K. Hamilton and D. Devor, channels in renal epithelial cells, American Journal of Physiology-Renal Physiology, vol.51, issue.9
DOI : 10.1152/ajprenal.00087.2006

P. Welling, Roles and Regulation of Renal K Channels, Annual Review of Physiology, vol.78, issue.1, pp.415-435, 2016.
DOI : 10.1146/annurev-physiol-021115-105423

U. Scholl, Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10, Proc. Natl. Acad. Sci. U. S
DOI : 10.1016/S0140-6736(98)85044-7

D. Bockenhauer, Mutations, New England Journal of Medicine, vol.360, issue.19, pp.1960-1970, 2009.
DOI : 10.1056/NEJMoa0810276

URL : https://hal.archives-ouvertes.fr/hal-00555316

M. Paulais, Renal phenotype in mice lacking the Kir5.1 (Kcnj16) K+ channel subunit contrasts with that observed in SeSAME/EAST syndrome, Proceedings of the National Academy of Sciences, vol.17, issue.8, pp.10361-10366, 2011.
DOI : 10.1681/ASN.2005101054

S. Lachheb, channel in the basolateral membrane of mouse renal collecting duct principal cells, American Journal of Physiology-Renal Physiology, vol.294, issue.6, pp.1398-1407, 2008.
DOI : 10.1085/jgp.116.1.33

D. Chabardès-garonne, A panoramic view of gene expression in the human kidney, Proceedings of the National Academy of Sciences, vol.10, issue.2
DOI : 10.1159/000049902

M. Pessia, P. Imbrici, D. Adamo, M. , S. L. Tucker et al., Differential pH sensitivity of Kir4.1 and Kir4.2 potassium channels and their modulation by heteropolymerisation with Kir5.1, The Journal of Physiology, vol.116, issue.2, pp.359-367, 2001.
DOI : 10.1085/jgp.116.1.33

W. He, Acid secretion-associated translocation of KCNJ15 in gastric parietal cells, American Journal of Physiology-Gastrointestinal and Liver Physiology, vol.246, issue.4
DOI : 10.1152/ajpcell.00521.2004

W. Pearson, M. Dourado, M. Schreiber, L. Salkoff, and C. Nichols, channel from a gene cloned from mouse liver, The Journal of Physiology, vol.14, issue.3, pp.639-653, 1999.
DOI : 10.1016/0896-6273(95)90343-7

M. Shuck, 1.3), Journal of Biological Chemistry, vol.475, issue.1, pp.586-593, 1997.
DOI : 10.1016/0959-4388(95)80038-7

J. Wu, M. Krouse, A. Rustagi, N. Joo, and J. Wine, An Inwardly Rectifying Potassium Channel in Apical Membrane of Calu-3 Cells, Journal of Biological Chemistry, vol.233, issue.45, pp.46558-46565, 2004.
DOI : 10.1113/jphysiol.2001.013439

F. Gennari and W. Weise, Acid-Base Disturbances in Gastrointestinal Disease, Clinical Journal of the American Society of Nephrology, vol.3, issue.6, pp.1861-1868, 2008.
DOI : 10.2215/CJN.02450508

H. Fischer and J. Widdicombe, Mechanisms of Acid and Base Secretion by the Airway Epithelium, Journal of Membrane Biology, vol.186, issue.3, pp.139-150, 2006.
DOI : 10.1113/jphysiol.1992.sp019300

C. Moret, Regulation of renal amino acid transporters during metabolic acidosis, American Journal of Physiology-Renal Physiology, vol.292, issue.2
DOI : 10.1042/bj3490667

I. Weiner and L. Hamm, Molecular Mechanisms of Renal Ammonia Transport, Annual Review of Physiology, vol.69, issue.1, pp.317-340, 2007.
DOI : 10.1146/annurev.physiol.69.040705.142215

A. Fry and F. Karet, Inherited Renal Acidoses, Physiology, vol.22, issue.3, pp.202-211, 2007.
DOI : 10.1053/ajkd.2002.33909

URL : http://physiologyonline.physiology.org/content/nips/22/3/202.full.pdf

I. Kurtz and Q. Zhu, Proximal renal tubular acidosis mediated by mutations in NBCe1-A: unraveling the transporter's structure-functional properties, Frontiers in Physiology, vol.4, 2013.
DOI : 10.3389/fphys.2013.00350

T. Igarashi, Persistent isolated proximal renal tubular acidosis ? a systemic disease with a distinct clinical entity, Pediatric Nephrology, vol.80, issue.1, pp.70-71, 1994.
DOI : 10.1007/BF00868266

A. Winsnes, E. Monn, O. Stokke, and T. Feyling, CONGENITAL, PERSISTENT PROXIMAL TYPE RENAL TUBULAR ACIDOSIS IN TWO BROTHERS1, Acta Paediatrica, vol.20, issue.6, pp.861-868, 1979.
DOI : 10.1016/S0031-3955(16)32564-0

R. Donckerwolcke, G. Van-stekelenburg, and H. Tiddens, A Case of Bicarbonate-losing Renal Tubular Acidosis with Defective Carboanhydrase Activity, Archives of Disease in Childhood, vol.45, issue.244, pp.769-773, 1970.
DOI : 10.1136/adc.45.244.769

L. Brenes, J. Brenes, and M. Hernandez, Familial proximal renal tubular acidosis, The American Journal of Medicine, vol.63, issue.2, pp.244-252, 1977.
DOI : 10.1016/0002-9343(77)90238-8

Z. Katzir, D. Dinour, H. Reznik-wolf, A. Nissenkorn, and E. Holtzman, Familial pure proximal renal tubular acidosis--a clinical and genetic study, Nephrology Dialysis Transplantation, vol.23, issue.4, pp.1211-1215, 2008.
DOI : 10.1093/ndt/gfm583

URL : https://academic.oup.com/ndt/article-pdf/23/4/1211/7625728/gfm583.pdf

L. Brenes and M. Sanchez, Impaired urinary ammonium excretion in patients with isolated proximal renal tubular acidosis, J. Am. Soc. Nephrol, vol.4, issue.4, pp.1073-1078, 1993.

M. Halperin, K. Kamel, J. Ethier, and P. Magner, What Is the Underlying Defect in Patients with Isolated, Proximal Renal Tubular Acidosis?, American Journal of Nephrology, vol.9, issue.4, pp.265-268, 1989.
DOI : 10.1159/000167979

M. Handlogten, NBCe1 expression is required for normal renal ammonia metabolism, American Journal of Physiology-Renal Physiology, vol.276, issue.7
DOI : 10.1152/ajprenal.1999.276.6.F825

URL : http://ajprenal.physiology.org/content/ajprenal/309/7/F658.full.pdf

S. Muto, Y. Miyata, M. Imai, and Y. Asano, Troglitazone Stimulates Basolateral Rheogenic Na<sup>+</sup>/HCO<sup>???</sup><sub>3</sub> Cotransport Activity in Rabbit Proximal Straight Tubules, Nephron Experimental Nephrology, vol.9, issue.3, pp.191-197, 2001.
DOI : 10.1159/000052611

N. Curthoys and G. Gstraunthaler, Mechanism of increased renal gene expression during metabolic acidosis, American Journal of Physiology-Renal Physiology, vol.259, issue.3, pp.381-390, 2001.
DOI : 10.1152/ajprenal.1990.259.6.F961

S. Balkrishna, A. Bröer, S. Welford, M. Hatzoglou, and S. Bröer, Expression of Glutamine Transporter Slc38a3 (SNAT3) During Acidosis is Mediated by a Different Mechanism than Tissue-Specific Expression, Cellular Physiology and Biochemistry, vol.33, issue.5, pp.1591-1606, 2014.
DOI : 10.1159/000358722

M. Soleimani, S. Grassi, and P. Aronson, Stoichiometry of Na+-HCO-3 cotransport in basolateral membrane vesicles isolated from rabbit renal cortex., Journal of Clinical Investigation, vol.79, issue.4, pp.1276-1280, 1987.
DOI : 10.1172/JCI112948

R. Alpern, Mechanism of basolateral membrane H+/OH-/HCO-3 transport in the rat proximal convoluted tubule. A sodium-coupled electrogenic process, The Journal of General Physiology, vol.86, issue.5, pp.613-636, 1985.
DOI : 10.1085/jgp.86.5.613

K. Moremen, M. Tiemeyer, and A. Nairn, Vertebrate protein glycosylation: diversity, synthesis and function, Nature Reviews Molecular Cell Biology, vol.9, issue.7, pp.448-462, 2012.
DOI : 10.1242/jcs.02814

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3934011/pdf

L. Conti, C. Radeke, and C. Vandenberg, Membrane Targeting of ATP-sensitive Potassium Channel, Journal of Biological Chemistry, vol.1071, issue.28, pp.25416-25422, 2002.
DOI : 10.1074/jbc.272.2.709

C. Derst, A Hyperprostaglandin E Syndrome Mutation in Kir1.1 (Renal Outer Medullary Potassium) Channels Reveals a Crucial Residue for Channel Function in Kir1.3 Channels, Journal of Biological Chemistry, vol.429, issue.37
DOI : 10.1074/jbc.271.26.15729

F. Karet, Mechanisms in Hyperkalemic Renal Tubular Acidosis, Journal of the American Society of Nephrology, vol.20, issue.2, pp.251-254, 2009.
DOI : 10.1681/ASN.2008020166

M. Paulais, S. Lachheb, and J. Teulon, Channel in the Thick Ascending Limb of Mouse Kidney, The Journal of General Physiology, vol.433, issue.2, pp.205-215, 2006.
DOI : 10.1016/S0896-6273(03)00096-5

M. Tanemoto, N. Kittaka, A. Inanobe, and Y. Kurachi, channel by heteromeric subunit assembly of Kir5.1 with Kir4.1, The Journal of Physiology, vol.520, issue.3, pp.587-592, 2000.
DOI : 10.1111/j.1469-7793.1999.00921.x

W. Pearson, M. Dourado, M. Schreiber, L. Salkoff, and C. Nichols, channel from a gene cloned from mouse liver, The Journal of Physiology, vol.14, issue.3, pp.639-653, 1999.
DOI : 10.1016/0896-6273(95)90343-7

S. Corey and D. Clapham, (GIRK4) Channel Homomultimers, Journal of Biological Chemistry, vol.3, issue.4, pp.27499-27504, 1998.
DOI : 10.1016/0014-5793(94)00590-7

C. Hill, M. Briggs, J. Liu, and L. Magtanong, Cloning, expression, and localization of a rat hepatocyte inwardly rectifying potassium channel, American Journal of Physiology-Gastrointestinal and Liver Physiology, vol.15, issue.2, pp.233-240, 2002.
DOI : 10.1002/(SICI)1097-4547(19980601)52:5<612::AID-JNR13>3.0.CO;2-3

L. Hoste and S. , Characterization of the mouse ClC-K1/Barttin chloride channel, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1828, issue.11, pp.2399-2409, 2013.
DOI : 10.1016/j.bbamem.2013.06.012

A. Accardi and C. Miller, Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels, Nature, vol.427, issue.6977, pp.803-807, 2004.
DOI : 10.1038/nature02314

A. K. Alekov, Mutations associated with Dent's disease affect gating and voltage dependence of the human anion/proton exchanger ClC-5, Frontiers in Physiology, vol.92, p.159, 2015.
DOI : 10.1073/pnas.92.11.4853

A. K. Alekov and C. Fahlke, Channel-like slippage modes in the human anion/proton exchanger ClC-4, The Journal of General Physiology, vol.12, issue.5, pp.485-496, 2009.
DOI : 10.1074/jbc.M708368200

G. C. Brailoiu and E. Brailoiu, Modulation of Calcium Entry by the Endo-lysosomal System, Adv. Exp. Med. Biol, vol.898, pp.423-447, 2016.
DOI : 10.1007/978-3-319-26974-0_18

J. C. Crocker, G. , and D. G. , Methods of Digital Video Microscopy for Colloidal Studies, Journal of Colloid and Interface Science, vol.179, issue.1, pp.298-310, 1996.
DOI : 10.1006/jcis.1996.0217

O. Devuyst and A. Luciani, Chloride transporters and receptor-mediated endocytosis in the renal proximal tubule, The Journal of Physiology, vol.273, issue.Suppl 1, pp.4151-4164, 2015.
DOI : 10.1074/jbc.273.3.1574

O. Devuyst, P. T. Christie, P. J. Courtoy, R. Beauwens, and R. V. Thakker, Intra-renal and subcellular distribution of the human chloride channel, CLC-5, reveals a pathophysiological basis for Dent's disease, Human Molecular Genetics, vol.8, issue.2, pp.247-257, 1999.
DOI : 10.1093/hmg/8.2.247

R. Dutzler, E. B. Campbell, M. Cadene, B. T. Chait, and R. Mackinnon, X-ray structure of a ClC chloride channel at 3.0?????? reveals the molecular basis of anion selectivity, Nature, vol.415, issue.6869, pp.287-294, 2002.
DOI : 10.1038/415287a

R. Dutzler, E. B. Campbell, and R. Mackinnon, Gating the Selectivity Filter in ClC Chloride Channels, Science, vol.300, issue.5616, pp.108-112, 2003.
DOI : 10.1126/science.1082708

L. Feng, E. B. Campbell, Y. Hsiung, and R. Mackinnon, Structure of a Eukaryotic CLC Transporter Defines an Intermediate State in the Transport Cycle, Science, vol.211, issue.5052, pp.635-641, 2010.
DOI : 10.1038/211969a0

T. Friedrich, T. Breiderhoff, and T. J. Jentsch, Mutational Analysis Demonstrates That ClC-4 and ClC-5 Directly Mediate Plasma Membrane Currents, Journal of Biological Chemistry, vol.273, issue.2, pp.896-902, 1999.
DOI : 10.1074/jbc.271.17.10210

URL : http://www.jbc.org/content/274/2/896.full.pdf

C. M. Gorvin, M. J. Wilmer, S. E. Piret, B. Harding, L. P. Van-den-heuvel et al., Receptor-mediated endocytosis and endosomal acidification is impaired in proximal tubule epithelial cells of Dent disease patients, Proceedings of the National Academy of Sciences, vol.96, issue.21, pp.7014-7019, 2013.
DOI : 10.1073/pnas.96.21.12174

F. L. Graham and A. J. Van-der-eb, A new technique for the assay of infectivity of human adenovirus 5 DNA, Virology, vol.52, issue.2, pp.456-467, 1973.
DOI : 10.1016/0042-6822(73)90341-3

T. Grand, D. Mordasini, S. L-'hoste, T. Pennaforte, M. Genete et al., Novel CLCN5 mutations in patients with Dent???s disease result in altered ion currents or impaired exchanger processing, Kidney International, vol.76, issue.9, pp.999-1005, 2009.
DOI : 10.1038/ki.2009.305

T. Grand, S. L-'hoste, D. Mordasini, N. Defontaine, M. Keck et al., Heterogeneity in the processing of CLCN5 mutants related to Dent disease, Human Mutation, vol.22, issue.4, pp.476-483, 2011.
DOI : 10.1016/S0896-6273(00)80708-4

M. Grieschat, A. , and A. K. , Glutamate 268 Regulates Transport Probability of the Anion/Proton Exchanger ClC-5, Journal of Biological Chemistry, vol.207, issue.11, pp.8101-8109, 2012.
DOI : 10.1016/0896-6273(93)90309-F

M. Grieschat, A. , and A. K. , Multiple Discrete Transitions Underlie Voltage-Dependent Activation in CLC Cl???/H+ Antiporters, Biophysical Journal, vol.107, issue.6, pp.13-15, 2014.
DOI : 10.1016/j.bpj.2014.07.063

URL : https://doi.org/10.1016/j.bpj.2014.07.063

C. Grimm, E. Butz, C. Chen, C. Wahl-schott, and M. Biel, From mucolipidosis type IV to Ebola: TRPML and two-pore channels at the crossroads of endo-lysosomal trafficking and disease, Cell Calcium, vol.67, 2017.
DOI : 10.1016/j.ceca.2017.04.003

W. Gunther, A. Luchow, F. Cluzeaud, A. Vandewalle, and T. J. Jentsch, ClC-5, the chloride channel mutated in Dent's disease, colocalizes with the proton pump in endocytotically active kidney cells, Proc Natl Acad Sci U A 95, pp.8075-8080, 1998.
DOI : 10.1172/JCI1496

W. Gunther, N. Piwon, and T. J. Jentsch, The ClC-5 chloride channel knock-out mouse ??? an animal model for Dent's disease, Pfl??gers Archiv - European Journal of Physiology, vol.445, issue.4, pp.456-462, 2003.
DOI : 10.1007/s00424-002-0950-6

O. P. Hamill, A. Marty, E. Neher, B. Sakmann, and F. J. Sigworth, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pfl??gers Archiv - European Journal of Physiology, vol.12, issue.2, pp.85-100, 1981.
DOI : 10.1038/287447a0

D. H. Hryciw, J. Ekberg, C. Ferguson, A. Lee, D. Wang et al., Regulation of Albumin Endocytosis by PSD95/Dlg/ZO-1 (PDZ) Scaffolds, Journal of Biological Chemistry, vol.281, issue.23, pp.16068-16077, 2006.
DOI : 10.1056/NEJMcp011773

D. H. Hryciw, W. A. Kruger, J. F. Briffa, C. Slattery, A. Bolithon et al., Sgk-1 is a Positive Regulator of Constitutive Albumin Uptake in Renal Proximal Tubule Cells, Cellular Physiology and Biochemistry, vol.286, issue.5, pp.1215-1226, 2012.
DOI : 10.1074/jbc.M111.230219

D. H. Hryciw, K. A. Jenkin, A. C. Simcocks, E. Grinfeld, A. J. Mcainch et al., The interaction between megalin and ClC-5 is scaffolded by the Na+???H+ exchanger regulatory factor 2 (NHERF2) in proximal tubule cells, The International Journal of Biochemistry & Cell Biology, vol.44, issue.5, pp.815-823, 2012.
DOI : 10.1016/j.biocel.2012.02.007

T. J. Jentsch, Discovery of CLC transport proteins: cloning, structure, function and pathophysiology, The Journal of Physiology, vol.132, issue.1, 2015.
DOI : 10.1085/jgp.200810023

S. E. Lloyd, S. H. Pearce, W. Gunther, H. Kawaguchi, T. Igarashi et al., Idiopathic low molecular weight proteinuria associated with hypercalciuric nephrocalcinosis in Japanese children is due to mutations of the renal chloride channel (CLCN5)., Journal of Clinical Investigation, vol.99, issue.5, pp.967-974, 1997.
DOI : 10.1172/JCI119262

S. Lourdel, T. Grand, J. Burgos, W. Gonzalez, F. V. Sepulveda et al., ClC-5 mutations associated with Dent???s disease: a major role of the dimer interface, Pfl??gers Archiv - European Journal of Physiology, vol.10, issue.Suppl 2, pp.247-256, 2012.
DOI : 10.1038/embor.2009.159

M. Ludwig, J. Doroszewicz, H. W. Seyberth, A. Bokenkamp, B. Balluch et al., Functional evaluation of Dent???s disease-causing mutations: implications for ClC-5 channel trafficking and internalization, Human Genetics, vol.22, issue.2-3, pp.228-237, 2005.
DOI : 10.1515/JPEM.1998.11.5.657

M. J. Mahon, pHluorin2: an enhanced, ratiometric, pH-sensitive green florescent protein, Advances in Bioscience and Biotechnology, vol.02, issue.03, pp.132-137, 2011.
DOI : 10.4236/abb.2011.23021

URL : https://doi.org/10.4236/abb.2011.23021

L. Mansour-hendili, A. Blanchard, L. Pottier, N. Roncelin, I. Lourdel et al., Gene Responsible for Dent Disease 1, Human Mutation, vol.48, issue.8, pp.743-752, 2015.
DOI : 10.1074/jbc.M708368200

J. J. Matsuda, M. S. Filali, M. M. Collins, K. A. Volk, and F. S. Lamb, Antiporter Becomes Uncoupled at Low Extracellular pH, Journal of Biological Chemistry, vol.15, issue.4, pp.2569-2579, 2010.
DOI : 10.1113/jphysiol.2001.013115

G. Miesenböck, D. A. De-angelis, and J. E. And-rothman, Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins, Nature, vol.6, issue.6689, pp.192-195, 1998.
DOI : 10.1016/S0960-9822(02)70789-6

I. Neagoe, T. Stauber, P. Fidzinski, E. Y. Bergsdorf, and T. J. Jentsch, The Late Endosomal ClC-6 Mediates Proton/Chloride Countertransport in Heterologous Plasma Membrane Expression, Journal of Biological Chemistry, vol.445, issue.28, pp.21689-21697, 2010.
DOI : 10.1074/jbc.M304357200

G. Novarino, S. Weinert, G. Rickheit, and T. J. Jentsch, Endosomal Chloride-Proton Exchange Rather Than Chloride Conductance Is Crucial for Renal Endocytosis, Science, vol.282, issue.37, pp.1398-1401, 2010.
DOI : 10.1074/jbc.M702557200

A. Picollo and M. Pusch, Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5, Nature, vol.17, issue.7049, pp.420-423, 2005.
DOI : 10.1038/35107099

N. Piwon, W. Gunther, M. Schwake, M. R. Bosl, and T. J. Jentsch, ClC-5 Cl--channel disruption impairs endocytosis in amouse model for Dent's disease, Nature, vol.42, issue.6810, pp.369-373, 2000.
DOI : 10.1177/42.4.7510321

A. A. Reed, N. Y. Loh, S. Terryn, J. D. Lippiat, C. Partridge et al., CLC-5 and KIF3B interact to facilitate CLC-5 plasma membrane expression, endocytosis, and microtubular transport: relevance to pathophysiology of Dent's disease, American Journal of Physiology-Renal Physiology, vol.78, issue.2, pp.365-80, 2010.
DOI : 10.1046/j.1523-1755.2000.00314.x

H. Sakamoto, Y. Sado, I. Naito, T. H. Kwon, S. Inoue et al., -ATPase, American Journal of Physiology-Renal Physiology, vol.87, issue.43, pp.957-65, 1999.
DOI : 10.1083/jcb.130.4.821

N. Satoh, H. Yamada, O. Yamazaki, M. Suzuki, M. Nakamura et al., A pure chloride channel mutant of CLC-5 causes Dent???s disease via insufficient V-ATPase activation, Pfl??gers Archiv - European Journal of Physiology, vol.334, issue.7, pp.1183-1196, 2016.
DOI : 10.1126/science.1207056

O. Scheel, A. A. Zdebik, S. Lourdel, and T. J. Jentsch, Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins, Nature, vol.82, issue.7049, pp.424-427, 2005.
DOI : 10.1152/physrev.00029.2001

C. C. Scott and J. Gruenberg, Ion flux and the function of endosomes and lysosomes: pH is just the start, BioEssays, vol.10, issue.2, pp.103-110, 2011.
DOI : 10.1111/j.1600-0854.2009.00935.x

A. J. Smith and J. D. Lippiat, exchanger, The Journal of Physiology, vol.10, issue.12, pp.2033-2045, 2010.
DOI : 10.1038/embor.2009.159

URL : https://hal.archives-ouvertes.fr/hal-00675409

A. J. Smith, A. A. Reed, N. Y. Loh, R. V. Thakker, and J. D. Lippiat, Characterization of Dent's disease mutations of CLC-5 reveals a correlation between functional and cell biological consequences and protein structure, American Journal of Physiology-Renal Physiology, vol.296, issue.2, pp.390-397, 2009.
DOI : 10.1074/jbc.274.44.31123

T. Stauber and T. J. Jentsch, Chloride in Vesicular Trafficking and Function, Annual Review of Physiology, vol.75, issue.1, pp.453-477, 2013.
DOI : 10.1146/annurev-physiol-030212-183702

K. Steinmeyer, B. Schwappach, M. Bens, A. Vandewalle, and T. J. Jentsch, Cloning and Functional Expression of Rat CLC-5, a Chloride Channel Related to Kidney Disease, Journal of Biological Chemistry, vol.5, issue.52, pp.31172-31177, 1995.
DOI : 10.1146/annurev.bi.55.070186.003311

X. Tang, M. R. Brown, A. G. Cogal, D. Gauvin, P. C. Harris et al., Functional and transport analyses of CLCN5 genetic changes identified in Dent disease patients, Physiol. Rep, vol.4, 2016.

Y. Wang, H. Cai, L. Cebotaru, D. H. Hryciw, E. J. Weinman et al., ClC-5: role in endocytosis in the proximal tubule, American Journal of Physiology-Renal Physiology, vol.289, issue.4, pp.850-62, 2005.
DOI : 10.1093/hmg/9.20.2937

S. Weinert, S. Jabs, C. Supanchart, M. Schweizer, N. Gimber et al., Lysosomal Pathology and Osteopetrosis upon Loss of H+-Driven Lysosomal Cl- Accumulation, Science, vol.442, issue.7105, pp.1401-1403, 2010.
DOI : 10.1038/nature05013

. Wagner, Proximal Tubules Have the Capacity to Regulate Uptake of Albumin, Journal of the American Society of Nephrology, vol.27, issue.2, 2016.
DOI : 10.1681/ASN.2014111107

. Waldegger, Barttin increases surface expression and changes current properties of ClC-K channels, Pfl??gers Archiv, vol.444, issue.3, pp.411-418, 2002.
DOI : 10.1007/s00424-002-0819-8

&. Waldegger and . Jentsch, From tonus to tonicity: physiology of CLC chloride channels, 2000.

. Wang, ClC-5: role in endocytosis in the proximal tubule, American Journal of Physiology-Renal Physiology, vol.289, issue.4, pp.850-862, 2005.
DOI : 10.1093/hmg/9.20.2937

. Wang, Mice lacking renal chloride channel, CLC-5, are a model for Dent's disease, a nephrolithiasis disorder associated with defective receptor-mediated endocytosis, Human Molecular Genetics, vol.9, issue.20, 2000.
DOI : 10.1093/hmg/9.20.2937

. Wang, Genetic Variants Identified from Epilepsy of Unknown Etiology in Chinese Children by Targeted Exome Sequencing, Scientific Reports, vol.23, p.40319, 2017.
DOI : 10.1093/hmg/ddu199

&. Wang and . Giebisch, Dual modulation of renal ATP-sensitive K+ channel by protein kinases A and C., Proceedings of the National Academy of Sciences, vol.88, issue.21, pp.9722-9725, 1991.
DOI : 10.1073/pnas.88.21.9722

. Wang, A novel approach allows identification of K channels in the lateral membrane of rat CCD, American Journal of Physiology-Renal Physiology, vol.266, issue.5, pp.813-822, 1994.
DOI : 10.1152/ajprenal.1994.266.5.F813

. Wang, Regulation and function of potassium channels in aldosterone-sensitive distal nephron, Current Opinion in Nephrology and Hypertension, vol.19, issue.5, pp.463-470, 2010.
DOI : 10.1097/MNH.0b013e32833c34ec

. Wanner, Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes, New England Journal of Medicine, vol.375, issue.4, 2016.
DOI : 10.1056/NEJMoa1515920

. Warth, Proximal renal tubular acidosis in TASK2 K+ channel-deficient mice reveals a mechanism for stabilizing bicarbonate transport, Proceedings of the National Academy of Sciences, vol.23, issue.3, pp.8215-8220, 2004.
DOI : 10.1038/15440

URL : https://hal.archives-ouvertes.fr/hal-00320811

. Wartosch, Lysosomal degradation of endocytosed proteins depends on the chloride transport protein ClC-7, The FASEB Journal, vol.23, issue.12, pp.4056-4068, 2009.
DOI : 10.1096/fj.09-130880

&. Weiner and . Verlander, Renal Acidification Mechanisms". Brenner and Rector's The Kidney 9ème Édition, pp.293-325, 2012.
DOI : 10.1007/978-1-4614-3770-3_7

&. Weiner and . Verlander, Renal Ammonia Metabolism and Transport, Compr Physiol, vol.391, issue.Suppl 2, pp.201-220, 2013.
DOI : 10.1042/BJ20050657

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319187/pdf

. Weinert, Transport activity and presence of ClC-7/Ostm1 complex account for different cellular functions, EMBO reports, vol.15, issue.7, pp.784-791, 2014.
DOI : 10.15252/embr.201438553

. Weinert, Lysosomal Pathology and Osteopetrosis upon Loss of H+-Driven Lysosomal Cl- Accumulation, Science, vol.442, issue.7105, pp.1401-1403, 2010.
DOI : 10.1038/nature05013

&. Weinreich and . Jentsch, Pores Formed by Single Subunits in Mixed Dimers of Different CLC Chloride Channels, Journal of Biological Chemistry, vol.497, issue.4, pp.2347-2353, 2001.
DOI : 10.1085/jgp.109.1.105

. Weinstein, Modeling the proximal tubule: complications of the paracellular pathway, American Journal of Physiology-Renal Physiology, vol.254, issue.3, pp.297-305, 1988.
DOI : 10.1152/ajprenal.1988.254.3.F297

. Weisz, Acidification and Protein Traffic, Int Rev Cytol, vol.226, pp.259-319, 2003.
DOI : 10.1016/S0074-7696(03)01005-2

. Wellhauser, ClC transporters: discoveries and challenges in defining the mechanisms underlying function and regulation of ClC-5, Pfl??gers Archiv - European Journal of Physiology, vol.279, issue.8, pp.543-557, 2010.
DOI : 10.1172/JCI19874

. Welling, channel, American Journal of Physiology-Renal Physiology, vol.266, issue.35, pp.825-836, 1997.
DOI : 10.1152/ajpcell.1994.266.3.C809

. Welling, Roles and Regulation of Renal K Channels, Annual Review of Physiology, vol.78, issue.1, pp.415-435, 2016.
DOI : 10.1146/annurev-physiol-021115-105423

. Westrick, Axial compartmentation of descending and ascending thin limbs of Henle's loops, American Journal of Physiology-Renal Physiology, vol.248, issue.3, pp.308-316, 2013.
DOI : 10.1152/ajprenal.1985.248.3.F347

&. Whorton and . Mackinnon, Crystal Structure of the Mammalian GIRK2 K+ Channel and Gating Regulation by G Proteins, PIP2, and Sodium, Cell, vol.147, issue.1, pp.199-208, 2011.
DOI : 10.1016/j.cell.2011.07.046

&. Whorton and . Mackinnon, X-ray structure of the mammalian GIRK2??????? G-protein complex, Nature, vol.98, issue.7453, pp.190-197, 2013.
DOI : 10.1073/pnas.181342398

S. Scheinman, X-linked hypercalciuric nephrolithiasis: Clinical syndromes and chloride channel mutations, Kidney International, vol.53, issue.1, pp.3-17, 1998.
DOI : 10.1046/j.1523-1755.1998.00718.x

URL : https://doi.org/10.1046/j.1523-1755.1998.00718.x

R. Hoopes, J. Shrimpton, A. Knohl, S. Hueber, and P. , Dent Disease with Mutations in OCRL1, The American Journal of Human Genetics, vol.76, issue.2, pp.260-267, 2005.
DOI : 10.1086/427887

A. Shrimpton, R. Hoopes, J. Knohl, S. Hueber, and P. , <i>OCRL1</i> Mutations in Dent 2 Patients Suggest a Mechanism for Phenotypic Variability, Nephron Physiology, vol.112, issue.2, pp.27-36, 2009.
DOI : 10.1159/000213506

O. Devuyst and A. Luciani, Chloride transporters and receptor-mediated endocytosis in the renal proximal tubule, The Journal of Physiology, vol.273, issue.Suppl 1, pp.4151-4164, 2015.
DOI : 10.1074/jbc.273.3.1574

N. Piwon and W. Gunther, ClC-5 Cl--channel disruption impairs endocytosis in amouse model for Dent's disease, Nature, vol.42, issue.6810, pp.369-373, 2000.
DOI : 10.1177/42.4.7510321

M. Van-den-hove, K. Croizet-berger, F. Jouret, and S. Guggino, The Loss of the Chloride Channel, ClC-5, Delays Apical Iodide Efflux and Induces a Euthyroid Goiter in the Mouse Thyroid Gland, Endocrinology, vol.147, issue.3, pp.1287-1296, 2006.
DOI : 10.1210/en.2005-1149

O. Devuyst, P. Christie, P. Courtoy, and R. Beauwens, Intra-renal and subcellular distribution of the human chloride channel, CLC-5, reveals a pathophysiological basis for Dent's disease, Human Molecular Genetics, vol.8, issue.2, pp.247-257, 1999.
DOI : 10.1093/hmg/8.2.247

W. Gunther, A. Luchow, F. Cluzeaud, and A. Vandewalle, ClC-5, the chloride channel mutated in Dent's disease, colocalizes with the proton pump in endocytotically active kidney cells, Proceedings of the National Academy of Sciences, vol.101, issue.3, pp.8075-8080, 1998.
DOI : 10.1172/JCI1496

W. Gunther and T. Jentsch, The ClC-5 chloride channel knock-out mouse ??? an animal model for Dent's disease, Pfl??gers Archiv - European Journal of Physiology, vol.445, issue.4, pp.456-462, 2003.
DOI : 10.1007/s00424-002-0950-6

M. Hara-chikuma, Y. Wang, S. Guggino, and W. Guggino, Impaired acidification in early endosomes of ClC-5 deficient proximal tubule, Biochemical and Biophysical Research Communications, vol.329, issue.3, pp.941-946, 2005.
DOI : 10.1016/j.bbrc.2005.02.060

G. Novarino, S. Weinert, G. Rickheit, and T. Jentsch, Endosomal Chloride-Proton Exchange Rather Than Chloride Conductance Is Crucial for Renal Endocytosis, Science, vol.282, issue.37, pp.1398-1401, 2010.
DOI : 10.1074/jbc.M702557200

T. Stauber, S. Weinert, and T. Jentsch, Cell Biology and Physiology of CLC Chloride Channels and Transporters, Compr Physiol, vol.555, issue.Pt 1, pp.1701-1744, 2012.
DOI : 10.1113/jphysiol.2003.060046

T. Grand, D. Mordasini, L. 'hoste, S. Pennaforte, and T. , Novel CLCN5 mutations in patients with Dent???s disease result in altered ion currents or impaired exchanger processing, Kidney International, vol.76, issue.9, pp.999-1005, 2009.
DOI : 10.1038/ki.2009.305

T. Grand, L. Hoste, S. Mordasini, and D. , Heterogeneity in the processing of CLCN5 mutants related to Dent disease, Human Mutation, vol.22, issue.4, pp.476-483, 2011.
DOI : 10.1016/S0896-6273(00)80708-4

S. Lourdel and T. Grand, ClC-5 mutations associated with Dent???s disease: a major role of the dimer interface, Pfl??gers Archiv - European Journal of Physiology, vol.10, issue.Suppl 2, pp.247-256, 2012.
DOI : 10.1038/embor.2009.159

O. Devuyst and R. Thakker, Dent's disease, Orphanet Journal of Rare Diseases, vol.5, issue.1, p.28, 2010.
DOI : 10.1186/1750-1172-5-28

S. Liu, C. Chen, T. Yang, and W. Huang, Albumin prevents reactive oxygen species-induced mitochondrial damage, autophagy, and apoptosis during serum starvation, Apoptosis, vol.177, issue.Pt 7, pp.1156-1169, 2012.
DOI : 10.1016/j.toxlet.2008.01.004

K. Moreau, S. Luo, and D. Rubinsztein, Cytoprotective roles for autophagy, Current Opinion in Cell Biology, vol.22, issue.2, pp.206-211, 2010.
DOI : 10.1016/j.ceb.2009.12.002

URL : https://doi.org/10.1016/j.ceb.2009.12.002

P. Gailly and F. Jouret, A novel renal carbonic anhydrase type III plays a role in proximal tubule dysfunction, Kidney International, vol.74, issue.1, pp.52-61, 2008.
DOI : 10.1038/sj.ki.5002794

S. Oakes and F. Papa, The Role of Endoplasmic Reticulum Stress in Human Pathology, Annual Review of Pathology: Mechanisms of Disease, vol.10, issue.1, pp.173-194, 2015.
DOI : 10.1146/annurev-pathol-012513-104649

S. Lhotak, S. Sood, E. Brimble, and R. Carlisle, ER stress contributes to renal proximal tubule injury by increasing SREBP-2-mediated lipid accumulation and apoptotic cell death, American Journal of Physiology-Renal Physiology, vol.21, issue.2, pp.266-278, 2012.
DOI : 10.1101/gad.12.7.982

N. Chaudhari, P. Talwar, A. Parimisetty, and C. Lefebvre-d-'hellencourt, A Molecular Web: Endoplasmic Reticulum Stress, Inflammation, and Oxidative Stress, Frontiers in Cellular Neuroscience, vol.68, issue.Suppl., p.213, 2014.
DOI : 10.1158/0008-5472.CAN-08-1318

D. Antonio, C. Molinski, S. Ahmadi, S. Huan, and L. , Conformational defects underlie proteasomal degradation of Dent's disease-causing mutants of ClC-5, Biochemical Journal, vol.489, issue.3, pp.391-400, 2013.
DOI : 10.1016/j.bpj.2012.03.067

D. Raden, S. Hildebrandt, P. Xu, and E. Bell, Analysis of cellular response to protein overexpression, IEE Proceedings - Systems Biology, vol.152, issue.4, pp.285-289, 2005.
DOI : 10.1049/ip-syb:20050048

A. Reed, N. Loh, S. Terryn, and J. Lippiat, CLC-5 and KIF3B interact to facilitate CLC-5 plasma membrane expression, endocytosis, and microtubular transport: relevance to pathophysiology of Dent's disease, American Journal of Physiology-Renal Physiology, vol.78, issue.2, pp.365-380, 2010.
DOI : 10.1046/j.1523-1755.2000.00314.x

A. Alekov, Mutations associated with Dent's disease affect gating and voltage dependence of the exchanger ClC-5, Front Physiol, vol.6, p.159, 2015.

C. Tong and P. Li, Production of p53 gene knockout rats by homologous recombination in embryonic stem cells, Nature, vol.115, issue.7312, pp.211-213, 2011.
DOI : 10.1038/nature09368

M. Jinek and K. Chylinski, A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity, Science, vol.274, issue.45, pp.816-821, 2012.
DOI : 10.1074/jbc.274.45.31896

P. Mali, L. Yang, K. Esvelt, and J. Aach, RNA-Guided Human Genome Engineering via Cas9, Science, vol.106, issue.7, pp.823-826, 2013.
DOI : 10.1073/pnas.0812506106

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712628/pdf

H. Wang, H. Yang, C. Shivalila, and M. Dawlaty, One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering, Cell, vol.153, issue.4, pp.910-918, 2013.
DOI : 10.1016/j.cell.2013.04.025

M. Inui and M. Tamano, Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system, Scientific Reports, vol.8, issue.1, p.5396, 2014.
DOI : 10.1371/journal.pone.0076004

S. Wang, O. Devuyst, P. Courtoy, and X. Wang, Mice lacking renal chloride channel, CLC-5, are a model for Dent's disease, a nephrolithiasis disorder associated with defective receptor-mediated endocytosis, Human Molecular Genetics, vol.9, issue.20, pp.2937-2945, 2000.
DOI : 10.1093/hmg/9.20.2937

E. Christensen, O. Devuyst, G. Dom, and R. Nielsen, Loss of chloride channel ClC-5 impairs endocytosis by defective trafficking of megalin and cubilin in kidney proximal tubules, Proceedings of the National Academy of Sciences, vol.283, issue.14, pp.8472-8477, 2003.
DOI : 10.1074/jbc.M011577200

R. Nielsen, P. Courtoy, C. Jacobsen, and G. Dom, Endocytosis provides a major alternative pathway for lysosomal biogenesis in kidney proximal tubular cells, Proceedings of the National Academy of Sciences, vol.111, issue.11, pp.5407-5412, 2007.
DOI : 10.1172/JCI200315990

C. Giovannangeli and J. Concordet, Editing and investigating genomes with TALE and CRISPR/Cas systems: Applications of artificial TALE and CRISPR???Cas systems, Methods, vol.69, issue.2, pp.119-120, 2014.
DOI : 10.1016/j.ymeth.2014.08.013

W. Lima, K. Parreira, O. Devuyst, and A. Caplanusi, ZONAB Promotes Proliferation and Represses Differentiation of Proximal Tubule Epithelial Cells, Journal of the American Society of Nephrology, vol.21, issue.3, pp.478-488, 2010.
DOI : 10.1681/ASN.2009070698

C. Raggi, A. Luciani, N. Nevo, and C. Antignac, Dedifferentiation and aberrations of the endolysosomal compartment characterize the early stage of nephropathic cystinosis, Human Molecular Genetics, vol.40, issue.9-10, pp.2266-2278, 2014.
DOI : 10.1016/j.clinbiochem.2007.02.005

W. Yu, S. Beaudry, H. Negoro, and I. Boucher, H2O2 activates G protein, ?? 12 to disrupt the junctional complex and enhance ischemia reperfusion injury, Proceedings of the National Academy of Sciences, vol.46, issue.12, pp.6680-6685, 2012.
DOI : 10.1021/bi700235f

C. Gorvin, M. Wilmer, S. Piret, and B. Harding, Receptor-mediated endocytosis and endosomal acidification is impaired in proximal tubule epithelial cells of Dent disease patients, Proceedings of the National Academy of Sciences, vol.96, issue.21, pp.7014-7019, 2013.
DOI : 10.1073/pnas.96.21.12174

A. Lee, C. Slattery, D. Nikolic-paterson, and D. Hryciw, Chloride channel ClC-5 binds to aspartyl aminopeptidase to regulate renal albumin endocytosis, American Journal of Physiology-Renal Physiology, vol.9, issue.7, pp.784-792, 2015.
DOI : 10.1073/pnas.93.16.8460

S. Terryn, F. Jouret, F. Vandenabeele, and I. Smolders, A primary culture of mouse proximal tubular cells, established on collagen-coated membranes, American Journal of Physiology-Renal Physiology, vol.293, issue.2, pp.476-485, 2007.
DOI : 10.1093/hmg/9.20.2937

Y. Wang, H. Cai, and L. Cebotaru, ClC-5: role in endocytosis in the proximal tubule, American Journal of Physiology-Renal Physiology, vol.289, issue.4, pp.850-862, 2005.
DOI : 10.1093/hmg/9.20.2937

N. Odolczyk, J. Fritsch, C. Norez, and N. Servel, Discovery of novel potent ??F508-CFTR correctors that target the nucleotide binding domain, EMBO Molecular Medicine, vol.7, issue.10, pp.1484-1501, 2013.
DOI : 10.1371/journal.pbio.1000155

?. Yohan-bignon, *. , O. Andrini, *. , S. Bitam et al., Analysis of CLCNKB mutations at dimer-interface, calcium binding site and pore reveal a variety of functional alterations in ClC-Kb channel leading to Bartter syndrome, Liste des publications scientifiques en revue à comité de lecture

?. Yohan-bignon, L. Pinelli, N. Frachon, O. Lahuna, M. Figueres et al., Isolated proximal renal tubular acidosis in mice lacking the Kir4.2(Kcnj15) potassium channel

?. Yohan-bignon, A. Alekov, N. Frachon, O. Lahuna, J. Teulon et al., A novel ClC-5 mutation involved in Dent's disease leads to normal endosomal acidification despite abolished proton transport

?. Louet, S. Bitam, N. Bakouh, Y. Bignon, G. Planelles et al., In silico model of the human ClC-Kb chloride channel: pore mapping, biostructural pathology and drug screening, Scientific Reports, vol.275, issue.Suppl 3, pp.sous-presse
DOI : 10.1074/jbc.M001987200

URL : https://hal.archives-ouvertes.fr/hal-01580157

?. Christopher-hennings, O. Andrini, N. Picard, M. Paulais, A. K. Huebner et al., The ClC-K2 Chloride Channel Is Critical for Salt Handling in the Distal Nephron, Journal of the American Society of Nephrology, vol.28, issue.1, pp.209-217, 2017.
DOI : 10.1681/ASN.2016010085

S. Poussou and . Lourdel, Functional analysis of a novel mutation affecting the gating glutamate of ClC-5 in a patient with Dent's disease, Experimental Biology Meeting, pp.22-26, 1007.

L. @bullet-yohan-bignon, S. Pinelli, S. Ayari, M. Lourdel, J. Paulais et al., Investigation on the role of the Kir4.2 K+ channel in renal and pancreatic functions. Federation of the European Societies of Physiology Annual Meeting

O. @bullet-yohan-bignon, M. Andrini, S. Keck, R. Lourdel, J. Vargas-poussou et al., Functional and molecular analysis of ClC-Kb chloride channel missense involved in Bartter syndrome type III. Journée annuelle de l'École Doctorale de Physiologie, pp.6-7, 2016.

M. @bullet-yohan-bignon, S. Keck, R. Lourdel, J. Vargas-poussou, O. Teulon et al., Functional analysis of CLCNKB mutations causing Bartter syndrome type III, ASN Kidney Week Annual Meeting

. Le, Grâce à de nombreux transports transépithéliaux, il réabsorbe la totalité du glucose, des acides aminés et des protéines de bas poids moléculaires, ainsi que 80 % des ions HPO4 2- ou HCO3 -, 60 % des ions Na + , Cl -, K + , Ca 2+ , 75 % de l'eau et 30 % des ions Mg 2+ ultrafiltrés. Durant ma thèse, j'ai étudié les rôles physiologiques et physiopathologiques de deux protéines de transport exprimées dans le tubule proximal, au cours de deux études distinctes. Dans le cadre de ma première étude, j'ai évalué in vivo la fonction rénale de souris n'exprimant pas une protéine appelée Kir4, dont le rôle est inconnu. Nos résultats montrent que Kir4.2, associée à Kir5.1, forme un canal potassique basolatéral Kir4.2/Kir5.1 dans le tubule proximal. L'absence de Kir4.2 provoque chez la souris une acidose tubulaire proximale isolée, consécutive à une ammoniogénèse altérée. De fait, la perte de fonctionnalité de Kir4