S. E. Shaheen, D. S. Ginley, and G. Jabbour, Organic-Based Photovoltaics: Toward Low-Cost Power Generation, MRS Bulletin, vol.10, issue.01, pp.10-19, 2005.
DOI : 10.1016/S1386-9477(02)00361-2

URL : https://www.cambridge.org/core/services/aop-cambridge-core/content/view/84A5868A9F0B00780CC71C8E1F92BDD2/S0883769400011799a.pdf/div-class-title-organic-based-photovoltaics-toward-low-cost-power-generation-div.pdf

G. Beaucarne, Silicon Thin-Film Solar Cells, Advances in OptoElectronics, vol.32, issue.3, pp.1-12, 2007.
DOI : 10.1016/j.tsf.2005.01.081

URL : https://hal.archives-ouvertes.fr/hal-00081374

M. A. Green, Thin-film solar cells: review of materials, technologies and commercial status, Journal of Materials Science: Materials in Electronics, vol.18, issue.S1, pp.18-33, 2007.
DOI : 10.1007/s10854-007-9177-9

U. P. Singh and S. P. Patra, Progress in Polycrystalline Thin-Film Cu(In,Ga)Se2 Solar Cells, Int. J. Photoenergy, pp.1-19, 2010.

P. Reinhard, A. Chirila, P. Blosch, F. Pianezzi, S. Nishiwaki et al., Review of Progress Toward 20% Efficiency Flexible CIGS Solar Cells and Manufacturing Issues of Solar Modules, IEEE J. Photovolt, vol.2013, issue.31, pp.572-580

Y. Hamakawa, Thin-Film Solar Cells: Next Generation Photovoltaics and Its Applications Thin Film Solar Cells: Fabrication, Characterization and Applications, 2004.
DOI : 10.1007/978-3-662-10549-8

F. Haug and C. Ballif, Light management in thin film silicon solar cells, Energy & Environmental Science, vol.129, issue.133, pp.824-837
DOI : 10.1016/j.solmat.2014.03.021

D. L. Staebler and C. R. Wronski, Reversible conductivity changes in discharge???produced amorphous Si, Applied Physics Letters, vol.1, issue.4, pp.31-292, 1977.
DOI : 10.1109/T-ED.1977.18740

F. Gaspari, Optoelectronic Properties of Amorphous Silicon the Role of Hydrogen: from Experiment to Modeling, Optoelectronics -Materials and Techniques, 2011.
DOI : 10.5772/18255

S. Klein, F. Finger, R. Carius, and H. Stiebig, Light-Induced Degradation of Microcrystalline Silicon Thin Film Solar Cells Prepared by Hot-Wire CVD; Proceedings of the 19th EUPVSEC, 2004.

F. Meillaud, E. Vallat-sauvain, X. Niquille, M. Dubey, J. Bailat et al., Light-induced degradation of thin film amorphous and microcrystalline silicon solar cells, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005., pp.1412-1415, 2005.
DOI : 10.1109/PVSC.2005.1488405

R. E. Schropp, R. Carius, and G. Beaucarne, Amorphous Silicon, Microcrystalline Silicon, and Thin-Film Polycrystalline Silicon Solar Cells, MRS Bulletin, vol.34, issue.1, pp.219-224, 2007.
DOI : 10.1049/el:19870160

T. Baba, M. Shima, T. Matsuyama, S. Tsuge, and K. Wakisaka, Tsuda, S. 9.2% Efficiency Thin- Film Polycrystalline Silicon Solar Cell by a Novel Solid Phase Crystallization Method, Proceedings of the 13th EUPVSEC, pp.1708-1711, 1995.

P. Basore, D. Song, A. Straub, and P. Widenborg, Simplified Processing and Improved Efficiency of Crystalline Silicon on Glass Modules; Proceedings of the 19th EUPVSEC; Paris Polycrystalline Silicon Thin Film Solar Cells on Glass by Solid Phase Crystallization of in-Situ Doped Evaporated a-Si; Proceedings of the 19th EUPVSEC, 1193.

P. Basore, CSG-2: Expanding the Production of a New Polycrystalline Silicon PV Technology; Proceedings of the 21th EUPVSEC, pp.544-548, 2006.

M. A. Green, Polycrystalline silicon on glass for thin-film solar cells, Applied Physics A, vol.8, issue.1, pp.153-159, 2009.
DOI : 10.1007/s00339-009-5090-9

D. A. Jenny and R. H. Bube, Semiconducting Cadmium Telluride, Physical Review, vol.93, issue.5, pp.1190-1191, 1954.
DOI : 10.1103/PhysRev.93.693

R. Bube, Photoconductivity of the Sulfide, Selenide, and Telluride of Zinc or Cadmium, Proc. IRE 1955, pp.1836-1850
DOI : 10.1109/JRPROC.1955.278046

B. Goldstein, Properties of Photovoltaic Films of CdTe, 25) Cusano, D. A. CdTe Solar Cells and Photovoltaic Heterojunctions in II?VI Compounds. Solid- State Electron, pp.601-603, 1958.
DOI : 10.1063/1.1722483

A. Romeo, M. Terheggen, D. Abou-ras, D. L. Bätzner, F. Haug et al., Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells, Progress in Photovoltaics: Research and Applications, vol.12, issue.23, pp.12-93, 2004.
DOI : 10.1002/pip.527

S. S. Hegedus, B. E. Mccandless, and R. W. Birkmire, Analysis of stress-induced degradation in CdS/CdTe solar cells, Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference, 2000 (Cat. No.00CH37036), pp.535-538, 2000.
DOI : 10.1109/PVSC.2000.915891

C. Corwine, Copper inclusion and migration from the back contact in CdTe solar cells, Solar Energy Materials and Solar Cells, 2004.
DOI : 10.1016/j.solmat.2004.02.005

A. D. Compaan, The Status of and Challenges in CdTe Thin-Film Solar-Cell Technology, MRS Proceedings, vol.668, 2004.
DOI : 10.1557/PROC-668-H5.9

J. Malmström, J. Wennerberg, and L. Stolt, A study of the influence of the Ga content on the long-term stability of Cu(In,Ga)Se2 thin film solar cells, Thin Solid Films, vol.431, issue.432, pp.431-432, 2003.
DOI : 10.1016/S0040-6090(03)00185-8

T. Yanagisawa, T. Kojima, and T. Koyanagi, Behavior of Cu(In,Ga)Se2 solar cells under light/damp heat over time, Microelectronics Reliability, vol.44, issue.2, pp.229-235, 2004.
DOI : 10.1016/S0026-2714(03)00355-X

X. Song, X. Ji, M. Li, W. Lin, X. Luo et al., A Review on Development Prospect of CZTS Based Thin Film Solar Cells, International Journal of Photoenergy, vol.2, issue.5, pp.1-11, 2014.
DOI : 10.1002/pip.1160

M. P. Suryawanshi, G. L. Agawane, S. M. Bhosale, S. W. Shin, P. S. Patil et al., CZTS based thin film solar cells: a status review, Materials Technology, vol.4, issue.1-2, pp.1-2
DOI : 10.1103/PhysRevB.81.245204

W. Shockley and H. J. Queisser, Junction Solar Cells, Journal of Applied Physics, vol.6, issue.17, pp.510-123, 1961.
DOI : 10.1109/JRPROC.1957.278348

G. Conibeer, Third-generation photovoltaics, Materials Today, vol.10, issue.11, pp.42-50, 2007.
DOI : 10.1016/S1369-7021(07)70278-X

C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Plastic Solar Cells, Advanced Functional Materials, vol.11, issue.1, pp.15-26, 2001.
DOI : 10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A

S. E. Shaheen, R. Radspinner, N. Peyghambarian, and G. Jabbour, Fabrication of Bulk Heterojunction Plastic Solar Cells by Screen Printing 2996. (42) Tang, C. W. Two-Layer Organic Photovoltaic Cell, 183. (43) Wright, M.; Uddin, A. Organic?inorganic Hybrid Solar Cells: A Comparative Review, pp.87-111, 1986.

A. Becquerel, Recherches Sur Les Effets de La Radiation Chimique de La Lumiere Solaire Au Moyen Des Courants Electriques, Comptes Rendus L´AcademieL´Academie Sci, vol.1839, issue.9, pp.145-149

H. Gerischer and H. Tributsch, Elektrochemische Untersuchungen zur spektralen Sensibilisierung von ZnO-Einkristallen, Berichte der Bunsengesellschaft f??r physikalische Chemie, vol.87, issue.3, pp.437-445, 1968.
DOI : 10.1126/science.87.2263.439-a

H. Gerischer, M. E. Michel-beyerle, F. Rebentrost, and H. Tributsch, Sensitization of charge injection into semiconductors with large band gap, Electrochimica Acta, vol.13, issue.6, pp.1509-1515, 1968.
DOI : 10.1016/0013-4686(68)80076-3

?. Regan, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, vol.353, issue.6346, pp.737-740, 1991.
DOI : 10.1038/353737a0

A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Dye-Sensitized Solar Cells, Chem. Rev, issue.11, pp.110-6595, 2010.

M. K. Nazeeruddin, E. Baranoff, and M. Grätzel, Dye-sensitized solar cells: A brief overview, Solar Energy, vol.85, issue.6, pp.1172-1178, 2011.
DOI : 10.1016/j.solener.2011.01.018

N. Anscombe, Solar cells that mimic plants, Nature Photonics, vol.5, issue.5, pp.266-267, 2011.
DOI : 10.1038/nphoton.2011.67

J. Albero, P. Atienzar, A. Corma, and H. Garcia, Efficiency Records in Mesoscopic Dye-Sensitized Solar Cells, The Chemical Record, vol.23, issue.264, pp.803-828
DOI : 10.1002/pip.2573

A. Hagfeldt and M. Graetzel, Light-Induced Redox Reactions in Nanocrystalline Systems, Chemical Reviews, vol.95, issue.1, pp.49-68, 1995.
DOI : 10.1021/cr00033a003

K. Schwarzburg and F. Willig, Origin of Photovoltage and Photocurrent in the Nanoporous Dye-Sensitized Electrochemical Solar Cell, The Journal of Physical Chemistry B, vol.103, issue.28, pp.5743-5746, 1999.
DOI : 10.1021/jp990312s

K. Schwanitz, The TiO2/Dye/Electrolyte Interface in the Dye Sensitized Solar Cell, 2008.

M. A. Green, Solar Cells: Operating Principles, Technology, and System Applications; Prentice- Hall series in solid state physical electronics, 1982.

D. S. Boudreaux, F. Williams, and A. J. Nozik, Hot carrier injection at semiconductor-electrolyte junctions, Journal of Applied Physics, vol.194, issue.4, p.2158, 1980.
DOI : 10.1063/1.327889

R. T. Ross, Efficiency of Hot-Carrier Solar Energy Converters 3813. (62) Nozik, A. J. Spectroscopy and Hot Electron Relaxation Dynamics in Semiconductor Quantum Wells and Quantum Dots, J. Appl. Phys. Annu. Rev. Phys. Chem, vol.53, issue.521, pp.193-231, 1982.

P. T. Landsberg, H. Nussbaumer, and G. Willeke, Band???band impact ionization and solar cell efficiency, Journal of Applied Physics, vol.140, issue.2, p.1451, 1993.
DOI : 10.1002/pssb.2221400102

S. Kolodinski, J. H. Werner, T. Wittchen, and H. J. Queisser, Quantum efficiencies exceeding unity due to impact ionization in silicon solar cells, Applied Physics Letters, vol.6, issue.17, pp.63-2405, 1993.
DOI : 10.1103/PhysRevB.27.985

A. Luque and A. Martí, Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels, Physical Review Letters, vol.75, issue.26, pp.78-5014, 1997.
DOI : 10.1063/1.356025

M. A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion Self-Assembled InGaAs/GaAs Quantum Dots; Sugawara, M., Ed.; Semiconductors and semimetals, 1999.

C. B. Murray, C. R. Kagan, and M. G. Bawendi, Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies, Annual Review of Materials Science, vol.30, issue.1, pp.545-610, 2000.
DOI : 10.1146/annurev.matsci.30.1.545

J. E. Moser, P. Bonnôte, M. M. Grätzel, and . Photovoltaics, Molecular photovoltaics, Coordination Chemistry Reviews, vol.171, pp.245-250, 1998.
DOI : 10.1016/S0010-8545(98)90037-6

A. Hagfeldt, M. Grätzel, N. C. Greenham, X. Peng, and A. P. Alivisatos, Molecular Photovoltaics, Accounts of Chemical Research, vol.33, issue.5, pp.269-277, 1996.
DOI : 10.1021/ar980112j

A. C. Arango, S. A. Carter, and P. J. Brock, Charge transfer in photovoltaics consisting of interpenetrating networks of conjugated polymer and TiO2 nanoparticles, Applied Physics Letters, vol.74, issue.12, pp.74-1698, 1999.
DOI : 10.1103/PhysRevB.55.7831

M. W. Van-der-wielen, M. A. Cohen-stuart, and G. J. Fleer, Controlled Nanometer-Scale Surface Roughening and Its Effect on the Ordering and Stability of Liquid-Crystalline Polymer Films, Advanced Materials, vol.11, issue.11, pp.11-918, 1999.
DOI : 10.1002/(SICI)1521-4095(199908)11:11<918::AID-ADMA918>3.0.CO;2-D

D. J. Griffiths and W. A. Harrison, Introduction to Quantum Mechanics (75) Kittel, C. Introduction to Solid State Physics Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond, 77) West, A. R. Solid State Chemistry and Its Applications, 1989.

P. Würfel and B. L. Sharma, Physics of Solar Cells: From Principles to New Concepts Metal-Semiconductor Schottky Barrier Junctions and Their Applications; 1984. (80) Klein, A. Energy Band Alignment at Interfaces of Semiconducting Oxides: A Review of Experimental Determination Using Photoelectron Spectroscopy and Comparison with Theoretical Predictions by the Electron Affinity Rule, Charge Neutrality Levels, and the Common Anion Rule. Thin Solid Films 2012, pp.520-3721, 2008.

C. Tejedor, F. Flores, and E. Louis, The metal-semiconductor interface: Si (111) and zincblende (110) junctions, Journal of Physics C: Solid State Physics, vol.10, issue.12, pp.10-2163, 1977.
DOI : 10.1088/0022-3719/10/12/022

C. Tejedor and F. Flores, A simple approach to heterojunctions, Journal of Physics C: Solid State Physics, vol.11, issue.1, p.19, 1978.
DOI : 10.1088/0022-3719/11/1/005

F. Flores and C. Tejedor, Energy barriers and interface states at heterojunctions, Journal of Physics C: Solid State Physics, vol.12, issue.4, p.731, 1979.
DOI : 10.1088/0022-3719/12/4/018

J. O. Mccaldin, T. C. Mcgill, and C. A. Mead, Correlation for III-V and II-VI Semiconductors of the Au Schottky Barrier Energy with Anion Electronegativity, Physical Review Letters, vol.25, issue.1, pp.56-58, 1976.
DOI : 10.1063/1.1655570

A. Klein, C. Körber, A. Wachau, F. Säuberlich, Y. Gassenbauer et al., Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment, Materials, vol.187, issue.11, pp.4892-4914
DOI : 10.1002/adem.200500125

A. S. Grove, Physics and Technology of Semiconductor Devices, 87) Kasap, S. O. Principles of Electronic Materials and Devices, 1967.

M. Zeman, Solar Cell Operational Principles. https://ocw.tudelft.nl/wp-content/uploads/Solar- Cells-R4-CH4_Solar_cell_operational_principles

C. G. Granqvist, Transparent conductors as solar energy materials: A panoramic review, Solar Energy Materials and Solar Cells, vol.91, issue.17, pp.91-1529, 2007.
DOI : 10.1016/j.solmat.2007.04.031

D. Ginley, H. Hosono, and D. C. Paine, Handbook of Transparent Conductors, 2010.
DOI : 10.1007/978-1-4419-1638-9

D. L. White, M. Feldman, and U. Betz, Liquid-Crystal Light Valves Atamny, F. Thin Films Engineering of Indium Tin Oxide: Large Area Flat Panel Displays Application, Electron. Lett. Kharrazi Olsson, M.; Marthy, J.; Escolá, M. F. Surf. Coat. Technol, vol.6, issue.26, pp.837-839, 1970.
DOI : 10.1049/el:19700578

T. Minami, Transparent conducting oxide semiconductors for transparent electrodes, Semiconductor Science and Technology, vol.20, issue.4, p.35, 2005.
DOI : 10.1088/0268-1242/20/4/004

K. Ellmer, A. Klein, B. Rech, R. Hull, R. M. Osgood et al., Transparent Conductive Zinc Oxide, Series in Materials Science, 2008.
DOI : 10.1007/978-3-540-73612-7

G. Rey, C. Ternon, M. Modreanu, X. Mescot, V. Consonni et al., thin films, Journal of Applied Physics, vol.114, issue.18, pp.114-183713
DOI : 10.1021/jp306174f

URL : https://hal.archives-ouvertes.fr/hal-01067050

A. E. Rakhshani, Y. Makdisi, and H. A. Ramazaniyan, Electronic and optical properties of fluorine-doped tin oxide films, Journal of Applied Physics, vol.1, issue.2, p.1049, 1998.
DOI : 10.1103/PhysRev.93.632

M. A. Aouaj, R. Diaz, A. Belayachi, and F. Rueda, Abd-Lefdil, M. Comparative Study of ITO and FTO Thin Films Grown by Spray Pyrolysis, Mater. Res. Bull, issue.7, pp.44-1458, 2009.

Y. Ren, G. Y. Zhao, and J. Shen, Preparation of Fluorine Doped Tin Oxide Film by Ultrasonic Spray Pyrolysis, Materials Science Forum, vol.695, pp.594-597, 2011.
DOI : 10.4028/www.scientific.net/MSF.695.594

T. Minami, H. Sonohara, T. Kakumu, and S. Takata, Highly Transparent and Conductive Zn2In2O5 Thin Films Prepared by RF Magnetron Sputtering, Jpn. J. Appl. Phys, issue.8A, pp.34-971, 1995.
DOI : 10.1143/jjap.33.l1693

T. Minami, Transparent and conductive multicomponent oxide films prepared by magnetron sputtering, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.17, issue.4, pp.1765-1772, 1999.
DOI : 10.1116/1.581888

T. Minami, New n-Type Transparent Conducting Oxides, MRS Bulletin, vol.21, issue.08, pp.38-44, 2000.
DOI : 10.1016/0040-6090(95)06852-X

G. Rey, Etude d'oxydes métalliques nano-structurés (ZnO, SnO2) pour applications photovoltaïques Band-Gap Tailoring of ZnO by Means of Heavy Al Doping, Phys. Rev. B, issue.10517, pp.37-10244, 1988.

E. Burstein, Anomalous Optical Absorption Limit in InSb, Physical Review, vol.237, issue.3, pp.632-633, 1954.
DOI : 10.1098/rsta.1938.0004

E. Shanthi, A. Banerjee, V. Dutta, and K. L. Chopra, Electrical and optical properties of tin oxide films doped with F and (Sb+F), Journal of Applied Physics, vol.36, issue.3, pp.53-1615, 1982.
DOI : 10.1016/0022-3697(75)90049-9

I. Hamberg and C. G. Granqvist, Evaporated Sn?doped In2O3 Films: Basic Optical Properties and ?pplications to Energy?efficient Windows, J. ?ppl. Phys, issue.11, pp.60-123, 1986.
DOI : 10.1063/1.337534

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn et al., Comparing the Fundamental Physics and Device Performance of Transparent, Conductive Nanostructured Networks with Conventional Transparent Conducting Oxides. Adv. Energy Mater. 2012, pp.353-360

G. Haacke, New figure of merit for transparent conductors, Journal of Applied Physics, vol.28, issue.9, pp.4086-4089, 1976.
DOI : 10.1103/PhysRevB.6.4370

T. Sannicolo, M. Lagrange, A. Cabos, C. Celle, J. Simonato et al., Metallic Nanowire-Based Transparent Electrodes for Next Generation Flexible Devices: a Review, Small, vol.7, issue.44, pp.12-6052
DOI : 10.1039/C5NR01496D

URL : https://hal.archives-ouvertes.fr/hal-01456366

S. Nandy, A. Banerjee, E. Fortunato, and R. Martins, A Review on Cu2O and CuI-Based P-Type Semiconducting Transparent Oxide Materials: Promising Candidates for New Generation Oxide Based Electronics, Rev. Adv. Sci. Eng, vol.2013, issue.24, pp.273-304

H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi et al., P-type electrical conduction in transparent thin films of CuAlO2, Nature, vol.81, issue.6654, pp.389-939, 1997.
DOI : 10.1016/0167-2738(95)00169-7

H. Kawazoe, H. Yanagi, K. Ueda, and H. Hosono, Transparent p-Type Conducting Oxides: Design and Fabrication of p-n Heterojunctions, MRS Bulletin, vol.25, issue.08, pp.25-28, 2000.
DOI : 10.1063/1.120957

L. V. Olivante and . Ed, Materials Science Research Trends, 2008.

G. Thomas, Invisible circuits, Nature, vol.389, issue.6654, pp.907-908, 1997.
DOI : 10.1038/40087

X. Moya and D. Muñoz-rojas, Materials for Sustainable Energy Applications: Conversion, Storage, Transmission and Consumption

D. Bélanger, Thickness Dependence of Transport Properties of Doped Polycrystalline Tin Oxide Films, Journal of The Electrochemical Society, vol.132, issue.6, p.1398, 1985.
DOI : 10.1149/1.2114132

T. Maruyama, K. Tabata, B. Stjerna, E. Olsson, and C. G. Granqvist, Fluorine-Doped Tin Dioxide Thin Films Prepared by Chemical Vapor Deposition Optical and Electrical Properties of Radio Frequency Sputtered Tin Oxide Films Doped with Oxygen Vacancies, F, Sb, or Mo, J. Appl. Phys. J. Appl. Phys, vol.68120, issue.86, pp.4282-76, 1990.

V. Consonni, G. Rey, H. Roussel, and D. Bellet, thin films: The role of surface and strain energy, Journal of Applied Physics, vol.111, issue.3, pp.111-33523
DOI : 10.1016/j.actamat.2008.08.019

URL : https://hal.archives-ouvertes.fr/hal-01067042

F. J. Ferrer, J. Gil-rostra, A. Terriza, G. Rey, C. Jiménez et al., Quantification of low levels of fluorine content in thin films, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.274, pp.65-69, 2012.
DOI : 10.1016/j.nimb.2011.11.042

URL : https://hal.archives-ouvertes.fr/hal-01067120

J. Robertson, Electronic Structure of SnO2, GeO2, PbO2, TeO2 and MgF2, J. Phys. C Solid State Phys, issue.12322, pp.12-4767, 1979.

K. C. Mishra, K. H. Johnson, and P. Schmidt, Electronic structure of antimony-doped tin oxide, Physical Review B, vol.4, issue.20, pp.51-13972, 1995.
DOI : 10.1088/0022-3719/4/14/022

A. I. Martínez, L. Huerta, J. M. León, D. Acosta, O. Malik et al., Physicochemical characteristics of fluorine doped tin oxide films, Journal of Physics D: Applied Physics, vol.39, issue.23, pp.39-5091, 2006.
DOI : 10.1088/0022-3727/39/23/029

A. Kumar and C. Zhou, The Race To Replace Tin-Doped Indium Oxide: Which Material Will Win?, ACS Nano, vol.4, issue.1, pp.11-14, 2010.
DOI : 10.1021/nn901903b

M. Kang and L. J. Guo, Nanoimprinted Semitransparent Metal Electrodes and Their Application in Organic Light-Emitting Diodes, Advanced Materials, vol.14, issue.10, pp.1391-1396, 2007.
DOI : 10.1002/adma.200700134

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj et al., Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios, Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios, pp.1767-1774, 2009.
DOI : 10.1021/nn900348c

URL : http://www.tara.tcd.ie/bitstream/2262/64105/1/De%20ACS%20Nano%2009%202.pdf

D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet et al., Flexible transparent conductive materials based on silver nanowire networks: a review, Nanotechnology, vol.24, issue.45, pp.24-452001
DOI : 10.1088/0957-4484/24/45/452001

URL : https://hal.archives-ouvertes.fr/hal-01067074

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel et al., Conductive Carbon Nanotube Films, Science, issue.5688, pp.305-1273, 2004.
DOI : 10.1126/science.1101243

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly et al., Transparent, Conductive, and Flexible Carbon Nanotube Films and Their Application in Organic Light-Emitting Diodes, Nano Letters, vol.6, issue.9, pp.1880-1886, 2006.
DOI : 10.1021/nl0608543

E. M. Doherty, S. De, P. E. Lyons, A. Shmeliov, P. N. Nirmalraj et al., The spatial uniformity and electromechanical stability of transparent, conductive films of single walled nanotubes, Carbon, vol.47, issue.10, pp.47-2466, 2009.
DOI : 10.1016/j.carbon.2009.04.040

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang et al., Graphene-Based Liquid Crystal Device, Nano Letters, vol.8, issue.6, pp.1704-1708, 2008.
DOI : 10.1021/nl080649i

URL : http://arxiv.org/pdf/0803.3031

X. Wang, L. Zhi, K. Müllen, and . Transparent, Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells, Nano Letters, vol.8, issue.1, pp.323-327, 2008.
DOI : 10.1021/nl072838r

G. Eda, G. Fanchini, and M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nature Nanotechnology, vol.27, issue.5, pp.270-274, 2008.
DOI : 10.1038/nnano.2008.83

V. C. Tung, L. Chen, M. J. Allen, J. K. Wassei, K. Nelson et al., Low-Temperature Solution Processing of Graphene???Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors, Nano Letters, vol.9, issue.5, pp.1949-1955, 2009.
DOI : 10.1021/nl9001525

J. Müller, B. Rech, J. Springer, and M. Vanecek, TCO and light trapping in silicon thin film solar cells, Solar Energy, vol.77, issue.6, pp.917-930, 2004.
DOI : 10.1016/j.solener.2004.03.015

N. Taneda, T. Oyama, K. T. Sato, T. Oyama, M. Kambe et al., Digest PVSEC-17 Requirements for TCO Substrate in Si- Based Thin Film Solar Cells -Toward Tandem, MRS Online Proc. Libr, pp.2-3, 2007.

S. Kim, J. Chung, H. Lee, J. Park, Y. Heo et al., Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junction technology, Solar Energy Materials and Solar Cells, vol.119, pp.26-35, 2013.
DOI : 10.1016/j.solmat.2013.04.016

S. Neubert, S. Ring, F. Welker, S. Götzendörfer, F. Ruske et al., Very thin, highly-conductive ZnO:Al front electrode on textured glass as substrate for thin-film silicon solar cells, physica status solidi (RRL) - Rapid Research Letters, vol.88, issue.1, pp.44-47
DOI : 10.1063/1.2200741

R. Otsuka, T. Endo, T. Takano, S. Takemura, R. Murakami et al., Fluorine doped tin oxide film with high haze and transmittance prepared for dye-sensitized solar cells, Japanese Journal of Applied Physics, vol.54, issue.8S1, pp.12-2003, 2011.
DOI : 10.7567/JJAP.54.08KF03

A. M. Bakhshayesh, M. R. Mohammadi, H. Dadar, and D. J. Fray, Improved efficiency of dye-sensitized solar cells aided by corn-like TiO2 nanowires as the light scattering layer, Electrochimica Acta, vol.90, pp.302-308, 2013.
DOI : 10.1016/j.electacta.2012.12.065

P. Zhu, A. S. Nair, S. Yang, S. Peng, and S. Ramakrishna, Which is a superior material for scattering layer in dye-sensitized solar cells???electrospun rice grain- or nanofiber-shaped TiO2?, Journal of Materials Chemistry, vol.15, issue.33, pp.12210-12212, 2011.
DOI : 10.1039/b418658n

G. Zhu, L. Pan, J. Yang, X. Liu, H. Sun et al., Electrospun nest-shaped TiO2 structures as a scattering layer for dye sensitized solar cells, Journal of Materials Chemistry, vol.133, issue.46, pp.22-24326
DOI : 10.1021/ja203131b

B. Liu and E. S. Aydil, Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells, J. Am. Chem. Soc, issue.11, pp.131-3985, 2009.

C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann et al., Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications, Journal of the American Ceramic Society, vol.35, issue.7, pp.80-3157, 1997.
DOI : 10.1179/imr.1991.36.1.146

S. Ito, P. Liska, P. Comte, R. Charvet, P. Péchy et al., Control of dark current in photoelectrochemical (TiO2/I??????I3???) and dye-sensitized solar cells, Chemical Communications, vol.87, issue.34, pp.4351-4353, 2005.
DOI : 10.1039/b505718c

?. Regan, J. R. Durrant, P. Sommeling, and ?. J. ?akker, Influence of the Ti?l4 Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells. 2. Charge Density, Band Edge Shifts, and Quantification of Recombination Losses at Short Circuit, J. Phys. Chem. C, issue.37, pp.111-14001, 2007.

A. S. Wochnik, M. Handloser, D. Durach, A. Hartschuh, and C. Scheu, Blocking Layers, ACS Applied Materials & Interfaces, vol.5, issue.12, pp.5696-5699
DOI : 10.1021/am401110n

Z. Gu, X. Gao, X. Li, Z. Jiang, and Y. Huang, Nanoporous TiO2 aerogel blocking layer with enhanced efficiency for dye-sensitized solar cells, Journal of Alloys and Compounds, vol.590, pp.33-40, 2014.
DOI : 10.1016/j.jallcom.2013.12.097

L. Kavan, M. Zukalova, and O. Vik, Havlicek, D. Sol?Gel Titanium Dioxide Blocking Layers for Dye-Sensitized Solar Cells: Electrochemical Characterization, ChemPhysChem, vol.2014, issue.156, pp.1056-1061

R. Hattori and H. Goto, Carrier Leakage Blocking Effect of High Temperature Sputtered TiO2 Film on Dye-Sensitized Mesoporous Photoelectrode. Thin Solid Films, pp.20-21, 2007.

M. F. Hossain, S. Biswas, and T. Takahashi, The effect of sputter-deposited TiO2 passivating layer on the performance of dye-sensitized solar cells based on sol???gel derived photoelectrode, Thin Solid Films, vol.517, issue.3, pp.517-1294, 2008.
DOI : 10.1016/j.tsf.2008.06.027

S. M. Waita, B. O. Aduda, J. M. Mwabora, G. A. Niklasson, C. G. Granqvist et al., Electrochemical characterization of TiO2 blocking layers prepared by reactive DC magnetron sputtering, Journal of Electroanalytical Chemistry, vol.637, issue.1-2, pp.79-83, 2009.
DOI : 10.1016/j.jelechem.2009.10.004

J. Jeong and H. Kim, Thickness effect of RF sputtered TiO2 passivating layer on the performance of dye-sensitized solar cells, Solar Energy Materials and Solar Cells, vol.95, issue.1, pp.344-348, 2011.
DOI : 10.1016/j.solmat.2010.02.008

H. Kim, J. Jeon, D. Y. Kim, J. Lee, and S. Kwak, Improved performance of dye-sensitized solar cells with compact TiO2 blocking layer prepared using low-temperature reactive ICP-assisted DC magnetron sputtering, Journal of Industrial and Engineering Chemistry, vol.18, issue.5, pp.18-1807
DOI : 10.1016/j.jiec.2012.04.008

L. Kavan and M. Grätzel, Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis, Electrochimica Acta, vol.40, issue.5, pp.643-652, 1995.
DOI : 10.1016/0013-4686(95)90400-W

C. Jiang, M. Y. Leung, W. L. Koh, and Y. Li, Influences of deposition and post-annealing temperatures on properties of TiO2 blocking layer prepared by spray pyrolysis for solid-state dye-sensitized solar cells, Thin Solid Films, vol.519, issue.22, pp.519-7850, 2011.
DOI : 10.1016/j.tsf.2011.06.012

H. Yu, S. Zhang, H. Zhao, G. Will, and P. Liu, An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells, Electrochimica Acta, vol.54, issue.4, pp.1319-1324, 2009.
DOI : 10.1016/j.electacta.2008.09.025

D. H. Kim, M. Woodroof, K. Lee, and G. N. Parsons, Atomic Layer Deposition of High Performance Ultrathin TiO2 Blocking Layers for Dye-Sensitized Solar Cells, ChemSusChem, vol.2013, issue.66, pp.1014-1020

C. Y. Jiang, W. L. Koh, M. Y. Leung, S. Y. Chiam, J. S. Wu et al., Low temperature processing solid-state dye sensitized solar cells, Applied Physics Letters, vol.100, issue.11, pp.100-113901
DOI : 10.1063/1.323539

P. J. Cameron, L. M. Peter, and S. Hore, How Important is the Back Reaction of Electrons via the Substrate in Dye-Sensitized Nanocrystalline Solar Cells?, The Journal of Physical Chemistry B, vol.109, issue.2, pp.930-936, 2005.
DOI : 10.1021/jp0405759

P. J. Cameron and L. M. Peter, How Does Back-Reaction at the Conducting Glass Substrate Influence the Dynamic Photovoltage Response of Nanocrystalline Dye-Sensitized Solar Cells?, The Journal of Physical Chemistry B, vol.109, issue.15, pp.7392-7398, 2005.
DOI : 10.1021/jp0407270

A. Burke, S. Ito, H. Snaith, U. Bach, J. Kwiatkowski et al., The Function of a TiO2 Compact Layer in Dye-Sensitized Solar ?ells Incorporating " Planar " ?rganic Dyes. ?ano ?ett, pp.977-981, 2008.

Y. Liu, X. Sun, Q. Tai, H. Hu, B. Chen et al., Efficiency enhancement in dye-sensitized solar cells by interfacial modification of conducting glass/mesoporous TiO2 using a novel ZnO compact blocking film, Journal of Power Sources, vol.196, issue.1, pp.475-481, 2011.
DOI : 10.1016/j.jpowsour.2010.07.031

T. Duong, H. Choi, Q. He, A. Le, and S. Yoon, Enhancing the efficiency of dye sensitized solar cells with an SnO2 blocking layer grown by nanocluster deposition, Journal of Alloys and Compounds, vol.561, pp.206-210, 2013.
DOI : 10.1016/j.jallcom.2013.01.188

J. Kim and J. Kim, Fabrication of Dye-Sensitized Solar Cells Using Nb2O5 Blocking Layer Made by Sol?Gel Method, J. Nanosci. Nanotechnol, issue.8, pp.11-7335, 2011.

T. Cho, K. Ko, S. Yoon, S. S. Sekhon, M. G. Kang et al., Efficiency enhancement of flexible dye-sensitized solar cell with sol???gel formed Nb2O5 blocking layer, Current Applied Physics, vol.13, issue.7, pp.13-1391
DOI : 10.1016/j.cap.2013.04.012

M. Kim and Y. Kwon, Semiconductor CdO as a Blocking Layer Material on DSSC Electrode: Mechanism and Application, The Journal of Physical Chemistry C, vol.113, issue.39, pp.113-17176, 2009.
DOI : 10.1021/jp904206a

B. Bills, M. Shanmugam, and M. F. Baroughi, Effects of atomic layer deposited HfO2 compact layer on the performance of dye-sensitized solar cells, Thin Solid Films, vol.519, issue.22, pp.519-7803, 2011.
DOI : 10.1016/j.tsf.2011.05.007

P. Sommeling, R. R. Haswell, H. J. Smit, ?. J. ?akker, J. J. Smits et al., Influence of a TiCl4 Post-Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells, J. Phys. Chem. B, issue.39, pp.110-19191, 2006.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites Perovskite Solar Cell with an Efficient TiO2 Compact Film, Science ACS Appl. Mater. Interfaces, vol.2014, issue.618, pp.15959-15965, 0198.

J. Kim, H. Choi, C. Nahm, J. Moon, C. Kim et al., The effect of a blocking layer on the photovoltaic performance in CdS quantum-dot-sensitized solar cells, Journal of Power Sources, vol.196, issue.23, pp.196-10526, 2011.
DOI : 10.1016/j.jpowsour.2011.08.052

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays, Applied Physics Letters, vol.91, issue.15, pp.91-152111, 2007.
DOI : 10.1021/ma00034a012

G. Li and K. A. Gray, The Solid?solid Interface: Explaining the High and Unique Photocatalytic Reactivity of TiO2-Based Nanocomposite Materials, Chem. Phys, vol.339, pp.1-3, 2007.

J. N. Hart, D. Menzies, Y. Cheng, G. P. Simon, and L. Spiccia, TiO2 sol???gel blocking layers for dye-sensitized solar cells, Comptes Rendus Chimie, vol.9, issue.5-6, pp.5-6, 2006.
DOI : 10.1016/j.crci.2005.02.052

T. W. Hamann, O. K. Farha, and J. Hupp, Outer-Sphere Redox Couples as Shuttles in Dye-Sensitized Solar Cells. Performance Enhancement Based on Photoelectrode Modification via Atomic Layer Deposition, The Journal of Physical Chemistry C, vol.112, issue.49, pp.112-19756, 2008.
DOI : 10.1021/jp807395g

C. H. Han, T. Y. Cho, S. H. Bae, Y. M. Sung, and M. W. Park, Effects of TiO2 Blocking Layer Formation by SolGel Method on Conversion Efficiency of Dye-Sensitized Solar Cell, pp.2133-2136, 2010.

T. Cho, S. Yoon, S. S. Sekhon, M. G. Kang, and C. Han, The Effect of a Sol-Gel Formed TiO2 Blocking Layer on the Efficiency of Dye-Sensitized Solar Cells, Bull Korean Chem Soc, issue.10, pp.32-3629, 2011.

J. Kim, H. Seo, M. Son, I. Shin, J. Choi et al., The optimization of TiO2 compact layer in dye-sensitized solar cell by the analysis of performance and internal impedance, physica status solidi (c), vol.8, issue.2, pp.634-636, 2011.
DOI : 10.1002/pssc.201000514

H. Choi, C. Nahm, J. Kim, J. Moon, S. Nam et al., The effect of TiCl4-treated TiO2 compact layer on the performance of dye-sensitized solar cell, Current Applied Physics, vol.12, issue.3, pp.12-737
DOI : 10.1016/j.cap.2011.10.011

D. Cahen, G. Hodes, M. Grätzel, and J. F. Guillemoles, Nature of Photovoltaic Action in Dye-Sensitized Solar Cells, The Journal of Physical Chemistry B, vol.104, issue.9, pp.2053-2059, 2000.
DOI : 10.1021/jp993187t

P. J. Cameron and L. M. Peter, Characterization of Titanium Dioxide Blocking Layers in Dye-Sensitized Nanocrystalline Solar Cells, The Journal of Physical Chemistry B, vol.107, issue.51, pp.14394-14400, 2003.
DOI : 10.1021/jp030790+

S. Lee, J. H. Noh, H. S. Han, D. K. Yim, D. H. Kim et al., Dye-Sensitized Solar Cells, The Journal of Physical Chemistry C, vol.113, issue.16, pp.113-6878, 2009.
DOI : 10.1021/jp9002017

J. Mayer, L. A. Giannuzzi, T. Kamino, and J. Michael, TEM Sample Preparation and FIB-Induced Damage, MRS Bulletin, vol.254, issue.05, pp.400-407, 2007.
DOI : 10.1016/j.actamat.2004.03.015

M. J. Hÿtch, E. Snoeck, and R. Kilaas, Quantitative measurement of displacement and strain fields from HREM micrographs, Ultramicroscopy, vol.74, issue.3, pp.131-146, 1998.
DOI : 10.1016/S0304-3991(98)00035-7

J. L. Rouvière and E. Sarigiannidou, Theoretical discussions on the geometrical phase analysis, Ultramicroscopy, vol.106, issue.1, pp.1-17, 2005.
DOI : 10.1016/j.ultramic.2005.06.001

J. Rouviere, A. Béché, Y. Martin, T. Denneulin, and D. Cooper, Improved strain precision with high spatial resolution using nanobeam precession electron diffraction, 241913. (28) ?e?as, D.? Klapetek, P. Gwyddion? ?n ?pen-Source Software for SPM Data Analysis. Open Phys. 2012, pp.181-188
DOI : 10.1016/S0022-0248(01)02085-1

D. Martino, A. Ben-hatit, S. Foldyna, M. Archie, C. N. et al., Mueller Polarimetry in the Back Focal Plane Scattered Light Measurements on Textured Crystalline Silicon Substrates Using an Angle-Resolved Mueller Matrix Polarimeter, Proc. SPIE, pp.65180-65211, 2007.

B. Hatit, S. Foldyna, M. De-martino, A. Drévillon, and B. , Angle-resolved Mueller polarimeter using a microscope objective, physica status solidi (a), vol.13, issue.4, pp.743-747, 2008.
DOI : 10.1002/pssa.200777806

E. Compain, S. Poirier, and B. Drevillon, General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers, Applied Optics, vol.38, issue.16, pp.38-3490, 1999.
DOI : 10.1364/AO.38.003490

E. Garcia-caurel, A. De-martino, and B. Drévillon, Spectroscopic Mueller Polarimeter Based on Liquid Crystal Devices. Thin Solid Films, pp.455-456, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00458733

V. Consonni, G. Rey, H. Roussel, and D. Bellet, thin films: The role of surface and strain energy, Journal of Applied Physics, vol.111, issue.3, pp.111-33523
DOI : 10.1016/j.actamat.2008.08.019

URL : https://hal.archives-ouvertes.fr/hal-01067042

V. Consonni, G. Rey, H. Roussel, B. Doisneau, E. Blanquet et al., Preferential orientation of fluorine-doped SnO2 thin films: The effects of growth temperature, Acta Materialia, vol.61, issue.1
DOI : 10.1016/j.actamat.2012.09.006

URL : https://hal.archives-ouvertes.fr/hal-00794225

D. ?e?as and P. Klapetek, Gwyddion? ?n ?pen-Source Software for SPM Data Analysis. Open Phys, pp.181-188

H. Sakai, T. Yoshida, T. Hama, and Y. Ichikawa, Effects of Surface Morphology of Transparent Electrode on the Open-Circuit Voltage in a-Si:H Solar Cells, Japanese Journal of Applied Physics, vol.29, issue.Part 1, No. 4, pp.29-630, 1990.
DOI : 10.1143/JJAP.29.630

C. V. Thompson and R. Carel, Texture development in polycrystalline thin films, Materials Science and Engineering: B, vol.32, issue.3, pp.211-219, 1995.
DOI : 10.1016/0921-5107(95)03011-5

O. Lyandres, D. Finkelstein-shapiro, P. Chakthranont, M. Graham, and K. A. Gray, Thin Films and Its Effect on the Photo-Oxidation of Acetaldehyde, Chemistry of Materials, vol.24, issue.17, pp.24-3355
DOI : 10.1021/cm301173j

V. Jiménez, J. Espinós, and A. González-elipe, Effect of texture and annealing treatments in SnO2 and Pd/SnO2 gas sensor materials, Sensors and Actuators B: Chemical, vol.61, issue.1-3, pp.1-3, 1999.
DOI : 10.1016/S0925-4005(99)00275-0

G. B. Harris, X. Quantitative measurement of preferred orientation in rolled uranium bars, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.76, issue.336, pp.43-113, 1952.
DOI : 10.1243/PIME_PROC_1943_150_025_02

URL : https://hal.archives-ouvertes.fr/hal-00874202

W. Ho, J. C. Yu, and S. Lee, Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity, Journal of Solid State Chemistry, vol.179, issue.4, pp.1171-1176, 2006.
DOI : 10.1016/j.jssc.2006.01.009

W. Jiao, Y. Xie, R. Chen, C. Zhen, G. Liu et al., Synthesis of mesoporous single crystal rutile TiO2 with improved photocatalytic and photoelectrochemical activities, Chemical Communications, vol.414, issue.100, pp.49-11770
DOI : 10.1038/35104607

P. A. Mulheran and J. Harding, surfaces, Modelling and Simulation in Materials Science and Engineering, vol.1, issue.1, pp.39-43, 1992.
DOI : 10.1088/0965-0393/1/1/004

URL : https://hal.archives-ouvertes.fr/jpa-00251960

G. W. Watson, P. M. Oliver, and S. C. Parker, Computer simulation of the structure and stability of forsterite surfaces, Physics and Chemistry of Minerals, vol.25, issue.1, pp.70-78, 1997.
DOI : 10.1007/s002690050088

M. Y. Tsai, M. E. White, and J. S. Speck, Plasma-assisted molecular beam epitaxy of SnO2 on TiO2, Journal of Crystal Growth, vol.310, issue.18, pp.310-4256, 2008.
DOI : 10.1016/j.jcrysgro.2008.06.062

H. Mun, H. Yang, J. Park, C. Ju, and K. Char, High Electron Mobility in Epitaxial SnO2- x in Semiconducting Regime (20) Morawiec, A. Misorientation Angle and Axis Distributions, Orientations and Rotations, pp.76107-115, 2004.

S. Wei and A. Zunger, Optical properties of zinc-blende semiconductor alloys: Effects of epitaxial strain and atomic ordering, Physical Review B, vol.67, issue.20, pp.49-14337, 1994.
DOI : 10.1103/PhysRevLett.67.3294

Q. Gan, R. A. Rao, C. B. Eom, J. L. Garrett, M. Lee et al., Direct measurement of strain effects on magnetic and electrical properties of epitaxial SrRuO3 thin films, Löhneysen, H. Tuning the Magnetic Properties of LaCoO3 Thin Films by Epitaxial Strain, pp.72-978, 1998.
DOI : 10.1007/BF01691621

J. Buschbeck, I. Opahle, M. Richter, U. K. Rößler, P. Klaer et al., Full Tunability of Strain along the Fcc-Bcc Bain Path in Epitaxial Films and Consequences for Magnetic Properties X-Ray Line Broadening from Filed Aluminium and Wolfram. Acta Metall, 216101. (25), pp.22-31, 1953.

A. Ohtomo, H. Kimura, K. Saito, T. Makino, Y. Segawa et al., Lateral grain size and electron mobility in ZnO epitaxial films grown on sapphire substrates, Journal of Crystal Growth, vol.214, issue.215, pp.214-215, 2000.
DOI : 10.1016/S0022-0248(00)00093-2

J. Rouviere, A. Béché, Y. Martin, T. Denneulin, D. Cooper et al., Improved Strain Precision with High Spatial Resolution Using Nanobeam Precession Electron Diffraction Quantitative Measurement of Displacement and Strain Fields from HREM Micrographs, 241913. (28), pp.131-146, 1998.

J. L. Rouvière and E. Sarigiannidou, Theoretical discussions on the geometrical phase analysis, Ultramicroscopy, vol.106, issue.1, pp.1-17, 2005.
DOI : 10.1016/j.ultramic.2005.06.001

K. ?ura and V. G. ?if?ic, ? Saranin, ?. ?.? Zotov, ?. V.? Katayama, ?. Surface Science: An Introduction; Advanced texts in physics, 2003.

G. Rey, C. Ternon, M. Modreanu, X. Mescot, V. Consonni et al., thin films, Journal of Applied Physics, vol.114, issue.18, pp.114-183713
DOI : 10.1021/jp306174f

URL : https://hal.archives-ouvertes.fr/hal-01067050

M. E. White, O. Bierwagen, M. Y. Tsai, and J. S. Speck, Electron transport properties of antimony doped SnO2 single crystalline thin films grown by plasma-assisted molecular beam epitaxy, Journal of Applied Physics, vol.13, issue.9, p.93704, 2009.
DOI : 10.1103/PhysRev.103.51

D. Ginley, H. Hosono, D. C. Paine, E. Fortunato, D. Ginley et al., Handbook of Transparent Conductors Transparent Conducting Oxides for Photovoltaics, Science & Business Media, pp.32-242, 2007.

V. Lebedev, V. Cimalla, T. Baumann, O. Ambacher, F. M. Morales et al., Effect of dislocations on electrical and electron transport properties of InN thin films. II. Density and mobility of the carriers, Journal of Applied Physics, vol.743, issue.9, p.94903, 2006.
DOI : 10.1103/PhysRevB.61.R7846

X. Li and J. A. Smart, Effect of Dislocations on Electrical and Optical Properties of N- Type Al0.34Ga0.66N, Appl. Phys. Lett, issue.19, p.93, 2008.

J. E. Dominguez, L. Fu, and X. Pan, Effect of crystal defects on the electrical properties in epitaxial tin dioxide thin films, Applied Physics Letters, vol.12, issue.27, pp.81-5168, 2002.
DOI : 10.1080/095008396180885

H. Mataré, Defect Electronics in Semiconductors, Journal of The Electrochemical Society, vol.119, issue.8, 1971.
DOI : 10.1149/1.2404420

R. Jaszek, Carrier Scattering by Dislocations in Semiconductors, Journal of Materials Science: Materials in Electronics, vol.12, issue.1, pp.1-9, 2001.
DOI : 10.1023/A:1011228626077

D. C. Look, K. D. Leedy, D. H. Tomich, and B. Bayraktaroglu, Mobility analysis of highly conducting thin films: Application to ZnO, Applied Physics Letters, vol.96, issue.6, pp.96-62102, 2010.
DOI : 10.1063/1.119176

A. Klein, Sample Preparation, Journal of the American Ceramic Society, vol.18, issue.112, pp.331-345
DOI : 10.1116/1.591472

G. Giusti, V. Consonni, E. Puyoo, and D. Bellet, :F Nanocomposite Transparent Electrodes for Energy Applications, ACS Applied Materials & Interfaces, vol.6, issue.16, pp.14096-14107
DOI : 10.1021/am5034473

URL : https://hal.archives-ouvertes.fr/hal-01067046

S. Zhang, M. Foldyna, H. Roussel, V. Consonni, E. Pernot et al., nanoparticles ??? promising hazy transparent electrodes for photovoltaics applications, Journal of Materials Chemistry C, vol.455, issue.456, pp.91-102
DOI : 10.1016/j.tsf.2003.12.056

URL : https://hal.archives-ouvertes.fr/hal-01640069

G. Giusti, V. Consonni, E. Puyoo, and D. Bellet, :F Nanocomposite Transparent Electrodes for Energy Applications, ACS Applied Materials & Interfaces, vol.6, issue.16, pp.14096-14107
DOI : 10.1021/am5034473

URL : https://hal.archives-ouvertes.fr/hal-01067046

T. Minami, H. Nanto, and S. Takata, Highly Conductive and Transparent Aluminum Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering, Japanese Journal of Applied Physics, vol.23, issue.Part 2, No. 1, pp.23-280, 1984.
DOI : 10.1143/JJAP.23.L280

M. Caglar, Y. Caglar, and S. Ilican, Electrical and optical properties of undoped and In-doped ZnO thin films, physica status solidi (c), vol.35, issue.194, pp.1337-1340, 2007.
DOI : 10.1002/pssc.200673744

C. Moditswe, C. M. Muiva, and A. Juma, Highly conductive and transparent Ga-doped ZnO thin films deposited by chemical spray pyrolysis, Optik - International Journal for Light and Electron Optics, vol.127, issue.20, pp.127-8317
DOI : 10.1016/j.ijleo.2016.06.033

M. Jalalah, M. Faisal, H. Bouzid, A. A. Ismail, and S. A. Sayari, Dielectric and photocatalytic properties of sulfur doped TiO2 nanoparticles prepared by ball milling, Materials Research Bulletin, vol.48, issue.9, pp.48-3351
DOI : 10.1016/j.materresbull.2013.05.023

D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail et al., Band alignment of rutile and anatase TiO2, Nature Materials, vol.19, issue.9, pp.798-801
DOI : 10.1116/1.571130

S. Li, F. Chen, R. Schafranek, T. J. Bayer, K. Rachut et al., Intrinsic energy band alignment of functional oxides, physica status solidi (RRL) - Rapid Research Letters, vol.41, issue.6, pp.571-576
DOI : 10.1103/PhysRevB.41.2813

T. Umebayashi, T. Yamaki, S. Yamamoto, A. Miyashita, S. Tanaka et al., Sulfur-doping of rutile-titanium dioxide by ion implantation: Photocurrent spectroscopy and first-principles band calculation studies, Journal of Applied Physics, vol.37, issue.9, pp.93-5156, 2003.
DOI : 10.1103/PhysRevB.59.5521

W. Ho, J. C. Yu, and S. Lee, Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity, Journal of Solid State Chemistry, vol.179, issue.4, pp.1171-1176, 2006.
DOI : 10.1016/j.jssc.2006.01.009

R. Asahi, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides, Science, vol.293, issue.5528, pp.269-271, 2001.
DOI : 10.1126/science.1061051

M. Harb, P. Sautet, and P. Raybaud, : Insights on Optical Absorption from First Principles Calculations, The Journal of Physical Chemistry C, vol.117, issue.17, pp.117-8892
DOI : 10.1021/jp312197g

J. Kr?, . Zeman, . Kluth, F. Smole, and . Topi?, Effect of surface roughness of ZnO:Al films on light scattering in hydrogenated amorphous silicon solar cells, Thin Solid Films, vol.426, issue.1-2, pp.296-304, 2003.
DOI : 10.1016/S0040-6090(03)00006-3

J. Müller, B. Rech, J. Springer, and M. Vanecek, TCO and light trapping in silicon thin film solar cells, Solar Energy, vol.77, issue.6, pp.917-930, 2004.
DOI : 10.1016/j.solener.2004.03.015

K. Ellmer, A. Klein, B. Rech, R. Hull, R. M. Osgood et al., Transparent Conductive Zinc Oxide, Series in Materials Science, 2008.
DOI : 10.1007/978-3-540-73612-7

X. Chen and C. Burda, The Electronic Origin of the Visible-Light Absorption Properties of C-, Nand S-Doped TiO2 Nanomaterials, J. Am. Chem. Soc, issue.15, pp.130-5018, 2008.

Q. Liu, Z. Zhao, and Q. Liu, Analysis of Sulfur Modification Mechanism for Anatase and Rutile TiO2 by Different Doping Modes Based on GGA + U Calculations Optics; Pearson education, 32100. (19) Hecht, 2010.

T. Oyama, M. Kambe, N. Taneda, and K. Masumo, Requirements for TCO Substrate in Si-based Thin Film Solar Cells -Toward Tandem, MRS Online Proc. Libr, pp.2-3, 2008.
DOI : 10.1109/T-ED.1987.22918

J. Krc, B. Lipovsek, M. Bokalic, A. Campa, T. Oyama et al., Potential of Thin-Film Silicon Solar Cells by Using High Haze TCO Superstrates. Thin Solid Films, pp.518-3054, 2010.

D. Martino, A. Ben-hatit, S. Foldyna, and M. , Mueller polarimetry in the back focal plane, Metrology, Inspection, and Process Control for Microlithography XXI, p.65180, 2007.
DOI : 10.1117/12.708627

B. Hatit, S. Foldyna, M. De-martino, A. Drévillon, and B. , Angle-resolved Mueller polarimeter using a microscope objective, physica status solidi (a), vol.13, issue.4, pp.743-747, 2008.
DOI : 10.1002/pssa.200777806

D. Klapetek and P. , Gwyddion? ?n ?pen-Source Software for SPM Data Analysis. Open Phys, pp.181-188

E. Shanthi, A. Banerjee, V. Dutta, and K. L. Chopra, Electrical and optical properties of tin oxide films doped with F and (Sb+F), Journal of Applied Physics, vol.36, issue.3, pp.53-1615, 1982.
DOI : 10.1016/0022-3697(75)90049-9

T. Hung, H. Sui-ying, H. Tsung-wei, T. Yu-tang, C. Yan-fang et al., Influences of Textures in Fluorine- Doped Tin Oxide on Characteristics of Dye-Sensitized Solar Cells, Org. Electron, vol.27, issue.12, pp.12-2003, 2011.

C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann et al., Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications, Journal of the American Ceramic Society, vol.35, issue.7, pp.80-3157, 1997.
DOI : 10.1179/imr.1991.36.1.146

S. Ito, P. Liska, P. Comte, R. Charvet, P. Péchy et al., Control of dark current in photoelectrochemical (TiO2/I??????I3???) and dye-sensitized solar cells, Chemical Communications, vol.87, issue.34, pp.4351-4353, 2005.
DOI : 10.1039/b505718c

P. J. Cameron, L. M. Peter, and S. Hore, How Important is the Back Reaction of Electrons via the Substrate in Dye-Sensitized Nanocrystalline Solar Cells?, The Journal of Physical Chemistry B, vol.109, issue.2, pp.930-936, 2005.
DOI : 10.1021/jp0405759

P. J. Cameron and L. M. Peter, How Does Back-Reaction at the Conducting Glass Substrate Influence the Dynamic Photovoltage Response of Nanocrystalline Dye-Sensitized Solar Cells?, The Journal of Physical Chemistry B, vol.109, issue.15, pp.7392-7398, 2005.
DOI : 10.1021/jp0407270

A. Burke, S. Ito, H. Snaith, U. Bach, J. Kwiatkowski et al., Compact Layer in Dye-Sensitized Solar Cells Incorporating ???Planar??? Organic Dyes, Nano Letters, vol.8, issue.4, pp.977-981, 2008.
DOI : 10.1021/nl071588b

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites, Science, vol.42, issue.42, 2012.
DOI : 10.1103/PhysRevB.42.11099

J. Kim, H. Choi, C. Nahm, J. Moon, C. Kim et al., The effect of a blocking layer on the photovoltaic performance in CdS quantum-dot-sensitized solar cells, Journal of Power Sources, vol.196, issue.23, pp.196-10526, 2011.
DOI : 10.1016/j.jpowsour.2011.08.052

A. S. Wochnik, M. Handloser, D. Durach, A. Hartschuh, and C. Scheu, Blocking Layers, ACS Applied Materials & Interfaces, vol.5, issue.12, pp.5696-5699
DOI : 10.1021/am401110n

Z. Gu, X. Gao, X. Li, Z. Jiang, and Y. Huang, Nanoporous TiO2 aerogel blocking layer with enhanced efficiency for dye-sensitized solar cells, Journal of Alloys and Compounds, vol.590, pp.33-40, 2014.
DOI : 10.1016/j.jallcom.2013.12.097

L. Kavan, M. Zukalova, and O. Vik, Havlicek, D. Sol?Gel Titanium Dioxide Blocking Layers for Dye-Sensitized Solar Cells: Electrochemical Characterization, ChemPhysChem, vol.2014, issue.156, pp.1056-1061

J. Im, C. Lee, J. Lee, S. Park, and N. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale, vol.248, issue.10, pp.4088-4093, 2011.
DOI : 10.1016/j.ccr.2004.03.015

W. Ke, G. Fang, J. Wang, P. Qin, H. Tao et al., Compact Film, ACS Applied Materials & Interfaces, vol.6, issue.18, pp.15959-15965
DOI : 10.1021/am503728d

K. Ozaki, T. Hanatani, and T. Nakamura, Analysis of Crystalline Phases in Airborne Particulates by Grazing Incidence X-Ray Diffractometry. The Analyst, p.1059, 2005.

C. Weiss, P. Löper, and S. Janz, Novel Silicon Nanocrystal Materials for Photovoltaic Applications. 2013. (16) Ohsaka, T.; Izumi, F.; Fujiki, Y. Raman Spectrum of Anatase, TiO2, J. Raman Spectrosc, vol.7, issue.6, pp.321-324, 1978.

W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, and Q. Chen, Raman Scattering Study on Anatase TiO2 Nanocrystals, J. Phys. Appl. Phys, issue.8, pp.33-912, 2000.

G. Busca, G. Ramis, J. M. Amores, V. S. Escribano, and P. Piaggio, FT Raman and FTIR studies of titanias and metatitanate powders, Qi, L. Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles, pp.90-3181, 1994.
DOI : 10.1039/ft9949003181

V. Swamy, B. C. Muddle, and Q. Dai, Size-Dependent Modifications of the Raman Spectrum of Rutile TiO2 TiO2 Thin Films for Spintronics Application: A Raman Study, Appl. Phys. Lett. J. Raman Spectrosc, vol.89, issue.16225, pp.41-558, 2006.

D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail et al., Band alignment of rutile and anatase TiO2, Nature Materials, vol.19, issue.9, pp.798-801
DOI : 10.1116/1.571130

S. A. Chambers, T. Droubay, T. C. Kaspar, M. Gutowski, T. B. Ghosh et al., Experimental determination of valence band maxima for SrTiO[sub 3], TiO[sub 2], and SrO and the associated valence band offsets with Si(001), Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.22, issue.4, pp.2205-2231, 2003.
DOI : 10.1116/1.1768525

M. Hirano, C. Nakahara, K. Ota, O. Tanaike, and M. Inagaki, Photoactivity and phase stability of ZrO2-doped anatase-type TiO2 directly formed as nanometer-sized particles by hydrolysis under hydrothermal conditions, Journal of Solid State Chemistry, vol.170, issue.1, pp.39-47, 2003.
DOI : 10.1016/S0022-4596(02)00013-0

G. Li, L. Li, J. Boerio-goates, and B. Woodfield, High Purity Anatase TiO2 ?anocrystals? ?ear Room-Temperature Synthesis, Grain Growth Kinetics, and Surface Hydration Chemistry, J. Am. Chem. Soc, issue.24, pp.127-8659, 2005.
DOI : 10.1021/ja050517g

D. A. Hanaor and C. C. Sorrell, Review of the anatase to rutile phase transformation, Journal of Materials Science, vol.5, issue.335, pp.855-874, 2011.
DOI : 10.1007/BF03026042

D. Briggs and G. Beamson, XPS studies of the oxygen 1s and 2s levels in a wide range of functional polymers, Analytical Chemistry, vol.65, issue.11, pp.65-1517, 1993.
DOI : 10.1021/ac00059a006

G. Beamson and D. Briggs, High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database, J. Chem. Educ, vol.70, issue.1, p.25, 1993.

R. Schafranek, J. Schaffner, and A. Klein, In situ photoelectron study of the (Ba,Sr)TiO3/RuO2 contact formation, Journal of the European Ceramic Society, vol.30, issue.2, pp.187-192, 2010.
DOI : 10.1016/j.jeurceramsoc.2009.05.009

B. Liu and E. S. Aydil, Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells, J. Am. Chem. Soc, issue.11, pp.131-3985, 2009.

P. Deák, B. Aradi, and T. Frauenheim, Band Lineup and Charge Carrier Separation in Mixed Rutile-Anatase Systems, The Journal of Physical Chemistry C, vol.115, issue.8, pp.3443-3446, 2011.
DOI : 10.1021/jp1115492

S. Li, F. Chen, R. Schafranek, T. J. Bayer, K. Rachut et al., Intrinsic energy band alignment of functional oxides, physica status solidi (RRL) - Rapid Research Letters, vol.41, issue.6, pp.571-576
DOI : 10.1103/PhysRevB.41.2813

J. R. Waldrop, R. W. Grant, S. P. Kowalczyk, and E. A. Kraut, Measurement of semiconductor heterojunction band discontinuities by x???ray photoemission spectroscopy, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.3, issue.3, pp.835-841, 1985.
DOI : 10.1116/1.573326

Y. Gassenbauer, R. Schafranek, A. Klein, S. Zafeiratos, M. Hävecker et al., Surface States, Surface Potentials, and Segregation at Surfaces of Tin-Doped In2O3, Phys. Rev. B, issue.24, pp.73-245312, 2006.

M. Weidner, Fermi Level Determination in Tin Oxide by Photoelectron Spectroscopy: Relation to Optoelectronic Properties; Band Bending at Surfaces and Interfaces; Modulation Doping, 2016.

Z. B. Zhou, R. Q. Cui, G. M. Hadi, W. Y. Li, and Z. M. Ding, Mixed Phase F-Doped SnO2 Film and Related Properties Deposited by Ultrasonic Spraying, J. Mater. Sci. Mater. Electron, issue.7, pp.12-417, 2001.

M. Weidner, J. Brötz, and A. Klein, Sputter-deposited polycrystalline tantalum-doped SnO2 layers, Thin Solid Films, vol.555, pp.173-178, 2014.
DOI : 10.1016/j.tsf.2013.05.147

J. Tauc, R. Grigorovici, and A. Vancu, Optical Properties and Electronic Structure of Amorphous Germanium, physica status solidi (b), vol.24, issue.2, pp.627-637, 1966.
DOI : 10.1002/pssb.19660150224

J. Tauc, Optical properties and electronic structure of amorphous Ge and Si, Materials Research Bulletin, vol.3, issue.1, pp.37-46, 1968.
DOI : 10.1016/0025-5408(68)90023-8

M. Batzill and U. Diebold, The surface and materials science of tin oxide, Progress in Surface Science, vol.79, issue.2-4, pp.2-4, 2005.
DOI : 10.1016/j.progsurf.2005.09.002

E. Burstein, Anomalous Optical Absorption Limit in InSb, Physical Review, vol.237, issue.3, pp.632-633, 1954.
DOI : 10.1098/rsta.1938.0004

E. Shanthi, A. Banerjee, V. Dutta, and K. L. Chopra, Electrical and optical properties of tin oxide films doped with F and (Sb+F), Journal of Applied Physics, vol.36, issue.3, pp.53-1615, 1982.
DOI : 10.1016/0022-3697(75)90049-9

B. Stjerna, E. Olsson, and C. G. Granqvist, Optical and electrical properties of radio frequency sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo, Journal of Applied Physics, vol.39, issue.6, pp.76-3797, 1994.
DOI : 10.1103/PhysRev.104.1508

A. E. Rakhshani, Y. Makdisi, and H. A. Ramazaniyan, Electronic and optical properties of fluorine-doped tin oxide films, Journal of Applied Physics, vol.1, issue.2, p.1049, 1998.
DOI : 10.1103/PhysRev.93.632

A. I. Martínez, L. Huerta, J. M. León, D. Acosta, O. Malik et al., Physicochemical characteristics of fluorine doped tin oxide films, Journal of Physics D: Applied Physics, vol.39, issue.23, pp.39-5091, 2006.
DOI : 10.1088/0022-3727/39/23/029

H. Kim, J. Jeon, D. Y. Kim, J. Lee, and S. Kwak, Improved performance of dye-sensitized solar cells with compact TiO2 blocking layer prepared using low-temperature reactive ICP-assisted DC magnetron sputtering, Journal of Industrial and Engineering Chemistry, vol.18, issue.5, pp.18-1807
DOI : 10.1016/j.jiec.2012.04.008

X. Li, Y. Qiu, S. Wang, S. Lu, R. I. Gruar et al., Electrophoretically deposited TiO2 compact layers using aqueous suspension for dye-sensitized solar cells, Physical Chemistry Chemical Physics, vol.51, issue.35, pp.15-14729
DOI : 10.1016/j.renene.2012.08.078

H. Sui-ying, H. Tsung-wei, T. Yu-tang, C. Yan-fang, Y. H. Jhang et al., Chapter, et al. Influences of Textures in Fluorine- Doped Tin Oxide on Characteristics of Dye-Sensitized Solar Cells, 2003.

M. A. Green, Thin-film solar cells: review of materials, technologies and commercial status, Journal of Materials Science: Materials in Electronics, vol.18, issue.S1, pp.15-19, 2007.
DOI : 10.1007/s10854-007-9177-9

A. J. Clayton, S. J. Irvine, E. W. Jones, G. Kartopu, V. Barrioz et al., MOCVD of Cd(1???x)Zn(x)S/CdTe PV cells using an ultra-thin absorber layer, Solar Energy Materials and Solar Cells, vol.101, pp.68-72, 2012.
DOI : 10.1016/j.solmat.2012.02.018

M. Wright and A. Uddin, Organic???inorganic hybrid solar cells: A comparative review, Solar Energy Materials and Solar Cells, vol.107, pp.87-111, 2012.
DOI : 10.1016/j.solmat.2012.07.006

S. Ito, P. Liska, P. Comte, R. Charvet, P. Péchy et al., Control of dark current in photoelectrochemical (TiO2/I??????I3???) and dye-sensitized solar cells, Chemical Communications, vol.87, issue.34, pp.4351-4353, 2005.
DOI : 10.1039/b505718c

N. Park, J. Van-de-lagemaat, and A. J. Frank, Solar Cells, The Journal of Physical Chemistry B, vol.104, issue.38, pp.8989-8994, 2000.
DOI : 10.1021/jp994365l

URL : https://hal.archives-ouvertes.fr/cea-01570116

S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel et al., Fabrication of Thin Film Dye Sensitized Solar Cells with Solar to Electric Power Conversion Efficiency over 10%. Thin Solid Films, pp.4613-4619, 2008.

M. Burgelman, J. Verschraegen, S. Degrave, and P. Nollet, Analysis of CdTe solar cells in relation to materials issues, Thin Solid Films, vol.480, issue.481, pp.480-481, 2005.
DOI : 10.1016/j.tsf.2004.11.011

V. Barrioz, S. J. Irvine, E. W. Jones, R. L. Rowlands, and D. A. Lamb, In Situ Deposition of Cadmium Chloride Films Using MOCVD for CdTe Solar Cells. Thin Solid Films, pp.5808-5813, 2007.