H. Peng, M. I. Stich, J. Yu, L. Sun, L. H. Fischer et al., Luminescent Europium(III) Nanoparticles for Sensing and Imaging of Temperature in the Physiological Range, Advanced Materials, vol.6, issue.6, pp.716-719, 2010.
DOI : 10.1007/978-3-642-56853-4_13

G. G. Stokes, On the Change of Refrangibility of Light, Philosophical Transactions of the Royal Society of London, vol.142, issue.0, pp.463-562, 1852.
DOI : 10.1098/rstl.1852.0022

J. R. Lakowicz and E. , Introduction to Fluorescence, 2006.

R. F. Chen, Fluorescence lifetime reference standards for the range 0.189 to 115 nanoseconds, Analytical Biochemistry, vol.57, issue.2, pp.593-604, 1974.
DOI : 10.1016/0003-2697(74)90115-8

P. Yuster and S. I. Weissman, Effects of Perturbations on Phosphorescence: Luminescence of Metal Organic Complexes, The Journal of Chemical Physics, vol.112, issue.12, pp.1182-1188, 1949.
DOI : 10.1063/1.1750873

Q. Feng, H. Zhao, C. Wei, Z. Zhang, and C. Wenwu, A precise Boltzmann distribution law for the fluorescence intensity ratio of two thermally coupled levels, Appl. Phys. Lett, vol.108, issue.24, p.241907, 2016.

X. Wang, O. S. Wolfbeis, and R. J. Meier, Luminescent probes and sensors for temperature, Chemical Society Reviews, vol.106, issue.74, pp.7834-7869, 2013.
DOI : 10.1063/1.3233940

J. Sakakibara and R. J. Adrian, Whole field measurement of temperature in water using two-color laser induced fluorescence, Experiments in Fluids, vol.26, issue.1-2, pp.7-15, 1999.
DOI : 10.1007/s003480050260

D. Fogg, M. David, and K. Goodson, Non-invasive measurement of void fraction and liquid temperature in microchannel flow boiling, Experiments in Fluids, vol.11, issue.21, pp.725-736, 2009.
DOI : 10.1007/s00348-004-0821-3

R. J. Hopkins, C. R. Howle, and J. P. Reid, Measuring temperature gradients in evaporating multicomponent alcohol/water droplets, Physical Chemistry Chemical Physics, vol.21, issue.24, pp.2879-2888, 2006.
DOI : 10.1039/b600530f

E. J. Mclaurin, L. R. Bradshaw, and D. R. Gamelin, Dual-Emitting Nanoscale Temperature Sensors, Chemistry of Materials, vol.25, issue.8, pp.1283-1292, 2013.
DOI : 10.1021/cm304034s

J. Dong and J. I. Zink, Taking the Temperature of the Interiors of Magnetically Heated Nanoparticles, ACS Nano, vol.8, issue.5, pp.5199-5207, 2014.
DOI : 10.1021/nn501250e

E. M. Graham, K. Iwai, S. Uchiyama, A. De-silva, S. W. Magennis et al., Quantitative mapping of aqueous microfluidic temperature with sub-degree resolution using fluorescence lifetime imaging microscopy, Lab on a Chip, vol.8, issue.10, pp.1267-1273, 2010.
DOI : 10.1007/s10404-008-0269-5

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. W. Berndt, and M. Johnson, Fluorescence lifetime imaging, Analytical Biochemistry, vol.202, issue.2, pp.316-330, 1992.
DOI : 10.1016/0003-2697(92)90112-K

J. S. Donner, S. A. Thompson, M. P. Kreuzer, G. Baffou, and R. Quidant, Mapping Intracellular Temperature Using Green Fluorescent Protein, Nano Letters, vol.12, issue.4, pp.2107-2111, 2012.
DOI : 10.1021/nl300389y

URL : https://hal.archives-ouvertes.fr/hal-00728941

M. Kumbhakar, T. Mukherjee, and H. Pal, Temperature Effect on the Fluorescence Anisotropy Decay Dynamics of Coumarin-153 Dye in Triton-X-100 and Brij-35 Micellar Solutions, Photochem. Photobiol, vol.81, issue.3, pp.588-594, 2005.

K. Tang and A. Gomez, On the structure of an electrostatic spray of monodisperse droplets, Physics of Fluids, vol.36, issue.7, pp.2317-2332, 1994.
DOI : 10.1063/1.868037

L. Konermann, E. Ahadi, A. D. Rodriguez, and S. Vahidi, Unraveling the Mechanism of Electrospray Ionization, Analytical Chemistry, vol.85, issue.1, pp.2-9, 2013.
DOI : 10.1021/ac302789c

K. Tang and A. Gomez, Generation by electrospray of monodisperse water droplets for targeted drug delivery by inhalation, Journal of Aerosol Science, vol.25, issue.6, pp.1237-1249, 1994.
DOI : 10.1016/0021-8502(94)90212-7

K. Tang and A. Gomez, Generation of Monodisperse Water Droplets from Electrosprays in a Corona-Assisted Cone-Jet Mode, Journal of Colloid and Interface Science, vol.175, issue.2, pp.326-332, 1995.
DOI : 10.1006/jcis.1995.1464

K. Tang and A. Gomez, Charge and fission of droplets in electrostatic sprays, Phys. Fluids, vol.6, issue.1, pp.404-414, 1994.

Z. Olumee, J. H. Callahan, and A. Vertes, Droplet Dynamics Changes in Electrostatic Sprays of Methanol???Water Mixtures, The Journal of Physical Chemistry A, vol.102, issue.46, pp.9154-9160, 1998.
DOI : 10.1021/jp982027z

P. Nemes, I. Marginean, and A. Vertes, Spraying Mode Effect on Droplet Formation and Ion Chemistry in Electrosprays, Analytical Chemistry, vol.79, issue.8, pp.3105-3116, 2007.
DOI : 10.1021/ac062382i

S. Zhou, A. G. Edwards, K. D. Cook, and G. J. Van-berkel, Investigation of the Electrospray Plume by Laser-Induced Fluorescence Spectroscopy, Analytical Chemistry, vol.71, issue.4, pp.769-776, 1999.
DOI : 10.1021/ac981259r

S. Zhou and K. D. Cook, Probing Solvent Fractionation in Electrospray Droplets with Laser-Induced Fluorescence of a Solvatochromic Dye, Analytical Chemistry, vol.72, issue.5, pp.963-969, 2000.
DOI : 10.1021/ac990912n

S. Zhou, B. S. Prebyl, and K. D. Cook, Profiling pH Changes in the Electrospray Plume, Analytical Chemistry, vol.74, issue.19, pp.4885-4888, 2002.
DOI : 10.1021/ac025960d

R. Wang and R. Zenobi, Evolution of the solvent polarity in an electrospray plume, Journal of the American Society for Mass Spectrometry, vol.77, issue.3
DOI : 10.1021/ac048536g

P. Kebarle and U. H. Verkerk, Electrospray: From ions in solution to ions in the gas phase, what we know now, Mass Spectrometry Reviews, vol.107, issue.14, pp.898-917, 2009.
DOI : 10.1006/jcis.1995.1464

S. C. Gibson, C. S. Feigerle, and K. D. Cook, Fluorometric Measurement and Modeling of Droplet Temperature Changes in an Electrospray Plume, Analytical Chemistry, vol.86, issue.1, pp.464-472, 2014.
DOI : 10.1021/ac402364g

H. Wang and G. R. Agnes, Kinetically Labile Equilibrium Shifts Induced by the Electrospray Process, Analytical Chemistry, vol.71, issue.19, pp.4166-4172, 1999.
DOI : 10.1021/ac981375u

. Pratsinis, Shrinking Droplets in Electrospray Ionization and Their Influence on Chemical Equilibria, J. Am. Soc. Mass Spectrom, vol.18, issue.3, pp.385-393, 2007.

J. Liu and L. Konermann, Irreversible thermal denaturation of cytochrome c studied by electrospray mass spectrometry, Journal of the American Society for Mass Spectrometry, vol.79, issue.5, pp.819-828, 2009.
DOI : 10.1021/ac070724u

X. M. Pan, X. R. Sheng, S. M. Yang, and J. M. Zhou, Probing subtle acid-induced conformational changes of ribonuclease A by electrospray mass spectrometry, FEBS Letters, vol.402, issue.1, pp.25-27, 1997.
DOI : 10.1016/S0014-5793(96)01490-1

S. F. Wong, C. K. Meng, and J. B. Fenn, Multiple charging in electrospray ionization of poly(ethylene glycols), The Journal of Physical Chemistry, vol.92, issue.2, pp.546-550, 1988.
DOI : 10.1021/j100313a058

J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, and C. M. Whitehouse, Electrospray ionization for mass spectrometry of large biomolecules, Science, vol.246, issue.4926, pp.64-71, 1989.
DOI : 10.1126/science.2675315

A. Bruins and R. B. Cole, Electrospray and MALDI Mass Spectrometry: Fundamentals, Instrumentation, Practicalities, and Biological Applications, 2010.

M. Girod, Profiling an electrospray plume by laser-induced fluorescence and Fraunhofer diffraction combined to mass spectrometry: influence of size and composition of droplets on charge-state distributions of electrosprayed proteins, Physical Chemistry Chemical Physics, vol.12, issue.26
DOI : 10.1016/S1044-0305(01)00241-0

URL : https://hal.archives-ouvertes.fr/hal-00947061

.. De-fluorescence, Influence des différents paramètres sur l'anisotropie, p.155

J. Li, C. Santambrogio, S. Brocca, G. Rossetti, P. Carloni et al., Conformational effects in protein electrospray-ionization mass spectrometry, Mass Spectrometry Reviews, vol.9, issue.1, pp.111-122, 2016.
DOI : 10.1586/epr.11.75

L. Konermann, E. Ahadi, A. D. Rodriguez, and S. Vahidi, Unraveling the Mechanism of Electrospray Ionization, Analytical Chemistry, vol.85, issue.1, pp.2-9, 2013.
DOI : 10.1021/ac302789c

K. Wuthrich, The way to NMR structures of proteins, Nature Structural Biology, vol.8, issue.11, pp.923-925, 2001.
DOI : 10.1038/nsb1101-923

N. J. Greenfield, Using circular dichroism spectra to estimate protein secondary structure, Nature Protocols, vol.79, issue.6, pp.2876-2890, 2006.
DOI : 10.1016/j.bbapap.2005.06.005

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2728378/pdf

C. Phillips, A Three-Dimensional Model of the Myoglobin Molecule Obtained by X- Ray Analysis, Nature, vol.181, issue.4610, pp.662-666, 1958.

D. L. Smith and Z. Zhang, Probing noncovalent structural features of proteins by mass spectrometry, Mass Spectrometry Reviews, vol.25, issue.5-6, pp.5-6, 1994.
DOI : 10.1016/0167-4838(89)90300-2

E. Vandermarliere, E. Stes, K. Gevaert, and L. Martens, Resolution of protein structure by mass spectrometry, Mass Spectrometry Reviews, vol.9, issue.6, pp.653-665, 2016.
DOI : 10.1586/epr.11.75

D. Wittmer, Y. H. Chen, B. K. Luckenbill, and H. H. Hill, Electrospray Ionization Ion Mobility Spectrometry, Analytical Chemistry, vol.66, issue.14, pp.2348-2355, 1994.
DOI : 10.1021/ac00086a021

F. Lanucara, S. W. Holman, C. J. Gray, and C. E. Eyers, The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics, Nature Chemistry, vol.85, issue.4
DOI : 10.1351/PAC-REC-06-04-06

T. Meyer, V. Gabelica, H. Grubmüller, and M. Orozco, Proteins in the gas phase, Wiley Interdisciplinary Reviews: Computational Molecular Science, vol.132, issue.187, pp.408-425, 2013.
DOI : 10.1021/ja9090353

V. Bellotti and M. Stoppini, Protein Misfolding Diseases~!2009-04-27~!2009-06-22~!2010-01-02~!, The Open Biology Journal, vol.2, issue.2, pp.228-232, 2009.
DOI : 10.2174/1874196700902020228

F. Chiti and C. M. Dobson, Protein Misfolding, Functional Amyloid, and Human Disease, Annual Review of Biochemistry, vol.75, issue.1, pp.333-366, 2006.
DOI : 10.1146/annurev.biochem.75.101304.123901

J. R. Lakowicz and E. , Protein Fluorescence BT -Principles of Fluorescence Spectroscopy, pp.529-575, 2006.

A. B. Ghisaidoobe and S. J. Chung, Intrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins: A Focus on F??rster Resonance Energy Transfer Techniques, International Journal of Molecular Sciences, vol.269, issue.12
DOI : 10.1016/j.bbapap.2009.08.007

I. A. Kaltashov, C. E. Bobst, and R. R. Abzalimov, Mass spectrometry-based methods to study protein architecture and dynamics, Protein Science, vol.11, issue.5, pp.530-544, 2013.
DOI : 10.1038/nrd3746

URL : http://onlinelibrary.wiley.com/doi/10.1002/pro.2238/pdf

J. Li, J. A. Taraszka, A. E. Counterman, and D. E. Clemmer, Influence of solvent composition and capillary temperature on the conformations of electrosprayed ions: unfolding of compact ubiquitin conformers from pseudonative and denatured solutions, International Journal of Mass Spectrometry, vol.185, issue.187
DOI : 10.1016/S1387-3806(98)14135-0

J. Liu and L. Konermann, Irreversible thermal denaturation of cytochrome c studied by electrospray mass spectrometry, Journal of the American Society for Mass Spectrometry, vol.79, issue.5, pp.819-828, 2009.
DOI : 10.1021/ac070724u

U. A. Mirza, S. L. Cohen, and B. T. Chait, Heat-induced conformational changes in proteins studied by electrospray ionization mass spectrometry, Analytical Chemistry, vol.65, issue.1, pp.1-6, 1993.
DOI : 10.1021/ac00049a003

J. C. Le-blanc, D. Beuchemin, K. W. Siu, R. Guevremont, and S. S. Berman, Thermal denaturation of some proteins and its effect on their electrospray mass spectrat, Organic Mass Spectrometry, vol.12, issue.10
DOI : 10.1080/00032718008067945

A. Kharlamova and S. A. Mcluckey, Negative Electrospray Droplet Exposure to Gaseous Bases for the Manipulation of Protein Charge State Distributions, Analytical Chemistry, vol.83, issue.1, pp.431-437, 2011.
DOI : 10.1021/ac1027319

A. Kharlamova, B. M. Prentice, T. Huang, and S. A. Mcluckey, Electrospray Droplet Exposure to Gaseous Acids for the Manipulation of Protein Charge State Distributions, Analytical Chemistry, vol.82, issue.17
DOI : 10.1021/ac101578q

M. Girod, R. Antoine, P. Dugourd, C. Love, A. Mordehai et al., Basic Vapor Exposure for Tuning the Charge State Distribution of Proteins in Negative Electrospray Ionization: Elucidation of Mechanisms by Fluorescence Spectroscopy, Journal of The American Society for Mass Spectrometry, vol.11, issue.7, pp.1221-1231, 2012.
DOI : 10.1016/S1044-0305(99)00149-X

D. N. Mortensen and E. R. Williams, Investigating Protein Folding and Unfolding in Electrospray Nanodrops Upon Rapid Mixing Using Theta-Glass Emitters, Analytical Chemistry, vol.87, issue.2, pp.1281-1287, 2015.
DOI : 10.1021/ac503981c

B. T. Ruotolo, J. L. Benesch, A. M. Sandercock, S. Hyung, and C. Robinson, Ion mobility???mass spectrometry analysis of large protein complexes, Nature Protocols, vol.16, issue.7, pp.1139-1152, 2008.
DOI : 10.1038/nprot.2008.78

M. F. Czar and R. A. Jockusch, Sensitive probes of protein structure and dynamics in well-controlled environments: combining mass spectrometry with fluorescence spectroscopy, Current Opinion in Structural Biology, vol.34, pp.123-134, 2015.
DOI : 10.1016/j.sbi.2015.09.004

S. Ideue, K. Sakamoto, K. Honma, and D. E. Clemmer, Conformational change of electrosprayed cytochrome c studied by laser-induced fluorescence, Chemical Physics Letters, vol.337, issue.1-3, pp.1-3, 2001.
DOI : 10.1016/S0009-2614(01)00153-1

S. E. Rodriguez-cruz, J. T. Khoury, and J. H. Parks, Protein fluorescence measurements within electrospray droplets, Journal of the American Society for Mass Spectrometry, vol.7, issue.6, pp.716-725, 2001.
DOI : 10.1016/S0959-440X(97)80003-6

D. E. Schlamadinger, D. I. Kats, and J. E. Kim, Quenching of Tryptophan Fluorescence in Unfolded Cytochrome c: A Biophysics Experiment for Physical Chemistry Students, J

M. R. Eftink, The use of fluorescence methods to monitor unfolding transitions in proteins, Biophysical Journal, vol.66, issue.2, pp.482-501, 1994.
DOI : 10.1016/S0006-3495(94)80799-4

O. C. Fiebig, E. Mancini, G. Caputo, and T. D. Vaden, Quantitative Evaluation of Myoglobin Unfolding in the Presence of Guanidinium Hydrochloride and Ionic Liquids in Solution, The Journal of Physical Chemistry B, vol.118, issue.2, pp.406-412, 2014.
DOI : 10.1021/jp408061k

D. Canet, K. Doering, C. M. Dobson, and Y. Dupont, High-Sensitivity Fluorescence Anisotropy Detection of Protein-Folding Events: Application to ??-Lactalbumin, Biophysical Journal, vol.80, issue.4
DOI : 10.1016/S0006-3495(01)76169-3

S. Weiss, Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy, Nature Structural Biology, vol.7, issue.9, pp.724-729, 2000.
DOI : 10.1038/78941

A. Marczak, Fluorescence anisotropy of membrane fluidity probes in human erythrocytes incubated with anthracyclines and glutaraldehyde, Bioelectrochemistry, vol.74, issue.2, pp.236-239, 2009.
DOI : 10.1016/j.bioelechem.2008.11.004

V. Letilly and C. A. Royer, Fluorescence anisotropy assays implicate protein-protein interactions in regulating trp repressor DNA binding, Biochemistry, vol.32, issue.30, pp.7753-7758, 1993.
DOI : 10.1021/bi00081a021

G. Hungerford, J. Benesch, J. F. Mano, and R. L. Reis, Effect of the labelling ratio on the photophysics of fluorescein isothiocyanate (FITC) conjugated to bovine serum albumin, Photochem. Photobiol. Sci., vol.67, issue.2, pp.152-158, 2007.
DOI : 10.1016/S0141-8130(99)00054-9

M. Brinkley, A brief survey of methods for preparing protein conjugates with dyes, haptens and crosslinking reagents, Bioconjugate Chemistry, vol.3, issue.1, pp.2-13, 1992.
DOI : 10.1021/bc00013a001

A. Castro-forero, D. Jiménez, J. López-garriga, and M. Torres-lugo, Immobilization of myoglobin from horse skeletal muscle in hydrophilic polymer networks, Journal of Applied Polymer Science, vol.7, issue.2
DOI : 10.1021/bk-1997-0680

L. Whitmore and B. A. Wallace, DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data, Nucleic Acids Research, vol.32, issue.Web Server, pp.668-673, 2004.
DOI : 10.1093/nar/gkh371

URL : https://academic.oup.com/nar/article-pdf/32/suppl_2/W668/6208083/gkh371.pdf

L. Whitmore and B. A. Wallace, Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases, Biopolymers, vol.332, issue.5, pp.392-400, 2008.
DOI : 10.1155/2005/263649

URL : http://onlinelibrary.wiley.com/doi/10.1002/bip.20853/pdf

S. Papadopoulos, K. D. Jürgens, and G. Gros, Protein Diffusion in Living Skeletal Muscle Fibers: Dependence on Protein Size, Fiber Type, and Contraction, Biophysical Journal, vol.79, issue.4, pp.2084-2094, 2000.
DOI : 10.1016/S0006-3495(00)76456-3

M. T. Tyn and T. W. Gusek, Prediction of diffusion coefficients of proteins, Biotechnology and Bioengineering, vol.255, issue.4, pp.327-338, 1990.
DOI : 10.1101/SQB.1963.028.01.057

S. Z. Mikhail and W. R. , Densities and Viscosities of Methanol-Water Mixtures., Journal of Chemical & Engineering Data, vol.6, issue.4, pp.533-537, 1961.
DOI : 10.1021/je60011a015

T. T. Herskovits, B. Gadegbeku, H. Jaillet, . Denaturation, . By et al., On the Structural Stability and Solvent Denaturation of Proteins: I, J. Biol. Chem, vol.245, issue.10, pp.2588-2598, 1970.

S. Hwang, Q. Shao, H. Williams, C. Hilty, and Y. Q. Gao, Methanol Strengthens Hydrogen Bonds and Weakens Hydrophobic Interactions in Proteins ??? A Combined Molecular Dynamics and NMR study, The Journal of Physical Chemistry B, vol.115, issue.20, pp.6653-6660, 2011.
DOI : 10.1021/jp111448a

A. Fernández and O. Sinano?lu, Denaturation of proteins in methanol/water mixtures, Biophysical Chemistry, vol.21, issue.3-4, pp.163-166, 1985.
DOI : 10.1016/0301-4622(85)80002-8

J. Seo, W. Hoffmann, S. Warnke, M. T. Bowers, K. Pagel et al., Retention of Native Protein Structures in the Absence of Solvent: A Coupled Ion Mobility and Spectroscopic Study, Angewandte Chemie International Edition, vol.135, issue.45, pp.14173-14176, 2016.
DOI : 10.1021/ja308528d

A. Soleilhac, F. Bertorelle, P. Dugourd, M. Girod, and R. Antoine, Monitoring methanol-induced protein unfolding by fluorescence anisotropy measurements of covalently labelled rhodamine probe, The European Physical Journal D, vol.89, issue.6, p.142, 2017.
DOI : 10.1529/biophysj.105.069500

URL : https://hal.archives-ouvertes.fr/hal-01569441

Y. Y. Gottlieb, P. Wahl, ". Groupe, . Mobile, . Dun et al., ??tude th??orique de la polarisation de fluorescence des macromol??cules portant un groupe ??metteur mobile autour d'un axe de rotation, Journal de Chimie Physique, vol.60, issue.78, pp.849-856, 1963.
DOI : 10.1051/jcp/1963600849

K. Kinosita, S. Kawato, and A. Ikegami, A theory of fluorescence polarization decay in membranes, Biophysical Journal, vol.20, issue.3, pp.289-305, 1977.
DOI : 10.1016/S0006-3495(77)85550-1

G. F. Schröder, U. Alexiev, and H. Grubmüller, Simulation of Fluorescence Anisotropy Experiments: Probing Protein Dynamics, Biophysical Journal, vol.89, issue.6, pp.3757-3770, 2005.
DOI : 10.1529/biophysj.105.069500

V. Frankevich, K. Barylyuk, K. Chingin, R. Nieckarz, and R. Zenobi, Native Biomolecules in the Gas Phase? The Case of Green Fluorescent Protein, ChemPhysChem, vol.82, issue.5, pp.929-935, 2013.
DOI : 10.1021/ac1022953

.. Lyon-bordeaux, Développement d'une source spray de nanoparticule

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays et al., Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters, Nature, vol.99, issue.6727, pp.489-492, 1999.
DOI : 10.1016/0168-583X(94)00684-9

K. W. Ledingham, P. Mckenna, and R. P. Singhal, Applications for Nuclear Phenomena Generated by Ultra-Intense Lasers, Science, vol.300, issue.5622, pp.1107-1111, 2003.
DOI : 10.1126/science.1080552

C. Baccou, Abstract, Laser and Particle Beams, vol.4, issue.01, pp.117-122, 2014.
DOI : 10.1103/PhysRevLett.90.185002

K. W. Ledingham and W. Galster, Laser-driven particle and photon beams and some applications, New Journal of Physics, vol.12, issue.4, p.45005, 2010.
DOI : 10.1088/1367-2630/12/4/045005

URL : http://iopscience.iop.org/article/10.1088/1367-2630/12/4/045005/pdf

P. Mora, Plasma Expansion into a Vacuum, Physical Review Letters, vol.95, issue.18, p.185002, 2003.
DOI : 10.1134/1.1506430

URL : https://hal.archives-ouvertes.fr/hal-01166839

C. Labaune, C. Baccou, V. Yahia, C. Neuville, and J. Rafelski, Laser-initiated primary and secondary nuclear reactions in Boron-Nitride, Scientific Reports, vol.79, issue.1, p.21202, 2016.
DOI : 10.1103/PhysRevE.79.038401

URL : https://hal.archives-ouvertes.fr/hal-01284331

H. Y. Lu, Efficient fusion neutron generation from heteronuclear clusters in intense femtosecond laser fields, Physical Review A, vol.80, issue.5, p.51201, 2009.
DOI : 10.1134/S1054660X09050144

I. Last and J. Jortner, Energetics at extremes in Coulomb explosion of large finite systems, Chemical Physics, vol.399, pp.218-223, 2012.
DOI : 10.1016/j.chemphys.2011.11.026

R. Prasad, OH) spray of sub-micron droplets for laser driven negative ion source, Review of Scientific Instruments, vol.83, issue.8, p.83301, 2012.
DOI : 10.1016/j.nimb.2005.05.028

S. Ter-avetisyan, M. Schnürer, H. Stiel, and P. Nickles, A high-density sub-micron liquid spray for laser driven radiation sources, Journal of Physics D: Applied Physics, vol.36, issue.19, p.2421, 2003.
DOI : 10.1088/0022-3727/36/19/017

M. K. Bhuyan, High aspect ratio nanochannel machining using single shot femtosecond Bessel beams, Applied Physics Letters, vol.97, issue.8, p.81102, 2010.
DOI : 10.1016/S0030-4018(00)00961-5

URL : https://hal.archives-ouvertes.fr/hal-00517173

M. Duocastella and C. B. Arnold, Bessel and annular beams for materials processing, Laser & Photonics Reviews, vol.3, issue.5, pp.607-621, 2012.
DOI : 10.1038/nchem.965

J. Durnin, J. J. Miceli, and J. H. Eberly, Diffraction-free beams, Physical Review Letters, vol.26, issue.15, pp.1499-1501, 1987.
DOI : 10.1063/1.526579

C. Demichelis, Laser induced gas breakdown: A bibliographical review, IEEE Journal of Quantum Electronics, vol.5, issue.4, pp.188-202, 1969.
DOI : 10.1109/JQE.1969.1075758

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses, Physical Review Letters, vol.20, issue.12, pp.2248-2251, 1995.
DOI : 10.1103/PhysRevLett.62.2711

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, Femtosecond-Laser-Induced Nanocavitation in Water: Implications for Optical Breakdown Threshold and Cell Surgery, Physical Review Letters, vol.34, issue.3, p.38102, 2008.
DOI : 10.1021/cr010379n

D. Faccio, Cavitation dynamics and directional microbubble ejection induced by intense femtosecond laser pulses in liquids, Physical Review E, vol.433, issue.3, p.36304, 2012.
DOI : 10.1039/c0lc00520g

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M. Kim, and E. Mazur, Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds, Optics Express, vol.10, issue.3, pp.196-203, 2002.
DOI : 10.1364/OE.10.000196.m001

D. Devaux, R. Fabbro, L. Tollier, and E. Bartnicki, Generation of shock waves by laser???induced plasma in confined geometry, Journal of Applied Physics, vol.55, issue.4, pp.2268-2273, 1993.
DOI : 10.1364/AO.12.000637

K. Dota, A. Pathak, J. A. Dharmadhikari, D. Mathur, and A. K. Dharmadhikari, Femtosecond laser filamentation in condensed media with Bessel beams, Physical Review A, vol.86, issue.2, p.23808, 2012.
DOI : 10.1016/S0030-4018(02)02339-8

L. Allen and D. G. Jones, An analysis of the granularity of scattered optical maser light, Physics Letters, vol.7, issue.5, pp.321-323, 1963.
DOI : 10.1016/0031-9163(63)90054-4

B. Redding, M. A. Choma, and H. Cao, Speckle-free laser imaging using random laser illumination, Nature Photonics, vol.22, issue.6, pp.355-359, 2012.
DOI : 10.1364/JOSAA.22.001380

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932313/pdf

I. Toytman, D. Simanovski, and D. Palanker, Optical breakdown in transparent media with adjustable axial length and location, Optics Express, vol.18, issue.24, pp.24688-24698, 2010.
DOI : 10.1364/OE.18.024688

A. Mermillod-blondin, H. Mentzel, and A. Rosenfeld, Time-resolved microscopy with random lasers, Optics Letters, vol.38, issue.20, pp.4112-4115, 2013.
DOI : 10.1364/OL.38.004112

R. Ambartsumyan, N. Basov, P. Kryukov, and V. Letokhov, 5A10(b) - A laser with a nonresonant feedback, IEEE Journal of Quantum Electronics, vol.2, issue.9, pp.442-446, 1966.
DOI : 10.1109/JQE.1966.1074123

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang et al., Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm, Physics in Medicine and Biology, vol.48, issue.24
DOI : 10.1088/0031-9155/48/24/013

H. Cao, Random lasers with coherent feedback, IEEE Journal of Selected Topics in Quantum Electronics, vol.9, issue.1, pp.111-119, 2003.
DOI : 10.1109/JSTQE.2002.807975

N. M. Lawandy, R. M. Balachandran, A. S. Gomes, and E. Sauvain, Laser action in strongly scattering media, Nature, vol.368, issue.6470, pp.436-438, 1994.
DOI : 10.1038/368436a0

C. T. Dominguez, E. De-lima, P. C. De-oliveira, and F. L. Arbeloa, Using random laser emission to investigate the bonding energy of laser dye dimers, Chem. Phys. Lett, vol.464, pp.4-6, 2008.

C. M. Soukoulis, X. Jiang, J. Y. Xu, and H. Cao, Dynamic response and relaxation oscillations in random lasers, Physical Review B, vol.10, issue.4, p.41103, 2002.
DOI : 10.1364/JOSAB.10.002358

C. E. Brennen, Cavitation and Bubble Dynamics, 1995.
DOI : 10.1017/CBO9781107338760

URL : https://authors.library.caltech.edu/25017/5/BUBBOOK.pdf

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova et al., Collapse and rebound of a laser-induced cavitation bubble, Physics of Fluids, vol.31, issue.10, pp.2805-2819, 2001.
DOI : 10.1021/jp980930t

R. P. Godwin, E. J. Chapyak, J. Noack, and A. Vogel, Aspherical bubble dynamics and oscillation times, pp.225-236, 1999.
DOI : 10.1117/12.350042

URL : https://digital.library.unt.edu/ark:/67531/metadc678590/m2/1/high_res_d/350971.pdf

W. Lauterborn and T. Kurz, Physics of bubble oscillations, Reports on Progress in Physics, vol.73, issue.10, p.106501, 2010.
DOI : 10.1088/0034-4885/73/10/106501

K. Tsiglifis and N. A. Pelekasis, Nonlinear oscillations and collapse of elongated bubbles subject to weak viscous effects, Physics of Fluids, vol.3, issue.10, p.102101, 2005.
DOI : 10.1016/0045-7825(93)90109-B

É. Boulais, R. Lachaine, and M. Meunier, Plasma Mediated off-Resonance Plasmonic Enhanced Ultrafast Laser-Induced Nanocavitation, Nano Letters, vol.12, issue.9, pp.4763-4769, 2012.
DOI : 10.1021/nl302200w

E. Lukianova-hleb, Plasmonic Nanobubbles as Transient Vapor Nanobubbles Generated around Plasmonic Nanoparticles, ACS Nano, vol.4, issue.4, pp.2109-2123, 2010.
DOI : 10.1021/nn1000222

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860665/pdf

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, Surface plasmon resonance in gold nanoparticles: a review, Journal of Physics: Condensed Matter, vol.29, issue.20, p.203002, 2017.
DOI : 10.1088/1361-648X/aa60f3

]. A. Soleilhac, X. Dagany, P. Dugourd, M. Girod, R. Antoine et al., Correlating Droplet Size with Temperature Changes in Electrospray Source by Optical Methods Temperature Response of Rhodamine B-Doped Latex Particles. From Solution to Single Particles Monitoring methanolinduced protein unfolding by fluorescence anisotropy measurements of covalently labelled rhodamine probe, Conclusion Générale Conclusion Générale Bertorelle, C. Comby-Zerbino, F. Chirot, N. Calin, P. Dugourd, and R, pp.8210-8217, 2015.

A. Antointe, F. Soleilhac, R. Bertorelle, F. Antoineantoine, A. Bertorelle et al., Sizing protein-templated gold nanoclusters by time resolved fluorescence anisotropy decay measurements Chiral supramolecular gold-cysteine nanoparticles: Chiroptical and nonlinear optical properties Bulky counterions: enhancing the two-photon excited fluorescence of gold nanoclusters, On the Size Characterization of Glutathione-Protected Gold Nanoclusters in the Solid, Liquid and Gas Phases, pp.455-460, 2016.

. K. Publication-À-soumettre:-m, A. Bhuyan, T. E. Soleilhac, R. Itina, R. Antoine et al., Multiscale dynamics of laser-induced bubbles in liquids containing gold nanoparticles. Evidence for a snowplough effect