I. B. Figure, Analyses de la forme des dents 1 et 3 du double mutant arf1-5, pp.3-4

I. B. Figure, Phénotype du double mutant arf1-5, pp.18-20

I. B. Figure, Quantification de la forme des feuilles du double mutant arf1-5, pp.18-20

W. Mann, Les mesures ont été réalisées sur des feuilles de rang 13 issus de plantules de 4semaines de jours courts. N=10 feuilles. Les barres représentent les écarts types. Les mesures ont été comparées à l'aide d'un test statistique de

. La-perte-de-fonction-conjointe-d-'arf1, ARF18 ne permet pas de mettre en évidence de phénotype modifié des dents, ni pour leur taille ni pour leur positionnement par rapport à l'axe pointe/pétiole. Ces deux ARFs ne semblent donc pas être conjointement impliqués dans la formation des dents et l'initiation de la feuille, Cependant, il n'y pas exclut que leurs fonctions soient redondantes avec d'autres ARFs

C. Enfin and . Qu, il se passe au niveau cellulaire lors de la formation des dents est encore très peu étudié. Cela fait actuellement l'

. Ainsi, la compréhension mécanistique et cellulaire de l'initiation des dents reste encore à être affinée dans les prochaines années

S. Abel, N. Ballas, L. Wong, and A. Theologis, DNA elements responsive to auxin, BioEssays, vol.26, issue.8, pp.647-654, 1996.
DOI : 10.1042/bj2960521

S. Abel, M. Nguyen, and A. Theologis, ThePS-IAA4/5-like Family of Early Auxin-inducible mRNAs inArabidopsis thaliana, Journal of Molecular Biology, vol.251, issue.4, pp.533-582, 1995.
DOI : 10.1006/jmbi.1995.0454

S. Abel, P. Oeller, and A. Theologist, Early auxin-induced genes encode short-lived nuclear proteins., Proceedings of the National Academy of Sciences, vol.91, issue.1, pp.326-330, 1994.
DOI : 10.1073/pnas.91.1.326

URL : http://www.pnas.org/content/91/1/326.full.pdf

S. Abel and A. Theologis, Early Genes and Auxin Action, Plant Physiology, vol.111, issue.1, pp.9-17, 1996.
DOI : 10.1104/pp.111.1.9

URL : http://www.plantphysiol.org/content/plantphysiol/111/1/9.full.pdf

K. Abley, S. Sauret-güeto, A. Marée, and E. Coen, Author response, eLife, vol.136, pp.1-43, 2016.
DOI : 10.7554/eLife.18165.053

M. Aida, T. Ishida, H. Fukaki, H. Fujisawa, and M. Tasaka2, Genes lnvolved in Organ Separation in Arabidopsis: An Analysis of the cup-shaped cotyledon Mutant, Plant Cell Am Soc Plant Physiol, vol.9, pp.841-857, 1997.

M. Aida, T. Ishida, and M. Tasaka, Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes, Development, vol.126, pp.1563-1570, 1999.
DOI : 10.5685/plmorphol.11.2

M. Aida, T. Vernoux, M. Furutani, J. Traas, and M. Tasaka, Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo, Development, vol.129, pp.3965-3974, 2002.

E. Allen, Z. Xie, A. Gustafson, and J. Carrington, microRNA-Directed Phasing during Trans-Acting siRNA Biogenesis in Plants, Cell, vol.121, issue.2, pp.207-221, 2005.
DOI : 10.1016/j.cell.2005.04.004

URL : https://doi.org/10.1016/j.cell.2005.04.004

R. Aloni, K. Ullrich, M. Langhans, and C. Ullrich, Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis, Planta, vol.216, pp.841-853, 2003.

P. Andrey and Y. Maurin, Free-D: an integrated environment for three-dimensional reconstruction from serial sections, Journal of Neuroscience Methods, vol.145, issue.1-2, pp.233-244, 2005.
DOI : 10.1016/j.jneumeth.2005.01.006

M. Andriankaja, S. Dhondt, S. Debodt, H. Vanhaeren, F. Coppens et al., Exit from Proliferation during Leaf Development in Arabidopsis thaliana: A Not-So-Gradual Process, Developmental Cell, vol.22, issue.1, pp.64-78, 2012.
DOI : 10.1016/j.devcel.2011.11.011

URL : https://hal.archives-ouvertes.fr/hal-01608646

K. Bainbridge, S. Guyomarc-'h, E. Bayer, R. Swarup, M. Bennett et al., Auxin influx carriers stabilize phyllotactic patterning, Genes & Development, vol.22, issue.6, pp.810-823, 2008.
DOI : 10.1101/gad.462608

URL : http://genesdev.cshlp.org/content/22/6/810.full.pdf

A. Bajguz and A. Piotrowska, Conjugates of auxin and cytokinin, Phytochemistry, vol.70, issue.8, pp.957-969, 2009.
DOI : 10.1016/j.phytochem.2009.05.006

. Baker, . Sieber, . Wellmer, and E. Meyerowitz, The early extra petals1 Mutant Uncovers a Role for MicroRNA miR164c in Regulating Petal Number in Arabidopsis, Current Biology, vol.15, issue.4, pp.303-315, 2005.
DOI : 10.1016/j.cub.2005.02.017

E. Barbez, M. Kube?, J. Rol?ík, C. Béziat, A. P?n?ík et al., A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. utilize common genetic mechanisms in tomato, Planta, vol.226, pp.941-951, 2012.

S. Breuil-broyer, P. Morel, D. Almeida-engler, J. Coustham, V. Negrutiu et al., flower development, The Plant Journal, vol.52, issue.1, pp.182-192, 2004.
DOI : 10.1093/pcp/41.1.60

G. Brunoud, D. Wells, M. Oliva, A. Larrieu, V. Mirabet et al., A novel sensor to map auxin response and distribution at high spatio-temporal resolution, Nature, vol.22, issue.7383, pp.103-109, 2012.
DOI : 10.1105/tpc.109.071498

M. Byrne, R. Barley, M. Curtis, J. Arroyo, M. Dunham et al., Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis, Martienssen R a Nature, vol.408, pp.967-971, 2000.

C. Villalobos, L. Lee, S. , D. Oliveira, C. Ivetac et al., A combinatorial TIR1/AFB???Aux/IAA co-receptor system for differential sensing of auxin, Nature Chemical Biology, vol.138, issue.5, pp.477-85, 2012.
DOI : 10.1021/ci1000218

A. Cambridge and D. Morris, Transfer of exogenous auxin from the phloem to the polar auxin transport pathway in pea (Pisum sativum L.), Planta, vol.199, issue.4, pp.583-588, 1996.
DOI : 10.1007/BF00195190

B. Causier, M. Ashworth, W. Guo, and B. Davies, The TOPLESS Interactome: A Framework for Gene Repression in Arabidopsis, PLANT PHYSIOLOGY, vol.158, issue.1, pp.423-438, 2012.
DOI : 10.1104/pp.111.186999

C. Champagne and N. Sinha, Compound leaves: equal to the sum of their parts?, Development, vol.131, issue.18, pp.4401-4412, 2004.
DOI : 10.1242/dev.01338

H. Cho, H. Ryu, S. Rho, K. Hill, S. Smith et al., A secreted peptide acts on BIN2-mediated phosphorylation of ARFs to potentiate auxin response during lateral root development, Nature Cell Biology, vol.156, issue.1, pp.66-76, 2014.
DOI : 10.1104/pp.111.175042

C. Clapier and B. Cairns, The Biology of Chromatin Remodeling Complexes, Annual Review of Biochemistry, vol.78, issue.1, pp.273-304, 2009.
DOI : 10.1146/annurev.biochem.77.062706.153223

M. Cole, J. Chandler, D. Weijers, B. Jacobs, P. Comelli et al., DORNRÖSCHEN is a direct target of the auxin response factor MONOPTEROS in the Arabidopsis embryo, pp.1643-1651, 2009.

R. Davies, D. Goetz, J. Lasswell, M. Anderson, and B. Bartel, IAR3 Encodes an Auxin Conjugate Hydrolase from Arabidopsis, THE PLANT CELL ONLINE, vol.11, issue.3, pp.365-376, 1999.
DOI : 10.1105/tpc.11.3.365

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC144182/pdf

W. Dewitte, C. Riou-khamlichi, S. Scofield, J. Healy, A. Jacqmard et al., Altered Cell Cycle Distribution, Hyperplasia, and Inhibited Differentiation in Arabidopsis Caused by the D-Type Cyclin CYCD3, THE PLANT CELL ONLINE, vol.15, issue.1, pp.79-92, 2003.
DOI : 10.1105/tpc.004838

W. Dewitte, S. Scofield, A. Alcasabas, S. Maughan, M. Menges et al., Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses, Proceedings of the National Academy of Sciences, vol.44, issue.2, pp.14537-14542, 2007.
DOI : 10.1046/j.1365-313X.2002.01274.x

URL : http://www.pnas.org/content/104/36/14537.full.pdf

N. Dharmasiri, S. Dharmasiri, and E. M. , The F-box protein TIR1 is an auxin receptor, Nature, vol.70, issue.7041, pp.441-445, 2005.
DOI : 10.1146/annurev.biochem.70.1.503

N. Dharmasiri, S. Dharmasiri, D. Weijers, E. Lechner, M. Yamada et al., Plant Development Is Regulated by a Family of Auxin Receptor F Box Proteins, Developmental Cell, vol.9, issue.1, pp.109-119, 2005.
DOI : 10.1016/j.devcel.2005.05.014

P. Dhonukshe, F. Aniento, I. Hwang, D. Robinson, J. Mravec et al., Clathrin-Mediated Constitutive Endocytosis of PIN Auxin Efflux Carriers in Arabidopsis, Current Biology, vol.17, issue.6, pp.520-527, 2007.
DOI : 10.1016/j.cub.2007.01.052

P. Donnelly, D. Bonetta, H. Tsukaya, R. Dengler, and N. Dengler, Cell Cycling and Cell Enlargement in Developing Leaves of Arabidopsis, Developmental Biology, vol.215, issue.2, pp.407-426, 1999.
DOI : 10.1006/dbio.1999.9443

K. Dreher, J. Brown, R. Saw, and J. Callis, The Arabidopsis Aux/IAA Protein Family Has Diversified in Degradation and Auxin Responsiveness, THE PLANT CELL ONLINE, vol.18, issue.3, pp.699-714, 2006.
DOI : 10.1105/tpc.105.039172

M. Duval, T. Hsieh, S. Kim, and T. Thomas, Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily, Plant Molecular Biology, vol.50, issue.2, pp.237-248, 2002.
DOI : 10.1023/A:1016028530943

J. Eklöf and H. Brumer, The XTH Gene Family: An Update on Enzyme Structure, Function, and Phylogeny in Xyloglucan Remodeling, PLANT PHYSIOLOGY, vol.153, issue.2, pp.456-466, 2010.
DOI : 10.1104/pp.110.156844

C. Ellis, P. Nagpal, J. Young, G. Hagen, T. Guilfoyle et al., AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana, pp.4563-4574, 2005.
DOI : 10.1242/dev.02012

URL : http://dev.biologists.org/content/develop/132/20/4563.full.pdf

J. Emery, S. Floyd, J. Alvarez, Y. Eshed, N. Hawker et al., Radial Patterning of Arabidopsis Shoots by Class III HD-ZIP and KANADI Genes, Current Biology, vol.13, issue.20, pp.1768-1774, 2003.
DOI : 10.1016/j.cub.2003.09.035

J. Engelhorn, J. Reimer, I. Leuz, U. Gobel, B. Huettel et al., DEVELOPMENT-RELATED PcG TARGET IN THE APEX 4 controls leaf margin architecture in Arabidopsis thaliana, Development, vol.139, issue.14, pp.2566-2575, 2012.
DOI : 10.1242/dev.078618

Y. Eshed, J. Bowman, and S. Baum, Establishment of polarity in angiosperm lateral organs, Trends Genet, vol.18, pp.134-141, 2002.

Y. Eshed, A. Izhaki, S. Baum, S. Floyd, and J. Bowman, Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities, Development, vol.131, issue.12, pp.2997-3006, 2004.
DOI : 10.1242/dev.01186

N. Fahlgren, T. Montgomery, M. Howell, E. Allen, S. Dvorak et al., Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA Affects Developmental Timing and Patterning in Arabidopsis, Current Biology, vol.16, issue.9, pp.939-944, 2006.
DOI : 10.1016/j.cub.2006.03.065

G. Feng, Z. Qin, Y. J. Zhang, X. Hu, and Y. , Arabidopsis ORGAN SIZE RELATED1 regulates organ growth and final organ size in orchestration with ARGOS and ARL, New Phytologist, vol.1, issue.3, pp.635-646, 2011.
DOI : 10.1038/nprot.2006.97

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2011.03710.x/pdf

A. Ferjani, G. Horiguchi, S. Yano, and H. Tsukaya, Analysis of Leaf Development in fugu Mutants of Arabidopsis Reveals Three Compensation Modes That Modulate Cell Expansion in Determinate Organs, PLANT PHYSIOLOGY, vol.144, issue.2, pp.988-99, 2007.
DOI : 10.1104/pp.107.099325

J. Friml, A. Vieten, M. Sauer, D. Weijers, H. Schwarz et al., Efflux-dependent auxin gradients establish the apical???basal axis of Arabidopsis, Nature, vol.426, issue.6963, pp.147-153, 2003.
DOI : 10.1038/nature02085

Y. Fu, L. Xu, B. Xu, L. Yang, Q. Ling et al., Genetic Interactions Between Leaf Polarity-Controlling Genes and ASYMMETRIC LEAVES1 and 2 in Arabidopsis Leaf Patterning, Plant and Cell Physiology, vol.45, issue.4, pp.724-735, 2007.
DOI : 10.1093/pcp/pch051

URL : https://academic.oup.com/pcp/article-pdf/48/5/724/6855907/pcm040.pdf

M. Furutani, T. Vernoux, J. Traas, T. Kato, M. Tasaka et al., PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis, Development, vol.131, issue.20, pp.5021-5051, 2004.
DOI : 10.1242/dev.01388

URL : http://dev.biologists.org/content/develop/131/20/5021.full.pdf

J. Gagne, B. Downes, S. Shiu, A. Durski, and R. Vierstra, The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis, Proceedings of the National Academy of Sciences, vol.16, issue.12, pp.11519-11524, 2002.
DOI : 10.1093/oxfordjournals.molbev.a026079

F. Galbiati, S. Roy, D. Simonini, S. Cucinotta, M. Ceccato et al., An integrative model of the control of ovule primordia formation, The Plant Journal, vol.465, issue.3, pp.446-455, 2013.
DOI : 10.1038/nature09126

L. Gälweiler, C. Guan, A. Müller, E. Wisman, K. Mendgen et al., Regulation of Polar Auxin Transport by AtPIN1 in Arabidopsis Vascular Tissue, Science, vol.112, issue.1, pp.2226-2230, 1998.
DOI : 10.1104/pp.112.1.131

D. Garcia, S. Collier, M. Byrne, and R. Martienssen, Specification of Leaf Polarity in Arabidopsis via the trans-Acting siRNA Pathway, Current Biology, vol.16, issue.9, pp.933-938, 2006.
DOI : 10.1016/j.cub.2006.03.064

M. Geisler, J. Blakeslee, R. Bouchard, O. Lee, V. Vincenzetti et al., Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1, The Plant Journal, vol.304, issue.2, pp.179-194, 2005.
DOI : 10.1104/pp.103.2.621

W. Gray, S. Kepinski, D. Rouse, O. Leyser, and E. M. , Auxin regulates SCF TIR1 -dependent degradation of AUX / IAA proteins, pp.271-276, 2001.
DOI : 10.1038/35104500

URL : http://eprints.whiterose.ac.uk/142/1/kepinskis1.pdf

T. Guilfoyle and G. Hagen, Auxin response factors, Curr Opin Plant Biol, vol.10, pp.443-460, 2007.

M. Guo, J. Thomas, G. Collins, and M. Timmermans, Direct Repression of KNOX Loci by the ASYMMETRIC LEAVES1 Complex of Arabidopsis, THE PLANT CELL ONLINE, vol.20, issue.1, pp.48-58, 2008.
DOI : 10.1105/tpc.107.056127

S. Gupta, X. Shi, I. Lindquist, N. Devitt, J. Mudge et al., Transcriptome profiling of cytokinin and auxin regulation in tomato root, Journal of Experimental Botany, vol.156, issue.2, pp.695-704, 2013.
DOI : 10.1104/pp.111.179812

W. Hagemann and S. Gleissberg, Organogenetic capacity of leaves: The significance of marginal blastozones in angiosperms, Plant Systematics and Evolution, vol.9, issue.Suppl., pp.121-152, 1996.
DOI : 10.1017/CBO9780511626227

G. Hagen and T. Guilfoyle, Auxin-responsive gene expression: genes, promoters and regulatory factors, Mol!Biol! Plant Mol Biol, vol.49, issue.49, pp.373-385, 2002.
DOI : 10.1007/978-94-010-0377-3_9

C. Hardtke and T. Berleth, The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development, The EMBO Journal, vol.17, issue.5, pp.1405-1411, 1998.
DOI : 10.1093/emboj/17.5.1405

A. Hasson, A. Plessis, T. Blein, B. Adroher, S. Grigg et al., Leaf Development, The Plant Cell, vol.23, issue.1, pp.54-68, 2011.
DOI : 10.1105/tpc.110.081448

URL : https://hal.archives-ouvertes.fr/hal-01000463

A. Hay, M. Barkoulas, and M. Tsiantis, ASYMMETRIC LEAVES1 and auxin activities converge to repress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis, Development, vol.133, issue.20, pp.3955-3961, 2006.
DOI : 10.1242/dev.02545

URL : http://dev.biologists.org/content/develop/133/20/3955.full.pdf

M. Heisler, C. Ohno, P. Das, P. Sieber, G. V. Reddy et al., Patterns of Auxin Transport and Gene Expression during Primordium Development Revealed by Live Imaging of the Arabidopsis Inflorescence Meristem, Current Biology, vol.15, issue.21, pp.1899-1911, 2005.
DOI : 10.1016/j.cub.2005.09.052

A. Hershko, H. Heller, S. Elias, and A. Ciechanover, Components of Ubiquitin-Protein Ligase System, J Biol Chem, vol.258, pp.8206-8214, 1983.

C. Hershko, The ubiquitin system, Trends Biochem Sci, vol.22, pp.383-387, 1998.

K. Hibara, M. Karim, S. Takada, K. Taoka, M. Furutani et al., Arabidopsis CUP-SHAPED COTYLEDON3 Regulates Postembryonic Shoot Meristem and Organ Boundary Formation, THE PLANT CELL ONLINE, vol.18, issue.11, pp.2946-2957, 2006.
DOI : 10.1105/tpc.106.045716

URL : http://www.plantcell.org/content/plantcell/18/11/2946.full.pdf

G. Horiguchi, G. Kim, and H. Tsukaya, The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana, The Plant Journal, vol.37, issue.1, pp.68-78, 2005.
DOI : 10.1111/j.1365-313X.2005.02429.x

Y. Hu, H. Poh, and N. Chua, gene regulates cell expansion during organ growth, The Plant Journal, vol.7, issue.1, pp.1-9, 2006.
DOI : 10.1111/j.1365-313X.2006.02750.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2006.02750.x/pdf

. Hu and C. Xie, The Arabidopsis Auxin-Inducible Gene, pp.1951-1961, 2003.
DOI : 10.1105/tpc.013557

URL : http://www.plantcell.org/content/plantcell/15/9/1951.full.pdf

C. Hunter, M. Willmann, G. Wu, M. Yoshikawa, L. Gutiérrez-nava et al., Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis, Development, vol.133, issue.15, pp.2973-81, 2006.
DOI : 10.1242/dev.02491

N. Ishibashi, K. Kanamaru, Y. Ueno, S. Kojima, T. Kobayashi et al., ASYMMETRIC-LEAVES2 and an ortholog of eukaryotic NudC domain proteins repress expression of AUXIN-RESPONSE-FACTOR and class 1 KNOX homeobox genes for development of flat symmetric leaves in Arabidopsis, Biology Open, vol.1, issue.3, pp.197-207, 2012.
DOI : 10.1242/bio.2012406

R. Jackson, E. Lim, Y. Li, M. Kowalczyk, G. Sandberg et al., Indole-3-acetic Acid Glucosyltransferase, Journal of Biological Chemistry, vol.279, issue.6, pp.4350-4356, 2001.
DOI : 10.1007/BF00024261

M. Jones-rhoades and D. Bartel, Computational Identification of Plant MicroRNAs and Their Targets, Including a Stress-Induced miRNA, Molecular Cell, vol.14, issue.6, pp.787-799, 2004.
DOI : 10.1016/j.molcel.2004.05.027

A. Jones, E. Kramer, K. Knox, R. Swarup, J. Malcolm et al., UKPMC Funders Group development, Plant Cell, vol.11, pp.78-84, 2009.

K. Kai, J. Horita, K. Wakasa, and H. Miyagawa, Three oxidative metabolites of indole-3-acetic acid from Arabidopsis thaliana, Phytochemistry, vol.68, issue.12, pp.1651-1663, 2007.
DOI : 10.1016/j.phytochem.2007.04.030

A. Kasprzewska, R. Carter, R. Swarup, M. Bennett, N. Monk et al., Auxin influx importers modulate serration along the leaf margin, The Plant Journal, vol.17, issue.4, pp.705-718, 2015.
DOI : 10.1105/tpc.104.026898

URL : http://onlinelibrary.wiley.com/doi/10.1111/tpj.12921/pdf

E. Kawamura, G. Horiguchi, and H. Tsukaya, Mechanisms of leaf tooth formation in Arabidopsis, The Plant Journal, vol.19, issue.3, pp.429-441, 2010.
DOI : 10.1016/j.flora.2008.01.013

D. Kelley, A. Arreola, T. Gallagher, and C. Gasser, ETTIN (ARF3) physically interacts with KANADI proteins to form a functional complex essential for integument development and polarity determination in Arabidopsis, Development, vol.139, issue.6, pp.1105-1109, 2012.
DOI : 10.1242/dev.067918

S. Kepinski and O. Leyser, The Arabidopsis F-box protein TIR1 is an auxin receptor, Nature, vol.13, issue.7041, pp.1-6, 2005.
DOI : 10.1101/gr.980303

R. Kerstetter, K. Bollman, R. Taylor, K. Bomblies, and R. Poethig, KANADI regulates organ polarity in Arabidopsis, Nature, vol.411, issue.6838, pp.706-709, 2001.
DOI : 10.1038/35079629

C. Kidner and R. Martienssen, Spatially restricted microRNA directs leaf polarity through ARGONAUTE1, Nature, vol.9, issue.6978, pp.81-84, 2004.
DOI : 10.1101/gad.9.14.1797

J. Kim, K. Harter, and A. Theologis, Protein-protein interactions among the Aux/IAA proteins, Proceedings of the National Academy of Sciences, vol.4, issue.10, pp.11786-91, 1997.
DOI : 10.1105/tpc.4.10.1251

URL : http://www.pnas.org/content/94/22/11786.full.pdf

J. Kim and H. Kende, A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis, Proceedings of the National Academy of Sciences, vol.277, issue.7, pp.13374-13379, 2004.
DOI : 10.1074/jbc.M108702200

D. Koenig, E. Bayer, J. Kang, C. Kuhlemeier, and N. Sinha, Auxin patterns Solanum lycopersicum leaf morphogenesis, Development, vol.136, issue.17, pp.2997-3006, 2009.
DOI : 10.1242/dev.033811

URL : http://dev.biologists.org/content/develop/136/17/2997.full.pdf

D. Korasick, C. Westfall, S. Lee, M. Nanao, R. Dumas et al., Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression, Proceedings of the National Academy of Sciences, vol.9, issue.7, pp.5427-5459, 2014.
DOI : 10.1038/nmeth.2089

URL : https://hal.archives-ouvertes.fr/hal-00984283

M. Kube?, H. Yang, G. Richter, Y. Cheng, E. M?odzi?ska et al., The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis, The Plant Journal, vol.2, issue.4, pp.640-654, 2012.
DOI : 10.1101/cshperspect.a001552

P. Laufs, A. Peaucelle, H. Morin, and J. Traas, MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems, Development, vol.131, issue.17, pp.4311-4322, 2004.
DOI : 10.1242/dev.01320

B. Lee, J. Ko, S. Lee, Y. Lee, J. Pak et al., The Arabidopsis GRF-INTERACTING FACTOR Gene Family Performs an Overlapping Function in Determining Organ Size as Well as Multiple Developmental Properties, PLANT PHYSIOLOGY, vol.151, issue.2, pp.655-68, 2009.
DOI : 10.1104/pp.109.141838

D. Lee, M. Geisler, and P. Springer, LATERAL ORGAN FUSION1 and LATERAL ORGAN FUSION2 function in lateral organ separation and axillary meristem formation in Arabidopsis, Development, vol.136, issue.14, pp.2423-2432, 2009.
DOI : 10.1242/dev.031971

URL : http://dev.biologists.org/content/develop/136/14/2423.full.pdf

H. Li, P. Johnson, A. Stepanova, J. Alonso, and J. Ecker, Convergence of Signaling Pathways in the Control of Differential Cell Growth in Arabidopsis, Developmental Cell, vol.7, issue.2, pp.193-204, 2004.
DOI : 10.1016/j.devcel.2004.07.002

H. Li, L. Xu, H. Wang, Z. Yuan, X. Cao et al., The Putative RNA-Dependent RNA Polymerase RDR6 Acts Synergistically with ASYMMETRIC LEAVES1 and 2 to Repress BREVIPEDICELLUS and MicroRNA165/166 in Arabidopsis Leaf Development, THE PLANT CELL ONLINE, vol.17, issue.8, pp.2157-2171, 2005.
DOI : 10.1105/tpc.105.033449

W. Lin, B. Shuai, and P. Springer, The Arabidopsis LATERAL ORGAN BOUNDARIES-Domain Gene ASYMMETRIC LEAVES2 Functions in the Repression of KNOX Gene Expression and in Adaxial-Abaxial Patterning, THE PLANT CELL ONLINE, vol.15, issue.10, pp.2241-2252, 2003.
DOI : 10.1105/tpc.014969

C. Lincoln, J. Long, J. Yamaguchi, K. Serikawa, and S. Hake, A knotted1-like Homeobox Gene in Arabidopsis Is Expressed in the Vegetative Meristem and Dramatically Alters Leaf Morphology When Overexpressed in Transgenic Plants, THE PLANT CELL ONLINE, vol.6, issue.12, pp.1859-76, 1994.
DOI : 10.1105/tpc.6.12.1859

K. Nikovics, T. Blein, A. Peaucelle, T. Ishida, H. Morin et al., The Balance between the MIR164A and CUC2 Genes Controls Leaf Margin Serration in Arabidopsis, THE PLANT CELL ONLINE, vol.18, issue.11, pp.2929-2945, 2006.
DOI : 10.1105/tpc.106.045617

B. Noh, A. Bandyopadhyay, W. Peer, E. Spalding, and A. Murphy, Enhanced gravi- and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1, Nature, vol.423, issue.6943, pp.999-1002, 2003.
DOI : 10.1038/nature01716

B. Noh, A. Murphy, and E. Spalding, Multidrug Resistance, Society, vol.13, pp.2441-2454, 2001.

O. Novák, E. Hényková, I. Sairanen, M. Kowalczyk, T. Pospí?il et al., auxin metabolome, The Plant Journal, vol.291, issue.3, pp.523-536, 2012.
DOI : 10.1126/science.291.5502.306

E. Oh, J. Zhu, M. Bai, R. Arenhart, Y. Sun et al., Author response, eLife, vol.21, pp.1-19, 2014.
DOI : 10.7554/eLife.03031.025

K. Okada, J. Ueda, M. Komaki, C. Bell, and Y. Shimura, Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation, THE PLANT CELL ONLINE, vol.3, issue.7, pp.677-684, 1991.
DOI : 10.1105/tpc.3.7.677

Y. Okushima, P. Overvoorde, K. Arima, J. Alonso, A. Chan et al., Functional Genomic Analysis of the AUXIN RESPONSE FACTOR Gene Family Members in Arabidopsis thaliana: Unique and Overlapping Functions of ARF7 and ARF19, THE PLANT CELL ONLINE, vol.17, issue.2, pp.444-463, 2005.
DOI : 10.1105/tpc.104.028316

H. Ooka, K. Satoh, K. Doi, T. Nagata, Y. Otomo et al., Comprehensive Analysis of NAC Family Genes in Oryza sativa and Arabidopsis thaliana, DNA Research, vol.10, issue.6, pp.239-247, 2003.
DOI : 10.1093/dnares/10.6.239

N. Ori, Y. Eshed, C. G. Bowman, J. Hake, and S. , Mechanisms that control knox gene expression in the Arabidopsis shoot, Development, vol.127, pp.5523-5532, 2000.

A. Ostin, M. Kowalyczk, R. Bhalerao, and G. Sandberg, Metabolism of Indole-3-Acetic Acid in Arabidopsis, Plant Physiology, vol.118, issue.1, pp.285-296, 1998.
DOI : 10.1104/pp.118.1.285

F. Ouellet, P. Overvoorde, and A. Theologis, IAA17/AXR3: Biochemical Insight into an Auxin Mutant Phenotype, THE PLANT CELL ONLINE, vol.13, issue.4, pp.829-870, 2001.
DOI : 10.1105/tpc.13.4.829

M. Oughou, M. Boudin, E. Biot, P. Laufs, and J. Burguet, A strategy for the 2D mapping of gene expression domains for the analysis of organ morphogenesis, pp.1-10, 2017.

J. Ouyang, X. Shao, and J. Li, Indole-3-glycerol phosphate, a branchpoint of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana, The Plant Journal, vol.254, issue.3, pp.327-333, 2000.
DOI : 10.1104/pp.118.4.1389

P. Overvoorde, Y. Okushima, J. Alonso, A. Chan, C. Chang et al., Functional Genomic Analysis of the AUXIN/INDOLE-3-ACETIC ACID Gene Family Members in Arabidopsis thaliana, THE PLANT CELL ONLINE, vol.17, issue.12, pp.3282-3300, 2005.
DOI : 10.1105/tpc.105.036723

R. Page, TreeView: an application to display phylogenetic trees on personal computers, Comput Appl Biosci, vol.12, pp.357-358, 1996.
DOI : 10.1093/bioinformatics/12.4.357

J. Palatnik, E. Allen, X. Wu, C. Schommer, R. Schwab et al., Control of leaf morphogenesis by microRNAs, Nature, vol.31, issue.6955, pp.257-263, 2003.
DOI : 10.1093/nar/gkg595

I. Paponov, M. Paponov, W. Teale, M. Menges, S. Chakrabortee et al., Comprehensive Transcriptome Analysis of Auxin Responses in Arabidopsis, Molecular Plant, vol.1, issue.2, pp.321-337, 2008.
DOI : 10.1093/mp/ssm021

G. Parry, L. Calderon-villalobos, M. Prigge, B. Peret, S. Dharmasiri et al., Complex regulation of the TIR1/AFB family of auxin receptors, Proceedings of the National Academy of Sciences, vol.24, issue.10, pp.22540-22545, 2009.
DOI : 10.1093/bioinformatics/17.8.754

URL : https://hal.archives-ouvertes.fr/cea-00848580

G. Parry, A. Marchant, S. May, R. Swarup, K. Swarup et al., Quick on the Uptake: Characterization of a Family of Plant Auxin Influx Carriers, Journal of Plant Growth Regulation, vol.20, issue.3, pp.217-225, 2001.
DOI : 10.1007/s003440010030

A. Peaucelle, H. Morin, J. Traas, and P. Laufs, Plants expressing a miR164-resistant CUC2 gene reveal the importance of post-meristematic maintenance of phyllotaxy in Arabidopsis, Development, vol.134, issue.6, pp.1045-1050, 2007.
DOI : 10.1242/dev.02774

I. Pekker, J. Alvarez, and Y. Eshed, Auxin Response Factors Mediate Arabidopsis Organ Asymmetry via Modulation of KANADI Activity, THE PLANT CELL ONLINE, vol.17, issue.11, pp.2899-2910, 2005.
DOI : 10.1105/tpc.105.034876

J. Petrasek and J. Friml, Auxin transport routes in plant development, Development, vol.136, issue.16, pp.2675-2688, 2009.
DOI : 10.1242/dev.030353

URL : http://dev.biologists.org/content/develop/136/16/2675.full.pdf

J. Petrasek, J. Mravec, R. Bouchard, J. Blakeslee, M. Abas et al., PIN Proteins Perform a Rate-Limiting Function in Cellular Auxin Efflux, Science, vol.312, issue.5775, pp.914-917, 2006.
DOI : 10.1126/science.1123542

K. Philippar, I. Fuchs, H. Luthen, S. Hoth, C. Bauer et al., Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism, Proceedings of the National Academy of Sciences, vol.17, issue.23, pp.12186-91, 1999.
DOI : 10.1093/emboj/17.23.6903

URL : http://www.pnas.org/content/96/21/12186.full.pdf

S. Piya, S. Shrestha, B. Binder, C. Stewart, and T. Hewezi, Protein-protein interaction and gene coexpression maps of ARFs and Aux, IAAs in Arabidopsis. Front Plant Sci, vol.5, p.744, 2014.

S. Pollmann, D. Neu, T. Lehmann, O. Berkowitz, T. Schäfer et al., Subcellular localization and tissue specific expression of amidase 1 from Arabidopsis thaliana, Planta, vol.95, issue.6, pp.1241-1253, 2006.
DOI : 10.1016/0092-8674(82)90240-9

D. Pozo, J. Diaz-trivino, S. Cisneros, N. Gutierrez, and C. , The Balance between Cell Division and Endoreplication Depends on E2FC-DPB, Transcription Factors Regulated by the Ubiquitin-SCFSKP2A Pathway in Arabidopsis, THE PLANT CELL ONLINE, vol.18, issue.9, pp.2224-2235, 2006.
DOI : 10.1105/tpc.105.039651

E. Rademacher, A. Lokerse, A. Schlereth, C. Llavata-peris, M. Bayer et al., Different Auxin Response Machineries Control Distinct Cell Fates in the Early Plant Embryo, Developmental Cell, vol.22, issue.1, pp.211-222, 2012.
DOI : 10.1016/j.devcel.2011.10.026

E. Rademacher, B. Möller, A. Lokerse, C. Llavata-peris, . Van-den et al., A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family, The Plant Journal, vol.61, issue.4, pp.597-606, 2011.
DOI : 10.1146/annurev-arplant-042809-112308

J. Ramos, N. Zenser, O. Leyser, and J. Callis, Rapid Degradation of Auxin / Indoleacetic Acid Proteins Requires Conserved Amino Acids of Domain II and Is Proteasome Dependent, pp.2349-2360, 2001.

D. Rayle and R. Cleland, The Acid Growth Theory of auxin-induced cell elongation is alive and well., PLANT PHYSIOLOGY, vol.99, issue.4, pp.1271-1274, 1992.
DOI : 10.1104/pp.99.4.1271

G. Reddy, M. Heisler, D. Ehrhardt, and E. Meyerowitz, Real-time lineage analysis reveals oriented 156, 2004.

P. Reeves, C. Ellis, S. Ploense, M. Wu, V. Yadav et al., A Regulatory Network for Coordinated Flower Maturation, PLoS Genetics, vol.107, issue.2, pp.1-17, 2012.
DOI : 10.1371/journal.pgen.1002506.s012

URL : https://doi.org/10.1371/journal.pgen.1002506

D. Reinhardt, T. Mandel, and C. Kuhlemeier, Auxin Regulates the Initiation and Radial Position of Plant Lateral Organs, THE PLANT CELL ONLINE, vol.12, issue.4, pp.507-518, 2000.
DOI : 10.1105/tpc.12.4.507

D. Reinhardt, E. Pesce, P. Stieger, T. Mandel, K. Baltensperger et al., Regulation of phyllotaxis by polar auxin transport, Nature, vol.426, issue.6964, pp.255-260, 2003.
DOI : 10.1038/nature02081

D. Remington, T. Vision, T. Guilfoyle, and J. Reed, Contrasting Modes of Diversification in the Aux/IAA and ARF Gene Families, PLANT PHYSIOLOGY, vol.135, issue.3, pp.1738-1752, 2004.
DOI : 10.1104/pp.104.039669

H. Ren and W. Gray, SAUR Proteins as Effectors of Hormonal and Environmental Signals in Plant Growth, Molecular Plant, vol.8, issue.8, pp.84-91, 2015.
DOI : 10.1016/j.molp.2015.05.003

M. Rhoades, B. Reinhart, L. Lim, C. Burge, B. Bartel et al., Prediction of Plant MicroRNA Targets, Cell, vol.110, issue.4, pp.513-520, 2002.
DOI : 10.1016/S0092-8674(02)00863-2

URL : https://doi.org/10.1016/s0092-8674(02)00863-2

H. Robert and J. Friml, Auxin and other signals on the move in plants, Nature Chemical Biology, vol.101, issue.5, pp.325-332, 2009.
DOI : 10.1038/415806a

H. Robert, W. Grunewald, M. Sauer, B. Cannoot, M. Soriano et al., Plant embryogenesis requires AUX/LAX-mediated auxin influx, Development, vol.142, issue.4, pp.702-711, 2015.
DOI : 10.1242/dev.115832

URL : http://dev.biologists.org/content/develop/142/4/702.full.pdf

R. Rodriguez, J. Debernardi, and J. Palatnik, Morphogenesis of simple leaves: regulation of leaf size and shape, Wiley Interdisciplinary Reviews: Developmental Biology, vol.42, issue.1, pp.41-57, 2014.
DOI : 10.1038/ng.703

R. Rodriguez, M. Mecchia, J. Debernardi, C. Schommer, D. Weigel et al., Control of cell proliferation in Arabidopsis thaliana by microRNA miR396, Development, vol.137, issue.1, pp.103-112, 2010.
DOI : 10.1242/dev.043067

M. Ruegger, E. Dewey, W. Gray, L. Hobbie, J. Turner et al., The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast??Grr1p, Genes & Development, vol.12, issue.2, pp.198-207, 1998.
DOI : 10.1101/gad.12.2.198

M. Ruegger, E. Dewey, L. Hobbie, D. Brown, P. Bernasconi et al., Reduced Naphthylphthalamic Acid Binding in the tir3 Mutant of Arabidopsis Is Associated with a Reduction in Polar Auxin Transport and Diverse Morphological Defects, THE PLANT CELL ONLINE, vol.9, issue.5, pp.745-57, 1997.
DOI : 10.1105/tpc.9.5.745

J. Sampedro and D. Cosgrove, The expansin superfamily, Genome Biology, vol.6, issue.12, p.242, 2005.
DOI : 10.1186/gb-2005-6-12-242

E. Scacchi, P. Salinas, B. Gujas, L. Santuari, N. Krogan et al., Spatio-temporal sequence of cross-regulatory events in root meristem growth, Proceedings of the National Academy of Sciences, vol.19, issue.18, pp.22734-22739, 2010.
DOI : 10.1093/emboj/19.18.4997

E. Scarpella, M. D. Friml, J. Berleth, T. Scarpella, E. et al., Control of leaf vascular patterning by polar auxin transport Control of leaf vascular patterning by polar auxin transport, pp.1015-1027, 2006.

A. Schlereth, B. Möller, W. Liu, M. Kientz, J. Flipse et al., MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor, Nature, vol.139, issue.7290, pp.913-919, 2010.
DOI : 10.1016/j.jsb.2006.03.004

M. Schruff, M. Spielman, S. Tiwari, S. Adams, N. Fenby et al., The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs, Development, vol.133, issue.2, pp.251-261, 2005.
DOI : 10.1242/dev.02194

M. Schuetz, T. Berleth, and J. Mattsson, Multiple MONOPTEROS-Dependent Pathways Are Involved in Leaf Initiation, PLANT PHYSIOLOGY, vol.148, issue.2, pp.870-880, 2008.
DOI : 10.1104/pp.108.119396

URL : http://www.plantphysiol.org/content/plantphysiol/148/2/870.full.pdf

R. Sessions and P. Zambryski, Arabidopsis gynoecium structure in the wild type and in ettin mutants, pp.1519-1532, 1995.

R. Shin, A. Burch, K. Huppert, S. Tiwari, A. Murphy et al., The Arabidopsis Transcription Factor MYB77 Modulates Auxin Signal Transduction, THE PLANT CELL ONLINE, vol.19, issue.8, pp.2440-53, 2007.
DOI : 10.1105/tpc.107.050963

URL : http://www.plantcell.org/content/plantcell/19/8/2440.full.pdf

B. Shuai, C. Reynaga-pen, and P. Springer, Lateral organ boundaries, Society, vol.129, pp.747-761, 2002.

S. Simon and J. Petrá?ek, Why plants need more than one type of auxin, Plant Science, vol.180, issue.3, pp.454-460, 2011.
DOI : 10.1016/j.plantsci.2010.12.007

S. Simonini, S. Bencivenga, M. Trick, and L. Ostergaard, Auxin-Induced Modulation of ETTIN Activity Orchestrates Gene Expression in Arabidopsis, The Plant Cell, vol.29, issue.8, 2017.
DOI : 10.1105/tpc.17.00389

N. Sinha, R. Williams, and S. Hake, Overexpression of the maize homeo box gene, KNOTTED-1, causes a switch from determinate to indeterminate cell fates., Genes & Development, vol.7, issue.5, pp.787-795, 1993.
DOI : 10.1101/gad.7.5.787

D. Skowyra, K. Craig, M. Tyers, S. Elledge, and J. Harper, F-Box Proteins Are Receptors that Recruit Phosphorylated Substrates to the SCF Ubiquitin-Ligase Complex, Cell, vol.91, issue.2, pp.209-219, 1997.
DOI : 10.1016/S0092-8674(00)80403-1

M. Stahle, J. Kuehlich, L. Staron, A. Von-arnim, and J. Golz, YABBYs and the Transcriptional Corepressors LEUNIG and LEUNIG_HOMOLOG Maintain Leaf Polarity and Meristem Activity in Arabidopsis, The Plant Cell, vol.21, issue.10, pp.3105-3118, 2009.
DOI : 10.1105/tpc.109.070458

S. A. , Y. J. Robles, L. Novak, O. He, W. Guo et al., The Arabidopsis YUCCA1 Flavin Monooxygenase Functions in the Indole-3-Pyruvic Acid Branch of Auxin Biosynthesis, Plant Cell, vol.23, pp.3961-3973, 2011.

A. Stepanova, J. Robertson-hoyt, J. Yun, L. Benavente, D. Xie et al., TAA1-Mediated Auxin Biosynthesis Is Essential for Hormone Crosstalk and Plant Development, Cell, vol.133, issue.1, pp.177-191, 2008.
DOI : 10.1016/j.cell.2008.01.047

URL : https://doi.org/10.1016/j.cell.2008.01.047

E. Stowe-evans, M. Harper, A. V. Motchoulski, and E. Liscum, NPH4, a Conditional Modulator of Auxin-Dependent Differential Growth Responses in Arabidopsis, Plant Physiology, vol.118, issue.4, pp.1265-1275, 1998.
DOI : 10.1104/pp.118.4.1265

S. Sugawara, S. Hishiyama, Y. Jikumaru, A. Hanada, T. Nishimura et al., Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis, Proceedings of the National Academy of Sciences, vol.224, issue.6, pp.5430-5435, 2009.
DOI : 10.1007/s00425-006-0311-3

K. Sugimoto-shirasu and K. Roberts, ???Big it up???: endoreduplication and cell-size control in plants, Current Opinion in Plant Biology, vol.6, issue.6, pp.544-553, 2003.
DOI : 10.1016/j.pbi.2003.09.009

R. Swarup and B. Péret, AUX/LAX family of auxin influx carriers???an overview, Frontiers in Plant Science, vol.3, p.225, 2012.
DOI : 10.3389/fpls.2012.00225

URL : https://hal.archives-ouvertes.fr/cea-00848572

H. Szemenyei, M. Hannon, and J. Long, TOPLESS Mediates Auxin-Dependent Transcriptional Repression During Arabidopsis Embryogenesis, Science, vol.48, issue.3, pp.1384-1386, 2008.
DOI : 10.1111/j.1365-313X.2006.02882.x

R. Tabata, M. Ikezaki, T. Fujibe, M. Aida, C. Tian et al., Arabidopsis AUXIN RESPONSE FACTOR6 and 8 Regulate Jasmonic Acid Biosynthesis and Floral Organ Development via Repression of Class 1 KNOX Genes, Plant and Cell Physiology, vol.43, issue.1, pp.164-175, 2010.
DOI : 10.1111/j.1365-313X.2005.02432.x

S. Takada, K. Hibara, T. Ishida, and M. Tasaka, The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation, Development, vol.128, pp.1127-1162, 2001.

T. Tameshige, S. Okamoto, J. Lee, M. Aida, M. Tasaka et al., A Secreted Peptide and Its Receptors Shape the Auxin Response Pattern and Leaf Margin Morphogenesis, Current Biology, vol.26, issue.18, pp.2478-2485, 2016.
DOI : 10.1016/j.cub.2016.07.014

X. Tan, L. Calderon-villalobos, M. Sharon, C. Zheng, C. V. Robinson et al., Mechanism of auxin perception by the TIR1 ubiquitin ligase, Nature, vol.62, issue.7136, pp.2-7, 2007.
DOI : 10.1038/nature05731

K. Taoka, Y. Yanagimoto, Y. Daimon, K. Hibara, M. Aida et al., The NAC domain mediates functional specificity of CUP-SHAPED COTYLEDON proteins, The Plant Journal, vol.14, issue.4, pp.462-473, 2004.
DOI : 10.1093/pcp/41.1.60

K. Tatematsu, S. Kumagai, H. Muto, A. Sato, M. Watahiki et al., MASSUGU2 Encodes Aux/IAA19, an Auxin-Regulated Protein That Functions Together with the Transcriptional Activator NPH4/ARF7 to Regulate Differential Growth Responses of Hypocotyl and Formation of Lateral Roots in Arabidopsis thaliana, THE PLANT CELL ONLINE, vol.16, issue.2, pp.379-93, 2004.
DOI : 10.1105/tpc.018630

K. Terasaka, J. Blakeslee, B. Titapiwatanakun, W. Peer, A. Bandyopadhyay et al., PGP4, an ATP Binding Cassette P-Glycoprotein, Catalyzes Auxin Transport in Arabidopsis thaliana Roots, THE PLANT CELL ONLINE, vol.17, issue.11, pp.2922-2961, 2005.
DOI : 10.1105/tpc.105.035816

URL : http://www.plantcell.org/content/plantcell/17/11/2922.full.pdf

M. Timmermans, ROUGH SHEATH2: A Myb Protein That Represses knox Homeobox Genes in Maize Lateral Organ Primordia, Science, vol.284, issue.5411, pp.151-153, 1999.
DOI : 10.1126/science.284.5411.151

B. Titapiwatanakun, J. Blakeslee, A. Bandyopadhyay, H. Yang, J. Mravec et al., ABCB19/PGP19 stabilises PIN1 in membrane microdomains in Arabidopsis, The Plant Journal, vol.64, issue.Pt 10, pp.27-44, 2009.
DOI : 10.1111/j.1365-313X.2008.03668.x

S. Tiwari, G. Hagen, and T. Guilfoyle, The Roles of Auxin Response Factor Domains in Auxin-Responsive Transcription, THE PLANT CELL ONLINE, vol.15, issue.2, pp.533-576, 2003.
DOI : 10.1105/tpc.008417

S. Tiwari, G. Hagen, and T. Guilfoyle, Aux/IAA Proteins Contain a Potent Transcriptional Repression Domain, THE PLANT CELL ONLINE, vol.16, issue.2, pp.533-576, 2004.
DOI : 10.1105/tpc.017384

URL : http://www.plantcell.org/content/plantcell/16/2/533.full.pdf

S. Tiwari, X. Wang, G. Hagen, and T. Guilfoyle, AUX/IAA Proteins Are Active Repressors, and Their Stability and Activity Are Modulated by Auxin, THE PLANT CELL ONLINE, vol.13, issue.12, pp.2809-2831, 2001.
DOI : 10.1105/tpc.13.12.2809

URL : http://www.plantcell.org/content/13/12/2809.full.pdf

H. Tsukaya, Controlling Size in Multicellular Organs: Focus on the Leaf, PLoS Biology, vol.443, issue.7, pp.1373-1376, 2008.
DOI : 10.1371/journal.pbio.0060174.g003

T. Ulmasov, G. Hagen, and T. Guilfoyle, Dimerization and DNA binding of auxin response factors, The Plant Journal, vol.30, issue.3, pp.309-319, 1999.
DOI : 10.1073/pnas.96.10.5844

T. Ulmasov, G. Hagen, and T. Guilfoyle, Activation and repression of transcription by auxin-response factors, Proceedings of the National Academy of Sciences, vol.12, issue.6, pp.5844-5853, 1999.
DOI : 10.1046/j.1365-313x.1997.12061231.x

T. Ulmasov, G. Hagen, and T. Guilfoyle, ARF1, a Transcription Factor That Binds to Auxin Response Elements, Science, vol.276, issue.5320, pp.1865-1868, 1997.
DOI : 10.1126/science.276.5320.1865

T. Ulmasov, J. Murfett, G. Hagen, and T. Guilfoyle, Aux/lAA Proteins Repress Expression of Reporter Genes Containing Natural and Highly Active Synthetic Auxin Response Elements, pp.1963-1971, 1997.

E. Varaud, F. Brioudes, J. Szécsi, J. Leroux, S. Brown et al., AUXIN RESPONSE FACTOR8 Regulates Arabidopsis Petal Growth by Interacting with the bHLH Transcription Factor BIGPETALp, The Plant Cell, vol.23, issue.3, pp.973-83, 2011.
DOI : 10.1105/tpc.110.081653

URL : https://hal.archives-ouvertes.fr/hal-00855947

T. Vernoux, G. Brunoud, E. Farcot, V. Morin, H. Van-den-daele et al., The auxin signalling network translates dynamic input into robust patterning at the shoot apex, Molecular Systems Biology, vol.127, issue.1, pp.508-508, 2011.
DOI : 10.1242/dev.054973

URL : https://hal.archives-ouvertes.fr/hal-00828880

T. Vernoux, J. Kronenberger, O. Grandjean, P. Laufs, and J. Traas, PIN-FORMED 1 regulates cell fate at the perifery of the shoot apical meristem, Development, vol.127, pp.5157-5165, 2000.

G. Vert, C. Walcher, J. Chory, and J. Nemhauser, Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2, Proceedings of the National Academy of Sciences, vol.3, issue.18, pp.9829-9834, 2008.
DOI : 10.1093/bioinformatics/bti605

URL : https://hal.archives-ouvertes.fr/hal-00295144

P. Vieira, D. Clercq, A. Stals, H. Van-leene, J. Van-de-slijke et al., The Cyclin-Dependent Kinase Inhibitor KRP6 Induces Mitosis and Impairs Cytokinesis in Giant Cells Induced by Plant-Parasitic Nematodes in Arabidopsis, The Plant Cell, vol.26, issue.6, pp.2633-2647, 2014.
DOI : 10.1105/tpc.114.126425

A. Vieten, S. Vanneste, J. Wisniewska, E. Benková, R. Benjamins et al., Functional redundancy of PIN proteins is accompanied by auxin-dependentcross-regulation of PIN expression, Development, vol.132, issue.20, pp.4521-4531, 2005.
DOI : 10.1242/dev.02027

D. Vlad, D. Kierzkowski, M. Rast, F. Vuolo, D. Ioio et al., Leaf Shape Evolution Through Duplication, Regulatory Diversification, and Loss of a Homeobox Gene, Science, vol.14, issue.12, pp.780-783, 2014.
DOI : 10.1016/j.cub.2004.06.022

S. Vogel, Leaves in the lowest and highest winds: temperature, force and shape, New Phytologist, vol.160, issue.9), pp.13-26, 2009.
DOI : 10.1093/icb/24.1.37

C. Vroemen, A. Mordhorst, C. Albrecht, M. Kwaaitaal, and S. De-vries, The CUP-SHAPED COTYLEDON3 Gene Is Required for Boundary and Shoot Meristem Formation in Arabidopsis, THE PLANT CELL ONLINE, vol.15, issue.7, pp.1563-77, 2003.
DOI : 10.1105/tpc.012203

R. Waites and A. Hudson, phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus, Development, vol.121, pp.2143-2154, 1995.

R. Waites, H. Selvadurai, I. Oliver, and A. Hudson, The PHANTASTICA Gene Encodes a MYB Transcription Factor Involved in Growth and Dorsoventrality of Lateral Organs in Antirrhinum, Cell, vol.93, issue.5, pp.779-789, 1998.
DOI : 10.1016/S0092-8674(00)81439-7

C. Walcher and J. Nemhauser, Bipartite Promoter Element Required for Auxin Response, PLANT PHYSIOLOGY, vol.158, issue.1, pp.273-282, 2012.
DOI : 10.1104/pp.111.187559

URL : http://www.plantphysiol.org/content/plantphysiol/158/1/273.full.pdf

J. Wang, Control of Root Cap Formation by MicroRNA-Targeted Auxin Response Factors in Arabidopsis, THE PLANT CELL ONLINE, vol.17, issue.8, pp.2204-2216, 2005.
DOI : 10.1105/tpc.105.033076

L. Wang, X. Gu, D. Xu, W. Wang, H. Wang et al., miR396-targeted AtGRF transcription factors are required for coordination of cell division and differentiation during leaf development in Arabidopsis, Journal of Experimental Botany, vol.135, issue.2, pp.761-773, 2011.
DOI : 10.1111/j.1365-313X.2010.04326.x

L. Wang, J. Kim, and D. Somers, Transcriptional corepressor TOPLESS complexes with pseudoresponse regulator proteins and histone deacetylases to regulate circadian transcription, Proceedings of the National Academy of Sciences, vol.44, issue.5, pp.761-767, 2013.
DOI : 10.1016/j.molcel.2011.10.019

URL : http://www.pnas.org/content/110/2/761.full.pdf

W. Wang, B. Xu, H. Wang, J. Li, H. Huang et al., YUCCA Genes Are Expressed in Response to Leaf Adaxial-Abaxial Juxtaposition and Are Required for Leaf Margin Development, PLANT PHYSIOLOGY, vol.157, issue.4, pp.1805-1824, 2011.
DOI : 10.1104/pp.111.186395

D. Weigel, J. Ahn, M. Blazquez, J. Borevitz, S. Christensen et al., Activation Tagging in Arabidopsis, Plant Physiology, vol.122, issue.4, pp.1003-1013, 2000.
DOI : 10.1104/pp.122.4.1003

URL : http://www.plantphysiol.org/content/plantphysiol/122/4/1003.full.pdf

D. Weijers, E. Benkova, K. Jäger, A. Schlereth, T. Hamann et al., Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators, The EMBO Journal, vol.40, issue.10, pp.1874-85, 2005.
DOI : 10.1038/sj.emboj.7600659

D. Weijers, A. Schlereth, J. Ehrismann, G. Schwank, M. Kientz et al., Auxin Triggers Transient Local Signaling for Cell Specification in Arabidopsis Embryogenesis, Developmental Cell, vol.10, issue.2, pp.265-270, 2006.
DOI : 10.1016/j.devcel.2005.12.001

V. Willemsen, J. Friml, M. Grebe, A. Van-den-toorn, K. Palme et al., Cell Polarity and PIN Protein Positioning in Arabidopsis Require STEROL METHYLTRANSFERASE1 Function, THE PLANT CELL ONLINE, vol.15, issue.3, pp.612-625, 2003.
DOI : 10.1105/tpc.008433

URL : http://www.plantcell.org/content/plantcell/15/3/612.full.pdf

L. Williams, C. Carles, K. Osmont, and J. Fletcher, A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes, Proceedings of the National Academy of Sciences, vol.121, issue.2, pp.9703-9708, 2005.
DOI : 10.1016/j.cell.2005.04.004

C. Won, X. Shen, K. Mashiguchi, Z. Zheng, X. Dai et al., Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis, Proceedings of the National Academy of Sciences, vol.269, issue.11, pp.18518-18523, 2011.
DOI : 10.1042/bj0640044

G. Wu, D. Lewis, and E. Spalding, ABC Transporters Separate the Roles of Acropetal and Basipetal Auxin Transport in Lateral Root Development, The Plant Cell, vol.19, issue.6, pp.1826-1837, 2007.
DOI : 10.1105/tpc.106.048777

G. Wu, W. Lin, T. Huang, R. Poethig, P. Springer et al., KANADI1 regulates adaxial-abaxial polarity in Arabidopsis by directly repressing the transcription of ASYMMETRIC LEAVES2, Proceedings of the National Academy of Sciences, vol.297, issue.5588, pp.16392-16399, 2008.
DOI : 10.1126/science.1074950

M. Wu, Q. Tian, and J. Reed, Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction, Development, vol.133, issue.21, pp.4211-4218, 2006.
DOI : 10.1242/dev.02602

M. Wu, N. Yamaguchi, X. J. Bargmann, B. , E. M. Sang et al., Author response image 1. MP message abundance relative to that of EIF4A., eLife, vol.465, pp.1-20, 2015.
DOI : 10.7554/eLife.09269.025

L. Xu, F. Liu, E. Lechner, P. Genschik, W. Crosby et al., The SCFCOI1 Ubiquitin-Ligase Complexes Are Required for Jasmonate Response in Arabidopsis, THE PLANT CELL ONLINE, vol.14, issue.8, pp.1919-1935, 2002.
DOI : 10.1105/tpc.003368

E. Za?ímalová, P. K?e?ek, P. Sk?pa, K. Hoyerová, and J. Petrá?ek, Polar transport of the plant hormone auxin ??? the role of PIN-FORMED (PIN) proteins, Cellular and Molecular Life Sciences, vol.64, issue.13, pp.1621-1637, 2007.
DOI : 10.1007/s00018-007-6566-4

N. Zenser, A. Ellsmore, C. Leasure, and J. Callis, Auxin modulates the degradation rate of Aux/IAA proteins, Proceedings of the National Academy of Sciences, vol.124, issue.4, pp.11795-11800, 2001.
DOI : 10.1104/pp.124.4.1728

J. Zgurski, R. Sharma, D. Bolokoski, and E. Schultz, Asymmetric Auxin Response Precedes Asymmetric Growth and Differentiation of asymmetric leaf1 and asymmetric leaf2 Arabidopsis Leaves, THE PLANT CELL ONLINE, vol.17, issue.1, pp.77-91, 2005.
DOI : 10.1105/tpc.104.026898

S. Zhao, M. Zhang, T. Ma, and Y. Wang, in Response to Low Potassium Stress, The Plant Cell, vol.28, issue.12, pp.3005-3019, 2016.
DOI : 10.1105/tpc.16.00684

Y. Zhao, Auxin Biosynthesis: A Simple Two-Step Pathway Converts Tryptophan to Indole-3-Acetic Acid in Plants, Molecular Plant, vol.5, issue.2, pp.334-338, 2012.
DOI : 10.1093/mp/ssr104

N. Zheng, B. Schulman, L. Song, J. Miller, P. Jeffrey et al., Structure of the Cul1???Rbx1???Skp1???F boxSkp2 SCF ubiquitin ligase complex, Nature, vol.11, issue.6882, pp.703-712, 2002.
DOI : 10.1002/prot.340110407

R. Zimmermann and W. Werr, Pattern Formation in the Monocot Embryo as Revealed by NAMand CUC3 Orthologues from Zea mays L., Plant Molecular Biology, vol.14, issue.5, pp.669-685, 2005.
DOI : 10.1007/s11103-005-7702-x

M. Zourelidou, B. Absmanner, B. Weller, I. Barbosa, B. Willige et al., Author response, eLife, vol.136, pp.1-25, 2014.
DOI : 10.7554/eLife.02860.035