1109/JPHOT.2012.2221692

D. Peschka, Modeling of Edge-Emitting Lasers Based on Tensile Strained Germanium Microstrips, IEEE Photonics Journal, vol.7, issue.3, pp.1-15, 2015.
DOI : 10.1109/JPHOT.2015.2427093

R. Geiger, Excess carrier lifetimes in Ge layers on Si, Applied Physics Letters, vol.104, issue.6, p.62106, 2014.
DOI : 10.1063/1.2803715

M. Kurdi, G. Fishman, S. Sauvage, and P. Boucaud, Band structure and optical gain of tensile-strained germanium based on a 30 band k???p formalism, Journal of Applied Physics, vol.17, issue.1, p.13710, 2010.
DOI : 10.1002/pssb.2221260102

P. Vogl, M. M. Rieger, J. A. Majewski, and G. Abstreiter, How to convert group-IV semiconductors into light emitters, Physica Scripta, vol.49, issue.T49B, p.476, 1993.
DOI : 10.1088/0031-8949/1993/T49B/017

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. Luan et al., Strain-induced band gap shrinkage in Ge grown on Si substrate, Applied Physics Letters, vol.82, issue.13, pp.2044-2046, 2003.
DOI : 10.1063/1.91831

Y. Ishikawa, Strain-induced enhancement of near-infrared absorption in Ge epitaxial layers grown on Si substrate, Journal of Applied Physics, vol.1, issue.1, p.13501, 2005.
DOI : 10.1063/1.356682

A. Ghrib, High tensile strain transfer into germanium microdisks using all-around strained SiN, 11th International Conference on Group IV Photonics (GFP), pp.229-230, 2014.
DOI : 10.1109/Group4.2014.6961938

G. Capellini, Tensile Ge microstructures for lasing fabricated by means of a silicon complementary metal-oxide-semiconductor process, Optics Express, vol.22, issue.1, pp.399-410, 2014.
DOI : 10.1364/OE.22.000399

R. W. Millar, Expanding the Ge emission wavelength to 2.25??m with SixNy strain engineering, Thin Solid Films, vol.602, pp.60-63, 2016.
DOI : 10.1016/j.tsf.2015.07.017

M. J. Süess, Analysis of enhanced light emission from highly strained germanium microbridges, Nature Photonics, vol.48, issue.6, pp.466-472, 2013.
DOI : 10.1016/j.sse.2004.01.013

D. Nam, Strain-Induced Pseudoheterostructure Nanowires Confining Carriers at Room Temperature with Nanoscale-Tunable Band Profiles, Nano Letters, vol.13, issue.7, pp.3118-3123, 2013.
DOI : 10.1021/nl401042n

D. S. Sukhdeo, D. Nam, J. Kang, M. L. Brongersma, and K. C. Saraswat, Direct bandgap germanium-on-silicon inferred from 57% ???100??? uniaxial tensile strain [Invited], Photonics Research, vol.2, issue.3, pp.8-13, 2014.
DOI : 10.1364/PRJ.2.0000A8

R. Geiger, Uniaxially stressed germanium with fundamental direct band gap, 2015.

K. Guilloy, Germanium under High Tensile Stress: Nonlinear Dependence of Direct Band Gap vs Strain, ACS Photonics, vol.3, issue.10, 2016.
DOI : 10.1021/acsphotonics.6b00429

E. F. Schubert, T. Gessmann, and J. K. Kim, Light Emitting Diodes, Kirk-Othmer Encyclopedia of Chemical Technology, 2000.

J. Yang, P. Bhattacharya, and Z. Mi, High-Performance $\hbox{In}_{0.5}\hbox{Ga}_{0.5} \hbox{As/GaAs}$ Quantum-Dot Lasers on Silicon With Multiple-Layer Quantum-Dot Dislocation Filters, IEEE Transactions on Electron Devices, vol.54, issue.11, pp.2849-2855, 2007.
DOI : 10.1109/TED.2007.906928

J. Yang, Z. Mi, and P. Bhattacharya, Groove-Coupled InGaAs/GaAs Quantum Dot Laser/Waveguide on Silicon, Journal of Lightwave Technology, vol.25, issue.7, pp.1826-1831, 2007.
DOI : 10.1109/JLT.2007.899165

S. Chen, Electrically pumped continuous-wave III???V quantum dot lasers on silicon, Nature Photonics, vol.40, issue.5, pp.307-311, 2016.
DOI : 10.1049/el:20046692

C. Ting, Electrically Pumped Room-Temperature Pulsed InGaAsP-Si Hybrid Lasers Based on Metal Bonding, Chinese Physics Letters, vol.26, issue.6, p.64211, 2009.
DOI : 10.1088/0256-307X/26/6/064211

G. Roelkens, III-V/Si photonics by die-to-wafer bonding, Materials Today, vol.10, issue.7-8, pp.36-43, 2007.
DOI : 10.1016/S1369-7021(07)70178-5

B. B. Bakir, (Invited) Heterogeneously Integrated III-V on Silicon Lasers, ECS Transactions, vol.64, issue.5, pp.211-223, 2014.
DOI : 10.1149/06405.0211ecst

T. Mitze, CWDM Transmitter Module Based on Hybrid Integration, IEEE Journal of Selected Topics in Quantum Electronics, vol.12, issue.5, pp.983-987, 2006.
DOI : 10.1109/JSTQE.2006.882643

G. Roelkens, III-V/silicon photonics for on-chip and intra-chip optical interconnects, Laser & Photonics Reviews, vol.3, issue.6, pp.751-779, 2010.
DOI : 10.1002/lpor.200900033

H. Wada and T. Kamijoh, Room-temperature CW operation of InGaAsP lasers on Si fabricated by wafer bonding, IEEE Photonics Technology Letters, vol.8, issue.2, pp.173-175, 1996.
DOI : 10.1109/68.484231

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia et al., Electrically pumped hybrid AlGaInAs-silicon evanescent laser, Optics Express, vol.14, issue.20, pp.9203-9210, 2006.
DOI : 10.1364/OE.14.009203

H. Chang, 1310nm silicon evanescent laser, Optics Express, vol.15, issue.18, pp.11466-11471, 2007.
DOI : 10.1364/OE.15.011466

G. Roelkens, D. V. Thourhout, R. Baets, R. Nötzel, and M. Smit, Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit, Optics Express, vol.14, issue.18, pp.8154-8159, 2006.
DOI : 10.1364/OE.14.008154

S. Stankovic, G. Roelkens, D. V. Thourhout, R. Jones, M. Sysak et al., 1310 nm Evanescent Hybrid III-V/Si Laser Based on DVS-BCB Bonding, Advanced Photonics, pp.3-3, 2011.
DOI : 10.1364/IPRSN.2011.IWC3

T. Dupont, Continuous wave InGaAsP/InP Fabry-Perot lasers on silicon, 2008 20th International Conference on Indium Phosphide and Related Materials, pp.1-2, 2008.
DOI : 10.1109/ICIPRM.2008.4703074

M. Lamponi, Heterogeneously integrated InP/SOI laser using double tapered single-mode waveguides through adhesive die to wafer bonding, 7th IEEE International Conference on Group IV Photonics, pp.22-24, 2010.
DOI : 10.1109/GROUP4.2010.5643441

B. B. Bakir, Electrically driven hybrid Si/III-V Fabry-P??rot lasers based on adiabatic mode transformers, Optics Express, vol.19, issue.11, pp.10317-10325, 2011.
DOI : 10.1364/OE.19.010317

H. T. Hattori, Heterogeneous integration of microdisk lasers on silicon strip waveguides for optical interconnects, IEEE Photonics Technology Letters, vol.18, issue.1, pp.223-225, 2006.
DOI : 10.1109/LPT.2005.861542

P. R. Romeo, InP on Silicon Electrically Driven Microdisk Lasers for Photonic ICs, 2006 International Conference on Indium Phosphide and Related Materials Conference Proceedings, pp.60-63, 2006.
DOI : 10.1109/ICIPRM.2006.1634111

J. V. Campenhout, Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit, Optics Express, vol.15, issue.11, pp.6744-6749, 2007.
DOI : 10.1364/OE.15.006744

L. Liu, T. Spuesens, G. Roelkens, D. V. Thourhout, P. Regreny et al., A Thermally Tunable III???V Compound Semiconductor Microdisk Laser Integrated on Silicon-on-Insulator Circuits, IEEE Photonics Technology Letters, vol.22, issue.17, pp.1270-1272, 2010.
DOI : 10.1109/LPT.2010.2053526

J. V. Campenhout, A Compact SOI-Integrated Multiwavelength Laser Source Based on Cascaded InP Microdisks, IEEE Photonics Technology Letters, vol.20, issue.16, pp.1345-1347, 2008.
DOI : 10.1109/LPT.2008.926857

D. Liang, Electrically-pumped compact hybrid silicon microring lasers for optical interconnects, Optics Express, vol.17, issue.22, pp.20355-20364, 2009.
DOI : 10.1364/OE.17.020355

A. W. Fang, Integrated AlGaInAs-silicon evanescent race track laser and photodetector, Optics Express, vol.15, issue.5, pp.2315-2322, 2007.
DOI : 10.1364/OE.15.002315

A. W. Fang, A racetrack mode-locked silicon evanescent laser, Optics Express, vol.16, issue.2, pp.1393-1398, 2008.
DOI : 10.1364/OE.16.001393

T. Okumura, T. Maruyama, H. Yonezawa, N. Nishiyama, and S. Arai, Injection type GaInAsP/InP/Si DFB lasers directly bonded on SOI substrate, 2008 20th International Conference on Indium Phosphide and Related Materials, pp.1-4, 2008.
DOI : 10.1109/ICIPRM.2008.4703013

T. Okumura, T. Maruyama, H. Yonezawa, N. Nishiyama, and S. Arai, Injection-Type GaInAsP???InP???Si Distributed-Feedback Laser Directly Bonded on Silicon-on-Insulator Substrate, IEEE Photonics Technology Letters, vol.21, issue.5, pp.283-285, 2009.
DOI : 10.1109/LPT.2008.2010780

A. W. Fang, E. Lively, Y. Kuo, D. Liang, and J. E. Bowers, A distributed feedback silicon evanescent laser, Optics Express, vol.16, issue.7, pp.4413-4419, 2008.
DOI : 10.1364/OE.16.004413

T. Dupont, A III-V on silicon distributed-feedback laser based on exchange-Bragg coupling, 7th IEEE International Conference on Group IV Photonics, pp.19-21, 2010.
DOI : 10.1109/GROUP4.2010.5643440

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens et al., Hybrid III???V/Si Distributed-Feedback Laser Based on Adhesive Bonding, IEEE Photonics Technology Letters, vol.24, issue.23, pp.2155-2158, 2012.
DOI : 10.1109/LPT.2012.2223666

S. Keyvaninia, Demonstration of a novel III-V-on-Si distributed feedback laser, Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, pp.1-6, 2013.
DOI : 10.1364/OFC.2013.OTh1D.6

H. Duprez, 1310 nm hybrid InP/InGaAsP on silicon distributed feedback laser with high side-mode suppression ratio, Optics Express, vol.23, issue.7, pp.8489-8497, 2015.
DOI : 10.1364/OE.23.008489

URL : https://hal.archives-ouvertes.fr/hal-01489445

H. Duprez, A. Descos, C. Jany, C. Seassal, and B. B. Bakir, Hybrid III???V on Silicon Laterally Coupled Distributed Feedback Laser Operating in the <inline-formula> <tex-math notation="LaTeX">$O$ </tex-math> </inline-formula>-Band, IEEE Photonics Technology Letters, vol.28, issue.18, pp.1920-1923, 2016.
DOI : 10.1109/LPT.2016.2576021

A. W. Fang, A Distributed Bragg Reflector Silicon Evanescent Laser, IEEE Photonics Technology Letters, vol.20, issue.20, pp.1667-1669, 2008.
DOI : 10.1109/LPT.2008.2003382

M. N. Sysak, J. O. Anthes, D. Liang, J. E. Bowers, O. Raday et al., A hybrid silicon sampled grating DBR tunable laser, 2008 5th IEEE International Conference on Group IV Photonics, pp.55-57, 2008.
DOI : 10.1109/GROUP4.2008.4638095

G. Duan, J. Fedeli, S. Keyvaninia, and D. Thomson, 10 Gb/s Integrated Tunable Hybrid III-V/Si Laser and Silicon Mach-Zehnder Modulator, European Conference and Exhibition on Optical Communication, 2012.
DOI : 10.1364/ECEOC.2012.Tu.4.E.2

S. Keyvaninia, Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser, Optics Express, vol.21, issue.3, pp.3784-3792, 2013.
DOI : 10.1364/OE.21.003784

G. Duan, New Advances on Heterogeneous Integration of III???V on Silicon, Journal of Lightwave Technology, vol.33, issue.5, pp.976-983, 2015.
DOI : 10.1109/JLT.2014.2376174

A. Descos, Heterogeneously Integrated III-V/Si Distributed Bragg Reflector Laser with Adiabatic Coupling, 39th European Conference and Exhibition on Optical Communication (ECOC 2013), pp.2013-2014, 2013.
DOI : 10.1049/cp.2013.1502

H. Duprez, C. Jany, C. Seassal, and B. B. Bakir, Highly tunable heterogeneously integrated III-V on silicon sampled-grating distributed Bragg reflector lasers operating in the O-band, Optics Express, vol.24, issue.18, pp.20895-20903, 2016.
DOI : 10.1364/OE.24.020895

H. F. Taylor and A. Yariv, Guided wave optics, Proceedings of the IEEE, vol.62, issue.8, pp.1044-1060, 1974.
DOI : 10.1109/PROC.1974.9569

A. Mekis, A Grating-Coupler-Enabled CMOS Photonics Platform, IEEE Journal of Selected Topics in Quantum Electronics, vol.17, issue.3, pp.597-608, 2011.
DOI : 10.1109/JSTQE.2010.2086049

D. Benedikovic, High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure, Optics Letters, vol.40, issue.18, pp.4190-4193, 2015.
DOI : 10.1364/OL.40.004190

Z. Can, High Efficiency Grating Coupler for Coupling between Single-Mode Fiber and SOI Waveguides, Chinese Phys. Lett, vol.30, issue.1, p.14207, 2013.

D. Taillaert, Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides, Japanese Journal of Applied Physics, vol.45, issue.8A, p.6071, 2006.
DOI : 10.1143/JJAP.45.6071

G. Roelkens, D. V. Thourhout, and R. Baets, High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay, Optics Express, vol.14, issue.24, pp.11622-11630, 2006.
DOI : 10.1364/OE.14.011622

G. Roelkens, High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit, Applied Physics Letters, vol.92, issue.13, p.131101, 2008.
DOI : 10.1109/JLT.2006.878060

D. Vermeulen, High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform, Optics Express, vol.18, issue.17, pp.18278-18283, 2010.
DOI : 10.1364/OE.18.018278

F. V. Van-laere, Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides, Journal of Lightwave Technology, vol.25, issue.1, pp.151-156, 2007.
DOI : 10.1109/JLT.2006.888164

G. Roelkens, Interfacing optical fibers and high refractive index contrast waveguide circuits using diffractive grating couplers, Integrated Optics: Devices, Materials, and Technologies XIII, pp.721808-721808, 2009.
DOI : 10.1117/12.808909

W. S. Zaoui, M. F. Rosa, W. Vogel, M. Berroth, J. Butschke et al., High-efficient CMOS-compatible grating couplers with backside metal mirror, 2012 38th European Conference and Exhibition on Optical Communications, pp.1-3, 2012.

M. Chow, Method of forming fine conductive lines, patterns and connectors, 1987.

B. E. Saleh and M. C. Teich, Fundamentals of Photonics, p.653, 2007.

B. E. Saleh and M. C. Teich, Fundamentals of Photonics, p.721, 2007.

B. E. Saleh and M. C. Teich, Fundamentals of Photonics, p.315, 2007.

A. Yariv and X. Sun, Supermode Si/III-V hybrid lasers, optical amplifiers and modulators: A proposal and analysis, Optics Express, vol.15, issue.15, pp.9147-9151, 2007.
DOI : 10.1364/OE.15.009147

URL : https://authors.library.caltech.edu/8394/1/YARoe07.pdf

A. Yariv, Coupled-mode theory for guided-wave optics, IEEE Journal of Quantum Electronics, vol.9, issue.9, pp.919-933, 1973.
DOI : 10.1109/JQE.1973.1077767

X. Sun, H. Liu, and A. Yariv, Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system, Optics Letters, vol.34, issue.3, pp.280-282, 2009.
DOI : 10.1364/OL.34.000280

X. Sun, Supermode Si/III?V lasers and circular Bragg lasers, " phd, California Institute of Technology, 2010.

A. Yariv and M. Nakamura, Periodic structures for integrated optics, static1.squarespace.com/static+LETI+-+ChristopheKOPP.pdf.%E2%80%9D, C. Kopp, III-V On Silicon Integration Technology, pp.233-253, 1977.
DOI : 10.1109/JQE.1977.1069323

C. Zhang, D. Liang, G. Kurczveil, J. E. Bowers, and R. G. Beausoleil, Thermal Management of Hybrid Silicon Ring Lasers for High Temperature Operation, IEEE Journal of Selected Topics in Quantum Electronics, vol.21, issue.6, pp.385-391, 2015.
DOI : 10.1109/JSTQE.2015.2428057

J. Durel, T. Ferrotti, A. Chantre, S. Cremer, J. Harduin et al., Realization of back-side heterogeneous hybrid III-V/Si DBR lasers for silicon photonics, pp.97500-97500, 2016.

J. Durel, B. Ben-bakir, C. Jany, S. Cremer, B. Szelag et al., First demonstration of a backside integrated heterogeneous hybrid III-V/Si DBR lasers for Si-photonics applications, 2016 IEEE International Electron Devices Meeting (IEDM), p.2016

-. Si, Pour résoudre ce problème, l'approche la plus couramment proposée consiste à coller un empilement InP sur une plaque SOI afin de fabriquer un laser hybride III Cependant, aucune des démonstrations n'a été réalisée avec un empilement d'interconnexions métalliques BEOL (Back-End Of Line) standard, empêchant ainsi une intégration électronique-photonique appropriée. Pour résoudre le problème topographique posé par cet ajout de couches, un nouveau schéma d'intégration, appelé intégration Back- Side, a été développé et est présenté dans ce document. Tout d'abord, le contexte de cette étude, un état de l'art ainsi que la présentation du Back-Side est abordé. La nouveauté apportée par cette intégration, à savoir le collage du III-V sur la face arrière du SOI après la structuration de celui-ci, y est alors détaillé, Bien que ces plateformes diffèrent à bien des égards, elles manquent toutes d'une source de lumière intégrée Le bon fonctionnement d'un élément essentiel à la puce photonique, le réseau de couplage, est ensuite abordé à travers des simulations, sa fabrication et des caractérisations optiques. Nous avons prouvé que, sous certaines conditions, ce dispositif possède les mêmes performances mesurées en Back-Side qu'en Front-Side

D. Le-laser-Étudié-est-une-cavité-hybride and . Si, Afin d'augmenter le confinement du mode dans le MQWs (Multi Quantum Wells) et donc d'assurer un gain optique élevé, le mode optique est progressivement transféré entre le guide III-V et le guide silicium du laser hybride par des épanouisseurs adiabatiques, structurés dans le SOI de part et d'autre de la zone de gain, pour être enfin réfléchi par les miroirs DBR dans le silicium. Enfin, son processus de fabrication est explicité avant que ses caractérisations opto-électroniques ne soient finalement présentées. Les lasers à pompage électrique ont été testés dans des conditions de courant continu et la lumière générée a été collectée à travers un réseau de couplage par une fibre optique externe multimode. Les pertes de couplage ont été mesurées supérieures à 10 dB

. Ka, La tension de seuil est de 1,45 V. Les spectres lasers reflètent un fonctionnement mono-fréquence, pour différents courants d'injection, avec une longueur d'onde centrale correspondant à la longueur d'onde de Bragg des miroirs. Un SMSR (Side Mode Suppression Ratio) de plus de 35 dB a été mesuré, ce qui prouve la bonne pureté spectrale de ce laser