Skip to Main content Skip to Navigation

Cadre structurel, déformations et exhumation des Schistes du Santa Marta : accumulation et histoire de déformation d'un terrain caraïbe au nord de la Sierra Nevada de Santa Marta

Abstract : The Sierra Nevada de Santa Marta (SNSM) is perhaps the most complex crustal massif found in the Northern Andes. Its unique situation as an isolated triangular massif segmented from the continuity of the 7000 km long Andes as the last standing mountain before the domains of the younger Caribbean plate, places the SNSM as an island separated from all surrounding mountain ranges of the continental margin. A prominent relief characterizes this mountain reaching the highest altitude in the entire Caribbean realm at 5750 m, and defines, the SNSM as the highest coastal mountain range in the world. For this reason the SNSM is a unique geological feature that embraces an outstanding biodiversity from its coral reefs in the Caribbean Sea passing trough heavily vegetated tropical rainforests, high cloud forests, and moorlands, until its magnificent summit capped by glaciers.By its position on the northwestern margin of South America the study of the SNSM provides the opportunity to resolve important questions on the evolution of super-continental cycles since Grenvillian times through the Neoproterozoic Pan-African orogeny, the Late Paleozoic Ouachitan-Appalachian orogeny that led to Pangæa assembly, and Triassic Pangæa break-up followed by the Jurassic Central Atlantic Rift and more recently by the start of the Caribbean plate accretion/subduction since the Late Cretaceous against northwestern South America.In this investigation I attempt to unravel the geological history of the Sierra Nevada de Santa Marta Massif using geochronological, thermochronological geochemical and isotopic techniques that allowed to gather a significant amount of new data to add to the existent database on the SNSM.Our results include a reevaluated geological map 1:25000, in which I define 4 new stratigraphic units, accompanied by two crustal-scale cross sections of 320 km length that dissect the massif, and 8 parallel cross sections at the NW corner of the SNSM metamorphic belt. The geochemical and isotopic dataset includes: i) 17 igneous and metamorphic rocks and 6 detrital samples dated by laser-ablation induced-coupled-plasma mass-spectrometry (LA-ICP-MS), U-Pb zircon geochronology that resulted in 2790 new dates and in-situ trace element analyses, ii) 16 igneous and metamorphic rocks that yielded 31 new thermochronometric ages as follows: 12 zircon fission track ages, 11 Apatite fission track ages and 7 (U-Th)/He in apatite ages, iii) Whole rock geochemistry from 10 samples and iv) Microprobe mineral chemistry in spot analyses and x-ray maps from 4 samples that yielded zoned and peritectic garnet. These data were acquired from the units of the northwestern metamorphic suite of the SNSM massif. With these data we investigated i) The units that conform the SNSM metamorphic belts, their chronological and stratigraphic relationships from the Precambrian to the Eocene; ii) The time span and P-T conditions of a Late Paleozoic-Early Mezosoic metamorphic event (Chapter 1), iii) The timing of igneous activity accretion and exhumation of oceanic and continental terranes during the Late Cretaceous to late Miocene. iv) A mechanism for explaining how this exhumation occurred under a collisional regime by a climate influenced process at elevated erosion and thermal gradients (Chapter 2); v) The late processes of denudation and sedimentation controlled by tectonics in two marginal basins since the early Miocene under decreased erosion rates and thermal gradients (Chapter 3).
Document type :
Complete list of metadatas
Contributor : Abes Star :  Contact
Submitted on : Monday, January 22, 2018 - 3:17:08 PM
Last modification on : Friday, November 20, 2020 - 2:36:16 PM
Long-term archiving on: : Thursday, May 24, 2018 - 9:29:43 AM


Version validated by the jury (STAR)


  • HAL Id : tel-01689912, version 1



Alejandro Piraquive. Cadre structurel, déformations et exhumation des Schistes du Santa Marta : accumulation et histoire de déformation d'un terrain caraïbe au nord de la Sierra Nevada de Santa Marta. Sciences de la Terre. Universidad nacional de Colombia, 2017. Français. ⟨NNT : 2017GREAU019⟩. ⟨tel-01689912⟩



Record views


Files downloads