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Abstract

Contrary to the cryptosystems based on number theory, the security of cryptosys-
tems based on error correcting codes appears to be resistant to the emergence of
quantum computers. Another advantage of these systems is that the encryption and
decryption are very fast, about �ve times faster for encryption, and 10 to 100 times
faster for decryption compared to RSA cryptosystem.

Nowadays, the interest of scienti�c community in code-based cryptography is
highly motivated by the latest announcement of the National Institute of Standards
and Technology (NIST). They initiated the Post-Quantum cryptography Project
which aims to de�ne new standards for quantum resistant cryptography and �xed
the deadline for public key cryptographic algorithm submissions for November 2017.
This announcement motivates to study the security of existing schemes in order to
�nd out whether they are secure. This thesis thus presents several attacks which
dismantle several code-based encryption schemes.

We started by a cryptanalysis of a modi�ed version of the Sidelnikov cryptosys-
tem proposed by Gueye and Mboup [GM13] which is based on Reed-Muller codes.
This modi�ed scheme consists in inserting random columns in the secret generating
matrix or parity check matrix. The cryptanalysis relies on the computation of the
square of the public code. The particular nature of Reed-Muller which are de�ned
by means of multivariate binary polynomials, permits to predict the values of the
dimensions of the square codes and then to fully recover in polynomial time the se-
cret positions of the random columns. Our work shows that the insertion of random
columns in the Sidelnikov scheme does not bring any security improvement.

The second result is an improved cryptanalysis of several variants of the GPT
cryptosystem which is a rank-metric scheme based on Gabidulin codes. We prove
that any variant of the GPT cryptosystem which uses a right column scrambler
over the extension �eld as advocated by the works of Gabidulinet al. [Gab08,
GRH09, RGH11] with the goal to resist Overbeck's structural attack [Ove08], are
actually still vulnerable to that attack. We show that by applying the Frobenius
operator appropriately on the public key, it is possible to build a Gabidulin code
having the same dimension as the original secret Gabidulin code, but with a lower
length. In particular, the code obtained by this way corrects less errors than the
secret one but its error correction capabilities are beyond the number of errors
added by a sender, and consequently an attacker is able to decrypt any ciphertext
with this degraded Gabidulin code. We also considered the case where an isometric
transformation is applied in conjunction with a right column scrambler which has its
entries in the extension �eld. We proved that this protection is useless both in terms
of performance and security. Consequently, our results show that all the existing
techniques aiming to hide the inherent algebraic structure of Gabidulin codes have
failed.



To �nish, we studied the security of the Faure-Loidreau encryption scheme [FL05]
which is also a rank-metric scheme based on Gabidulin codes. Inspired by our prece-
dent work and, although the structure of the scheme di�ers considerably from the
classical setting of the GPT cryptosystem, we show that for a range of parameters,
this scheme is also vulnerable to a polynomial-time attack that recovers the private
key by applying Overbeck's attack on an appropriate public code. As an example
we break in a few seconds parameters with80-bit security claim.
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Résumé

Contrairement aux protocoles cryptographiques fondés sur la théorie des nombres,
les systèmes de chi�rement basés sur les codes correcteurs d'erreurs semblent résister
à l'émergence des ordinateurs quantiques. Un autre avantage de ces systèmes est que
le chi�rement et le déchi�rement sont très rapides, environ cinq fois plus rapide pour
le chi�rement, et 10 à 100 fois plus rapide pour le déchi�rement par rapport à RSA.
De nos jours, l'intérêt de la communauté scienti�que pour la cryptographie basée sur
les codes est fortement motivé par la dernière annonce de la �National Institute of
Standards and Technology" (NIST), qui a récemment initié le projet intitulé �Post-
Quantum cryptography Project". Ce projet vise à dé�nir de nouveaux standards
pour les cryptosystèmes résistants aux attaques quantiques et la date limite pour la
soumission des cryptosystèmes à clé publique est �xée pour novembre 2017. Une telle
annonce motive certainement à proposer de nouveaux protocoles cryptographiques
basés sur les codes, mais aussi à étudier profondément la sécurité des protocoles
existants a�n d'écarter toute surprise en matière de sécurité.

Cette thèse suit cet ordre d'idée en étudiant la sécurité de plusieurs protocoles
cryptographiques fondés sur la théorie des codes correcteurs d'erreurs.

Nous avons commencé par l'étude de la sécurité d'une version modi�ée du cryp-
tosystème de Sidelnikov, proposée par Gueye et Mboup [GM13] et basée sur les codes
de Reed-Muller. Cette modi�cation consiste à insérer des colonnes aléatoires dans
la matrice génératrice (ou de parité) secrète. La cryptanalyse repose sur le calcul
de carrés du code public. La nature particulière des codes de Reed-Muller qui sont
dé�nis au moyen de polynômes multivariés binaires, permet de prédire les valeurs
des dimensions des codes carrés calculés, puis permet de récupérer complètement en
temps polynomial les positions secrètes des colonnes aléatoires. Notre travail montre
que l'insertion de colonnes aléatoires dans le schéma de Sidelnikov n'apporte aucune
amélioration en matière de sécurité.

Le résultat suivant est une cryptanalyse améliorée de plusieurs variantes du cryp-
tosystème GPT qui est un schéma de chi�rement en métrique rang utilisant les codes
de Gabidulin. Nous montrons qu'en utilisant le Frobenius de façon appropriée sur
le code public, il est possible d'en extraire un code de Gabidulin ayant la même
dimension que le code de Gabidulin secret mais avec une longueur inférieure. Le
code obtenu corrige ainsi moins d'erreurs que le code secret, mais sa capacité de
correction d'erreurs dépasse le nombre d'erreurs ajoutées par l'expéditeur et par
conséquent, un attaquant est capable de déchi�rer tout texte chi�ré, à l'aide de ce
code de Gabidulin dégradé. Nos résultats montrent qu'en �n de compte, toutes les
techniques existantes visant à cacher la structure algébrique des codes de Gabidulin
ont échoué.

En�n, nous avons étudié la sécurité du système de chi�rement de Faure-Loidreau
[FL05] qui est également basé sur les codes de Gabidulin. Inspiré par les travaux
précédents et, bien que la structure de ce schéma di�ère considérablement du cadre



classique du cryptosystème GPT, nous avons pu montrer que ce schéma est égale-
ment vulnérable à une attaque polynomiale qui récupère la clé privée en appliquant
l'attaque d'Overbeck sur un code public approprié. Comme exemple, nous arrivons
en quelques secondes à casser les paramètres qui ont été proposés comme ayant un
niveau de sécurité de80 bits.
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Chapter 1

Introduction

Cryptography is the �eld of research in which the techniques of setting up secure
communications (in the presence of adversaries) are studied. Nowadays, it is un-
doubtedly present everywhere. Financial transactions, e-commerce and military
applications are just few examples that demonstrate the enormous importance of
cryptography in a modern world.

1.1 Motivation

Given this enormous importance of cryptography, many researchers have devoted
a great deal of time and e�ort to propose and analyze cryptographic systems that
can be both e�cient and secure. Cryptosystems based on number theory (integer
factorization and discrete logarithm) such as RSA [RSA78] and elliptic curves cryp-
tography, have been good candidates during several decades and remain widely de-
ployed in practice since they o�er a good compromise between e�ciency and security.
Nevertheless, the existence of sub-exponential algorithms [BGJT14] and polynomial
quantum algorithms [Sho94, Sho97] that solve these number theory problems are
important facts that make the systems from number theory less and less attractive.

The situation is di�erent for code based cryptography.
Code based cryptography was introduced since 1978 by McEliece [McE78] who

was the �rst to present a cryptosystem based on error-correcting codes. The public
key is formed with a matrix Gpub which is obtained by a product of three matrices
S, G0 and P . The security of the scheme build is based on two problems: the
di�culty of decoding a random linear code [BMvT78] and the di�culty of recovering
a decoding algorithm from a public matrix representation of a binary Goppa code.
The second assumption was reformulated in a more formal way by stating that there
is no polynomial-time algorithm that distinguishes between a random matrix and a
generating matrix of a binary Goppa code [CFS01, Sen02]. The scheme disposes of
various advantages:

� The encryption and decryption are very fast, about �ve times faster for encryp-
tion, and 10 to 100 times faster for decryption compared to RSA cryptosystem.
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1.2. PREVIOUS WORKS

� Contrary to the cryptosystems based on number theory, the security of this
cryptosystem appears to be resistant to the emergence of quantum computers
[Sho94, Sho97].

Although it is e�cient, the McEliece cryptosystem came with a big disadvantage:
the size of the public keys is about �ve hundred thousand bits. Several authors have
followed the idea of McEliece by trying to solve the problem of key sizes.

Nowadays, the interest of the scienti�c community in code-based cryptography is
highly motivated by the latest announcement of the National Institute of Standards
and Technology (NIST). They initiated the Post-Quantum cryptography Project
which aims to de�ne new standards for quantum resistant cryptography and �xed
the deadline for public key cryptographic algorithm submissions for November 2017
(NIST-PQcrypto Project). This announcement motivates to study the security of
existing schemes in order to �nd out whether they are secure. This thesis thus
presents several attacks which dismantle several code-based encryption schemes.

1.2 Previous Works

In order to solve the problem of enormous key size in the McEliece encryption
scheme, several authors proposed to replace the family of Goppa codes with another
family of codes. The �rst to propose such an idea is Harald Niedereiter [Nie86]
who proposed in 1986 the use of generalized Reed-Solomon codes. However, this
was shown six years later to be insecure by Sidelnikov and Shestakov [SS92]. In
1994, Sidelnikov [Sid94] also proposed the use of Reed-Muller codes, but the results
presented in [MS07, CB13] show that this variant is not secure. Several papers
also follow this idea by proposing the use of another family of codes. Janwa and
Moreno [JM96] suggested the use of Algebraic-geometry codes, but this turned out
to be insecure [FM08, CMCP14]. Monico, Rosenthal and Shokrollahi proposed and
analyzed a variant using low density parity check codes in [MRAS00]. Bernstein,
Lange and Peters [BLP10, BLP11] proposed the use of Wild Goppa codes. Srivastava
codes were proposed in [Per12] by Persichetti. In [LJ12], Londahl and Johansson
proposed the use of convolutional codes, but an e�cient attack by Landais and
Tillich [LT13] was proposed on this variant only one year later. Polar codes and
subcodes of polar codes were also proposed in [SK14, HSEA14], but the variant with
polar codes was completely broken in [BCD+ 16].

During these last decades, several authors have proposed to consider more struc-
tured codes. The common idea is to focus on codes equipped with a non-trivial
permutation group.1 This is the case for example of Gaborit [Gab05] who proposed
to use quasi-cyclic BCH codes. His work was followed by Berger, Cayrel, Gaborit
and Otmani's paper [BCGO09] which used quasi-cyclic alternant codes and the pa-
per of Misoczki and Barreto [MB09] who proposed quasi-dyadic Goppa codes. The
algebraic attack given in [FOPT10] succeeds in breaking most of the parameters of

1The permutation group of a code is the set of permutations leaving globally invariant the code.
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[BCGO09, MB09]. It makes use of the fact that the underlying codes which are alter-
nant codes come with an algebraic structure. It allows a cryptanalysis consisting in
setting up a polynomial system and then solving it with Gröbner bases techniques.
In the very speci�c case of [BCGO09, MB09], the quasi-cyclic and quasi-dyadic
structures allow a huge reduction of the number of variables. Recently, the attack
was further improved against [MB09] by exploiting more e�ciently the underlying
Goppa structure [FOP+ 14, FOP+ 16b].

Although it does not undermine the security of the McEliece scheme, the appari-
tion of algebraic attacks [FOPT10] shows however the importance of �nding a better
hiding of the structure of the codes. A possible solution would be to change the de-
scription of the scheme by inserting some randomness. Berger-Loidreau's paper
[BL05] is probably the �rst attempt towards this objective. The authors suggested
to add random rows to the description of the codes. They applied this to Niederreiter
encryption scheme [Nie86] instantiated with generalised Reed-Solomon codes. The
goal was to come up with a protection against Sidelnikov and Shestakov [SS92]. But
Wieshebrink's paper shows that component-wise product of codes [Wie10] enables
to break Berger-Loidreau's scheme.

Another simple example would be to insert random columns in the secret matrix.
Several authors [Wie06b, GM13] have indeed proposed this technique to avoid struc-
tural attacks on similar versions of the McEliece cryptosystem. This kind of mod-
i�cation was proposed for the �rst time by Wieschebrink in [Wie06b]. Its primary
goal was to avoid the Sidelnikov-Shestakov attack [SS92] on the McEliece cryptosys-
tem using generalized Reed-Solomon codes. Although this proposal had e�ectively
avoided the original attack, recent studies have shown that in that case of generalized
Reed-Solomon codes, the random columns can be found through considerations of
the dimensions of component-wise product of codes [GOT12b, GOT12a, CGG+ 14].
This insertion of random columns in the secret matrix was also proposed by Gueye
and Mboup [GM13] in the case of Reed-Muller codes, with the aim to prevent the
key-recovery attacks of [MS07, CB13].

We emphasize that all the variants mentioned above are in Hamming metric.
Another variant proposed for the �rst time in 1991 consists in using codes with
another metric, namely the �rank-metric�.

The �rst rank-metric scheme was proposed in [GPT91] by Gabidulin, Paramonov
and Tretjakov and is now called the GPT cryptosystem. This scheme can be seen
as an analogue of the McEliece scheme public key cryptosystem based on the class
of Gabidulin codes. An important operation in the key generation of the GPT cryp-
tosystem is the �hiding� phase where the secret generator matrixG undergoes a
transformation to mask the inherent algebraic structure of the associated Gabidulin
code. This transformation is a probabilistic algorithm that adds some randomness
to its input. Originally, the authors in [GPT91] proposed to use adistortion trans-
formation that takes G and outputs the public matrix Gpub = S(G + X ) where
X is a random matrix with a prescribed ranktX and S is an invertible matrix.
The presence of a distortion matrix has however an impact: the sender has to add
an error vector whose rank weight istpub = t � tX where t is the error correction
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capability of the secret underlying Gabidulin code. Hence, roughly speaking, the
hiding phase publishes a degraded code in terms of error correction.

Gabidulin codes are often seen as equivalent of Reed-Solomon codes in the Ham-
ming metric and, like them, are highly structured. That is the reason why their
use in the GPT cryptosystem has been the subject of several attacks. Gibson was
the �rst to prove the weakness of the system through a series of successful attacks
[Gib95, Gib96]. Following these failures, the �rst works which modi�ed the GPT
scheme to avoid Gibson's attack were published in [GO01, GOHA03]. The idea is
to hide further the structure of Gabidulin code by considering isometries for the
rank metric. Consequently, aright column scramblerP is introduced which is an
invertible matrix with its entries in the base �eld Fq while the ambient space of the
Gabidulin code isFn

qm . But Overbeck designed in [Ove05b, Ove05a, Ove08] a more
general attack that dismantled all the existing modi�ed GPT cryptosystems. His
approach consists in applying an operator� i which appliesi times the Frobenius op-
eration on the public generator matrixGpub . Overbeck observed that the dimension
increases by1 each time the Frobenius is applied. He then proved that by taking
i = n � k � 1 the codimension becomes1 if k is the rank of Gpub (which is also
the dimension of the associated Gabidulin code). This phenomenon is a clearly dis-
tinguishing property of a Gabidulin code which cannot be encountered for instance
with a random linear code where the dimension would increase byk for each use of
the Frobenius operator.

Overbeck's attack uses crucially two important facts, namely the column scram-
bler matrix P is de�ned on the based �eldFq and the codimension of� n� k� 1 (Gpub )
is equal to1. Several works then proposed to resist to this attack either by taking a
special distortion matrix so that the second property is not true as in [Loi10, RGH10],
or by taking a column scrambler matrix de�ned over the extension �eldFqm as in
[Gab08, GRH09, RGH11].

Besides the McEliece setting used with Gabidulin codes, Faure and Loidreau
proposed in [FL05] another approach for designing rank-metric encryption scheme
based on Gabidulin codes. The structure of the scheme di�ers considerably from
the classical McEliece setting (there is no masking phase of the Gabidulin code
used) and it was supposed to be secure under the assumption that the problem
of the linearized polynomial reconstruction2 is intractable. This scheme follows the
works done in [AF03, AFL03] where a public-key encryption scheme is de�ned that
relies on thepolynomial reconstructionproblem which corresponds to the decoding
problem of Reed-Solomon codes. The Polynomial Reconstruction (PR) consists
of solving the following problem: given two n-tuples (z1; : : : ; zn ) and (y1; : : : ; yn )
and parameters[n; k; w], recover all polynomialsP of degree less thank such that
P(zi ) = yi for at most w distinct indices i 2 f 1; : : : ; ng. The public key is then a
noisy random codeword from a Reed-Solomon code where the (Hamming) weight of
the error is greater than the decoding capability of the Reed-Solomon code. However
the schemes of [AF03, AFL03] have undergone polynomial-time attacks in [Cor04,
KY04]. The authors in [FL05] proposed an analog of Augot-Finiasz scheme [AF03]

2In [FL05] the problem is termed asp-polynomial reconstruction problem.
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but in the rank-metric context. The security of [FL05] is related to the di�culty of
solvingp-polynomial reconstruction corresponding actually to the decoding problem
of a Gabidulin code beyond its error-correcting capability. After Overbeck's attack,
parameters proposed in [FL05] were updated in [Loi07, Chap. 7] in order to resist
it.

1.3 Contribution of this Thesis

This thesis presents several attacks on several code-based encryption schemes.
Our �rst result shows that, as in the case of Reed-Solomon codes, the component-

wise product of codes can be used to distinguish a Reed-Muller code from a random
code. As a consequence, we have shown that the modi�ed version of the Sidelnikov
cryptosystem proposed by Gueye and Mboup [GM13] is actually insecure. This
modi�ed scheme consists of inserting random columns in the secret generating matrix
or parity check matrix. The cryptanalysis relies on the computation of the squares
of the public code. The particular nature of Reed-Muller codes which are de�ned by
means of multivariate binary polynomials, permits to predict the value of dimension
of the square codes and then to fully recover in polynomial time the secret positions
of the random columns. Our work shows that the insertion of random columns in
the Sidelnikov scheme does not bring any security improvement.

This work was done in collaboration withA. Otmani and was published in the
proceedings of the conference C2SI-Berger 2015 [OTK15].

The second result was inspired by the links between generalized Reed-Solomon
codes and Gabidulin codes in rank-metric. It appears from the results of Overbeck
[Ove08] that the equivalent tool of square-code in rank-metric is the map� i used
by Overbeck, but with i = k � 1. Overbeck used this map withi = n � k � 1 and
his attack does not succeed on the recent reparations of the GPT cryptosystem.
During our analysis of these recent variants, we were able to prove that any variant
of the GPT cryptosystem which uses a right column scrambler over the extension
�eld [Gab08, GRH09, RGH11] as advocated by the works of Gabidulinet al. with
the goal to resist to Overbeck's structural attack [Ove05b, Ove08] are actually still
vulnerable to that attack. We showed that by choosing an appropriate value ofi ,
it is possible to build a Gabidulin code having the same dimension as the original
secret Gabidulin code but with a lower length. In particular, the code obtained by
this way corrects less errors than the secret one but its error correction capabilities
are beyond the number of errors added by a sender, and consequently an attacker is
able to decrypt any ciphertext with this degraded Gabidulin code. Our results show
that all the existing techniques aiming to hide the inherent algebraic structure of
Gabidulin codes have failed. This work was in collaboration withS. Ndjeya and
A. Otmani and is now accepted to the JournalDesign, Codes and Cryptography
[OTKN16].

The third step was to study the security of the Faure-Loidreau encryption scheme
[FL05] which is also a rank-metric scheme based on Gabidulin codes. Inspired by
our precedent work, and even if the structure of the scheme di�ers considerably from

5



1.4. STRUCTURE OF THIS THESIS

the classical setting of the GPT cryptosystem, we have shown that for a range of
parameters, this scheme is also vulnerable to a polynomial-time attack that recovers
the private key by applying Overbeck's attack on an appropriate public code. As
an example we break in a few seconds parameters with80-bit security claim. This
result is a joint work with P. Gaborit and A. Otmani and was accepted to the
journal Design, Codes and Cryptography[GOTK16].

1.4 Structure of this Thesis

The sequel of this thesis contains �ve chapters organized as follows:

? Chapter 2 provides the background for the following chapters of the thesis. In
particular, we will gather some tools and notions from cryptography, coding
theory and we will close this chapter by a state-of-the-art of code-based cryp-
tography. More precisely, it will be the presentation of the McEliece encryption
scheme and some comments on its variants.

? Chapter 3 develops a cryptanalysis of the modi�ed version given in [GM13] of
the Sidelnikov encryption scheme [Sid94] which is a McEliece-type public key
encryption scheme [McE78] based on Reed-Muller codes.

? In Chapter 4, for a good understanding of the results of the following chap-
ters, we �rst present some preliminaries of rank metric codes and rank-based
cryptography.

? In Chapter 5, we present a new structural attacks on the recent variants of
the GPT cryptosystem [Gab08, GRH09, RGH11, RGH10].

? Chapter 6 presents the Faure-Loidreau scheme [FL05] and the polynomial-time
attack on this scheme. The attack recovers the private key from the public
key and is based in part on the security analysis given in [Loi07, Chap. 7].
We show that by applying Overbeck's attack on an appropriate public code
an attacker can recover the private key very e�ciently, only assuming a mild
condition on the code, which was always true in all our experimentations.

? Finally, the conclusions and perspectives are given in chapter 7.
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Chapter 2

Code Based Cryptography

Introduction

The purpose of this chapter is to present some backgrounds and evolutions of code
based cryptography. We start in section 2.1 and section 2.2 with some preliminaries
of cryptography and coding theory, before presenting the underlying cryptography
and some of its variants in section 2.3.

2.1 Cryptography Background

The concept of cryptography is very old. Basically it refers to the process of convert-
ing ordinary message (called plaintext) into unintelligible text (called ciphertext).
Despite the evolution of the means of communication, it has always been di�cult to
guarantee the security of the channel through which a message is transmitted. As
soon as one wishes to communicate in a secret way, two problems arise:

� Con�dentiality of the message: The sender has to ensure himself that only
the legitimate receiver will be able to read and understand the message.

� Integrity of the message: The legitimate receiver has to ensure himself that
the ciphertext has not been subject to a modi�cation by a third-party.

In this thesis, we focus on the �rst point, namely the con�dentiality. It can be
guaranteed by an �encryption� process, that will be followed by a �decryption� of
the legitimate recipient.

2.1.1 Encryption and Decryption

The encryption is an algorithm that allows to convert a given plaintext into a ci-
phertext that will be readable only by its legitimate recipient. This conversion is
performed by an encryption function parameterized by anencryption key. The le-
gitimate receiver can then decrypt the ciphertext by using the decryption function
if he knows the correspondingdecryption key. The set of algorithms that generates
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encryption and decryption keysboth with encryption and decryption algorithms is
called a cryptosystem or an encryption scheme.

De�nition 2.1 (Cryptosystem). A cryptosystem or encryption scheme can be de-
�ned as a tuple (P; C; K; E; D) that satis�es the following properties:

? P is a set called the �plaintext space�.

? C is a set called the �ciphertext space�.

? Ke is a set called the �space of encryption keys�.

? Kd is a set called the �space of decryption keys�.

? E = f Eke : ke 2 K eg is a set of encryption functionsEke : P ! C .

? D = f Dkd : kd 2 K dg is a set of decryption functionsDkd : C ! P .

For eachke 2 K e , there is kd 2 K d such that Dkd (Eke(m )) = m for all m in P:

If the decryption key is the same as the encryption key, the scheme is called
a secret key cryptosystemsince the keys must be kept secret to ensure the con�-
dentiality. Else, if the encryption key can be published without jeopardizing the
con�dentiality of the decryption key, the system is called apublic key cryptosystem.
All the cryptosystems mentioned in this thesis arepublic key cryptosystems.

2.1.2 Public Key Encryption Scheme

The �rst public key encryption scheme was published in 1976 by Whit�eld Di�e
and Martin Hellman [DH76]. It represents any cryptosystem that uses pairs of keys:
public keys (or encryption keys) which may be disseminated widely, and private
keys (or decryption keys) which are known only to the owner. The basic concept of
public key cryptosystems is the notion of �trapdoor function�.

De�nition 2.2 (One-way function). A one-way function is a function that is easy
to compute on every input, but hard to invert (given the image of a random input).

De�nition 2.3 (Trapdoor function). A trapdoor function is a one-way function
with a �trapdoor� t that allows to easily invert.

8



2.1. CRYPTOGRAPHY BACKGROUND

Figure 2.1 � Trapdoor function

Theoretically, it is easy to use a trapdoor function to instantiate a public-key
cryptosystem. Let's suppose for example thatFt : A �! B is a trapdoor function
with trapdoor t. Ft can be used as encryption (or public) key,t as the secret key.
One can then encrypt a messageX 2 A by computing Ft (X ). By the de�nition of
Ft ; only the legitimate receiver (the one who owns t) will be able to invertFt (X ) to
get the message.

Up to now we understand that any public key encryption scheme is based on a
di�cult problem, and the security thus depends of the associated problem.

De�nition 2.4 (Security level). A public key encryption scheme is said to achieve
n� bit security if an attacker would have to perform2n operations to break it or to
solve the associated di�cult problem.

A very old example of encryption scheme is the McEliece's cryptosystem which
consists to use the theory of error-correcting codes to design a one-way function of
the form

F : Fk
2 �! Fn

2
m 7�! mG + e

whereG belongs toM k;n (F2) and e 2 Fn
2 is a random binary vector with many zero

components. In the following section, we give some backgrounds of coding theory
that will allow to understand the McEliece cryptosystem and its variants.
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2.2 Error-Correcting Codes

The theory of error-correcting codes have been developed in the second half of the
twentieth century, following Shannon's work in 1949. The goal is then to establish
clear communications (without noise and without interference). Rather than trying
to improve physically the transmission systems, Shannon had the idea of a di�erent
approach: Subjecting the signal to a computer processing after receipt in order to
detect and correct transmission errors (see �gure 2.2).

Figure 2.2 � Communication Channel

So, we are interested in the transmission of messages which are each transmitted
by a succession of signals. Each message can be written using an� tuple (x1; :::; xn )
, x i i = 1; :::; n belonging to a setA called the alphabet. The elements ofA are then
the di�erent signals used and eachn� tuple obtained is called a "word". The integer
n is the length of the words and the set of all words obtained is called a "code".
In order to have a code with speci�c algebraic and combinatorial structures, the
alphabet A can be chosen appropriately. Thus the alphabet will be generally a
�nite �eld Fq. That is to say a �nite �eld with q elements whereq is a power of a
prime integer p.

De�nition 2.5 (Code). Let Fq be a �nite �eld with q elements. A code of length
n over Fq is a subsetC of Fn

q .

In order to measure the quantity of transmission errors introduced, we have to
use a distance.

Hamming Distance

Let A be a �nite alphabet, n a non-zero integer andd : An � An �! N the function
de�ned by:

d(x ; y ) = # f i 2 f 1; :::; ng : x i 6= yi g

with x = ( x1; :::; xn ) and y = ( y1; :::; yn ) belonging toAn .

Proposition 2.1. The function d is a distance onAn .

Proof. Let x = ( x1; :::; xn ), y = ( y1; :::; yn ) and z = ( z1; :::; zn ) belonging toAn .
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� Let's suppose thatd(x ; y ) = 0 . This means that for all i 2 f 1; :::; ng, x i = yi

and thus x = y .

� From the de�nition of d, it is clear that d(x ; y ) = d(y ; x ).

� Let E = f i 2 f 1; :::; ng : x i 6= yi g, F = f i 2 f 1; :::; ng : x i 6= zi g and
G = f i 2 f 1; :::; ng : zi 6= yi g. We have d(x ; y ) = # E, d(x ; z) = # F and
d(z; y ) = # E. Let i belonging tof 1; :::; ng and not to F [ G; we havex i = zi

and zi = yi . So x i = yi and then i =2 E; that is to say that E � F [ G. This
implies that # E 6 #( F [ G) 6 # F +# G and thend(x ; y ) 6 d(x ; z)+ d(z; y ).

The distanced de�ned above is the most used in coding theory and is called the
"Hamming distance" thanks to Richard Hamming who introduced it in 1950. From
this distance, the weight of a vector is de�ned by:

De�nition 2.6 (Hamming weight). The Hamming weight of a wordx 2 C denoted
by w(x ) or wH (x ) is the distance betweenx and the zero word.

Di�erent codes have di�erent properties. One of the most important property
of a code is its minimum distance, which provides its theoretical error correction
capability.

De�nition 2.7. Let C be a code overFq. The minimum distance d of C is given
by:

d = min f d(x ; y ) : x ; y 2 C; x 6= yg

and the packing radiusis given by

t = b
d � 1

2
c

Decoding

When a wordc passes through a transmission channel, generally there are some per-
turbations and the received word is theny = c + e, wheree is the error introduced.
The recipient's objective is to decodey ; that is to say, �nd e from y so as to recover
the original codewordc or directly the message (see Figure 2.2). In the sequel, we
will say that a received wordy = c + e contains t errors if w(e) = t.

Proposition 2.2 (Unique decoding). Let C be a code of lengthn de�ned on Fq with
a packing radiust. For y 2 Fn

q , there exists at most one codewordc 2 C such that
d(y ; c) 6 t.

Proof. Let y 2 Fn
q and suppose that there existc and c0 belonging toC such that

d(y ; c) 6 t and d(y ; c0) 6 t. We then haved(y ; c) + d(y ; c0) 6 2t 6 d � 1 and thus
d(c; c0) 6 d � 1 < d . Sinced is the minimum distance, we deduce thatc = c0.
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Graphically, the decoding of a wordy in Fn
q with a code C consists to �nd a

codewordc in C that is closest to y . Proposition 2.2 thus state that for y in a
ball of radius t centred on a codewordc, c is the unique solution of the decoding.
In other word, the balls of radiust centred on the codewords do not intersect (see
Figure 2.3).

Figure 2.3 � Unique decoding

2.2.1 Linear Codes

Let Fq be the �nite �eld of q elements,n and k be two non-zero integers. Informally,
a linear codeC de�ned on Fq is a code that satis�es the property: For allx , y in
C, and for all � belonging toFq, x + � y belongs toC.

De�nition 2.8 (Linear code). An (n; k)� linear code of lengthn and dimensionk
on Fq is a vector subspace ofFn

q of dimensionk.

In the sequel, an(n; k)� code will denote an(n; k)� linear code and we will say
an (n; k; d)� code to denote an(n; k)� linear code with minimum distanced.

Remark 2.1. If C is a linear code then, the minimum distance is the minimum weight
of the non-zero codewords.

From the de�nition, it is clear that linear codes can be de�ned and represented
by matrices.

De�nition 2.9 (Generator matrix). Let C be an (n; k)� linear code onFq. A
matrix G 2 M k;n (Fq) is a generator matrix of C if its rows form a basis ofC. That
is to say:

C = f mG ; m 2 Fk
qg
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Remark 2.2. If G is a generator matrix of an (n; k)� codeC on Fq and S in GLk(Fq)
then, SG is also agenerator matrix of C.

Before de�ning the parity-check matrix of a code, we introduce thedual of a
code.

De�nition 2.10. Let C be an (n; k)� code onFq. The dual of C is the (n; n �
k)� codeC ? de�ned by:

C ? = f y 2 Fn
q : xy T = 0 for all x 2 Cg

De�nition 2.11 (Parity-check matrix). A parity-check matrix of a codeC is a
generator matrix of its dual.

Remark 2.3. Let G be a generator matrix of an(n; k)� codeC over Fq and H a
parity check matrix of C then we have: GH T = 0: Conversely, any matrix H
belonging to M n� k;n (Fq) of rank n � k that satis�es GH T = 0 is a parity-check
matrix of C:

Example 2.1. Consider the following matrixG with coe�cients in F2 :

G =

0

B
B
@

1 0 0 0 1 1 1
0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 0

1

C
C
A

The rank of G over F2 is 4. We can say that G is a generator matrix of an
(7; 4) � codeC over F2: Let H be the matrix given by:

H =

0

@
1 0 1 1 1 0 0
1 1 0 1 0 1 0
1 1 1 0 0 0 1

1

A

We haveHG T = 0 and rank(H ) = 3 = 7 � 4, soH is a parity check matrix of
C.

From the previous remark, a parity-check (generator) matrix can be computed
from a generator (parity-check) matrix in polynomial time. One can also remark
that a parity check matrix of a codeC is very helpful to know if a random wordy
belongs toC or not. This is an important step during the decoding process and it
is achieved by computing thesyndrome.

De�nition 2.12 (Syndrome). Let H be a parity check matrix of an(n; k)� codeC
on Fq and y belonging toFn

q . The syndromes 2 Fn� k
q of y associated toC is given

by: sT = Hy T

Remark 2.4. A word y 2 Fn
q belongs to a codeC if and only if its syndromeassoci-

ated to C is equal to0.
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There is also a relationship between a parity check matrix and theminimum
distance of the associated code, that is given by the following proposition.

Proposition 2.3. Let C be an(n; k)� code withH as a parity check matrix. The
minimum distance of C is d if and only if d is the biggest integer such that any
sub-matrix constituted byd � 1 columns ofH is of rank d � 1.

Proof. The proof comes from the fact that a wordy 2 Fn
q belongs toC if and only

if Hy T = 0.

From the previous proposition we can give a proof of the singleton bound.

Theorem 2.4 (Singleton bound). If C is a (n; k; d)� code thend 6 n � k + 1.

Proof. Let H = ( u 1; :::; u n ) be a parity check matrix of C with u t
i 2 Fn� k

q (i =
1; :::; n). We recall that, since the rank ofH is n � k, the matrix (u 1; :::; u d� 1) is of
rank at most n � k. So if d � 1 > n � k then the rank of the matrix (u 1; :::; u d� 1)
is not d � 1. From proposition 2.3, this contradicts the fact thatd is the minimum
distance ofC.

Theorem 2.4 gives an upper bound of the minimum distance of a code. For �xed
valuesn and k, we want a code with ad as large as possible since such a code can
intrinsically correct more errors. The mored nearsn � k + 1, the more the code is
optimal (i.e., may correct more errors).

De�nition 2.13 (MDS Code). An (n; k; d)� codeC is said to be MDS (Maximum
Distance Separable) if the singleton bound is reached. That is to say:

d = n � k + 1

The optimality of a code is an important parameter of e�ciency in terms of
decoding, but it's not the only one. A high minimum distance ensures that the code
can theoretically correct many errors, but this does not guarantee the existence of
an e�cient decoding algorithm.

2.2.2 The general decoding problem

The general decoding problem is at the base of several cryptosystems based on coding
theory. The term "general" here denotes the fact that there is no information about
the structure of the given linear code. The problem can be described as follows:

Problem 2.5. Let C be an(n; k; d)� code onFq, y 2 Fn
q and t a given integer. Find

c in C such that
d(y ; c) 6 t

This problem also termed asBounded distance decoding problemwas �rst studied
in [BMvT78] and was proven to be NP-hard. The problem can be described by using
a generator matrixG of the codeC as follows:
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2.2. ERROR-CORRECTING CODES

Problem 2.6 (General Decoding Problem). Let G be a full-rank matrix belonging to
M k;n (Fq) with k 6 n, y an element ofFn

q and t an integer. The General Decoding
Problem GDn;k;t is to �nd e in Fn

q and m in Fk
q such thaty = mG + e with w(e) 6 t.

Or by using a parity check matrix H of C as follows:

Problem 2.7 (Syndrome Decoding Problem). Let H be a full-rank matrix belonging
to M n� k;n (Fq) with k 6 n, s an element ofFn� k

q and t an integer. The Syndrome
Decoding Problemis to �nd e in Fn

q such thats = eH t with w(e) 6 t.

The best algorithms that solve this problem are derived frominformation set
decoding introduced by Prange in [Pra62]. In its simplest form, the decoder tries
to �nd a subset of k columns of the generator matrix, that is error-free and for
which the sub-matrix composed by this subset is invertible. The message can then
be recovered by multiplying the corresponding codeword at the right by the inverse
of this sub-matrix. The algorithm has been optimized during several years (see
[LB88, Leo88, Ste88], [MMT11, BJMM12]) but the best one remains exponential on
the length of C (on averageO(2n=20) operations for binary codes.

There are code families for which the later problem is no longer di�cult and for
which e�cient decoding algorithms are known. In the subsection that follows, we
recall some of the linear codes that are used for cryptographic purpose.

2.2.3 Examples of decodable families of codes

We have seen in the previous paragraphs that the decoding problem is di�cult when
dealing with an unknown family of codes. It is not the case with structured codes.
We brie�y introduce here some families of codes that can be decoded e�ciently, that
is to say equipped with a polynomial decoding algorithm.

Generalized Reed-Solomon and Goppa codes.

Generalized Reed-Solomon codes, or shortly GRS codes, were introduced by Reed
and Solomon in [RS60] and represent a powerful family of codes with many appli-
cations. Ten years after, binary Goppa codes were introduced by Valery Goppa
[Gop70]. Goppa codes can be de�ned as sub�eld subcodes of GRS codes.

De�nition 2.14 (Generalized Reed-Solomon codes). Let k and n be two integers
such that 1 6 k < n 6 q where q = pm is a power of a prime numberp. Let
(x ; y ) 2 Fn

q � Fn
q be a pair such thatx is an n-tuple of distinct elements ofFq and

the elementsyi are non-zero elements inFq: The Generalized Reed-Solomon code
GRS k (x ; y ) is given by:

GRS k (x ; y ) def= f (y1f (x1); : : : ; yn f (xn )) j f 2 Fq[x] ; deg(f ) < k g:
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2.2. ERROR-CORRECTING CODES

The vector x is called the support of the code andy the multiplier vector. One
can easily deduce that a generator matrix ofGRS k (x ; y ) is given by

G =

0

B
B
B
@

1 1 : : : 1
x1 x2 : : : xn
...

...
...

...
xk� 1

1 xk� 1
2 : : : xk� 1

n

1

C
C
C
A

0

B
B
B
@

y1

y2 0

0
. . .

yn

1

C
C
C
A

:

Proposition 2.8 ([MS86] Theorem 4, Chapter 10). The dual of a GRS code is also
a GRS code and we have

GRS k (x ; y )? = GRS n� k (x ; z) ;

wherez is a non-zero codeword of the(n; 1; n) GRS codeGRS n� 1 (x ; y )? :

We notice that a vector z with zi 6= 0 (for i = 1:::n) exists since any non-zero
codeword of a(n; 1; n)� GRS code has a Hamming weight equal ton: From the
propositions 2.8 and 2.3, one can deduce that GRS codes are MDS. They are also
known to possess fast decoding algorithms that can correct e�ciently up ton� k

2
errors (see for example [Gao03] or [MS86] for more details).

De�nition 2.15 (Alternant codes). Let r be another non-zero integer. Ap� ary
alternant code of length n is a linear code overFp de�ned from a GRS code
GRS r (x ; y ) � Fn

pm by

A r (x ; y ) def= GRS r (x ; y )? \ Fn
p :

De�nition 2.16 (Binary Goppa codes). Let x 2 Fn
2m be a n � tuple of distinct

elements andg 2 F2m [x] be a polynomial of degreet such that g(x i ) 6= 0 for all

i . The binary Goppa codeG (x ; g) is the 2� ary alternant codeA t (x ; y ) with y def=
(1=g(x1); : : : ; 1=g(xn )) :

As for GRS codes, Goppa codes are known to possess several decoding algorithms
that can decode up tot errors in polynomial time [Pat75, MS86, BML13].

Reed-Muller codes.

Reed-Muller codes were introduced by David Muller [Mul54] and rediscovered shortly
after with an e�cient decoding algorithm by Irving Reed [Ree54].1 The scienti�c
community was highly interested in this family of codes and therefore discovered
many structural properties of Reed-Muller codes. Recently Kudekar, Mondelli,
Sasoglu and Urbanke proved that Reed-Muller codes achieve the capacity of the
Binary Erasure channel [KKM+ 17].

1Although it seems that these codes were �rstly discovered by Mitani in 1951 [Mit51], they
became popular only after the article of Muller and Reed.
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De�nition 2.17 (Reed-Muller code). Let F2[x1; : : : ; xm ] be the set of boolean poly-

nomials with m variables. Let us setf a1; : : : ; ang def= Fm
2 and n def= 2m . The Reed-

Muller code denoted byRM (r; m) with 0 6 r 6 m is the linear space de�ned
by:

RM (r; m) def=
n�

f (a1); : : : ; f (an )
�

: f 2 F2[x1; : : : ; xm ]; degf 6 r
o

We have the following theorem that gives the dimension of a Reed-Muller code:

Theorem 2.9. The dimension ofRM (r; m) is equal to
rX

i =0

�
m
i

�
.

Proof. For given integersm and r with 0 6 r 6 m, let F2[x1; : : : ; xm ]r be the set of
elementsf of F2[x1; : : : ; xm ] that satisfy degf 6 r . One can see thatF2[x1; : : : ; xm ]r

is a F2� vector space generated by the basis

B r = f xu1
1 : : : xum

m : ui 2 f 0; 1g;
X

i

ui 6 rg

This implies that dim (F2[x1; : : : ; xm ]r ) =
rX

i =0

�
m
i

�
. Furthermore, from the de�ni-

tion of RM (r; m), it is clear that RM (r; m) is isomorphic toF2[x1; : : : ; xm ]r . Hence

dim (RM (r; m)) =
rX

i =0

�
m
i

�
:

Another nice property of the set of Reed-Muller codes is that like GRS codes
they are stable by the action of the dual.

Theorem 2.10 ([MS86] Chapter 13.).

RM (r; m)? = RM (m � r � 1; m)

LDPC and MDPC codes.

Another important class of linear codes is the family of low density parity check
(LDPC) codes discovered by Gallager [Gal63]. He was motivated by the problem of
�nding �random-like� codes that could be decoded near the channel capacity with
quasi-optimal performance and feasible complexity. These codes were extended in
a natural way to moderate density parity check codes in [OB09]. LDPC codes have
many applications in communication �eld as well as in cryptography.

De�nition 2.18 (LDPC/MDPC codes). An [n; k; ! ]� code is a linear code de�ned
by a k � n parity-check matrix (k < n ) where each row has weight! .

An LDPC code is an[n; k; ! ]� code with ! = O (1), when n ! 1 :[Gal63]
An MDPC code is an[n; k; ! ]� code with ! = O (

p
n), when n ! 1 :[OB09]

The theory of error correcting codes is not only a highly important tool in the
communication �eld, it is also applied to public key cryptography. One of the
oldest public key encryption scheme, namely the McEliece PKC [McE78], is based
on several aspects from coding theory.
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2.3 Code-Based Public-Key Encryption Schemes

In this section we give the basic notions about the McEliece [McE78] cryptosystem.

2.3.1 McEliece encryption scheme

Let Gbe a family of(n; k)-linear codes overFq for which a polynomial-time algorithm
to decodet-error is available. The general version of the McEliece cryptosystem is
described as follows.

Key generation.

1. Let G0 2 M k;n (Fq), be a generating matrix of at-error correcting codeC 0 2 G

2. Pick ann� n permutation matrix P and ak � k invertible matrix S at random
over Fq.

3. ComputeG = S � 1G0P � 1 which is another generating matrix.

The public key is (G; t) and the private key is(S; G0; P ).

Encryption. To encrypt the messagem 2 Fk
q, one randomly generatese 2 Fn

q of
Hamming weight 6 t. The ciphertext is then the vectorc = mG + e.

Decryption. The vector cP � 1 is at a distance at mostt of C. The decoding
algorithm thus allows to �nd the vector y def= mS � 1. The plaintext is deduced by
computing yS .

A version of the McEliece cryptosystem that uses the parity-check matrix instead
of the generating matrix has been proposed by Niederreiter [Nie86], and has been
proved to be completely equivalent in term of security [LDW94].

2.3.2 Niederreiter encryption scheme

The Niederreiter cryptosystem is generally describes as follows.

Key generation.

1. Let H 0 2 M n� k;n (Fq), be a parity check matrix of at-error correcting code
C 0 2 G

2. Pick at random an n � n permutation matrix P and a (n � k) � (n � k)
non-singular matrix S over Fq.

3. ComputeH = S � 1H 0P � 1.

The public key is (H ; t) and the private key is(S; H 0; P ):
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Encryption. For a messagem 2 Fn
q of Hamming weight6 t. The cipher text is

given by c = Hm T :

Decryption. Sincec = S � 1H 0P � 1m T = S � 1H 0(mP )T and mP is a word of
weight less than or equal tot, the receiver decodesSc to get the word y . The
associated plaintext is thenyP .

2.3.3 Security of the system

The security of the McEliece cryptosystem is based on two facts: �rstly the public
code is supposed to be indistinguishable from a random code. If the later supposition
is satis�ed then in order to decrypt a cyphertext, one has to solve an instance of
Problem 2.7 (Syndrome decoding problem) which is known as a di�cult problem. In
the usual security framework there are three levels of attacks that might jeopardize
the scheme.

? Distinguishing Attacks: an attacker has to distinguish between the public code
and a random code in order to invalidate the hypothesis of the security proofs
for the scheme. In some cases the distinguisher might lead to an e�cient Key
Recovery Attack.

? Message Recovery Attacks (MRA): an attacker tries to retrieve the message
from a given ciphertext.

? Key Recovery Attacks (KRA): an adversary tries to retrieve the private key
from the public key and thus completely breaks the cryptosystem.

So the security clearly depends of the family of codes used, and the chosen param-
eters. In his original paper, McEliece proposed to use a(1024; 524; 101)� binary
Goppa code. Thus its security is based on two problems:

� The di�culty of decoding a random linear code

� The di�culty of recovering a decoding algorithm from a public matrix repre-
sentation of a binary Goppa code.

Although the second problem has never been proven NP-hard, the system has with-
stood all structural attacks until today. A distinguisher exists in the case of high
rate Goppa codes [FGO+ 13] but, despite of this potential vulnerability, there is no
e�cient algorithm for the moment exploiting the knowledge and the properties of
the distinguisher. The system is not used in practice because of the enormous size
of the public key. Table 2.1 gives some updated parameters for an acceptable secu-
rity level and compares the associated public key sizes to RSA public key sizes (see
[BLP08, NMBB10] for more details).
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Security level (n; k) t Public Key size RSA Public key sizes
80 bits (1632; 1269) 33 460647 bits 512 bits
128 bits (2960; 2288) 56 1537536 bits 3072 bits
256 bits (6624; 5129) 115 7667855 bits 15360 bits

Table 2.1 � Parameters and key size for McEliece with Goppa codes from [BLP08]
and key size for the RSA scheme

One can remark that for the same level of security, the public key of the McEliece
cryptosystem is more than 100 times greater than the RSA public key [RSA78].
Therefore reducing the size of the keys is one of the starting points of a continuous
research interest in this �eld. We mention the existence of a recent compact variant
of the McEliece scheme based on quasi-dyadic Goppa codes due to Misoczki and
Barreto [MB09], variant that is not yet broken in the binary case. However, there
are several ideas for solving this problem of key sizes. The very old one consists to
replace the Goppa codes by another family of codes.

2.3.4 Some variants of the McEliece cryptosystem

The natural question with the McEliece cryptosystem is always to know the most
appropriate code family to use.

Generalized Reed-Solomon codes

This family was proposed for the �rst time by Niederreiter in [Nie86] but turned
out to be an insecure solution. Indeed, six years after the article was published,
Sidelnikov and Shestakov proposed a polynomial time attack against this variant
[SS92]. Nevertheless the idea of using GRS codes was reconsidered more than ten
years after by Berger and Loidreau when they proposed to consider subcodes of
GRS codes [BL05]. Unfortunately this technique was also attacked in two steps by
Wieschebrink [Wie06a, Wie09], using thesquare code structure .

Other attempts to repair the Niederreiter variant were proposed by Wieschebrink
[Wie06b] whose idea was to add random columns to the generator matrix. But this
variant turned out to be extremely unsecure againstsquare code type attacks
or �ltration type attacks [CGG+ 14]. Nevertheless GRS codes are still of high
interest for cryptography since several modi�ed version of the McEliece scheme use
this family of codes. For example Baldi et al. [BBC+ 16] proposed to change the
permutation matrix, Tillich et al. [CT16] proposed to use them in a �u j u + v�
construction, Wang [Wan16] proposes to use a more general technique derived from
Wieschebrink's idea.
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Reed-Muller codes

Reed-Muller codes were proposed by Sidelnikov's in [Sid94] and was �rstly attacked
by Minder and Shokrollahi [MS07]. In the case of Reed-Muller codes, the Key
Recovery Attack is reduced to solving the code equivalence problem:

Problem 2.11 (Permutation Code Equivalence Problem). Let G and G � be the
generating matrices for two[n; k] binary linear codes. GivenG and G � , �nd a k � k
invertible matrix S and n � n permutation matrix P such thatG � = SGP .

Since there is only one Reed-Muller code with parametersr and m, a cryptanal-
ysis can try to solve problem 2.11 withG � = Gpub and G a generator matrix of
RM (r; m): Minder and Shokrollahi managed to solve this problem using a �ltration
type attack based on the structure properties of the minimum weight codewords.
The complexity of their algorithm was dominated by the minimum weight codewords
searching algorithm.

Recently, Chizhov and Borodin [CB14] proposed another attack that could solve
the code equivalence problem, for some of the parameters of the Reed-Muller codes,
in polynomial time. Their idea was to use two simple operations in order to �nd
the �rst order Reed-Muller code given ther th order Reed-Muller code. Indeed they
noticed that the dual and the square code of a Reed-Muller code is still a Reed-
Muller code. So they combined these operations in order to approach theRM (1; m):
A modi�ed version using the masking technique introduced by Wieschebrink was
proposed in [GM13] but we will prove in Chapter 3, using asquare code type
attack, that this variant is insecure.

Algebraic-geometry codes

This family of codes was suggested by Janwa and Moreno [JM96]. Several articles
discuss the potential vulnerabilities of this variant and propose algorithms that could
be deployed to attack in some particular cases (codes from curves of genus at most
2) [Min07, FM08]. Nevertheless they can not be generalized and su�er in terms
of e�ciency. In [CMCP14] Couvreur, Marquez-Corbella and Pellikaan proposed a
polynomial type algorithm that works on codes from curves of arbitrary genus.

LDPC codes

Monico, Rosenthal and Shokrollahi were the �rst ones to propose and analyze a
McEliece variant using low density parity check codes in [MRAS00]. Using the idea
of Gaborit to consider quasi-cyclic codes [Gab05]2 the new QC-LDPC cryptosystem
was presented by Baldi and Chiaraluce in [BC07]. Both BCH codes and LDPC
codes with quasi-cyclic structure were successfully cryptanalyzed by Otmani, Tillich
and Dallot [OTD08]. In order to prevent the last attack, a modi�cation based on

2In [Gab05] the author proposes BCH codes with quasi-cyclic structure. The idea of adding the
quasi cyclic structure became one of the main techniques for reducing the key size in the McEliece
scheme.
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increasing the weight of the codewords in the public code was proposed in [BBC08].
More details about this variant can be found in [Bal14]. The modi�cation of [BBC08]
seems to be working for the moment since there is no other structural attacks.

MDPC codes

Moderate Density Parity-Check codes are probably the most suitable codes in a
McEliece type scheme [MTSB13]. Many cryptographic arguments are in favour of
this family of codes like e�ciency, small key size when used with a quasi-cyclic
structure and the most important to our opinion the lack of algebraic structure.
Another security argument is the fact that the usual distinguisher does not work for
MDPC codes. In a recent paper, weak keys of the QC-MDPC scheme are revealed
[BDLO16]. However the authors show how to avoid vulnerable parameters.

Wild Goppa codes

This code family is a natural extension from binary Goppa codes to non-binary �elds.
It was proposed by Bernstein, Lange and Peters in [BLP10] and [BLP11]. Many
of the proposed parameters were broken by Couvreur, Otmani and Tillich using
�ltration type techniques when the extension is quadratic [COT14a, COT14b].

Srivastava codes

Srivastava codes were proposed in [Per12] in order to reduce the key length of the
original McEliece scheme. The author uses Quasi-Dyadic Srivastava codes and gives
another application of these types of codes for signature schemes. Even though
the parameters for the signature were broken in [FOP+ 16a], the parameters for the
encryption scheme are still valid.

Convolutional codes

Convolutional codes represented among the shortest term solutions since between
the proposed article by Londahl and Johansson [LJ12] and the e�cient attack by
Landais and Tillich [LT13] only one year passed.

Polar codes

The �rst variant using Polar codes was proposed by Shrestha and Kim [SK14] while
the second one using subcodes of Polar codes was given in [HSEA14]. In [BCD+ 16]
the �rst variant was attacked using the structure of the minimum weight codewords.
The authors managed to solve the code equivalence problem for Polar codes and thus
completely break the scheme.

To conclude this chapter, we emphasise that there are code families which are
not appropriate in this context due to their structural properties, namely the GRS
codes, the Reed-Muller codes, the Polar codes ... However several classes of codes
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remain secure in a McEliece PKC such as original binary Goppa codes and MDPC
codes etc. We also point out that all these variants use hamming distance. Another
idea that is very similar to all the above variants is to use another family of codes,
but with another metric. Gabidulin was the �rst to introduce this idea with the GPT
cryptosystem [GPT91] that uses the rank distance. After the attacks of [Ove05b]
several variants of the system were proposed [Gab08, GRH09, RGH10, RGH11]. The
chapters 4 and 5 of this thesis will be devoted to this part of code based cryptography
which is nowadays known as rank-based cryptography. We will show that all existing
variants of the GPT cryptosystem are insecure.
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Chapter 3

Cryptanalysis of a Modi�ed
Sidelnikov Cryptosystem

Introduction

This chapter develops a cryptanalysis of the modi�ed version given in [GM13] of the
Sidelnikov encryption scheme [Sid94] which is a McEliece-type public key encryption
scheme [McE78] based on Reed-Muller codes. The idea of [GM13] is to add random
columns to prevent the key-recovery attacks of [MS07, CB13]. But, like Reed-
Solomon codes, Reed-Muller codes are evaluation codes and because of this, they
can be distinguished from random codes. These two families of codes share very
similar properties which facilitates the recovering of the random columns. Our
key-recovery attack is divided into two steps. The �rst one is an adaptation to
Reed-Muller codes of the attacks presented in [GOT12b, CGG+ 14] in order to �nd
the secret random columns. This is achieved inO(n5) operations in the binary �eld
wheren is the block length of the codes. The second step applies [MS07, CB13] to
recover the secret permutation that hides the structure of the Reed-Muller codes.
The rest of the chapter is devoted to the description of the �rst step of the attack.

3.1 Preliminary Facts

We give here some de�nitions and properties from coding theory we need in the
chapter. Let Fq be the �nite �eld of q elements,n and k be two non-zero integers
such that k 6 n.

De�nition 3.1. Let C be a(n; k)� code overFq and i in f 1; � � � ; ng. The punctured
codeC i of C is obtained by puncturing (or deleting) thei � th coordinate from all
the codewords ofC.

De�nition 3.2 (Component-wise product). Given two vectors a = ( a1; : : : ; an )
and b = ( b1; : : : ; bn ) in Fn whereF is �eld, we denote bya ? b the component-wise
product:

a ? b def= ( a1b1; : : : ; anbn ):
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De�nition 3.3 (Product of codes). Let A and B be two linear codes of lengthn.
The star product code denoted byA ? B of A and B is the vector space spanned
by all products a ? bwherea and b range over A and B respectively.

When B = A then A ? A is called the square code ofA and is rather denoted
by A 2:

Let Sn be the permutations group of ordern and � belonging toSn . From the
above de�nitions, the following corollary is obvious:

Corollary 3.1. For any linear codeA of lengthn,

(A � )2 =
�
A 2

� �

The importance of the square code construction becomes clear when we compare
the dimensions of a codeA with the dimension of its square codeA 2 and one major
question is to know what one should expect. This comparison has already been made
in [GOT12b, CGG+ 14] in the case of generalized Reed-Solomon codes which allowed
to mount e�cient attacks on several di�erent schemes based on generalised Reed-
Solomon codes [Wie09, GOT12b, CGG+ 14]. The results of this chapter are based
on these comparisons in the case of Reed-Muller codes.

We recall now important facts about the dimension of product of codes.

Proposition 3.2. For any linear subspacesF � E and G � E with �nite dimen-
sions:

dim F ? G 6 dim F dim G �
�

dim F \ G
2

�
: (3.1)

Proof. Assumed def= dim F \ G and let B = f b1; : : : ; bdg be a basis ofF \ G. We
completeB with vectors F = f f 1; : : : ; f tg so that B [ F is a basis ofF . We do the
same forG by completing B with G = f g1; : : : ; gmg so that B [ G is a basis ofG.
A generating set ofF ? G is the union of the four setsf bi ? bj : 1 6 i 6 j 6 dg,
f bi ? f j : 1 6 i 6 d;1 6 j 6 tg, f bi ? gj : 1 6 j 6 d;1 6 j 6 mg and f f i ? gj : 1 6
j 6 t; 1 6 j 6 mg. The proof is terminated by observing the equality:

dt + dm + tm +
�

d + 1
2

�
= ( t + d)(d + m) �

1
2

d(d � 1):

Corollary 3.3. For any linear subspacesF � E:

dim F ? E 6 dim F dim E �
�

dim F
2

�
:

In particular

dim E 2 6
�

dim E + 1
2

�
(3.2)

In practice, the upper bound of (3.2) is generally reach with a high probability.
That meansdim E 2 =

� dim E +1
2

�
. For more details, see [GOT12b, CGG+ 14].
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3.2 Wieschebrink's Masking Technique

Here we present a masking technique �rst developed in [Wie06b] and then proposed
several times with di�erent families of codes. It consists in inserting random columns
in the secret matrix. This technique can be used both in the McEliece cryptosystem
and the Niederreiter version.

3.2.1 Modi�ed McEliece scheme

Key generation.

1. Choose three integersn0, k, ` with ` � n0 and setn def= n0 + `. Pick at random
a generating matrixG0 of an (n0; k)� codeC that is able to decodet errors.

2. Pick randomly a matrix R in M k;` (Fq), an invertible matrix S in GLk(Fq) and
a n � n permutation matrix P .

3. SetG0 = ( G0 j R ) and computeG = S � 1G0P � 1.

The public key is (G; t) and the private key is(S; P ; G0):

Encryption. To encrypt a plaintext m 2 Fk
q, one randomly generatese 2 Fn

q of
weight less thant and computes the ciphertextc = mG + e:

Decryption. To decrypt c, one computesy = cP and let y 0 be the n0 �rst
columns ofy . The vector y 0 is located within distancet from C. The decoding of
y 0 provides the plaintext.

3.2.2 Modi�ed Niederreiter scheme

Here one can apply the same principle as in the case of McEliece cryptosystem, but
here the insertion of random columns is done in the parity check matrix.

Key generation.

1. Choose three integersn0, k, t, ` with ` � n0 and set n def= n0 + `. Pick a
random parity-check matrix H 0 of an (n0; k)� codeC that is able to decodet
errors.

2. Pick randomly a matrix R in M (n0 � k);` (Fq), a non singular matrix S in
GLn0 � k(Fq) and a n � n permutation matrix P .

3. SetH 0 = ( H 0 j R ) and computeH = S � 1H 0P � 1

The public key is (H ; t) and the private key is(S; H 0; P ):
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3.3. RECOVERING THE RANDOM COLUMNS IN POLYNOMIAL TIME

Encryption. For a plaintext m 2 Fn
q of Hamming weight less thant, the corre-

sponding ciphertext is given byc = Hm T :

Decryption. Let dec(�) be the decoding algorithm ofC. The symbol? stands for
a decoding failure1. The decryption of a ciphertextc is described in Algorithm 1.

Algorithm 1 Decryption of Niederreiter scheme with Wieschebrink's masking.
u = ?
for all z 2 F`

q do
y = dec

�
Sc + Rz T

�

if y 6= ? then
u = ( y ; z)P , return u

end if
end for

return u

Note that it is possible for the word u to be di�erent from the transmitted
messagem . But an analysis of the meaning of the received message can eliminate
these cases and consider them as failures decoding. The complexity of this algorithm
is of order q̀ T(dec) whereT(dec) is the time complexity of the decoding algorithm
dec(�).

Although the public code seems to be random in this description, a major prob-
lem rests on the choice of the code family to use and how to reduce the size
of the keys. Wieschebrink had proposed the use of Reed-Solomon codes but in
[GOT12b, CGG+ 14] an attack is presented that can recover the random secret
matrix R . Recently, the paper [GM13] suggested the use of Reed-Muller codes
along with Wieschebrink's masking technique to propose a McEliece-type encryp-
tion scheme. In the next section, we describe how to �nd the random columns
of R in this case. Our attack uses the same technique as the one presented in
[GOT12b, CGG+ 14] for the case of Reed-Solomon codes.

3.3 Recovering the Random Columns in Polynomial
Time

In this section, we draw inspiration from [GOT12b, CGG+ 14] to mount an attack
on the version presented in [GM13]. But before doing so, we present some properties
of Reed-Muller codes.

3.3.1 Some Properties of Reed-Muller Codes

Let's start by the following theorem concerning the stability of the dimension of a
Reed-Muller code when punctured.

1This may happen when for instance the number of errors is greater thant
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3.3. RECOVERING THE RANDOM COLUMNS IN POLYNOMIAL TIME

Theorem 3.4 ([MS86] Chapter 13). Let j be an integer in rangef 1; � � � ; ng where
n = 2m is the length of the Reed-Muller codeRM (r; m). We have:

dim (RM (r; m) j ) =
rX

i =0

�
m
i

�
= dim ( RM (r; m))

The next result is really important because it allows among others to distinguish
a Reed-Muller code from a random one.

Proposition 3.5. Let r and m be two integers such that0 6 r 6 m and 2r 6 m.
We have

RM (r; m)2 = RM (2r; m)

Proof. Let c1 =
�
f (a1); : : : ; f (an )

�
and c2 =

�
g(a1); : : : ; g(an )

�
be elements of

RM (r; m) with degf 6 r and degg 6 r . Hence,c1 ? c2 is the vector of evaluation�
fg (a1); : : : ; fg (an )

�
which corresponds to polynomialfg . This meansc1 ? c2 2

RM (2r; m). Conversely, each monomialxu1
1 : : : xum

m with ui 2 f 0; 1g and
P

i ui 6 2r
is the product of two polynomials of degree6 r . This proves that a basis of
RM (2r; m) is contained inRM (r; m)2.

This proposition allows to observe that for2r 6 m, the dimension ofRM (r; m)2

is
2rP

i =0

� m
i

�
. For a random(n; k)� codeC, we have with a high probability,

dim
�
C 2

�
= min f n;

�
k + 1

2

�
g

See [GOT12b, CGG+ 14] for more details. So one can distinguish a Reed-Muller code
from a random one by computing the dimension of the square code. It is supposed
that 2r 6 m but a distinguisher can also be deduce in other cases, using Theorem
2.10. In fact, when2r > m we have

(RM (r; m)? )2 = RM (m � r � 1; m)2 = RM (2m � 2r � 2; m)

Since2r > m we get2m � 2r � 2 < m . That means

dim(RM (r; m)? )2 =
2m� 2r � 2X

i =0

�
m
i

�

Remark 3.1. By combining Theorem 3.4 and Proposition 3.5, one can easily remark
that for an integer j in range f 1; � � � ; ng we have

dim (RM (r; m) j )2 = dim
�
RM (r; m)2

�
(3.3)

Now we can state the following proposition which is the key result for the sequel
of the chapter.
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3.3. RECOVERING THE RANDOM COLUMNS IN POLYNOMIAL TIME

Proposition 3.6. Let G be a k � (n + `) matrix obtained by inserting` random
columns in the generating matrix of a Reed-Muller codeRM (r; m) and let C be the
code spanned by the rows ofG. Assume that` 6

� k+1
2

�
and

P 2r
i =0

� m
i

�
6 n.Then we

have:
2rX

i =0

�
m
i

�
6 dim C 2 6

2rX

i =0

�
m
i

�
+ ` (3.4)

Proof. Let D1 be the code with generating matrixG1 obtained fromG by replacing
the last ` columns by all-zero columns and letD2 be the code with generating
matrix G2 obtained by replacing inG the �rst n columns by zero columns. Hence
G = G1 + G2 which implies D1 � C � D1 + D2. We haveD1 ? D2 = 0 and the
following inclusion:

D1
2 � C 2 � D1

2 + D2
2 + D1 ? D2:

Observe we haveD1 ? D2 = 0. By also remarkingdim D1
2 = dim RM (2r; m) and

dim D2
2 = min

�
`;

� k+1
2

�	
= `, one can conclude (3.4) is proven.

From the previous proof, it is obvious that the result remains true with any other
family of code. In other words, ifC is a (n + `; k )� code obtained by inserting`
random redundancies in a(n; k)� codeD then

dim D 2 6 dim C 2 6 dim D 2 + ` (3.5)

We have here inequalities but in practice, we have better than that. For Reed-Muller
codes we observed experimentally that for all parameters in [GM13], the upper born
is reached. The result is also the same when dealing with punctured Reed-Muller
Codes. So in the attack we consider that

dim C 2 = dim D 2 + ` (3.6)

3.3.2 Description of the attack

It is easy for an adversary to use Equation 3.6 to identify the random columns by
computing the dimension ofC 2 whereC is the code generated by the public matrix
G as de�ned in Section 3.2. We recall thatC is permuted version of a Reed-Muller
code RM (r; m) with ` random redundancies at̀ random positions. We assume
that

P 2r
i =0

� m
i

�
6 n0 where n0 = 2m and ` <

� k+1
2

�
where k =

P r
i =0

� m
i

�
. We now

denote byCi the code generated by the generating matrixG i obtained by deleting
the i -th column of G (that is to say the punctured code ofC at position i ). We also
denote byI � f 1; : : : ; ng the set of positions that de�ne the random columns inG.
We have the following result:

Proposition 3.7. For any i in f 1; : : : ; ng, two cases occur :

dim Ci
2 =

8
<

:

dim C 2 � 1 if i 2 I;

dim C 2 if i =2 I:
(3.7)

30



3.3. RECOVERING THE RANDOM COLUMNS IN POLYNOMIAL TIME

Proof. If i belongs toI then, Ci is a Reed-Muller codeRM (r; m) with ` � 1 random
redundancies and we have

dim Ci
2 = dim RM (r; m)2 + ` � 1 = dim C 2 � 1

Else,Ci is the punctured Reed-Muller codeRM (r; m) i with ` random redundancies
and then

dim Ci
2 = dim RM (r; m) i

2 + ` = dim RM (r; m)2 + ` = dim C 2

This is the way of distinguishing the random positions of the public code as-
suming that

P 2r
i =0

� m
i

�
+ ` 6 n. The set I can then be found and once the set is

recovered, it is easy to �nd the secretRM (r; m) using usual attacks on Reed-Muller
code [MS07, CB13].

3.3.3 Complexity of the attack

Proposition 3.8. Let A � Fn
q be a code of dimensionk. The complexity of the

computation of a basis ofA 2 is O(k2n2) operations in Fq.

Proof. The computation, consists �rst in the computation of
� k+1

2

�
generators of

A 2. This computation costsO(k2n) operations. Then, we have to apply a Gaussian
elimination to a

� k+1
2

�
� n matrix, which costsO(k2n2) operations. This second step

is dominant, which yields the result.

Our attack relies on the computation of the rank ofn square codes so the overall
complexity for guessing the random columns isO(n5) operations in the binary �eld.

Conclusion

We have studied the security of the modi�ed version of the Sidelnikov scheme [Sid94]
given in [GM13] and presented a polynomial-time method that �nds the random
columns inserted in a secret matrix. This cryptanalysis uses the same approach as
[GOT12b, CGG+ 14] which computes the square codes. The resulting complexity
is O(n5) operations in the binary �eld. The last step that aims to fully break the
scheme consists of using the attacks developed in [MS07, CB13]. This shows that the
insertion of random columns in the Sidelnikov scheme does not bring any security
improvement and thus open again the problem of �nding a good masking technique
for Reed-Muller codes.
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Chapter 4

Rank Metric Cryptography

Introduction

The concept of rank metric cryptography appeared in [GPT91] where the authors
propose a public key encryption scheme using codes in a rank metric framework.
They adapted McEliece's general idea [McE78] developed for the Hamming metric
to the rank metric context. The key tool in the design is to focus on linear codes
having a fast rank-metric decoding algorithm like Gabidulin codes. In this section,
we introduce important notions about rank-metric codes and Gabidulin codes and
we recall the general principle that underlies all the existing rank-metric encryption
schemes.

4.1 Aspects of Rank Metric Codes

For any sub�eld K � F of a �eld F and for any positive integersk and n such that
k 6 n, the K-vector space spanned byb1; : : : ; bk where eachbi 2 Fn is denoted byP k

i =1 K bi . The group of invertible matrices of sizen over F is denoted byGLn (F).

De�nition 4.1 (Rank weight). Let A be a matrix from M m;n (F) wherem and n
are positive integers. Therank weight of A denoted by jA j is the rank of A . The
rank distancebetween two matricesA and B from M m;n (F) is de�ned asjA � B j.

It is a well-known fact that the rank distance onM m;n (F) has the properties of
a metric. But in the context of the rank-metric codes, this rank distance is rather
de�ned for vectors x 2 Fn

qm . The idea is to consider the �eldFqm as anFq-vector
space and hence any vectorx 2 Fn

qm as a matrix from M m;n (Fq) by decomposing
each entry x i 2 Fqm into an m-tuple of Fm

q with respect to an arbitrary basis of
Fqm . The rank weight of x also denoted byjx j is then its rank1 viewed as a matrix
of M m;n (Fq). Hence, it is possible to de�ne a new metric onFn

qm that we recall
explicitly in the following.

1This rank is of course independent of the choice of the basis ofFqm since the rank of a matrix
is invariant when multiplied by an invertible matrix.
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De�nition 4.2. Let us consider the �nite �eld extension Fqm =Fq of degreem > 1.
The rank weightof a vectorx = ( x1; x2; :::; xn ) in Fn

qm denoted byjx j is the dimension
of the Fq-vector space generated byf x1; : : : ; xng

jx j = dim
nX

i =1

Fqx i : (4.1)

The Fq� vector space
P n

i =1 Fqx i is called thesupport of x .

De�nition 4.3. The column rank overFq of a matrix M from M k;n (Fqm ) is also
denoted by jM j. It represents the dimension of

P n
i FqM i whereM 1; : : : ;M n are

the columns ofM .

In practice, computing the rank weight of a given vector can be done through
the bijective mapping � B associated to aFq� basisB = f b1; b2; :::; bmg of Fqm and
de�ned as follows:

� B : Fqm �! M m;1 (Fq)

x =
mP

i =1
x i bi 7�! � B (x) def=

0

B
B
B
B
B
B
@

x1

x2

:
:
:

xm

1

C
C
C
C
C
C
A

� B can then be extended to vectorsx = ( x1; x2; :::; xn ) 2 Fn
qm by

� B (x ) def= (� B (x1); � � � ; � B (xn )) 2 M m;n (Fq) :

And for a matrix M = ( mij ) 2 M k;` (Fqm )

� B (M ) def= (� B (mij )) 2 M km;` (Fq)

We then havejx j = rank(� B (x )) and jM j = rank(� B (M ))

Example 4.1. Let F25 = F2 < w > , x = ( w; w; w; w; w), y = (1 ; w; w2; 1 + w3; w4).
We considerB = f 1; w; w2; w3; w4g as anF2� basis ofF25 .

jx j = rank(� B (w); � B (w); � B (w); � B (w); � B (w)) = rank

0

B
B
B
B
@

0 0 0 0 0
1 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1

C
C
C
C
A

= 1:

With the same method,

jy j = rank
�
� B (1); � B (w); � B (w2); � B (1 + w3); � B (w4)

�
= rank

0

B
B
B
B
@

1 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1

C
C
C
C
A

= 5:
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If we consider the matrixM given by:

M =
�

1 w w w 1 + w
1 w w2 1 + w3 1 + w2

�

jM j is given by the rank of the matrix

� B (M ) =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 0 0 0 1
0 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 1 1
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

That is to say jM j = 4. One can also remark that the last column ofM is a
F2� linear combination of the �rst column and the third one. Furthermore, the �rst
four columns ofM are F2� linearly independent. ThusjM j = 4.

From the above de�nition we can deduce the following proposition.

Proposition 4.1. Let M be a matrix fromM k;n (Fqm ) and sets = jM j with s < n .
There exist thenM � in M k;s (Fqm ) with jM � j = s and T in GLn (Fq) such that:

MT = ( M � j 0) (4.2)

In particular for any x 2 Fn
qm such thatjx j = s there existsT in GLn (Fq) for which

xT = ( x � j 0) wherex � 2 Fs
qm and jx � j = s.

This permits to state the following corollary.

Corollary 4.2. For any M 2 M k;n (Fqm ) and for any m 2 Fk
qm

jmM j 6 jM j (4.3)

Proof. Suppose thatjM j = s and let T in GLn (Fq) such that MT = ( M � j 0) with
M � in M k;s (Fqm ) . We then havejmM j = jmMT j = jm (M � j 0)j 6 jM � j 6
s.

Rank metric codes

In the sequel, a codeC will be called a rank metric code if the distance used is the
rank distance. As in Hamming metric, an important parameter for a rank metric
codeC is its minimum distance.
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De�nition 4.4 (Minimum rank distance). The minimum rank distanced of a rank
metric codeC is given by:

d = min fj x j : x 2 C; x 6= 0g

Let C be a rank metric code of lengthn and dimensionk de�ned on Fqm . H 2
M n� k;n (Fqm ) is a parity check matrix ofC. We have the following characterization:

Theorem 4.3. C has minimum rank distanced if and only if both of the following
conditions are satis�ed:

1. For any matrix Y belonging toM d� 1;n (Fq) such that rank(Y ) = d � 1, we
have

rank(Y H t ) = d � 1

2. There existsY 0 belonging toM d;n (Fq) with rank(Y 0) = d and for which

rank(Y 0H t ) < d

Proof. Let us suppose that the minimum distance ofC is d and let c 2 C such that
jcj = d. Then one can writec = bY 0 with Y 0 2 M d;n (Fq) and b 2 Fd

qm . Since
cH t = 0, we havebY 0H t = 0 and sinceb 6= 0, this implies that rank(Y 0H t ) < d .
So the second point is veri�ed. For the �rst point, we can use the fact that the
code does not contain a non zero word with rank norm less thand. So for any
Y 2 M d� 1;n (Fq) with rank d � 1, the equation

(z1; :::; zd� 1) Y H t = 0

has only a trivial solution. That is to say rank(Y H t ) = d � 1, so the �rst point is
satis�ed. It is obvious that if the �rst and second conditions are satis�ed then the
minimum rank distance ofC is d.

Maximum Rank Distance Codes

Maximum Rank Distance (MRD) codes in rank metric are the equivalents of Maxi-
mum Distance Separable (MDS) codes in hamming metric. In this sub-section, we
de�ne and give some characterizations of MRD codes. We start with the following
proposition.

Proposition 4.4. Let C be an(n; k)� code onFqm and d its minimum rank distance.
Assumingn 6 m we have:

d 6 n � k + 1

Proof. Let x be a non-zero codeword ofC. It is obvious that jx j 6 w(x ). If we
denote bydH the minimum hamming distance ofC, then we haved 6 dH and from
the Singleton bound we getd 6 dH 6 n � k + 1.
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We will assume in the sequel that any(n; k)� rank-metric code onFqm satis�es
n 6 m.

De�nition 4.5. A (n; k; d)� codeC is a Maximum Rank Distance code if it mini-
mum rank distance satis�es

d = n � k + 1

The following proposition gives a characterization for MRD codes.

Proposition 4.5. Let C be an(n; k)� code with parity check matrixH . C is MRD
if and only if for any Y 2 M n� k;n (Fq) of rank n � k,

rank(Y H t ) = n � k

Proof. If for any Y 2 M n� k;n (Fq) with rank n � k we haverank(Y H t ) = n � k
then, from Theorem 4.3,d > n � k + 1 and thus d = n � k + 1. Conversely, if
d = n � k + 1 then d � 1 = n � k and we get the result from Theorem 4.3.

Theorem 4.6. Let C be a(n; k)� code. C is an MRD code if and only ifC ? is an
MRD code.

Proof. Let C be an MRD code andH a generator matrix ofC ? . From proposition
4.5, it follows that for any Y 2 M n� k;n (Fq) of rank n � k, rank(Y H t ) = n � k.
This implies that for any non zero codewordh 2 C ? and for any Y 2 M n� k;n (Fq)
of rank n � k, Y h t 6= 0. Assume that there existsh 2 C ? with rank(h) 6 k. Then

h = bX = ( b1; :::; bk) X with X 2 M k;n (Fq) and rank(X ) = k:

So for anyY in M n� k;n (Fq),
Y X tbt 6= 0: (4.4)

Furthermore, for any X in M k;n (Fq) of rank k, there exists an orthogonal matrix
Y 0 2 M n� k;n (Fq) such that Y 0X t = 0. This implies that Y 0X tbt = 0 and that
is a contradiction with (4.4). So,C ? does not contain a non-zero codeword of rank
less than (or equal to)k. We then deduce that the minimum distance ofC ? is k + 1
and thus, C ? is an MRD code. To �nish, let's suppose thatC ? is an MRD code,
then C ? ? is also an MRD code and sinceC ? ? = C, this implies that C is an MRD
code.

From this theorem we can deduce another characterization of MRD codes, using
generating matrices.

Corollary 4.7. Let C be a(n; k)� code andG a generating matrix ofC. C is MRD
if and only if for any X 2 M k;n (Fq) of rank k,

rank(XG t ) = k
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4.1.1 Hardness of the Rank Decoding Problem

The rank decoding problem is the equivalent of the hamming decoding problem in
the rank metric context. The search version can be de�ned as follows:

De�nition 4.6 (Rank Decoding ProblemRD ). Let G be a full-rank matrix be-
longing to M k;n (Fqm ) with k 6 n, y an element ofFn

qm and t an integer. TheRank
Decoding Problemis to �nd e in Fn

qm and m in Fk
qm such that y = mG + e with

jej 6 t. This problem will be denoted as theRD q;m;n;k;t problem.

The decisional version of this problem is the following:

De�nition 4.7 (Decisional Rank Decoding Problem). Let G be a full-rank matrix
belonging toM k;n (Fqm ) with k 6 n and t an integer. Considery 2 Fn

qm and D 1 be
the following distribution:

D 1 = f xG + e; x 2 Fk
qm ; e 2 Fn

qm with jej 6 tg

The Decisional Rank DecodingProblem DRD q;m;n;k;t is to distinguish whether y
belongs toD 1 or not.

The dual variant of this problem is called the Decisional Rank Syndrome Decod-
ing Problem and is equivalent to theDRD problem :

De�nition 4.8 (Decisional Rank Syndrome Decoding ProblemDRSD ). Let H 2
M n� k;n (Fqm ) wheren and k are positive integers withk 6 n, t another integer. Let
s 2 Fn� k

qm and D 2 be the following distribution:

D 2 = f He t ; e 2 Fn
qm with jej 6 tg

The Decisional Rank Syndrome DecodingProblem DRSD q;m;n;k;t is to distinguish
whether s belongs toD 2 or not.

These problems was recently proven to be NP-hard [GZ16]. In the following
paragraphs, we give some references about the best algorithms for solving the rank
decoding problem.

4.1.2 Algorithms for Solving the Rank Decoding Problem

Existing algorithms that solve theRD q;m;n;k;t problem can be divided in two classes:
Combinatorial algorithms and algebraic algorithms.

Combinatorial Algorithms

These algorithms consider the properties of rank metric on a combinatorial point
of view in order to recover the support or the coordinates of the error vector. The
problem being to �nd a word e from Fn

qm with jej 6 t such that He t = st , one
can remark that the coordinates ofe are elements of anFq� vector subspaceV of
Fm

q with dim V = t (V is the support of e). Let b = ( b1; � � � ; bt ) be a basis ofV
considered as a vector of lengtht. Thus e can be reformulated ase = bE where
E belongs toM t;n (Fq). Let 
 = ( ! 1; � � � ; ! m ) be aFq� basis ofFqm . b can be also
represented as am � t matrix using de mapping� 
 .
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Chabaud-Stern algorithm The �rst idea from Chabaud-Stern [CS96] is to enu-
merate all the di�erent possible basisb of t vectors and for eachb, solve the system
HE tbt = st in which the unknowns are the entries ofE . One can remark that the
system is linear onceb is known. The complexity of the enumeration phase isqmt

operations by testing all the representations of each basis and can be reduced to
q(m� t )( t � 1) operations by testing only one representation of each basis to enumerate.
This gives a global complexity of(nt + m)3 q(m� t )( t � 1) operations inFq.

Ourivski and Johannsson algorithms The approach of [OJ02] consists to
consider the equationy = mG + e instead of He t = s, where y is the received
word, m 2 Fk

qm and e an error of rank t. It follows that

�
G
y

�
=

�
I k 0
x 1

� �
G
e

�
(4.5)

Let Ce be the code generated by
�

G
y

�
. From Eq.4.5, we thus deduce the following

inclusion:
f � e : � 2 F�

qm g � Ce (4.6)

The idea is then to �nd an elemente0 = � e 2 Ce of weight t and deduce� by
computing the syndromese0H t and yH t = eH t . Let Ge = ( I k+1 j R ) be the
systematic generator matrix ofCe. The fact that e belongs to Ce implies that
e = e1Ge = ( e1 j e1R ), e1 being the vector composed by the �rstk + 1 coordinates
of e and hence satis�esje1j 6 t. Furthermore, the fact that jej = t implies that
there exist an incomplete basisf b1; � � � ; btg of Fqm over Fq and a full rank matrix
A 2 M t;n (Fq) such that e = ( b1; � � � ; bt ) A . Assume that A = ( A 1 j A 2) with
A 1 2 M t;k +1 (Fq). We have:

e = ( e1 j e1R ) = ( b1; � � � ; bt ) (A 1 j A 2) (4.7)

Eq. 4.7 implies that e1 = ( b1; � � � ; bt ) A 1 and e1R = ( b1; � � � ; bt ) A 2. Combining
both equations allows to get

(b1; � � � ; bt ) A 2 = ( b1; � � � ; bt ) A 1R (4.8)

Since it is enough to get� e for any � 2 F�
qm , we can chooseb1 = 1. Eq. 4.8 is then

a system ofn � k � 1 equations with nt + t � 1 unknowns, namely the components
aij of the matrix A and the remainingbi 2 Fqm , i = 2; :::; t. Let 
 = f ! 1; � � � ; ! mg
be an Fq� basis ofFqm . By expressing each coordinate ofb and R in the basis

 , Eq. 4.8 can be rewritten as a quadratic system ofm (n � k � 1) equations in
nt + m(t � 1) unknowns overFq. Ourivski and Johannsson [OJ02] proposed two
strategies for solving this system. One with(k + t)3 t3q(m� t )( t � 1)+2 operations inFq

and the second with(tm)3 q(t � 1)( k+1)+2 operations onFq. The general technique
consists to guess the values of some unknowns contributing to quadratic terms and
solve the resulting linear system.
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Gaborit-Ruatta-Shreck algorithm In [GRS16], a new combinatorial algorithm
is presented. This algorithm can be seen as an adaptation to the rank metric of the
information set decoding, but in its dual version, namely theerror support attack.
The idea is to guess a subspaceV 0 containing the error support V and �nd e
by solving a linear system derives from the syndrome equations. An important
point of this algorithm is the introduction of the ratio m=n in the exponent of
the complexity. The new complexity isminf O((n � k)3m3q(t � 1)b(k+1) m=n c; O((n �
k)3m3qtbkm=n cg operations onFq. This gives a major di�erence in the casesn > m .

Algebraic Algorithms

The main idea for algebraic algorithms is to translate the notion of rank into an
algebraic setting. The �rst approach from [LdVP06] considers Eq. 4.8 together
with the syndrome equations

�
(b1; :::; bt ) AH t = yH t

(b1; :::; bt ) A 2 = ( b1; � � � ; bt ) A 1R
(4.9)

Writing Eq. 4.9 in the basis
 gives a system ofm(2(n� k)� 1) equations innt+ m(r �
1) unknowns overFq and is solved with Gröbner basis techniques. A new setting
based on linearized polynomials was recently proposed in [GRS16] and can allow to
solve the problem inO((( t + 1)( k + 1) � 1)3) operations in Fqm with linearization
technique when the conditionn > (t + 1)( k + 1) � 1 is satis�ed. In general, it
is shown in [GRS16] that theRD problem can be solved by an hybrid approach
(algebraic and combinatorial) with at most t3k3qtk operations inFq assuming that
d(t+1)( k+1) � (n+1)

t e 6 k. Another type of algebraic modelling which can be solved with
Gröbner basis techniques can be found in [FLdP08]. But since the attack consider
algebraic systems on the base �eldFq, the number of unknowns is quadratic in the
length of the code. The global complexity of Gröbner basis attacks being exponential
in the number of unknowns, it implies that the complexity is in general exponential
when dealing with cryptographic parameters.

In the following, we present a special family of MRD codes known as Gabidulin
codes.

4.1.3 Gabidulin Codes

In this section and in the sequel, for anyx in Fqm and for any integeri , the quantity
xqi

is denoted byx [i ]. This notation is extended to vectorsx [i ] = ( x [i ]
1 ; : : : ; x[i ]

n ) and

matrices M [i ] =
�

m[i ]
ij

�
. The following lemma will be useful in the sequel.

Lemma 4.8. For any A 2 M `;s (Fqm ) and B 2 M k;n (Fqm ), and for any � and �
in Fq:

1. If ` = k and s = n then

(� A + � B )[i ] = � A [i ] + � B [i ]
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2. If s = k then
(AB )[i ] = A [i ]B [i ]:

In particular if S is in GLn (Fqm ) then S [i ] also belongs toGLn (Fqm ) and

(S [i ])� 1 =
�
S � 1

� [i ]

Proof. The proof of the two points comes directly from the properties of the Frobe-
nius operators (multiplicative and Fq� linear). To �nish, remark that for S in

GLn (Fqm ), since SS � 1 = I n we also haveS [i ]
�
S � 1

� [i ]
= I n . This implies that

S [i ] belongs toGLn (Fqm ) and (S [i ])� 1 =
�
S � 1

� [i ]

We introduce now an important family of codes known for having an e�cient
decoding algorithm.

De�nition 4.9 (Gabidulin code). Let g 2 Fn
qm such that jgj = n. The (n; k)� Gabidulin

code denoted byGk (g) is the code with a generator matrixG where

G =

0

B
@

g[0]
1 � � � g[0]

n
...

...
g[k� 1]

1 � � � g[k� 1]
n

1

C
A : (4.10)

A matrix of the form (4.10) is called aq� Vandermonde matrix.

Lemma 4.9. Gabidulin codes are Maximum Rank Distance (MRD) codes.

Proof. It is su�cient to establish that for any X 2 M k;n (Fq) of rank k, rank(GX t )
is also equal tok. For any X in M k;n (Fq), the matrix GX t is a square matrix of
the form

GX t =

0

B
@

f [0]
1 � � � f [0]

k
...

...
f [k� 1]

1 � � � f [k� 1]
k

1

C
A :

with (f 1; � � � ; f k) = ( g1; � � � ; gn ) X t . Sincejgj = n then jf j = min f n; rank(X )g = k
and we deduce thatrank(GX t ) = k.

From this lemma we can deduce that the error correction capability of a Gabidulin
codeGk (g) is b1

2(n � k)c. It can also be used to prove the following proposition:

Proposition 4.10. The dual of Gk (g) is the Gabidulin codeGn� k (h) where h =
y [� (n� k� 1)] and y belongs toGn� 1 (g)? .

Proof. One can remark from (4.10) that

Gn� 1 (g)? � Gn� 2 (g)? � � � � � Gk (g)? (4.11)
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Since Gn� 1 (g)? is an MRD code of dimension1, it minimum distance is d = n.
Thus any non zero element ofGn� 1 (g)? is of rank weight n. Let y be a non zero
element ofGn� 1 (g)? . We have for all i 2 f 0; : : : ; n � 2g

nX

j =1

yj g
[i ]
j = 0:

This implies that,

8i 2 f 0; : : : ; n � 2g;
nX

j =1

y[� 1]
j g[i � 1]

j = 0

In particular,

8i 2 f 0; : : : ; n � 3g;
nX

j =1

y[� 1]
j g[i ]

j = 0

Thus, y [� 1] belongs toGn� 2 (g)? . We can deduce by induction that for allu in
f 0; : : : ; n � 1g,

y [� u] 2 Gn� 1� u (g)?

and for a givenu in f 0; : : : ; n � 1g we have

8i 2 f 0; : : : ; ug y [� u+ i ] 2 Gn� 1� u+ i (g)? � Gn� 1� u (g)? :

For u = n � k � 1 and h = y [� u] we haveh [i ] 2 Gk (g)? for all i in f 0; : : : ; n � k � 1g.
That is to say

Gk (g)? = Gn� k (h)

Gabidulin codes are known to possess a fast decoding algorithm that can decode
errors of weightt provided that t 6 b1

2(n � k)c. We end this section by an important
well-known property about Gabidulin codes.

Proposition 4.11. Let Gk (g) be a Gabidulin code of lengthn with generator matrix
G and T 2 GLn (Fq). Then GT is a generator matrix of the Gabidulin codeGk (gT )

Proof. From Lemma 4.8, we have(gT )[i ] = g[i ]T .

4.2 Rank Metric Encryption Schemes

In this section, we recall the general principle that underlies all the existing rank
encryption metric schemes based on Gabidulin codes. During the key generation
phase, the integersk, `, n and m are chosen such thatk < n 6 m and 0 6 ` � n.
It then randomly picks g 2 Fn

qm with jgj = n and de�nes G 2 M k;n (Fqm ) as in
(4.10), that is to say G is a generator matrix of the Gabidulin codeGk (g). The

42



4.2. RANK METRIC ENCRYPTION SCHEMES

error-correcting capacity ofGk (g) is denoted byt def= b1
2(n � k)c. An important step

in the key generation is the �hiding� phase whereG undergoes a transformation to
mask the algebraic structure of Gabidulin codes. This transformation is actually
a probabilistic algorithm that adds some randomness to its input. Originally, the
authors in [GPT91] proposed to use adistortion transformation

D : Fk� n
qm �! Fk� n

qm

D sends anyG to
D(G) = S(G + X )

where X is a random matrix from Fk� n
qm with a prescribed rank tX and S is an

invertible matrix. The public key is then Gpub = D(G) with the parameter

tpub = t � tX

While the private key is (S; G). The encryption algorithm takes as input a plaintext
m 2 Fk

qm and generates a randome 2 Fn
qm such that jej 6 tpub in order to compute

the ciphertext
c = mG pub + e:

In the decryption step the decoding algorithm of the Gabidulin codeGk (g) is applied
to the ciphertext. This word can be decoded since the underlying codeword is
corrupted by the error vectormSX + e whose rank weight is less thant since by
Corollary 4.2 we have

jmSX j 6 tX and jmSX + ej 6 jmSX j + jej 6 t

However, Gibson proved [Gib95, Gib96] that the GPT encryption scheme [GPT91]
is vulnerable to a polynomial time key recovery attack. Consequently, Gabidulin
and Ourivski proposed in [GO01] a reparation by considering a more general hiding
transformation combining a distortion matrix X and a right column scramblerP .
The hidden generator matrix is more precisely of the form:

D(G) = S (X 1 j G + X 2) P (4.12)

whereX 1 2 M k;` (Fqm ), X 2 2 M k;n (Fqm ) such that jX 2j < t and P 2 GLn+ ` (Fq).

The public generator matrix is againGpub
def= D(G) which constitutes the public key

with the public parameter tpub
def= t � t2 wheret2

def= jX 2j. The decryption computes
P � 1 = ( Q1 j Q2) where Q1 2 M (n+ `);` (Fq) and Q2 2 M (n+ `);n (Fq). The last n
components ofcP � 1 is the vector mSG + mSX 2 + eQ2 and sincejeQ2j 6 jej
and jmSX 2j 6 jX 2j, it follows that jmSX 2 + eQ2j 6 t. Applying a fast decoding
algorithm to the last n components ofcP � 1 allows the legitimate user to getmS
and easilym .

We now state this result about Gabidulin and Ouriviski reparation which proves
that we can always considerX 2 = 0.
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Proposition 4.12. Let Gpub be as in (4.12) and assume thatjX 2j = t2. There
exist P � 2 GLn+ ` (Fq), X � 2 M k;(`+ t2 ) (Fqm ) and a matrix G � that generates an
(n � t2; k)� Gabidulin codeGk (g� ) such that

Gpub = S (X � j G � ) P � : (4.13)

Furthermore, the error correction capability t � of Gk (g� ) is equal to t � 1
2 t2, and

hencet � > t pub .

Proof. SincejX 2j = t2 then by Proposition 4.1 there existT 2 in GLn (Fq) and X 0
2

in M k;t 2 (Fqm ) such that X 2T 2 = ( X 0
2 j 0). So by letting T =

�
I ` 0
0 T 2

�
we then

have:

Gpub = S (X 1 j G + X 2) P = S (X 1 j GT 2 + X 2T 2) T � 1P

= S (X 1 j G0+ X 2T 2) Q

where G0 = GT 2 and Q = T � 1P . Note that G0 generates the(n; k)� Gabidulin
codeGk (g0) with g0 = gT 2 = ( g0

1; : : : ; g0
n ). Let us decomposeG0 as(G0

1 j G0
2) where

G0
1 2 M k;t 2 (Fqm ) and G0

2 2 M k;(n� t2 ) (Fqm ) we then have:

G0+ X 2T 2 = ( G0
1 + X 0

2 j G0
2)

By setting X = ( X 1 j G0
1 + X 0

2) we get (4.13) andG0
2 generates the(n� t2; k)� Gabidulin

Gk (g0
2) where g0

2 = ( g0
t2+1 ; : : : ; g0

n ). The error-correction capability t � of Gk (g0
2) is

given by t � = 1
2(n � t2 � k) = t � 1

2 t2 which implies t � > t � t2.

The �rst important consequence of Proposition 4.12 is the possibility for a crypt-
analysist who is able to derive(S; G � ; P � ) from Gpub so that (4.13) is satis�ed to
decipher any ciphertextc = mG pub + e with jej 6 tpub . Thus any successful struc-
tural attack on the description (4.13) leads to a successful attack on (4.12) and
conversely since (4.13) corresponds to the special case whereX 2 = 0. Therefore
the security of the scheme given [GO01] is equivalent to the one of a scheme where
X 2 = 0.

4.2.1 Distinguishing Properties of Gabidulin Codes

We recall important algebraic properties about Gabidulin codes. It will explain why
many attacks occur when the underlying code is a Gabidulin one. One key property
is that Gabidulin codes can be easily distinguished from random linear codes. This
singular behavior has been presicely exploited by Overbeck [Ove05b, Ove05a, Ove08]
to mount attacks.

De�nition 4.10. For any integer i > 0 let � i : M k;n (Fqm ) �! M ik;n (Fqm ) be the
Fq-linear operator that maps anyM from M k;n (Fqm ) to � i (M ) where by de�nition:

� i (M ) def=

0

B
@

M [0]

...
M [i ]

1

C
A : (4.14)
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For any codeG generated by a matrixG we denote by� i (G) the code generated
by � i (G).

Proposition 4.13. Let g be in Fn
qm with jgj = n with n 6 m. For any integers k

and i such thatk 6 n and i 6 n � k � 1 we have:

� i
�
Gk (g)

�
= Gk+ i (g) : (4.15)

The importance of � i becomes clear when one compares the dimension of the
code spanned by� i (G) for a randomly drawn matrix G and the dimension obtained
when G generates a Gabidulin code.

Proposition 4.14. If A � Fn
qm is a code generated by a random matrix from

M k;n (Fqm ) then with a high probability:

dim � i (A ) = min
�

n; (i + 1) k
	

(4.16)

In the case of a Gabidulin code, we get a di�erent situation as explained by
Proposition 4.13. Thus there is property that is computable in polynomial time and
distinguishes a Gabidulin code from a random one. This can be used in a crypt-
analysis context. In fact, Overbeck [Ove08] has proven that, for a public matrixGp

given by equation (4.12) withX 2 = 0 (in particular all the entries of P belong to
Fq), it is possible (under certain conditions) to �nd in polynomial time an alterna-
tive decomposition ofGp of the from S � (X � j G � ) P � using the operator� i . This
decomposition allows to decrypt any ciphertext computed withGp.

4.2.2 Overbeck's Attack

To explain this attack, we will need the following lemma:

Lemma 4.15. Let P =
�

A 0
C D

�
whereA and D are square matrices. ThenP is

non singular if and only if A and D are non singular and the inverse ofP is:

P � 1 =
�

A � 1 0
� D � 1CA � 1 D � 1

�

Proof. It is clear that the non singularity of A or D implies the non singularity of
P . Conversely, ifP is non singular, the structure ofP allows to deduce thatA and
D are non singular. The formula of the inverse is obvious.

Let assume thatGpub = S (X j G) P is the public generator matrix that gener-
ates Cpub with P 2 GLn+ ` (Fq), X 2 M k;` (Fqm ) and G generates a Gabidulin code
Gk (g) wherejgj = n. Observe that � i (Gpub ) can be written as

� i (Gpub ) = Sext

�
� i (X ) j � i (G)

�
P (4.17)
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where

Sext
def=

0

B
@

S [0] 0
. . .

0 S [i ]

1

C
A :

Since � i (G) generatesGk+ i (g) = Gn� 1 (g), there existsS0 2 GLk(i +1) i (Fqm ) such
that

S0� i (Gpub ) =
�

X � Gn� 1

X �� 0

�
P (4.18)

whereX � 2 M (n� 1);` (Fqm ), X �� 2 M (k(i +1) � n+1) ;` (Fqm ) and Gn� 1 2 M (n� 1);n (Fqm )
generatesGn� 1 (g). Using (4.18), one can deduce that by takingi = n � k � 1

dim � n� k� 1(Cpub ) = n � 1 + rank(X �� ):

In the particular case whererank(X �� ) = ` then dim � i (Cpub ) = n + ` � 1 and thus
dim � i (Cpub )? = 1. Furthermore, if h is a non zero vector fromGn� 1 (g)? and we
set h � = ( 0 j h)

�
P � 1

� T
then under the assumption thatrank(X �� ) = ` we have

� n� k� 1(Cpub )? = Fqm h � : (4.19)

Proposition 4.16. Let v 2 � n� k� 1(Cpub )? with v 6= 0. Any matrix T 2 GLn+ ` (Fq)
that satis�es vT = ( 0 j h 0) with h 0 2 Fn

qm is an alternative column scrambler matrix,
that is to say, there existZ in M k;` (Fqm ) and G � that generates a Gabidulin code
Gk (g� ) such that

Gpub = S (Z j G � ) T :

Proof. From (4.19) there exists� 2 Fqm such that v = � h � = ( 0 j � h)
�
P � 1

� T
where

h is a non zero vector ofGn� 1 (g)? . Let T 2 GLn+ ` (Fq) such that vT T = ( 0 j h 0)
and consider the matricesA 2 M `;` (Fq) and D 2 M n;n (Fq) so that

T P � 1 =
�

A B
C D

�
:

We have then the following equalities

~hT T = ( 0 j � h)
�
P � 1

� T
T T = ( 0 j � h)

�
T P � 1

� T
= ( 0 j h 0) (4.20)

It comes out from (6.17) that hB T = 0 and henceB = 0 since jh j = n. So

we can write T P � 1 =
�

A 0
C D

�
and using Lemma 4.15,P T � 1 =

�
A 0 0
C 0 D 0

�
.

Consequently,

GpubT � 1 = S (X j G)
�

A 0 0
C 0 D 0

�
= S (Z j G � )

where G � = GD 0 is a generator matrix of an(n; k) � Gabidulin code. SoT is an
alternative column scrambler matrix for the system.
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Overbeck's attack is achieves withO ((n + `)3) operations onFqm . Furthermore,
it uses crucially two important facts: The column scrambler matrixP is de�ned on
the based �eld Fq, and the codimension of� n� k� 1 (A ) is 1. Several works propose
to resist to Overbeck's attack either by taking special distortion matrix so that the
second property is not true as in [Loi10, RGH10], or by taking a column scrambler
matrix de�ned over the extension �eld Fqm as in [Gab08, GRH09, RGH11]. Recently
a new structural attacked appeared in [HMR15] which can be used as an alternative
to Overbeck's attack. Especially the technique of [HMR15], consisting of looking
at the elements of rank one in an appropriate code derives from the public code,
allows to break the variants of [Loi10, RGH10]. Concerning the variants of [Gab08,
GRH09, RGH11], no structural attack have been presented up to this thesis and the
best attacks are the new generic decoding algorithms of [GRS16, HTMR16].

47



4.2. RANK METRIC ENCRYPTION SCHEMES

48



Chapter 5

Cryptanalysis of Recent Variants of
the GPT Cryptosystem

Introduction

In this chapter, we study the security of the recent variants of the GPT cryptosystem
proposed in [Gab08, GRH09, RGH11, RGH10].

The variants of [Gab08, GRH09, RGH11] consist to take a column scrambler
matrix with coe�cients in the extension �eld. We show that, it is still possible to
recover a secret Gabidulin code using precisely Overbeck's technique. Our analysis
shows that by applying the operator� i with i < n � k � 1, we obtain a Gabidulin
code whose error correctiont � is indeed strictly less than the error correction of the
secret original Gabidiulin code butt � is strictly greater than the number of added
errors tpub . In other words, an attacker is still able to decrypt any ciphertext and
consequently, all the scheme presented in [Gab08, GRH09, RGH11] are actually not
resistant to Overbeck's attack unlike what it was claimed by the authors. When
the attack is implemented with the recommended parameters of [GRH09, RGH11],
our experimental results show that the attack is very fast (less than one second). In
particular, our results outperform those given in [GRS16, HTMR16] which were for
a while the best attacks against the schemes of [Gab08, GRH09, RGH11]. Note that
in [GRS16, HTMR16] new generic decoding algorithms that permit to attack all
this variants are developed whereas our approach is directed towards recovering the
structure of a Gabidulin code. We will prove that all these schemes can be broken
simply with the techniques developed in [Ove08].

The other reparation from [RGH10] consists to choose an appropriate distortion
matrix X so that Overbeck's attack fails. We will show that this variant of the GPT
cryptosystem is equivalent to insert redundancies in the public code of a general
GPT cryptosystem. We will thus show how to remove the redundancies in order to
apply Overbeck's attack on the public code obtained. More precisely, puncturing the
public code several times at some appropriate positions allows to get a new code on
which applying the Frobenius operator appropriately allows to build an alternative
secret key.
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5.1 Gabidulin's General Reparation

In this section, we focus on the reparation given in [Gab08]. This paper is the �rst
to consider a column scrambler matrix de�ned over the extension �eld. We describe
only the key generation and decryption steps of the scheme since the encryption
operation is not modi�ed. To the best of our knowledge, no structural attack has
been mounted against this description. The author claimed that Overbeck's attack
is not applicable. But in Proposition 5.1, we prove that it is still possible to �nd an
alternative private key using precisely Overbeck's technique.

5.1.1 Description of the Scheme

The important points are Key generation and decryption.

Key generation.

1. Pick at randomg from Fn
qm such that jgj = n and let G be a generator matrix

of the Gabidulin codeGk (g).

2. Pick at random X 2 M k;` (Fqm ), S in GLk(Fqm ) and P in GLn+ ` (Fqm ) such
that there exist Q11 in M `;` (Fqm ), Q21 in M n;` (Fqm ), Q22 in M n;n (Fq) and
Q12 in M `;n (Fqm ) with jQ12j = s < t so that

P � 1 =
�

Q11 Q12

Q21 Q22

�
: (5.1)

The public key is (Gpub ; tpub ) with tpub = t � s and

Gpub = S (X j G) P : (5.2)

Decryption. We havecP � 1 = mS (X j G) + eP � 1. Suppose thate = ( e1 j e2)
wheree1 2 F`

qm and e2 2 Fn
qm . We have:

eP � 1 = ( e1Q11 + e2Q21 j e1Q12 + e2Q22) (5.3)

It is clear that

je1Q12 + e2Q22j 6 je1Q12j + je2Q22j 6 s + t � s:

So the plaintext m is recovered by applying the decoding algorithm only to the last
n components ofcP � 1.
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5.1.2 Cryptanalysis

We state our main result proving that Overbeck's attack is still successful by con-
sidering this time the dual of� i (Gpub ) with i = n � s � k � 1.

Proposition 5.1. There existX � 2 M k;(`+ s) (Fqm ), P � 2 GLn+ ` (Fq) and a gener-
ator matrix G � that de�nes an (n � s; k)� Gabidulin codeGk (g� ) such that

Gpub = S (X � j G � ) P � : (5.4)

Furthermore, the error correction capabilityt � of Gk (g� ) is equal tot � 1
2s, and hence

t � > t pub .

The proof of this proposition requires to prove the following lemma.

Lemma 5.2. There existP 11 in GL̀ + s(Fqm ), P 21 in M (n� s);(`+ s) (Fqm ) and P 22 in
GLn� s(Fq) such that

P =
�

I ` 0
0 L

� �
P 11 0
P 21 P 22

� �
I ` 0
0 R

�
(5.5)

with L and R belonging toGLn (Fq).

Proof. By assumption jQ12j = s < t so there exist R in GLn (Fq) and Q0
12 in

M `;s (Fqm ) such that Q12R = ( Q0
12 j 0). We set Q22R = ( Q0

22 j Q0
23) where Q0

22
in M n;s (Fq) and Q0

23 in M n;(n� s) (Fq). Note that we necessarily havejQ0
23j 6 n � s

and therefore there existsL 2 GLn (Fq) such that LQ 0
23 =

�
0

Q00
23

�
with Q00

23 2

M (n� s);(n� s) (Fq). Thus one can rewrite

�
I ` 0
0 L

�
P � 1

�
I ` 0
0 R

�
=

�
I ` 0
0 L

� �
Q11 Q12

Q21 Q22

� �
I ` 0
0 R

�
(5.6)

=
�

Q11 Q0
12 0

LQ 21 LQ 0
22 LQ 0

23

�
(5.7)

Observe that there existQ00
11 in M (`+ s);(`+ s) (Fqm ) and Q00

21 in M (n� s);(`+ s) (Fqm ) so
that we can write

�
I ` 0
0 L

�
P � 1

�
I ` 0
0 R

�
=

�
Q00

11 0
Q00

21 Q00
23

�
:

Note that Q00
23 and Q00

11 are necessarily invertible and thanks to Lemma 4.15 the
proof can be terminated.

Remark 5.1. The proof of Lemma 5.2 is still true if it is assumed thatjQ12j < s ,
and note that by construction s is necessarily less than or equal tò.

We are now able to give a proof of Proposition 5.1.
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Proposition 5.1. We keep the same notation as those of Lemma 5.2. Let us rewrite
GL as (G0

1 j G0
2) where G0

1 in M k;s (Fqm ) and G0
2 in M k;(n� s) (Fqm ) and set now

Y = ( X j G0
1). Observe thatG0

2 generates an(n � s; k)� Gabidulin code. We then
have

(X j G)
�

I ` 0
0 L

� �
P 11 0
P 21 P 22

�
= ( Y j G0

2)
�

P 11 0
P 21 P 22

�
= ( X � j G � )

where X � = Y P 11 + G0
2P 21 and G � = G0

2P 22 is a generator matrix of an(n �

s; k)� Gabidulin code. Hence if we setP � =
�

I ` 0
0 R

�
we then have rewritten

Gpub as expected in (5.4). Lastly remark thattpub = t � s and t � = 1
2(n � s � k) =

1
2(n � k) � 1

2s > t � s.

Form this proposition, it is clear that this variant can be broken by using Over-
beck's attack with i = n � s � k � 1.

5.2 Gabidulin, Rashwan and Honary Variant

In [GRH09, RGH11] Gabidulin, Rashwan and Honary also proposed an other variant
where the column scrambler has its entries de�ned on the extension �eld. This
variant can be described as follows:

5.2.1 Description

We just describe the key generation and the decryption phases.

Key generation.

1. Pick at random g 2 Fn
qm such that jgj = n and let G 2 M k;n (Fqm ) be a

generator matrix of the Gabidulin codeGk (g). Let tpub be an integer< t and

set a def= t � tpub .

2. Pick at random S in GLk(Fqm ) and P 2 GLn (Fqm ) such that

P � 1 = ( Q1 j Q2) (5.8)

where Q1 2 M n;a (Fqm ) while Q2 2 M n;(n� a) (Fq) with t = 1
2(n � k) and

tpub < t . The public key is (Gpub ; tpub ) with

Gpub = SGP : (5.9)

Decryption. First, we have cP � 1 = mSG + eP � 1 and eP � 1 = ( eQ1 j eQ2).
Observe that jeQ1j 6 a and jeQ2j 6 jej 6 tpub , and sincea = t � tpub we hence
have �

�eP � 1
�
� 6 jeQ1j + jeQ2j 6 t:
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5.2.2 Cryptanalysis

We now prove that Overbeck's attack is still successful by considering for this scheme
the dual of � i (Gpub ) with i = n � a � k � 1. We �rst introduce the matrices Q11 2
M a;a (Fqm ), Q21 2 M n� a;a (Fqm ), Q12 2 M a;n � a (Fq) and Q22 2 M n� a;n � a (Fq) such
that

P � 1 =
�

Q11 Q12

Q21 Q22

�
: (5.10)

Note that jQ12j 6 a < t . Furthermore, by looking at the proof of Lemma 5.2, we
can see that this lemma and Proposition 5.1 are still true even ifjQ12j 6 s. Hence,
the scheme given in [GRH09, RGH11] is nothing else but a special case of [Gab08]
whereX = 0 and Q12 has all its entries in the base �eldFq. We have therefore the
following corollary.

Corollary 5.3. There existP � 2 GLn (Fq) and X 2 M k;a (Fqm ) such that

Gpub = S(X j G � )P � (5.11)

whereG � is a generator matrix of an(n � a; k)� Gabidulin code whose error correc-
tion capability t � is equal tob1

2(t + tpub )c, and hencet � > t pub .

Proof. Apply Proposition 5.1 with ` = 0 and s = a. Note that the error correction
capability t � of the codeG � is equal to 1

2(n � a � k) that is to say

t � = t �
1
2

(t � tpub ) =
1
2

(t + tpub ) > t pub :

We summarised in Table 5.1 our experimental results obtained with Magma
V2.21-6. We give the time to �nd an alternative column scrambler matrix for each
parameter proposed by the authors in [GRH09] and [RGH11]. In particular, our
results outperform those given in [GRS16, HTMR16].

m k t t pub Time (second)

20 10 5 4 6 1
28 14 7 3 6 1
28 14 7 4 6 1
28 14 7 5 6 1
28 14 7 6 6 1
20 10 5 4 6 1

Table 5.1 � Parameters from [GRH09, RGH11] wheren = m and at least 80-bit
security.
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5.3 Discussion on a More General Column Scram-
bler

In [GRH09] the authors proposed to reinforce the security by taking a more general
column scrambler matrix of the formT P where T is an invertible matrix with
its entries in Fq and P is de�ned over the extension �eld as it is done in [Gab08,
GRH09, RGH10]. We shall consider Gabidulin's general reparation [Gab08] since
[GRH09, RGH10] are particular cases but we emphasize that this new protection
was only de�ned in [GRH09, RGH10]. Assuming thatP is then as in (5.1), the
public key is then of the form

Gpub = S (X j G) T P : (5.12)

The decryption of a ciphertextc starts by calculating cP � 1T � 1 = mS (X j G) +
eP � 1T � 1 where e is of rank weight tpub and s = jQ12j. The retrieving of the
original plaintext m is possible provided thattpub = t � ` � s becausecP � 1T � 1 =
mS (X j G) + eP � 1T � 1. Suppose thate = ( e1 j e2) wheree1 2 F`

qm and e2 2 Fn
qm ,

then we also have

eP � 1T � 1 = ( e1Q11 + e2Q21 j e1Q12 + e2Q22) T � 1: (5.13)

It is clear that je1Q12 + e2Q22j 6 je1Q12j + je2Q22j 6 s + tpub and hence it implies
that

�
�eP � 1T � 1

�
� =

�
�eP � 1

�
� 6 je1Q11 + e2Q21j + je1Q12 + e2Q22j 6 ` + s + tpub :

Therefore the plaintext m is recovered by applying the decoding algorithm only
to the last n components ofcP � 1T � 1. But in this case, the rank weight of the
last n components ofeP � 1T � 1 is not necessarily less than or equal totpub + s but
rather to tpub + s+ `. Consequently, the decryption will always succeed if it assumed
that tpub = t � s � ` otherwise the decoding may fail. Hence, we see why this new
reparation was just proposed for the case where` = 0 i.e. without any distortion
matrix since otherwise its deteriorates the performances of the original scheme.

We now study more precisely the security this protection might bring in for the
general scheme of [Gab08]. First, rewriteT as

T =
�

T 11 T 12

T 21 T 22

�
(5.14)

whereT 11 2 M `;` (Fq), T 21 2 M n;` (Fq), T 12 2 M `;n (Fq) and T 22 2 M n;n (Fq). On
the other hand, by Lemma 5.2 the matrixP can be expressed as (5.5). We can �nd
then X 1 in M k;(`+ s) (Fqm ) and X 2 in M k;(n� s) (Fqm ) such that

(X j G) T P = ( X 1 j X 2 + G �
1)

whereG �
1 generates an(n� s; k)� Gabidulin code andjX 2j = jX j 6 `. From Propo-

sition 4.12 and by takingt2 = `, there exist P � 2 GLn+ ` (Fq), X � 2 M k;(2`+ s) (Fqm )
and G � that generates an(n � s � `; k )� Gabidulin code such that

(X j G) T P = ( X � j G � ) P � : (5.15)
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We have therefore proven the following proposition.

Proposition 5.4. Assume thatGpub = S (X j G) T P whereT 2 GLn+ ` (Fq) and
G has the form (5.1). Then, there existP � in GLn+ ` (Fq), X � in M k;(2`+ s) (Fqm )
and a matrix G � that generates an(n � s � `; k )� Gabidulin codeGk (g� ) such that

Gpub = S(X � j G � )P � :

Furthermore, the correction capabilityt � of Gk (g� ) is greater thant � 1
2(` + s). In

particular t � > t pub .

This result shows that actually this new proposed protection does not improve
the security even when applied with the scheme for which a distortion matrixX is
used. An example where this protection was used and turns out to be useless is the
scheme given in [GRH09, RGH11].

Related construction In [GP13, GP14], another variant is also proposed. This
variant consists to use a column scrambler matrixP such that

P � 1 = T + Z (5.16)

T 2 GLn+ ` (Fq) and Z 2 M n+ `;n + ` (Fqm ) with jZ j = s. However, this last variant
was shown in [UG14] to be equivalent to the general GPT cryptosystem [GO01] and
hence not secure. The following proposition compares the variant of [GP13, GP14]
with the variant of section 5.2.

Proposition 5.5. The matrix P can be written as

P = P � Q

with P � 2 GLn+ ` (Fq) andQ � 1 = ( Q1 j Q2) 2 GLn+ ` (Fqm ) such thatQ1 2 M n+ `;s (Fqm )
and Q2 2 M n+ `;n + `� s (Fq).

Proof. SinceP � 1 = T + Z with jZ j = s, there existsR 2 GLn+ ` (Fq) and Z � 2
M n+ `;s (Fqm ) such that Z = ( Z � j 0) R . Letting T R � 1 = ( T 1 j T 2) we have:

P � 1 = T + ( Z � j 0) R =
�
T R � 1 + ( Z � j 0)

�
R = ( T 1 + Z � j T 2) R

Taking P � = R � 1 and Q = ( T 1 + Z � j T 2)� 1 achieves the proof.

We understand that the scheme given in [GP13, GP14] is nothing else but a
special case of [GRH09, RGH11] this implies that this scheme is not secure and also
con�rms the result of [UG14].
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5.4 The Smart Approach of the GPT Cryptosystem

In [RGH10], another way to avoid structural attacks on the GPT cryptosystem
was proposed. It consists to choose an appropriate distortion matrixX . A �rst
structural attack on this variant was proposed in [HMR15]. In this section, we
describe this reparation and we give a new and very simple algorithm that recovers
an alternative secret key in polynomial time. This attack is related to the attack
presented in Chapter 3 in a hamming metric context.

5.4.1 Description

The only di�erence is on the generation ofX . The authors proposed to takeX 2
M k;` (Fqm ) that is a concatenation of aq� Vandermonde matrix X 1 2 M k;a (Fqm )
and a random matrix X 2 2 M k;` � a (Fqm ) with 0 < a < ` .

5.4.2 Cryptanalysis

Let S 2 GLk(Fqm ), X 2 2 M k;` � a (Fqm ), b = ( b1; � � � ; ba) and

X 1 =

0

B
@

b[0]
1 � � � b[0]

a
...

...
b[k� 1]

1 � � � b[k� 1]
a

1

C
A : (5.17)

We haveGpub = S (X 1 j X 2 j G) P with P 2 GLn+ ` (Fq). We start the cryptanal-
ysis by the following lemma:

Lemma 5.6. There existsP � 2 GLn+ ` (Fq) and G � 2 M k;n + s (Fqm ) a generator
matrix of a Gabidulin code such that

Gpub = S (0 j X 2 j G � ) P �

s being an integer verifying0 6 s 6 a and n + s 6 m.

Proof. Let g0 = ( b j g) 2 Fa+ n
qm . Since jg0j > jgj = n, let s be an integer such

that jg0j = n + s. Clearly, we haves 6 a and j(X 1 j G)j = jg0j = n + s. So
there exists a matrixQ 2 GLn+ a(Fq) such that (X 1 j G) Q = ( 0 j G � ) whereG � 2
M k;n + s (Fqm ) is a generator matrix of a Gabidulin codeGk (g� ) with g0Q = ( 0 j g� ).
This implies that there exists a matrixR 2 GLn+ ` (Fq) such that (X 1 j X 2 j G) R =
(0 j X 2 j G � ). To �nish the proof, take P � = R � 1P . Sinceg0 belongs toF`+ n

qm we
have jg0j = n + s 6 m.

Let Cpub be the code generated byGpub . We then have the following proposition:

Proposition 5.7. The codeCpub is the public code of a general GPT cryptosystem
with w = a � s redundancies.
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Proof. We haveGpub = S (0 j X 2 j G � ) P � . Let us suppose thatP � =
�

Q1

Q2

�
with

Q1 2 M w;n + ` (Fq) and Q2 2 M n+ `� w;n + ` (Fq). We haveGpub = S (X 2 j G � ) Q2 and
rank(Q2) = n + ` � w. Let us suppose without loss of generality that the matrix
Q �

2 of the �rst n + ` � w columns ofQ2 is of full rank. Let G �
pub = S (X 2 j G � ) Q �

2
and X = S (X 2 j G � ) Q ��

2 where Q ��
2 is the last w columns ofQ2. Then Gpub =�

G �
pub j X

�
. One can remark to �nish that G �

pub is a generator matrix of a general
GPT cryptosystem.

From the above proposition, if thew positions of redundancy are identi�ed and
removed, a cryptanalysis can use Overbeck's attack to build an alternative secret
key. In the sequel we show how to know that a column ofGpub can be remove or not.
By the above proof, we can remark that a setI = f i 1; :::; iwg � f 1; 2; :::; n + `g can
be considered as the set of positions of redundancy if and only if by removing all the
corresponding columns inQ2, we get a square matrix of full rank. Letf = n + s� k,
� f (Cpub ) the code generated by� f (Gpub ), i 2 f 1; 2; :::; n+ `g and C i

pub the punctured
code ofCpub at position i . We then have the following proposition:

Proposition 5.8. The position i can be considered as a redundancy position if and
only if

dim � f (C i
pub ) = n + s + ` � a

Proof. Let Q i
2 be the matrix obtained from Q2 by removing the i th column and

G i
pub be the matrix obtained from Gpub by removing the i th column. We have:

dim � f (C i
pub ) = rank(� f (G i

pub )) = rank(� f (X 2 j G � ) Q i
2)

SinceX 2 is a random matrix, with a high probability we have

dim � f (C i
pub ) = min f rank(� f (X 2 j G � )) ; rank(Q i

2)g = min f n+ s+ ` � a; rank(Q i
2)g

If i can be consider as a position of redundancy we will haverank(Q i
2) = rank(Q2) =

n + s + ` � a and dim � f (C i
pub ) = n + s + ` � a. Else we will haverank(Q i

2) =
n + s + ` � a � 1 and dim � f (C i

pub ) = n + s + ` � a � 1.

It is easy for an adversary to use the previous proposition to identify a setI of
w positions of redundancy. To fully break the system, one can apply Overbeck's
attack with f = n + s � k � 1, but the value of s is not known. For the casem = n,
it is easy to see thanks to Lemma 5.6 thats is equal to0 and in a general context
(n 6 m), one can remark from the same lemma that the integers is the smallest
one that satis�es

rank(� n+ s� k(Gpub )) = rank(� n+ s+1 � k(Gpub ))

We summarise the attack in Algorithm 2.
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Algorithm 2 Key Recovery of the Smart Approach of the GPT Cryptosystem
1: s  a
2: while rank(� n+ s� k(Gpub )) = rank(� n+ s+1 � k(Gpub )) do
3: s  s � 1
4: end while
5: s  s + 1
6: w  a � s
7: y  n + s + ` � a
8: f  n + s � k
9: Z  f 1; :::; Length(Cpub )g and J  [ ]

10: j  Random(Z)
11: while ]J 6= w do
12: if dim (� n+ s� k(C j

pub )) = y then
13: J  HorizontalJoin (J; [j ])
14: Cpub  C j

pub
15: Z  f 1; :::; Length(Cpub )g
16: j  Random(Z)
17: else
18: Z  Z n f j g
19: j  Random(Z)
20: end if
21: end while
22: return Cpub , J
23: De�ne Gpub as the generator matrix ofCpub

24: Apply Overbeck's algorithm onGpub with f = n + s � k � 1

Complexity and Experimental Results

During the computation phase ofs, the main computations arerank(� n+ s� k(Gpub ))
and rank(� n+ s+1 � k(Gpub )) which are computed at mosta times with a complexity
O(a(n + `)3). To identify a set of w = a � s random redundancies, the main
computation is dim (� n+ s� k(C j

pub )) (for j 2 f 1; :::; n + `g) which is done at most
n + ` times. So the complexity of this step isO((n + `)4). By considering the �nal
step that consists to apply Overbeck's attack, the overall complexity isO((n + `)4)
operations onFqm since the complexity of this �nal step isO((n + `)3) operations on
Fqm . We implemented the attack (form 6 30 and for several values ofa such that
am > 60 as proposed in [RGH10]) on Magma V2.21-6 and a secret key was always
found in less than 5 seconds. This con�rms the e�ciency of the approach.

Conclusion

The apparition of Overbeck's attack prompted some authors to invent reparations
to hide more the structure of the Gabidulin codes. One trend advocated the use of
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a right column scrambler with entries in the extension �eld as it is done in [Gab08,
GRH09, RGH11]. Our analysis shows that these reparations aiming at resisting
Overbeck's structural attack do fail precisely against it. By applying appropriately
Overbeck's technique, we were able to construct a Gabidulin code that has the
same dimension as the original one but with a lower length. Hence, we obtain a
degraded Gabidulin code in terms of error correction capabilities but we prove that
the degradation does not forbid the error correction of any ciphertext. Furthermore,
when the attack is implemented, the practical results we obtained outperform those
given in [GRS16, HTMR16] which were up to our paper the best attacks against
the schemes of [Gab08, GRH09, RGH11]. We also considered in Section 5.3 the case
where an isometric transformation is applied in conjunction with a right column
scrambler which has its entries in the extension �eld. We proved that this protection
is useless both in terms of performance and security.

The other kind of reparation is followed by the series of works in [Loi10, RGH10]
which propose to resist to Overbeck's attack by taking a distorsion matrixX so
that the codimension of� n� k� 1 (A ) is equal to a where a is su�ciently large to
prevent an exhaustive search. But these reparations were also cryptanalyzed in
[GRS16, HTMR16] and recently by a new approach in [HMR15]. We have also
shown that the variant of [RGH10] can be seen like a general GPT Cryptosystem
with some redundancies in the public generator matrix. By this view, one can
remove the redundancies and recover an alternative secret key in polynomial time
by using Overbeck's attack.

Furthermore, since the attack in [HMR15] only considers column scrambler ma-
trices on the base �eld, one may try to avoid it by combining the reparations pro-
posed in [Loi10, RGH10] with those of [Gab08, GRH09, RGH11]. Nevertheless, our
results show that the security of [Gab08, GRH09, RGH11] can be reduced to the
one with a column scrambler with entries in the base �eld. Consequently, using our
results and then applying the general attack of [HMR15] may break this �patched�
scheme.

All these results put together permit to conclude that all the variants of the GPT
scheme based on Gabidulin codes do not represent a secure cryptographic solution.
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Chapter 6

q� Polynomial Reconstruction Based
Cryptosystem

Introduction

In 2005 Faure and Loidreau designed a rank-metric encryption scheme which was not
in the McEliece setting. The scheme is very e�cient, with small public keys of size a
few kiloBytes and with security closely related to theq� polynomial reconstruction
problem which corresponds to the decoding problem of Gabidulin codes.

We show in this chapter that the Faure-Loidreau scheme is vulnerable to a struc-
tural polynomial-time attack that recovers the private key from the public key.
Based in part on the security analysis given in [Loi07, Chap. 7], we show that by
applying Overbeck's attack on an appropriate public code an attacker can recover
the private key very e�ciently, only assuming a mild condition on the code, which
was always true in all our experimentations.

Informally, the Faure-Loidreau encryption scheme considers three �nite �elds
Fq � Fqm � L . The rank weight of vectors is computed over the �eldFq. The public
key is then composed of a Gabidulin code of dimensionk of length n de�ned by a
matrix G = ( gi;j ) with gi;j 2 Fqm and K = xG + z where x is some vector inL k

and z is a vector ofLn with (rank) weight w > 1
2(n � k). Both vectorsx and z have

to be kept secret but from attacker's point of view the private key isessentiallyx
sincez can be deduced from it.

Our attack uses the Frobenius operator, introduced by Overbeck, which takes as
input any vector spaceU � Fn

qm and integer i > 1 in order to construct the vector
space� i (U) de�ned as

� i (U) = U + Uq + � � � + Uqi
:

The �rst step of the attack considers a basis 1; : : : ;  u of L viewed as a vector space
over Fqm of dimensionu > 1 and de�nes the vectorsv i = Tr L=Fqm ( i z). Our main
result shows that the system can be broken in polynomial time and can be stated
as follows:
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Theorem 6.1. If the Fqm -vector space generated byv1; : : : ; vu denoted byV satis�es
the property

dim � n� w� k� 1(V) = w (6.1)

then the private key(x ; z) can be recovered from(G; K ) with O(n3) operations in
the �eld L.

Notice that if V behaves as random code then generally the condition (6.1) holds.
We implemented our attack on parameters given in [FL05, Loi07] for80-bit security,
which were broken in a few seconds. A necessary condition for (6.1) to be true is to
chooseu(n � w � k) > w that is to say

w 6
u

u + 1
(n � k) :

This was always the case for parameters proposed in [FL05, Loi07].

Related work. The attack presented in this chapter is very similar to the ap-
proach proposed in [LO06] where the authors seek to decode several noisy code-
words of a Gabidulin code. Let us assume that we received` words z1; : : : ; z ` from
Fn

qm where eachz i is written as zi = ci + ei with ci belonging to a Gabidulin
code G of dimensionk and length n over Fqm and the ei 's are vectors fromFn

qm .
Let us denote byE the matrix of size ` � n formed by the ei 's and let jE j be
the dimension of theFq-vector space generated by the columns ofE . The authors
show that when jE j 6 `

`+1 (n � k) then Overbeck's technique recovers inO(n3)
operations the codewordsc1; : : : ; c` . It therefore provides a method that decodes
a Gabidulin code beyond the classical error-correcting limit12 (n � k). This ap-
proach can be used here to attack the Faure-Loidreau scheme [FL05] because the
vectorsTr L=Fqm ( 1K ); : : : ; Tr L=Fqm ( uK ) can be written asc1+ v1; : : : ; cu + vu where
eachci = Tr L=Fqm ( i x )G belongs to the Gabidulin code generated byG and the
u � n matrix V formed by v1; : : : ; vu satis�es jV j = w which in turn has to verify
w 6 u

u+1 (n � k).

Organisation. In Section 6.1 notations and important notions useful for the chap-
ter are given. In Section 6.2 we present the Faure-Loidreau scheme and in Section 6.3
we describe in full details our attack against it.

6.1 Preliminary Facts

We recall that the �eld Fqm can be consider as anFq-vector space of dimensionm.
The trace operator of Fqm over Fq is the Fq-linear mapTr Fqm =Fq : Fqm �! Fq de�ned
for any x in Fqm by

Tr Fqm =Fq (x) = x + xq + � � � + xqm � 1
:
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Let B = f b1; : : : ; bmg be a basis ofFqm over Fq. The dual basis, or also called the
trace orthogonal basis ofB is a basisB � = f b�

1; : : : ; b�
mg of Fqm over Fq such that

for any i and j in f 1: : : ; mg

Tr Fqm =Fq (bi b�
j ) = � i;j

where � i;i = 1 and � i;j = 0 when i 6= j . Note that there always exits a dual basis
and furthermore it is possible to express any� from Fqm as

� =
mX

i =1

Tr Fqm =Fq (�b �
i )bi : (6.2)

De�nition 6.1 (Linearized polynomial). Any univariate polynomial f 2 Fqm [X ] of
the form

f (X ) = f 0X + f 1X q + � � � + f dX qd
; f d 6= 0

where0 6 d < m is called aq� linearized polynomial (or q� polynomial) and d is its
q� degreedenoted bydegq(f ).

The set ofq� linearized polynomialsf 2 Fqm [X ] such that degq(f ) < k is denoted
by L <k

q;m[X ].

De�nition 6.2 (Kernel). The kernel ker (f ) of a q� polynomial f is given by

ker (f ) = f X 2 Fqm : f (X ) = 0 g

Theorem 6.2. The kernel of aq� polynomial f 2 Fqm [X ] is a Fq� vector subspace
of Fqm with dimensiondim (ker (f )) = degq(f ). Conversely, anyFq� vector subspace
V � Fqm is the kernel of a unique monicq� polynomial f V with degq(f V ) = dim V .

A proof (or further references) of this theorem can be found in [Mur14] where it
is also proven that for a givenq� polynomial f , a basis of the kernelker (f ) can be
computed in polynomial time. The converse situation is also true. For a given basis
of a Fq� vector subspaceV � Fqm , the unique monicq� polynomial f V with kernel
ker f V = V can be computed in polynomial time. We understand from this theorem
that �nding the support V of an errore 2 Fn

qm (in rank metric) is equivalent to �nd
the associated monicq� polynomial f V :

In the sequel, any maph : U ! V is naturally extended to vectorsx 2 Un

by h(x ) = ( h(x 1); : : : ; h(x n )) . This applies in particular to the cases whereh is a
polynomial or is the Frobenius (and trace) operator. For any subsetsU � Fn

qm and
V � Fn

qm the notation U + V represents the set

U + V = f u + v j u 2 U and v 2 Vg:

For any sub-�eld K � Fqm and x from Fn
qm the K-vector space generated byx is

denoted byKx . For any P 2 GLn (K) the notation UP is used to denote the set

UP = f uP j u 2 Ug:
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6.2. FAURE-LOIDREAU ENCRYPTION SCHEME

For any integer i > 0 we de�ne V qi
as the set of vectors

vqi
= ( vqi

1 ; : : : ; vqi

n )

wherev describesV. Note that when V is a vector space thenV qi
is also a linear

subspace ofFn
qm .

Remark 6.1 (Gabidulin codes). Let g 2 Fn
qm such that jgj = n. The (n; k)� Gabidulin

codeGk (g) can be de�ned using linearized polynomials by:

Gk (g) def=
n�

f (g1); :::; f (gn )
�

: f 2 L <k
q;m[X ]

o

g is called generator vector ofGk (g).

By Remark 6.1 and Theorem 6.2, the decoding problem for Gabidulin codes can
be easily translated in terms ofq� polynomials. Informally, assume that one has to
decode a noisy codewordy = f (g) + e of a Gabidulin codeGk (g). The problem is
(given g and y) to �nd f and e such that y = f (g) + e: Let V be the support ofe
and L the monic polynomial such thatker (L) = V . We have

L(y � f (g)) = 0 (6.3)

Thus, to decodey ; it su�ces to �nd L and f that satisfy equation (6.3). This last
problem is called theq� polynomial reconstruction problem and can be formally
described as follows:

Problem 6.3 (q� Polynomial reconstruction). Given y and g in Fn
qm together with

two integers k and w, the problem is to �nd a non-zeroq� polynomial L with
q� degree at mostw and a q� polynomial f with q� degree at mostk such that

L [f (g) � y ] = 0

In [FL05], Faure and Loidreau proposed a rank-metric encryption scheme based
on this problem. The idea is to choosew greater than the error correction capacity
of the Gabidulin codeGk (g) ; in order to avoid the easy instances of problem 6.3
which can be solved by using a decoding algorithm of Gabidulin codes. We describe
the scheme in the following section.

6.2 Faure-Loidreau Encryption Scheme

We refer the reader to [FL05] for more details about the system. In fact, the original
scheme was described using linearized polynomials. But using the links between
linearized polynomials and Gabidulin codes, the system can be described as follows:
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6.2. FAURE-LOIDREAU ENCRYPTION SCHEME

Key generation. Throughout this step, besides the �eldsFq and Fqm , another
�eld L is considered whereL is the extension ofFqm of degreeu > 1, and three
integersk, n and w such that u < k < n and

n � k > w >
�

n � k
2

�
: (6.4)

1. Pick at randomg 2 Fn
qm with jgj = n and let G 2 M k;n (Fqm ) be the generator

matrix of Gk (g) � Fn
qm as in (4.10)

2. Pick at random x 2 L k such that f xk� u+1 ; : : : ; xkg form a basis ofL over Fqm

3. Generate randomlys 2 Lw with jsj = w and P 2 GLn (Fq) and then compute
z 2 Ln de�ned as

z = ( s j 0) P � 1: (6.5)

The private key is (x ; P ) and the public key is(g; k; K ; tpub ) where

K = xG + z and tpub =
�

n � w � k
2

�
: (6.6)

Encryption. A plaintext here is a vectorm = ( m1; : : : ; mk) belonging toFk
qm such

that mi = 0 when i 2 f k � u + 1; : : : ; kg. To encrypt m ; one randomly generates
� 2 L and e 2 Fn

qm such that jej 6 tpub . The ciphertext is the vector c 2 Fn
qm

de�ned by
c = mG + Tr L=Fqm (� K ) + e: (6.7)

Decryption. The receiver computes �rstcP that is to say

cP = mGP + Tr L=Fqm

�
� xGP + � zP

�
+ eP (6.8)

=
�
m + Tr L=Fqm (� x )

�
GP +

�
Tr L=Fqm (� s) j 0

�
+ eP (6.9)

Let G0 be the k � (n � w) matrix obtained by removing the �rst w columns of
GP and let e0 and c0 be respectively the restriction ofeP and cP to the last n � w
coordinates. We then have

c0 =
�
m + Tr L=Fqm (� x )

�
G0+ e0: (6.10)

Using the fact that G0 generates a Gabidulin code of lengthn � w and dimension
k < n � w and sinceje0j 6 jej 6 b1

2(n � w � k)c, it is possible to recoverm 0 =
m + Tr L=Fqm (� x ) by applying a decoding algorithm. Since by constructionm 2 Fk

qm

is chosen so thatmi = 0 when i 2 f k � u + 1; : : : ; kg then by choosing a dual basis
f x �

k� u+1 ; :::; x�
kg of f xk� u+1 ; : : : ; xkg the value of� can be computed as the following

kX

i = k� u+1

m0
i x

�
i =

kX

i = k� u+1

Tr L=Fqm (�x i )x �
i = �:

Once� is recovered, the plaintextm is then equal tom 0 � Tr L=Fqm (� x ).
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6.3. POLYNOMIAL-TIME KEY RECOVERY ATTACK

n k u w Keys sizes Transmission rate

56 28 3 16 9408bits 44%
54 32 4 13 11664bits 44%

Table 6.1 � Proposed parameters from [Loi07] for the Faure-Loidreau scheme

6.3 Polynomial-Time Key Recovery Attack

In this section, we show that it is possible to recover an alternative private key from
the public data K and G when the conditionw 6 u

u+1 (n � k) holds. We start by
remarking that if an attacker A is able to �nd a matrix T 2 GLn (Fq) and z � 2 Lw

such that
zT = ( z � j 0) and jz � j = w

then A can fully recoverx 2 L k by solving only the last n � w equations of the
following linear system (see Algorithm 3 for more details)

KT = xGT + ( z � j 0): (6.11)

In the sequel, we describe a way to obtainx by �nding such a matrix T . The
�rst step is to consider a basis 1; : : : ;  u of L viewed as a vector space overFqm of
dimension u > 1. For any i 2 f 1; : : : ; ug we setK i = Tr L=Fqm ( i K ). Lastly, let
Cpub � Fn

qm be the (public) code generated byK 1; : : : ;K u and Gk (g), that is to say

Cpub = Gk (g) +
uX

i =1

Fqm K i : (6.12)

Remark 6.2. Cpub is de�ned by the generator matrixGpub where

Gpub =

0

B
B
B
@

G
K 1

...
K u

1

C
C
C
A

(6.13)

For all i 2 f 1; : : : ; ug let us setv i = Tr L=Fqm ( i z) and bi =
�
Tr L=Fqm ( i s) j 0

�
2

Fn
qm . By construction, we also have the equality

v i P = bi : (6.14)

Lemma 6.4. Let us de�ne B =
P m

i =1 Fqm bi then we have

CpubP = Gk (gP ) + B :
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6.3. POLYNOMIAL-TIME KEY RECOVERY ATTACK

Proof. Set x i = Tr L=Fqm ( i x ) 2 Fk
qm . It is su�cient to use Proposition 4.11 and to

observe that

K i P = Tr L=Fqm ( i x )GP +
�
Tr L=Fqm ( i s) j 0

�

= x i GP + bi

Proposition 6.5. Let f = n � w � k � 1 and assume thatdim � f (B ) = w. The
code� f (Cpub )? is then of dimension1 generated by(0 j h) P T whereh 2 Fn� w

qm and
jh j = n � w.

Furthermore, for any eh 2 � f (Cpub )? with eh 6= 0 and for any T 2 GLn (Fq) such
that

eh(T � 1)T = ( 0 j h 0) (6.15)

whereh 0 2 Fn� w
qm , there existsz � 2 Fw

qm with jz � j = w such thatzT = ( z � j 0).

Proof. Let us decomposeGP as (L j R ) whereL belongs toM k;w (Fqm ) and R in
M k;n � w (Fqm ). Let B 2 M u;w (Fqm ) be the matrix where thei -th row is composed
by the w �rst components of bi . Note that GpubP whereGpub is de�ned as in (6.13)
is a generator matrix ofCpubP , and the following equality holds

GpubP =
�

L R
B 0

�
: (6.16)

Hence� f (GpubP ) = � f (Gpub )P is a generator matrix of the code� f (CpubP ) =
� f (Cpub )P which satis�es the equality

� f (Gpub )P =
�

� f (L ) � f (R )
� f (B ) 0

�
:

The fact that R generates an(n � w; k)� Gabidulin code implies that

rank (� f (R )) = k + f = n � w � 1:

Consequently, there existsh 2 Fn� w
qm with jh j = n � w that satis�es � f (R ) hT = 0.

Furthermore, the equality dim � f (B ) = � f (B ) holds and implies that

dim � f (Cpub )P = rank (� f (B )) + rank (� f (R )) = k + f + w = n � 1:

This means that (0 j h) generates actually the full space(� f (Cpub )P )? which is
equivalent to say(0 j h) P T generates� f (Cpub )? .

For the second part of the proposition, leteh be any element from� f (Cpub )? with
eh 6= 0 and let T be in GLn (Fq) such that (6.15) holds for someh 0 in Fn� w

q . There

exists an element� in Fqm such that eh = ( 0 j � h)P T . Consider matricesA 1; A 2,
A 3 and A 4 such that A 1 2 M w;w (Fq) and A 4 2 M (n� w);(n� w) (Fq) so that we have

T � 1P =
�

A 1 A 2

A 3 A 4

�
:

67



6.3. POLYNOMIAL-TIME KEY RECOVERY ATTACK

We have then the following equalities

(0 j h 0) = eh(T � 1)T = ( 0 j � h) P T (T � 1)T = ( 0 j � h)
�
T � 1P

� T
(6.17)

It follows from (6.17) that hA T
2 = 0 and henceA 2 = 0 sincejh j = n � w. So we

can write

T � 1P =
�

A 1 0
A 3 A 4

�
:

We deduce thatP � 1T =
�

A � 1
1 0

� A � 1
4 A 3A � 1

1 A � 1
4

�
=

�
A 0 0
C 0 D 0

�
and consequently,

we get

zT = ( s j 0) P � 1T = ( s j 0)
�

A 0 0
C 0 D 0

�
= ( sA 0 j 0) :

So by letting z � = sA 0 = sA � 1
1 we have proved the proposition.

Proposition 6.5 shows that an equivalent key can be found in polynomial time
by simply using a non zero element of� f (Cpub )? . We now prove our main result
stated in the introduction which shows the weakness of the system.

Theorem 6.6. If the Fqm -vector space generated byv1; : : : ; vu denoted byV satis�es
the property

dim � n� w� k� 1(V) = w

then the private key(x ; z) can be recovered from(G; K ) with O(n3) operations in
the �eld L

Proof. Firstly, note that from (6.14) we know that VP = B . Algorithm 3 gives the
full description of the attack and provides a proof of Theorem 6.1. Indeed, the attack
consists in picking any codewordeh from � n� w� k� 1(Cpub )? and then, by Gaussian
elimination, we transform eh so that there existsT 2 GLn (Fq) for which we have

eh(T � 1)T = ( 0 j h 0)

whereh 0 2 Fn� w
qm . From Proposition 6.5 we know thatT is an equivalent key that

will gives an equality of the form (6.11), and therefore it is possible by solving a linear
system to �nd x . Lastly, the time complexity comes from the fact the operations
involved are essentially Gaussian eliminations over square matrices withn columns
and entries inL.

An important assumption for the success of the attack is that the dimension
of � n� w� k� 1(Cpub )? is 1, which was always true in all our experimentations. This
assumption is true if and only if the equalitydim � n� w� k� 1(B ) = w holds, which
implies to haveu(n � w � k) > w, or equivalently

w 6
u

u + 1
(n � k): (6.18)
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6.3. POLYNOMIAL-TIME KEY RECOVERY ATTACK

Assuming that B behaves as a random code thendim � n� w� k� 1(B ) = w would hold
with high probability as long as (6.18) is true. The parameters proposed in [Loi07]
satisfy (6.18). Furthermore, the analysis given in [Loi07] implies to takeu > 3. We
implemented the attack with Magma V2.21-6 and the secret keyx was found in less
than 1 second con�rming the e�ciency of the approach.

Remark 6.3. Let us observe that takingw > u
u+1 (n � k) implies for tpub to be very

small since we have

tpub 6
1
2

(n � w � k) <
1
2

�
n � k
u + 1

�
: (6.19)

For instance, with parameters proposed in [Loi07] we would havetpub 6 3. Conse-
quently the values ofn, k and m have to be changed so that general decoding attacks
fail [GRS16]. Let us notice that this situation is quite similar to the counter-measures
proposed in [RGH10, Loi10] to resist to Overbeck's attack. But the strength of this
reparation deserves a thorough analysis.

Algorithm 3 Key recovery of Faure-Loidreau scheme where the public key is(G; K )

1: f  1; : : : ;  ug  arbitrary basis of L viewed as a linear space overFqm

2: for all 1 6 i 6 u do
3: K i  Tr L=Fqm ( i K )
4: end for
5: Let Cpub � Fn

qm be the code generated byGpub . Gpub is de�ned as in (6.13)
6: if dim � n� w� k� 1(Cpub )? = 1 then
7: Pick at random eh 2 � n� w� k� 1(Cpub )?

8: Compute T 2 GLn (Fq) and h 0 2 Fn� w
qm such that

eh(T � 1)T = ( 0 j h 0)

9: K �  KT . K � = ( K �
1; : : : ;K �

n ) 2 Ln

10: G �  GT . G � = ( g�
i;j ) 2 M k;n (Fqm )

11: Solve the linear system where(X 1; : : : ; X k) are the unknowns

(L ) :

8
><

>:

K �
w+1 = g�

1;w+1 X 1 + � � � + g�
k;w+1 X k

...
K �

n = g�
1;nX 1 + � � � + g�

k;n X k

12: z  K � xG wherex is the unique solution of (L )
13: end if
14: return (x ; z)
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6.3. POLYNOMIAL-TIME KEY RECOVERY ATTACK

Table 6.2 � Bound on w with parameters taken from [Loi07] (m = n).

n k u w u
u+1 (n � k)

56 28 3 16 21
54 32 4 13 17

Conclusion

Faure and Loidreau proposed a rank-metric encryption scheme based on Gabidulin
codes related to the problem of the linearized polynomial reconstruction. We showed
that the scheme is vulnerable to a polynomial-time key recovery attack by using
Overbeck's techniques applied on an appropriate public code.

Our attack assumes that parameters are chosen so thatw 6 u
u+1 (n � k) which

was always the case in [FL05, Loi07]. We have also seen that takingw > u
u+1 (n � k)

implies to choosetpub < 1
2

�
n� k
u+1

�
which exposes further the system to general decod-

ing attacks like [GRS16]. Hence it imposes to increase the key sizes and consequently
reduces the practicability of the scheme while o�ering no assurance that the scheme
is still secure. The best choice from a designer's point of view would be to takeu
as small as possible but a thorough analysis has to be undertaken in light of the
connections with the reparations proposed in [RGH10, Loi10]. This point is left as
an open question in this chapter and breaking this kind of parameters would lead
arguably to a cryptanalysis of [RGH10, Loi10], and to an algorithm that decodes
Gabidulin codes beyond the bound u

u+1 (n � k).
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Chapter 7

Conclusions and Perspectives

7.1 Conclusion

In this thesis, we have studied the security of several code based encryption scheme
and mainly McEliece variants. The general idea of the McEliece cryptosystem and
its variants is to choose an appropriate private code that will be masked into a
public one. This technique opens a general security question: �is the public code
distinguishable from a random code ?�. A positive answer to that question generally
leads to successful structural attacks. That is how several variants of the McEliece
based on algebraic codes were proven to be not secured.

In Hamming metric context, one of the most powerful distinguisher is thesquare
code (with the component-wise product). This tool has been use to distinguish the
public code of several variants of the McEliece encryption schemes. One more, we
used this tool in Chapter 3 to distinguish the public code of the modi�ed Sidelnikov
cryptosystem [GM13] from a random one, which proved that the system is insecure.

We emphasize that the situation is quiet the same in rank based cryptography
where the usual and powerful distinguisher is the operator� i which appliesi times
the Frobenius operation on the public generator matrix. We have also used this
distinguisher in chapters 5 and 6 of this thesis to show that all existing schemes
based on Gabidulin codes [Gab08, GRH09, RGH10, RGH11, Loi07, FL05] are ac-
tually insecure. However, besides the Gabidulin codes and inspired by the class of
MDPC/LDPC codes in Hamming metric, a new class of rank metric codes was re-
cently proposed in [GMRZ13] namely Low Rank Parity Check codes. They are the
adaptation of the MDPC/LDPC codes in the rank metric. The LRPC cryptosystem
[GMRZ13] is thus the analogue of the MDPC McEliece scheme. The main advan-
tage of the scheme is that it comes, as the MDPC PKC, with a quasi-cyclic version,
which allows to drastically reduce the key size. The LRPC scheme is therefore one of
the most promising rank-based encryption scheme since it has many security argu-
ments in its favour: compared to the Gabidulin codes, the LRPC codes have a weak
algebraic structure and thus seem much more �tted for a cryptographic purpose.
Secondly the DC-LRPC scheme is equivalent to the NTRU [HPS98] and thus ben-
e�t of a quite long research experience from a cryptanalytic point of view. But the
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family of LRPC codes came with a probabilistic decoding algorithm. Furthermore,
like in Hamming metric, there is no formal proof of the indistinguishability of the
public code from a random one.

7.2 Perspectives

7.2.1 Cryptanalysis

There exist several connections between Generalized Reed-Solomon codes and Gabidulin
codes. A natural one is that both GRS and Gabidulin codes are distinguishable from
a random code as mentioned at the beginning of this thesis. When looking closely
the distinguishers, one can remark that the distinguisher for Gabidulin codes is more
general than the distinquisher used for GRS codes. A study of the connections be-
tween the two distinguishers, namely the �component-wise product of codes� and the
operator � i is to our opinion a promising research perspective since it could allow to
�nd a general distinguisher for Goppa codes. We emphasise that Goppa codes are
only distinguishable for some particular parameters such ashigh rate Goppa codes
[FOPT10].

7.2.2 Designing

In terms of masking technique, one can remark that the properties of rank-metric
allow to see each codeword as a matrix. Exploiting this view for a masking procedure
of rank-metric codes might be interesting.

Another alternative branch of research would be to �nd a new masking technique
for which there is a formal proof of the indistinguishability of the public code from
a random one, or simply to �nd a cryptosystem whose the security is based only
on the general decoding problem, since putting away this unanswered question of
distinguishability can allow to guarantee the security of the system face to structural
attacks. Such an idea was already proposed by Alekhnovich [Ale03, Ale11] who
considered an innovative approach based on the di�culty of decoding purely random
linear codes. Even though the system proposed by Alekhnovich was not practical,
several authors were inspired by his work [DMN12, DV13, KMP14] and the recent
progress presented in [ABD+ 16] show the importance of developing this branch of
code based cryptography.
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