Skip to Main content Skip to Navigation
Theses

Sintering of Zirconium Diboride-Silicon Carbide (ZrB2-SIC) and Titanium Dibor'ide-Silicon Carbide (TiB2-SIC) Ceramic Composites and Laser Surface Treatment : Application in Low Temperature Protonic Ceramic Fuel Cells (LTPCFCs)

Abstract : Sintering and laser are a remarkable technology with a broad range of applications especially material processing. It offers a wide variety of desired surface properties depending on the type of usage. Sintering allows high reliability and repeatability to the large mass production. Laser benefits in the aspect of energy saving compared to conventional surface heat treatment due to the heating is restricted and localized only to the required area. Therefore, this research aims to develop a silica-glass-layer onto a porous non-oxide, Zirconium Diboride-Silicon Carbide (ZrB2-SiC) and Titanium Diboride-Silicon Carbide (TiB2-SiC) ceramic composites by sintering and laser surface treatment for potential application in the Low-Temperature Protonic Fuel Cells (LTPCFCs). ZrB2-SiC and TiB2-SiC mixed powders at different composition were cold-pressed around 40 MPa under ambient environment. Next, the composites were pressureless sintered at 1900 °C and 2100 °C for 2.5 h dwell time under argon atmosphere, respectively. The pressureless sintering was conducted by Nabertherm furnace and followed by surface treatment via an ytterbium fibre laser (Yb). Anew round spiral laser pattern was inspired, designed and scanned onto the surface of pellets to obtain a smooth glass surface layer that acted as proton-conducting (electrolyte) while preserving the beneath structures of laser-treated pellets that served as an electrode. Characterization techniques such as Scanning Electron Microscope (SEM) equipped with Energy Dispersive X-Ray Spectroscopy (EDS) and X-ray Diffraction (XRD) were performed accordingly onto the samples. Pressureless sintering of 61 mol.% ZrB2-SiC and 61 mol.% TiB2-SiC pellets at 1900 °C exhibited ca. 29% porosity. The resulting porosity was in the best range of effectiveness for gas diffusion. SEM micrographs revealed the formation of semiglassy layer on the surface of sintered 61 mol.% ZrB2-SiC pellets. The bulk structures remained unaffected and unoxidized. SEM micrographs and EDS patterns displayed thatsilica (SiO2) at a thickness of 8 μm, presence on the surface of ZrB2-SiC structures. It demonstrated that the surface treatment by Yb-fibre laser on sintered ZrB2-SiC ceramic composites at 1900 °C had accomplished. The laser surface treatment was ineffective for TiB2-SiC pellets due to several bubbles formation and crack deflection. Nevertheless, at higher magnification of the SEM for laser-treated ZrB2-SiC ceramic composites, cracks were observed. Therefore, the pressureless sintering at high temperature was conducted to improve the ZrB2-SiC structural properties. Sintering at 2100 °C had demonstrated increment of density and at 80 mol.% ZrB2-SiC sintered pellet unpredictably exhibited the presence of boron carbide (B4C) compounds. SEM micrographs revealed the dark cuboidal shapes and XRD patterns identified as B4C peaks. The reactions of B4C formation were proposed andsupported by thermodynamic analysis. In conclusion, the present research had developed a glassy layer on the surface of ZrB2-SiC ceramic composites which has potential in the application of LTPCFCs. It proved that B4C was possible to be developed by pressureless sintering at 2100 °C and it might assist in developing better morphology for ZrB2-SiC ceramic composites.
Keywords : ZrB2- SiC
Document type :
Theses
Complete list of metadata

https://tel.archives-ouvertes.fr/tel-01689889
Contributor : Abes Star :  Contact
Submitted on : Monday, January 22, 2018 - 3:09:08 PM
Last modification on : Thursday, May 17, 2018 - 4:46:22 AM
Long-term archiving on: : Thursday, May 24, 2018 - 9:26:34 AM

File

2017LIMO0074.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01689889, version 1

Collections

Citation

Dayang Salyani Binti Abang Mahmod. Sintering of Zirconium Diboride-Silicon Carbide (ZrB2-SIC) and Titanium Dibor'ide-Silicon Carbide (TiB2-SIC) Ceramic Composites and Laser Surface Treatment : Application in Low Temperature Protonic Ceramic Fuel Cells (LTPCFCs). Materials. Université de Limoges, 2017. English. ⟨NNT : 2017LIMO0074⟩. ⟨tel-01689889⟩

Share

Metrics

Record views

1237

Files downloads

176